1 /*
2  * Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/ipv6.h>
19 #include <linux/udp.h>
20 #include <linux/in.h>
21 #include <linux/if_arp.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in6.h>
25 #include <linux/tcp.h>
26 #include <linux/icmp.h>
27 #include <linux/icmpv6.h>
28 #include <linux/uaccess.h>
29 #include <net/ndisc.h>
30 
31 #include "gdm_lte.h"
32 #include "netlink_k.h"
33 #include "hci.h"
34 #include "hci_packet.h"
35 #include "gdm_endian.h"
36 
37 /*
38  * Netlink protocol number
39  */
40 #define NETLINK_LTE 30
41 
42 /*
43  * Default MTU Size
44  */
45 #define DEFAULT_MTU_SIZE 1500
46 
47 #define IP_VERSION_4	4
48 #define IP_VERSION_6	6
49 
50 static struct {
51 	int ref_cnt;
52 	struct sock *sock;
53 } lte_event;
54 
55 static struct device_type wwan_type = {
56 	.name   = "wwan",
57 };
58 
59 static int gdm_lte_open(struct net_device *dev)
60 {
61 	netif_start_queue(dev);
62 	return 0;
63 }
64 
65 static int gdm_lte_close(struct net_device *dev)
66 {
67 	netif_stop_queue(dev);
68 	return 0;
69 }
70 
71 static int gdm_lte_set_config(struct net_device *dev, struct ifmap *map)
72 {
73 	if (dev->flags & IFF_UP)
74 		return -EBUSY;
75 	return 0;
76 }
77 
78 static void tx_complete(void *arg)
79 {
80 	struct nic *nic = arg;
81 
82 	if (netif_queue_stopped(nic->netdev))
83 		netif_wake_queue(nic->netdev);
84 }
85 
86 static int gdm_lte_rx(struct sk_buff *skb, struct nic *nic, int nic_type)
87 {
88 	int ret;
89 
90 	ret = netif_rx_ni(skb);
91 	if (ret == NET_RX_DROP) {
92 		nic->stats.rx_dropped++;
93 	} else {
94 		nic->stats.rx_packets++;
95 		nic->stats.rx_bytes += skb->len + ETH_HLEN;
96 	}
97 
98 	return 0;
99 }
100 
101 static int gdm_lte_emulate_arp(struct sk_buff *skb_in, u32 nic_type)
102 {
103 	struct nic *nic = netdev_priv(skb_in->dev);
104 	struct sk_buff *skb_out;
105 	struct ethhdr eth;
106 	struct vlan_ethhdr vlan_eth;
107 	struct arphdr *arp_in;
108 	struct arphdr *arp_out;
109 	struct arpdata {
110 		u8 ar_sha[ETH_ALEN];
111 		u8 ar_sip[4];
112 		u8 ar_tha[ETH_ALEN];
113 		u8 ar_tip[4];
114 	};
115 	struct arpdata *arp_data_in;
116 	struct arpdata *arp_data_out;
117 	u8 arp_temp[60];
118 	void *mac_header_data;
119 	u32 mac_header_len;
120 
121 	/* Format the mac header so that it can be put to skb */
122 	if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
123 		memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
124 		mac_header_data = &vlan_eth;
125 		mac_header_len = VLAN_ETH_HLEN;
126 	} else {
127 		memcpy(&eth, skb_in->data, sizeof(struct ethhdr));
128 		mac_header_data = &eth;
129 		mac_header_len = ETH_HLEN;
130 	}
131 
132 	/* Get the pointer of the original request */
133 	arp_in = (struct arphdr *)(skb_in->data + mac_header_len);
134 	arp_data_in = (struct arpdata *)(skb_in->data + mac_header_len +
135 					sizeof(struct arphdr));
136 
137 	/* Get the pointer of the outgoing response */
138 	arp_out = (struct arphdr *)arp_temp;
139 	arp_data_out = (struct arpdata *)(arp_temp + sizeof(struct arphdr));
140 
141 	/* Copy the arp header */
142 	memcpy(arp_out, arp_in, sizeof(struct arphdr));
143 	arp_out->ar_op = htons(ARPOP_REPLY);
144 
145 	/* Copy the arp payload: based on 2 bytes of mac and fill the IP */
146 	arp_data_out->ar_sha[0] = arp_data_in->ar_sha[0];
147 	arp_data_out->ar_sha[1] = arp_data_in->ar_sha[1];
148 	memcpy(&arp_data_out->ar_sha[2], &arp_data_in->ar_tip[0], 4);
