xref: /openbmc/linux/drivers/spi/spidev.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * Simple synchronous userspace interface to SPI devices
3  *
4  * Copyright (C) 2006 SWAPP
5  *	Andrea Paterniani <a.paterniani@swapp-eng.it>
6  * Copyright (C) 2007 David Brownell (simplification, cleanup)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  */
18 
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/ioctl.h>
22 #include <linux/fs.h>
23 #include <linux/device.h>
24 #include <linux/err.h>
25 #include <linux/list.h>
26 #include <linux/errno.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/compat.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 
33 #include <linux/spi/spi.h>
34 #include <linux/spi/spidev.h>
35 
36 #include <linux/uaccess.h>
37 
38 
39 /*
40  * This supports access to SPI devices using normal userspace I/O calls.
41  * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
42  * and often mask message boundaries, full SPI support requires full duplex
43  * transfers.  There are several kinds of internal message boundaries to
44  * handle chipselect management and other protocol options.
45  *
46  * SPI has a character major number assigned.  We allocate minor numbers
47  * dynamically using a bitmask.  You must use hotplug tools, such as udev
48  * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
49  * nodes, since there is no fixed association of minor numbers with any
50  * particular SPI bus or device.
51  */
52 #define SPIDEV_MAJOR			153	/* assigned */
53 #define N_SPI_MINORS			32	/* ... up to 256 */
54 
55 static DECLARE_BITMAP(minors, N_SPI_MINORS);
56 
57 
58 /* Bit masks for spi_device.mode management.  Note that incorrect
59  * settings for some settings can cause *lots* of trouble for other
60  * devices on a shared bus:
61  *
62  *  - CS_HIGH ... this device will be active when it shouldn't be
63  *  - 3WIRE ... when active, it won't behave as it should
64  *  - NO_CS ... there will be no explicit message boundaries; this
65  *	is completely incompatible with the shared bus model
66  *  - READY ... transfers may proceed when they shouldn't.
67  *
68  * REVISIT should changing those flags be privileged?
69  */
70 #define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
71 				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
72 				| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
73 				| SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
74 
75 struct spidev_data {
76 	dev_t			devt;
77 	spinlock_t		spi_lock;
78 	struct spi_device	*spi;
79 	struct list_head	device_entry;
80 
81 	/* TX/RX buffers are NULL unless this device is open (users > 0) */
82 	struct mutex		buf_lock;
83 	unsigned		users;
84 	u8			*tx_buffer;
85 	u8			*rx_buffer;
86 	u32			speed_hz;
87 };
88 
89 static LIST_HEAD(device_list);
90 static DEFINE_MUTEX(device_list_lock);
91 
92 static unsigned bufsiz = 4096;
93 module_param(bufsiz, uint, S_IRUGO);
94 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
95 
96 /*-------------------------------------------------------------------------*/
97 
98 /*
99  * We can't use the standard synchronous wrappers for file I/O; we
100  * need to protect against async removal of the underlying spi_device.
