xref: /openbmc/linux/drivers/ssb/pci.c (revision 9d56dd3b)
1 /*
2  * Sonics Silicon Backplane PCI-Hostbus related functions.
3  *
4  * Copyright (C) 2005-2006 Michael Buesch <mb@bu3sch.de>
5  * Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
6  * Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
7  * Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
8  * Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
9  *
10  * Derived from the Broadcom 4400 device driver.
11  * Copyright (C) 2002 David S. Miller (davem@redhat.com)
12  * Fixed by Pekka Pietikainen (pp@ee.oulu.fi)
13  * Copyright (C) 2006 Broadcom Corporation.
14  *
15  * Licensed under the GNU/GPL. See COPYING for details.
16  */
17 
18 #include <linux/ssb/ssb.h>
19 #include <linux/ssb/ssb_regs.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 
23 #include "ssb_private.h"
24 
25 
26 /* Define the following to 1 to enable a printk on each coreswitch. */
27 #define SSB_VERBOSE_PCICORESWITCH_DEBUG		0
28 
29 
30 /* Lowlevel coreswitching */
31 int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx)
32 {
33 	int err;
34 	int attempts = 0;
35 	u32 cur_core;
36 
37 	while (1) {
38 		err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN,
39 					     (coreidx * SSB_CORE_SIZE)
40 					     + SSB_ENUM_BASE);
41 		if (err)
42 			goto error;
43 		err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN,
44 					    &cur_core);
45 		if (err)
46 			goto error;
47 		cur_core = (cur_core - SSB_ENUM_BASE)
48 			   / SSB_CORE_SIZE;
49 		if (cur_core == coreidx)
50 			break;
51 
52 		if (attempts++ > SSB_BAR0_MAX_RETRIES)
53 			goto error;
54 		udelay(10);
55 	}
56 	return 0;
57 error:
58 	ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
59 	return -ENODEV;
60 }
61 
62 int ssb_pci_switch_core(struct ssb_bus *bus,
63 			struct ssb_device *dev)
64 {
65 	int err;
66 	unsigned long flags;
67 
68 #if SSB_VERBOSE_PCICORESWITCH_DEBUG
69 	ssb_printk(KERN_INFO PFX
70 		   "Switching to %s core, index %d\n",
71 		   ssb_core_name(dev->id.coreid),
72 		   dev->core_index);
73 #endif
74 
75 	spin_lock_irqsave(&bus->bar_lock, flags);
76 	err = ssb_pci_switch_coreidx(bus, dev->core_index);
77 	if (!err)
78 		bus->mapped_device = dev;
79 	spin_unlock_irqrestore(&bus->bar_lock, flags);
80 
81 	return err;
82 }
83 
84 /* Enable/disable the on board crystal oscillator and/or PLL. */
85 int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on)
86 {
87 	int err;
88 	u32 in, out, outenable;
89 	u16 pci_status;
90 
91 	if (bus->bustype != SSB_BUSTYPE_PCI)
92 		return 0;
93 
94 	err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in);
95 	if (err)
96 		goto err_pci;
97 	err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out);
98 	if (err)
99 		goto err_pci;
100 	err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable);
101 	if (err)
102 		goto err_pci;
103 
104 	outenable |= what;
105 
106 	if (turn_on) {
107 		/* Avoid glitching the clock if GPRS is already using it.
108 		 * We can't actually read the state of the PLLPD so we infer it
109 		 * by the value of XTAL_PU which *is* readable via gpioin.