149 	memcpy(&arp_data_out->ar_sip[0], &arp_data_in->ar_tip[0], 4);
150 	memcpy(&arp_data_out->ar_tha[0], &arp_data_in->ar_sha[0], 6);
151 	memcpy(&arp_data_out->ar_tip[0], &arp_data_in->ar_sip[0], 4);
152 
153 	/* Fill the destination mac with source mac of the received packet */
154 	memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
155 	/* Fill the source mac with nic's source mac */
156 	memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
157 
158 	/* Alloc skb and reserve align */
159 	skb_out = dev_alloc_skb(skb_in->len);
160 	if (!skb_out)
161 		return -ENOMEM;
162 	skb_reserve(skb_out, NET_IP_ALIGN);
163 
164 	memcpy(skb_put(skb_out, mac_header_len), mac_header_data,
165 		mac_header_len);
166 	memcpy(skb_put(skb_out, sizeof(struct arphdr)), arp_out,
167 		sizeof(struct arphdr));
168 	memcpy(skb_put(skb_out, sizeof(struct arpdata)), arp_data_out,
169 		sizeof(struct arpdata));
170 
171 	skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
172 	skb_out->dev = skb_in->dev;
173 	skb_reset_mac_header(skb_out);
174 	skb_pull(skb_out, ETH_HLEN);
175 
176 	gdm_lte_rx(skb_out, nic, nic_type);
177 
178 	return 0;
179 }
180 
181 static int icmp6_checksum(struct ipv6hdr *ipv6, u16 *ptr, int len)
182 {
183 	unsigned short *w = ptr;
184 	int sum = 0;
185 	int i;
186 
187 	union {
188 		struct {
189 			u8 ph_src[16];
190 			u8 ph_dst[16];
191 			u32 ph_len;
192 			u8 ph_zero[3];
193 			u8 ph_nxt;
194 		} ph __packed;
195 		u16 pa[20];
196 	} pseudo_header;
197 
198 	memset(&pseudo_header, 0, sizeof(pseudo_header));
199 	memcpy(&pseudo_header.ph.ph_src, &ipv6->saddr.in6_u.u6_addr8, 16);
200 	memcpy(&pseudo_header.ph.ph_dst, &ipv6->daddr.in6_u.u6_addr8, 16);
201 	pseudo_header.ph.ph_len = ipv6->payload_len;
202 	pseudo_header.ph.ph_nxt = ipv6->nexthdr;
203 
204 	w = (u16 *)&pseudo_header;
205 	for (i = 0; i < ARRAY_SIZE(pseudo_header.pa); i++)
206 		sum += pseudo_header.pa[i];
207 
208 	w = ptr;
209 	while (len > 1) {
210 		sum += *w++;
211 		len -= 2;
212 	}
213 
214 	sum = (sum >> 16) + (sum & 0xFFFF);
215 	sum += (sum >> 16);
216 	sum = ~sum & 0xffff;
217 
218 	return sum;
219 }
220 
221 static int gdm_lte_emulate_ndp(struct sk_buff *skb_in, u32 nic_type)
222 {
223 	struct nic *nic = netdev_priv(skb_in->dev);
224 	struct sk_buff *skb_out;
225 	struct ethhdr eth;
226 	struct vlan_ethhdr vlan_eth;
227 	struct neighbour_advertisement {
228 		u8 target_address[16];
229 		u8 type;
230 		u8 length;
231 		u8 link_layer_address[6];
232 	};
233 	struct neighbour_advertisement na;
234 	struct neighbour_solicitation {
235 		u8 target_address[16];
236 	};
237 	struct neighbour_solicitation *ns;
238 	struct ipv6hdr *ipv6_in;
239 	struct ipv6hdr ipv6_out;
240 	struct icmp6hdr *icmp6_in;
241 	struct icmp6hdr icmp6_out;
242 
243 	void *mac_header_data;
244 	u32 mac_header_len;
245 
246 	/* Format the mac header so that it can be put to skb */
247 	if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
248 		memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
249 		if (ntohs(vlan_eth.h_vlan_encapsulated_proto) != ETH_P_IPV6)
250 			return -1;
251 		mac_header_data = &vlan_eth;
252 		mac_header_len = VLAN_ETH_HLEN;
253 	} else {
254 		memcpy(&eth, skb_in->data, sizeof(struct ethhdr));
255 		if (ntohs(eth.h_proto) != ETH_P_IPV6)
256 			return -1;
257 		mac_header_data = &eth;
258 		mac_header_len = ETH_HLEN;
259 	}
260 
261 	/* Check if this is IPv6 ICMP packet */
