xref: /openbmc/linux/drivers/spi/spidev.c (revision 8684014d)
1 /*
2  * Simple synchronous userspace interface to SPI devices
3  *
4  * Copyright (C) 2006 SWAPP
5  *	Andrea Paterniani <a.paterniani@swapp-eng.it>
6  * Copyright (C) 2007 David Brownell (simplification, cleanup)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
26 #include <linux/fs.h>
27 #include <linux/device.h>
28 #include <linux/err.h>
29 #include <linux/list.h>
30 #include <linux/errno.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/compat.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 
37 #include <linux/spi/spi.h>
38 #include <linux/spi/spidev.h>
39 
40 #include <linux/uaccess.h>
41 
42 
43 /*
44  * This supports access to SPI devices using normal userspace I/O calls.
45  * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
46  * and often mask message boundaries, full SPI support requires full duplex
47  * transfers.  There are several kinds of internal message boundaries to
48  * handle chipselect management and other protocol options.
49  *
50  * SPI has a character major number assigned.  We allocate minor numbers
51  * dynamically using a bitmask.  You must use hotplug tools, such as udev
52  * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
53  * nodes, since there is no fixed association of minor numbers with any
54  * particular SPI bus or device.
55  */
56 #define SPIDEV_MAJOR			153	/* assigned */
57 #define N_SPI_MINORS			32	/* ... up to 256 */
58 
59 static DECLARE_BITMAP(minors, N_SPI_MINORS);
60 
61 
62 /* Bit masks for spi_device.mode management.  Note that incorrect
63  * settings for some settings can cause *lots* of trouble for other
64  * devices on a shared bus:
65  *
66  *  - CS_HIGH ... this device will be active when it shouldn't be
67  *  - 3WIRE ... when active, it won't behave as it should
68  *  - NO_CS ... there will be no explicit message boundaries; this
69  *	is completely incompatible with the shared bus model
70  *  - READY ... transfers may proceed when they shouldn't.
71  *
72  * REVISIT should changing those flags be privileged?
73  */
74 #define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
75 				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
76 				| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
77 				| SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
78 
79 struct spidev_data {
80 	dev_t			devt;
81 	spinlock_t		spi_lock;
82 	struct spi_device	*spi;
83 	struct list_head	device_entry;
84 
85 	/* TX/RX buffers are NULL unless this device is open (users > 0) */
86 	struct mutex		buf_lock;
87 	unsigned		users;
88 	u8			*tx_buffer;
89 	u8			*rx_buffer;
90 	u32			speed_hz;
91 };
92 
93 static LIST_HEAD(device_list);
94 static DEFINE_MUTEX(device_list_lock);
95 
96 static unsigned bufsiz = 4096;
97 module_param(bufsiz, uint, S_IRUGO);
98 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
99 
100 /*-------------------------------------------------------------------------*/
101 
102 /*
103  * We can't use the standard synchronous wrappers for file I/O; we
104  * need to protect against async removal of the underlying spi_device.