110 		 */
111 		if (!(in & SSB_GPIO_XTAL)) {
112 			if (what & SSB_GPIO_XTAL) {
113 				/* Turn the crystal on */
114 				out |= SSB_GPIO_XTAL;
115 				if (what & SSB_GPIO_PLL)
116 					out |= SSB_GPIO_PLL;
117 				err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
118 				if (err)
119 					goto err_pci;
120 				err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE,
121 							     outenable);
122 				if (err)
123 					goto err_pci;
124 				msleep(1);
125 			}
126 			if (what & SSB_GPIO_PLL) {
127 				/* Turn the PLL on */
128 				out &= ~SSB_GPIO_PLL;
129 				err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
130 				if (err)
131 					goto err_pci;
132 				msleep(5);
133 			}
134 		}
135 
136 		err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status);
137 		if (err)
138 			goto err_pci;
139 		pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT;
140 		err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status);
141 		if (err)
142 			goto err_pci;
143 	} else {
144 		if (what & SSB_GPIO_XTAL) {
145 			/* Turn the crystal off */
146 			out &= ~SSB_GPIO_XTAL;
147 		}
148 		if (what & SSB_GPIO_PLL) {
149 			/* Turn the PLL off */
150 			out |= SSB_GPIO_PLL;
151 		}
152 		err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
153 		if (err)
154 			goto err_pci;
155 		err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable);
156 		if (err)
157 			goto err_pci;
158 	}
159 
160 out:
161 	return err;
162 
163 err_pci:
164 	printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n");
165 	err = -EBUSY;
166 	goto out;
167 }
168 
169 /* Get the word-offset for a SSB_SPROM_XXX define. */
170 #define SPOFF(offset)	(((offset) - SSB_SPROM_BASE) / sizeof(u16))
171 /* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */
172 #define SPEX16(_outvar, _offset, _mask, _shift)	\
173 	out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift))
174 #define SPEX32(_outvar, _offset, _mask, _shift)	\
175 	out->_outvar = ((((u32)in[SPOFF((_offset)+2)] << 16 | \
176 			   in[SPOFF(_offset)]) & (_mask)) >> (_shift))
177 #define SPEX(_outvar, _offset, _mask, _shift) \
178 	SPEX16(_outvar, _offset, _mask, _shift)
179 
180 
181 static inline u8 ssb_crc8(u8 crc, u8 data)
182 {
183 	/* Polynomial:   x^8 + x^7 + x^6 + x^4 + x^2 + 1   */
184 	static const u8 t[] = {
185 		0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
186 		0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
187 		0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
188 		0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
189 		0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
190 		0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
191 		0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
192 		0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
193 		0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
194 		0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
195 		0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
196 		0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
197 		0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
198 		0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
199 		0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
200 		0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
201 		0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
202 		0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
203 		0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
204 		0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
205 		0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
206 		0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
207 		0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
208 		0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
209 		0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
210 		0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
211 		0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
212 		0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
213 		0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
214 		0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