262 	ipv6_in = (struct ipv6hdr *)(skb_in->data + mac_header_len);
263 	if (ipv6_in->version != 6 || ipv6_in->nexthdr != IPPROTO_ICMPV6)
264 		return -1;
265 
266 	/* Check if this is NDP packet */
267 	icmp6_in = (struct icmp6hdr *)(skb_in->data + mac_header_len +
268 					sizeof(struct ipv6hdr));
269 	if (icmp6_in->icmp6_type == NDISC_ROUTER_SOLICITATION) { /* Check RS */
270 		return -1;
271 	} else if (icmp6_in->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION) {
272 		/* Check NS */
273 		u8 icmp_na[sizeof(struct icmp6hdr) +
274 			sizeof(struct neighbour_advertisement)];
275 		u8 zero_addr8[16] = {0,};
276 
277 		if (memcmp(ipv6_in->saddr.in6_u.u6_addr8, zero_addr8, 16) == 0)
278 			/* Duplicate Address Detection: Source IP is all zero */
279 			return 0;
280 
281 		icmp6_out.icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT;
282 		icmp6_out.icmp6_code = 0;
283 		icmp6_out.icmp6_cksum = 0;
284 		/* R=0, S=1, O=1 */
285 		icmp6_out.icmp6_dataun.un_data32[0] = htonl(0x60000000);
286 
287 		ns = (struct neighbour_solicitation *)
288 			(skb_in->data + mac_header_len +
289 			 sizeof(struct ipv6hdr) + sizeof(struct icmp6hdr));
290 		memcpy(&na.target_address, ns->target_address, 16);
291 		na.type = 0x02;
292 		na.length = 1;
293 		na.link_layer_address[0] = 0x00;
294 		na.link_layer_address[1] = 0x0a;
295 		na.link_layer_address[2] = 0x3b;
296 		na.link_layer_address[3] = 0xaf;
297 		na.link_layer_address[4] = 0x63;
298 		na.link_layer_address[5] = 0xc7;
299 
300 		memcpy(&ipv6_out, ipv6_in, sizeof(struct ipv6hdr));
301 		memcpy(ipv6_out.saddr.in6_u.u6_addr8, &na.target_address, 16);
302 		memcpy(ipv6_out.daddr.in6_u.u6_addr8,
303 			ipv6_in->saddr.in6_u.u6_addr8, 16);
304 		ipv6_out.payload_len = htons(sizeof(struct icmp6hdr) +
305 				sizeof(struct neighbour_advertisement));
306 
307 		memcpy(icmp_na, &icmp6_out, sizeof(struct icmp6hdr));
308 		memcpy(icmp_na + sizeof(struct icmp6hdr), &na,
309 			sizeof(struct neighbour_advertisement));
310 
311 		icmp6_out.icmp6_cksum = icmp6_checksum(&ipv6_out,
312 					(u16 *)icmp_na, sizeof(icmp_na));
313 	} else {
314 		return -1;
315 	}
316 
317 	/* Fill the destination mac with source mac of the received packet */
318 	memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
319 	/* Fill the source mac with nic's source mac */
320 	memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
321 
322 	/* Alloc skb and reserve align */
323 	skb_out = dev_alloc_skb(skb_in->len);
324 	if (!skb_out)
325 		return -ENOMEM;
326 	skb_reserve(skb_out, NET_IP_ALIGN);
327 
328 	memcpy(skb_put(skb_out, mac_header_len), mac_header_data,
329 		mac_header_len);
330 	memcpy(skb_put(skb_out, sizeof(struct ipv6hdr)), &ipv6_out,
331 		sizeof(struct ipv6hdr));
332 	memcpy(skb_put(skb_out, sizeof(struct icmp6hdr)), &icmp6_out,
333 		sizeof(struct icmp6hdr));
334 	memcpy(skb_put(skb_out, sizeof(struct neighbour_advertisement)), &na,
335 		sizeof(struct neighbour_advertisement));
336 
337 	skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
338 	skb_out->dev = skb_in->dev;
339 	skb_reset_mac_header(skb_out);
340 	skb_pull(skb_out, ETH_HLEN);
341 
342 	gdm_lte_rx(skb_out, nic, nic_type);
343 
344 	return 0;
345 }
346 
347 static s32 gdm_lte_tx_nic_type(struct net_device *dev, struct sk_buff *skb)
348 {
349 	struct nic *nic = netdev_priv(dev);
350 	struct ethhdr *eth;
351 	struct vlan_ethhdr *vlan_eth;
