xref: /openbmc/linux/drivers/spi/spidev.c (revision c7a806d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Simple synchronous userspace interface to SPI devices
4  *
5  * Copyright (C) 2006 SWAPP
6  *	Andrea Paterniani <a.paterniani@swapp-eng.it>
7  * Copyright (C) 2007 David Brownell (simplification, cleanup)
8  */
9 
10 #include <linux/init.h>
11 #include <linux/ioctl.h>
12 #include <linux/fs.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/list.h>
16 #include <linux/errno.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/property.h>
21 #include <linux/slab.h>
22 #include <linux/compat.h>
23 
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spidev.h>
26 
27 #include <linux/uaccess.h>
28 
29 
30 /*
31  * This supports access to SPI devices using normal userspace I/O calls.
32  * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
33  * and often mask message boundaries, full SPI support requires full duplex
34  * transfers.  There are several kinds of internal message boundaries to
35  * handle chipselect management and other protocol options.
36  *
37  * SPI has a character major number assigned.  We allocate minor numbers
38  * dynamically using a bitmask.  You must use hotplug tools, such as udev
39  * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
40  * nodes, since there is no fixed association of minor numbers with any
41  * particular SPI bus or device.
42  */
43 #define SPIDEV_MAJOR			153	/* assigned */
44 #define N_SPI_MINORS			32	/* ... up to 256 */
45 
46 static DECLARE_BITMAP(minors, N_SPI_MINORS);
47 
48 static_assert(N_SPI_MINORS > 0 && N_SPI_MINORS <= 256);
49 
50 /* Bit masks for spi_device.mode management.  Note that incorrect
51  * settings for some settings can cause *lots* of trouble for other
52  * devices on a shared bus:
53  *
54  *  - CS_HIGH ... this device will be active when it shouldn't be
55  *  - 3WIRE ... when active, it won't behave as it should
56  *  - NO_CS ... there will be no explicit message boundaries; this
57  *	is completely incompatible with the shared bus model
58  *  - READY ... transfers may proceed when they shouldn't.
59  *
60  * REVISIT should changing those flags be privileged?
61  */
62 #define SPI_MODE_MASK		(SPI_MODE_X_MASK | SPI_CS_HIGH \
63 				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
64 				| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
65 				| SPI_TX_QUAD | SPI_TX_OCTAL | SPI_RX_DUAL \
66 				| SPI_RX_QUAD | SPI_RX_OCTAL \
67 				| SPI_RX_CPHA_FLIP)
68 
69 struct spidev_data {
70 	dev_t			devt;
71 	spinlock_t		spi_lock;
72 	struct spi_device	*spi;
73 	struct list_head	device_entry;
74 
75 	/* TX/RX buffers are NULL unless this device is open (users > 0) */
76 	struct mutex		buf_lock;
77 	unsigned		users;
78 	u8			*tx_buffer;
79 	u8			*rx_buffer;
80 	u32			speed_hz;
81 };
82 
83 static LIST_HEAD(device_list);
84 static DEFINE_MUTEX(device_list_lock);
85 
86 static unsigned bufsiz = 4096;
87 module_param(bufsiz, uint, S_IRUGO);
88 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
89 
90 /*-------------------------------------------------------------------------*/
91 
92 static ssize_t
93 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
94 {
95 	int status;
96 	struct spi_device *spi;
97 
98 	spin_lock_irq(&spidev->spi_lock);
99 	spi = spidev->spi;
100 	spin_unlock_irq(&spidev->spi_lock);
101 
102 	if (spi == NULL)
103 		status = -ESHUTDOWN;
104 	else
