1 /* 2 * Sonics Silicon Backplane 3 * Broadcom ChipCommon Power Management Unit driver 4 * 5 * Copyright 2009, Michael Buesch <m@bues.ch> 6 * Copyright 2007, Broadcom Corporation 7 * 8 * Licensed under the GNU/GPL. See COPYING for details. 9 */ 10 11 #include <linux/ssb/ssb.h> 12 #include <linux/ssb/ssb_regs.h> 13 #include <linux/ssb/ssb_driver_chipcommon.h> 14 #include <linux/delay.h> 15 #include <linux/export.h> 16 #ifdef CONFIG_BCM47XX 17 #include <bcm47xx_nvram.h> 18 #endif 19 20 #include "ssb_private.h" 21 22 static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset) 23 { 24 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset); 25 return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA); 26 } 27 28 static void ssb_chipco_pll_write(struct ssb_chipcommon *cc, 29 u32 offset, u32 value) 30 { 31 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset); 32 chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value); 33 } 34 35 static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc, 36 u32 offset, u32 mask, u32 set) 37 { 38 u32 value; 39 40 chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR); 41 chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset); 42 chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR); 43 value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA); 44 value &= mask; 45 value |= set; 46 chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value); 47 chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA); 48 } 49 50 struct pmu0_plltab_entry { 51 u16 freq; /* Crystal frequency in kHz.*/ 52 u8 xf; /* Crystal frequency value for PMU control */ 53 u8 wb_int; 54 u32 wb_frac; 55 }; 56 57 static const struct pmu0_plltab_entry pmu0_plltab[] = { 58 { .freq = 12000, .xf = 1, .wb_int = 73, .wb_frac = 349525, }, 59 { .freq = 13000, .xf = 2, .wb_int = 67, .wb_frac = 725937, }, 60 { .freq = 14400, .xf = 3, .wb_int = 61, .wb_frac = 116508, }, 61 { .freq = 15360, .xf = 4, .wb_int = 57, .wb_frac = 305834, }, 62 { .freq = 16200, .xf = 5, .wb_int = 54, .wb_frac = 336579, }, 63 { .freq = 16800, .xf = 6, .wb_int = 52, .wb_frac = 399457, }, 64 { .freq = 19200, .xf = 7, .wb_int = 45, .wb_frac = 873813, }, 65 { .freq = 19800, .xf = 8, .wb_int = 44, .wb_frac = 466033, }, 66 { .freq = 20000, .xf = 9, .wb_int = 44, .wb_frac = 0, }, 67 { .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, }, 68 { .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, }, 69 { .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, }, 70 { .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, }, 71 { .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0, }, 72 }; 73 #define SSB_PMU0_DEFAULT_XTALFREQ 20000 74 75 static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq) 76 { 77 const struct pmu0_plltab_entry *e; 78 unsigned int i; 79 80 for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) { 81 e = &pmu0_plltab[i]; 82 if (e->freq == crystalfreq) 83 return e; 84 } 85 86 return NULL; 87 } 88 89 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */ 90 static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc, 91 u32 crystalfreq) 92 { 93 struct ssb_bus *bus = cc->dev->bus; 94 const struct pmu0_plltab_entry *e = NULL; 95 u32 pmuctl, tmp, pllctl; 96 unsigned int i; 97 98 if (crystalfreq) 99 e = pmu0_plltab_find_entry(crystalfreq); 100 if (!e) 101 e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ); 102 BUG_ON(!e); 103 crystalfreq = e->freq; 104 cc->pmu.crystalfreq = e->freq; 105 106 /* Check if the PLL already is programmed to this frequency. */ 107 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL); 108 if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) { 109 /* We're already there... */ 110 return; 111 } 112 113 ssb_info("Programming PLL to %u.