105  */
106 static void spidev_complete(void *arg)
107 {
108 	complete(arg);
109 }
110 
111 static ssize_t
112 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
113 {
114 	DECLARE_COMPLETION_ONSTACK(done);
115 	int status;
116 
117 	message->complete = spidev_complete;
118 	message->context = &done;
119 
120 	spin_lock_irq(&spidev->spi_lock);
121 	if (spidev->spi == NULL)
122 		status = -ESHUTDOWN;
123 	else
124 		status = spi_async(spidev->spi, message);
125 	spin_unlock_irq(&spidev->spi_lock);
126 
127 	if (status == 0) {
128 		wait_for_completion(&done);
129 		status = message->status;
130 		if (status == 0)
131 			status = message->actual_length;
132 	}
133 	return status;
134 }
135 
136 static inline ssize_t
137 spidev_sync_write(struct spidev_data *spidev, size_t len)
138 {
139 	struct spi_transfer	t = {
140 			.tx_buf		= spidev->tx_buffer,
141 			.len		= len,
142 			.speed_hz	= spidev->speed_hz,
143 		};
144 	struct spi_message	m;
145 
146 	spi_message_init(&m);
147 	spi_message_add_tail(&t, &m);
148 	return spidev_sync(spidev, &m);
149 }
150 
151 static inline ssize_t
152 spidev_sync_read(struct spidev_data *spidev, size_t len)
153 {
154 	struct spi_transfer	t = {
155 			.rx_buf		= spidev->rx_buffer,
156 			.len		= len,
157 			.speed_hz	= spidev->speed_hz,
158 		};
159 	struct spi_message	m;
160 
161 	spi_message_init(&m);
162 	spi_message_add_tail(&t, &m);
163 	return spidev_sync(spidev, &m);
164 }
165 
166 /*-------------------------------------------------------------------------*/
167 
168 /* Read-only message with current device setup */
169 static ssize_t
170 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
171 {
172 	struct spidev_data	*spidev;
173 	ssize_t			status = 0;
174 
175 	/* chipselect only toggles at start or end of operation */
176 	if (count > bufsiz)
177 		return -EMSGSIZE;
178 
179 	spidev = filp->private_data;
180 
181 	mutex_lock(&spidev->buf_lock);
182 	status = spidev_sync_read(spidev, count);
183 	if (status > 0) {
184 		unsigned long	missing;
185 
186 		missing = copy_to_user(buf, spidev->rx_buffer, status);
187 		if (missing == status)
188 			status = -EFAULT;
189 		else
190 			status = status - missing;
191 	}
192 	mutex_unlock(&spidev->buf_lock);
193 
194 	return status;
195 }
196 
197 /* Write-only message with current device setup */
198 static ssize_t
199 spidev_write(struct file *filp, const char __user *buf,
200 		size_t count, loff_t *f_pos)
201 {
202 	struct spidev_data	*spidev;
203 	ssize_t			status = 0;
204 	unsigned long		missing;
205 
206 	/* chipselect only toggles at start or end of operation */
207 	if (count > bufsiz)
208 		return -EMSGSIZE;
209 
210 	spidev = filp->private_data;
211 
212 	mutex_lock(&spidev->buf_lock);
213 	missing = copy_from_user(spidev->tx_buffer, buf, count);
214 	if (missing == 0)
215 		status = spidev_sync_write(spidev, count);
216 	else
217 		status = -EFAULT;
218 	mutex_unlock(&spidev->buf_lock);
219 
220 	return status;
221 }
222 
223 static int spidev_message(struct spidev_data *spidev,
224 		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
225 {
226 	struct spi_message	msg;
227 	struct spi_transfer	*k_xfers;
228 	struct spi_transfer	*k_tmp;
229 	struct spi_ioc_transfer *u_tmp;
230 	unsigned		n, total;
231 	u8			*tx_buf, *rx_buf;
232 	int			status = -EFAULT;
233 
234 	spi_message_init(&msg);
235 	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
236 	if (k_xfers == NULL)
237 		return -ENOMEM;
238 
239 	/* Construct spi_message, copying any tx data to bounce buffer.
240 	 * We walk the array of user-provided transfers, using each one
241 	 * to initialize a kernel version of the same transfer.