215 		0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
216 		0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
217 	};
218 	return t[crc ^ data];
219 }
220 
221 static u8 ssb_sprom_crc(const u16 *sprom, u16 size)
222 {
223 	int word;
224 	u8 crc = 0xFF;
225 
226 	for (word = 0; word < size - 1; word++) {
227 		crc = ssb_crc8(crc, sprom[word] & 0x00FF);
228 		crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8);
229 	}
230 	crc = ssb_crc8(crc, sprom[size - 1] & 0x00FF);
231 	crc ^= 0xFF;
232 
233 	return crc;
234 }
235 
236 static int sprom_check_crc(const u16 *sprom, size_t size)
237 {
238 	u8 crc;
239 	u8 expected_crc;
240 	u16 tmp;
241 
242 	crc = ssb_sprom_crc(sprom, size);
243 	tmp = sprom[size - 1] & SSB_SPROM_REVISION_CRC;
244 	expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
245 	if (crc != expected_crc)
246 		return -EPROTO;
247 
248 	return 0;
249 }
250 
251 static int sprom_do_read(struct ssb_bus *bus, u16 *sprom)
252 {
253 	int i;
254 
255 	for (i = 0; i < bus->sprom_size; i++)
256 		sprom[i] = ioread16(bus->mmio + SSB_SPROM_BASE + (i * 2));
257 
258 	return 0;
259 }
260 
261 static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom)
262 {
263 	struct pci_dev *pdev = bus->host_pci;
264 	int i, err;
265 	u32 spromctl;
266 	u16 size = bus->sprom_size;
267 
268 	ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
269 	err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
270 	if (err)
271 		goto err_ctlreg;
272 	spromctl |= SSB_SPROMCTL_WE;
273 	err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
274 	if (err)
275 		goto err_ctlreg;
276 	ssb_printk(KERN_NOTICE PFX "[ 0%%");
277 	msleep(500);
278 	for (i = 0; i < size; i++) {
279 		if (i == size / 4)
280 			ssb_printk("25%%");
281 		else if (i == size / 2)
282 			ssb_printk("50%%");
283 		else if (i == (size * 3) / 4)
284 			ssb_printk("75%%");
285 		else if (i % 2)
286 			ssb_printk(".");
287 		writew(sprom[i], bus->mmio + SSB_SPROM_BASE + (i * 2));
288 		mmiowb();
289 		msleep(20);
290 	}
291 	err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
292 	if (err)
293 		goto err_ctlreg;
294 	spromctl &= ~SSB_SPROMCTL_WE;
295 	err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
296 	if (err)
297 		goto err_ctlreg;
298 	msleep(500);
299 	ssb_printk("100%% ]\n");
300 	ssb_printk(KERN_NOTICE PFX "SPROM written.\n");
301 
302 	return 0;
303 err_ctlreg:
304 	ssb_printk(KERN_ERR PFX "Could not access SPROM control register.\n");
305 	return err;
306 }
307 
308 static s8 r123_extract_antgain(u8 sprom_revision, const u16 *in,
309 			       u16 mask, u16 shift)
310 {
311 	u16 v;
312 	u8 gain;
313 
314 	v = in[SPOFF(SSB_SPROM1_AGAIN)];
315 	gain = (v & mask) >> shift;
316 	if (gain == 0xFF)
317 		gain = 2; /* If unset use 2dBm */
318 	if (sprom_revision == 1) {
319 		/* Convert to Q5.2 */
320 		gain <<= 2;
321 	} else {
322 		/* Q5.2 Fractional part is stored in 0xC0 */
323 		gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2);
324 	}
325 
326 	return (s8)gain;
327 }
328 
329 static void sprom_extract_r123(struct ssb_sprom *out, const u16 *in)
330 {
331 	int i;
332 	u16 v;
333 	s8 gain;
334 	u16 loc[3];
335 
336 	if (out->revision == 3)			/* rev 3 moved MAC */
337 		loc[0] = SSB_SPROM3_IL0MAC;
338 	else {
339 		loc[0] = SSB_SPROM1_IL0MAC;
340 		loc[1] = SSB_SPROM1_ET0MAC;
341 		loc[2] = SSB_SPROM1_ET1MAC;
342 	}
343 	for (i = 0; i < 3; i++) {
344 		v = in[SPOFF(loc[0]) + i];
345 		*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
346 	}
347 	if (out->revision < 3) { 	/* only rev 1-2 have et0, et1 */
348 		for (i = 0; i < 3; i++) {
349 			v = in[SPOFF(loc[1]) + i];
350 			*(((__be16 *)out->et0mac) + i) = cpu_to_be16(v);
351 		}
352 		for (i = 0; i < 3; i++) {
353 			v = in[SPOFF(loc[2]) + i];
354 			*(((__be16 *)out->et1mac) + i) = cpu_to_be16(v);
355 		}
356 	}
357 	SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0);
358 	SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A,
359 	     SSB_SPROM1_ETHPHY_ET1A_SHIFT);
360 	SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14);
361 	SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15);