101  */
102 static void spidev_complete(void *arg)
103 {
104 	complete(arg);
105 }
106 
107 static ssize_t
108 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
109 {
110 	DECLARE_COMPLETION_ONSTACK(done);
111 	int status;
112 
113 	message->complete = spidev_complete;
114 	message->context = &done;
115 
116 	spin_lock_irq(&spidev->spi_lock);
117 	if (spidev->spi == NULL)
118 		status = -ESHUTDOWN;
119 	else
120 		status = spi_async(spidev->spi, message);
121 	spin_unlock_irq(&spidev->spi_lock);
122 
123 	if (status == 0) {
124 		wait_for_completion(&done);
125 		status = message->status;
126 		if (status == 0)
127 			status = message->actual_length;
128 	}
129 	return status;
130 }
131 
132 static inline ssize_t
133 spidev_sync_write(struct spidev_data *spidev, size_t len)
134 {
135 	struct spi_transfer	t = {
136 			.tx_buf		= spidev->tx_buffer,
137 			.len		= len,
138 			.speed_hz	= spidev->speed_hz,
139 		};
140 	struct spi_message	m;
141 
142 	spi_message_init(&m);
143 	spi_message_add_tail(&t, &m);
144 	return spidev_sync(spidev, &m);
145 }
146 
147 static inline ssize_t
148 spidev_sync_read(struct spidev_data *spidev, size_t len)
149 {
150 	struct spi_transfer	t = {
151 			.rx_buf		= spidev->rx_buffer,
152 			.len		= len,
153 			.speed_hz	= spidev->speed_hz,
154 		};
155 	struct spi_message	m;
156 
157 	spi_message_init(&m);
158 	spi_message_add_tail(&t, &m);
159 	return spidev_sync(spidev, &m);
160 }
161 
162 /*-------------------------------------------------------------------------*/
163 
164 /* Read-only message with current device setup */
165 static ssize_t
166 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
167 {
168 	struct spidev_data	*spidev;
169 	ssize_t			status = 0;
170 
171 	/* chipselect only toggles at start or end of operation */
172 	if (count > bufsiz)
173 		return -EMSGSIZE;
174 
175 	spidev = filp->private_data;
176 
177 	mutex_lock(&spidev->buf_lock);
178 	status = spidev_sync_read(spidev, count);
179 	if (status > 0) {
180 		unsigned long	missing;
181 
182 		missing = copy_to_user(buf, spidev->rx_buffer, status);
183 		if (missing == status)
184 			status = -EFAULT;
185 		else
186 			status = status - missing;
187 	}
188 	mutex_unlock(&spidev->buf_lock);
189 
190 	return status;
191 }
192 
193 /* Write-only message with current device setup */
194 static ssize_t
195 spidev_write(struct file *filp, const char __user *buf,
196 		size_t count, loff_t *f_pos)
197 {
198 	struct spidev_data	*spidev;
199 	ssize_t			status = 0;
200 	unsigned long		missing;
201 
202 	/* chipselect only toggles at start or end of operation */
203 	if (count > bufsiz)
204 		return -EMSGSIZE;
205 
206 	spidev = filp->private_data;
207 
208 	mutex_lock(&spidev->buf_lock);
209 	missing = copy_from_user(spidev->tx_buffer, buf, count);
210 	if (missing == 0)
211 		status = spidev_sync_write(spidev, count);
212 	else
213 		status = -EFAULT;
214 	mutex_unlock(&spidev->buf_lock);
215 
216 	return status;
217 }
218 
219 static int spidev_message(struct spidev_data *spidev,
220 		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
221 {
222 	struct spi_message	msg;
223 	struct spi_transfer	*k_xfers;
224 	struct spi_transfer	*k_tmp;
225 	struct spi_ioc_transfer *u_tmp;
226 	unsigned		n, total;
227 	u8			*tx_buf, *rx_buf;
228 	int			status = -EFAULT;
229 
230 	spi_message_init(&msg);
231 	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
232 	if (k_xfers == NULL)
233 		return -ENOMEM;
234 
235 	/* Construct spi_message, copying any tx data to bounce buffer.
236 	 * We walk the array of user-provided transfers, using each one
237 	 * to initialize a kernel version of the same transfer.
