xref: /openbmc/linux/drivers/ssb/driver_chipcommon_pmu.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Sonics Silicon Backplane
3  * Broadcom ChipCommon Power Management Unit driver
4  *
5  * Copyright 2009, Michael Buesch <mb@bu3sch.de>
6  * Copyright 2007, Broadcom Corporation
7  *
8  * Licensed under the GNU/GPL. See COPYING for details.
9  */
10 
11 #include <linux/ssb/ssb.h>
12 #include <linux/ssb/ssb_regs.h>
13 #include <linux/ssb/ssb_driver_chipcommon.h>
14 #include <linux/delay.h>
15 
16 #include "ssb_private.h"
17 
18 static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
19 {
20 	chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
21 	return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
22 }
23 
24 static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
25 				 u32 offset, u32 value)
26 {
27 	chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
28 	chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
29 }
30 
31 struct pmu0_plltab_entry {
32 	u16 freq;	/* Crystal frequency in kHz.*/
33 	u8 xf;		/* Crystal frequency value for PMU control */
34 	u8 wb_int;
35 	u32 wb_frac;
36 };
37 
38 static const struct pmu0_plltab_entry pmu0_plltab[] = {
39 	{ .freq = 12000, .xf =  1, .wb_int = 73, .wb_frac = 349525, },
40 	{ .freq = 13000, .xf =  2, .wb_int = 67, .wb_frac = 725937, },
41 	{ .freq = 14400, .xf =  3, .wb_int = 61, .wb_frac = 116508, },
42 	{ .freq = 15360, .xf =  4, .wb_int = 57, .wb_frac = 305834, },
43 	{ .freq = 16200, .xf =  5, .wb_int = 54, .wb_frac = 336579, },
44 	{ .freq = 16800, .xf =  6, .wb_int = 52, .wb_frac = 399457, },
45 	{ .freq = 19200, .xf =  7, .wb_int = 45, .wb_frac = 873813, },
46 	{ .freq = 19800, .xf =  8, .wb_int = 44, .wb_frac = 466033, },
47 	{ .freq = 20000, .xf =  9, .wb_int = 44, .wb_frac = 0,      },
48 	{ .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
49 	{ .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
50 	{ .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
51 	{ .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
52 	{ .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0,      },
53 };
54 #define SSB_PMU0_DEFAULT_XTALFREQ	20000
55 
56 static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
57 {
58 	const struct pmu0_plltab_entry *e;
59 	unsigned int i;
60 
61 	for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
62 		e = &pmu0_plltab[i];
63 		if (e->freq == crystalfreq)
64 			return e;
65 	}
66 
67 	return NULL;
68 }
69 
70 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
71 static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
72 				u32 crystalfreq)
73 {
74 	struct ssb_bus *bus = cc->dev->bus;
75 	const struct pmu0_plltab_entry *e = NULL;
76 	u32 pmuctl, tmp, pllctl;
77 	unsigned int i;
78 
79 	if ((bus->chip_id == 0x5354) && !crystalfreq) {
80 		/* The 5354 crystal freq is 25MHz */
81 		crystalfreq = 25000;
82 	}
83 	if (crystalfreq)
84 		e = pmu0_plltab_find_entry(crystalfreq);
85 	if (!e)
86 		e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
87 	BUG_ON(!e);
88 	crystalfreq = e->freq;
89 	cc->pmu.crystalfreq = e->freq;
90 
91 	/* Check if the PLL already is programmed to this frequency. */
92 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
93 	if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
94 		/* We're already there... */
95 		return;
96 	}
97 
98 	ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
99 		   (crystalfreq / 1000), (crystalfreq % 1000));
100 
101 	/* First turn the PLL off. */
102 	switch (bus->chip_id) {
103 	case 0x4328:
104 		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
105 			      ~(1 << SSB_PMURES_4328_BB_PLL_PU));
106 		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
107 			      ~(1 << SSB_PMURES_4328_BB_PLL_PU));
108 		break;
109 	case 0x5354:
110 		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
111 			      ~(1 << SSB_PMURES_5354_BB_PLL_PU));
112 		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
113 			      ~(1 << SSB_PMURES_5354_BB_PLL_PU));
114 		break;
115 	default:
116 		SSB_WARN_ON(1);
117 	}
118 	for (i = 1500; i; i--) {
119 		tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
120 		if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
121 			break;
122 		udelay(10);
123 	}
124 	tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
125 	if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
126 		ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
127 
128 	/* Set PDIV in PLL control 0. */
129 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
130 	if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
131 		pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
132 	else
133 		pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
134 	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
135 
136 	/* Set WILD in PLL control 1. */
