1 /*
2  * Support for mt9m114 Camera Sensor.
3  *
4  * Copyright (c) 2010 Intel Corporation. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License version
8  * 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  *
16  */
17 
18 #include <linux/module.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/string.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kmod.h>
26 #include <linux/device.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/i2c.h>
31 #include <linux/acpi.h>
32 #include "../include/linux/atomisp_gmin_platform.h"
33 #include <media/v4l2-device.h>
34 
35 #include "mt9m114.h"
36 
37 #define to_mt9m114_sensor(sd) container_of(sd, struct mt9m114_device, sd)
38 
39 /*
40  * TODO: use debug parameter to actually define when debug messages should
41  * be printed.
42  */
43 static int debug;
44 static int aaalock;
45 module_param(debug, int, 0644);
46 MODULE_PARM_DESC(debug, "Debug level (0-1)");
47 
48 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value);
49 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value);
50 static int mt9m114_wait_state(struct i2c_client *client, int timeout);
51 
52 static int
53 mt9m114_read_reg(struct i2c_client *client, u16 data_length, u32 reg, u32 *val)
54 {
55 	int err;
56 	struct i2c_msg msg[2];
57 	unsigned char data[4];
58 
59 	if (!client->adapter) {
60 		v4l2_err(client, "%s error, no client->adapter\n", __func__);
61 		return -ENODEV;
62 	}
63 
64 	if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
65 	    && data_length != MISENSOR_32BIT) {
66 		v4l2_err(client, "%s error, invalid data length\n", __func__);
67 		return -EINVAL;
68 	}
69 
70 	msg[0].addr = client->addr;
71 	msg[0].flags = 0;
72 	msg[0].len = MSG_LEN_OFFSET;
73 	msg[0].buf = data;
74 
75 	/* high byte goes out first */
76 	data[0] = (u16)(reg >> 8);
77 	data[1] = (u16)(reg & 0xff);
78 
79 	msg[1].addr = client->addr;
80 	msg[1].len = data_length;
81 	msg[1].flags = I2C_M_RD;
82 	msg[1].buf = data;
83 
84 	err = i2c_transfer(client->adapter, msg, 2);
85 
86 	if (err >= 0) {
87 		*val = 0;
88 		/* high byte comes first */
89 		if (data_length == MISENSOR_8BIT)
90 			*val = data[0];
91 		else if (data_length == MISENSOR_16BIT)
92 			*val = data[1] + (data[0] << 8);
93 		else
94 			*val = data[3] + (data[2] << 8) +
95 			       (data[1] << 16) + (data[0] << 24);
96 
97 		return 0;
98 	}
99 
100 	dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
101 	return err;
102 }
103 
104 static int
105 mt9m114_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val)
106 {
107 	int num_msg;
108 	struct i2c_msg msg;
109 	unsigned char data[6] = {0};
110 	__be16 *wreg;
111 	int retry = 0;
112 
113 	if (!client->adapter) {
114 		v4l2_err(client, "%s error, no client->adapter\n", __func__);
115 		return -ENODEV;
116 	}
117 
118 	if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
119 	    && data_length != MISENSOR_32BIT) {
120 		v4l2_err(client, "%s error, invalid data_length\n", __func__);
121 		return -EINVAL;
122 	}
123 
124 	memset(&msg, 0, sizeof(msg));
125 
126 again:
127 	msg.addr = client->addr;
128 	msg.flags = 0;
129 	msg.len = 2 + data_length;
130 	msg.buf = data;
131 
132 	/* high byte goes out first */
133 	wreg = (void *)data;
134 	*wreg = cpu_to_be16(reg);
135 
136 	if (data_length == MISENSOR_8BIT) {
137 		data[2] = (u8)(val);
138 	} else if (data_length == MISENSOR_16BIT) {
139 		u16 *wdata = (void *)&data[2];
140 
141 		*wdata = be16_to_cpu(*(__be16 *)&data[2]);
142 	} else {
143 		/* MISENSOR_32BIT */
144 		u32 *wdata = (void *)&data[2];
145 
146 		*wdata = be32_to_cpu(*(__be32 *)&data[2]);
147 	}
148 
149 	num_msg = i2c_transfer(client->adapter, &msg, 1);
150 
151 	/*
152 	 * HACK: Need some delay here for Rev 2 sensors otherwise some
153 	 * registers do not seem to load correctly.
154 	 */
155 	mdelay(1);
156 
157 	if (num_msg >= 0)
158 		return 0;
159 
160 	dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d",
161 		val, reg, num_msg);
162 	if (retry <= I2C_RETRY_COUNT) {
163 		dev_dbg(&client->dev, "retrying... %d", retry);
164 		retry++;
165 		msleep(20);
166 		goto again;
167 	}
168 
169 	return num_msg;
170 }
171 
172 /**
173  * misensor_rmw_reg - Read/Modify/Write a value to a register in the sensor
174  * device
175  * @client: i2c driver client structure
176  * @data_length: 8/16/32-bits length
177  * @reg: register address
178  * @mask: masked out bits
179  * @set: bits set
180  *
181  * Read/modify/write a value to a register in the  sensor device.
182  * Returns zero if successful, or non-zero otherwise.
183  */
184 static int
185 misensor_rmw_reg(struct i2c_client *client, u16 data_length, u16 reg,
186 		 u32 mask, u32 set)
187 {
188 	int err;
189 	u32 val;
190 
191 	/* Exit when no mask */
192 	if (mask == 0)
193 		return 0;
194 
195 	/* @mask must not exceed data length */
196 	switch (data_length) {
197 	case MISENSOR_8BIT:
198 		if (mask & ~0xff)
199 			return -EINVAL;
200 		break;
201 	case MISENSOR_16BIT:
202 		if (mask & ~0xffff)
203 			return -EINVAL;
204 		break;
205 	case MISENSOR_32BIT:
206 		break;
207 	default:
208 		/* Wrong @data_length */
209 		return -EINVAL;
210 	}
211 
212 	err = mt9m114_read_reg(client, data_length, reg, &val);
213 	if (err) {
214 		v4l2_err(client, "misensor_rmw_reg error exit, read failed\n");
215 		return -EINVAL;
216 	}
217 
218 	val &= ~mask;
219 
220 	/*
221 	 * Perform the OR function if the @set exists.
222 	 * Shift @set value to target bit location. @set should set only
223 	 * bits included in @mask.
224 	 *
225 	 * REVISIT: This function expects @set to be non-shifted. Its shift
226 	 * value is then defined to be equal to mask's LSB position.
227 	 * How about to inform values in their right offset position and avoid
228 	 * this unneeded shift operation?
229 	 */
230 	set <<= ffs(mask) - 1;
231 	val |= set & mask;
232 
233 	err = mt9m114_write_reg(client, data_length, reg, val);
234 	if (err) {
235 		v4l2_err(client, "misensor_rmw_reg error exit, write failed\n");
236 		return -EINVAL;
237 	}
238 
239 	return 0;
240 }
241 
242 static int __mt9m114_flush_reg_array(struct i2c_client *client,
243 				     struct mt9m114_write_ctrl *ctrl)
244 {
245 	struct i2c_msg msg;
246 	const int num_msg = 1;
247 	int ret;
248 	int retry = 0;
249 	__be16 *data16 = (void *)&ctrl->buffer.addr;
250 
251 	if (ctrl->index == 0)
252 		return 0;
253 
254 again:
255 	msg.addr = client->addr;
256 	msg.flags = 0;
257 	msg.len = 2 + ctrl->index;
258 	*data16 = cpu_to_be16(ctrl->buffer.addr);
259 	msg.buf = (u8 *)&ctrl->buffer;
260 
261 	ret = i2c_transfer(client->adapter, &msg, num_msg);
262 	if (ret != num_msg) {
263 		if (++retry <= I2C_RETRY_COUNT) {
264 			dev_dbg(&client->dev, "retrying... %d\n", retry);
265 			msleep(20);
266 			goto again;
267 		}
268 		dev_err(&client->dev, "%s: i2c transfer error\n", __func__);
269 		return -EIO;
270 	}
271 
272 	ctrl->index = 0;
273 
274 	/*
275 	 * REVISIT: Previously we had a delay after writing data to sensor.
