1 /*
2  * Support for mt9m114 Camera Sensor.
3  *
4  * Copyright (c) 2010 Intel Corporation. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License version
8  * 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  *
16  */
17 
18 #include <linux/module.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/string.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kmod.h>
26 #include <linux/device.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/i2c.h>
31 #include <linux/acpi.h>
32 #include "../include/linux/atomisp_gmin_platform.h"
33 #include <media/v4l2-device.h>
34 
35 #include "mt9m114.h"
36 
37 #define to_mt9m114_sensor(sd) container_of(sd, struct mt9m114_device, sd)
38 
39 /*
40  * TODO: use debug parameter to actually define when debug messages should
41  * be printed.
42  */
43 static int debug;
44 static int aaalock;
45 module_param(debug, int, 0644);
46 MODULE_PARM_DESC(debug, "Debug level (0-1)");
47 
48 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value);
49 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value);
50 static int mt9m114_wait_state(struct i2c_client *client, int timeout);
51 
52 static int
53 mt9m114_read_reg(struct i2c_client *client, u16 data_length, u32 reg, u32 *val)
54 {
55 	int err;
56 	struct i2c_msg msg[2];
57 	unsigned char data[4];
58 
59 	if (!client->adapter) {
60 		v4l2_err(client, "%s error, no client->adapter\n", __func__);
61 		return -ENODEV;
62 	}
63 
64 	if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
65 					 && data_length != MISENSOR_32BIT) {
66 		v4l2_err(client, "%s error, invalid data length\n", __func__);
67 		return -EINVAL;
68 	}
69 
70 	msg[0].addr = client->addr;
71 	msg[0].flags = 0;
72 	msg[0].len = MSG_LEN_OFFSET;
73 	msg[0].buf = data;
74 
75 	/* high byte goes out first */
76 	data[0] = (u16) (reg >> 8);
77 	data[1] = (u16) (reg & 0xff);
78 
79 	msg[1].addr = client->addr;
80 	msg[1].len = data_length;
81 	msg[1].flags = I2C_M_RD;
82 	msg[1].buf = data;
83 
84 	err = i2c_transfer(client->adapter, msg, 2);
85 
86 	if (err >= 0) {
87 		*val = 0;
88 		/* high byte comes first */
89 		if (data_length == MISENSOR_8BIT)
90 			*val = data[0];
91 		else if (data_length == MISENSOR_16BIT)
92 			*val = data[1] + (data[0] << 8);
93 		else
94 			*val = data[3] + (data[2] << 8) +
95 			    (data[1] << 16) + (data[0] << 24);
96 
97 		return 0;
98 	}
99 
100 	dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
101 	return err;
102 }
103 
104 static int
105 mt9m114_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val)
106 {
107 	int num_msg;
108 	struct i2c_msg msg;
109 	unsigned char data[6] = {0};
110 	u16 *wreg;
111 	int retry = 0;
112 
113 	if (!client->adapter) {
114 		v4l2_err(client, "%s error, no client->adapter\n", __func__);
115 		return -ENODEV;
116 	}
117 
118 	if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
119 					 && data_length != MISENSOR_32BIT) {
120 		v4l2_err(client, "%s error, invalid data_length\n", __func__);
121 		return -EINVAL;
122 	}
123 
124 	memset(&msg, 0, sizeof(msg));
125 
126 again:
127 	msg.addr = client->addr;
128 	msg.flags = 0;
129 	msg.len = 2 + data_length;
130 	msg.buf = data;
131 
132 	/* high byte goes out first */
133 	wreg = (u16 *)data;
134 	*wreg = cpu_to_be16(reg);
135 
136 	if (data_length == MISENSOR_8BIT) {
137 		data[2] = (u8)(val);
138 	} else if (data_length == MISENSOR_16BIT) {
139 		u16 *wdata = (u16 *)&data[2];
140 		*wdata = be16_to_cpu((u16)val);
141 	} else {
142 		/* MISENSOR_32BIT */
143 		u32 *wdata = (u32 *)&data[2];
144 		*wdata = be32_to_cpu(val);
145 	}
146 
147 	num_msg = i2c_transfer(client->adapter, &msg, 1);
148 
149 	/*
150 	 * HACK: Need some delay here for Rev 2 sensors otherwise some
151 	 * registers do not seem to load correctly.
152 	 */
153 	mdelay(1);
154 
155 	if (num_msg >= 0)
156 		return 0;
157 
158 	dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d",
159 		val, reg, num_msg);
160 	if (retry <= I2C_RETRY_COUNT) {
161 		dev_dbg(&client->dev, "retrying... %d", retry);
162 		retry++;
163 		msleep(20);
164 		goto again;
165 	}
166 
167 	return num_msg;
168 }
169 
170 /**
171  * misensor_rmw_reg - Read/Modify/Write a value to a register in the sensor
172  * device
173  * @client: i2c driver client structure
174  * @data_length: 8/16/32-bits length
175  * @reg: register address
176  * @mask: masked out bits
177  * @set: bits set
178  *
179  * Read/modify/write a value to a register in the  sensor device.
180  * Returns zero if successful, or non-zero otherwise.
181  */
182 static int
183 misensor_rmw_reg(struct i2c_client *client, u16 data_length, u16 reg,
184 		     u32 mask, u32 set)
185 {
186 	int err;
187 	u32 val;
188 
189 	/* Exit when no mask */
190 	if (mask == 0)
191 		return 0;
192 
193 	/* @mask must not exceed data length */
194 	switch (data_length) {
195 	case MISENSOR_8BIT:
196 		if (mask & ~0xff)
197 			return -EINVAL;
198 		break;
199 	case MISENSOR_16BIT:
200 		if (mask & ~0xffff)
201 			return -EINVAL;
202 		break;
203 	case MISENSOR_32BIT:
204 		break;
205 	default:
206 		/* Wrong @data_length */
207 		return -EINVAL;
208 	}
209 
210 	err = mt9m114_read_reg(client, data_length, reg, &val);
211 	if (err) {
212 		v4l2_err(client, "misensor_rmw_reg error exit, read failed\n");
213 		return -EINVAL;
214 	}
215 
216 	val &= ~mask;
217 
218 	/*
219 	 * Perform the OR function if the @set exists.
220 	 * Shift @set value to target bit location. @set should set only
221 	 * bits included in @mask.
222 	 *
223 	 * REVISIT: This function expects @set to be non-shifted. Its shift
224 	 * value is then defined to be equal to mask's LSB position.
225 	 * How about to inform values in their right offset position and avoid
226 	 * this unneeded shift operation?
227 	 */
228 	set <<= ffs(mask) - 1;
229 	val |= set & mask;
230 
231 	err = mt9m114_write_reg(client, data_length, reg, val);
232 	if (err) {
233 		v4l2_err(client, "misensor_rmw_reg error exit, write failed\n");
234 		return -EINVAL;
235 	}
236 
237 	return 0;
238 }
239 
240 
241 static int __mt9m114_flush_reg_array(struct i2c_client *client,
242 				     struct mt9m114_write_ctrl *ctrl)
243 {
244 	struct i2c_msg msg;
245 	const int num_msg = 1;
246 	int ret;
247 	int retry = 0;
248 
249 	if (ctrl->index == 0)
250 		return 0;
251 
252 again:
253 	msg.addr = client->addr;
254 	msg.flags = 0;
255 	msg.len = 2 + ctrl->index;
256 	ctrl->buffer.addr = cpu_to_be16(ctrl->buffer.addr);
257 	msg.buf = (u8 *)&ctrl->buffer;
258 
259 	ret = i2c_transfer(client->adapter, &msg, num_msg);
260 	if (ret != num_msg) {
261 		if (++retry <= I2C_RETRY_COUNT) {
262 			dev_dbg(&client->dev, "retrying... %d\n", retry);
263 			msleep(20);
264 			goto again;
265 		}
266 		dev_err(&client->dev, "%s: i2c transfer error\n", __func__);
267 		return -EIO;
268 	}
269 
270 	ctrl->index = 0;
271 
272 	/*
273 	 * REVISIT: Previously we had a delay after writing data to sensor.
274 	 * But it was removed as our tests have shown it is not necessary
275 	 * anymore.