242 	 */
243 	tx_buf = spidev->tx_buffer;
244 	rx_buf = spidev->rx_buffer;
245 	total = 0;
246 	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
247 			n;
248 			n--, k_tmp++, u_tmp++) {
249 		k_tmp->len = u_tmp->len;
250 
251 		total += k_tmp->len;
252 		if (total > bufsiz) {
253 			status = -EMSGSIZE;
254 			goto done;
255 		}
256 
257 		if (u_tmp->rx_buf) {
258 			k_tmp->rx_buf = rx_buf;
259 			if (!access_ok(VERIFY_WRITE, (u8 __user *)
260 						(uintptr_t) u_tmp->rx_buf,
261 						u_tmp->len))
262 				goto done;
263 		}
264 		if (u_tmp->tx_buf) {
265 			k_tmp->tx_buf = tx_buf;
266 			if (copy_from_user(tx_buf, (const u8 __user *)
267 						(uintptr_t) u_tmp->tx_buf,
268 					u_tmp->len))
269 				goto done;
270 		}
271 		tx_buf += k_tmp->len;
272 		rx_buf += k_tmp->len;
273 
274 		k_tmp->cs_change = !!u_tmp->cs_change;
275 		k_tmp->tx_nbits = u_tmp->tx_nbits;
276 		k_tmp->rx_nbits = u_tmp->rx_nbits;
277 		k_tmp->bits_per_word = u_tmp->bits_per_word;
278 		k_tmp->delay_usecs = u_tmp->delay_usecs;
279 		k_tmp->speed_hz = u_tmp->speed_hz;
280 		if (!k_tmp->speed_hz)
281 			k_tmp->speed_hz = spidev->speed_hz;
282 #ifdef VERBOSE
283 		dev_dbg(&spidev->spi->dev,
284 			"  xfer len %zd %s%s%s%dbits %u usec %uHz\n",
285 			u_tmp->len,
286 			u_tmp->rx_buf ? "rx " : "",
287 			u_tmp->tx_buf ? "tx " : "",
288 			u_tmp->cs_change ? "cs " : "",
289 			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
290 			u_tmp->delay_usecs,
291 			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
292 #endif
293 		spi_message_add_tail(k_tmp, &msg);
294 	}
295 
296 	status = spidev_sync(spidev, &msg);
297 	if (status < 0)
298 		goto done;
299 
300 	/* copy any rx data out of bounce buffer */
301 	rx_buf = spidev->rx_buffer;
302 	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
303 		if (u_tmp->rx_buf) {
304 			if (__copy_to_user((u8 __user *)
305 					(uintptr_t) u_tmp->rx_buf, rx_buf,
306 					u_tmp->len)) {
307 				status = -EFAULT;
308 				goto done;
309 			}
310 		}
311 		rx_buf += u_tmp->len;
312 	}
313 	status = total;
314 
315 done:
316 	kfree(k_xfers);
317 	return status;
318 }
319 
320 static long
321 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
322 {
323 	int			err = 0;
324 	int			retval = 0;
325 	struct spidev_data	*spidev;
326 	struct spi_device	*spi;
327 	u32			tmp;
328 	unsigned		n_ioc;
329 	struct spi_ioc_transfer	*ioc;
330 
331 	/* Check type and command number */
332 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
333 		return -ENOTTY;
334 
335 	/* Check access direction once here; don't repeat below.
336 	 * IOC_DIR is from the user perspective, while access_ok is
337 	 * from the kernel perspective; so they look reversed.
338 	 */
339 	if (_IOC_DIR(cmd) & _IOC_READ)
340 		err = !access_ok(VERIFY_WRITE,
341 				(void __user *)arg, _IOC_SIZE(cmd));
342 	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
343 		err = !access_ok(VERIFY_READ,
344 				(void __user *)arg, _IOC_SIZE(cmd));
345 	if (err)
346 		return -EFAULT;
347 
348 	/* guard against device removal before, or while,
349 	 * we issue this ioctl.
