xref: /openbmc/linux/drivers/spi/spidev.c (revision ff8444011fe5790bae9309f278d660b4c3ddc029)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Simple synchronous userspace interface to SPI devices
4  *
5  * Copyright (C) 2006 SWAPP
6  *	Andrea Paterniani <a.paterniani@swapp-eng.it>
7  * Copyright (C) 2007 David Brownell (simplification, cleanup)
8  */
9 
10 #include <linux/init.h>
11 #include <linux/ioctl.h>
12 #include <linux/fs.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/list.h>
16 #include <linux/errno.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/property.h>
21 #include <linux/slab.h>
22 #include <linux/compat.h>
23 
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spidev.h>
26 
27 #include <linux/uaccess.h>
28 
29 
30 /*
31  * This supports access to SPI devices using normal userspace I/O calls.
32  * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
33  * and often mask message boundaries, full SPI support requires full duplex
34  * transfers.  There are several kinds of internal message boundaries to
35  * handle chipselect management and other protocol options.
36  *
37  * SPI has a character major number assigned.  We allocate minor numbers
38  * dynamically using a bitmask.  You must use hotplug tools, such as udev
39  * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
40  * nodes, since there is no fixed association of minor numbers with any
41  * particular SPI bus or device.
42  */
43 #define SPIDEV_MAJOR			153	/* assigned */
44 #define N_SPI_MINORS			32	/* ... up to 256 */
45 
46 static DECLARE_BITMAP(minors, N_SPI_MINORS);
47 
48 static_assert(N_SPI_MINORS > 0 && N_SPI_MINORS <= 256);
49 
50 /* Bit masks for spi_device.mode management.  Note that incorrect
51  * settings for some settings can cause *lots* of trouble for other
52  * devices on a shared bus:
53  *
54  *  - CS_HIGH ... this device will be active when it shouldn't be
55  *  - 3WIRE ... when active, it won't behave as it should
56  *  - NO_CS ... there will be no explicit message boundaries; this
57  *	is completely incompatible with the shared bus model
58  *  - READY ... transfers may proceed when they shouldn't.
59  *
60  * REVISIT should changing those flags be privileged?
61  */
62 #define SPI_MODE_MASK		(SPI_MODE_X_MASK | SPI_CS_HIGH \
63 				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
64 				| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
65 				| SPI_TX_QUAD | SPI_TX_OCTAL | SPI_RX_DUAL \
66 				| SPI_RX_QUAD | SPI_RX_OCTAL \
67 				| SPI_RX_CPHA_FLIP | SPI_3WIRE_HIZ \
68 				| SPI_MOSI_IDLE_LOW)
69 
70 struct spidev_data {
71 	dev_t			devt;
72 	struct mutex		spi_lock;
73 	struct spi_device	*spi;
74 	struct list_head	device_entry;
75 
76 	/* TX/RX buffers are NULL unless this device is open (users > 0) */
77 	struct mutex		buf_lock;
78 	unsigned		users;
79 	u8			*tx_buffer;
80 	u8			*rx_buffer;
81 	u32			speed_hz;
82 };
83 
84 static LIST_HEAD(device_list);
85 static DEFINE_MUTEX(device_list_lock);
86 
87 static unsigned bufsiz = 4096;
88 module_param(bufsiz, uint, S_IRUGO);
89 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
90 
91 /*-------------------------------------------------------------------------*/
92 
93 static ssize_t
94 spidev_sync_unlocked(struct spi_device *spi, struct spi_message *message)
95 {
96 	ssize_t status;
97 
98 	status = spi_sync(spi, message);
99 	if (status == 0)
100 		status = message->actual_length;
101 
102 	return status;
103 }
104 
105 static ssize_t
106 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
107 {
108 	ssize_t status;