137 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
138 	pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
139 	pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
140 	pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
141 	pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
142 	if (e->wb_frac == 0)
143 		pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
144 	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
145 
146 	/* Set WILD in PLL control 2. */
147 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
148 	pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
149 	pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
150 	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
151 
152 	/* Set the crystalfrequency and the divisor. */
153 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
154 	pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
155 	pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
156 			& SSB_CHIPCO_PMU_CTL_ILP_DIV;
157 	pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
158 	pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
159 	chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
160 }
161 
162 struct pmu1_plltab_entry {
163 	u16 freq;	/* Crystal frequency in kHz.*/
164 	u8 xf;		/* Crystal frequency value for PMU control */
165 	u8 ndiv_int;
166 	u32 ndiv_frac;
167 	u8 p1div;
168 	u8 p2div;
169 };
170 
171 static const struct pmu1_plltab_entry pmu1_plltab[] = {
172 	{ .freq = 12000, .xf =  1, .p1div = 3, .p2div = 22, .ndiv_int =  0x9, .ndiv_frac = 0xFFFFEF, },
173 	{ .freq = 13000, .xf =  2, .p1div = 1, .p2div =  6, .ndiv_int =  0xb, .ndiv_frac = 0x483483, },
174 	{ .freq = 14400, .xf =  3, .p1div = 1, .p2div = 10, .ndiv_int =  0xa, .ndiv_frac = 0x1C71C7, },
175 	{ .freq = 15360, .xf =  4, .p1div = 1, .p2div =  5, .ndiv_int =  0xb, .ndiv_frac = 0x755555, },
176 	{ .freq = 16200, .xf =  5, .p1div = 1, .p2div = 10, .ndiv_int =  0x5, .ndiv_frac = 0x6E9E06, },
177 	{ .freq = 16800, .xf =  6, .p1div = 1, .p2div = 10, .ndiv_int =  0x5, .ndiv_frac = 0x3CF3CF, },
178 	{ .freq = 19200, .xf =  7, .p1div = 1, .p2div =  9, .ndiv_int =  0x5, .ndiv_frac = 0x17B425, },
179 	{ .freq = 19800, .xf =  8, .p1div = 1, .p2div = 11, .ndiv_int =  0x4, .ndiv_frac = 0xA57EB,  },
180 	{ .freq = 20000, .xf =  9, .p1div = 1, .p2div = 11, .ndiv_int =  0x4, .ndiv_frac = 0,        },
181 	{ .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int =  0xa, .ndiv_frac = 0,        },
182 	{ .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int =  0xb, .ndiv_frac = 0,        },
183 	{ .freq = 26000, .xf = 12, .p1div = 1, .p2div =  2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
184 	{ .freq = 30000, .xf = 13, .p1div = 3, .p2div =  8, .ndiv_int =  0xb, .ndiv_frac = 0,        },
185 	{ .freq = 38400, .xf = 14, .p1div = 1, .p2div =  5, .ndiv_int =  0x4, .ndiv_frac = 0x955555, },
186 	{ .freq = 40000, .xf = 15, .p1div = 1, .p2div =  2, .ndiv_int =  0xb, .ndiv_frac = 0,        },
187 };
188 
189 #define SSB_PMU1_DEFAULT_XTALFREQ	15360
190 
191 static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
192 {
193 	const struct pmu1_plltab_entry *e;
194 	unsigned int i;
195 
196 	for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
197 		e = &pmu1_plltab[i];
198 		if (e->freq == crystalfreq)
199 			return e;
200 	}
201 
202 	return NULL;
203 }
204 
205 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
206 static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
207 				u32 crystalfreq)
208 {
209 	struct ssb_bus *bus = cc->dev->bus;
210 	const struct pmu1_plltab_entry *e = NULL;
211 	u32 buffer_strength = 0;
212 	u32 tmp, pllctl, pmuctl;
213 	unsigned int i;
214 
215 	if (bus->chip_id == 0x4312) {
216 		/* We do not touch the BCM4312 PLL and assume
217 		 * the default crystal settings work out-of-the-box. */
218 		cc->pmu.crystalfreq = 20000;
219 		return;
220 	}
221 
222 	if (crystalfreq)
223 		e = pmu1_plltab_find_entry(crystalfreq);
224 	if (!e)
225 		e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
226 	BUG_ON(!e);
227 	crystalfreq = e->freq;
228 	cc->pmu.crystalfreq = e->freq;
229 
230 	/* Check if the PLL already is programmed to this frequency. */
231 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
232 	if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
233 		/* We're already there... */
234 		return;
235 	}
236 
237 	ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
238 		   (crystalfreq / 1000), (crystalfreq % 1000));
239 
240 	/* First turn the PLL off. */
241 	switch (bus->chip_id) {
242 	case 0x4325:
243 		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
244 			      ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
245 				(1 << SSB_PMURES_4325_HT_AVAIL)));
246 		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
247 			      ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