276 	 */
277 
278 	return 0;
279 }
280 
281 static int __mt9m114_buf_reg_array(struct i2c_client *client,
282 				   struct mt9m114_write_ctrl *ctrl,
283 				   const struct misensor_reg *next)
284 {
285 	u16 *data16;
286 	u32 *data32;
287 	int err;
288 
289 	/* Insufficient buffer? Let's flush and get more free space. */
290 	if (ctrl->index + next->length >= MT9M114_MAX_WRITE_BUF_SIZE) {
291 		err = __mt9m114_flush_reg_array(client, ctrl);
292 		if (err)
293 			return err;
294 	}
295 
296 	switch (next->length) {
297 	case MISENSOR_8BIT:
298 		ctrl->buffer.data[ctrl->index] = (u8)next->val;
299 		break;
300 	case MISENSOR_16BIT:
301 		data16 = (u16 *)&ctrl->buffer.data[ctrl->index];
302 		*data16 = cpu_to_be16((u16)next->val);
303 		break;
304 	case MISENSOR_32BIT:
305 		data32 = (u32 *)&ctrl->buffer.data[ctrl->index];
306 		*data32 = cpu_to_be32(next->val);
307 		break;
308 	default:
309 		return -EINVAL;
310 	}
311 
312 	/* When first item is added, we need to store its starting address */
313 	if (ctrl->index == 0)
314 		ctrl->buffer.addr = next->reg;
315 
316 	ctrl->index += next->length;
317 
318 	return 0;
319 }
320 
321 static int
322 __mt9m114_write_reg_is_consecutive(struct i2c_client *client,
323 				   struct mt9m114_write_ctrl *ctrl,
324 				   const struct misensor_reg *next)
325 {
326 	if (ctrl->index == 0)
327 		return 1;
328 
329 	return ctrl->buffer.addr + ctrl->index == next->reg;
330 }
331 
332 /*
333  * mt9m114_write_reg_array - Initializes a list of mt9m114 registers
334  * @client: i2c driver client structure
335  * @reglist: list of registers to be written
336  * @poll: completion polling requirement
337  * This function initializes a list of registers. When consecutive addresses
338  * are found in a row on the list, this function creates a buffer and sends
339  * consecutive data in a single i2c_transfer().
340  *
341  * __mt9m114_flush_reg_array, __mt9m114_buf_reg_array() and
342  * __mt9m114_write_reg_is_consecutive() are internal functions to
343  * mt9m114_write_reg_array() and should be not used anywhere else.
344  *
345  */
346 static int mt9m114_write_reg_array(struct i2c_client *client,
347 				const struct misensor_reg *reglist,
348 				int poll)
349 {
350 	const struct misensor_reg *next = reglist;
351 	struct mt9m114_write_ctrl ctrl;
352 	int err;
353 
354 	if (poll == PRE_POLLING) {
355 		err = mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
356 		if (err)
357 			return err;
358 	}
359 
360 	ctrl.index = 0;
361 	for (; next->length != MISENSOR_TOK_TERM; next++) {
362 		switch (next->length & MISENSOR_TOK_MASK) {
363 		case MISENSOR_TOK_DELAY:
364 			err = __mt9m114_flush_reg_array(client, &ctrl);
365 			if (err)
366 				return err;
367 			msleep(next->val);
368 			break;
369 		case MISENSOR_TOK_RMW:
370 			err = __mt9m114_flush_reg_array(client, &ctrl);
371 			err |= misensor_rmw_reg(client,
372 						next->length &
373 							~MISENSOR_TOK_RMW,
374 						next->reg, next->val,
375 						next->val2);
376 			if (err) {
377 				dev_err(&client->dev, "%s read err. aborted\n",
378 					__func__);
379 				return -EINVAL;
380 			}
381 			break;
382 		default:
383 			/*
384 			 * If next address is not consecutive, data needs to be
385 			 * flushed before proceed.
386 			 */
387 			if (!__mt9m114_write_reg_is_consecutive(client, &ctrl,
388 								next)) {
389 				err = __mt9m114_flush_reg_array(client, &ctrl);
390 				if (err)
391 					return err;
392 			}
393 			err = __mt9m114_buf_reg_array(client, &ctrl, next);
394 			if (err) {
395 				v4l2_err(client, "%s: write error, aborted\n",
396 					 __func__);
397 				return err;
398 			}
399 			break;
400 		}
401 	}
402 
403 	err = __mt9m114_flush_reg_array(client, &ctrl);
404 	if (err)
405 		return err;
406 
407 	if (poll == POST_POLLING)
408 		return mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
409 
410 	return 0;
411 }
412 
413 static int mt9m114_wait_state(struct i2c_client *client, int timeout)
414 {
415 	int ret;
416 	unsigned int val;
417 
418 	while (timeout-- > 0) {
419 		ret = mt9m114_read_reg(client, MISENSOR_16BIT, 0x0080, &val);
420 		if (ret)
421 			return ret;
422 		if ((val & 0x2) == 0)
423 			return 0;
424 		msleep(20);
425 	}
426 
427 	return -EINVAL;
428 
429 }
430 
431 static int mt9m114_set_suspend(struct v4l2_subdev *sd)
432 {
433 	struct i2c_client *client = v4l2_get_subdevdata(sd);
434 	return mt9m114_write_reg_array(client,
435 			mt9m114_standby_reg, POST_POLLING);
436 }
437 
438 static int mt9m114_init_common(struct v4l2_subdev *sd)
439 {
440 	struct i2c_client *client = v4l2_get_subdevdata(sd);
441 
442 	return mt9m114_write_reg_array(client, mt9m114_common, PRE_POLLING);
443 }
444 
445 static int power_ctrl(struct v4l2_subdev *sd, bool flag)
446 {
447 	int ret;
448 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
449 
450 	if (!dev || !dev->platform_data)
451 		return -ENODEV;
452 
453 	if (flag) {
454 		ret = dev->platform_data->v2p8_ctrl(sd, 1);
455 		if (ret == 0) {
456 			ret = dev->platform_data->v1p8_ctrl(sd, 1);
457 			if (ret)
458 				ret = dev->platform_data->v2p8_ctrl(sd, 0);
459 		}
460 	} else {
461 		ret = dev->platform_data->v2p8_ctrl(sd, 0);
462 		ret = dev->platform_data->v1p8_ctrl(sd, 0);
463 	}
464 	return ret;
465 }
466 
467 static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
468 {
469 	int ret;
470 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
471 
472 	if (!dev || !dev->platform_data)
473 		return -ENODEV;
474 
475 	/* Note: current modules wire only one GPIO signal (RESET#),
476 	 * but the schematic wires up two to the connector.  BIOS
477 	 * versions have been unfortunately inconsistent with which
478 	 * ACPI index RESET# is on, so hit both */
479 
480 	if (flag) {
481 		ret = dev->platform_data->gpio0_ctrl(sd, 0);
482 		ret = dev->platform_data->gpio1_ctrl(sd, 0);
483 		msleep(60);
484 		ret |= dev->platform_data->gpio0_ctrl(sd, 1);
485 		ret |= dev->platform_data->gpio1_ctrl(sd, 1);
486 	} else {
487 		ret = dev->platform_data->gpio0_ctrl(sd, 0);
488 		ret = dev->platform_data->gpio1_ctrl(sd, 0);
489 	}
490 	return ret;
491 }
492 
493 static int power_up(struct v4l2_subdev *sd)
494 {
495 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
496 	struct i2c_client *client = v4l2_get_subdevdata(sd);
497 	int ret;
498 
499 	if (NULL == dev->platform_data) {
500 		dev_err(&client->dev, "no camera_sensor_platform_data");
501 		return -ENODEV;
502 	}
503 
504 	/* power control */
505 	ret = power_ctrl(sd, 1);
506 	if (ret)
507 		goto fail_power;
508 
509 	/* flis clock control */
510 	ret = dev->platform_data->flisclk_ctrl(sd, 1);
511 	if (ret)
512 		goto fail_clk;
513 
514 	/* gpio ctrl */
515 	ret = gpio_ctrl(sd, 1);
516 	if (ret)
517 		dev_err(&client->dev, "gpio failed 1\n");
518 	/*
519 	 * according to DS, 44ms is needed between power up and first i2c
520 	 * commend
521 	 */
522 	msleep(50);
523 
524 	return 0;
525 
526 fail_clk:
527 	dev->platform_data->flisclk_ctrl(sd, 0);
528 fail_power:
529 	power_ctrl(sd, 0);
530 	dev_err(&client->dev, "sensor power-up failed\n");
531 
532 	return ret;
533 }
534 
535 static int power_down(struct v4l2_subdev *sd)
536 {
537 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
538 	struct i2c_client *client = v4l2_get_subdevdata(sd);
539 	int ret;
540 
541 	if (NULL == dev->platform_data) {
542 		dev_err(&client->dev, "no camera_sensor_platform_data");
543 		return -ENODEV;
544 	}
545 
546 	ret = dev->platform_data->flisclk_ctrl(sd, 0);
547 	if (ret)
548 		dev_err(&client->dev, "flisclk failed\n");
549 
550 	/* gpio ctrl */
551 	ret = gpio_ctrl(sd, 0);
552 	if (ret)
553 		dev_err(&client->dev, "gpio failed 1\n");
554 
555 	/* power control */
556 	ret = power_ctrl(sd, 0);
557 	if (ret)
558 		dev_err(&client->dev, "vprog failed.\n");
559 
560 	/*according to DS, 20ms is needed after power down*/
561 	msleep(20);
562 
563 	return ret;
564 }
565 
566 static int mt9m114_s_power(struct v4l2_subdev *sd, int power)
567 {
568 	if (power == 0)
569 		return power_down(sd);
570 	else {
571 		if (power_up(sd))
572 			return -EINVAL;
573 
574 		return mt9m114_init_common(sd);
575 	}
576 }
577 
578 /*
579  * distance - calculate the distance
580  * @res: resolution
581  * @w: width
582  * @h: height
583  *
584  * Get the gap between resolution and w/h.