362 	SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0);
363 	SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE,
364 	     SSB_SPROM1_BINF_CCODE_SHIFT);
365 	SPEX(ant_available_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA,
366 	     SSB_SPROM1_BINF_ANTA_SHIFT);
367 	SPEX(ant_available_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG,
368 	     SSB_SPROM1_BINF_ANTBG_SHIFT);
369 	SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0);
370 	SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0);
371 	SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0);
372 	SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0);
373 	SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0);
374 	SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0);
375 	SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0);
376 	SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1,
377 	     SSB_SPROM1_GPIOA_P1_SHIFT);
378 	SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0);
379 	SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3,
380 	     SSB_SPROM1_GPIOB_P3_SHIFT);
381 	SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A,
382 	     SSB_SPROM1_MAXPWR_A_SHIFT);
383 	SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0);
384 	SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A,
385 	     SSB_SPROM1_ITSSI_A_SHIFT);
386 	SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0);
387 	SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0);
388 	if (out->revision >= 2)
389 		SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0);
390 
391 	/* Extract the antenna gain values. */
392 	gain = r123_extract_antgain(out->revision, in,
393 				    SSB_SPROM1_AGAIN_BG,
394 				    SSB_SPROM1_AGAIN_BG_SHIFT);
395 	out->antenna_gain.ghz24.a0 = gain;
396 	out->antenna_gain.ghz24.a1 = gain;
397 	out->antenna_gain.ghz24.a2 = gain;
398 	out->antenna_gain.ghz24.a3 = gain;
399 	gain = r123_extract_antgain(out->revision, in,
400 				    SSB_SPROM1_AGAIN_A,
401 				    SSB_SPROM1_AGAIN_A_SHIFT);
402 	out->antenna_gain.ghz5.a0 = gain;
403 	out->antenna_gain.ghz5.a1 = gain;
404 	out->antenna_gain.ghz5.a2 = gain;
405 	out->antenna_gain.ghz5.a3 = gain;
406 }
407 
408 static void sprom_extract_r45(struct ssb_sprom *out, const u16 *in)
409 {
410 	int i;
411 	u16 v;
412 	u16 il0mac_offset;
413 
414 	if (out->revision == 4)
415 		il0mac_offset = SSB_SPROM4_IL0MAC;
416 	else
417 		il0mac_offset = SSB_SPROM5_IL0MAC;
418 	/* extract the MAC address */
419 	for (i = 0; i < 3; i++) {
420 		v = in[SPOFF(il0mac_offset) + i];
421 		*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
422 	}
423 	SPEX(et0phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET0A, 0);
424 	SPEX(et1phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET1A,
425 	     SSB_SPROM4_ETHPHY_ET1A_SHIFT);
426 	if (out->revision == 4) {
427 		SPEX(country_code, SSB_SPROM4_CCODE, 0xFFFF, 0);
428 		SPEX(boardflags_lo, SSB_SPROM4_BFLLO, 0xFFFF, 0);
429 		SPEX(boardflags_hi, SSB_SPROM4_BFLHI, 0xFFFF, 0);
430 	} else {
431 		SPEX(country_code, SSB_SPROM5_CCODE, 0xFFFF, 0);
432 		SPEX(boardflags_lo, SSB_SPROM5_BFLLO, 0xFFFF, 0);
433 		SPEX(boardflags_hi, SSB_SPROM5_BFLHI, 0xFFFF, 0);
434 	}
435 	SPEX(ant_available_a, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_A,
436 	     SSB_SPROM4_ANTAVAIL_A_SHIFT);
437 	SPEX(ant_available_bg, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_BG,
438 	     SSB_SPROM4_ANTAVAIL_BG_SHIFT);
439 	SPEX(maxpwr_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_MAXP_BG_MASK, 0);
440 	SPEX(itssi_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_ITSSI_BG,
441 	     SSB_SPROM4_ITSSI_BG_SHIFT);
442 	SPEX(maxpwr_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_MAXP_A_MASK, 0);
443 	SPEX(itssi_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_ITSSI_A,
444 	     SSB_SPROM4_ITSSI_A_SHIFT);
445 	if (out->revision == 4) {
446 		SPEX(gpio0, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P0, 0);
447 		SPEX(gpio1, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P1,
448 		     SSB_SPROM4_GPIOA_P1_SHIFT);
449 		SPEX(gpio2, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P2, 0);