352 	struct iphdr *ip;
353 	struct ipv6hdr *ipv6;
354 	int mac_proto;
355 	void *network_data;
356 	u32 nic_type = 0;
357 
358 	/* NIC TYPE is based on the nic_id of this net_device */
359 	nic_type = 0x00000010 | nic->nic_id;
360 
361 	/* Get ethernet protocol */
362 	eth = (struct ethhdr *)skb->data;
363 	if (ntohs(eth->h_proto) == ETH_P_8021Q) {
364 		vlan_eth = (struct vlan_ethhdr *)skb->data;
365 		mac_proto = ntohs(vlan_eth->h_vlan_encapsulated_proto);
366 		network_data = skb->data + VLAN_ETH_HLEN;
367 		nic_type |= NIC_TYPE_F_VLAN;
368 	} else {
369 		mac_proto = ntohs(eth->h_proto);
370 		network_data = skb->data + ETH_HLEN;
371 	}
372 
373 	/* Process packet for nic type */
374 	switch (mac_proto) {
375 	case ETH_P_ARP:
376 		nic_type |= NIC_TYPE_ARP;
377 		break;
378 	case ETH_P_IP:
379 		nic_type |= NIC_TYPE_F_IPV4;
380 		ip = (struct iphdr *)network_data;
381 
382 		/* Check DHCPv4 */
383 		if (ip->protocol == IPPROTO_UDP) {
384 			struct udphdr *udp = (struct udphdr *)
385 					(network_data + sizeof(struct iphdr));
386 			if (ntohs(udp->dest) == 67 || ntohs(udp->dest) == 68)
387 				nic_type |= NIC_TYPE_F_DHCP;
388 		}
389 		break;
390 	case ETH_P_IPV6:
391 		nic_type |= NIC_TYPE_F_IPV6;
392 		ipv6 = (struct ipv6hdr *)network_data;
393 
394 		if (ipv6->nexthdr == IPPROTO_ICMPV6) /* Check NDP request */ {
395 			struct icmp6hdr *icmp6 = (struct icmp6hdr *)
396 					(network_data + sizeof(struct ipv6hdr));
397 			if (icmp6->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION)
398 				nic_type |= NIC_TYPE_ICMPV6;
399 		} else if (ipv6->nexthdr == IPPROTO_UDP) /* Check DHCPv6 */ {
400 			struct udphdr *udp = (struct udphdr *)
401 					(network_data + sizeof(struct ipv6hdr));
402 			if (ntohs(udp->dest) == 546 || ntohs(udp->dest) == 547)
403 				nic_type |= NIC_TYPE_F_DHCP;
404 		}
405 		break;
406 	default:
407 		break;
408 	}
409 
410 	return nic_type;
411 }
412 
413 static int gdm_lte_tx(struct sk_buff *skb, struct net_device *dev)
414 {
415 	struct nic *nic = netdev_priv(dev);
416 	u32 nic_type;
417 	void *data_buf;
418 	int data_len;
419 	int idx;
420 	int ret = 0;
421 
422 	nic_type = gdm_lte_tx_nic_type(dev, skb);
423 	if (nic_type == 0) {
424 		netdev_err(dev, "tx - invalid nic_type\n");
425 		return -1;
426 	}
427 
428 	if (nic_type & NIC_TYPE_ARP) {
429 		if (gdm_lte_emulate_arp(skb, nic_type) == 0) {
430 			dev_kfree_skb(skb);
431 			return 0;
432 		}
433 	}
434 
435 	if (nic_type & NIC_TYPE_ICMPV6) {
436 		if (gdm_lte_emulate_ndp(skb, nic_type) == 0) {
437 			dev_kfree_skb(skb);
438 			return 0;
439 		}
440 	}
441 
442 	/*
443 	 * Need byte shift (that is, remove VLAN tag) if there is one
444 	 * For the case of ARP, this breaks the offset as vlan_ethhdr+4
445 	 * is treated as ethhdr	However, it shouldn't be a problem as
446 	 * the response starts from arp_hdr and ethhdr is created by this
447 	 * driver based on the NIC mac
448 	 */
449 	if (nic_type & NIC_TYPE_F_VLAN) {
450 		struct vlan_ethhdr *vlan_eth = (struct vlan_ethhdr *)skb->data;
451 
452 		nic->vlan_id = ntohs(vlan_eth->h_vlan_TCI) & VLAN_VID_MASK;
453 		data_buf = skb->data + (VLAN_ETH_HLEN - ETH_HLEN);
454 		data_len = skb->len - (VLAN_ETH_HLEN - ETH_HLEN);
455 	} else {
456 		nic->vlan_id = 0;
457 		data_buf = skb->data;
458 		data_len = skb->len;
459 	}
460 
461 	/* If it is a ICMPV6 packet, clear all the other bits :
462 	 * for backward compatibility with the firmware