276 	 * But it was removed as our tests have shown it is not necessary
277 	 * anymore.
278 	 */
279 
280 	return 0;
281 }
282 
283 static int __mt9m114_buf_reg_array(struct i2c_client *client,
284 				   struct mt9m114_write_ctrl *ctrl,
285 				   const struct misensor_reg *next)
286 {
287 	__be16 *data16;
288 	__be32 *data32;
289 	int err;
290 
291 	/* Insufficient buffer? Let's flush and get more free space. */
292 	if (ctrl->index + next->length >= MT9M114_MAX_WRITE_BUF_SIZE) {
293 		err = __mt9m114_flush_reg_array(client, ctrl);
294 		if (err)
295 			return err;
296 	}
297 
298 	switch (next->length) {
299 	case MISENSOR_8BIT:
300 		ctrl->buffer.data[ctrl->index] = (u8)next->val;
301 		break;
302 	case MISENSOR_16BIT:
303 		data16 = (__be16 *)&ctrl->buffer.data[ctrl->index];
304 		*data16 = cpu_to_be16((u16)next->val);
305 		break;
306 	case MISENSOR_32BIT:
307 		data32 = (__be32 *)&ctrl->buffer.data[ctrl->index];
308 		*data32 = cpu_to_be32(next->val);
309 		break;
310 	default:
311 		return -EINVAL;
312 	}
313 
314 	/* When first item is added, we need to store its starting address */
315 	if (ctrl->index == 0)
316 		ctrl->buffer.addr = next->reg;
317 
318 	ctrl->index += next->length;
319 
320 	return 0;
321 }
322 
323 static int
324 __mt9m114_write_reg_is_consecutive(struct i2c_client *client,
325 				   struct mt9m114_write_ctrl *ctrl,
326 				   const struct misensor_reg *next)
327 {
328 	if (ctrl->index == 0)
329 		return 1;
330 
331 	return ctrl->buffer.addr + ctrl->index == next->reg;
332 }
333 
334 /*
335  * mt9m114_write_reg_array - Initializes a list of mt9m114 registers
336  * @client: i2c driver client structure
337  * @reglist: list of registers to be written
338  * @poll: completion polling requirement
339  * This function initializes a list of registers. When consecutive addresses
340  * are found in a row on the list, this function creates a buffer and sends
341  * consecutive data in a single i2c_transfer().
342  *
343  * __mt9m114_flush_reg_array, __mt9m114_buf_reg_array() and
344  * __mt9m114_write_reg_is_consecutive() are internal functions to
345  * mt9m114_write_reg_array() and should be not used anywhere else.
346  *
347  */
348 static int mt9m114_write_reg_array(struct i2c_client *client,
349 				   const struct misensor_reg *reglist,
350 				   int poll)
351 {
352 	const struct misensor_reg *next = reglist;
353 	struct mt9m114_write_ctrl ctrl;
354 	int err;
355 
356 	if (poll == PRE_POLLING) {
357 		err = mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
358 		if (err)
359 			return err;
360 	}
361 
362 	ctrl.index = 0;
363 	for (; next->length != MISENSOR_TOK_TERM; next++) {
364 		switch (next->length & MISENSOR_TOK_MASK) {
365 		case MISENSOR_TOK_DELAY:
366 			err = __mt9m114_flush_reg_array(client, &ctrl);
367 			if (err)
368 				return err;
369 			msleep(next->val);
370 			break;
371 		case MISENSOR_TOK_RMW:
372 			err = __mt9m114_flush_reg_array(client, &ctrl);
373 			err |= misensor_rmw_reg(client,
374 						next->length &
375 						~MISENSOR_TOK_RMW,
376 						next->reg, next->val,
377 						next->val2);
378 			if (err) {
379 				dev_err(&client->dev, "%s read err. aborted\n",
380 					__func__);
381 				return -EINVAL;
382 			}
383 			break;
384 		default:
385 			/*
386 			 * If next address is not consecutive, data needs to be
387 			 * flushed before proceed.
388 			 */
389 			if (!__mt9m114_write_reg_is_consecutive(client, &ctrl,
390 								next)) {
391 				err = __mt9m114_flush_reg_array(client, &ctrl);
392 				if (err)
393 					return err;
394 			}
395 			err = __mt9m114_buf_reg_array(client, &ctrl, next);
396 			if (err) {
397 				v4l2_err(client, "%s: write error, aborted\n",
398 					 __func__);
399 				return err;
400 			}
401 			break;
402 		}
403 	}
404 
405 	err = __mt9m114_flush_reg_array(client, &ctrl);
406 	if (err)
407 		return err;
408 
409 	if (poll == POST_POLLING)
410 		return mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
411 
412 	return 0;
413 }
414 
415 static int mt9m114_wait_state(struct i2c_client *client, int timeout)
416 {
417 	int ret;
418 	unsigned int val;
419 
420 	while (timeout-- > 0) {
421 		ret = mt9m114_read_reg(client, MISENSOR_16BIT, 0x0080, &val);
422 		if (ret)
423 			return ret;
424 		if ((val & 0x2) == 0)
425 			return 0;
426 		msleep(20);
427 	}
428 
429 	return -EINVAL;
430 }
431 
432 static int mt9m114_set_suspend(struct v4l2_subdev *sd)
433 {
434 	struct i2c_client *client = v4l2_get_subdevdata(sd);
435 
436 	return mt9m114_write_reg_array(client,
437 				       mt9m114_standby_reg, POST_POLLING);
438 }
439 
440 static int mt9m114_init_common(struct v4l2_subdev *sd)
441 {
442 	struct i2c_client *client = v4l2_get_subdevdata(sd);
443 
444 	return mt9m114_write_reg_array(client, mt9m114_common, PRE_POLLING);
445 }
446 
447 static int power_ctrl(struct v4l2_subdev *sd, bool flag)
448 {
449 	int ret;
450 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
451 
452 	if (!dev || !dev->platform_data)
453 		return -ENODEV;
454 
455 	if (flag) {
456 		ret = dev->platform_data->v2p8_ctrl(sd, 1);
457 		if (ret == 0) {
458 			ret = dev->platform_data->v1p8_ctrl(sd, 1);
459 			if (ret)
460 				ret = dev->platform_data->v2p8_ctrl(sd, 0);
461 		}
462 	} else {
463 		ret = dev->platform_data->v2p8_ctrl(sd, 0);
464 		ret = dev->platform_data->v1p8_ctrl(sd, 0);
465 	}
466 	return ret;
467 }
468 
469 static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
470 {
471 	int ret;
472 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
473 
474 	if (!dev || !dev->platform_data)
475 		return -ENODEV;
476 
477 	/* Note: current modules wire only one GPIO signal (RESET#),
478 	 * but the schematic wires up two to the connector.  BIOS
479 	 * versions have been unfortunately inconsistent with which
480 	 * ACPI index RESET# is on, so hit both */
481 
482 	if (flag) {
483 		ret = dev->platform_data->gpio0_ctrl(sd, 0);
484 		ret = dev->platform_data->gpio1_ctrl(sd, 0);
485 		msleep(60);
486 		ret |= dev->platform_data->gpio0_ctrl(sd, 1);
487 		ret |= dev->platform_data->gpio1_ctrl(sd, 1);
488 	} else {
489 		ret = dev->platform_data->gpio0_ctrl(sd, 0);
490 		ret = dev->platform_data->gpio1_ctrl(sd, 0);
491 	}
492 	return ret;
493 }
494 
495 static int power_up(struct v4l2_subdev *sd)
496 {
497 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
498 	struct i2c_client *client = v4l2_get_subdevdata(sd);
499 	int ret;
500 
501 	if (!dev->platform_data) {
502 		dev_err(&client->dev, "no camera_sensor_platform_data");
503 		return -ENODEV;
504 	}
505 
506 	/* power control */
507 	ret = power_ctrl(sd, 1);
508 	if (ret)
509 		goto fail_power;
510 
511 	/* flis clock control */
512 	ret = dev->platform_data->flisclk_ctrl(sd, 1);
513 	if (ret)
514 		goto fail_clk;
515 
516 	/* gpio ctrl */
517 	ret = gpio_ctrl(sd, 1);
518 	if (ret)
519 		dev_err(&client->dev, "gpio failed 1\n");
520 	/*
521 	 * according to DS, 44ms is needed between power up and first i2c
522 	 * commend
523 	 */
524 	msleep(50);
525 
526 	return 0;
527 
528 fail_clk:
529 	dev->platform_data->flisclk_ctrl(sd, 0);
530 fail_power:
531 	power_ctrl(sd, 0);
532 	dev_err(&client->dev, "sensor power-up failed\n");
533 
534 	return ret;
535 }
536 
537 static int power_down(struct v4l2_subdev *sd)
538 {
539 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
540 	struct i2c_client *client = v4l2_get_subdevdata(sd);
541 	int ret;
542 
543 	if (!dev->platform_data) {
544 		dev_err(&client->dev, "no camera_sensor_platform_data");
545 		return -ENODEV;
546 	}
547 
548 	ret = dev->platform_data->flisclk_ctrl(sd, 0);
549 	if (ret)
550 		dev_err(&client->dev, "flisclk failed\n");
551 
552 	/* gpio ctrl */
553 	ret = gpio_ctrl(sd, 0);
554 	if (ret)
555 		dev_err(&client->dev, "gpio failed 1\n");
556 
557 	/* power control */
558 	ret = power_ctrl(sd, 0);
559 	if (ret)
560 		dev_err(&client->dev, "vprog failed.\n");
561 
562 	/*according to DS, 20ms is needed after power down*/
563 	msleep(20);
564 
565 	return ret;
566 }
567 
568 static int mt9m114_s_power(struct v4l2_subdev *sd, int power)
569 {
570 	if (power == 0)
571 		return power_down(sd);
572 	else {
573 		if (power_up(sd))
574 			return -EINVAL;
575 
576 		return mt9m114_init_common(sd);
577 	}
578 }
579 
580 /*
581  * distance - calculate the distance
582  * @res: resolution
583  * @w: width
584  * @h: height
585  *
586  * Get the gap between resolution and w/h.