105 		status = spi_sync(spi, message);
106 
107 	if (status == 0)
108 		status = message->actual_length;
109 
110 	return status;
111 }
112 
113 static inline ssize_t
114 spidev_sync_write(struct spidev_data *spidev, size_t len)
115 {
116 	struct spi_transfer	t = {
117 			.tx_buf		= spidev->tx_buffer,
118 			.len		= len,
119 			.speed_hz	= spidev->speed_hz,
120 		};
121 	struct spi_message	m;
122 
123 	spi_message_init(&m);
124 	spi_message_add_tail(&t, &m);
125 	return spidev_sync(spidev, &m);
126 }
127 
128 static inline ssize_t
129 spidev_sync_read(struct spidev_data *spidev, size_t len)
130 {
131 	struct spi_transfer	t = {
132 			.rx_buf		= spidev->rx_buffer,
133 			.len		= len,
134 			.speed_hz	= spidev->speed_hz,
135 		};
136 	struct spi_message	m;
137 
138 	spi_message_init(&m);
139 	spi_message_add_tail(&t, &m);
140 	return spidev_sync(spidev, &m);
141 }
142 
143 /*-------------------------------------------------------------------------*/
144 
145 /* Read-only message with current device setup */
146 static ssize_t
147 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
148 {
149 	struct spidev_data	*spidev;
150 	ssize_t			status;
151 
152 	/* chipselect only toggles at start or end of operation */
153 	if (count > bufsiz)
154 		return -EMSGSIZE;
155 
156 	spidev = filp->private_data;
157 
158 	mutex_lock(&spidev->buf_lock);
159 	status = spidev_sync_read(spidev, count);
160 	if (status > 0) {
161 		unsigned long	missing;
162 
163 		missing = copy_to_user(buf, spidev->rx_buffer, status);
164 		if (missing == status)
165 			status = -EFAULT;
166 		else
167 			status = status - missing;
168 	}
169 	mutex_unlock(&spidev->buf_lock);
170 
171 	return status;
172 }
173 
174 /* Write-only message with current device setup */
175 static ssize_t
176 spidev_write(struct file *filp, const char __user *buf,
177 		size_t count, loff_t *f_pos)
178 {
179 	struct spidev_data	*spidev;
180 	ssize_t			status;
181 	unsigned long		missing;
182 
183 	/* chipselect only toggles at start or end of operation */
184 	if (count > bufsiz)
185 		return -EMSGSIZE;
186 
187 	spidev = filp->private_data;
188 
189 	mutex_lock(&spidev->buf_lock);
190 	missing = copy_from_user(spidev->tx_buffer, buf, count);
191 	if (missing == 0)
192 		status = spidev_sync_write(spidev, count);
193 	else
194 		status = -EFAULT;
195 	mutex_unlock(&spidev->buf_lock);
196 
197 	return status;
198 }
199 
200 static int spidev_message(struct spidev_data *spidev,
201 		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
202 {
203 	struct spi_message	msg;
204 	struct spi_transfer	*k_xfers;
205 	struct spi_transfer	*k_tmp;
206 	struct spi_ioc_transfer *u_tmp;
207 	unsigned		n, total, tx_total, rx_total;
208 	u8			*tx_buf, *rx_buf;
209 	int			status = -EFAULT;
210 
211 	spi_message_init(&msg);
212 	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
213 	if (k_xfers == NULL)
214 		return -ENOMEM;
215 
216 	/* Construct spi_message, copying any tx data to bounce buffer.
217 	 * We walk the array of user-provided transfers, using each one
218 	 * to initialize a kernel version of the same transfer.
219 	 */
220 	tx_buf = spidev->tx_buffer;
221 	rx_buf = spidev->rx_buffer;
222 	total = 0;
223 	tx_total = 0;
224 	rx_total = 0;
225 	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
226 			n;
227 			n--, k_tmp++, u_tmp++) {
228 		/* Ensure that also following allocations from rx_buf/tx_buf will meet
229 		 * DMA alignment requirements.