248 				(1 << SSB_PMURES_4325_HT_AVAIL)));
249 		/* Adjust the BBPLL to 2 on all channels later. */
250 		buffer_strength = 0x222222;
251 		break;
252 	default:
253 		SSB_WARN_ON(1);
254 	}
255 	for (i = 1500; i; i--) {
256 		tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
257 		if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
258 			break;
259 		udelay(10);
260 	}
261 	tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
262 	if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
263 		ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
264 
265 	/* Set p1div and p2div. */
266 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
267 	pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
268 	pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
269 	pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
270 	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
271 
272 	/* Set ndiv int and ndiv mode */
273 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
274 	pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
275 	pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
276 	pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
277 	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
278 
279 	/* Set ndiv frac */
280 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
281 	pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
282 	pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
283 	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
284 
285 	/* Change the drive strength, if required. */
286 	if (buffer_strength) {
287 		pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
288 		pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
289 		pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
290 		ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
291 	}
292 
293 	/* Tune the crystalfreq and the divisor. */
294 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
295 	pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
296 	pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
297 			& SSB_CHIPCO_PMU_CTL_ILP_DIV;
298 	pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
299 	chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
300 }
301 
302 static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
303 {
304 	struct ssb_bus *bus = cc->dev->bus;
305 	u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
306 
307 	if (bus->bustype == SSB_BUSTYPE_SSB) {
308 		/* TODO: The user may override the crystal frequency. */
309 	}
310 
311 	switch (bus->chip_id) {
312 	case 0x4312:
313 	case 0x4325:
314 		ssb_pmu1_pllinit_r0(cc, crystalfreq);
315 		break;
316 	case 0x4328:
317 	case 0x5354:
318 		ssb_pmu0_pllinit_r0(cc, crystalfreq);
319 		break;
320 	default:
321 		ssb_printk(KERN_ERR PFX
322 			   "ERROR: PLL init unknown for device %04X\n",
323 			   bus->chip_id);
324 	}
325 }
326 
327 struct pmu_res_updown_tab_entry {
328 	u8 resource;	/* The resource number */
329 	u16 updown;	/* The updown value */
330 };
331 
332 enum pmu_res_depend_tab_task {
333 	PMU_RES_DEP_SET = 1,
334 	PMU_RES_DEP_ADD,
335 	PMU_RES_DEP_REMOVE,
336 };
337 
338 struct pmu_res_depend_tab_entry {
339 	u8 resource;	/* The resource number */
340 	u8 task;	/* SET | ADD | REMOVE */
341 	u32 depend;	/* The depend mask */
342 };
343 
344 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
345 	{ .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM,		.updown = 0x0101, },
346 	{ .resource = SSB_PMURES_4328_BB_SWITCHER_PWM,		.updown = 0x1F01, },
347 	{ .resource = SSB_PMURES_4328_BB_SWITCHER_BURST,	.updown = 0x010F, },
348 	{ .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST,	.updown = 0x0101, },
349 	{ .resource = SSB_PMURES_4328_ILP_REQUEST,		.updown = 0x0202, },
350 	{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM,	.updown = 0x0F01, },
351 	{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST,	.updown = 0x0F01, },
352 	{ .resource = SSB_PMURES_4328_ROM_SWITCH,		.updown = 0x0101, },
353 	{ .resource = SSB_PMURES_4328_PA_REF_LDO,		.updown = 0x0F01, },
354 	{ .resource = SSB_PMURES_4328_RADIO_LDO,		.updown = 0x0F01, },
355 	{ .resource = SSB_PMURES_4328_AFE_LDO,			.updown = 0x0F01, },
356 	{ .resource = SSB_PMURES_4328_PLL_LDO,			.updown = 0x0F01, },
357 	{ .resource = SSB_PMURES_4328_BG_FILTBYP,		.updown = 0x0101, },
358 	{ .resource = SSB_PMURES_4328_TX_FILTBYP,		.updown = 0x0101, },
359 	{ .resource = SSB_PMURES_4328_RX_FILTBYP,		.updown = 0x0101, },
360 	{ .resource = SSB_PMURES_4328_XTAL_PU,			.updown = 0x0101, },
361 	{ .resource = SSB_PMURES_4328_XTAL_EN,			.updown = 0xA001, },
362 	{ .resource = SSB_PMURES_4328_BB_PLL_FILTBYP,		.updown = 0x0101, },
363 	{ .resource = SSB_PMURES_4328_RF_PLL_FILTBYP,		.updown = 0x0101, },
364 	{ .resource = SSB_PMURES_4328_BB_PLL_PU,		.updown = 0x0701, },
365 };
366 
367 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