109 	struct spi_device *spi;
110 
111 	mutex_lock(&spidev->spi_lock);
112 	spi = spidev->spi;
113 
114 	if (spi == NULL)
115 		status = -ESHUTDOWN;
116 	else
117 		status = spidev_sync_unlocked(spi, message);
118 
119 	mutex_unlock(&spidev->spi_lock);
120 	return status;
121 }
122 
123 static inline ssize_t
124 spidev_sync_write(struct spidev_data *spidev, size_t len)
125 {
126 	struct spi_transfer	t = {
127 			.tx_buf		= spidev->tx_buffer,
128 			.len		= len,
129 			.speed_hz	= spidev->speed_hz,
130 		};
131 	struct spi_message	m;
132 
133 	spi_message_init(&m);
134 	spi_message_add_tail(&t, &m);
135 	return spidev_sync(spidev, &m);
136 }
137 
138 static inline ssize_t
139 spidev_sync_read(struct spidev_data *spidev, size_t len)
140 {
141 	struct spi_transfer	t = {
142 			.rx_buf		= spidev->rx_buffer,
143 			.len		= len,
144 			.speed_hz	= spidev->speed_hz,
145 		};
146 	struct spi_message	m;
147 
148 	spi_message_init(&m);
149 	spi_message_add_tail(&t, &m);
150 	return spidev_sync(spidev, &m);
151 }
152 
153 /*-------------------------------------------------------------------------*/
154 
155 /* Read-only message with current device setup */
156 static ssize_t
157 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
158 {
159 	struct spidev_data	*spidev;
160 	ssize_t			status;
161 
162 	/* chipselect only toggles at start or end of operation */
163 	if (count > bufsiz)
164 		return -EMSGSIZE;
165 
166 	spidev = filp->private_data;
167 
168 	mutex_lock(&spidev->buf_lock);
169 	status = spidev_sync_read(spidev, count);
170 	if (status > 0) {
171 		unsigned long	missing;
172 
173 		missing = copy_to_user(buf, spidev->rx_buffer, status);
174 		if (missing == status)
175 			status = -EFAULT;
176 		else
177 			status = status - missing;
178 	}
179 	mutex_unlock(&spidev->buf_lock);
180 
181 	return status;
182 }
183 
184 /* Write-only message with current device setup */
185 static ssize_t
186 spidev_write(struct file *filp, const char __user *buf,
187 		size_t count, loff_t *f_pos)
188 {
189 	struct spidev_data	*spidev;
190 	ssize_t			status;
191 	unsigned long		missing;
192 
193 	/* chipselect only toggles at start or end of operation */
194 	if (count > bufsiz)
195 		return -EMSGSIZE;
196 
197 	spidev = filp->private_data;
198 
199 	mutex_lock(&spidev->buf_lock);
200 	missing = copy_from_user(spidev->tx_buffer, buf, count);
201 	if (missing == 0)
202 		status = spidev_sync_write(spidev, count);
203 	else
204 		status = -EFAULT;
205 	mutex_unlock(&spidev->buf_lock);
206 
207 	return status;
208 }
209 
210 static int spidev_message(struct spidev_data *spidev,
211 		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
212 {
213 	struct spi_message	msg;
214 	struct spi_transfer	*k_xfers;
215 	struct spi_transfer	*k_tmp;
216 	struct spi_ioc_transfer *u_tmp;
217 	unsigned		n, total, tx_total, rx_total;
218 	u8			*tx_buf, *rx_buf;
219 	int			status = -EFAULT;
220 
221 	spi_message_init(&msg);
222 	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
223 	if (k_xfers == NULL)
224 		return -ENOMEM;
225 
226 	/* Construct spi_message, copying any tx data to bounce buffer.
227 	 * We walk the array of user-provided transfers, using each one
228 	 * to initialize a kernel version of the same transfer.
229 	 */
230 	tx_buf = spidev->tx_buffer;
231 	rx_buf = spidev->rx_buffer;
232 	total = 0;
233 	tx_total = 0;
234 	rx_total = 0;
235 	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
236 			n;
237 			n--, k_tmp++, u_tmp++) {
238 		/* Ensure that also following allocations from rx_buf/tx_buf will meet
239 		 * DMA alignment requirements.