230 		 */
231 		unsigned int len_aligned = ALIGN(u_tmp->len, ARCH_KMALLOC_MINALIGN);
232 
233 		k_tmp->len = u_tmp->len;
234 
235 		total += k_tmp->len;
236 		/* Since the function returns the total length of transfers
237 		 * on success, restrict the total to positive int values to
238 		 * avoid the return value looking like an error.  Also check
239 		 * each transfer length to avoid arithmetic overflow.
240 		 */
241 		if (total > INT_MAX || k_tmp->len > INT_MAX) {
242 			status = -EMSGSIZE;
243 			goto done;
244 		}
245 
246 		if (u_tmp->rx_buf) {
247 			/* this transfer needs space in RX bounce buffer */
248 			rx_total += len_aligned;
249 			if (rx_total > bufsiz) {
250 				status = -EMSGSIZE;
251 				goto done;
252 			}
253 			k_tmp->rx_buf = rx_buf;
254 			rx_buf += len_aligned;
255 		}
256 		if (u_tmp->tx_buf) {
257 			/* this transfer needs space in TX bounce buffer */
258 			tx_total += len_aligned;
259 			if (tx_total > bufsiz) {
260 				status = -EMSGSIZE;
261 				goto done;
262 			}
263 			k_tmp->tx_buf = tx_buf;
264 			if (copy_from_user(tx_buf, (const u8 __user *)
265 						(uintptr_t) u_tmp->tx_buf,
266 					u_tmp->len))
267 				goto done;
268 			tx_buf += len_aligned;
269 		}
270 
271 		k_tmp->cs_change = !!u_tmp->cs_change;
272 		k_tmp->tx_nbits = u_tmp->tx_nbits;
273 		k_tmp->rx_nbits = u_tmp->rx_nbits;
274 		k_tmp->bits_per_word = u_tmp->bits_per_word;
275 		k_tmp->delay.value = u_tmp->delay_usecs;
276 		k_tmp->delay.unit = SPI_DELAY_UNIT_USECS;
277 		k_tmp->speed_hz = u_tmp->speed_hz;
278 		k_tmp->word_delay.value = u_tmp->word_delay_usecs;
279 		k_tmp->word_delay.unit = SPI_DELAY_UNIT_USECS;
280 		if (!k_tmp->speed_hz)
281 			k_tmp->speed_hz = spidev->speed_hz;
282 #ifdef VERBOSE
283 		dev_dbg(&spidev->spi->dev,
284 			"  xfer len %u %s%s%s%dbits %u usec %u usec %uHz\n",
285 			k_tmp->len,
286 			k_tmp->rx_buf ? "rx " : "",
287 			k_tmp->tx_buf ? "tx " : "",
288 			k_tmp->cs_change ? "cs " : "",
289 			k_tmp->bits_per_word ? : spidev->spi->bits_per_word,
290 			k_tmp->delay.value,
291 			k_tmp->word_delay.value,
292 			k_tmp->speed_hz ? : spidev->spi->max_speed_hz);
293 #endif
294 		spi_message_add_tail(k_tmp, &msg);
295 	}
296 
297 	status = spidev_sync(spidev, &msg);
298 	if (status < 0)
299 		goto done;
300 
301 	/* copy any rx data out of bounce buffer */
302 	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
303 			n;
304 			n--, k_tmp++, u_tmp++) {
305 		if (u_tmp->rx_buf) {
306 			if (copy_to_user((u8 __user *)
307 					(uintptr_t) u_tmp->rx_buf, k_tmp->rx_buf,
308 					u_tmp->len)) {
309 				status = -EFAULT;
310 				goto done;
311 			}
312 		}
313 	}
314 	status = total;
315 
316 done:
317 	kfree(k_xfers);
318 	return status;
319 }
320 
321 static struct spi_ioc_transfer *
322 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
323 		unsigned *n_ioc)
324 {
325 	u32	tmp;
326 
327 	/* Check type, command number and direction */
328 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
329 			|| _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
330 			|| _IOC_DIR(cmd) != _IOC_WRITE)
331 		return ERR_PTR(-ENOTTY);
332 
333 	tmp = _IOC_SIZE(cmd);
334 	if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
335 		return ERR_PTR(-EINVAL);
336 	*n_ioc = tmp / sizeof(struct spi_ioc_transfer);
337 	if (*n_ioc == 0)
338 		return NULL;
339 
340 	/* copy into scratch area */
341 	return memdup_user(u_ioc, tmp);
342 }
343 
344 static long
345 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
346 {
347 	int			retval = 0;
348 	struct spidev_data	*spidev;
349 	struct spi_device	*spi;
350 	u32			tmp;
351 	unsigned		n_ioc;
352 	struct spi_ioc_transfer	*ioc;
353 
354 	/* Check type and command number */
355 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
356 		return -ENOTTY;
357 
358 	/* guard against device removal before, or while,
359 	 * we issue this ioctl.