587  * res->width/height smaller than w/h wouldn't be considered.
588  * Returns the value of gap or -1 if fail.
589  */
590 #define LARGEST_ALLOWED_RATIO_MISMATCH 600
591 static int distance(struct mt9m114_res_struct const *res, u32 w, u32 h)
592 {
593 	unsigned int w_ratio;
594 	unsigned int h_ratio;
595 	int match;
596 
597 	if (w == 0)
598 		return -1;
599 	w_ratio = (res->width << 13) / w;
600 	if (h == 0)
601 		return -1;
602 	h_ratio = (res->height << 13) / h;
603 	if (h_ratio == 0)
604 		return -1;
605 	match   = abs(((w_ratio << 13) / h_ratio) - 8192);
606 
607 	if ((w_ratio < 8192) || (h_ratio < 8192) ||
608 	    (match > LARGEST_ALLOWED_RATIO_MISMATCH))
609 		return -1;
610 
611 	return w_ratio + h_ratio;
612 }
613 
614 /* Return the nearest higher resolution index */
615 static int nearest_resolution_index(int w, int h)
616 {
617 	int i;
618 	int idx = -1;
619 	int dist;
620 	int min_dist = INT_MAX;
621 	const struct mt9m114_res_struct *tmp_res = NULL;
622 
623 	for (i = 0; i < ARRAY_SIZE(mt9m114_res); i++) {
624 		tmp_res = &mt9m114_res[i];
625 		dist = distance(tmp_res, w, h);
626 		if (dist == -1)
627 			continue;
628 		if (dist < min_dist) {
629 			min_dist = dist;
630 			idx = i;
631 		}
632 	}
633 
634 	return idx;
635 }
636 
637 static int mt9m114_try_res(u32 *w, u32 *h)
638 {
639 	int idx = 0;
640 
641 	if ((*w > MT9M114_RES_960P_SIZE_H)
642 	    || (*h > MT9M114_RES_960P_SIZE_V)) {
643 		*w = MT9M114_RES_960P_SIZE_H;
644 		*h = MT9M114_RES_960P_SIZE_V;
645 	} else {
646 		idx = nearest_resolution_index(*w, *h);
647 
648 		/*
649 		 * nearest_resolution_index() doesn't return smaller
650 		 *  resolutions. If it fails, it means the requested
651 		 *  resolution is higher than wecan support. Fallback
652 		 *  to highest possible resolution in this case.
653 		 */
654 		if (idx == -1)
655 			idx = ARRAY_SIZE(mt9m114_res) - 1;
656 
657 		*w = mt9m114_res[idx].width;
658 		*h = mt9m114_res[idx].height;
659 	}
660 
661 	return 0;
662 }
663 
664 static struct mt9m114_res_struct *mt9m114_to_res(u32 w, u32 h)
665 {
666 	int  index;
667 
668 	for (index = 0; index < N_RES; index++) {
669 		if ((mt9m114_res[index].width == w) &&
670 		    (mt9m114_res[index].height == h))
671 			break;
672 	}
673 
674 	/* No mode found */
675 	if (index >= N_RES)
676 		return NULL;
677 
678 	return &mt9m114_res[index];
679 }
680 
681 static int mt9m114_res2size(struct v4l2_subdev *sd, int *h_size, int *v_size)
682 {
683 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
684 	unsigned short hsize;
685 	unsigned short vsize;
686 
687 	switch (dev->res) {
688 	case MT9M114_RES_736P:
689 		hsize = MT9M114_RES_736P_SIZE_H;
690 		vsize = MT9M114_RES_736P_SIZE_V;
691 		break;
692 	case MT9M114_RES_864P:
693 		hsize = MT9M114_RES_864P_SIZE_H;
694 		vsize = MT9M114_RES_864P_SIZE_V;
695 		break;
696 	case MT9M114_RES_960P:
697 		hsize = MT9M114_RES_960P_SIZE_H;
698 		vsize = MT9M114_RES_960P_SIZE_V;
699 		break;
700 	default:
701 		v4l2_err(sd, "%s: Resolution 0x%08x unknown\n", __func__,
702 			 dev->res);
703 		return -EINVAL;
704 	}
705 
706 	if (h_size)
707 		*h_size = hsize;
708 	if (v_size)
709 		*v_size = vsize;
710 
711 	return 0;
712 }
713 
714 static int mt9m114_get_intg_factor(struct i2c_client *client,
715 				   struct camera_mipi_info *info,
716 				   const struct mt9m114_res_struct *res)
717 {
718 	struct atomisp_sensor_mode_data *buf = &info->data;
719 	u32 reg_val;
720 	int ret;
721 
722 	if (!info)
723 		return -EINVAL;
724 
725 	ret =  mt9m114_read_reg(client, MISENSOR_32BIT,
726 				REG_PIXEL_CLK, &reg_val);
727 	if (ret)
728 		return ret;
729 	buf->vt_pix_clk_freq_mhz = reg_val;
730 
731 	/* get integration time */
732 	buf->coarse_integration_time_min = MT9M114_COARSE_INTG_TIME_MIN;
733 	buf->coarse_integration_time_max_margin =
734 	    MT9M114_COARSE_INTG_TIME_MAX_MARGIN;
735 
736 	buf->fine_integration_time_min = MT9M114_FINE_INTG_TIME_MIN;
737 	buf->fine_integration_time_max_margin =
738 	    MT9M114_FINE_INTG_TIME_MAX_MARGIN;
739 
740 	buf->fine_integration_time_def = MT9M114_FINE_INTG_TIME_MIN;
741 
742 	buf->frame_length_lines = res->lines_per_frame;
743 	buf->line_length_pck = res->pixels_per_line;
744 	buf->read_mode = res->bin_mode;
745 
746 	/* get the cropping and output resolution to ISP for this mode. */
747 	ret =  mt9m114_read_reg(client, MISENSOR_16BIT,
748 				REG_H_START, &reg_val);
749 	if (ret)
750 		return ret;
751 	buf->crop_horizontal_start = reg_val;
752 
753 	ret =  mt9m114_read_reg(client, MISENSOR_16BIT,
754 				REG_V_START, &reg_val);
755 	if (ret)
756 		return ret;
757 	buf->crop_vertical_start = reg_val;
758 
759 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
760 			       REG_H_END, &reg_val);
761 	if (ret)
762 		return ret;
763 	buf->crop_horizontal_end = reg_val;
764 
765 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
766 			       REG_V_END, &reg_val);
767 	if (ret)
768 		return ret;
769 	buf->crop_vertical_end = reg_val;
770 
771 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
772 			       REG_WIDTH, &reg_val);
773 	if (ret)
774 		return ret;
775 	buf->output_width = reg_val;
776 
777 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
778 			       REG_HEIGHT, &reg_val);
779 	if (ret)
780 		return ret;
781 	buf->output_height = reg_val;
782 
783 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
784 			       REG_TIMING_HTS, &reg_val);
785 	if (ret)
786 		return ret;
787 	buf->line_length_pck = reg_val;
788 
789 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
790 			       REG_TIMING_VTS, &reg_val);
791 	if (ret)
792 		return ret;
793 	buf->frame_length_lines = reg_val;
794 
795 	buf->binning_factor_x = res->bin_factor_x ?