450 		SPEX(gpio3, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P3,
451 		     SSB_SPROM4_GPIOB_P3_SHIFT);
452 	} else {
453 		SPEX(gpio0, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P0, 0);
454 		SPEX(gpio1, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P1,
455 		     SSB_SPROM5_GPIOA_P1_SHIFT);
456 		SPEX(gpio2, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P2, 0);
457 		SPEX(gpio3, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P3,
458 		     SSB_SPROM5_GPIOB_P3_SHIFT);
459 	}
460 
461 	/* Extract the antenna gain values. */
462 	SPEX(antenna_gain.ghz24.a0, SSB_SPROM4_AGAIN01,
463 	     SSB_SPROM4_AGAIN0, SSB_SPROM4_AGAIN0_SHIFT);
464 	SPEX(antenna_gain.ghz24.a1, SSB_SPROM4_AGAIN01,
465 	     SSB_SPROM4_AGAIN1, SSB_SPROM4_AGAIN1_SHIFT);
466 	SPEX(antenna_gain.ghz24.a2, SSB_SPROM4_AGAIN23,
467 	     SSB_SPROM4_AGAIN2, SSB_SPROM4_AGAIN2_SHIFT);
468 	SPEX(antenna_gain.ghz24.a3, SSB_SPROM4_AGAIN23,
469 	     SSB_SPROM4_AGAIN3, SSB_SPROM4_AGAIN3_SHIFT);
470 	memcpy(&out->antenna_gain.ghz5, &out->antenna_gain.ghz24,
471 	       sizeof(out->antenna_gain.ghz5));
472 
473 	/* TODO - get remaining rev 4 stuff needed */
474 }
475 
476 static void sprom_extract_r8(struct ssb_sprom *out, const u16 *in)
477 {
478 	int i;
479 	u16 v;
480 
481 	/* extract the MAC address */
482 	for (i = 0; i < 3; i++) {
483 		v = in[SPOFF(SSB_SPROM8_IL0MAC) + i];
484 		*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
485 	}
486 	SPEX(country_code, SSB_SPROM8_CCODE, 0xFFFF, 0);
487 	SPEX(boardflags_lo, SSB_SPROM8_BFLLO, 0xFFFF, 0);
488 	SPEX(boardflags_hi, SSB_SPROM8_BFLHI, 0xFFFF, 0);
489 	SPEX(boardflags2_lo, SSB_SPROM8_BFL2LO, 0xFFFF, 0);
490 	SPEX(boardflags2_hi, SSB_SPROM8_BFL2HI, 0xFFFF, 0);
491 	SPEX(ant_available_a, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_A,
492 	     SSB_SPROM8_ANTAVAIL_A_SHIFT);
493 	SPEX(ant_available_bg, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_BG,
494 	     SSB_SPROM8_ANTAVAIL_BG_SHIFT);
495 	SPEX(maxpwr_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_MAXP_BG_MASK, 0);
496 	SPEX(itssi_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_ITSSI_BG,
497 	     SSB_SPROM8_ITSSI_BG_SHIFT);
498 	SPEX(maxpwr_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_MAXP_A_MASK, 0);
499 	SPEX(itssi_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_ITSSI_A,
500 	     SSB_SPROM8_ITSSI_A_SHIFT);
501 	SPEX(maxpwr_ah, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AH_MASK, 0);
502 	SPEX(maxpwr_al, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AL_MASK,
503 	     SSB_SPROM8_MAXP_AL_SHIFT);
504 	SPEX(gpio0, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P0, 0);
505 	SPEX(gpio1, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P1,
506 	     SSB_SPROM8_GPIOA_P1_SHIFT);
507 	SPEX(gpio2, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P2, 0);
508 	SPEX(gpio3, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P3,
509 	     SSB_SPROM8_GPIOB_P3_SHIFT);
510 	SPEX(tri2g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI2G, 0);
511 	SPEX(tri5g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI5G,
512 	     SSB_SPROM8_TRI5G_SHIFT);
513 	SPEX(tri5gl, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GL, 0);
514 	SPEX(tri5gh, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GH,
515 	     SSB_SPROM8_TRI5GH_SHIFT);
516 	SPEX(rxpo2g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO2G, 0);
517 	SPEX(rxpo5g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO5G,
518 	     SSB_SPROM8_RXPO5G_SHIFT);
519 	SPEX(rssismf2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMF2G, 0);
520 	SPEX(rssismc2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMC2G,
521 	     SSB_SPROM8_RSSISMC2G_SHIFT);
522 	SPEX(rssisav2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISAV2G,
523 	     SSB_SPROM8_RSSISAV2G_SHIFT);
524 	SPEX(bxa2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_BXA2G,
525 	     SSB_SPROM8_BXA2G_SHIFT);
526 	SPEX(rssismf5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMF5G, 0);
527 	SPEX(rssismc5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMC5G,