%03u MHz\n", 114 crystalfreq / 1000, crystalfreq % 1000); 115 116 /* First turn the PLL off. */ 117 switch (bus->chip_id) { 118 case 0x4328: 119 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 120 ~(1 << SSB_PMURES_4328_BB_PLL_PU)); 121 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, 122 ~(1 << SSB_PMURES_4328_BB_PLL_PU)); 123 break; 124 case 0x5354: 125 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 126 ~(1 << SSB_PMURES_5354_BB_PLL_PU)); 127 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, 128 ~(1 << SSB_PMURES_5354_BB_PLL_PU)); 129 break; 130 default: 131 SSB_WARN_ON(1); 132 } 133 for (i = 1500; i; i--) { 134 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST); 135 if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)) 136 break; 137 udelay(10); 138 } 139 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST); 140 if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT) 141 ssb_emerg("Failed to turn the PLL off!\n"); 142 143 /* Set PDIV in PLL control 0. */ 144 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0); 145 if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ) 146 pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK; 147 else 148 pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK; 149 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl); 150 151 /* Set WILD in PLL control 1. */ 152 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1); 153 pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD; 154 pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK); 155 pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK; 156 pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK; 157 if (e->wb_frac == 0) 158 pllctl |= SSB_PMU0_PLLCTL1_STOPMOD; 159 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl); 160 161 /* Set WILD in PLL control 2. */ 162 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2); 163 pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI; 164 pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI; 165 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl); 166 167 /* Set the crystalfrequency and the divisor. */ 168 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL); 169 pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV; 170 pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT) 171 & SSB_CHIPCO_PMU_CTL_ILP_DIV; 172 pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ; 173 pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ; 174 chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl); 175 } 176 177 struct pmu1_plltab_entry { 178 u16 freq; /* Crystal frequency in kHz.*/ 179 u8 xf; /* Crystal frequency value for PMU control */ 180 u8 ndiv_int; 181 u32 ndiv_frac; 182 u8 p1div; 183 u8 p2div; 184 }; 185 186 static const struct pmu1_plltab_entry pmu1_plltab[] = { 187 { .freq = 12000, .xf = 1, .p1div = 3, .p2div = 22, .ndiv_int = 0x9, .ndiv_frac = 0xFFFFEF, }, 188 { .freq = 13000, .xf = 2, .p1div = 1, .p2div = 6, .ndiv_int = 0xb, .ndiv_frac = 0x483483, }, 189 { .freq = 14400, .xf = 3, .p1div = 1, .p2div = 10, .ndiv_int = 0xa, .ndiv_frac = 0x1C71C7, }, 190 { .freq = 15360, .xf = 4, .p1div = 1, .p2div = 5, .ndiv_int = 0xb, .ndiv_frac = 0x755555, }, 191 { .freq = 16200, .xf = 5, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x6E9E06, }, 192 { .freq = 16800, .xf = 6, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x3CF3CF, }, 193 { .freq = 19200, .xf = 7, .p1div = 1, .p2div = 9, .ndiv_int = 0x5, .ndiv_frac = 0x17B425, }, 194 { .freq = 19800, .xf = 8, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0xA57EB, }, 195 { .freq = 20000, .xf = 9, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0, }, 196 { .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int = 0xa, .ndiv_frac = 0, }, 197 { .