360 	 */
361 	spidev = filp->private_data;
362 	spin_lock_irq(&spidev->spi_lock);
363 	spi = spi_dev_get(spidev->spi);
364 	spin_unlock_irq(&spidev->spi_lock);
365 
366 	if (spi == NULL)
367 		return -ESHUTDOWN;
368 
369 	/* use the buffer lock here for triple duty:
370 	 *  - prevent I/O (from us) so calling spi_setup() is safe;
371 	 *  - prevent concurrent SPI_IOC_WR_* from morphing
372 	 *    data fields while SPI_IOC_RD_* reads them;
373 	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
374 	 */
375 	mutex_lock(&spidev->buf_lock);
376 
377 	switch (cmd) {
378 	/* read requests */
379 	case SPI_IOC_RD_MODE:
380 	case SPI_IOC_RD_MODE32:
381 		tmp = spi->mode;
382 
383 		{
384 			struct spi_controller *ctlr = spi->controller;
385 
386 			if (ctlr->use_gpio_descriptors && ctlr->cs_gpiods &&
387 			    ctlr->cs_gpiods[spi->chip_select])
388 				tmp &= ~SPI_CS_HIGH;
389 		}
390 
391 		if (cmd == SPI_IOC_RD_MODE)
392 			retval = put_user(tmp & SPI_MODE_MASK,
393 					  (__u8 __user *)arg);
394 		else
395 			retval = put_user(tmp & SPI_MODE_MASK,
396 					  (__u32 __user *)arg);
397 		break;
398 	case SPI_IOC_RD_LSB_FIRST:
399 		retval = put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
400 					(__u8 __user *)arg);
401 		break;
402 	case SPI_IOC_RD_BITS_PER_WORD:
403 		retval = put_user(spi->bits_per_word, (__u8 __user *)arg);
404 		break;
405 	case SPI_IOC_RD_MAX_SPEED_HZ:
406 		retval = put_user(spidev->speed_hz, (__u32 __user *)arg);
407 		break;
408 
409 	/* write requests */
410 	case SPI_IOC_WR_MODE:
411 	case SPI_IOC_WR_MODE32:
412 		if (cmd == SPI_IOC_WR_MODE)
413 			retval = get_user(tmp, (u8 __user *)arg);
414 		else
415 			retval = get_user(tmp, (u32 __user *)arg);
416 		if (retval == 0) {
417 			struct spi_controller *ctlr = spi->controller;
418 			u32	save = spi->mode;
419 
420 			if (tmp & ~SPI_MODE_MASK) {
421 				retval = -EINVAL;
422 				break;
423 			}
424 
425 			if (ctlr->use_gpio_descriptors && ctlr->cs_gpiods &&
426 			    ctlr->cs_gpiods[spi->chip_select])
427 				tmp |= SPI_CS_HIGH;
428 
429 			tmp |= spi->mode & ~SPI_MODE_MASK;
430 			spi->mode = tmp & SPI_MODE_USER_MASK;
431 			retval = spi_setup(spi);
432 			if (retval < 0)
433 				spi->mode = save;
434 			else
435 				dev_dbg(&spi->dev, "spi mode %x\n", tmp);
436 		}
437 		break;
438 	case SPI_IOC_WR_LSB_FIRST:
439 		retval = get_user(tmp, (__u8 __user *)arg);
440 		if (retval == 0) {
441 			u32	save = spi->mode;
442 
443 			if (tmp)
444 				spi->mode |= SPI_LSB_FIRST;
445 			else
446 				spi->mode &= ~SPI_LSB_FIRST;
447 			retval = spi_setup(spi);
448 			if (retval < 0)
449 				spi->mode = save;
450 			else
451 				dev_dbg(&spi->dev, "%csb first\n",
452 						tmp ? 'l' : 'm');
453 		}
454 		break;
455 	case SPI_IOC_WR_BITS_PER_WORD:
456 		retval = get_user(tmp, (__u8 __user *)arg);
457 		if (retval == 0) {
458 			u8	save = spi->bits_per_word;
459 
460 			spi->bits_per_word = tmp;
461 			retval = spi_setup(spi);
462 			if (retval < 0)
463 				spi->bits_per_word = save;
464 			else
465 				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
466 		}
467 		break;
468 	case SPI_IOC_WR_MAX_SPEED_HZ: {
469 		u32 save;
470 
471 		retval = get_user(tmp, (__u32 __user *)arg);
472 		if (retval)
473 			break;
474 		if (tmp == 0) {
475 			retval = -EINVAL;
476 			break;
477 		}
478 
479 		save = spi->max_speed_hz;
480 
481 		spi->max_speed_hz = tmp;
482 		retval = spi_setup(spi);
483 		if (retval == 0) {
484 			spidev->speed_hz = tmp;
485 			dev_dbg(&spi->dev, "%d Hz (max)\n", spidev->speed_hz);
486 		}
487 
488 		spi->max_speed_hz = save;
489 		break;
490 	}
491 	default:
492 		/* segmented and/or full-duplex I/O request */
493 		/* Check message and copy into scratch area */
494 		ioc = spidev_get_ioc_message(cmd,
495 				(struct spi_ioc_transfer __user *)arg, &n_ioc);
496 		if (IS_ERR(ioc)) {
497 			retval = PTR_ERR(ioc);
498 			break;
499 		}
500 		if (!ioc)
501 			break;	/* n_ioc is also 0 */
502 
503 		/* translate to spi_message, execute */
504 		retval = spidev_message(spidev, ioc, n_ioc);
505 		kfree(ioc);
506 		break;
507 	}
508 
509 	mutex_unlock(&spidev->buf_lock);
510 	spi_dev_put(spi);
511 	return retval;
512 }
513 
514 #ifdef CONFIG_COMPAT
515 static long
516 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
517 		unsigned long arg)
518 {
519 	struct spi_ioc_transfer __user	*u_ioc;
520 	int				retval = 0;
521 	struct spidev_data		*spidev;
522 	struct spi_device		*spi;
523 	unsigned			n_ioc, n;
524 	struct spi_ioc_transfer		*ioc;
525 
526 	u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
527 
528 	/* guard against device removal before, or while,
529 	 * we issue this ioctl.