463 	 */
464 	if (nic_type & NIC_TYPE_ICMPV6)
465 		nic_type = NIC_TYPE_ICMPV6;
466 
467 	/* If it is not a dhcp packet, clear all the flag bits :
468 	 * original NIC, otherwise the special flag (IPVX | DHCP)
469 	 */
470 	if (!(nic_type & NIC_TYPE_F_DHCP))
471 		nic_type &= NIC_TYPE_MASK;
472 
473 	ret = sscanf(dev->name, "lte%d", &idx);
474 	if (ret != 1) {
475 		dev_kfree_skb(skb);
476 		return -EINVAL;
477 	}
478 
479 	ret = nic->phy_dev->send_sdu_func(nic->phy_dev->priv_dev,
480 					  data_buf, data_len,
481 					  nic->pdn_table.dft_eps_id, 0,
482 					  tx_complete, nic, idx,
483 					  nic_type);
484 
485 	if (ret == TX_NO_BUFFER || ret == TX_NO_SPC) {
486 		netif_stop_queue(dev);
487 		if (ret == TX_NO_BUFFER)
488 			ret = 0;
489 		else
490 			ret = -ENOSPC;
491 	} else if (ret == TX_NO_DEV) {
492 		ret = -ENODEV;
493 	}
494 
495 	/* Updates tx stats */
496 	if (ret) {
497 		nic->stats.tx_dropped++;
498 	} else {
499 		nic->stats.tx_packets++;
500 		nic->stats.tx_bytes += data_len;
501 	}
502 	dev_kfree_skb(skb);
503 
504 	return 0;
505 }
506 
507 static struct net_device_stats *gdm_lte_stats(struct net_device *dev)
508 {
509 	struct nic *nic = netdev_priv(dev);
510 
511 	return &nic->stats;
512 }
513 
514 static int gdm_lte_event_send(struct net_device *dev, char *buf, int len)
515 {
516 	struct nic *nic = netdev_priv(dev);
517 	struct hci_packet *hci = (struct hci_packet *)buf;
518 	int idx;
519 	int ret;
520 
521 	ret = sscanf(dev->name, "lte%d", &idx);
522 	if (ret != 1)
523 		return -EINVAL;
524 
525 	return netlink_send(lte_event.sock, idx, 0, buf,
526 			    gdm_dev16_to_cpu(
527 				    nic->phy_dev->get_endian(
528 					    nic->phy_dev->priv_dev), hci->len)
529 			    + HCI_HEADER_SIZE);
530 }
531 
532 static void gdm_lte_event_rcv(struct net_device *dev, u16 type,
533 				void *msg, int len)
534 {
535 	struct nic *nic = netdev_priv(dev);
536 
537 	nic->phy_dev->send_hci_func(nic->phy_dev->priv_dev, msg, len, NULL,
538 				    NULL);
539 }
540 
541 int gdm_lte_event_init(void)
542 {
543 	if (lte_event.ref_cnt == 0)
544 		lte_event.sock = netlink_init(NETLINK_LTE, gdm_lte_event_rcv);
545 
546 	if (lte_event.sock) {
547 		lte_event.ref_cnt++;
548 		return 0;
549 	}
550 
551 	pr_err("event init failed\n");
552 	return -1;
553 }
554 
555 void gdm_lte_event_exit(void)
556 {
557 	if (lte_event.sock && --lte_event.ref_cnt == 0) {
558 		netlink_exit(lte_event.sock);
559 		lte_event.sock = NULL;
560 	}
561 }
562 
563 static u8 find_dev_index(u32 nic_type)
564 {
565 	u8 index;
566 
567 	index = (u8)(nic_type & 0x0000000f);
568 	if (index > MAX_NIC_TYPE)
569 		index = 0;
570 
571 	return index;
572 }
573 
574 static void gdm_lte_netif_rx(struct net_device *dev, char *buf,
575 			int len, int flagged_nic_type)
576 {
577 	u32 nic_type;
578 	struct nic *nic;
579 	struct sk_buff *skb;
580 	struct ethhdr eth;
581 	struct vlan_ethhdr vlan_eth;
582 	void *mac_header_data;
583 	u32 mac_header_len;
584 	char ip_version = 0;
585 
586 	nic_type = flagged_nic_type & NIC_TYPE_MASK;
587 	nic = netdev_priv(dev);
588 
589 	if (flagged_nic_type & NIC_TYPE_F_DHCP) {
590 		/* Change the destination mac address
591 		 * with the one requested the IP
592 		 */
593 		if (flagged_nic_type & NIC_TYPE_F_IPV4) {
594 			struct dhcp_packet {
595 				u8 op;      /* BOOTREQUEST or BOOTREPLY */
596 				u8 htype;   /* hardware address type.