368 	{
369 		/* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
370 		.resource = SSB_PMURES_4328_ILP_REQUEST,
371 		.task = PMU_RES_DEP_SET,
372 		.depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
373 			   (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
374 	},
375 };
376 
377 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
378 	{ .resource = SSB_PMURES_4325_XTAL_PU,			.updown = 0x1501, },
379 };
380 
381 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
382 	{
383 		/* Adjust HT-Available dependencies. */
384 		.resource = SSB_PMURES_4325_HT_AVAIL,
385 		.task = PMU_RES_DEP_ADD,
386 		.depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
387 			   (1 << SSB_PMURES_4325_TX_PWRSW_PU) |
388 			   (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
389 			   (1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
390 	},
391 };
392 
393 static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
394 {
395 	struct ssb_bus *bus = cc->dev->bus;
396 	u32 min_msk = 0, max_msk = 0;
397 	unsigned int i;
398 	const struct pmu_res_updown_tab_entry *updown_tab = NULL;
399 	unsigned int updown_tab_size;
400 	const struct pmu_res_depend_tab_entry *depend_tab = NULL;
401 	unsigned int depend_tab_size;
402 
403 	switch (bus->chip_id) {
404 	case 0x4312:
405 		/* We keep the default settings:
406 		 * min_msk = 0xCBB
407 		 * max_msk = 0x7FFFF
408 		 */
409 		break;
410 	case 0x4325:
411 		/* Power OTP down later. */
412 		min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
413 			  (1 << SSB_PMURES_4325_LNLDO2_PU);
414 		if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
415 		    SSB_CHIPCO_CHST_4325_PMUTOP_2B)
416 			min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
417 		/* The PLL may turn on, if it decides so. */
418 		max_msk = 0xFFFFF;
419 		updown_tab = pmu_res_updown_tab_4325a0;
420 		updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
421 		depend_tab = pmu_res_depend_tab_4325a0;
422 		depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
423 		break;
424 	case 0x4328:
425 		min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
426 			  (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
427 			  (1 << SSB_PMURES_4328_XTAL_EN);
428 		/* The PLL may turn on, if it decides so. */
429 		max_msk = 0xFFFFF;
430 		updown_tab = pmu_res_updown_tab_4328a0;
431 		updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
432 		depend_tab = pmu_res_depend_tab_4328a0;
433 		depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
434 		break;
435 	case 0x5354:
436 		/* The PLL may turn on, if it decides so. */
437 		max_msk = 0xFFFFF;
438 		break;
439 	default:
440 		ssb_printk(KERN_ERR PFX
441 			   "ERROR: PMU resource config unknown for device %04X\n",
442 			   bus->chip_id);
443 	}
444 
445 	if (updown_tab) {
446 		for (i = 0; i < updown_tab_size; i++) {
447 			chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
448 				       updown_tab[i].resource);
449 			chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
450 				       updown_tab[i].updown);
451 		}
452 	}
453 	if (depend_tab) {
454 		for (i = 0; i < depend_tab_size; i++) {
455 			chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
456 				       depend_tab[i].resource);
457 			switch (depend_tab[i].task) {
458 			case PMU_RES_DEP_SET:
459 				chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
460 					       depend_tab[i].depend);
461 				break;
462 			case PMU_RES_DEP_ADD:
463 				chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
464 					     depend_tab[i].depend);
465 				break;
466 			case PMU_RES_DEP_REMOVE:
467 				chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
468 					      ~(depend_tab[i].depend));
469 				break;
470 			default:
471 				SSB_WARN_ON(1);
472 			}
473 		}
474 	}
475 
476 	/* Set the resource masks. */
477 	if (min_msk)
478 		chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
479 	if (max_msk)
480 		chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
481 }
482 
483 void ssb_pmu_init(struct ssb_chipcommon *cc)
484 {
485 	struct ssb_bus *bus = cc->dev->bus;
486 	u32 pmucap;
487 
488 	if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
489 		return;
490 
491 	pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
492 	cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
493 
494 	ssb_dprintk(KERN_DEBUG PFX "Found rev %u PMU (capabilities 0x%08X)\n",
495 		    cc->pmu.rev, pmucap);
496 
497 	if (cc->pmu.rev >= 1) {
498 		if ((bus->chip_id == 0x4325) && (bus->chip_rev < 2)) {
499 			chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
500 				      ~SSB_CHIPCO_PMU_CTL_NOILPONW);
501 		} else {
502 			chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
503 				     SSB_CHIPCO_PMU_CTL_NOILPONW);
504 		}
505 	}
506 	ssb_pmu_pll_init(cc);
507 	ssb_pmu_resources_init(cc);
508 }
509