528 	     SSB_SPROM8_RSSISMC5G_SHIFT);
529 	SPEX(rssisav5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISAV5G,
530 	     SSB_SPROM8_RSSISAV5G_SHIFT);
531 	SPEX(bxa5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_BXA5G,
532 	     SSB_SPROM8_BXA5G_SHIFT);
533 	SPEX(pa0b0, SSB_SPROM8_PA0B0, 0xFFFF, 0);
534 	SPEX(pa0b1, SSB_SPROM8_PA0B1, 0xFFFF, 0);
535 	SPEX(pa0b2, SSB_SPROM8_PA0B2, 0xFFFF, 0);
536 	SPEX(pa1b0, SSB_SPROM8_PA1B0, 0xFFFF, 0);
537 	SPEX(pa1b1, SSB_SPROM8_PA1B1, 0xFFFF, 0);
538 	SPEX(pa1b2, SSB_SPROM8_PA1B2, 0xFFFF, 0);
539 	SPEX(pa1lob0, SSB_SPROM8_PA1LOB0, 0xFFFF, 0);
540 	SPEX(pa1lob1, SSB_SPROM8_PA1LOB1, 0xFFFF, 0);
541 	SPEX(pa1lob2, SSB_SPROM8_PA1LOB2, 0xFFFF, 0);
542 	SPEX(pa1hib0, SSB_SPROM8_PA1HIB0, 0xFFFF, 0);
543 	SPEX(pa1hib1, SSB_SPROM8_PA1HIB1, 0xFFFF, 0);
544 	SPEX(pa1hib2, SSB_SPROM8_PA1HIB2, 0xFFFF, 0);
545 	SPEX(cck2gpo, SSB_SPROM8_CCK2GPO, 0xFFFF, 0);
546 	SPEX32(ofdm2gpo, SSB_SPROM8_OFDM2GPO, 0xFFFFFFFF, 0);
547 	SPEX32(ofdm5glpo, SSB_SPROM8_OFDM5GLPO, 0xFFFFFFFF, 0);
548 	SPEX32(ofdm5gpo, SSB_SPROM8_OFDM5GPO, 0xFFFFFFFF, 0);
549 	SPEX32(ofdm5ghpo, SSB_SPROM8_OFDM5GHPO, 0xFFFFFFFF, 0);
550 
551 	/* Extract the antenna gain values. */
552 	SPEX(antenna_gain.ghz24.a0, SSB_SPROM8_AGAIN01,
553 	     SSB_SPROM8_AGAIN0, SSB_SPROM8_AGAIN0_SHIFT);
554 	SPEX(antenna_gain.ghz24.a1, SSB_SPROM8_AGAIN01,
555 	     SSB_SPROM8_AGAIN1, SSB_SPROM8_AGAIN1_SHIFT);
556 	SPEX(antenna_gain.ghz24.a2, SSB_SPROM8_AGAIN23,
557 	     SSB_SPROM8_AGAIN2, SSB_SPROM8_AGAIN2_SHIFT);
558 	SPEX(antenna_gain.ghz24.a3, SSB_SPROM8_AGAIN23,
559 	     SSB_SPROM8_AGAIN3, SSB_SPROM8_AGAIN3_SHIFT);
560 	memcpy(&out->antenna_gain.ghz5, &out->antenna_gain.ghz24,
561 	       sizeof(out->antenna_gain.ghz5));
562 
563 	/* TODO - get remaining rev 8 stuff needed */
564 }
565 
566 static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out,
567 			 const u16 *in, u16 size)
568 {
569 	memset(out, 0, sizeof(*out));
570 
571 	out->revision = in[size - 1] & 0x00FF;
572 	ssb_dprintk(KERN_DEBUG PFX "SPROM revision %d detected.\n", out->revision);
573 	memset(out->et0mac, 0xFF, 6);		/* preset et0 and et1 mac */
574 	memset(out->et1mac, 0xFF, 6);
575 	if ((bus->chip_id & 0xFF00) == 0x4400) {
576 		/* Workaround: The BCM44XX chip has a stupid revision
577 		 * number stored in the SPROM.
578 		 * Always extract r1. */
579 		out->revision = 1;
580 		sprom_extract_r123(out, in);
581 	} else if (bus->chip_id == 0x4321) {
582 		/* the BCM4328 has a chipid == 0x4321 and a rev 4 SPROM */
583 		out->revision = 4;
584 		sprom_extract_r45(out, in);
585 	} else {
586 		switch (out->revision) {
587 		case 1:
588 		case 2:
589 		case 3:
590 			sprom_extract_r123(out, in);
591 			break;
592 		case 4:
593 		case 5:
594 			sprom_extract_r45(out, in);
595 			break;
596 		case 8:
597 			sprom_extract_r8(out, in);
598 			break;
599 		default:
600 			ssb_printk(KERN_WARNING PFX "Unsupported SPROM"
601 				   "  revision %d detected. Will extract"
602 				   " v1\n", out->revision);
603 			out->revision = 1;
604 			sprom_extract_r123(out, in);
605 		}
606 	}
607 
608 	if (out->boardflags_lo == 0xFFFF)
609 		out->boardflags_lo = 0;  /* per specs */
610 	if (out->boardflags_hi == 0xFFFF)
611 		out->boardflags_hi = 0;  /* per specs */
612 
613 	return 0;
614 }
615 
616 static int ssb_pci_sprom_get(struct ssb_bus *bus,
617 			     struct ssb_sprom *sprom)
618 {
619 	const struct ssb_sprom *fallback;
620 	int err = -ENOMEM;
621 	u16 *buf;
622 
623 	buf = kcalloc(SSB_SPROMSIZE_WORDS_R123, sizeof(u16), GFP_KERNEL);
624 	if (!buf)
625 		goto out;
626 	bus->sprom_size = SSB_SPROMSIZE_WORDS_R123;
627 	sprom_do_read(bus, buf);
628 	err = sprom_check_crc(buf, bus->sprom_size);
629 	if (err) {
630 		/* try for a 440 byte SPROM - revision 4 and higher */
631 		kfree(buf);
632 		buf = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16),
633 			      GFP_KERNEL);
634 		if (!buf)
635 			goto out;
636 		bus->sprom_size = SSB_SPROMSIZE_WORDS_R4;
637 		sprom_do_read(bus, buf);
638 		err = sprom_check_crc(buf, bus->sprom_size);
639 		if (err) {
640 			/* All CRC attempts failed.
641 			 * Maybe there is no SPROM on the device?