530 	 */
531 	spidev = filp->private_data;
532 	spin_lock_irq(&spidev->spi_lock);
533 	spi = spi_dev_get(spidev->spi);
534 	spin_unlock_irq(&spidev->spi_lock);
535 
536 	if (spi == NULL)
537 		return -ESHUTDOWN;
538 
539 	/* SPI_IOC_MESSAGE needs the buffer locked "normally" */
540 	mutex_lock(&spidev->buf_lock);
541 
542 	/* Check message and copy into scratch area */
543 	ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
544 	if (IS_ERR(ioc)) {
545 		retval = PTR_ERR(ioc);
546 		goto done;
547 	}
548 	if (!ioc)
549 		goto done;	/* n_ioc is also 0 */
550 
551 	/* Convert buffer pointers */
552 	for (n = 0; n < n_ioc; n++) {
553 		ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
554 		ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
555 	}
556 
557 	/* translate to spi_message, execute */
558 	retval = spidev_message(spidev, ioc, n_ioc);
559 	kfree(ioc);
560 
561 done:
562 	mutex_unlock(&spidev->buf_lock);
563 	spi_dev_put(spi);
564 	return retval;
565 }
566 
567 static long
568 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
569 {
570 	if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
571 			&& _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
572 			&& _IOC_DIR(cmd) == _IOC_WRITE)
573 		return spidev_compat_ioc_message(filp, cmd, arg);
574 
575 	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
576 }
577 #else
578 #define spidev_compat_ioctl NULL
579 #endif /* CONFIG_COMPAT */
580 
581 static int spidev_open(struct inode *inode, struct file *filp)
582 {
583 	struct spidev_data	*spidev = NULL, *iter;
584 	int			status = -ENXIO;
585 
586 	mutex_lock(&device_list_lock);
587 
588 	list_for_each_entry(iter, &device_list, device_entry) {
589 		if (iter->devt == inode->i_rdev) {
590 			status = 0;
591 			spidev = iter;
592 			break;
593 		}
594 	}
595 
596 	if (!spidev) {
597 		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
598 		goto err_find_dev;
599 	}
600 
601 	if (!spidev->tx_buffer) {
602 		spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
603 		if (!spidev->tx_buffer) {
604 			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
605 			status = -ENOMEM;
606 			goto err_find_dev;
607 		}
608 	}
609 
610 	if (!spidev->rx_buffer) {
611 		spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
612 		if (!spidev->rx_buffer) {
613 			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
614 			status = -ENOMEM;
615 			goto err_alloc_rx_buf;
616 		}
617 	}
618 
619 	spidev->users++;
620 	filp->private_data = spidev;
621 	stream_open(inode, filp);
622 
623 	mutex_unlock(&device_list_lock);
624 	return 0;
625 
626 err_alloc_rx_buf:
627 	kfree(spidev->tx_buffer);
628 	spidev->tx_buffer = NULL;
629 err_find_dev:
630 	mutex_unlock(&device_list_lock);
631 	return status;
632 }
633 
634 static int spidev_release(struct inode *inode, struct file *filp)
635 {
636 	struct spidev_data	*spidev;
637 	int			dofree;
638 
639 	mutex_lock(&device_list_lock);
640 	spidev = filp->private_data;
641 	filp->private_data = NULL;
642 
643 	spin_lock_irq(&spidev->spi_lock);
644 	/* ... after we unbound from the underlying device? */
645 	dofree = (spidev->spi == NULL);
646 	spin_unlock_irq(&spidev->spi_lock);
647 
648 	/* last close? */
649 	spidev->users--;
650 	if (!spidev->users) {
651 
652 		kfree(spidev->tx_buffer);
653 		spidev->tx_buffer = NULL;
654 
655 		kfree(spidev->rx_buffer);
656 		spidev->rx_buffer = NULL;
657 
658 		if (dofree)
659 			kfree(spidev);
660 		else
661 			spidev->speed_hz = spidev->spi->max_speed_hz;
662 	}
663 #ifdef CONFIG_SPI_SLAVE
664 	if (!dofree)
665 		spi_slave_abort(spidev->spi);
666 #endif
667 	mutex_unlock(&device_list_lock);
668 
669 	return 0;
670 }
671 
672 static const struct file_operations spidev_fops = {
673 	.owner =	THIS_MODULE,
674 	/* REVISIT switch to aio primitives, so that userspace
675 	 * gets more complete API coverage.  It'll simplify things
676 	 * too, except for the locking.