796 				res->bin_factor_x : 1;
797 	buf->binning_factor_y = res->bin_factor_y ?
798 				res->bin_factor_y : 1;
799 	return 0;
800 }
801 
802 static int mt9m114_get_fmt(struct v4l2_subdev *sd,
803 			   struct v4l2_subdev_pad_config *cfg,
804 			   struct v4l2_subdev_format *format)
805 {
806 	struct v4l2_mbus_framefmt *fmt = &format->format;
807 	int width, height;
808 	int ret;
809 
810 	if (format->pad)
811 		return -EINVAL;
812 	fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
813 
814 	ret = mt9m114_res2size(sd, &width, &height);
815 	if (ret)
816 		return ret;
817 	fmt->width = width;
818 	fmt->height = height;
819 
820 	return 0;
821 }
822 
823 static int mt9m114_set_fmt(struct v4l2_subdev *sd,
824 			   struct v4l2_subdev_pad_config *cfg,
825 			   struct v4l2_subdev_format *format)
826 {
827 	struct v4l2_mbus_framefmt *fmt = &format->format;
828 	struct i2c_client *c = v4l2_get_subdevdata(sd);
829 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
830 	struct mt9m114_res_struct *res_index;
831 	u32 width = fmt->width;
832 	u32 height = fmt->height;
833 	struct camera_mipi_info *mt9m114_info = NULL;
834 
835 	int ret;
836 
837 	if (format->pad)
838 		return -EINVAL;
839 	dev->streamon = 0;
840 	dev->first_exp = MT9M114_DEFAULT_FIRST_EXP;
841 
842 	mt9m114_info = v4l2_get_subdev_hostdata(sd);
843 	if (!mt9m114_info)
844 		return -EINVAL;
845 
846 	mt9m114_try_res(&width, &height);
847 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
848 		cfg->try_fmt = *fmt;
849 		return 0;
850 	}
851 	res_index = mt9m114_to_res(width, height);
852 
853 	/* Sanity check */
854 	if (unlikely(!res_index)) {
855 		WARN_ON(1);
856 		return -EINVAL;
857 	}
858 
859 	switch (res_index->res) {
860 	case MT9M114_RES_736P:
861 		ret = mt9m114_write_reg_array(c, mt9m114_736P_init, NO_POLLING);
862 		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
863 					MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
864 		break;
865 	case MT9M114_RES_864P:
866 		ret = mt9m114_write_reg_array(c, mt9m114_864P_init, NO_POLLING);
867 		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
868 					MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
869 		break;
870 	case MT9M114_RES_960P:
871 		ret = mt9m114_write_reg_array(c, mt9m114_976P_init, NO_POLLING);
872 		/* set sensor read_mode to Normal */
873 		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
874 					MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
875 		break;
876 	default:
877 		v4l2_err(sd, "set resolution: %d failed!\n", res_index->res);
878 		return -EINVAL;
879 	}
880 
881 	if (ret)
882 		return -EINVAL;
883 
884 	ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg, POST_POLLING);
885 	if (ret < 0)
886 		return ret;
887 
888 	if (mt9m114_set_suspend(sd))
889 		return -EINVAL;
890 
891 	if (dev->res != res_index->res) {
892 		int index;
893 
894 		/* Switch to different size */
895 		if (width <= 640) {
896 			dev->nctx = 0x00; /* Set for context A */
897 		} else {
898 			/*
899 			 * Context B is used for resolutions larger than 640x480
900 			 * Using YUV for Context B.
901 			 */
902 			dev->nctx = 0x01; /* set for context B */
903 		}
904 
905 		/*
906 		 * Marked current sensor res as being "used"
907 		 *
908 		 * REVISIT: We don't need to use an "used" field on each mode
909 		 * list entry to know which mode is selected. If this
910 		 * information is really necessary, how about to use a single
911 		 * variable on sensor dev struct?
912 		 */
913 		for (index = 0; index < N_RES; index++) {
914 			if ((width == mt9m114_res[index].width) &&
915 			    (height == mt9m114_res[index].height)) {
916 				mt9m114_res[index].used = true;
917 				continue;
918 			}
919 			mt9m114_res[index].used = false;
920 		}
921 	}
922 	ret = mt9m114_get_intg_factor(c, mt9m114_info,
923 				      &mt9m114_res[res_index->res]);
924 	if (ret) {
925 		dev_err(&c->dev, "failed to get integration_factor\n");
926 		return -EINVAL;
927 	}
928 	/*
929 	 * mt9m114 - we don't poll for context switch
930 	 * because it does not happen with streaming disabled.
931 	 */
932 	dev->res = res_index->res;
933 
934 	fmt->width = width;
935 	fmt->height = height;
936 	fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
937 	return 0;
938 }
939 
940 /* TODO: Update to SOC functions, remove exposure and gain */
941 static int mt9m114_g_focal(struct v4l2_subdev *sd, s32 *val)
942 {
943 	*val = (MT9M114_FOCAL_LENGTH_NUM << 16) | MT9M114_FOCAL_LENGTH_DEM;
944 	return 0;
945 }
946 
947 static int mt9m114_g_fnumber(struct v4l2_subdev *sd, s32 *val)
948 {
949 	/*const f number for mt9m114*/
950 	*val = (MT9M114_F_NUMBER_DEFAULT_NUM << 16) | MT9M114_F_NUMBER_DEM;
951 	return 0;
952 }
953 
954 static int mt9m114_g_fnumber_range(struct v4l2_subdev *sd, s32 *val)
955 {
956 	*val = (MT9M114_F_NUMBER_DEFAULT_NUM << 24) |
957 	       (MT9M114_F_NUMBER_DEM << 16) |
958 	       (MT9M114_F_NUMBER_DEFAULT_NUM << 8) | MT9M114_F_NUMBER_DEM;
959 	return 0;
960 }
961 
962 /* Horizontal flip the image. */
963 static int mt9m114_g_hflip(struct v4l2_subdev *sd, s32 *val)
964 {
965 	struct i2c_client *c = v4l2_get_subdevdata(sd);
966 	int ret;
967 	u32 data;
968 
969 	ret = mt9m114_read_reg(c, MISENSOR_16BIT,
970 			       (u32)MISENSOR_READ_MODE, &data);
971 	if (ret)
972 		return ret;
973 	*val = !!(data & MISENSOR_HFLIP_MASK);
974 
975 	return 0;
976 }
977 
978 static int mt9m114_g_vflip(struct v4l2_subdev *sd, s32 *val)
979 {
980 	struct i2c_client *c = v4l2_get_subdevdata(sd);
981 	int ret;
982 	u32 data;
983 
984 	ret = mt9m114_read_reg(c, MISENSOR_16BIT,
985 			       (u32)MISENSOR_READ_MODE, &data);
986 	if (ret)
987 		return ret;
988 	*val = !!(data & MISENSOR_VFLIP_MASK);
989 
990 	return 0;
991 }
992 
993 static long mt9m114_s_exposure(struct v4l2_subdev *sd,
994 			       struct atomisp_exposure *exposure)
995 {
996 	struct i2c_client *client = v4l2_get_subdevdata(sd);
997 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
998 	int ret = 0;
999 	unsigned int coarse_integration = 0;
1000 	unsigned int FLines = 0;
1001 	unsigned int FrameLengthLines = 0; /* ExposureTime.FrameLengthLines; */
1002 	unsigned int AnalogGain, DigitalGain;
1003 	u32 AnalogGainToWrite = 0;
1004 
1005 	dev_dbg(&client->dev, "%s(0x%X 0x%X 0x%X)\n", __func__,
1006 		exposure->integration_time[0], exposure->gain[0],
1007 		exposure->gain[1]);
1008 
1009 	coarse_integration = exposure->integration_time[0];
1010 	/* fine_integration = ExposureTime.FineIntegrationTime; */
1011 	/* FrameLengthLines = ExposureTime.FrameLengthLines; */
1012 	FLines = mt9m114_res[dev->res].lines_per_frame;
1013 	AnalogGain = exposure->gain[0];
1014 	DigitalGain = exposure->gain[1];
1015 	if (!dev->streamon) {
1016 		/*Save the first exposure values while stream is off*/
1017 		dev->first_exp = coarse_integration;
1018 		dev->first_gain = AnalogGain;
1019 		dev->first_diggain = DigitalGain;
1020 	}
1021 	/* DigitalGain = 0x400 * (((u16) DigitalGain) >> 8) +
1022 	((unsigned int)(0x400 * (((u16) DigitalGain) & 0xFF)) >>8); */
1023 
1024 	/* set frame length */
1025 	if (FLines < coarse_integration + 6)
1026 		FLines = coarse_integration + 6;
1027 	if (FLines < FrameLengthLines)
1028 		FLines = FrameLengthLines;
1029 	ret = mt9m114_write_reg(client, MISENSOR_16BIT, 0x300A, FLines);
1030 	if (ret) {
1031 		v4l2_err(client, "%s: fail to set FLines\n", __func__);
1032 		return -EINVAL;
1033 	}
1034 
1035 	/* set coarse integration */
1036 	/* 3A provide real exposure time.