642 			 * If we have a fallback, use that. */
643 			fallback = ssb_get_fallback_sprom();
644 			if (fallback) {
645 				memcpy(sprom, fallback, sizeof(*sprom));
646 				err = 0;
647 				goto out_free;
648 			}
649 			ssb_printk(KERN_WARNING PFX "WARNING: Invalid"
650 				   " SPROM CRC (corrupt SPROM)\n");
651 		}
652 	}
653 	err = sprom_extract(bus, sprom, buf, bus->sprom_size);
654 
655 out_free:
656 	kfree(buf);
657 out:
658 	return err;
659 }
660 
661 static void ssb_pci_get_boardinfo(struct ssb_bus *bus,
662 				  struct ssb_boardinfo *bi)
663 {
664 	pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_VENDOR_ID,
665 			     &bi->vendor);
666 	pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_ID,
667 			     &bi->type);
668 	pci_read_config_word(bus->host_pci, PCI_REVISION_ID,
669 			     &bi->rev);
670 }
671 
672 int ssb_pci_get_invariants(struct ssb_bus *bus,
673 			   struct ssb_init_invariants *iv)
674 {
675 	int err;
676 
677 	err = ssb_pci_sprom_get(bus, &iv->sprom);
678 	if (err)
679 		goto out;
680 	ssb_pci_get_boardinfo(bus, &iv->boardinfo);
681 
682 out:
683 	return err;
684 }
685 
686 #ifdef CONFIG_SSB_DEBUG
687 static int ssb_pci_assert_buspower(struct ssb_bus *bus)
688 {
689 	if (likely(bus->powered_up))
690 		return 0;
691 
692 	printk(KERN_ERR PFX "FATAL ERROR: Bus powered down "
693 	       "while accessing PCI MMIO space\n");
694 	if (bus->power_warn_count <= 10) {
695 		bus->power_warn_count++;
696 		dump_stack();
697 	}
698 
699 	return -ENODEV;
700 }
701 #else /* DEBUG */
702 static inline int ssb_pci_assert_buspower(struct ssb_bus *bus)
703 {
704 	return 0;
705 }
706 #endif /* DEBUG */
707 
708 static u8 ssb_pci_read8(struct ssb_device *dev, u16 offset)
709 {
710 	struct ssb_bus *bus = dev->bus;
711 
712 	if (unlikely(ssb_pci_assert_buspower(bus)))
713 		return 0xFF;
714 	if (unlikely(bus->mapped_device != dev)) {
715 		if (unlikely(ssb_pci_switch_core(bus, dev)))
716 			return 0xFF;
717 	}
718 	return ioread8(bus->mmio + offset);
719 }
720 
721 static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset)
722 {
723 	struct ssb_bus *bus = dev->bus;
724 
725 	if (unlikely(ssb_pci_assert_buspower(bus)))
726 		return 0xFFFF;
727 	if (unlikely(bus->mapped_device != dev)) {
728 		if (unlikely(ssb_pci_switch_core(bus, dev)))
729 			return 0xFFFF;
730 	}
731 	return ioread16(bus->mmio + offset);
732 }
733 
734 static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset)
735 {
736 	struct ssb_bus *bus = dev->bus;
737 
738 	if (unlikely(ssb_pci_assert_buspower(bus)))
739 		return 0xFFFFFFFF;
740 	if (unlikely(bus->mapped_device != dev)) {
741 		if (unlikely(ssb_pci_switch_core(bus, dev)))
742 			return 0xFFFFFFFF;
743 	}
744 	return ioread32(bus->mmio + offset);
745 }
746 
747 #ifdef CONFIG_SSB_BLOCKIO
748 static void ssb_pci_block_read(struct ssb_device *dev, void *buffer,
749 			       size_t count, u16 offset, u8 reg_width)
750 {
751 	struct ssb_bus *bus = dev->bus;
752 	void __iomem *addr = bus->mmio + offset;
753 
754 	if (unlikely(ssb_pci_assert_buspower(bus)))
755 		goto error;
756 	if (unlikely(bus->mapped_device != dev)) {
757 		if (unlikely(ssb_pci_switch_core(bus, dev)))
758 			goto error;
759 	}
760 	switch (reg_width) {
761 	case sizeof(u8):
762 		ioread8_rep(addr, buffer, count);
763 		break;
764 	case sizeof(u16):
765 		SSB_WARN_ON(count & 1);
766 		ioread16_rep(addr, buffer, count >> 1);
767 		break;
768 	case sizeof(u32):
769 		SSB_WARN_ON(count & 3);
770 		ioread32_rep(addr, buffer, count >> 2);
771 		break;
772 	default:
773 		SSB_WARN_ON(1);
774 	}
775 
776 	return;
777 error:
778 	memset(buffer, 0xFF, count);
779 }
780 #endif /* CONFIG_SSB_BLOCKIO */
781 
782 static void ssb_pci_write8(struct ssb_device *dev, u16 offset, u8 value)
783 {