240 		 */
241 		unsigned int len_aligned = ALIGN(u_tmp->len, ARCH_DMA_MINALIGN);
242 
243 		k_tmp->len = u_tmp->len;
244 
245 		total += k_tmp->len;
246 		/* Since the function returns the total length of transfers
247 		 * on success, restrict the total to positive int values to
248 		 * avoid the return value looking like an error.  Also check
249 		 * each transfer length to avoid arithmetic overflow.
250 		 */
251 		if (total > INT_MAX || k_tmp->len > INT_MAX) {
252 			status = -EMSGSIZE;
253 			goto done;
254 		}
255 
256 		if (u_tmp->rx_buf) {
257 			/* this transfer needs space in RX bounce buffer */
258 			rx_total += len_aligned;
259 			if (rx_total > bufsiz) {
260 				status = -EMSGSIZE;
261 				goto done;
262 			}
263 			k_tmp->rx_buf = rx_buf;
264 			rx_buf += len_aligned;
265 		}
266 		if (u_tmp->tx_buf) {
267 			/* this transfer needs space in TX bounce buffer */
268 			tx_total += len_aligned;
269 			if (tx_total > bufsiz) {
270 				status = -EMSGSIZE;
271 				goto done;
272 			}
273 			k_tmp->tx_buf = tx_buf;
274 			if (copy_from_user(tx_buf, (const u8 __user *)
275 						(uintptr_t) u_tmp->tx_buf,
276 					u_tmp->len))
277 				goto done;
278 			tx_buf += len_aligned;
279 		}
280 
281 		k_tmp->cs_change = !!u_tmp->cs_change;
282 		k_tmp->tx_nbits = u_tmp->tx_nbits;
283 		k_tmp->rx_nbits = u_tmp->rx_nbits;
284 		k_tmp->bits_per_word = u_tmp->bits_per_word;
285 		k_tmp->delay.value = u_tmp->delay_usecs;
286 		k_tmp->delay.unit = SPI_DELAY_UNIT_USECS;
287 		k_tmp->speed_hz = u_tmp->speed_hz;
288 		k_tmp->word_delay.value = u_tmp->word_delay_usecs;
289 		k_tmp->word_delay.unit = SPI_DELAY_UNIT_USECS;
290 		if (!k_tmp->speed_hz)
291 			k_tmp->speed_hz = spidev->speed_hz;
292 #ifdef VERBOSE
293 		dev_dbg(&spidev->spi->dev,
294 			"  xfer len %u %s%s%s%dbits %u usec %u usec %uHz\n",
295 			k_tmp->len,
296 			k_tmp->rx_buf ? "rx " : "",
297 			k_tmp->tx_buf ? "tx " : "",
298 			k_tmp->cs_change ? "cs " : "",
299 			k_tmp->bits_per_word ? : spidev->spi->bits_per_word,
300 			k_tmp->delay.value,
301 			k_tmp->word_delay.value,
302 			k_tmp->speed_hz ? : spidev->spi->max_speed_hz);
303 #endif
304 		spi_message_add_tail(k_tmp, &msg);
305 	}
306 
307 	status = spidev_sync_unlocked(spidev->spi, &msg);
308 	if (status < 0)
309 		goto done;
310 
311 	/* copy any rx data out of bounce buffer */
312 	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
313 			n;
314 			n--, k_tmp++, u_tmp++) {
315 		if (u_tmp->rx_buf) {
316 			if (copy_to_user((u8 __user *)
317 					(uintptr_t) u_tmp->rx_buf, k_tmp->rx_buf,
318 					u_tmp->len)) {
319 				status = -EFAULT;
320 				goto done;
321 			}
322 		}
323 	}
324 	status = total;
325 
326 done:
327 	kfree(k_xfers);
328 	return status;
329 }
330 
331 static struct spi_ioc_transfer *
332 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
333 		unsigned *n_ioc)
334 {
335 	u32	tmp;
336 
337 	/* Check type, command number and direction */
338 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
339 			|| _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
340 			|| _IOC_DIR(cmd) != _IOC_WRITE)
341 		return ERR_PTR(-ENOTTY);
342 
343 	tmp = _IOC_SIZE(cmd);
344 	if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
345 		return ERR_PTR(-EINVAL);
346 	*n_ioc = tmp / sizeof(struct spi_ioc_transfer);
347 	if (*n_ioc == 0)
348 		return NULL;
349 
350 	/* copy into scratch area */
351 	return memdup_user(u_ioc, tmp);
352 }
353 
354 static long
355 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
356 {
357 	int			retval = 0;
358 	struct spidev_data	*spidev;
359 	struct spi_device	*spi;
360 	u32			tmp;
361 	unsigned		n_ioc;
362 	struct spi_ioc_transfer	*ioc;
363 
364 	/* Check type and command number */
365 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
366 		return -ENOTTY;
367 
368 	/* guard against device removal before, or while,
369 	 * we issue this ioctl.