585  * res->width/height smaller than w/h wouldn't be considered.
586  * Returns the value of gap or -1 if fail.
587  */
588 #define LARGEST_ALLOWED_RATIO_MISMATCH 600
589 static int distance(struct mt9m114_res_struct const *res, u32 w, u32 h)
590 {
591 	unsigned int w_ratio;
592 	unsigned int h_ratio;
593 	int match;
594 
595 	if (w == 0)
596 		return -1;
597 	w_ratio = (res->width << 13) / w;
598 	if (h == 0)
599 		return -1;
600 	h_ratio = (res->height << 13) / h;
601 	if (h_ratio == 0)
602 		return -1;
603 	match   = abs(((w_ratio << 13) / h_ratio) - 8192);
604 
605 	if ((w_ratio < 8192) || (h_ratio < 8192) ||
606 	    (match > LARGEST_ALLOWED_RATIO_MISMATCH))
607 		return -1;
608 
609 	return w_ratio + h_ratio;
610 }
611 
612 /* Return the nearest higher resolution index */
613 static int nearest_resolution_index(int w, int h)
614 {
615 	int i;
616 	int idx = -1;
617 	int dist;
618 	int min_dist = INT_MAX;
619 	const struct mt9m114_res_struct *tmp_res = NULL;
620 
621 	for (i = 0; i < ARRAY_SIZE(mt9m114_res); i++) {
622 		tmp_res = &mt9m114_res[i];
623 		dist = distance(tmp_res, w, h);
624 		if (dist == -1)
625 			continue;
626 		if (dist < min_dist) {
627 			min_dist = dist;
628 			idx = i;
629 		}
630 	}
631 
632 	return idx;
633 }
634 
635 static int mt9m114_try_res(u32 *w, u32 *h)
636 {
637 	int idx = 0;
638 
639 	if ((*w > MT9M114_RES_960P_SIZE_H)
640 		|| (*h > MT9M114_RES_960P_SIZE_V)) {
641 		*w = MT9M114_RES_960P_SIZE_H;
642 		*h = MT9M114_RES_960P_SIZE_V;
643 	} else {
644 		idx = nearest_resolution_index(*w, *h);
645 
646 		/*
647 		 * nearest_resolution_index() doesn't return smaller
648 		 *  resolutions. If it fails, it means the requested
649 		 *  resolution is higher than wecan support. Fallback
650 		 *  to highest possible resolution in this case.
651 		 */
652 		if (idx == -1)
653 			idx = ARRAY_SIZE(mt9m114_res) - 1;
654 
655 		*w = mt9m114_res[idx].width;
656 		*h = mt9m114_res[idx].height;
657 	}
658 
659 	return 0;
660 }
661 
662 static struct mt9m114_res_struct *mt9m114_to_res(u32 w, u32 h)
663 {
664 	int  index;
665 
666 	for (index = 0; index < N_RES; index++) {
667 		if ((mt9m114_res[index].width == w) &&
668 		    (mt9m114_res[index].height == h))
669 			break;
670 	}
671 
672 	/* No mode found */
673 	if (index >= N_RES)
674 		return NULL;
675 
676 	return &mt9m114_res[index];
677 }
678 
679 static int mt9m114_res2size(struct v4l2_subdev *sd, int *h_size, int *v_size)
680 {
681 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
682 	unsigned short hsize;
683 	unsigned short vsize;
684 
685 	switch (dev->res) {
686 	case MT9M114_RES_736P:
687 		hsize = MT9M114_RES_736P_SIZE_H;
688 		vsize = MT9M114_RES_736P_SIZE_V;
689 		break;
690 	case MT9M114_RES_864P:
691 		hsize = MT9M114_RES_864P_SIZE_H;
692 		vsize = MT9M114_RES_864P_SIZE_V;
693 		break;
694 	case MT9M114_RES_960P:
695 		hsize = MT9M114_RES_960P_SIZE_H;
696 		vsize = MT9M114_RES_960P_SIZE_V;
697 		break;
698 	default:
699 		v4l2_err(sd, "%s: Resolution 0x%08x unknown\n", __func__,
700 			 dev->res);
701 		return -EINVAL;
702 	}
703 
704 	if (h_size != NULL)
705 		*h_size = hsize;
706 	if (v_size != NULL)
707 		*v_size = vsize;
708 
709 	return 0;
710 }
711 
712 static int mt9m114_get_intg_factor(struct i2c_client *client,
713 				struct camera_mipi_info *info,
714 				const struct mt9m114_res_struct *res)
715 {
716 	struct atomisp_sensor_mode_data *buf = &info->data;
717 	u32 reg_val;
718 	int ret;
719 
720 	if (info == NULL)
721 		return -EINVAL;
722 
723 	ret =  mt9m114_read_reg(client, MISENSOR_32BIT,
724 					REG_PIXEL_CLK, &reg_val);
725 	if (ret)
726 		return ret;
727 	buf->vt_pix_clk_freq_mhz = reg_val;
728 
729 	/* get integration time */
730 	buf->coarse_integration_time_min = MT9M114_COARSE_INTG_TIME_MIN;
731 	buf->coarse_integration_time_max_margin =
732 					MT9M114_COARSE_INTG_TIME_MAX_MARGIN;
733 
734 	buf->fine_integration_time_min = MT9M114_FINE_INTG_TIME_MIN;
735 	buf->fine_integration_time_max_margin =
736 					MT9M114_FINE_INTG_TIME_MAX_MARGIN;
737 
738 	buf->fine_integration_time_def = MT9M114_FINE_INTG_TIME_MIN;
739 
740 	buf->frame_length_lines = res->lines_per_frame;
741 	buf->line_length_pck = res->pixels_per_line;
742 	buf->read_mode = res->bin_mode;
743 
744 	/* get the cropping and output resolution to ISP for this mode. */
745 	ret =  mt9m114_read_reg(client, MISENSOR_16BIT,
746 					REG_H_START, &reg_val);
747 	if (ret)
748 		return ret;
749 	buf->crop_horizontal_start = reg_val;
750 
751 	ret =  mt9m114_read_reg(client, MISENSOR_16BIT,
752 					REG_V_START, &reg_val);
753 	if (ret)
754 		return ret;
755 	buf->crop_vertical_start = reg_val;
756 
757 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
758 					REG_H_END, &reg_val);
759 	if (ret)
760 		return ret;
761 	buf->crop_horizontal_end = reg_val;
762 
763 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
764 					REG_V_END, &reg_val);
765 	if (ret)
766 		return ret;
767 	buf->crop_vertical_end = reg_val;
768 
769 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
770 					REG_WIDTH, &reg_val);
771 	if (ret)
772 		return ret;
773 	buf->output_width = reg_val;
774 
775 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
776 					REG_HEIGHT, &reg_val);
777 	if (ret)
778 		return ret;
779 	buf->output_height = reg_val;
780 
781 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
782 					REG_TIMING_HTS, &reg_val);
783 	if (ret)
784 		return ret;
785 	buf->line_length_pck = reg_val;
786 
787 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
788 					REG_TIMING_VTS, &reg_val);
789 	if (ret)
790 		return ret;
791 	buf->frame_length_lines = reg_val;
792 
793 	buf->binning_factor_x = res->bin_factor_x ?