784 	struct ssb_bus *bus = dev->bus;
785 
786 	if (unlikely(ssb_pci_assert_buspower(bus)))
787 		return;
788 	if (unlikely(bus->mapped_device != dev)) {
789 		if (unlikely(ssb_pci_switch_core(bus, dev)))
790 			return;
791 	}
792 	iowrite8(value, bus->mmio + offset);
793 }
794 
795 static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value)
796 {
797 	struct ssb_bus *bus = dev->bus;
798 
799 	if (unlikely(ssb_pci_assert_buspower(bus)))
800 		return;
801 	if (unlikely(bus->mapped_device != dev)) {
802 		if (unlikely(ssb_pci_switch_core(bus, dev)))
803 			return;
804 	}
805 	iowrite16(value, bus->mmio + offset);
806 }
807 
808 static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value)
809 {
810 	struct ssb_bus *bus = dev->bus;
811 
812 	if (unlikely(ssb_pci_assert_buspower(bus)))
813 		return;
814 	if (unlikely(bus->mapped_device != dev)) {
815 		if (unlikely(ssb_pci_switch_core(bus, dev)))
816 			return;
817 	}
818 	iowrite32(value, bus->mmio + offset);
819 }
820 
821 #ifdef CONFIG_SSB_BLOCKIO
822 static void ssb_pci_block_write(struct ssb_device *dev, const void *buffer,
823 				size_t count, u16 offset, u8 reg_width)
824 {
825 	struct ssb_bus *bus = dev->bus;
826 	void __iomem *addr = bus->mmio + offset;
827 
828 	if (unlikely(ssb_pci_assert_buspower(bus)))
829 		return;
830 	if (unlikely(bus->mapped_device != dev)) {
831 		if (unlikely(ssb_pci_switch_core(bus, dev)))
832 			return;
833 	}
834 	switch (reg_width) {
835 	case sizeof(u8):
836 		iowrite8_rep(addr, buffer, count);
837 		break;
838 	case sizeof(u16):
839 		SSB_WARN_ON(count & 1);
840 		iowrite16_rep(addr, buffer, count >> 1);
841 		break;
842 	case sizeof(u32):
843 		SSB_WARN_ON(count & 3);
844 		iowrite32_rep(addr, buffer, count >> 2);
845 		break;
846 	default:
847 		SSB_WARN_ON(1);
848 	}
849 }
850 #endif /* CONFIG_SSB_BLOCKIO */
851 
852 /* Not "static", as it's used in main.c */
853 const struct ssb_bus_ops ssb_pci_ops = {
854 	.read8		= ssb_pci_read8,
855 	.read16		= ssb_pci_read16,
856 	.read32		= ssb_pci_read32,
857 	.write8		= ssb_pci_write8,
858 	.write16	= ssb_pci_write16,
859 	.write32	= ssb_pci_write32,
860 #ifdef CONFIG_SSB_BLOCKIO
861 	.block_read	= ssb_pci_block_read,
862 	.block_write	= ssb_pci_block_write,
863 #endif
864 };
865 
866 static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev,
867 				       struct device_attribute *attr,
868 				       char *buf)
869 {
870 	struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
871 	struct ssb_bus *bus;
872 
873 	bus = ssb_pci_dev_to_bus(pdev);
874 	if (!bus)
875 		return -ENODEV;
876 
877 	return ssb_attr_sprom_show(bus, buf, sprom_do_read);
878 }
879 
880 static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev,
881 					struct device_attribute *attr,
882 					const char *buf, size_t count)
883 {
884 	struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
885 	struct ssb_bus *bus;
886 
887 	bus = ssb_pci_dev_to_bus(pdev);
888 	if (!bus)
889 		return -ENODEV;
890 
891 	return ssb_attr_sprom_store(bus, buf, count,
892 				    sprom_check_crc, sprom_do_write);
893 }
894 
895 static DEVICE_ATTR(ssb_sprom, 0600,
896 		   ssb_pci_attr_sprom_show,
897 		   ssb_pci_attr_sprom_store);
898 
899 void ssb_pci_exit(struct ssb_bus *bus)
900 {
901 	struct pci_dev *pdev;
902 
903 	if (bus->bustype != SSB_BUSTYPE_PCI)
904 		return;
905 
906 	pdev = bus->host_pci;
907 	device_remove_file(&pdev->dev, &dev_attr_ssb_sprom);
908 }
909 
910 int ssb_pci_init(struct ssb_bus *bus)
911 {
912 	struct pci_dev *pdev;
913 	int err;
914 
915 	if (bus->bustype != SSB_BUSTYPE_PCI)
916 		return 0;
917 
918 	pdev = bus->host_pci;
919 	mutex_init(&bus->sprom_mutex);
920 	err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom);
921 	if (err)
922 		goto out;
923 
924 out:
925 	return err;
926 }
927