597 					     * 1 = 10mb ethernet
598 					     */
599 				u8 hlen;    /* hardware address length */
600 				u8 hops;    /* used by relay agents only */
601 				u32 xid;    /* unique id */
602 				u16 secs;   /* elapsed since client began
603 					     * acquisition/renewal
604 					     */
605 				u16 flags;  /* only one flag so far: */
606 				#define BROADCAST_FLAG 0x8000
607 				/* "I need broadcast replies" */
608 				u32 ciaddr; /* client IP (if client is in
609 					     * BOUND, RENEW or REBINDING state)
610 					     */
611 				u32 yiaddr; /* 'your' (client) IP address */
612 				/* IP address of next server to use in
613 				 * bootstrap, returned in DHCPOFFER,
614 				 * DHCPACK by server
615 				 */
616 				u32 siaddr_nip;
617 				u32 gateway_nip; /* relay agent IP address */
618 				u8 chaddr[16];   /* link-layer client hardware
619 						  * address (MAC)
620 						  */
621 				u8 sname[64];    /* server host name (ASCIZ) */
622 				u8 file[128];    /* boot file name (ASCIZ) */
623 				u32 cookie;      /* fixed first four option
624 						  * bytes (99,130,83,99 dec)
625 						  */
626 			} __packed;
627 			void *addr = buf + sizeof(struct iphdr) +
628 				sizeof(struct udphdr) +
629 				offsetof(struct dhcp_packet, chaddr);
630 			ether_addr_copy(nic->dest_mac_addr, addr);
631 		}
632 	}
633 
634 	if (nic->vlan_id > 0) {
635 		mac_header_data = (void *)&vlan_eth;
636 		mac_header_len = VLAN_ETH_HLEN;
637 	} else {
638 		mac_header_data = (void *)&eth;
639 		mac_header_len = ETH_HLEN;
640 	}
641 
642 	/* Format the data so that it can be put to skb */
643 	ether_addr_copy(mac_header_data, nic->dest_mac_addr);
644 	memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
645 
646 	vlan_eth.h_vlan_TCI = htons(nic->vlan_id);
647 	vlan_eth.h_vlan_proto = htons(ETH_P_8021Q);
648 
649 	if (nic_type == NIC_TYPE_ARP) {
650 		/* Should be response: Only happens because
651 		 * there was a request from the host
652 		 */
653 		eth.h_proto = htons(ETH_P_ARP);
654 		vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_ARP);
655 	} else {
656 		ip_version = buf[0] >> 4;
657 		if (ip_version == IP_VERSION_4) {
658 			eth.h_proto = htons(ETH_P_IP);
659 			vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IP);
660 		} else if (ip_version == IP_VERSION_6) {
661 			eth.h_proto = htons(ETH_P_IPV6);
662 			vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IPV6);
663 		} else {
664 			netdev_err(dev, "Unknown IP version %d\n", ip_version);
665 			return;
666 		}
667 	}
668 
669 	/* Alloc skb and reserve align */
670 	skb = dev_alloc_skb(len + mac_header_len + NET_IP_ALIGN);
671 	if (!skb)
672 		return;
673 	skb_reserve(skb, NET_IP_ALIGN);
674 
675 	memcpy(skb_put(skb, mac_header_len), mac_header_data, mac_header_len);
676 	memcpy(skb_put(skb, len), buf, len);
677 
678 	skb->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
679 	skb->dev = dev;
680 	skb_reset_mac_header(skb);
681 	skb_pull(skb, ETH_HLEN);
682 
683 	gdm_lte_rx(skb, nic, nic_type);
684 }
685 
686 static void gdm_lte_multi_sdu_pkt(struct phy_dev *phy_dev, char *buf, int len)
687 {
688 	struct net_device *dev;
689 	struct multi_sdu *multi_sdu = (struct multi_sdu *)buf;
690 	struct sdu *sdu = NULL;
691 	u8 *data = (u8 *)multi_sdu->data;
692 	u16 i = 0;
693 	u16 num_packet;
694 	u16 hci_len;
695 	u16 cmd_evt;
696 	u32 nic_type;
697 	u8 index;
698 
699 	hci_len = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev),
700 				multi_sdu->len);
