1 /*
2  * Sonics Silicon Backplane
3  * Broadcom ChipCommon Power Management Unit driver
4  *
5  * Copyright 2009, Michael Buesch <mb@bu3sch.de>
6  * Copyright 2007, Broadcom Corporation
7  *
8  * Licensed under the GNU/GPL. See COPYING for details.
9  */
10 
11 #include <linux/ssb/ssb.h>
12 #include <linux/ssb/ssb_regs.h>
13 #include <linux/ssb/ssb_driver_chipcommon.h>
14 #include <linux/delay.h>
15 
16 #include "ssb_private.h"
17 
18 static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
19 {
20 	chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
21 	return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
22 }
23 
24 static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
25 				 u32 offset, u32 value)
26 {
27 	chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
28 	chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
29 }
30 
31 static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc,
32 				   u32 offset, u32 mask, u32 set)
33 {
34 	u32 value;
35 
36 	chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
37 	chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset);
38 	chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
39 	value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
40 	value &= mask;
41 	value |= set;
42 	chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value);
43 	chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
44 }
45 
46 struct pmu0_plltab_entry {
47 	u16 freq;	/* Crystal frequency in kHz.*/
48 	u8 xf;		/* Crystal frequency value for PMU control */
49 	u8 wb_int;
50 	u32 wb_frac;
51 };
52 
53 static const struct pmu0_plltab_entry pmu0_plltab[] = {
54 	{ .freq = 12000, .xf =  1, .wb_int = 73, .wb_frac = 349525, },
55 	{ .freq = 13000, .xf =  2, .wb_int = 67, .wb_frac = 725937, },
56 	{ .freq = 14400, .xf =  3, .wb_int = 61, .wb_frac = 116508, },
57 	{ .freq = 15360, .xf =  4, .wb_int = 57, .wb_frac = 305834, },
58 	{ .freq = 16200, .xf =  5, .wb_int = 54, .wb_frac = 336579, },
59 	{ .freq = 16800, .xf =  6, .wb_int = 52, .wb_frac = 399457, },
60 	{ .freq = 19200, .xf =  7, .wb_int = 45, .wb_frac = 873813, },
61 	{ .freq = 19800, .xf =  8, .wb_int = 44, .wb_frac = 466033, },
62 	{ .freq = 20000, .xf =  9, .wb_int = 44, .wb_frac = 0,      },
63 	{ .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
64 	{ .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
65 	{ .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
66 	{ .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
67 	{ .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0,      },
68 };
69 #define SSB_PMU0_DEFAULT_XTALFREQ	20000
70 
71 static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
72 {
73 	const struct pmu0_plltab_entry *e;
74 	unsigned int i;
75 
76 	for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
77 		e = &pmu0_plltab[i];
78 		if (e->freq == crystalfreq)
79 			return e;
80 	}
81 
82 	return NULL;
83 }
84 
85 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
86 static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
87 				u32 crystalfreq)
88 {
89 	struct ssb_bus *bus = cc->dev->bus;
90 	const struct pmu0_plltab_entry *e = NULL;
91 	u32 pmuctl, tmp, pllctl;
92 	unsigned int i;
93 
94 	if ((bus->chip_id == 0x5354) && !crystalfreq) {
95 		/* The 5354 crystal freq is 25MHz */
96 		crystalfreq = 25000;
97 	}
98 	if (crystalfreq)
99 		e = pmu0_plltab_find_entry(crystalfreq);
100 	if (!e)
101 		e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
102 	BUG_ON(!e);
103 	crystalfreq = e->freq;
104 	cc->pmu.crystalfreq = e->freq;
105 
106 	/* Check if the PLL already is programmed to this frequency. */
107 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
108 	if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
109 		/* We're already there... */
110 		return;
111 	}
112 
113 	ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
114 		   (crystalfreq / 1000), (crystalfreq % 1000));
115 
116 	/* First turn the PLL off. */
117 	switch (bus->chip_id) {
118 	case 0x4328:
119 		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
120 			      ~(1 << SSB_PMURES_4328_BB_PLL_PU));
121 		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
122 			      ~(1 << SSB_PMURES_4328_BB_PLL_PU));
123 		break;
124 	case 0x5354:
125 		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
126 			      ~(1 << SSB_PMURES_5354_BB_PLL_PU));