1037 		should not translate to any value here. */
1038 	ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1039 				REG_EXPO_COARSE, (u16)(coarse_integration));
1040 	if (ret) {
1041 		v4l2_err(client, "%s: fail to set exposure time\n", __func__);
1042 		return -EINVAL;
1043 	}
1044 
1045 	/*
1046 	// set analog/digital gain
1047 	switch(AnalogGain)
1048 	{
1049 	case 0:
1050 	  AnalogGainToWrite = 0x0;
1051 	  break;
1052 	case 1:
1053 	  AnalogGainToWrite = 0x20;
1054 	  break;
1055 	case 2:
1056 	  AnalogGainToWrite = 0x60;
1057 	  break;
1058 	case 4:
1059 	  AnalogGainToWrite = 0xA0;
1060 	  break;
1061 	case 8:
1062 	  AnalogGainToWrite = 0xE0;
1063 	  break;
1064 	default:
1065 	  AnalogGainToWrite = 0x20;
1066 	  break;
1067 	}
1068 	*/
1069 	if (DigitalGain >= 16 || DigitalGain <= 1)
1070 		DigitalGain = 1;
1071 	/* AnalogGainToWrite =
1072 		(u16)((DigitalGain << 12) | AnalogGainToWrite); */
1073 	AnalogGainToWrite = (u16)((DigitalGain << 12) | (u16)AnalogGain);
1074 	ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1075 				REG_GAIN, AnalogGainToWrite);
1076 	if (ret) {
1077 		v4l2_err(client, "%s: fail to set AnalogGainToWrite\n",
1078 			 __func__);
1079 		return -EINVAL;
1080 	}
1081 
1082 	return ret;
1083 }
1084 
1085 static long mt9m114_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
1086 {
1087 	switch (cmd) {
1088 	case ATOMISP_IOC_S_EXPOSURE:
1089 		return mt9m114_s_exposure(sd, arg);
1090 	default:
1091 		return -EINVAL;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 /* This returns the exposure time being used. This should only be used
1098    for filling in EXIF data, not for actual image processing. */
1099 static int mt9m114_g_exposure(struct v4l2_subdev *sd, s32 *value)
1100 {
1101 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1102 	u32 coarse;
1103 	int ret;
1104 
1105 	/* the fine integration time is currently not calculated */
1106 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
1107 			       REG_EXPO_COARSE, &coarse);
1108 	if (ret)
1109 		return ret;
1110 
1111 	*value = coarse;
1112 	return 0;
1113 }
1114 
1115 /*
1116  * This function will return the sensor supported max exposure zone number.
1117  * the sensor which supports max exposure zone number is 1.
1118  */
1119 static int mt9m114_g_exposure_zone_num(struct v4l2_subdev *sd, s32 *val)
1120 {
1121 	*val = 1;
1122 
1123 	return 0;
1124 }
1125 
1126 /*
1127  * set exposure metering, average/center_weighted/spot/matrix.
1128  */
1129 static int mt9m114_s_exposure_metering(struct v4l2_subdev *sd, s32 val)
1130 {
1131 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1132 	int ret;
1133 
1134 	switch (val) {
1135 	case V4L2_EXPOSURE_METERING_SPOT:
1136 		ret = mt9m114_write_reg_array(client, mt9m114_exp_average,
1137 					      NO_POLLING);
1138 		if (ret) {
1139 			dev_err(&client->dev, "write exp_average reg err.\n");
1140 			return ret;
1141 		}
1142 		break;
1143 	case V4L2_EXPOSURE_METERING_CENTER_WEIGHTED:
1144 	default:
1145 		ret = mt9m114_write_reg_array(client, mt9m114_exp_center,
1146 					      NO_POLLING);
1147 		if (ret) {
1148 			dev_err(&client->dev, "write exp_default reg err");
1149 			return ret;
1150 		}
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 /*
1157  * This function is for touch exposure feature.
1158  */
1159 static int mt9m114_s_exposure_selection(struct v4l2_subdev *sd,
1160 					struct v4l2_subdev_pad_config *cfg,
1161 					struct v4l2_subdev_selection *sel)
1162 {
1163 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1164 	struct misensor_reg exp_reg;
1165 	int width, height;
1166 	int grid_width, grid_height;
1167 	int grid_left, grid_top, grid_right, grid_bottom;
1168 	int win_left, win_top, win_right, win_bottom;
1169 	int i, j;
1170 	int ret;
1171 
1172 	if (sel->which != V4L2_SUBDEV_FORMAT_TRY &&
1173 	    sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1174 		return -EINVAL;
1175 
1176 	grid_left = sel->r.left;
1177 	grid_top = sel->r.top;
1178 	grid_right = sel->r.left + sel->r.width - 1;
1179 	grid_bottom = sel->r.top + sel->r.height - 1;
1180 
1181 	ret = mt9m114_res2size(sd, &width, &height);
1182 	if (ret)
1183 		return ret;
1184 
1185 	grid_width = width / 5;
1186 	grid_height = height / 5;
1187 
1188 	if (grid_width && grid_height) {
1189 		win_left = grid_left / grid_width;
1190 		win_top = grid_top / grid_height;
1191 		win_right = grid_right / grid_width;
1192 		win_bottom = grid_bottom / grid_height;
1193 	} else {
1194 		dev_err(&client->dev, "Incorrect exp grid.\n");
1195 		return -EINVAL;
1196 	}
1197 
1198 	win_left   = clamp_t(int, win_left, 0, 4);
1199 	win_top    = clamp_t(int, win_top, 0, 4);
1200 	win_right  = clamp_t(int, win_right, 0, 4);
1201 	win_bottom = clamp_t(int, win_bottom, 0, 4);
1202 
1203 	ret = mt9m114_write_reg_array(client, mt9m114_exp_average, NO_POLLING);
1204 	if (ret) {
1205 		dev_err(&client->dev, "write exp_average reg err.\n");
1206 		return ret;
1207 	}
1208 
1209 	for (i = win_top; i <= win_bottom; i++) {
1210 		for (j = win_left; j <= win_right; j++) {
1211 			exp_reg = mt9m114_exp_win[i][j];
1212 
1213 			ret = mt9m114_write_reg(client, exp_reg.length,
1214 						exp_reg.reg, exp_reg.val);
1215 			if (ret) {
1216 				dev_err(&client->dev, "write exp_reg err.\n");
1217 				return ret;
1218 			}
1219 		}
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 static int mt9m114_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val)
1226 {
1227 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1228 
1229 	*val = mt9m114_res[dev->res].bin_factor_x;
1230 
1231 	return 0;
1232 }
1233 
1234 static int mt9m114_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val)
1235 {
1236 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1237 
1238 	*val = mt9m114_res[dev->res].bin_factor_y;
1239 
1240 	return 0;
1241 }
1242 
1243 static int mt9m114_s_ev(struct v4l2_subdev *sd, s32 val)
1244 {
1245 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1246 	s32 luma = 0x37;
1247 	int err;
1248 
1249 	/* EV value only support -2 to 2
1250 	 * 0: 0x37, 1:0x47, 2:0x57, -1:0x27, -2:0x17
1251 	 */
1252 	if (val < -2 || val > 2)
1253 		return -EINVAL;
1254 	luma += 0x10 * val;
1255 	dev_dbg(&c->dev, "%s val:%d luma:0x%x\n", __func__, val, luma);
1256 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1257 	if (err) {