701 	num_packet = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev),
702 				multi_sdu->num_packet);
703 
704 	for (i = 0; i < num_packet; i++) {
705 		sdu = (struct sdu *)data;
706 
707 		cmd_evt = gdm_dev16_to_cpu(phy_dev->
708 				get_endian(phy_dev->priv_dev), sdu->cmd_evt);
709 		hci_len = gdm_dev16_to_cpu(phy_dev->
710 				get_endian(phy_dev->priv_dev), sdu->len);
711 		nic_type = gdm_dev32_to_cpu(phy_dev->
712 				get_endian(phy_dev->priv_dev), sdu->nic_type);
713 
714 		if (cmd_evt != LTE_RX_SDU) {
715 			pr_err("rx sdu wrong hci %04x\n", cmd_evt);
716 			return;
717 		}
718 		if (hci_len < 12) {
719 			pr_err("rx sdu invalid len %d\n", hci_len);
720 			return;
721 		}
722 
723 		index = find_dev_index(nic_type);
724 		if (index < MAX_NIC_TYPE) {
725 			dev = phy_dev->dev[index];
726 			gdm_lte_netif_rx(dev, (char *)sdu->data,
727 					(int)(hci_len-12), nic_type);
728 		} else {
729 			pr_err("rx sdu invalid nic_type :%x\n", nic_type);
730 		}
731 
732 		data += ((hci_len+3) & 0xfffc) + HCI_HEADER_SIZE;
733 	}
734 }
735 
736 static void gdm_lte_pdn_table(struct net_device *dev, char *buf, int len)
737 {
738 	struct nic *nic = netdev_priv(dev);
739 	struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
740 
741 	if (pdn_table->activate) {
742 		nic->pdn_table.activate = pdn_table->activate;
743 		nic->pdn_table.dft_eps_id = gdm_dev32_to_cpu(
744 						nic->phy_dev->get_endian(
745 							nic->phy_dev->priv_dev),
746 						pdn_table->dft_eps_id);
747 		nic->pdn_table.nic_type = gdm_dev32_to_cpu(
748 						nic->phy_dev->get_endian(
749 							nic->phy_dev->priv_dev),
750 						pdn_table->nic_type);
751 
752 		netdev_info(dev, "pdn activated, nic_type=0x%x\n",
753 			    nic->pdn_table.nic_type);
754 	} else {
755 		memset(&nic->pdn_table, 0x00, sizeof(struct pdn_table));
756 		netdev_info(dev, "pdn deactivated\n");
757 	}
758 }
759 
760 static int gdm_lte_receive_pkt(struct phy_dev *phy_dev, char *buf, int len)
761 {
762 	struct hci_packet *hci = (struct hci_packet *)buf;
763 	struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
764 	struct sdu *sdu;
765 	struct net_device *dev;
766 	int ret = 0;
767 	u16 cmd_evt;
768 	u32 nic_type;
769 	u8 index;
770 
771 	if (!len)
772 		return ret;
773 
774 	cmd_evt = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev),
775 				hci->cmd_evt);
776 
777 	dev = phy_dev->dev[0];
778 	if (dev == NULL)
779 		return 0;
780 
781 	switch (cmd_evt) {
782 	case LTE_RX_SDU:
783 		sdu = (struct sdu *)hci->data;
784 		nic_type = gdm_dev32_to_cpu(phy_dev->
785 				get_endian(phy_dev->priv_dev), sdu->nic_type);
786 		index = find_dev_index(nic_type);
787 		dev = phy_dev->dev[index];
788 		gdm_lte_netif_rx(dev, hci->data, len, nic_type);
789 		break;
790 	case LTE_RX_MULTI_SDU:
791 		gdm_lte_multi_sdu_pkt(phy_dev, buf, len);
792 		break;
793 	case LTE_LINK_ON_OFF_INDICATION:
794 		netdev_info(dev, "link %s\n",
795 			    ((struct hci_connect_ind *)buf)->connect
796 			    ? "on" : "off");
797 		break;
798 	case LTE_PDN_TABLE_IND:
799 		pdn_table = (struct hci_pdn_table_ind *)buf;
800 		nic_type = gdm_dev32_to_cpu(phy_dev->
801 				get_endian(phy_dev->priv_dev),
802 				pdn_table->nic_type);
803 		index = find_dev_index(nic_type);
804 		dev = phy_dev->dev[index];
805 		gdm_lte_pdn_table(dev, buf, len);
806 		/* Fall through */
807 	default:
808 		ret = gdm_lte_event_send(dev, buf, len);
809 		break;
810 	}
811 
812 	return ret;
813 }
814 