127 		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
128 			      ~(1 << SSB_PMURES_5354_BB_PLL_PU));
129 		break;
130 	default:
131 		SSB_WARN_ON(1);
132 	}
133 	for (i = 1500; i; i--) {
134 		tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
135 		if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
136 			break;
137 		udelay(10);
138 	}
139 	tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
140 	if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
141 		ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
142 
143 	/* Set PDIV in PLL control 0. */
144 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
145 	if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
146 		pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
147 	else
148 		pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
149 	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
150 
151 	/* Set WILD in PLL control 1. */
152 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
153 	pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
154 	pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
155 	pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
156 	pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
157 	if (e->wb_frac == 0)
158 		pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
159 	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
160 
161 	/* Set WILD in PLL control 2. */
162 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
163 	pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
164 	pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
165 	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
166 
167 	/* Set the crystalfrequency and the divisor. */
168 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
169 	pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
170 	pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
171 			& SSB_CHIPCO_PMU_CTL_ILP_DIV;
172 	pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
173 	pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
174 	chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
175 }
176 
177 struct pmu1_plltab_entry {
178 	u16 freq;	/* Crystal frequency in kHz.*/
179 	u8 xf;		/* Crystal frequency value for PMU control */
180 	u8 ndiv_int;
181 	u32 ndiv_frac;
182 	u8 p1div;
183 	u8 p2div;
184 };
185 
186 static const struct pmu1_plltab_entry pmu1_plltab[] = {
187 	{ .freq = 12000, .xf =  1, .p1div = 3, .p2div = 22, .ndiv_int =  0x9, .ndiv_frac = 0xFFFFEF, },
188 	{ .freq = 13000, .xf =  2, .p1div = 1, .p2div =  6, .ndiv_int =  0xb, .ndiv_frac = 0x483483, },
189 	{ .freq = 14400, .xf =  3, .p1div = 1, .p2div = 10, .ndiv_int =  0xa, .ndiv_frac = 0x1C71C7, },
190 	{ .freq = 15360, .xf =  4, .p1div = 1, .p2div =  5, .ndiv_int =  0xb, .ndiv_frac = 0x755555, },
191 	{ .freq = 16200, .xf =  5, .p1div = 1, .p2div = 10, .ndiv_int =  0x5, .ndiv_frac = 0x6E9E06, },
192 	{ .freq = 16800, .xf =  6, .p1div = 1, .p2div = 10, .ndiv_int =  0x5, .ndiv_frac = 0x3CF3CF, },
193 	{ .freq = 19200, .xf =  7, .p1div = 1, .p2div =  9, .ndiv_int =  0x5, .ndiv_frac = 0x17B425, },
194 	{ .freq = 19800, .xf =  8, .p1div = 1, .p2div = 11, .ndiv_int =  0x4, .ndiv_frac = 0xA57EB,  },
195 	{ .freq = 20000, .xf =  9, .p1div = 1, .p2div = 11, .ndiv_int =  0x4, .ndiv_frac = 0,        },
196 	{ .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int =  0xa, .ndiv_frac = 0,        },
197 	{ .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int =  0xb, .ndiv_frac = 0,        },
198 	{ .freq = 26000, .xf = 12, .p1div = 1, .p2div =  2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
199 	{ .freq = 30000, .xf = 13, .p1div = 3, .p2div =  8, .ndiv_int =  0xb, .ndiv_frac = 0,        },
200 	{ .freq = 38400, .xf = 14, .p1div = 1, .p2div =  5, .ndiv_int =  0x4, .ndiv_frac = 0x955555, },
201 	{ .freq = 40000, .xf = 15, .p1div = 1, .p2div =  2, .ndiv_int =  0xb, .ndiv_frac = 0,        },
202 };
203 
204 #define SSB_PMU1_DEFAULT_XTALFREQ	15360
205 
206 static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
207 {
208 	const struct pmu1_plltab_entry *e;
209 	unsigned int i;
210 
211 	for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
212 		e = &pmu1_plltab[i];
213 		if (e->freq == crystalfreq)
214 			return e;
215 	}
216 
217 	return NULL;
218 }
219 
220 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
221 static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