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int = 0xb, .ndiv_frac = 0, }, 198 { .freq = 26000, .xf = 12, .p1div = 1, .p2div = 2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, }, 199 { .freq = 30000, .xf = 13, .p1div = 3, .p2div = 8, .ndiv_int = 0xb, .ndiv_frac = 0, }, 200 { .freq = 38400, .xf = 14, .p1div = 1, .p2div = 5, .ndiv_int = 0x4, .ndiv_frac = 0x955555, }, 201 { .freq = 40000, .xf = 15, .p1div = 1, .p2div = 2, .ndiv_int = 0xb, .ndiv_frac = 0, }, 202 }; 203 204 #define SSB_PMU1_DEFAULT_XTALFREQ 15360 205 206 static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq) 207 { 208 const struct pmu1_plltab_entry *e; 209 unsigned int i; 210 211 for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) { 212 e = &pmu1_plltab[i]; 213 if (e->freq == crystalfreq) 214 return e; 215 } 216 217 return NULL; 218 } 219 220 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */ 221 static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc, 222 u32 crystalfreq) 223 { 224 struct ssb_bus *bus = cc->dev->bus; 225 const struct pmu1_plltab_entry *e = NULL; 226 u32 buffer_strength = 0; 227 u32 tmp, pllctl, pmuctl; 228 unsigned int i; 229 230 if (bus->chip_id == 0x4312) { 231 /* We do not touch the BCM4312 PLL and assume 232 * the default crystal settings work out-of-the-box. */ 233 cc->pmu.crystalfreq = 20000; 234 return; 235 } 236 237 if (crystalfreq) 238 e = pmu1_plltab_find_entry(crystalfreq); 239 if (!e) 240 e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ); 241 BUG_ON(!e); 242 crystalfreq = e->freq; 243 cc->pmu.crystalfreq = e->freq; 244 245 /* Check if the PLL already is programmed to this frequency. */ 246 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL); 247 if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) { 248 /* We're already there... */ 249 return; 250 } 251 252 ssb_info("Programming PLL to %u.%03u MHz\n", 253 crystalfreq / 1000, crystalfreq % 1000); 254 255 /* First turn the PLL off. */ 256 switch (bus->chip_id) { 257 case 0x4325: 258 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 259 ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) | 260 (1 << SSB_PMURES_4325_HT_AVAIL))); 261 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, 262 ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) | 263 (1 << SSB_PMURES_4325_HT_AVAIL))); 264 /* Adjust the BBPLL to 2 on all channels later. */ 265 buffer_strength = 0x222222; 266 break; 267 default: 268 SSB_WARN_ON(1); 269 } 270 for (i = 1500; i; i--) { 271 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST); 272 if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)) 273 break; 274 udelay(10); 275 } 276 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST); 277 if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT) 278 ssb_emerg("Failed to turn the PLL off!\n"); 279 280 /* Set p1div and p2div. */ 281 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0); 282 pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV); 283 pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV; 284 pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV; 285 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl); 286 287 /* Set ndiv int and ndiv mode */ 288 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2); 289 pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE); 290 pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT; 291 pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE; 292 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl); 293 294 /* Set ndiv frac */ 295 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3); 296 pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC; 297 pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC; 298 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl); 299 300 /* Change the drive strength, if required. */ 301 if (buffer_strength) { 302 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5); 303 pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV; 304 pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV; 305 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl); 306 } 307 308 /* Tune the crystalfreq and the divisor. */ 309 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL); 310 pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ); 311 pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT) 312 & SSB_CHIPCO_PMU_CTL_ILP_DIV; 313 pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ; 314 chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl); 315 } 316 317 static void ssb_pmu_pll_init(struct ssb_chipcommon *cc) 318 { 319 struct ssb_bus *bus = cc->dev->bus; 320 