370 	 */
371 	spidev = filp->private_data;
372 	mutex_lock(&spidev->spi_lock);
373 	spi = spi_dev_get(spidev->spi);
374 	if (spi == NULL) {
375 		mutex_unlock(&spidev->spi_lock);
376 		return -ESHUTDOWN;
377 	}
378 
379 	/* use the buffer lock here for triple duty:
380 	 *  - prevent I/O (from us) so calling spi_setup() is safe;
381 	 *  - prevent concurrent SPI_IOC_WR_* from morphing
382 	 *    data fields while SPI_IOC_RD_* reads them;
383 	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
384 	 */
385 	mutex_lock(&spidev->buf_lock);
386 
387 	switch (cmd) {
388 	/* read requests */
389 	case SPI_IOC_RD_MODE:
390 	case SPI_IOC_RD_MODE32:
391 		tmp = spi->mode;
392 
393 		{
394 			struct spi_controller *ctlr = spi->controller;
395 
396 			if (ctlr->use_gpio_descriptors && ctlr->cs_gpiods &&
397 			    ctlr->cs_gpiods[spi_get_chipselect(spi, 0)])
398 				tmp &= ~SPI_CS_HIGH;
399 		}
400 
401 		if (cmd == SPI_IOC_RD_MODE)
402 			retval = put_user(tmp & SPI_MODE_MASK,
403 					  (__u8 __user *)arg);
404 		else
405 			retval = put_user(tmp & SPI_MODE_MASK,
406 					  (__u32 __user *)arg);
407 		break;
408 	case SPI_IOC_RD_LSB_FIRST:
409 		retval = put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
410 					(__u8 __user *)arg);
411 		break;
412 	case SPI_IOC_RD_BITS_PER_WORD:
413 		retval = put_user(spi->bits_per_word, (__u8 __user *)arg);
414 		break;
415 	case SPI_IOC_RD_MAX_SPEED_HZ:
416 		retval = put_user(spidev->speed_hz, (__u32 __user *)arg);
417 		break;
418 
419 	/* write requests */
420 	case SPI_IOC_WR_MODE:
421 	case SPI_IOC_WR_MODE32:
422 		if (cmd == SPI_IOC_WR_MODE)
423 			retval = get_user(tmp, (u8 __user *)arg);
424 		else
425 			retval = get_user(tmp, (u32 __user *)arg);
426 		if (retval == 0) {
427 			struct spi_controller *ctlr = spi->controller;
428 			u32	save = spi->mode;
429 
430 			if (tmp & ~SPI_MODE_MASK) {
431 				retval = -EINVAL;
432 				break;
433 			}
434 
435 			if (ctlr->use_gpio_descriptors && ctlr->cs_gpiods &&
436 			    ctlr->cs_gpiods[spi_get_chipselect(spi, 0)])
437 				tmp |= SPI_CS_HIGH;
438 
439 			tmp |= spi->mode & ~SPI_MODE_MASK;
440 			spi->mode = tmp & SPI_MODE_USER_MASK;
441 			retval = spi_setup(spi);
442 			if (retval < 0)
443 				spi->mode = save;
444 			else
445 				dev_dbg(&spi->dev, "spi mode %x\n", tmp);
446 		}
447 		break;
448 	case SPI_IOC_WR_LSB_FIRST:
449 		retval = get_user(tmp, (__u8 __user *)arg);
450 		if (retval == 0) {
451 			u32	save = spi->mode;
452 
453 			if (tmp)
454 				spi->mode |= SPI_LSB_FIRST;
455 			else
456 				spi->mode &= ~SPI_LSB_FIRST;
457 			retval = spi_setup(spi);
458 			if (retval < 0)
459 				spi->mode = save;
460 			else
461 				dev_dbg(&spi->dev, "%csb first\n",
462 						tmp ? 'l' : 'm');
463 		}
464 		break;
465 	case SPI_IOC_WR_BITS_PER_WORD:
466 		retval = get_user(tmp, (__u8 __user *)arg);
467 		if (retval == 0) {
468 			u8	save = spi->bits_per_word;
469 
470 			spi->bits_per_word = tmp;
471 			retval = spi_setup(spi);
472 			if (retval < 0)
473 				spi->bits_per_word = save;
474 			else
475 				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
476 		}
477 		break;
478 	case SPI_IOC_WR_MAX_SPEED_HZ: {
479 		u32 save;
480 
481 		retval = get_user(tmp, (__u32 __user *)arg);
482 		if (retval)
483 			break;
484 		if (tmp == 0) {
485 			retval = -EINVAL;
486 			break;
487 		}
488 
489 		save = spi->max_speed_hz;
490 
491 		spi->max_speed_hz = tmp;
492 		retval = spi_setup(spi);
493 		if (retval == 0) {
494 			spidev->speed_hz = tmp;
495 			dev_dbg(&spi->dev, "%d Hz (max)\n", spidev->speed_hz);
496 		}
497 
498 		spi->max_speed_hz = save;
499 		break;
500 	}
501 	default:
502 		/* segmented and/or full-duplex I/O request */
503 		/* Check message and copy into scratch area */
504 		ioc = spidev_get_ioc_message(cmd,
505 				(struct spi_ioc_transfer __user *)arg, &n_ioc);
506 		if (IS_ERR(ioc)) {
507 			retval = PTR_ERR(ioc);
508 			break;
509 		}
510 		if (!ioc)
511 			break;	/* n_ioc is also 0 */
512 
513 		/* translate to spi_message, execute */
514 		retval = spidev_message(spidev, ioc, n_ioc);
515 		kfree(ioc);
516 		break;
517 	}
518 
519 	mutex_unlock(&spidev->buf_lock);
520 	spi_dev_put(spi);
521 	mutex_unlock(&spidev->spi_lock);
522 	return retval;
523 }
524 
525 #ifdef CONFIG_COMPAT
526 static long
527 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
528 		unsigned long arg)
529 {
530 	struct spi_ioc_transfer __user	*u_ioc;
531 	int				retval = 0;
532 	struct spidev_data		*spidev;
533 	struct spi_device		*spi;
534 	unsigned			n_ioc, n;
535 	struct spi_ioc_transfer		*ioc;
536 
537 	u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
538 
539 	/* guard against device removal before, or while,
540 	 * we issue this ioctl.