815 static int rx_complete(void *arg, void *data, int len, int context)
816 {
817 	struct phy_dev *phy_dev = (struct phy_dev *)arg;
818 
819 	return gdm_lte_receive_pkt(phy_dev, (char *)data, len);
820 }
821 
822 void start_rx_proc(struct phy_dev *phy_dev)
823 {
824 	int i;
825 
826 	for (i = 0; i < MAX_RX_SUBMIT_COUNT; i++)
827 		phy_dev->rcv_func(phy_dev->priv_dev,
828 				rx_complete, phy_dev, USB_COMPLETE);
829 }
830 
831 static struct net_device_ops gdm_netdev_ops = {
832 	.ndo_open			= gdm_lte_open,
833 	.ndo_stop			= gdm_lte_close,
834 	.ndo_set_config			= gdm_lte_set_config,
835 	.ndo_start_xmit			= gdm_lte_tx,
836 	.ndo_get_stats			= gdm_lte_stats,
837 };
838 
839 static u8 gdm_lte_macaddr[ETH_ALEN] = {0x00, 0x0a, 0x3b, 0x00, 0x00, 0x00};
840 
841 static void form_mac_address(u8 *dev_addr, u8 *nic_src, u8 *nic_dest,
842 			u8 *mac_address, u8 index)
843 {
844 	/* Form the dev_addr */
845 	if (!mac_address)
846 		ether_addr_copy(dev_addr, gdm_lte_macaddr);
847 	else
848 		ether_addr_copy(dev_addr, mac_address);
849 
850 	/* The last byte of the mac address
851 	 * should be less than or equal to 0xFC
852 	 */
853 	dev_addr[ETH_ALEN-1] += index;
854 
855 	/* Create random nic src and copy the first
856 	 * 3 bytes to be the same as dev_addr
857 	 */
858 	random_ether_addr(nic_src);
859 	memcpy(nic_src, dev_addr, 3);
860 
861 	/* Copy the nic_dest from dev_addr*/
862 	ether_addr_copy(nic_dest, dev_addr);
863 }
864 
865 static void validate_mac_address(u8 *mac_address)
866 {
867 	/* if zero address or multicast bit set, restore the default value */
868 	if (is_zero_ether_addr(mac_address) || (mac_address[0] & 0x01)) {
869 		pr_err("MAC invalid, restoring default\n");
870 		memcpy(mac_address, gdm_lte_macaddr, 6);
871 	}
872 }
873 
874 int register_lte_device(struct phy_dev *phy_dev,
875 			struct device *dev, u8 *mac_address)
876 {
877 	struct nic *nic;
878 	struct net_device *net;
879 	char pdn_dev_name[16];
880 	int ret = 0;
881 	u8 index;
882 
883 	validate_mac_address(mac_address);
884 
885 	for (index = 0; index < MAX_NIC_TYPE; index++) {
886 		/* Create device name lteXpdnX */
887 		sprintf(pdn_dev_name, "lte%%dpdn%d", index);
888 
889 		/* Allocate netdev */
890 		net = alloc_netdev(sizeof(struct nic), pdn_dev_name,
891 				   NET_NAME_UNKNOWN, ether_setup);
892 		if (!net) {
893 			pr_err("alloc_netdev failed\n");
894 			ret = -ENOMEM;
895 			goto err;
896 		}
897 		net->netdev_ops = &gdm_netdev_ops;
898 		net->flags &= ~IFF_MULTICAST;
899 		net->mtu = DEFAULT_MTU_SIZE;
900 
901 		nic = netdev_priv(net);
902 		memset(nic, 0, sizeof(struct nic));
903 		nic->netdev = net;
904 		nic->phy_dev = phy_dev;
905 		nic->nic_id = index;
906 
907 		form_mac_address(
908 				net->dev_addr,
909 				nic->src_mac_addr,
910 				nic->dest_mac_addr,
911 				mac_address,
912 				index);
913 
914 		SET_NETDEV_DEV(net, dev);
915 		SET_NETDEV_DEVTYPE(net, &wwan_type);
916 
917 		ret = register_netdev(net);
918 		if (ret)
919 			goto err;
920 
921 		netif_carrier_on(net);
922 
923 		phy_dev->dev[index] = net;
924 	}
925 
926 	return 0;
927 
928 err:
929 	unregister_lte_device(phy_dev);
930 
931 	return ret;
932 }
933 
934 void unregister_lte_device(struct phy_dev *phy_dev)
935 {
936 	struct net_device *net;
937 	int index;
938 
939 	for (index = 0; index < MAX_NIC_TYPE; index++) {
940 		net = phy_dev->dev[index];
941 		if (net == NULL)
942 			continue;
943 
944 		unregister_netdev(net);
945 		free_netdev(net);
946 	}
947 }
948