1258 		dev_err(&c->dev, "%s logic addr access error\n", __func__);
1259 		return err;
1260 	}
1261 	err = mt9m114_write_reg(c, MISENSOR_8BIT, 0xC87A, (u32)luma);
1262 	if (err) {
1263 		dev_err(&c->dev, "%s write target_average_luma failed\n",
1264 			__func__);
1265 		return err;
1266 	}
1267 	udelay(10);
1268 
1269 	return 0;
1270 }
1271 
1272 static int mt9m114_g_ev(struct v4l2_subdev *sd, s32 *val)
1273 {
1274 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1275 	int err;
1276 	u32 luma;
1277 
1278 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1279 	if (err) {
1280 		dev_err(&c->dev, "%s logic addr access error\n", __func__);
1281 		return err;
1282 	}
1283 	err = mt9m114_read_reg(c, MISENSOR_8BIT, 0xC87A, &luma);
1284 	if (err) {
1285 		dev_err(&c->dev, "%s read target_average_luma failed\n",
1286 			__func__);
1287 		return err;
1288 	}
1289 	luma -= 0x17;
1290 	luma /= 0x10;
1291 	*val = (s32)luma - 2;
1292 	dev_dbg(&c->dev, "%s val:%d\n", __func__, *val);
1293 
1294 	return 0;
1295 }
1296 
1297 /* Fake interface
1298  * mt9m114 now can not support 3a_lock
1299 */
1300 static int mt9m114_s_3a_lock(struct v4l2_subdev *sd, s32 val)
1301 {
1302 	aaalock = val;
1303 	return 0;
1304 }
1305 
1306 static int mt9m114_g_3a_lock(struct v4l2_subdev *sd, s32 *val)
1307 {
1308 	if (aaalock)
1309 		return V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE
1310 		       | V4L2_LOCK_FOCUS;
1311 	return 0;
1312 }
1313 
1314 static int mt9m114_s_ctrl(struct v4l2_ctrl *ctrl)
1315 {
1316 	struct mt9m114_device *dev =
1317 	    container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1318 	struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
1319 	int ret = 0;
1320 
1321 	switch (ctrl->id) {
1322 	case V4L2_CID_VFLIP:
1323 		dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
1324 			__func__, ctrl->val);
1325 		ret = mt9m114_t_vflip(&dev->sd, ctrl->val);
1326 		break;
1327 	case V4L2_CID_HFLIP:
1328 		dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
1329 			__func__, ctrl->val);
1330 		ret = mt9m114_t_hflip(&dev->sd, ctrl->val);
1331 		break;
1332 	case V4L2_CID_EXPOSURE_METERING:
1333 		ret = mt9m114_s_exposure_metering(&dev->sd, ctrl->val);
1334 		break;
1335 	case V4L2_CID_EXPOSURE:
1336 		ret = mt9m114_s_ev(&dev->sd, ctrl->val);
1337 		break;
1338 	case V4L2_CID_3A_LOCK:
1339 		ret = mt9m114_s_3a_lock(&dev->sd, ctrl->val);
1340 		break;
1341 	default:
1342 		ret = -EINVAL;
1343 	}
1344 	return ret;
1345 }
1346 
1347 static int mt9m114_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1348 {
1349 	struct mt9m114_device *dev =
1350 	    container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1351 	int ret = 0;
1352 
1353 	switch (ctrl->id) {
1354 	case V4L2_CID_VFLIP:
1355 		ret = mt9m114_g_vflip(&dev->sd, &ctrl->val);
1356 		break;
1357 	case V4L2_CID_HFLIP:
1358 		ret = mt9m114_g_hflip(&dev->sd, &ctrl->val);
1359 		break;
1360 	case V4L2_CID_FOCAL_ABSOLUTE:
1361 		ret = mt9m114_g_focal(&dev->sd, &ctrl->val);
1362 		break;
1363 	case V4L2_CID_FNUMBER_ABSOLUTE:
1364 		ret = mt9m114_g_fnumber(&dev->sd, &ctrl->val);
1365 		break;
1366 	case V4L2_CID_FNUMBER_RANGE:
1367 		ret = mt9m114_g_fnumber_range(&dev->sd, &ctrl->val);
1368 		break;
1369 	case V4L2_CID_EXPOSURE_ABSOLUTE:
1370 		ret = mt9m114_g_exposure(&dev->sd, &ctrl->val);
1371 		break;
1372 	case V4L2_CID_EXPOSURE_ZONE_NUM:
1373 		ret = mt9m114_g_exposure_zone_num(&dev->sd, &ctrl->val);
1374 		break;
1375 	case V4L2_CID_BIN_FACTOR_HORZ:
1376 		ret = mt9m114_g_bin_factor_x(&dev->sd, &ctrl->val);
1377 		break;
1378 	case V4L2_CID_BIN_FACTOR_VERT:
1379 		ret = mt9m114_g_bin_factor_y(&dev->sd, &ctrl->val);
1380 		break;
1381 	case V4L2_CID_EXPOSURE:
1382 		ret = mt9m114_g_ev(&dev->sd, &ctrl->val);
1383 		break;
1384 	case V4L2_CID_3A_LOCK:
1385 		ret = mt9m114_g_3a_lock(&dev->sd, &ctrl->val);
1386 		break;
1387 	default:
1388 		ret = -EINVAL;
1389 	}
1390 
1391 	return ret;
1392 }
1393 
1394 static const struct v4l2_ctrl_ops ctrl_ops = {
1395 	.s_ctrl = mt9m114_s_ctrl,
1396 	.g_volatile_ctrl = mt9m114_g_volatile_ctrl
1397 };
1398 
1399 static struct v4l2_ctrl_config mt9m114_controls[] = {
1400 	{
1401 		.ops = &ctrl_ops,
1402 		.id = V4L2_CID_VFLIP,
1403 		.name = "Image v-Flip",
1404 		.type = V4L2_CTRL_TYPE_INTEGER,
1405 		.min = 0,
1406 		.max = 1,
1407 		.step = 1,
1408 		.def = 0,
1409 	},
1410 	{
1411 		.ops = &ctrl_ops,
1412 		.id = V4L2_CID_HFLIP,
1413 		.name = "Image h-Flip",
1414 		.type = V4L2_CTRL_TYPE_INTEGER,
1415 		.min = 0,
1416 		.max = 1,
1417 		.step = 1,
1418 		.def = 0,
1419 	},
1420 	{
1421 		.ops = &ctrl_ops,
1422 		.id = V4L2_CID_FOCAL_ABSOLUTE,
1423 		.name = "focal length",
1424 		.type = V4L2_CTRL_TYPE_INTEGER,
1425 		.min = MT9M114_FOCAL_LENGTH_DEFAULT,
1426 		.max = MT9M114_FOCAL_LENGTH_DEFAULT,
1427 		.step = 1,
1428 		.def = MT9M114_FOCAL_LENGTH_DEFAULT,
1429 		.flags = 0,
1430 	},
1431 	{
1432 		.ops = &ctrl_ops,
1433 		.id = V4L2_CID_FNUMBER_ABSOLUTE,
1434 		.name = "f-number",
1435 		.type = V4L2_CTRL_TYPE_INTEGER,
1436 		.min = MT9M114_F_NUMBER_DEFAULT,
1437 		.max = MT9M114_F_NUMBER_DEFAULT,
1438 		.step = 1,
1439 		.def = MT9M114_F_NUMBER_DEFAULT,
1440 		.flags = 0,
1441 	},
1442 	{
1443 		.ops = &ctrl_ops,
1444 		.id = V4L2_CID_FNUMBER_RANGE,
1445 		.name = "f-number range",
1446 		.type = V4L2_CTRL_TYPE_INTEGER,
1447 		.min = MT9M114_F_NUMBER_RANGE,
1448 		.max = MT9M114_F_NUMBER_RANGE,
1449 		.step = 1,
1450 		.def = MT9M114_F_NUMBER_RANGE,
1451 		.flags = 0,
1452 	},
1453 	{
1454 		.ops = &ctrl_ops,
1455 		.id = V4L2_CID_EXPOSURE_ABSOLUTE,
1456 		.name = "exposure",
1457 		.type = V4L2_CTRL_TYPE_INTEGER,
1458 		.min = 0,
1459 		.max = 0xffff,
1460 		.step = 1,
1461 		.def = 0,
1462 		.flags = 0,
1463 	},
1464 	{
1465 		.ops = &ctrl_ops,
1466 		.id = V4L2_CID_EXPOSURE_ZONE_NUM,
1467 		.name = "one-time exposure zone number",
1468 		.type = V4L2_CTRL_TYPE_INTEGER,
1469 		.min = 0,
1470 		.max = 0xffff,
1471 		.step = 1,
1472 		.def = 0,
1473 		.flags = 0,
1474 	},
1475 	{
1476 		.ops = &ctrl_ops,
1477 		.id = V4L2_CID_EXPOSURE_METERING,
1478 		.name = "metering",
1479 		.type = V4L2_CTRL_TYPE_MENU,
1480 		.min = 0,
1481 		.max = 3,
1482 		.step = 0,
1483 		.def = 1,
1484 		.flags = 0,
1485 	},
1486 	{
1487 		.ops = &ctrl_ops,
1488 		.id = V4L2_CID_BIN_FACTOR_HORZ,