541 	 */
542 	spidev = filp->private_data;
543 	mutex_lock(&spidev->spi_lock);
544 	spi = spi_dev_get(spidev->spi);
545 	if (spi == NULL) {
546 		mutex_unlock(&spidev->spi_lock);
547 		return -ESHUTDOWN;
548 	}
549 
550 	/* SPI_IOC_MESSAGE needs the buffer locked "normally" */
551 	mutex_lock(&spidev->buf_lock);
552 
553 	/* Check message and copy into scratch area */
554 	ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
555 	if (IS_ERR(ioc)) {
556 		retval = PTR_ERR(ioc);
557 		goto done;
558 	}
559 	if (!ioc)
560 		goto done;	/* n_ioc is also 0 */
561 
562 	/* Convert buffer pointers */
563 	for (n = 0; n < n_ioc; n++) {
564 		ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
565 		ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
566 	}
567 
568 	/* translate to spi_message, execute */
569 	retval = spidev_message(spidev, ioc, n_ioc);
570 	kfree(ioc);
571 
572 done:
573 	mutex_unlock(&spidev->buf_lock);
574 	spi_dev_put(spi);
575 	mutex_unlock(&spidev->spi_lock);
576 	return retval;
577 }
578 
579 static long
580 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
581 {
582 	if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
583 			&& _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
584 			&& _IOC_DIR(cmd) == _IOC_WRITE)
585 		return spidev_compat_ioc_message(filp, cmd, arg);
586 
587 	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
588 }
589 #else
590 #define spidev_compat_ioctl NULL
591 #endif /* CONFIG_COMPAT */
592 
593 static int spidev_open(struct inode *inode, struct file *filp)
594 {
595 	struct spidev_data	*spidev = NULL, *iter;
596 	int			status = -ENXIO;
597 
598 	mutex_lock(&device_list_lock);
599 
600 	list_for_each_entry(iter, &device_list, device_entry) {
601 		if (iter->devt == inode->i_rdev) {
602 			status = 0;
603 			spidev = iter;
604 			break;
605 		}
606 	}
607 
608 	if (!spidev) {
609 		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
610 		goto err_find_dev;
611 	}
612 
613 	if (!spidev->tx_buffer) {
614 		spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
615 		if (!spidev->tx_buffer) {
616 			status = -ENOMEM;
617 			goto err_find_dev;
618 		}
619 	}
620 
621 	if (!spidev->rx_buffer) {
622 		spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
623 		if (!spidev->rx_buffer) {
624 			status = -ENOMEM;
625 			goto err_alloc_rx_buf;
626 		}
627 	}
628 
629 	spidev->users++;
630 	filp->private_data = spidev;
631 	stream_open(inode, filp);
632 
633 	mutex_unlock(&device_list_lock);
634 	return 0;
635 
636 err_alloc_rx_buf:
637 	kfree(spidev->tx_buffer);
638 	spidev->tx_buffer = NULL;
639 err_find_dev:
640 	mutex_unlock(&device_list_lock);
641 	return status;
642 }
643 
644 static int spidev_release(struct inode *inode, struct file *filp)
645 {
646 	struct spidev_data	*spidev;
647 	int			dofree;
648 
649 	mutex_lock(&device_list_lock);
650 	spidev = filp->private_data;
651 	filp->private_data = NULL;
652 
653 	mutex_lock(&spidev->spi_lock);
654 	/* ... after we unbound from the underlying device? */
655 	dofree = (spidev->spi == NULL);
656 	mutex_unlock(&spidev->spi_lock);
657 
658 	/* last close? */
659 	spidev->users--;
660 	if (!spidev->users) {
661 
662 		kfree(spidev->tx_buffer);
663 		spidev->tx_buffer = NULL;
664 
665 		kfree(spidev->rx_buffer);
666 		spidev->rx_buffer = NULL;
667 
668 		if (dofree)
669 			kfree(spidev);
670 		else
671 			spidev->speed_hz = spidev->spi->max_speed_hz;
672 	}
673 #ifdef CONFIG_SPI_SLAVE
674 	if (!dofree)
675 		spi_slave_abort(spidev->spi);
676 #endif
677 	mutex_unlock(&device_list_lock);
678 
679 	return 0;
680 }
681 
682 static const struct file_operations spidev_fops = {
683 	.owner =	THIS_MODULE,
684 	/* REVISIT switch to aio primitives, so that userspace
685 	 * gets more complete API coverage.  It'll simplify things
686 	 * too, except for the locking.
687 	 */
688 	.write =	spidev_write,
689 	.read =		spidev_read,
690 	.unlocked_ioctl = spidev_ioctl,
691 	.compat_ioctl = spidev_compat_ioctl,
692 	.open =		spidev_open,
693 	.release =	spidev_release,
694 	.llseek =	no_llseek,
695 };
696 
697 /*-------------------------------------------------------------------------*/
698 
699 /* The main reason to have this class is to make mdev/udev create the
700  * /dev/spidevB.C character device nodes exposing our userspace API.