222 				u32 crystalfreq)
223 {
224 	struct ssb_bus *bus = cc->dev->bus;
225 	const struct pmu1_plltab_entry *e = NULL;
226 	u32 buffer_strength = 0;
227 	u32 tmp, pllctl, pmuctl;
228 	unsigned int i;
229 
230 	if (bus->chip_id == 0x4312) {
231 		/* We do not touch the BCM4312 PLL and assume
232 		 * the default crystal settings work out-of-the-box. */
233 		cc->pmu.crystalfreq = 20000;
234 		return;
235 	}
236 
237 	if (crystalfreq)
238 		e = pmu1_plltab_find_entry(crystalfreq);
239 	if (!e)
240 		e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
241 	BUG_ON(!e);
242 	crystalfreq = e->freq;
243 	cc->pmu.crystalfreq = e->freq;
244 
245 	/* Check if the PLL already is programmed to this frequency. */
246 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
247 	if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
248 		/* We're already there... */
249 		return;
250 	}
251 
252 	ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
253 		   (crystalfreq / 1000), (crystalfreq % 1000));
254 
255 	/* First turn the PLL off. */
256 	switch (bus->chip_id) {
257 	case 0x4325:
258 		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
259 			      ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
260 				(1 << SSB_PMURES_4325_HT_AVAIL)));
261 		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
262 			      ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
263 				(1 << SSB_PMURES_4325_HT_AVAIL)));
264 		/* Adjust the BBPLL to 2 on all channels later. */
265 		buffer_strength = 0x222222;
266 		break;
267 	default:
268 		SSB_WARN_ON(1);
269 	}
270 	for (i = 1500; i; i--) {
271 		tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
272 		if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
273 			break;
274 		udelay(10);
275 	}
276 	tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
277 	if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
278 		ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
279 
280 	/* Set p1div and p2div. */
281 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
282 	pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
283 	pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
284 	pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
285 	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
286 
287 	/* Set ndiv int and ndiv mode */
288 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
289 	pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
290 	pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
291 	pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
292 	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
293 
294 	/* Set ndiv frac */
295 	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
296 	pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
297 	pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
298 	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
299 
300 	/* Change the drive strength, if required. */
301 	if (buffer_strength) {
302 		pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
303 		pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
304 		pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
305 		ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
306 	}
307 
308 	/* Tune the crystalfreq and the divisor. */
309 	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
310 	pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
311 	pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
312 			& SSB_CHIPCO_PMU_CTL_ILP_DIV;
313 	pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
314 	chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
315 }
316 
317 static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
318 {
319 	struct ssb_bus *bus = cc->dev->bus;
320 	u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
321 
322 	if (bus->bustype == SSB_BUSTYPE_SSB) {
323 		/* TODO: The user may override the crystal frequency. */
324 	}
325 
326 	switch (bus->chip_id) {
327 	case 0x4312:
328 	case 0x4325:
329 		ssb_pmu1_pllinit_r0(cc, crystalfreq);
330 		break;
331 	case 0x4328:
332 	case 0x5354:
333 		ssb_pmu0_pllinit_r0(cc, crystalfreq);
334 		break;
335 	case 0x4322:
336 		if (cc->pmu.rev == 2) {
337 			chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A);
338 			chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0);
339 		}
340 		break;
341 	default:
342 		ssb_printk(KERN_ERR PFX
343 			   "ERROR: PLL init unknown for device %04X\n",
344 			   bus->chip_id);
345 	}
346 }
347 
348 struct pmu_res_updown_tab_entry {
349 	u8 resource;	/* The resource number */
350 	u16 updown;	/* The updown value */
351 };
352 
353 enum pmu_res_depend_tab_task {
354 	PMU_RES_DEP_SET = 1,
355 	PMU_RES_DEP_ADD,
356 	PMU_RES_DEP_REMOVE,
357 };
358 
359 struct pmu_res_depend_tab_entry {
360 	u8 resource;	/* The resource number */
361 	u8 task;	/* SET | ADD | REMOVE */
362 	u32 depend;	/* The depend mask */
363 };
364 
365 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
366 	{ .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM,		.updown = 0x0101, },
367 	{ .resource = SSB_PMURES_4328_BB_SWITCHER_PWM,		.updown = 0x1F01, },
368 	{ .resource = SSB_PMURES_4328_BB_SWITCHER_BURST,	.updown = 0x010F, },
369 	{ .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST,	.updown = 0x0101, },
370 	{ .resource = SSB_PMURES_4328_ILP_REQUEST,		.updown = 0x0202, },
371 	{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM,	.updown = 0x0F01, },
372 	{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST,	.updown = 0x0F01, },
373 	{ .resource = SSB_PMURES_4328_ROM_SWITCH,		.updown = 0x0101, },
374 	{ .resource = SSB_PMURES_4328_PA_REF_LDO,		.updown = 0x0F01, },
375 	{ .resource = SSB_PMURES_4328_RADIO_LDO,		.updown = 0x0F01, },
376 	{ .resource = SSB_PMURES_4328_AFE_LDO,			.updown = 0x0F01, },
377 	{ .resource = SSB_PMURES_4328_PLL_LDO,			.updown = 0x0F01, },
378 	{ .resource = SSB_PMURES_4328_BG_FILTBYP,		.updown = 0x0101, },
379 	{ .resource = SSB_PMURES_4328_TX_FILTBYP,		.updown = 0x0101, },
380 	{ .resource = SSB_PMURES_4328_RX_FILTBYP,		.updown = 0x0101, },
381 	{ .resource = SSB_PMURES_4328_XTAL_PU,			.updown = 0x0101, },
382 	{ .resource = SSB_PMURES_4328_XTAL_EN,			.updown = 0xA001, },
383 	{ .resource = SSB_PMURES_4328_BB_PLL_FILTBYP,		.updown = 0x0101, },
384 	{ .resource = SSB_PMURES_4328_RF_PLL_FILTBYP,		.updown = 0x0101, },
385 	{ .resource = SSB_PMURES_4328_BB_PLL_PU,		.updown = 0x0701, },
386 };
387 
388 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
389 	{
390 		/* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
391 		.resource = SSB_PMURES_4328_ILP_REQUEST,
392 		.task = PMU_RES_DEP_SET,
393 		.depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
394 			   (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
395 	},
396 };
397 
398 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
399 	{ .resource = SSB_PMURES_4325_XTAL_PU,			.updown = 0x1501, },
400 };
401 
402 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
403 	{
404 		/* Adjust HT-Available dependencies. */
405 		.resource = SSB_PMURES_4325_HT_AVAIL,
406 		.task = PMU_RES_DEP_ADD,
407 		.depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
408 			   (1 << SSB_PMURES_4325_TX_PWRSW_PU) |
409 			   (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
410 			   (1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
411 	},
412 };
413 
414 static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
415 {
416 	struct ssb_bus *bus = cc->dev->bus;
417 	u32 min_msk = 0, max_msk = 0;
418 	unsigned int i;
419 	const struct pmu_res_updown_tab_entry *updown_tab = NULL;
420 	unsigned int updown_tab_size;
421 	const struct pmu_res_depend_tab_entry *depend_tab = NULL;
422 	unsigned int depend_tab_size;
423 
424 	switch (bus->chip_id) {
425 	case 0x4312:
426 	case 0x4322:
427 		/* We keep the default settings:
428 		 * min_msk = 0xCBB
429 		 * max_msk = 0x7FFFF
430 		 */
431 		break;
432 	case 0x4325:
433 		/* Power OTP down later. */
434 		min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
435 			  (1 << SSB_PMURES_4325_LNLDO2_PU);
436 		if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
437 		    SSB_CHIPCO_CHST_4325_PMUTOP_2B)
438 			min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
439 		/* The PLL may turn on, if it decides so. */
440 		max_msk = 0xFFFFF;
441 		updown_tab = pmu_res_updown_tab_4325a0;
442 		updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
443 		depend_tab = pmu_res_depend_tab_4325a0;
444 		depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
445 		break;
446 	case 0x4328:
447 		min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
448 			  (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
449 			  (1 << SSB_PMURES_4328_XTAL_EN);