u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */ 321 322 if (bus->bustype == SSB_BUSTYPE_SSB) { 323 #ifdef CONFIG_BCM47XX 324 char buf[20]; 325 if (bcm47xx_nvram_getenv("xtalfreq", buf, sizeof(buf)) >= 0) 326 crystalfreq = simple_strtoul(buf, NULL, 0); 327 #endif 328 } 329 330 switch (bus->chip_id) { 331 case 0x4312: 332 case 0x4325: 333 ssb_pmu1_pllinit_r0(cc, crystalfreq); 334 break; 335 case 0x4328: 336 ssb_pmu0_pllinit_r0(cc, crystalfreq); 337 break; 338 case 0x5354: 339 if (crystalfreq == 0) 340 crystalfreq = 25000; 341 ssb_pmu0_pllinit_r0(cc, crystalfreq); 342 break; 343 case 0x4322: 344 if (cc->pmu.rev == 2) { 345 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A); 346 chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0); 347 } 348 break; 349 case 43222: 350 break; 351 default: 352 ssb_err("ERROR: PLL init unknown for device %04X\n", 353 bus->chip_id); 354 } 355 } 356 357 struct pmu_res_updown_tab_entry { 358 u8 resource; /* The resource number */ 359 u16 updown; /* The updown value */ 360 }; 361 362 enum pmu_res_depend_tab_task { 363 PMU_RES_DEP_SET = 1, 364 PMU_RES_DEP_ADD, 365 PMU_RES_DEP_REMOVE, 366 }; 367 368 struct pmu_res_depend_tab_entry { 369 u8 resource; /* The resource number */ 370 u8 task; /* SET | ADD | REMOVE */ 371 u32 depend; /* The depend mask */ 372 }; 373 374 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = { 375 { .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM, .updown = 0x0101, }, 376 { .resource = SSB_PMURES_4328_BB_SWITCHER_PWM, .updown = 0x1F01, }, 377 { .resource = SSB_PMURES_4328_BB_SWITCHER_BURST, .updown = 0x010F, }, 378 { .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST, .updown = 0x0101, }, 379 { .resource = SSB_PMURES_4328_ILP_REQUEST, .updown = 0x0202, }, 380 { .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM, .updown = 0x0F01, }, 381 { .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST, .updown = 0x0F01, }, 382 { .resource = SSB_PMURES_4328_ROM_SWITCH, .updown = 0x0101, }, 383 { .resource = SSB_PMURES_4328_PA_REF_LDO, .updown = 0x0F01, }, 384 { .resource = SSB_PMURES_4328_RADIO_LDO, .updown = 0x0F01, }, 385 { .resource = SSB_PMURES_4328_AFE_LDO, .updown = 0x0F01, }, 386 { .resource = SSB_PMURES_4328_PLL_LDO, .updown = 0x0F01, }, 387 { .resource = SSB_PMURES_4328_BG_FILTBYP, .updown = 0x0101, }, 388 { .resource = SSB_PMURES_4328_TX_FILTBYP, .updown = 0x0101, }, 389 { .resource = SSB_PMURES_4328_RX_FILTBYP, .updown = 0x0101, }, 390 { .resource = SSB_PMURES_4328_XTAL_PU, .updown = 0x0101, }, 391 { .resource = SSB_PMURES_4328_XTAL_EN, .updown = 0xA001, }, 392 { .resource = SSB_PMURES_4328_BB_PLL_FILTBYP, .updown = 0x0101, }, 393 { .resource = SSB_PMURES_4328_RF_PLL_FILTBYP, .updown = 0x0101, }, 394 { .resource = SSB_PMURES_4328_BB_PLL_PU, .updown = 0x0701, }, 395 }; 396 397 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = { 398 { 399 /* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */ 400 .resource = SSB_PMURES_4328_ILP_REQUEST, 401 .task = PMU_RES_DEP_SET, 402 .depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) | 403 (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)), 404 }, 405 }; 406 407 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = { 408 { .resource = SSB_PMURES_4325_XTAL_PU, .updown = 0x1501, }, 409 }; 410 411 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = { 412 { 413 /* Adjust HT-Available dependencies. */ 414 .resource = SSB_PMURES_4325_HT_AVAIL, 415 .task = PMU_RES_DEP_ADD, 416 .depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) | 417 (1 << SSB_PMURES_4325_TX_PWRSW_PU) | 418 (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) | 419 (1 << SSB_PMURES_4325_AFE_PWRSW_PU)), 420 }, 421 }; 422 423 static void ssb_pmu_resources_init(struct ssb_chipcommon *cc) 424 { 425 struct ssb_bus *bus = cc->dev->bus; 426 u32 min_msk = 0, max_msk = 0; 427 unsigned int i; 428 const struct pmu_res_updown_tab_entry *updown_tab = NULL; 429 unsigned int updown_tab_size = 0; 430 const struct pmu_res_depend_tab_entry *depend_tab = NULL; 431 unsigned int depend_tab_size = 