238 	 */
239 	tx_buf = spidev->tx_buffer;
240 	rx_buf = spidev->rx_buffer;
241 	total = 0;
242 	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
243 			n;
244 			n--, k_tmp++, u_tmp++) {
245 		k_tmp->len = u_tmp->len;
246 
247 		total += k_tmp->len;
248 		if (total > bufsiz) {
249 			status = -EMSGSIZE;
250 			goto done;
251 		}
252 
253 		if (u_tmp->rx_buf) {
254 			k_tmp->rx_buf = rx_buf;
255 			if (!access_ok(VERIFY_WRITE, (u8 __user *)
256 						(uintptr_t) u_tmp->rx_buf,
257 						u_tmp->len))
258 				goto done;
259 		}
260 		if (u_tmp->tx_buf) {
261 			k_tmp->tx_buf = tx_buf;
262 			if (copy_from_user(tx_buf, (const u8 __user *)
263 						(uintptr_t) u_tmp->tx_buf,
264 					u_tmp->len))
265 				goto done;
266 		}
267 		tx_buf += k_tmp->len;
268 		rx_buf += k_tmp->len;
269 
270 		k_tmp->cs_change = !!u_tmp->cs_change;
271 		k_tmp->tx_nbits = u_tmp->tx_nbits;
272 		k_tmp->rx_nbits = u_tmp->rx_nbits;
273 		k_tmp->bits_per_word = u_tmp->bits_per_word;
274 		k_tmp->delay_usecs = u_tmp->delay_usecs;
275 		k_tmp->speed_hz = u_tmp->speed_hz;
276 		if (!k_tmp->speed_hz)
277 			k_tmp->speed_hz = spidev->speed_hz;
278 #ifdef VERBOSE
279 		dev_dbg(&spidev->spi->dev,
280 			"  xfer len %zd %s%s%s%dbits %u usec %uHz\n",
281 			u_tmp->len,
282 			u_tmp->rx_buf ? "rx " : "",
283 			u_tmp->tx_buf ? "tx " : "",
284 			u_tmp->cs_change ? "cs " : "",
285 			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
286 			u_tmp->delay_usecs,
287 			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
288 #endif
289 		spi_message_add_tail(k_tmp, &msg);
290 	}
291 
292 	status = spidev_sync(spidev, &msg);
293 	if (status < 0)
294 		goto done;
295 
296 	/* copy any rx data out of bounce buffer */
297 	rx_buf = spidev->rx_buffer;
298 	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
299 		if (u_tmp->rx_buf) {
300 			if (__copy_to_user((u8 __user *)
301 					(uintptr_t) u_tmp->rx_buf, rx_buf,
302 					u_tmp->len)) {
303 				status = -EFAULT;
304 				goto done;
305 			}
306 		}
307 		rx_buf += u_tmp->len;
308 	}
309 	status = total;
310 
311 done:
312 	kfree(k_xfers);
313 	return status;
314 }
315 
316 static struct spi_ioc_transfer *
317 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
318 		unsigned *n_ioc)
319 {
320 	struct spi_ioc_transfer	*ioc;
321 	u32	tmp;
322 
323 	/* Check type, command number and direction */
324 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
325 			|| _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
326 			|| _IOC_DIR(cmd) != _IOC_WRITE)
327 		return ERR_PTR(-ENOTTY);
328 
329 	tmp = _IOC_SIZE(cmd);
330 	if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
331 		return ERR_PTR(-EINVAL);
332 	*n_ioc = tmp / sizeof(struct spi_ioc_transfer);
333 	if (*n_ioc == 0)
334 		return NULL;
335 
336 	/* copy into scratch area */
337 	ioc = kmalloc(tmp, GFP_KERNEL);
338 	if (!ioc)
339 		return ERR_PTR(-ENOMEM);
340 	if (__copy_from_user(ioc, u_ioc, tmp)) {
341 		kfree(ioc);
342 		return ERR_PTR(-EFAULT);
343 	}
344 	return ioc;
345 }
346 
347 static long
348 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
349 {
350 	int			err = 0;
351 	int			retval = 0;
352 	struct spidev_data	*spidev;
353 	struct spi_device	*spi;
354 	u32			tmp;
355 	unsigned		n_ioc;
356 	struct spi_ioc_transfer	*ioc;
357 
358 	/* Check type and command number */
359 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
360 		return -ENOTTY;
361 
362 	/* Check access direction once here; don't repeat below.