794 					res->bin_factor_x : 1;
795 	buf->binning_factor_y = res->bin_factor_y ?
796 					res->bin_factor_y : 1;
797 	return 0;
798 }
799 
800 static int mt9m114_get_fmt(struct v4l2_subdev *sd,
801 				struct v4l2_subdev_pad_config *cfg,
802 				struct v4l2_subdev_format *format)
803 {
804 	struct v4l2_mbus_framefmt *fmt = &format->format;
805 	int width, height;
806 	int ret;
807 	if (format->pad)
808 		return -EINVAL;
809 	fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
810 
811 	ret = mt9m114_res2size(sd, &width, &height);
812 	if (ret)
813 		return ret;
814 	fmt->width = width;
815 	fmt->height = height;
816 
817 	return 0;
818 }
819 
820 static int mt9m114_set_fmt(struct v4l2_subdev *sd,
821 			   struct v4l2_subdev_pad_config *cfg,
822 			   struct v4l2_subdev_format *format)
823 {
824 	struct v4l2_mbus_framefmt *fmt = &format->format;
825 	struct i2c_client *c = v4l2_get_subdevdata(sd);
826 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
827 	struct mt9m114_res_struct *res_index;
828 	u32 width = fmt->width;
829 	u32 height = fmt->height;
830 	struct camera_mipi_info *mt9m114_info = NULL;
831 
832 	int ret;
833 	if (format->pad)
834 		return -EINVAL;
835 	dev->streamon = 0;
836 	dev->first_exp = MT9M114_DEFAULT_FIRST_EXP;
837 
838 	mt9m114_info = v4l2_get_subdev_hostdata(sd);
839 	if (mt9m114_info == NULL)
840 		return -EINVAL;
841 
842 	mt9m114_try_res(&width, &height);
843 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
844 		cfg->try_fmt = *fmt;
845 		return 0;
846 	}
847 	res_index = mt9m114_to_res(width, height);
848 
849 	/* Sanity check */
850 	if (unlikely(!res_index)) {
851 		WARN_ON(1);
852 		return -EINVAL;
853 	}
854 
855 	switch (res_index->res) {
856 	case MT9M114_RES_736P:
857 		ret = mt9m114_write_reg_array(c, mt9m114_736P_init, NO_POLLING);
858 		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
859 				MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
860 		break;
861 	case MT9M114_RES_864P:
862 		ret = mt9m114_write_reg_array(c, mt9m114_864P_init, NO_POLLING);
863 		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
864 				MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
865 		break;
866 	case MT9M114_RES_960P:
867 		ret = mt9m114_write_reg_array(c, mt9m114_976P_init, NO_POLLING);
868 		/* set sensor read_mode to Normal */
869 		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
870 				MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
871 		break;
872 	default:
873 		v4l2_err(sd, "set resolution: %d failed!\n", res_index->res);
874 		return -EINVAL;
875 	}
876 
877 	if (ret)
878 		return -EINVAL;
879 
880 	ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg, POST_POLLING);
881 	if (ret < 0)
882 		return ret;
883 
884 	if (mt9m114_set_suspend(sd))
885 		return -EINVAL;
886 
887 	if (dev->res != res_index->res) {
888 		int index;
889 
890 		/* Switch to different size */
891 		if (width <= 640) {
892 			dev->nctx = 0x00; /* Set for context A */
893 		} else {
894 			/*
895 			 * Context B is used for resolutions larger than 640x480
896 			 * Using YUV for Context B.
897 			 */
898 			dev->nctx = 0x01; /* set for context B */
899 		}
900 
901 		/*
902 		 * Marked current sensor res as being "used"
903 		 *
904 		 * REVISIT: We don't need to use an "used" field on each mode
905 		 * list entry to know which mode is selected. If this
906 		 * information is really necessary, how about to use a single
907 		 * variable on sensor dev struct?
908 		 */
909 		for (index = 0; index < N_RES; index++) {
910 			if ((width == mt9m114_res[index].width) &&
911 			    (height == mt9m114_res[index].height)) {
912 				mt9m114_res[index].used = true;
913 				continue;
914 			}
915 			mt9m114_res[index].used = false;
916 		}
917 	}
918 	ret = mt9m114_get_intg_factor(c, mt9m114_info,
919 					&mt9m114_res[res_index->res]);
920 	if (ret) {
921 		dev_err(&c->dev, "failed to get integration_factor\n");
922 		return -EINVAL;
923 	}
924 	/*
925 	 * mt9m114 - we don't poll for context switch
926 	 * because it does not happen with streaming disabled.
927 	 */
928 	dev->res = res_index->res;
929 
930 	fmt->width = width;
931 	fmt->height = height;
932 	fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
933 	return 0;
934 }
935 
936 /* TODO: Update to SOC functions, remove exposure and gain */
937 static int mt9m114_g_focal(struct v4l2_subdev *sd, s32 *val)
938 {
939 	*val = (MT9M114_FOCAL_LENGTH_NUM << 16) | MT9M114_FOCAL_LENGTH_DEM;
940 	return 0;
941 }
942 
943 static int mt9m114_g_fnumber(struct v4l2_subdev *sd, s32 *val)
944 {
945 	/*const f number for mt9m114*/
946 	*val = (MT9M114_F_NUMBER_DEFAULT_NUM << 16) | MT9M114_F_NUMBER_DEM;
947 	return 0;
948 }
949 
950 static int mt9m114_g_fnumber_range(struct v4l2_subdev *sd, s32 *val)
951 {
952 	*val = (MT9M114_F_NUMBER_DEFAULT_NUM << 24) |
953 		(MT9M114_F_NUMBER_DEM << 16) |
954 		(MT9M114_F_NUMBER_DEFAULT_NUM << 8) | MT9M114_F_NUMBER_DEM;
955 	return 0;
956 }
957 
958 /* Horizontal flip the image. */
959 static int mt9m114_g_hflip(struct v4l2_subdev *sd, s32 *val)
960 {
961 	struct i2c_client *c = v4l2_get_subdevdata(sd);
962 	int ret;
963 	u32 data;
964 	ret = mt9m114_read_reg(c, MISENSOR_16BIT,
965 			(u32)MISENSOR_READ_MODE, &data);
966 	if (ret)
967 		return ret;
968 	*val = !!(data & MISENSOR_HFLIP_MASK);
969 
970 	return 0;
971 }
972 
973 static int mt9m114_g_vflip(struct v4l2_subdev *sd, s32 *val)
974 {
975 	struct i2c_client *c = v4l2_get_subdevdata(sd);
976 	int ret;
977 	u32 data;
978 
979 	ret = mt9m114_read_reg(c, MISENSOR_16BIT,
980 			(u32)MISENSOR_READ_MODE, &data);
981 	if (ret)
982 		return ret;
983 	*val = !!(data & MISENSOR_VFLIP_MASK);
984 
985 	return 0;
986 }
987 
988 static long mt9m114_s_exposure(struct v4l2_subdev *sd,
989 			       struct atomisp_exposure *exposure)
990 {
991 	struct i2c_client *client = v4l2_get_subdevdata(sd);
992 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
993 	int ret = 0;
994 	unsigned int coarse_integration = 0;
995 	unsigned int fine_integration = 0;
996 	unsigned int FLines = 0;
997 	unsigned int FrameLengthLines = 0; /* ExposureTime.FrameLengthLines; */
998 	unsigned int AnalogGain, DigitalGain;
999 	u32 AnalogGainToWrite = 0;
1000 	u16 exposure_local[3];
1001 
1002 	dev_dbg(&client->dev, "%s(0x%X 0x%X 0x%X)\n", __func__,
1003 		    exposure->integration_time[0], exposure->gain[0],
1004 		    exposure->gain[1]);
1005 
1006 	coarse_integration = exposure->integration_time[0];
1007 	/* fine_integration = ExposureTime.FineIntegrationTime; */
1008 	/* FrameLengthLines = ExposureTime.FrameLengthLines; */
1009 	FLines = mt9m114_res[dev->res].lines_per_frame;
1010 	AnalogGain = exposure->gain[0];
1011 	DigitalGain = exposure->gain[1];
1012 	if (!dev->streamon) {
1013 		/*Save the first exposure values while stream is off*/
1014 		dev->first_exp = coarse_integration;
1015 		dev->first_gain = AnalogGain;
1016 		dev->first_diggain = DigitalGain;
1017 	}
1018 	/* DigitalGain = 0x400 * (((u16) DigitalGain) >> 8) +
1019 	((unsigned int)(0x400 * (((u16) DigitalGain) & 0xFF)) >>8); */
1020 
1021 	/* set frame length */
1022 	if (FLines < coarse_integration + 6)
1023 		FLines = coarse_integration + 6;
1024 	if (FLines < FrameLengthLines)
1025 		FLines = FrameLengthLines;
1026 	ret = mt9m114_write_reg(client, MISENSOR_16BIT, 0x300A, FLines);
1027 	if (ret) {
1028 		v4l2_err(client, "%s: fail to set FLines\n", __func__);
1029 		return -EINVAL;
1030 	}
1031 
1032 	/* set coarse/fine integration */
1033 	exposure_local[0] = REG_EXPO_COARSE;
1034 	exposure_local[1] = (u16)coarse_integration;
1035 	exposure_local[2] = (u16)fine_integration;
1036 	/* 3A provide real exposure time.