0; 432 433 switch (bus->chip_id) { 434 case 0x4312: 435 min_msk = 0xCBB; 436 break; 437 case 0x4322: 438 case 43222: 439 /* We keep the default settings: 440 * min_msk = 0xCBB 441 * max_msk = 0x7FFFF 442 */ 443 break; 444 case 0x4325: 445 /* Power OTP down later. */ 446 min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) | 447 (1 << SSB_PMURES_4325_LNLDO2_PU); 448 if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) & 449 SSB_CHIPCO_CHST_4325_PMUTOP_2B) 450 min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST); 451 /* The PLL may turn on, if it decides so. */ 452 max_msk = 0xFFFFF; 453 updown_tab = pmu_res_updown_tab_4325a0; 454 updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0); 455 depend_tab = pmu_res_depend_tab_4325a0; 456 depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0); 457 break; 458 case 0x4328: 459 min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) | 460 (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) | 461 (1 << SSB_PMURES_4328_XTAL_EN); 462 /* The PLL may turn on, if it decides so. */ 463 max_msk = 0xFFFFF; 464 updown_tab = pmu_res_updown_tab_4328a0; 465 updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0); 466 depend_tab = pmu_res_depend_tab_4328a0; 467 depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0); 468 break; 469 case 0x5354: 470 /* The PLL may turn on, if it decides so. */ 471 max_msk = 0xFFFFF; 472 break; 473 default: 474 ssb_err("ERROR: PMU resource config unknown for device %04X\n", 475 bus->chip_id); 476 } 477 478 if (updown_tab) { 479 for (i = 0; i < updown_tab_size; i++) { 480 chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL, 481 updown_tab[i].resource); 482 chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM, 483 updown_tab[i].updown); 484 } 485 } 486 if (depend_tab) { 487 for (i = 0; i < depend_tab_size; i++) { 488 chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL, 489 depend_tab[i].resource); 490 switch (depend_tab[i].task) { 491 case PMU_RES_DEP_SET: 492 chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK, 493 depend_tab[i].depend); 494 break; 495 case PMU_RES_DEP_ADD: 496 chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK, 497 depend_tab[i].depend); 498 break; 499 case PMU_RES_DEP_REMOVE: 500 chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK, 501 ~(depend_tab[i].depend)); 502 break; 503 default: 504 SSB_WARN_ON(1); 505 } 506 } 507 } 508 509 /* Set the resource masks. */ 510 if (min_msk) 511 chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk); 512 if (max_msk) 513 chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk); 514 } 515 516 /* http://bcm-v4.sipsolutions.net/802.11/SSB/PmuInit */ 517 void ssb_pmu_init(struct ssb_chipcommon *cc) 518 { 519 u32 pmucap; 520 521 if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU)) 522 return; 523 524 pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP); 525 cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION); 526 527 ssb_dbg("Found rev %u PMU (capabilities 0x%08X)\n", 528 cc->pmu.rev, pmucap); 529 530 if (cc->pmu.rev == 1) 531 chipco_mask32(cc, SSB_CHIPCO_PMU_CTL, 532 ~SSB_CHIPCO_PMU_CTL_NOILPONW); 533 else 534 chipco_set32(cc, SSB_CHIPCO_PMU_CTL, 535 SSB_CHIPCO_PMU_CTL_NOILPONW); 536 ssb_pmu_pll_init(cc); 537 ssb_pmu_resources_init(cc); 538 } 539 540 void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc, 541 enum ssb_pmu_ldo_volt_id id, u32 voltage) 542 { 543 struct ssb_bus *bus = cc->dev->bus; 544 u32 addr, shift, mask; 545 546 switch (bus->chip_id) { 547 case 0x4328: 548 case 0x5354: 549 switch (id) { 550 case LDO_VOLT1: 551 addr = 2; 552 shift = 25; 553 mask = 0xF; 554 break; 555 case LDO_VOLT2: 556 addr = 3; 557 shift = 1; 558 mask = 0xF; 559 break; 560 case LDO_VOLT3: 561 addr = 3; 562 shift = 9; 563 mask = 0xF; 564 break; 565 case LDO_PAREF: 566 addr = 3; 567 shift = 17; 568 mask = 0x3F; 569 break; 570 default: 571 SSB_WARN_ON(1); 572 return; 573 } 574 break; 575 case 0x4312: 576 if (SSB_WARN_ON(id != LDO_PAREF)) 577 return; 578 addr = 0; 579 shift = 21; 580 mask = 0x3F; 581 break; 