363 	 * IOC_DIR is from the user perspective, while access_ok is
364 	 * from the kernel perspective; so they look reversed.
365 	 */
366 	if (_IOC_DIR(cmd) & _IOC_READ)
367 		err = !access_ok(VERIFY_WRITE,
368 				(void __user *)arg, _IOC_SIZE(cmd));
369 	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
370 		err = !access_ok(VERIFY_READ,
371 				(void __user *)arg, _IOC_SIZE(cmd));
372 	if (err)
373 		return -EFAULT;
374 
375 	/* guard against device removal before, or while,
376 	 * we issue this ioctl.
377 	 */
378 	spidev = filp->private_data;
379 	spin_lock_irq(&spidev->spi_lock);
380 	spi = spi_dev_get(spidev->spi);
381 	spin_unlock_irq(&spidev->spi_lock);
382 
383 	if (spi == NULL)
384 		return -ESHUTDOWN;
385 
386 	/* use the buffer lock here for triple duty:
387 	 *  - prevent I/O (from us) so calling spi_setup() is safe;
388 	 *  - prevent concurrent SPI_IOC_WR_* from morphing
389 	 *    data fields while SPI_IOC_RD_* reads them;
390 	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
391 	 */
392 	mutex_lock(&spidev->buf_lock);
393 
394 	switch (cmd) {
395 	/* read requests */
396 	case SPI_IOC_RD_MODE:
397 		retval = __put_user(spi->mode & SPI_MODE_MASK,
398 					(__u8 __user *)arg);
399 		break;
400 	case SPI_IOC_RD_MODE32:
401 		retval = __put_user(spi->mode & SPI_MODE_MASK,
402 					(__u32 __user *)arg);
403 		break;
404 	case SPI_IOC_RD_LSB_FIRST:
405 		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
406 					(__u8 __user *)arg);
407 		break;
408 	case SPI_IOC_RD_BITS_PER_WORD:
409 		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
410 		break;
411 	case SPI_IOC_RD_MAX_SPEED_HZ:
412 		retval = __put_user(spidev->speed_hz, (__u32 __user *)arg);
413 		break;
414 
415 	/* write requests */
416 	case SPI_IOC_WR_MODE:
417 	case SPI_IOC_WR_MODE32:
418 		if (cmd == SPI_IOC_WR_MODE)
419 			retval = __get_user(tmp, (u8 __user *)arg);
420 		else
421 			retval = __get_user(tmp, (u32 __user *)arg);
422 		if (retval == 0) {
423 			u32	save = spi->mode;
424 
425 			if (tmp & ~SPI_MODE_MASK) {
426 				retval = -EINVAL;
427 				break;
428 			}
429 
430 			tmp |= spi->mode & ~SPI_MODE_MASK;
431 			spi->mode = (u16)tmp;
432 			retval = spi_setup(spi);
433 			if (retval < 0)
434 				spi->mode = save;
435 			else
436 				dev_dbg(&spi->dev, "spi mode %x\n", tmp);
437 		}
438 		break;
439 	case SPI_IOC_WR_LSB_FIRST:
440 		retval = __get_user(tmp, (__u8 __user *)arg);
441 		if (retval == 0) {
442 			u32	save = spi->mode;
443 
444 			if (tmp)
445 				spi->mode |= SPI_LSB_FIRST;
446 			else
447 				spi->mode &= ~SPI_LSB_FIRST;
448 			retval = spi_setup(spi);
449 			if (retval < 0)
450 				spi->mode = save;
451 			else
452 				dev_dbg(&spi->dev, "%csb first\n",
453 						tmp ? 'l' : 'm');
454 		}
455 		break;
456 	case SPI_IOC_WR_BITS_PER_WORD:
457 		retval = __get_user(tmp, (__u8 __user *)arg);
458 		if (retval == 0) {
459 			u8	save = spi->bits_per_word;
460 
461 			spi->bits_per_word = tmp;
462 			retval = spi_setup(spi);
463 			if (retval < 0)
464 				spi->bits_per_word = save;
465 			else
466 				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
467 		}
468 		break;
469 	case SPI_IOC_WR_MAX_SPEED_HZ:
470 		retval = __get_user(tmp, (__u32 __user *)arg);
471 		if (retval == 0) {