1037 		should not translate to any value here. */
1038 	ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1039 			REG_EXPO_COARSE, (u16)(coarse_integration));
1040 	if (ret) {
1041 		v4l2_err(client, "%s: fail to set exposure time\n", __func__);
1042 		return -EINVAL;
1043 	}
1044 
1045 	/*
1046 	// set analog/digital gain
1047 	switch(AnalogGain)
1048 	{
1049 	case 0:
1050 	  AnalogGainToWrite = 0x0;
1051 	  break;
1052 	case 1:
1053 	  AnalogGainToWrite = 0x20;
1054 	  break;
1055 	case 2:
1056 	  AnalogGainToWrite = 0x60;
1057 	  break;
1058 	case 4:
1059 	  AnalogGainToWrite = 0xA0;
1060 	  break;
1061 	case 8:
1062 	  AnalogGainToWrite = 0xE0;
1063 	  break;
1064 	default:
1065 	  AnalogGainToWrite = 0x20;
1066 	  break;
1067 	}
1068 	*/
1069 	if (DigitalGain >= 16 || DigitalGain <= 1)
1070 		DigitalGain = 1;
1071 	/* AnalogGainToWrite =
1072 		(u16)((DigitalGain << 12) | AnalogGainToWrite); */
1073 	AnalogGainToWrite = (u16)((DigitalGain << 12) | (u16)AnalogGain);
1074 	ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1075 					REG_GAIN, AnalogGainToWrite);
1076 	if (ret) {
1077 		v4l2_err(client, "%s: fail to set AnalogGainToWrite\n",
1078 			__func__);
1079 		return -EINVAL;
1080 	}
1081 
1082 	return ret;
1083 }
1084 
1085 static long mt9m114_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
1086 {
1087 
1088 	switch (cmd) {
1089 	case ATOMISP_IOC_S_EXPOSURE:
1090 		return mt9m114_s_exposure(sd, arg);
1091 	default:
1092 		return -EINVAL;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /* This returns the exposure time being used. This should only be used
1099    for filling in EXIF data, not for actual image processing. */
1100 static int mt9m114_g_exposure(struct v4l2_subdev *sd, s32 *value)
1101 {
1102 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1103 	u32 coarse;
1104 	int ret;
1105 
1106 	/* the fine integration time is currently not calculated */
1107 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
1108 			       REG_EXPO_COARSE, &coarse);
1109 	if (ret)
1110 		return ret;
1111 
1112 	*value = coarse;
1113 	return 0;
1114 }
1115 #ifndef CSS15
1116 /*
1117  * This function will return the sensor supported max exposure zone number.
1118  * the sensor which supports max exposure zone number is 1.
1119  */
1120 static int mt9m114_g_exposure_zone_num(struct v4l2_subdev *sd, s32 *val)
1121 {
1122 	*val = 1;
1123 
1124 	return 0;
1125 }
1126 
1127 /*
1128  * set exposure metering, average/center_weighted/spot/matrix.
1129  */
1130 static int mt9m114_s_exposure_metering(struct v4l2_subdev *sd, s32 val)
1131 {
1132 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1133 	int ret;
1134 
1135 	switch (val) {
1136 	case V4L2_EXPOSURE_METERING_SPOT:
1137 		ret = mt9m114_write_reg_array(client, mt9m114_exp_average,
1138 						NO_POLLING);
1139 		if (ret) {
1140 			dev_err(&client->dev, "write exp_average reg err.\n");
1141 			return ret;
1142 		}
1143 		break;
1144 	case V4L2_EXPOSURE_METERING_CENTER_WEIGHTED:
1145 	default:
1146 		ret = mt9m114_write_reg_array(client, mt9m114_exp_center,
1147 						NO_POLLING);
1148 		if (ret) {
1149 			dev_err(&client->dev, "write exp_default reg err");
1150 			return ret;
1151 		}
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 /*
1158  * This function is for touch exposure feature.
1159  */
1160 static int mt9m114_s_exposure_selection(struct v4l2_subdev *sd,
1161 					struct v4l2_subdev_pad_config *cfg,
1162 					struct v4l2_subdev_selection *sel)
1163 {
1164 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1165 	struct misensor_reg exp_reg;
1166 	int width, height;
1167 	int grid_width, grid_height;
1168 	int grid_left, grid_top, grid_right, grid_bottom;
1169 	int win_left, win_top, win_right, win_bottom;
1170 	int i, j;
1171 	int ret;
1172 
1173 	if (sel->which != V4L2_SUBDEV_FORMAT_TRY &&
1174 	    sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1175 		return -EINVAL;
1176 
1177 	grid_left = sel->r.left;
1178 	grid_top = sel->r.top;
1179 	grid_right = sel->r.left + sel->r.width - 1;
1180 	grid_bottom = sel->r.top + sel->r.height - 1;
1181 
1182 	ret = mt9m114_res2size(sd, &width, &height);
1183 	if (ret)
1184 		return ret;
1185 
1186 	grid_width = width / 5;
1187 	grid_height = height / 5;
1188 
1189 	if (grid_width && grid_height) {
1190 		win_left = grid_left / grid_width;
1191 		win_top = grid_top / grid_height;
1192 		win_right = grid_right / grid_width;
1193 		win_bottom = grid_bottom / grid_height;
1194 	} else {
1195 		dev_err(&client->dev, "Incorrect exp grid.\n");
1196 		return -EINVAL;
1197 	}
1198 
1199 	win_left   = clamp_t(int, win_left, 0, 4);
1200 	win_top    = clamp_t(int, win_top, 0, 4);
1201 	win_right  = clamp_t(int, win_right, 0, 4);
1202 	win_bottom = clamp_t(int, win_bottom, 0, 4);
1203 
1204 	ret = mt9m114_write_reg_array(client, mt9m114_exp_average, NO_POLLING);
1205 	if (ret) {
1206 		dev_err(&client->dev, "write exp_average reg err.\n");
1207 		return ret;
1208 	}
1209 
1210 	for (i = win_top; i <= win_bottom; i++) {
1211 		for (j = win_left; j <= win_right; j++) {
1212 			exp_reg = mt9m114_exp_win[i][j];
1213 
1214 			ret = mt9m114_write_reg(client, exp_reg.length,
1215 						exp_reg.reg, exp_reg.val);
1216 			if (ret) {
1217 				dev_err(&client->dev, "write exp_reg err.\n");
1218 				return ret;
1219 			}
1220 		}
1221 	}
1222 
1223 	return 0;
1224 }
1225 #endif
1226 
1227 static int mt9m114_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val)
1228 {
1229 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1230 
1231 	*val = mt9m114_res[dev->res].bin_factor_x;
1232 
1233 	return 0;
1234 }
1235 
1236 static int mt9m114_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val)
1237 {
1238 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1239 
1240 	*val = mt9m114_res[dev->res].bin_factor_y;
1241 
1242 	return 0;
1243 }
1244 
1245 static int mt9m114_s_ev(struct v4l2_subdev *sd, s32 val)
1246 {
1247 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1248 	s32 luma = 0x37;
1249 	int err;
1250 
1251 	/* EV value only support -2 to 2
1252 	 * 0: 0x37, 1:0x47, 2:0x57, -1:0x27, -2:0x17
1253 	 */
1254 	if (val < -2 || val > 2)
1255 		return -EINVAL;
1256 	luma += 0x10 * val;
1257 	dev_dbg(&c->dev, "%s val:%d luma:0x%x\n", __func__, val, luma);