1489 		.name = "horizontal binning factor",
1490 		.type = V4L2_CTRL_TYPE_INTEGER,
1491 		.min = 0,
1492 		.max = MT9M114_BIN_FACTOR_MAX,
1493 		.step = 1,
1494 		.def = 0,
1495 		.flags = 0,
1496 	},
1497 	{
1498 		.ops = &ctrl_ops,
1499 		.id = V4L2_CID_BIN_FACTOR_VERT,
1500 		.name = "vertical binning factor",
1501 		.type = V4L2_CTRL_TYPE_INTEGER,
1502 		.min = 0,
1503 		.max = MT9M114_BIN_FACTOR_MAX,
1504 		.step = 1,
1505 		.def = 0,
1506 		.flags = 0,
1507 	},
1508 	{
1509 		.ops = &ctrl_ops,
1510 		.id = V4L2_CID_EXPOSURE,
1511 		.name = "exposure biasx",
1512 		.type = V4L2_CTRL_TYPE_INTEGER,
1513 		.min = -2,
1514 		.max = 2,
1515 		.step = 1,
1516 		.def = 0,
1517 		.flags = 0,
1518 	},
1519 	{
1520 		.ops = &ctrl_ops,
1521 		.id = V4L2_CID_3A_LOCK,
1522 		.name = "3a lock",
1523 		.type = V4L2_CTRL_TYPE_BITMASK,
1524 		.min = 0,
1525 		.max = V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE | V4L2_LOCK_FOCUS,
1526 		.step = 1,
1527 		.def = 0,
1528 		.flags = 0,
1529 	},
1530 };
1531 
1532 static int mt9m114_detect(struct mt9m114_device *dev, struct i2c_client *client)
1533 {
1534 	struct i2c_adapter *adapter = client->adapter;
1535 	u32 retvalue;
1536 
1537 	if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
1538 		dev_err(&client->dev, "%s: i2c error", __func__);
1539 		return -ENODEV;
1540 	}
1541 	mt9m114_read_reg(client, MISENSOR_16BIT, (u32)MT9M114_PID, &retvalue);
1542 	dev->real_model_id = retvalue;
1543 
1544 	if (retvalue != MT9M114_MOD_ID) {
1545 		dev_err(&client->dev, "%s: failed: client->addr = %x\n",
1546 			__func__, client->addr);
1547 		return -ENODEV;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 static int
1554 mt9m114_s_config(struct v4l2_subdev *sd, int irq, void *platform_data)
1555 {
1556 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1557 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1558 	int ret;
1559 
1560 	if (!platform_data)
1561 		return -ENODEV;
1562 
1563 	dev->platform_data =
1564 	    (struct camera_sensor_platform_data *)platform_data;
1565 
1566 	ret = power_up(sd);
1567 	if (ret) {
1568 		v4l2_err(client, "mt9m114 power-up err");
1569 		return ret;
1570 	}
1571 
1572 	/* config & detect sensor */
1573 	ret = mt9m114_detect(dev, client);
1574 	if (ret) {
1575 		v4l2_err(client, "mt9m114_detect err s_config.\n");
1576 		goto fail_detect;
1577 	}
1578 
1579 	ret = dev->platform_data->csi_cfg(sd, 1);
1580 	if (ret)
1581 		goto fail_csi_cfg;
1582 
1583 	ret = mt9m114_set_suspend(sd);
1584 	if (ret) {
1585 		v4l2_err(client, "mt9m114 suspend err");
1586 		return ret;
1587 	}
1588 
1589 	ret = power_down(sd);
1590 	if (ret) {
1591 		v4l2_err(client, "mt9m114 power down err");
1592 		return ret;
1593 	}
1594 
1595 	return ret;
1596 
1597 fail_csi_cfg:
1598 	dev->platform_data->csi_cfg(sd, 0);
1599 fail_detect:
1600 	power_down(sd);
1601 	dev_err(&client->dev, "sensor power-gating failed\n");
1602 	return ret;
1603 }
1604 
1605 /* Horizontal flip the image. */
1606 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value)
1607 {
1608 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1609 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1610 	int err;
1611 	/* set for direct mode */
1612 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1613 	if (value) {
1614 		/* enable H flip ctx A */
1615 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x01);
1616 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x01);
1617 		/* ctx B */
1618 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x01);
1619 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x01);
1620 
1621 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1622 					MISENSOR_HFLIP_MASK, MISENSOR_FLIP_EN);
1623 
1624 		dev->bpat = MT9M114_BPAT_GRGRBGBG;
1625 	} else {
1626 		/* disable H flip ctx A */
1627 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x00);
1628 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x00);
1629 		/* ctx B */
1630 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x00);
1631 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x00);
1632 
1633 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1634 					MISENSOR_HFLIP_MASK, MISENSOR_FLIP_DIS);
1635 
1636 		dev->bpat = MT9M114_BPAT_BGBGGRGR;
1637 	}
1638 
1639 	err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1640 	udelay(10);
1641 
1642 	return !!err;
1643 }
1644 
1645 /* Vertically flip the image */
1646 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value)
1647 {
1648 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1649 	int err;
1650 	/* set for direct mode */
1651 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1652 	if (value >= 1) {
1653 		/* enable H flip - ctx A */
1654 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x01);
1655 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x01);
1656 		/* ctx B */
1657 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x01);
1658 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x01);
1659 
1660 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1661 					MISENSOR_VFLIP_MASK, MISENSOR_FLIP_EN);
1662 	} else {
1663 		/* disable H flip - ctx A */
1664 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x00);
1665 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x00);
1666 		/* ctx B */
1667 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x00);
1668 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x00);
1669 
1670 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1671 					MISENSOR_VFLIP_MASK, MISENSOR_FLIP_DIS);
1672 	}
1673 
1674 	err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1675 	udelay(10);
1676 
1677 	return !!err;
1678 }
1679 
1680 static int mt9m114_g_frame_interval(struct v4l2_subdev *sd,
1681 				    struct v4l2_subdev_frame_interval *interval)
1682 {
1683 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1684 
1685 	interval->interval.numerator = 1;
1686 	interval->interval.denominator = mt9m114_res[dev->res].fps;
1687 
1688 	return 0;
1689 }
1690 
1691 static int mt9m114_s_stream(struct v4l2_subdev *sd, int enable)
1692 {
1693 	int ret;
1694 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1695 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1696 	struct atomisp_exposure exposure;
1697 
1698 	if (enable) {
1699 		ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg,