472 			u32	save = spi->max_speed_hz;
473 
474 			spi->max_speed_hz = tmp;
475 			retval = spi_setup(spi);
476 			if (retval >= 0)
477 				spidev->speed_hz = tmp;
478 			else
479 				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
480 			spi->max_speed_hz = save;
481 		}
482 		break;
483 
484 	default:
485 		/* segmented and/or full-duplex I/O request */
486 		/* Check message and copy into scratch area */
487 		ioc = spidev_get_ioc_message(cmd,
488 				(struct spi_ioc_transfer __user *)arg, &n_ioc);
489 		if (IS_ERR(ioc)) {
490 			retval = PTR_ERR(ioc);
491 			break;
492 		}
493 		if (!ioc)
494 			break;	/* n_ioc is also 0 */
495 
496 		/* translate to spi_message, execute */
497 		retval = spidev_message(spidev, ioc, n_ioc);
498 		kfree(ioc);
499 		break;
500 	}
501 
502 	mutex_unlock(&spidev->buf_lock);
503 	spi_dev_put(spi);
504 	return retval;
505 }
506 
507 #ifdef CONFIG_COMPAT
508 static long
509 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
510 		unsigned long arg)
511 {
512 	struct spi_ioc_transfer __user	*u_ioc;
513 	int				retval = 0;
514 	struct spidev_data		*spidev;
515 	struct spi_device		*spi;
516 	unsigned			n_ioc, n;
517 	struct spi_ioc_transfer		*ioc;
518 
519 	u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
520 	if (!access_ok(VERIFY_READ, u_ioc, _IOC_SIZE(cmd)))
521 		return -EFAULT;
522 
523 	/* guard against device removal before, or while,
524 	 * we issue this ioctl.
525 	 */
526 	spidev = filp->private_data;
527 	spin_lock_irq(&spidev->spi_lock);
528 	spi = spi_dev_get(spidev->spi);
529 	spin_unlock_irq(&spidev->spi_lock);
530 
531 	if (spi == NULL)
532 		return -ESHUTDOWN;
533 
534 	/* SPI_IOC_MESSAGE needs the buffer locked "normally" */
535 	mutex_lock(&spidev->buf_lock);
536 
537 	/* Check message and copy into scratch area */
538 	ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
539 	if (IS_ERR(ioc)) {
540 		retval = PTR_ERR(ioc);
541 		goto done;
542 	}
543 	if (!ioc)
544 		goto done;	/* n_ioc is also 0 */
545 
546 	/* Convert buffer pointers */
547 	for (n = 0; n < n_ioc; n++) {
548 		ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
549 		ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
550 	}
551 
552 	/* translate to spi_message, execute */
553 	retval = spidev_message(spidev, ioc, n_ioc);
554 	kfree(ioc);
555 
556 done:
557 	mutex_unlock(&spidev->buf_lock);
558 	spi_dev_put(spi);
559 	return retval;
560 }
561 
562 static long
563 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
564 {
565 	if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
566 			&& _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
567 			&& _IOC_DIR(cmd) == _IOC_WRITE)
568 		return spidev_compat_ioc_message(filp, cmd, arg);
569 
570 	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
571 }
572 #else
573 #define spidev_compat_ioctl NULL
574 #endif /* CONFIG_COMPAT */
575 
576 static int spidev_open(struct inode *inode, struct file *filp)
577 {
578 	struct spidev_data	*spidev;
579 	int			status = -ENXIO;
580 
581 	mutex_lock(&device_list_lock);
582 
583 	list_for_each_entry(spidev, &device_list, device_entry) {
584 		if (spidev->devt == inode->i_rdev) {
585 			status = 0;
586 			break;
587 		}
588 	}
589 
590 	if (status) {
591 		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