1258 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1259 	if (err) {
1260 		dev_err(&c->dev, "%s logic addr access error\n", __func__);
1261 		return err;
1262 	}
1263 	err = mt9m114_write_reg(c, MISENSOR_8BIT, 0xC87A, (u32)luma);
1264 	if (err) {
1265 		dev_err(&c->dev, "%s write target_average_luma failed\n",
1266 			__func__);
1267 		return err;
1268 	}
1269 	udelay(10);
1270 
1271 	return 0;
1272 }
1273 
1274 static int mt9m114_g_ev(struct v4l2_subdev *sd, s32 *val)
1275 {
1276 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1277 	int err;
1278 	u32 luma;
1279 
1280 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1281 	if (err) {
1282 		dev_err(&c->dev, "%s logic addr access error\n", __func__);
1283 		return err;
1284 	}
1285 	err = mt9m114_read_reg(c, MISENSOR_8BIT, 0xC87A, &luma);
1286 	if (err) {
1287 		dev_err(&c->dev, "%s read target_average_luma failed\n",
1288 			__func__);
1289 		return err;
1290 	}
1291 	luma -= 0x17;
1292 	luma /= 0x10;
1293 	*val = (s32)luma - 2;
1294 	dev_dbg(&c->dev, "%s val:%d\n", __func__, *val);
1295 
1296 	return 0;
1297 }
1298 
1299 /* Fake interface
1300  * mt9m114 now can not support 3a_lock
1301 */
1302 static int mt9m114_s_3a_lock(struct v4l2_subdev *sd, s32 val)
1303 {
1304 	aaalock = val;
1305 	return 0;
1306 }
1307 
1308 static int mt9m114_g_3a_lock(struct v4l2_subdev *sd, s32 *val)
1309 {
1310 	if (aaalock)
1311 		return V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE
1312 			| V4L2_LOCK_FOCUS;
1313 	return 0;
1314 }
1315 
1316 static int mt9m114_s_ctrl(struct v4l2_ctrl *ctrl)
1317 {
1318 	struct mt9m114_device *dev =
1319 	    container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1320 	struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
1321 	int ret = 0;
1322 
1323 	switch (ctrl->id) {
1324 	case V4L2_CID_VFLIP:
1325 		dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
1326 			__func__, ctrl->val);
1327 		ret = mt9m114_t_vflip(&dev->sd, ctrl->val);
1328 		break;
1329 	case V4L2_CID_HFLIP:
1330 		dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
1331 			__func__, ctrl->val);
1332 		ret = mt9m114_t_hflip(&dev->sd, ctrl->val);
1333 		break;
1334 #ifndef CSS15
1335 	case V4L2_CID_EXPOSURE_METERING:
1336 		ret = mt9m114_s_exposure_metering(&dev->sd, ctrl->val);
1337 		break;
1338 #endif
1339 	case V4L2_CID_EXPOSURE:
1340 		ret = mt9m114_s_ev(&dev->sd, ctrl->val);
1341 		break;
1342 	case V4L2_CID_3A_LOCK:
1343 		ret = mt9m114_s_3a_lock(&dev->sd, ctrl->val);
1344 		break;
1345 	default:
1346 		ret = -EINVAL;
1347 	}
1348 	return ret;
1349 }
1350 
1351 static int mt9m114_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1352 {
1353 	struct mt9m114_device *dev =
1354 	    container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1355 	int ret = 0;
1356 
1357 	switch (ctrl->id) {
1358 	case V4L2_CID_VFLIP:
1359 		ret = mt9m114_g_vflip(&dev->sd, &ctrl->val);
1360 		break;
1361 	case V4L2_CID_HFLIP:
1362 		ret = mt9m114_g_hflip(&dev->sd, &ctrl->val);
1363 		break;
1364 	case V4L2_CID_FOCAL_ABSOLUTE:
1365 		ret = mt9m114_g_focal(&dev->sd, &ctrl->val);
1366 		break;
1367 	case V4L2_CID_FNUMBER_ABSOLUTE:
1368 		ret = mt9m114_g_fnumber(&dev->sd, &ctrl->val);
1369 		break;
1370 	case V4L2_CID_FNUMBER_RANGE:
1371 		ret = mt9m114_g_fnumber_range(&dev->sd, &ctrl->val);
1372 		break;
1373 	case V4L2_CID_EXPOSURE_ABSOLUTE:
1374 		ret = mt9m114_g_exposure(&dev->sd, &ctrl->val);
1375 		break;
1376 #ifndef CSS15
1377 	case V4L2_CID_EXPOSURE_ZONE_NUM:
1378 		ret = mt9m114_g_exposure_zone_num(&dev->sd, &ctrl->val);
1379 		break;
1380 #endif
1381 	case V4L2_CID_BIN_FACTOR_HORZ:
1382 		ret = mt9m114_g_bin_factor_x(&dev->sd, &ctrl->val);
1383 		break;
1384 	case V4L2_CID_BIN_FACTOR_VERT:
1385 		ret = mt9m114_g_bin_factor_y(&dev->sd, &ctrl->val);
1386 		break;
1387 	case V4L2_CID_EXPOSURE:
1388 		ret = mt9m114_g_ev(&dev->sd, &ctrl->val);
1389 		break;
1390 	case V4L2_CID_3A_LOCK:
1391 		ret = mt9m114_g_3a_lock(&dev->sd, &ctrl->val);
1392 		break;
1393 	default:
1394 		ret = -EINVAL;
1395 	}
1396 
1397 	return ret;
1398 }
1399 
1400 static const struct v4l2_ctrl_ops ctrl_ops = {
1401 	.s_ctrl = mt9m114_s_ctrl,
1402 	.g_volatile_ctrl = mt9m114_g_volatile_ctrl
1403 };
1404 
1405 static struct v4l2_ctrl_config mt9m114_controls[] = {
1406 	{
1407 	 .ops = &ctrl_ops,
1408 	 .id = V4L2_CID_VFLIP,
1409 	 .name = "Image v-Flip",
1410 	 .type = V4L2_CTRL_TYPE_INTEGER,
1411 	 .min = 0,
1412 	 .max = 1,
1413 	 .step = 1,
1414 	 .def = 0,
1415 	 },
1416 	{
1417 	 .ops = &ctrl_ops,
1418 	 .id = V4L2_CID_HFLIP,
1419 	 .name = "Image h-Flip",
1420 	 .type = V4L2_CTRL_TYPE_INTEGER,
1421 	 .min = 0,
1422 	 .max = 1,
1423 	 .step = 1,
1424 	 .def = 0,
1425 	 },
1426 	{
1427 	 .ops = &ctrl_ops,
1428 	 .id = V4L2_CID_FOCAL_ABSOLUTE,
1429 	 .name = "focal length",
1430 	 .type = V4L2_CTRL_TYPE_INTEGER,
1431 	 .min = MT9M114_FOCAL_LENGTH_DEFAULT,
1432 	 .max = MT9M114_FOCAL_LENGTH_DEFAULT,
1433 	 .step = 1,
1434 	 .def = MT9M114_FOCAL_LENGTH_DEFAULT,
1435 	 .flags = 0,
1436 	 },
1437 	{
1438 	 .ops = &ctrl_ops,
1439 	 .id = V4L2_CID_FNUMBER_ABSOLUTE,
1440 	 .name = "f-number",
1441 	 .type = V4L2_CTRL_TYPE_INTEGER,
1442 	 .min = MT9M114_F_NUMBER_DEFAULT,
1443 	 .max = MT9M114_F_NUMBER_DEFAULT,
1444 	 .step = 1,
1445 	 .def = MT9M114_F_NUMBER_DEFAULT,
1446 	 .flags = 0,
1447 	 },
1448 	{
1449 	 .ops = &ctrl_ops,
1450 	 .id = V4L2_CID_FNUMBER_RANGE,
1451 	 .name = "f-number range",
1452 	 .type = V4L2_CTRL_TYPE_INTEGER,
1453 	 .min = MT9M114_F_NUMBER_RANGE,
1454 	 .max = MT9M114_F_NUMBER_RANGE,
1455 	 .step = 1,
1456 	 .def = MT9M114_F_NUMBER_RANGE,
1457 	 .flags = 0,
1458 	 },
1459 	{
1460 	 .ops = &ctrl_ops,
1461 	 .id = V4L2_CID_EXPOSURE_ABSOLUTE,
1462 	 .name = "exposure",
1463 	 .type = V4L2_CTRL_TYPE_INTEGER,
1464 	 .min = 0,
1465 	 .max = 0xffff,
1466 	 .step = 1,
1467 	 .def = 0,
1468 	 .flags = 0,
1469 	 },
1470 #ifndef CSS15
1471 	{
1472 	 .ops = &ctrl_ops,
1473 	 .id = V4L2_CID_EXPOSURE_ZONE_NUM,
1474 	 .name = "one-time exposure zone number",
1475 	 .type = V4L2_CTRL_TYPE_INTEGER,
1476 	 .min = 0,
1477 	 .max = 0xffff,
1478 	 .step = 1,
1479 	 .def = 0,
1480 	 .flags = 0,
1481 	 },
1482 	{
1483 	 .ops = &ctrl_ops,
1484 	 .id = V4L2_CID_EXPOSURE_METERING,
1485 	 .name = "metering",
1486 	 .type = V4L2_CTRL_TYPE_MENU,
1487 	 .min = 0,
1488 	 .max = 3,
1489 	 .step = 0,