701  * It also simplifies memory management.
702  */
703 
704 static struct class *spidev_class;
705 
706 static const struct spi_device_id spidev_spi_ids[] = {
707 	{ .name = "bh2228fv" },
708 	{ .name = "dh2228fv" },
709 	{ .name = "jg10309-01" },
710 	{ .name = "ltc2488" },
711 	{ .name = "sx1301" },
712 	{ .name = "bk4" },
713 	{ .name = "dhcom-board" },
714 	{ .name = "m53cpld" },
715 	{ .name = "spi-petra" },
716 	{ .name = "spi-authenta" },
717 	{ .name = "em3581" },
718 	{ .name = "si3210" },
719 	{},
720 };
721 MODULE_DEVICE_TABLE(spi, spidev_spi_ids);
722 
723 /*
724  * spidev should never be referenced in DT without a specific compatible string,
725  * it is a Linux implementation thing rather than a description of the hardware.
726  */
727 static int spidev_of_check(struct device *dev)
728 {
729 	if (device_property_match_string(dev, "compatible", "spidev") < 0)
730 		return 0;
731 
732 	dev_err(dev, "spidev listed directly in DT is not supported\n");
733 	return -EINVAL;
734 }
735 
736 static const struct of_device_id spidev_dt_ids[] = {
737 	{ .compatible = "cisco,spi-petra", .data = &spidev_of_check },
738 	{ .compatible = "dh,dhcom-board", .data = &spidev_of_check },
739 	{ .compatible = "elgin,jg10309-01", .data = &spidev_of_check },
740 	{ .compatible = "lineartechnology,ltc2488", .data = &spidev_of_check },
741 	{ .compatible = "lwn,bk4", .data = &spidev_of_check },
742 	{ .compatible = "menlo,m53cpld", .data = &spidev_of_check },
743 	{ .compatible = "micron,spi-authenta", .data = &spidev_of_check },
744 	{ .compatible = "rohm,bh2228fv", .data = &spidev_of_check },
745 	{ .compatible = "rohm,dh2228fv", .data = &spidev_of_check },
746 	{ .compatible = "semtech,sx1301", .data = &spidev_of_check },
747 	{ .compatible = "silabs,em3581", .data = &spidev_of_check },
748 	{ .compatible = "silabs,si3210", .data = &spidev_of_check },
749 	{},
750 };
751 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
752 
753 /* Dummy SPI devices not to be used in production systems */
754 static int spidev_acpi_check(struct device *dev)
755 {
756 	dev_warn(dev, "do not use this driver in production systems!\n");
757 	return 0;
758 }
759 
760 static const struct acpi_device_id spidev_acpi_ids[] = {
761 	/*
762 	 * The ACPI SPT000* devices are only meant for development and
763 	 * testing. Systems used in production should have a proper ACPI
764 	 * description of the connected peripheral and they should also use
765 	 * a proper driver instead of poking directly to the SPI bus.
766 	 */
767 	{ "SPT0001", (kernel_ulong_t)&spidev_acpi_check },
768 	{ "SPT0002", (kernel_ulong_t)&spidev_acpi_check },
769 	{ "SPT0003", (kernel_ulong_t)&spidev_acpi_check },
770 	{},
771 };
772 MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
773 
774 /*-------------------------------------------------------------------------*/
775 
776 static int spidev_probe(struct spi_device *spi)
777 {
778 	int (*match)(struct device *dev);
779 	struct spidev_data	*spidev;
780 	int			status;
781 	unsigned long		minor;
782 
783 	match = device_get_match_data(&spi->dev);
784 	if (match) {
785 		status = match(&spi->dev);
786 		if (status)
787 			return status;
788 	}
789 
790 	/* Allocate driver data */
791 	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
792 	if (!spidev)
793 		return -ENOMEM;
794 
795 	/* Initialize the driver data */
796 	spidev->spi = spi;
797 	mutex_init(&spidev->spi_lock);
798 	mutex_init(&spidev->buf_lock);
799 
800 	INIT_LIST_HEAD(&spidev->device_entry);
801 
802 	/* If we can allocate a minor number, hook up this device.