1700 					      POST_POLLING);
1701 		if (ret < 0)
1702 			return ret;
1703 
1704 		if (dev->first_exp > MT9M114_MAX_FIRST_EXP) {
1705 			exposure.integration_time[0] = dev->first_exp;
1706 			exposure.gain[0] = dev->first_gain;
1707 			exposure.gain[1] = dev->first_diggain;
1708 			mt9m114_s_exposure(sd, &exposure);
1709 		}
1710 		dev->streamon = 1;
1711 
1712 	} else {
1713 		dev->streamon = 0;
1714 		ret = mt9m114_set_suspend(sd);
1715 	}
1716 
1717 	return ret;
1718 }
1719 
1720 static int mt9m114_enum_mbus_code(struct v4l2_subdev *sd,
1721 				  struct v4l2_subdev_pad_config *cfg,
1722 				  struct v4l2_subdev_mbus_code_enum *code)
1723 {
1724 	if (code->index)
1725 		return -EINVAL;
1726 	code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
1727 
1728 	return 0;
1729 }
1730 
1731 static int mt9m114_enum_frame_size(struct v4l2_subdev *sd,
1732 				   struct v4l2_subdev_pad_config *cfg,
1733 				   struct v4l2_subdev_frame_size_enum *fse)
1734 {
1735 	unsigned int index = fse->index;
1736 
1737 	if (index >= N_RES)
1738 		return -EINVAL;
1739 
1740 	fse->min_width = mt9m114_res[index].width;
1741 	fse->min_height = mt9m114_res[index].height;
1742 	fse->max_width = mt9m114_res[index].width;
1743 	fse->max_height = mt9m114_res[index].height;
1744 
1745 	return 0;
1746 }
1747 
1748 static int mt9m114_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
1749 {
1750 	int index;
1751 	struct mt9m114_device *snr = to_mt9m114_sensor(sd);
1752 
1753 	if (!frames)
1754 		return -EINVAL;
1755 
1756 	for (index = 0; index < N_RES; index++) {
1757 		if (mt9m114_res[index].res == snr->res)
1758 			break;
1759 	}
1760 
1761 	if (index >= N_RES)
1762 		return -EINVAL;
1763 
1764 	*frames = mt9m114_res[index].skip_frames;
1765 
1766 	return 0;
1767 }
1768 
1769 static const struct v4l2_subdev_video_ops mt9m114_video_ops = {
1770 	.s_stream = mt9m114_s_stream,
1771 	.g_frame_interval = mt9m114_g_frame_interval,
1772 };
1773 
1774 static const struct v4l2_subdev_sensor_ops mt9m114_sensor_ops = {
1775 	.g_skip_frames	= mt9m114_g_skip_frames,
1776 };
1777 
1778 static const struct v4l2_subdev_core_ops mt9m114_core_ops = {
1779 	.s_power = mt9m114_s_power,
1780 	.ioctl = mt9m114_ioctl,
1781 };
1782 
1783 /* REVISIT: Do we need pad operations? */
1784 static const struct v4l2_subdev_pad_ops mt9m114_pad_ops = {
1785 	.enum_mbus_code = mt9m114_enum_mbus_code,
1786 	.enum_frame_size = mt9m114_enum_frame_size,
1787 	.get_fmt = mt9m114_get_fmt,
1788 	.set_fmt = mt9m114_set_fmt,
1789 	.set_selection = mt9m114_s_exposure_selection,
1790 };
1791 
1792 static const struct v4l2_subdev_ops mt9m114_ops = {
1793 	.core = &mt9m114_core_ops,
1794 	.video = &mt9m114_video_ops,
1795 	.pad = &mt9m114_pad_ops,
1796 	.sensor = &mt9m114_sensor_ops,
1797 };
1798 
1799 static int mt9m114_remove(struct i2c_client *client)
1800 {
1801 	struct mt9m114_device *dev;
1802 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1803 
1804 	dev = container_of(sd, struct mt9m114_device, sd);
1805 	dev->platform_data->csi_cfg(sd, 0);
1806 	v4l2_device_unregister_subdev(sd);
1807 	media_entity_cleanup(&dev->sd.entity);
1808 	v4l2_ctrl_handler_free(&dev->ctrl_handler);
1809 	kfree(dev);
1810 	return 0;
1811 }
1812 
1813 static int mt9m114_probe(struct i2c_client *client)
1814 {
1815 	struct mt9m114_device *dev;
1816 	int ret = 0;
1817 	unsigned int i;
1818 	void *pdata;
1819 	acpi_handle handle;
1820 	struct acpi_device *adev;
1821 
1822 	handle = ACPI_HANDLE(&client->dev);
1823 	if (!handle || acpi_bus_get_device(handle, &adev)) {
1824 		dev_err(&client->dev, "Error could not get ACPI device\n");
1825 		return -ENODEV;
1826 	}
1827 	pr_info("%s: ACPI detected it on bus ID=%s, HID=%s\n",
1828 		__func__, acpi_device_bid(adev), acpi_device_hid(adev));
1829 	// FIXME: may need to release resources allocated by acpi_bus_get_device()
1830 
1831 	/* Setup sensor configuration structure */
1832 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1833 	if (!dev)
1834 		return -ENOMEM;
1835 
1836 	v4l2_i2c_subdev_init(&dev->sd, client, &mt9m114_ops);
1837 	pdata = gmin_camera_platform_data(&dev->sd,
1838 					  ATOMISP_INPUT_FORMAT_RAW_10,
1839 					  atomisp_bayer_order_grbg);
1840 	if (pdata)
1841 		ret = mt9m114_s_config(&dev->sd, client->irq, pdata);
1842 	if (!pdata || ret) {
1843 		v4l2_device_unregister_subdev(&dev->sd);
1844 		kfree(dev);
1845 		return ret;
1846 	}
1847 
1848 	ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
1849 	if (ret) {
1850 		v4l2_device_unregister_subdev(&dev->sd);
1851 		kfree(dev);
1852 		/* Coverity CID 298095 - return on error */
1853 		return ret;
1854 	}
1855 
1856 	/*TODO add format code here*/
1857 	dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1858 	dev->pad.flags = MEDIA_PAD_FL_SOURCE;
1859 	dev->format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
1860 	dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1861 
1862 	ret =
1863 	    v4l2_ctrl_handler_init(&dev->ctrl_handler,
1864 				   ARRAY_SIZE(mt9m114_controls));
1865 	if (ret) {
1866 		mt9m114_remove(client);
1867 		return ret;
1868 	}
1869 
1870 	for (i = 0; i < ARRAY_SIZE(mt9m114_controls); i++)
1871 		v4l2_ctrl_new_custom(&dev->ctrl_handler, &mt9m114_controls[i],
1872 				     NULL);
1873 
1874 	if (dev->ctrl_handler.error) {
1875 		mt9m114_remove(client);
1876 		return dev->ctrl_handler.error;
1877 	}
1878 
1879 	/* Use same lock for controls as for everything else. */
1880 	dev->ctrl_handler.lock = &dev->input_lock;
1881 	dev->sd.ctrl_handler = &dev->ctrl_handler;
1882 
1883 	/* REVISIT: Do we need media controller? */
1884 	ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
1885 	if (ret) {
1886 		mt9m114_remove(client);
1887 		return ret;
1888 	}
1889 	return 0;
1890 }
1891 
1892 static const struct acpi_device_id mt9m114_acpi_match[] = {
1893 	{ "INT33F0" },
1894 	{ "CRMT1040" },
1895 	{},
1896 };
1897 MODULE_DEVICE_TABLE(acpi, mt9m114_acpi_match);
1898 
1899 static struct i2c_driver mt9m114_driver = {
1900 	.driver = {
1901 		.name = "mt9m114",
1902 		.acpi_match_table = mt9m114_acpi_match,
1903 	},
1904 	.probe_new = mt9m114_probe,
1905 	.remove = mt9m114_remove,
1906 };
1907 module_i2c_driver(mt9m114_driver);
1908 
1909 MODULE_AUTHOR("Shuguang Gong <Shuguang.gong@intel.com>");
1910 MODULE_LICENSE("GPL");
1911