1490 	 .def = 1,
1491 	 .flags = 0,
1492 	 },
1493 #endif
1494 	{
1495 	 .ops = &ctrl_ops,
1496 	 .id = V4L2_CID_BIN_FACTOR_HORZ,
1497 	 .name = "horizontal binning factor",
1498 	 .type = V4L2_CTRL_TYPE_INTEGER,
1499 	 .min = 0,
1500 	 .max = MT9M114_BIN_FACTOR_MAX,
1501 	 .step = 1,
1502 	 .def = 0,
1503 	 .flags = 0,
1504 	 },
1505 	{
1506 	 .ops = &ctrl_ops,
1507 	 .id = V4L2_CID_BIN_FACTOR_VERT,
1508 	 .name = "vertical binning factor",
1509 	 .type = V4L2_CTRL_TYPE_INTEGER,
1510 	 .min = 0,
1511 	 .max = MT9M114_BIN_FACTOR_MAX,
1512 	 .step = 1,
1513 	 .def = 0,
1514 	 .flags = 0,
1515 	 },
1516 	{
1517 	 .ops = &ctrl_ops,
1518 	 .id = V4L2_CID_EXPOSURE,
1519 	 .name = "exposure biasx",
1520 	 .type = V4L2_CTRL_TYPE_INTEGER,
1521 	 .min = -2,
1522 	 .max = 2,
1523 	 .step = 1,
1524 	 .def = 0,
1525 	 .flags = 0,
1526 	 },
1527 	{
1528 	 .ops = &ctrl_ops,
1529 	 .id = V4L2_CID_3A_LOCK,
1530 	 .name = "3a lock",
1531 	 .type = V4L2_CTRL_TYPE_BITMASK,
1532 	 .min = 0,
1533 	 .max = V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE | V4L2_LOCK_FOCUS,
1534 	 .step = 1,
1535 	 .def = 0,
1536 	 .flags = 0,
1537 	 },
1538 };
1539 
1540 static int mt9m114_detect(struct mt9m114_device *dev, struct i2c_client *client)
1541 {
1542 	struct i2c_adapter *adapter = client->adapter;
1543 	u32 retvalue;
1544 
1545 	if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
1546 		dev_err(&client->dev, "%s: i2c error", __func__);
1547 		return -ENODEV;
1548 	}
1549 	mt9m114_read_reg(client, MISENSOR_16BIT, (u32)MT9M114_PID, &retvalue);
1550 	dev->real_model_id = retvalue;
1551 
1552 	if (retvalue != MT9M114_MOD_ID) {
1553 		dev_err(&client->dev, "%s: failed: client->addr = %x\n",
1554 			__func__, client->addr);
1555 		return -ENODEV;
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 static int
1562 mt9m114_s_config(struct v4l2_subdev *sd, int irq, void *platform_data)
1563 {
1564 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1565 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1566 	int ret;
1567 
1568 	if (NULL == platform_data)
1569 		return -ENODEV;
1570 
1571 	dev->platform_data =
1572 	    (struct camera_sensor_platform_data *)platform_data;
1573 
1574 	ret = power_up(sd);
1575 	if (ret) {
1576 		v4l2_err(client, "mt9m114 power-up err");
1577 		return ret;
1578 	}
1579 
1580 	/* config & detect sensor */
1581 	ret = mt9m114_detect(dev, client);
1582 	if (ret) {
1583 		v4l2_err(client, "mt9m114_detect err s_config.\n");
1584 		goto fail_detect;
1585 	}
1586 
1587 	ret = dev->platform_data->csi_cfg(sd, 1);
1588 	if (ret)
1589 		goto fail_csi_cfg;
1590 
1591 	ret = mt9m114_set_suspend(sd);
1592 	if (ret) {
1593 		v4l2_err(client, "mt9m114 suspend err");
1594 		return ret;
1595 	}
1596 
1597 	ret = power_down(sd);
1598 	if (ret) {
1599 		v4l2_err(client, "mt9m114 power down err");
1600 		return ret;
1601 	}
1602 
1603 	return ret;
1604 
1605 fail_csi_cfg:
1606 	dev->platform_data->csi_cfg(sd, 0);
1607 fail_detect:
1608 	power_down(sd);
1609 	dev_err(&client->dev, "sensor power-gating failed\n");
1610 	return ret;
1611 }
1612 
1613 /* Horizontal flip the image. */
1614 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value)
1615 {
1616 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1617 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1618 	int err;
1619 	/* set for direct mode */
1620 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1621 	if (value) {
1622 		/* enable H flip ctx A */
1623 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x01);
1624 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x01);
1625 		/* ctx B */
1626 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x01);
1627 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x01);
1628 
1629 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1630 					MISENSOR_HFLIP_MASK, MISENSOR_FLIP_EN);
1631 
1632 		dev->bpat = MT9M114_BPAT_GRGRBGBG;
1633 	} else {
1634 		/* disable H flip ctx A */
1635 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x00);
1636 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x00);
1637 		/* ctx B */
1638 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x00);
1639 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x00);
1640 
1641 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1642 					MISENSOR_HFLIP_MASK, MISENSOR_FLIP_DIS);
1643 
1644 		dev->bpat = MT9M114_BPAT_BGBGGRGR;
1645 	}
1646 
1647 	err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1648 	udelay(10);
1649 
1650 	return !!err;
1651 }
1652 
1653 /* Vertically flip the image */
1654 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value)
1655 {
1656 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1657 	int err;
1658 	/* set for direct mode */
1659 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1660 	if (value >= 1) {
1661 		/* enable H flip - ctx A */
1662 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x01);
1663 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x01);
1664 		/* ctx B */
1665 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x01);
1666 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x01);
1667 
1668 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1669 					MISENSOR_VFLIP_MASK, MISENSOR_FLIP_EN);
1670 	} else {
1671 		/* disable H flip - ctx A */
1672 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x00);
1673 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x00);
1674 		/* ctx B */
1675 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x00);
1676 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x00);
1677 
1678 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1679 					MISENSOR_VFLIP_MASK, MISENSOR_FLIP_DIS);
1680 	}
1681 
1682 	err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1683 	udelay(10);
1684 
1685 	return !!err;
1686 }
1687 static int mt9m114_s_parm(struct v4l2_subdev *sd,
1688 			struct v4l2_streamparm *param)
1689 {
1690 	return 0;
1691 }
1692 
1693 static int mt9m114_g_frame_interval(struct v4l2_subdev *sd,
1694 				   struct v4l2_subdev_frame_interval *interval)
1695 {
1696 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1697 
1698 	interval->interval.numerator = 1;
1699 	interval->interval.denominator = mt9m114_res[dev->res].fps;
1700 
1701 	return 0;
1702 }
1703 
1704 static int mt9m114_s_stream(struct v4l2_subdev *sd, int enable)