677 	 */
678 	.write =	spidev_write,
679 	.read =		spidev_read,
680 	.unlocked_ioctl = spidev_ioctl,
681 	.compat_ioctl = spidev_compat_ioctl,
682 	.open =		spidev_open,
683 	.release =	spidev_release,
684 	.llseek =	no_llseek,
685 };
686 
687 /*-------------------------------------------------------------------------*/
688 
689 /* The main reason to have this class is to make mdev/udev create the
690  * /dev/spidevB.C character device nodes exposing our userspace API.
691  * It also simplifies memory management.
692  */
693 
694 static struct class *spidev_class;
695 
696 static const struct spi_device_id spidev_spi_ids[] = {
697 	{ .name = "dh2228fv" },
698 	{ .name = "ltc2488" },
699 	{ .name = "sx1301" },
700 	{ .name = "bk4" },
701 	{ .name = "dhcom-board" },
702 	{ .name = "m53cpld" },
703 	{ .name = "spi-petra" },
704 	{ .name = "spi-authenta" },
705 	{},
706 };
707 MODULE_DEVICE_TABLE(spi, spidev_spi_ids);
708 
709 /*
710  * spidev should never be referenced in DT without a specific compatible string,
711  * it is a Linux implementation thing rather than a description of the hardware.
712  */
713 static int spidev_of_check(struct device *dev)
714 {
715 	if (device_property_match_string(dev, "compatible", "spidev") < 0)
716 		return 0;
717 
718 	dev_err(dev, "spidev listed directly in DT is not supported\n");
719 	return -EINVAL;
720 }
721 
722 static const struct of_device_id spidev_dt_ids[] = {
723 	{ .compatible = "rohm,dh2228fv", .data = &spidev_of_check },
724 	{ .compatible = "lineartechnology,ltc2488", .data = &spidev_of_check },
725 	{ .compatible = "semtech,sx1301", .data = &spidev_of_check },
726 	{ .compatible = "lwn,bk4", .data = &spidev_of_check },
727 	{ .compatible = "dh,dhcom-board", .data = &spidev_of_check },
728 	{ .compatible = "menlo,m53cpld", .data = &spidev_of_check },
729 	{ .compatible = "cisco,spi-petra", .data = &spidev_of_check },
730 	{ .compatible = "micron,spi-authenta", .data = &spidev_of_check },
731 	{},
732 };
733 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
734 
735 /* Dummy SPI devices not to be used in production systems */
736 static int spidev_acpi_check(struct device *dev)
737 {
738 	dev_warn(dev, "do not use this driver in production systems!\n");
739 	return 0;
740 }
741 
742 static const struct acpi_device_id spidev_acpi_ids[] = {
743 	/*
744 	 * The ACPI SPT000* devices are only meant for development and
745 	 * testing. Systems used in production should have a proper ACPI
746 	 * description of the connected peripheral and they should also use
747 	 * a proper driver instead of poking directly to the SPI bus.
748 	 */
749 	{ "SPT0001", (kernel_ulong_t)&spidev_acpi_check },
750 	{ "SPT0002", (kernel_ulong_t)&spidev_acpi_check },
751 	{ "SPT0003", (kernel_ulong_t)&spidev_acpi_check },
752 	{},
753 };
754 MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
755 
756 /*-------------------------------------------------------------------------*/
757 
758 static int spidev_probe(struct spi_device *spi)
759 {
760 	int (*match)(struct device *dev);
761 	struct spidev_data	*spidev;
762 	int			status;
763 	unsigned long		minor;
764 
765 	match = device_get_match_data(&spi->dev);
766 	if (match) {
767 		status = match(&spi->dev);
768 		if (status)
769 			return status;
770 	}
771 
772 	/* Allocate driver data */
773 	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
774 	if (!spidev)
775 		return -ENOMEM;
776 
777 	/* Initialize the driver data */
778 	spidev->spi = spi;
779 	spin_lock_init(&spidev->spi_lock);
780 	mutex_init(&spidev->buf_lock);
781 
782 	INIT_LIST_HEAD(&spidev->device_entry);
783 
784 	/* If we can allocate a minor number, hook up this device.