592 		goto err_find_dev;
593 	}
594 
595 	if (!spidev->tx_buffer) {
596 		spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
597 		if (!spidev->tx_buffer) {
598 				dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
599 				status = -ENOMEM;
600 			goto err_find_dev;
601 			}
602 		}
603 
604 	if (!spidev->rx_buffer) {
605 		spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
606 		if (!spidev->rx_buffer) {
607 			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
608 			status = -ENOMEM;
609 			goto err_alloc_rx_buf;
610 		}
611 	}
612 
613 	spidev->users++;
614 	filp->private_data = spidev;
615 	nonseekable_open(inode, filp);
616 
617 	mutex_unlock(&device_list_lock);
618 	return 0;
619 
620 err_alloc_rx_buf:
621 	kfree(spidev->tx_buffer);
622 	spidev->tx_buffer = NULL;
623 err_find_dev:
624 	mutex_unlock(&device_list_lock);
625 	return status;
626 }
627 
628 static int spidev_release(struct inode *inode, struct file *filp)
629 {
630 	struct spidev_data	*spidev;
631 	int			status = 0;
632 
633 	mutex_lock(&device_list_lock);
634 	spidev = filp->private_data;
635 	filp->private_data = NULL;
636 
637 	/* last close? */
638 	spidev->users--;
639 	if (!spidev->users) {
640 		int		dofree;
641 
642 		kfree(spidev->tx_buffer);
643 		spidev->tx_buffer = NULL;
644 
645 		kfree(spidev->rx_buffer);
646 		spidev->rx_buffer = NULL;
647 
648 		spidev->speed_hz = spidev->spi->max_speed_hz;
649 
650 		/* ... after we unbound from the underlying device? */
651 		spin_lock_irq(&spidev->spi_lock);
652 		dofree = (spidev->spi == NULL);
653 		spin_unlock_irq(&spidev->spi_lock);
654 
655 		if (dofree)
656 			kfree(spidev);
657 	}
658 	mutex_unlock(&device_list_lock);
659 
660 	return status;
661 }
662 
663 static const struct file_operations spidev_fops = {
664 	.owner =	THIS_MODULE,
665 	/* REVISIT switch to aio primitives, so that userspace
666 	 * gets more complete API coverage.  It'll simplify things
667 	 * too, except for the locking.
668 	 */
669 	.write =	spidev_write,
670 	.read =		spidev_read,
671 	.unlocked_ioctl = spidev_ioctl,
672 	.compat_ioctl = spidev_compat_ioctl,
673 	.open =		spidev_open,
674 	.release =	spidev_release,
675 	.llseek =	no_llseek,
676 };
677 
678 /*-------------------------------------------------------------------------*/
679 
680 /* The main reason to have this class is to make mdev/udev create the
681  * /dev/spidevB.C character device nodes exposing our userspace API.
682  * It also simplifies memory management.
683  */
684 
685 static struct class *spidev_class;
686 
687 /*-------------------------------------------------------------------------*/
688 
689 static int spidev_probe(struct spi_device *spi)
690 {
691 	struct spidev_data	*spidev;
692 	int			status;
693 	unsigned long		minor;
694 
695 	/* Allocate driver data */
696 	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
697 	if (!spidev)
698 		return -ENOMEM;
699 
700 	/* Initialize the driver data */
701 	spidev->spi = spi;
702 	spin_lock_init(&spidev->spi_lock);
703 	mutex_init(&spidev->buf_lock);
704 
705 	INIT_LIST_HEAD(&spidev->device_entry);
706 
707 	/* If we can allocate a minor number, hook up this device.
708 	 * Reusing minors is fine so long as udev or mdev is working.