803 	 * Reusing minors is fine so long as udev or mdev is working.
804 	 */
805 	mutex_lock(&device_list_lock);
806 	minor = find_first_zero_bit(minors, N_SPI_MINORS);
807 	if (minor < N_SPI_MINORS) {
808 		struct device *dev;
809 
810 		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
811 		dev = device_create(spidev_class, &spi->dev, spidev->devt,
812 				    spidev, "spidev%d.%d",
813 				    spi->master->bus_num, spi_get_chipselect(spi, 0));
814 		status = PTR_ERR_OR_ZERO(dev);
815 	} else {
816 		dev_dbg(&spi->dev, "no minor number available!\n");
817 		status = -ENODEV;
818 	}
819 	if (status == 0) {
820 		set_bit(minor, minors);
821 		list_add(&spidev->device_entry, &device_list);
822 	}
823 	mutex_unlock(&device_list_lock);
824 
825 	spidev->speed_hz = spi->max_speed_hz;
826 
827 	if (status == 0)
828 		spi_set_drvdata(spi, spidev);
829 	else
830 		kfree(spidev);
831 
832 	return status;
833 }
834 
835 static void spidev_remove(struct spi_device *spi)
836 {
837 	struct spidev_data	*spidev = spi_get_drvdata(spi);
838 
839 	/* prevent new opens */
840 	mutex_lock(&device_list_lock);
841 	/* make sure ops on existing fds can abort cleanly */
842 	mutex_lock(&spidev->spi_lock);
843 	spidev->spi = NULL;
844 	mutex_unlock(&spidev->spi_lock);
845 
846 	list_del(&spidev->device_entry);
847 	device_destroy(spidev_class, spidev->devt);
848 	clear_bit(MINOR(spidev->devt), minors);
849 	if (spidev->users == 0)
850 		kfree(spidev);
851 	mutex_unlock(&device_list_lock);
852 }
853 
854 static struct spi_driver spidev_spi_driver = {
855 	.driver = {
856 		.name =		"spidev",
857 		.of_match_table = spidev_dt_ids,
858 		.acpi_match_table = spidev_acpi_ids,
859 	},
860 	.probe =	spidev_probe,
861 	.remove =	spidev_remove,
862 	.id_table =	spidev_spi_ids,
863 
864 	/* NOTE:  suspend/resume methods are not necessary here.
865 	 * We don't do anything except pass the requests to/from
866 	 * the underlying controller.  The refrigerator handles
867 	 * most issues; the controller driver handles the rest.
868 	 */
869 };
870 
871 /*-------------------------------------------------------------------------*/
872 
873 static int __init spidev_init(void)
874 {
875 	int status;
876 
877 	/* Claim our 256 reserved device numbers.  Then register a class
878 	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
879 	 * the driver which manages those device numbers.
880 	 */
881 	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
882 	if (status < 0)
883 		return status;
884 
885 	spidev_class = class_create("spidev");
886 	if (IS_ERR(spidev_class)) {
887 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
888 		return PTR_ERR(spidev_class);
889 	}
890 
891 	status = spi_register_driver(&spidev_spi_driver);
892 	if (status < 0) {
893 		class_destroy(spidev_class);
894 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
895 	}
896 	return status;
897 }
898 module_init(spidev_init);
899 
900 static void __exit spidev_exit(void)
901 {
902 	spi_unregister_driver(&spidev_spi_driver);
903 	class_destroy(spidev_class);
904 	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
905 }
906 module_exit(spidev_exit);
907 
908 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
909 MODULE_DESCRIPTION("User mode SPI device interface");
910 MODULE_LICENSE("GPL");
911 MODULE_ALIAS("spi:spidev");
912