582 default: 583 return; 584 } 585 586 ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift), 587 (voltage & mask) << shift); 588 } 589 590 void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on) 591 { 592 struct ssb_bus *bus = cc->dev->bus; 593 int ldo; 594 595 switch (bus->chip_id) { 596 case 0x4312: 597 ldo = SSB_PMURES_4312_PA_REF_LDO; 598 break; 599 case 0x4328: 600 ldo = SSB_PMURES_4328_PA_REF_LDO; 601 break; 602 case 0x5354: 603 ldo = SSB_PMURES_5354_PA_REF_LDO; 604 break; 605 default: 606 return; 607 } 608 609 if (on) 610 chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo); 611 else 612 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo)); 613 chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read? 614 } 615 616 EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage); 617 EXPORT_SYMBOL(ssb_pmu_set_ldo_paref); 618 619 static u32 ssb_pmu_get_alp_clock_clk0(struct ssb_chipcommon *cc) 620 { 621 u32 crystalfreq; 622 const struct pmu0_plltab_entry *e = NULL; 623 624 crystalfreq = chipco_read32(cc, SSB_CHIPCO_PMU_CTL) & 625 SSB_CHIPCO_PMU_CTL_XTALFREQ >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT; 626 e = pmu0_plltab_find_entry(crystalfreq); 627 BUG_ON(!e); 628 return e->freq * 1000; 629 } 630 631 u32 ssb_pmu_get_alp_clock(struct ssb_chipcommon *cc) 632 { 633 struct ssb_bus *bus = cc->dev->bus; 634 635 switch (bus->chip_id) { 636 case 0x5354: 637 ssb_pmu_get_alp_clock_clk0(cc); 638 default: 639 ssb_err("ERROR: PMU alp clock unknown for device %04X\n", 640 bus->chip_id); 641 return 0; 642 } 643 } 644 645 u32 ssb_pmu_get_cpu_clock(struct ssb_chipcommon *cc) 646 { 647 struct ssb_bus *bus = cc->dev->bus; 648 649 switch (bus->chip_id) { 650 case 0x5354: 651 /* 5354 chip uses a non programmable PLL of frequency 240MHz */ 652 return 240000000; 653 default: 654 ssb_err("ERROR: PMU cpu clock unknown for device %04X\n", 655 bus->chip_id); 656 return 0; 657 } 658 } 659 660 u32 ssb_pmu_get_controlclock(struct ssb_chipcommon *cc) 661 { 662 struct ssb_bus *bus = cc->dev->bus; 663 664 switch (bus->chip_id) { 665 case 0x5354: 666 return 120000000; 667 default: 668 ssb_err("ERROR: PMU controlclock unknown for device %04X\n", 669 bus->chip_id); 670 return 0; 671 } 672 } 673 674 void ssb_pmu_spuravoid_pllupdate(struct ssb_chipcommon *cc, int spuravoid) 675 { 676 u32 pmu_ctl = 0; 677 678 switch (cc->dev->bus->chip_id) { 679 case 0x4322: 680 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11100070); 681 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x1014140a); 682 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888854); 683 if (spuravoid == 1) 684 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x05201828); 685 else 686 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x05001828); 687 pmu_ctl = SSB_CHIPCO_PMU_CTL_PLL_UPD; 688 break; 689 case 43222: 690 if (spuravoid == 1) { 691 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11500008); 692 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x0C000C06); 693 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x0F600a08); 694 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, 0x00000000); 695 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL4, 0x2001E920); 696 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888815); 697 } else { 698 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11100008); 699 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x0c000c06); 700 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x03000a08); 701 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, 0x00000000); 702 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL4, 0x200005c0); 703 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888855); 704 } 705 pmu_ctl = SSB_CHIPCO_PMU_CTL_PLL_UPD; 706 break; 707 default: 708 ssb_printk(KERN_ERR PFX 709 "Unknown spuravoidance settings for chip 0x%04X, not changing PLL\n", 710 cc->dev->bus->chip_id); 711 return; 712 } 713 714 chipco_set32(cc, SSB_CHIPCO_PMU_CTL, pmu_ctl); 715 } 716 EXPORT_SYMBOL_GPL(ssb_pmu_spuravoid_pllupdate); 717