1705 {
1706 	int ret;
1707 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1708 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1709 	struct atomisp_exposure exposure;
1710 
1711 	if (enable) {
1712 		ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg,
1713 					POST_POLLING);
1714 		if (ret < 0)
1715 			return ret;
1716 
1717 		if (dev->first_exp > MT9M114_MAX_FIRST_EXP) {
1718 			exposure.integration_time[0] = dev->first_exp;
1719 			exposure.gain[0] = dev->first_gain;
1720 			exposure.gain[1] = dev->first_diggain;
1721 			mt9m114_s_exposure(sd, &exposure);
1722 		}
1723 		dev->streamon = 1;
1724 
1725 	} else {
1726 		dev->streamon = 0;
1727 		ret = mt9m114_set_suspend(sd);
1728 	}
1729 
1730 	return ret;
1731 }
1732 
1733 static int mt9m114_enum_mbus_code(struct v4l2_subdev *sd,
1734 				  struct v4l2_subdev_pad_config *cfg,
1735 				  struct v4l2_subdev_mbus_code_enum *code)
1736 {
1737 	if (code->index)
1738 		return -EINVAL;
1739 	code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
1740 
1741 	return 0;
1742 }
1743 
1744 static int mt9m114_enum_frame_size(struct v4l2_subdev *sd,
1745 				   struct v4l2_subdev_pad_config *cfg,
1746 				   struct v4l2_subdev_frame_size_enum *fse)
1747 {
1748 
1749 	unsigned int index = fse->index;
1750 
1751 	if (index >= N_RES)
1752 		return -EINVAL;
1753 
1754 	fse->min_width = mt9m114_res[index].width;
1755 	fse->min_height = mt9m114_res[index].height;
1756 	fse->max_width = mt9m114_res[index].width;
1757 	fse->max_height = mt9m114_res[index].height;
1758 
1759 	return 0;
1760 }
1761 
1762 static int mt9m114_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
1763 {
1764 	int index;
1765 	struct mt9m114_device *snr = to_mt9m114_sensor(sd);
1766 
1767 	if (frames == NULL)
1768 		return -EINVAL;
1769 
1770 	for (index = 0; index < N_RES; index++) {
1771 		if (mt9m114_res[index].res == snr->res)
1772 			break;
1773 	}
1774 
1775 	if (index >= N_RES)
1776 		return -EINVAL;
1777 
1778 	*frames = mt9m114_res[index].skip_frames;
1779 
1780 	return 0;
1781 }
1782 
1783 static const struct v4l2_subdev_video_ops mt9m114_video_ops = {
1784 	.s_parm = mt9m114_s_parm,
1785 	.s_stream = mt9m114_s_stream,
1786 	.g_frame_interval = mt9m114_g_frame_interval,
1787 };
1788 
1789 static const struct v4l2_subdev_sensor_ops mt9m114_sensor_ops = {
1790 	.g_skip_frames	= mt9m114_g_skip_frames,
1791 };
1792 
1793 static const struct v4l2_subdev_core_ops mt9m114_core_ops = {
1794 	.s_power = mt9m114_s_power,
1795 	.ioctl = mt9m114_ioctl,
1796 };
1797 
1798 /* REVISIT: Do we need pad operations? */
1799 static const struct v4l2_subdev_pad_ops mt9m114_pad_ops = {
1800 	.enum_mbus_code = mt9m114_enum_mbus_code,
1801 	.enum_frame_size = mt9m114_enum_frame_size,
1802 	.get_fmt = mt9m114_get_fmt,
1803 	.set_fmt = mt9m114_set_fmt,
1804 #ifndef CSS15
1805 	.set_selection = mt9m114_s_exposure_selection,
1806 #endif
1807 };
1808 
1809 static const struct v4l2_subdev_ops mt9m114_ops = {
1810 	.core = &mt9m114_core_ops,
1811 	.video = &mt9m114_video_ops,
1812 	.pad = &mt9m114_pad_ops,
1813 	.sensor = &mt9m114_sensor_ops,
1814 };
1815 
1816 static const struct media_entity_operations mt9m114_entity_ops = {
1817 	.link_setup = NULL,
1818 };
1819 
1820 static int mt9m114_remove(struct i2c_client *client)
1821 {
1822 	struct mt9m114_device *dev;
1823 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1824 
1825 	dev = container_of(sd, struct mt9m114_device, sd);
1826 	dev->platform_data->csi_cfg(sd, 0);
1827 	v4l2_device_unregister_subdev(sd);
1828 	media_entity_cleanup(&dev->sd.entity);
1829 	v4l2_ctrl_handler_free(&dev->ctrl_handler);
1830 	kfree(dev);
1831 	return 0;
1832 }
1833 
1834 static int mt9m114_probe(struct i2c_client *client)
1835 {
1836 	struct mt9m114_device *dev;
1837 	int ret = 0;
1838 	unsigned int i;
1839 	void *pdata;
1840 
1841 	/* Setup sensor configuration structure */
1842 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1843 	if (!dev)
1844 		return -ENOMEM;
1845 
1846 	v4l2_i2c_subdev_init(&dev->sd, client, &mt9m114_ops);
1847 	pdata = gmin_camera_platform_data(&dev->sd,
1848 					  ATOMISP_INPUT_FORMAT_RAW_10,
1849 					  atomisp_bayer_order_grbg);
1850 	if (pdata)
1851 		ret = mt9m114_s_config(&dev->sd, client->irq, pdata);
1852 	if (!pdata || ret) {
1853 		v4l2_device_unregister_subdev(&dev->sd);
1854 		kfree(dev);
1855 		return ret;
1856 	}
1857 
1858 	ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
1859 	if (ret) {
1860 		v4l2_device_unregister_subdev(&dev->sd);
1861 		kfree(dev);
1862 		/* Coverity CID 298095 - return on error */
1863 		return ret;
1864 	}
1865 
1866 	/*TODO add format code here*/
1867 	dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1868 	dev->pad.flags = MEDIA_PAD_FL_SOURCE;
1869 	dev->format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
1870 	dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1871 
1872 	ret =
1873 	    v4l2_ctrl_handler_init(&dev->ctrl_handler,
1874 				   ARRAY_SIZE(mt9m114_controls));
1875 	if (ret) {
1876 		mt9m114_remove(client);
1877 		return ret;
1878 	}
1879 
1880 	for (i = 0; i < ARRAY_SIZE(mt9m114_controls); i++)
1881 		v4l2_ctrl_new_custom(&dev->ctrl_handler, &mt9m114_controls[i],
1882 				     NULL);
1883 
1884 	if (dev->ctrl_handler.error) {
1885 		mt9m114_remove(client);
1886 		return dev->ctrl_handler.error;
1887 	}
1888 
1889 	/* Use same lock for controls as for everything else. */
1890 	dev->ctrl_handler.lock = &dev->input_lock;
1891 	dev->sd.ctrl_handler = &dev->ctrl_handler;
1892 
1893 	/* REVISIT: Do we need media controller? */
1894 	ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
1895 	if (ret) {
1896 		mt9m114_remove(client);
1897 		return ret;
1898 	}
1899 	return 0;
1900 }
1901 
1902 static const struct acpi_device_id mt9m114_acpi_match[] = {
1903 	{ "INT33F0" },
1904 	{ "CRMT1040" },
1905 	{},
1906 };
1907 MODULE_DEVICE_TABLE(acpi, mt9m114_acpi_match);
1908 
1909 static struct i2c_driver mt9m114_driver = {
1910 	.driver = {
1911 		.name = "mt9m114",
1912 		.acpi_match_table = mt9m114_acpi_match,
1913 	},
1914 	.probe_new = mt9m114_probe,
1915 	.remove = mt9m114_remove,
1916 };
1917 module_i2c_driver(mt9m114_driver);
1918 
1919 MODULE_AUTHOR("Shuguang Gong <Shuguang.gong@intel.com>");
1920 MODULE_LICENSE("GPL");
1921