709 	 */
710 	mutex_lock(&device_list_lock);
711 	minor = find_first_zero_bit(minors, N_SPI_MINORS);
712 	if (minor < N_SPI_MINORS) {
713 		struct device *dev;
714 
715 		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
716 		dev = device_create(spidev_class, &spi->dev, spidev->devt,
717 				    spidev, "spidev%d.%d",
718 				    spi->master->bus_num, spi->chip_select);
719 		status = PTR_ERR_OR_ZERO(dev);
720 	} else {
721 		dev_dbg(&spi->dev, "no minor number available!\n");
722 		status = -ENODEV;
723 	}
724 	if (status == 0) {
725 		set_bit(minor, minors);
726 		list_add(&spidev->device_entry, &device_list);
727 	}
728 	mutex_unlock(&device_list_lock);
729 
730 	spidev->speed_hz = spi->max_speed_hz;
731 
732 	if (status == 0)
733 		spi_set_drvdata(spi, spidev);
734 	else
735 		kfree(spidev);
736 
737 	return status;
738 }
739 
740 static int spidev_remove(struct spi_device *spi)
741 {
742 	struct spidev_data	*spidev = spi_get_drvdata(spi);
743 
744 	/* make sure ops on existing fds can abort cleanly */
745 	spin_lock_irq(&spidev->spi_lock);
746 	spidev->spi = NULL;
747 	spin_unlock_irq(&spidev->spi_lock);
748 
749 	/* prevent new opens */
750 	mutex_lock(&device_list_lock);
751 	list_del(&spidev->device_entry);
752 	device_destroy(spidev_class, spidev->devt);
753 	clear_bit(MINOR(spidev->devt), minors);
754 	if (spidev->users == 0)
755 		kfree(spidev);
756 	mutex_unlock(&device_list_lock);
757 
758 	return 0;
759 }
760 
761 static const struct of_device_id spidev_dt_ids[] = {
762 	{ .compatible = "rohm,dh2228fv" },
763 	{},
764 };
765 
766 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
767 
768 static struct spi_driver spidev_spi_driver = {
769 	.driver = {
770 		.name =		"spidev",
771 		.owner =	THIS_MODULE,
772 		.of_match_table = of_match_ptr(spidev_dt_ids),
773 	},
774 	.probe =	spidev_probe,
775 	.remove =	spidev_remove,
776 
777 	/* NOTE:  suspend/resume methods are not necessary here.
778 	 * We don't do anything except pass the requests to/from
779 	 * the underlying controller.  The refrigerator handles
780 	 * most issues; the controller driver handles the rest.
781 	 */
782 };
783 
784 /*-------------------------------------------------------------------------*/
785 
786 static int __init spidev_init(void)
787 {
788 	int status;
789 
790 	/* Claim our 256 reserved device numbers.  Then register a class
791 	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
792 	 * the driver which manages those device numbers.
793 	 */
794 	BUILD_BUG_ON(N_SPI_MINORS > 256);
795 	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
796 	if (status < 0)
797 		return status;
798 
799 	spidev_class = class_create(THIS_MODULE, "spidev");
800 	if (IS_ERR(spidev_class)) {
801 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
802 		return PTR_ERR(spidev_class);
803 	}
804 
805 	status = spi_register_driver(&spidev_spi_driver);
806 	if (status < 0) {
807 		class_destroy(spidev_class);
808 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
809 	}
810 	return status;
811 }
812 module_init(spidev_init);
813 
814 static void __exit spidev_exit(void)
815 {
816 	spi_unregister_driver(&spidev_spi_driver);
817 	class_destroy(spidev_class);
818 	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
819 }
820 module_exit(spidev_exit);
821 
822 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
823 MODULE_DESCRIPTION("User mode SPI device interface");
824 MODULE_LICENSE("GPL");
825 MODULE_ALIAS("spi:spidev");
826