450 		/* The PLL may turn on, if it decides so. */
451 		max_msk = 0xFFFFF;
452 		updown_tab = pmu_res_updown_tab_4328a0;
453 		updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
454 		depend_tab = pmu_res_depend_tab_4328a0;
455 		depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
456 		break;
457 	case 0x5354:
458 		/* The PLL may turn on, if it decides so. */
459 		max_msk = 0xFFFFF;
460 		break;
461 	default:
462 		ssb_printk(KERN_ERR PFX
463 			   "ERROR: PMU resource config unknown for device %04X\n",
464 			   bus->chip_id);
465 	}
466 
467 	if (updown_tab) {
468 		for (i = 0; i < updown_tab_size; i++) {
469 			chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
470 				       updown_tab[i].resource);
471 			chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
472 				       updown_tab[i].updown);
473 		}
474 	}
475 	if (depend_tab) {
476 		for (i = 0; i < depend_tab_size; i++) {
477 			chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
478 				       depend_tab[i].resource);
479 			switch (depend_tab[i].task) {
480 			case PMU_RES_DEP_SET:
481 				chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
482 					       depend_tab[i].depend);
483 				break;
484 			case PMU_RES_DEP_ADD:
485 				chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
486 					     depend_tab[i].depend);
487 				break;
488 			case PMU_RES_DEP_REMOVE:
489 				chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
490 					      ~(depend_tab[i].depend));
491 				break;
492 			default:
493 				SSB_WARN_ON(1);
494 			}
495 		}
496 	}
497 
498 	/* Set the resource masks. */
499 	if (min_msk)
500 		chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
501 	if (max_msk)
502 		chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
503 }
504 
505 void ssb_pmu_init(struct ssb_chipcommon *cc)
506 {
507 	struct ssb_bus *bus = cc->dev->bus;
508 	u32 pmucap;
509 
510 	if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
511 		return;
512 
513 	pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
514 	cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
515 
516 	ssb_dprintk(KERN_DEBUG PFX "Found rev %u PMU (capabilities 0x%08X)\n",
517 		    cc->pmu.rev, pmucap);
518 
519 	if (cc->pmu.rev >= 1) {
520 		if ((bus->chip_id == 0x4325) && (bus->chip_rev < 2)) {
521 			chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
522 				      ~SSB_CHIPCO_PMU_CTL_NOILPONW);
523 		} else {
524 			chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
525 				     SSB_CHIPCO_PMU_CTL_NOILPONW);
526 		}
527 	}
528 	ssb_pmu_pll_init(cc);
529 	ssb_pmu_resources_init(cc);
530 }
531 
532 void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc,
533 			     enum ssb_pmu_ldo_volt_id id, u32 voltage)
534 {
535 	struct ssb_bus *bus = cc->dev->bus;
536 	u32 addr, shift, mask;
537 
538 	switch (bus->chip_id) {
539 	case 0x4328:
540 	case 0x5354:
541 		switch (id) {
542 		case LDO_VOLT1:
543 			addr = 2;
544 			shift = 25;
545 			mask = 0xF;
546 			break;
547 		case LDO_VOLT2:
548 			addr = 3;
549 			shift = 1;
550 			mask = 0xF;
551 			break;
552 		case LDO_VOLT3:
553 			addr = 3;
554 			shift = 9;
555 			mask = 0xF;
556 			break;
557 		case LDO_PAREF:
558 			addr = 3;
559 			shift = 17;
560 			mask = 0x3F;
561 			break;
562 		default:
563 			SSB_WARN_ON(1);
564 			return;
565 		}
566 		break;
567 	case 0x4312:
568 		if (SSB_WARN_ON(id != LDO_PAREF))
569 			return;
570 		addr = 0;
571 		shift = 21;
572 		mask = 0x3F;
573 		break;
574 	default:
575 		return;
576 	}
577 
578 	ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift),
579 				  (voltage & mask) << shift);
580 }
581 
582 void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on)
583 {
584 	struct ssb_bus *bus = cc->dev->bus;
585 	int ldo;
586 
587 	switch (bus->chip_id) {
588 	case 0x4312:
589 		ldo = SSB_PMURES_4312_PA_REF_LDO;
590 		break;
591 	case 0x4328:
592 		ldo = SSB_PMURES_4328_PA_REF_LDO;
593 		break;
594 	case 0x5354:
595 		ldo = SSB_PMURES_5354_PA_REF_LDO;
596 		break;
597 	default:
598 		return;
599 	}
600 
601 	if (on)
602 		chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo);
603 	else
604 		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo));
605 	chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read?
606 }
607 
608 EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage);
609 EXPORT_SYMBOL(ssb_pmu_set_ldo_paref);
610