785 	 * Reusing minors is fine so long as udev or mdev is working.
786 	 */
787 	mutex_lock(&device_list_lock);
788 	minor = find_first_zero_bit(minors, N_SPI_MINORS);
789 	if (minor < N_SPI_MINORS) {
790 		struct device *dev;
791 
792 		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
793 		dev = device_create(spidev_class, &spi->dev, spidev->devt,
794 				    spidev, "spidev%d.%d",
795 				    spi->master->bus_num, spi->chip_select);
796 		status = PTR_ERR_OR_ZERO(dev);
797 	} else {
798 		dev_dbg(&spi->dev, "no minor number available!\n");
799 		status = -ENODEV;
800 	}
801 	if (status == 0) {
802 		set_bit(minor, minors);
803 		list_add(&spidev->device_entry, &device_list);
804 	}
805 	mutex_unlock(&device_list_lock);
806 
807 	spidev->speed_hz = spi->max_speed_hz;
808 
809 	if (status == 0)
810 		spi_set_drvdata(spi, spidev);
811 	else
812 		kfree(spidev);
813 
814 	return status;
815 }
816 
817 static void spidev_remove(struct spi_device *spi)
818 {
819 	struct spidev_data	*spidev = spi_get_drvdata(spi);
820 
821 	/* prevent new opens */
822 	mutex_lock(&device_list_lock);
823 	/* make sure ops on existing fds can abort cleanly */
824 	spin_lock_irq(&spidev->spi_lock);
825 	spidev->spi = NULL;
826 	spin_unlock_irq(&spidev->spi_lock);
827 
828 	list_del(&spidev->device_entry);
829 	device_destroy(spidev_class, spidev->devt);
830 	clear_bit(MINOR(spidev->devt), minors);
831 	if (spidev->users == 0)
832 		kfree(spidev);
833 	mutex_unlock(&device_list_lock);
834 }
835 
836 static struct spi_driver spidev_spi_driver = {
837 	.driver = {
838 		.name =		"spidev",
839 		.of_match_table = spidev_dt_ids,
840 		.acpi_match_table = spidev_acpi_ids,
841 	},
842 	.probe =	spidev_probe,
843 	.remove =	spidev_remove,
844 	.id_table =	spidev_spi_ids,
845 
846 	/* NOTE:  suspend/resume methods are not necessary here.
847 	 * We don't do anything except pass the requests to/from
848 	 * the underlying controller.  The refrigerator handles
849 	 * most issues; the controller driver handles the rest.
850 	 */
851 };
852 
853 /*-------------------------------------------------------------------------*/
854 
855 static int __init spidev_init(void)
856 {
857 	int status;
858 
859 	/* Claim our 256 reserved device numbers.  Then register a class
860 	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
861 	 * the driver which manages those device numbers.
862 	 */
863 	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
864 	if (status < 0)
865 		return status;
866 
867 	spidev_class = class_create(THIS_MODULE, "spidev");
868 	if (IS_ERR(spidev_class)) {
869 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
870 		return PTR_ERR(spidev_class);
871 	}
872 
873 	status = spi_register_driver(&spidev_spi_driver);
874 	if (status < 0) {
875 		class_destroy(spidev_class);
876 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
877 	}
878 	return status;
879 }
880 module_init(spidev_init);
881 
882 static void __exit spidev_exit(void)
883 {
884 	spi_unregister_driver(&spidev_spi_driver);
885 	class_destroy(spidev_class);
886 	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
887 }
888 module_exit(spidev_exit);
889 
890 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
891 MODULE_DESCRIPTION("User mode SPI device interface");
892 MODULE_LICENSE("GPL");
893 MODULE_ALIAS("spi:spidev");
894