350 	 */
351 	spidev = filp->private_data;
352 	spin_lock_irq(&spidev->spi_lock);
353 	spi = spi_dev_get(spidev->spi);
354 	spin_unlock_irq(&spidev->spi_lock);
355 
356 	if (spi == NULL)
357 		return -ESHUTDOWN;
358 
359 	/* use the buffer lock here for triple duty:
360 	 *  - prevent I/O (from us) so calling spi_setup() is safe;
361 	 *  - prevent concurrent SPI_IOC_WR_* from morphing
362 	 *    data fields while SPI_IOC_RD_* reads them;
363 	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
364 	 */
365 	mutex_lock(&spidev->buf_lock);
366 
367 	switch (cmd) {
368 	/* read requests */
369 	case SPI_IOC_RD_MODE:
370 		retval = __put_user(spi->mode & SPI_MODE_MASK,
371 					(__u8 __user *)arg);
372 		break;
373 	case SPI_IOC_RD_MODE32:
374 		retval = __put_user(spi->mode & SPI_MODE_MASK,
375 					(__u32 __user *)arg);
376 		break;
377 	case SPI_IOC_RD_LSB_FIRST:
378 		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
379 					(__u8 __user *)arg);
380 		break;
381 	case SPI_IOC_RD_BITS_PER_WORD:
382 		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
383 		break;
384 	case SPI_IOC_RD_MAX_SPEED_HZ:
385 		retval = __put_user(spidev->speed_hz, (__u32 __user *)arg);
386 		break;
387 
388 	/* write requests */
389 	case SPI_IOC_WR_MODE:
390 	case SPI_IOC_WR_MODE32:
391 		if (cmd == SPI_IOC_WR_MODE)
392 			retval = __get_user(tmp, (u8 __user *)arg);
393 		else
394 			retval = __get_user(tmp, (u32 __user *)arg);
395 		if (retval == 0) {
396 			u32	save = spi->mode;
397 
398 			if (tmp & ~SPI_MODE_MASK) {
399 				retval = -EINVAL;
400 				break;
401 			}
402 
403 			tmp |= spi->mode & ~SPI_MODE_MASK;
404 			spi->mode = (u16)tmp;
405 			retval = spi_setup(spi);
406 			if (retval < 0)
407 				spi->mode = save;
408 			else
409 				dev_dbg(&spi->dev, "spi mode %x\n", tmp);
410 		}
411 		break;
412 	case SPI_IOC_WR_LSB_FIRST:
413 		retval = __get_user(tmp, (__u8 __user *)arg);
414 		if (retval == 0) {
415 			u32	save = spi->mode;
416 
417 			if (tmp)
418 				spi->mode |= SPI_LSB_FIRST;
419 			else
420 				spi->mode &= ~SPI_LSB_FIRST;
421 			retval = spi_setup(spi);
422 			if (retval < 0)
423 				spi->mode = save;
424 			else
425 				dev_dbg(&spi->dev, "%csb first\n",
426 						tmp ? 'l' : 'm');
427 		}
428 		break;
429 	case SPI_IOC_WR_BITS_PER_WORD:
430 		retval = __get_user(tmp, (__u8 __user *)arg);
431 		if (retval == 0) {
432 			u8	save = spi->bits_per_word;
433 
434 			spi->bits_per_word = tmp;
435 			retval = spi_setup(spi);
436 			if (retval < 0)
437 				spi->bits_per_word = save;
438 			else
439 				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
440 		}
441 		break;
442 	case SPI_IOC_WR_MAX_SPEED_HZ:
443 		retval = __get_user(tmp, (__u32 __user *)arg);
444 		if (retval == 0) {
445 			u32	save = spi->max_speed_hz;
446 
447 			spi->max_speed_hz = tmp;
448 			retval = spi_setup(spi);
449 			if (retval >= 0)
450 				spidev->speed_hz = tmp;
451 			else
452 				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
453 			spi->max_speed_hz = save;
454 		}
455 		break;
456 
457 	default:
458 		/* segmented and/or full-duplex I/O request */
459 		if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
460 				|| _IOC_DIR(cmd) != _IOC_WRITE) {
461 			retval = -ENOTTY;
462 			break;
463 		}
464 
465 		tmp = _IOC_SIZE(cmd);
466 		if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
467 			retval = -EINVAL;
468 			break;
469 		}
470 		n_ioc = tmp / sizeof(struct spi_ioc_transfer);
471 		if (n_ioc == 0)
472 			break;
473 
474 		/* copy into scratch area */
475 		ioc = kmalloc(tmp, GFP_KERNEL);
476 		if (!ioc) {
477 			retval = -ENOMEM;
478 			break;
479 		}
480 		if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
481 			kfree(ioc);
482 			retval = -EFAULT;
483 			break;
484 		}
485 
486 		/* translate to spi_message, execute */
487 		retval = spidev_message(spidev, ioc, n_ioc);
488 		kfree(ioc);
489 		break;
490 	}
491 
492 	mutex_unlock(&spidev->buf_lock);
493 	spi_dev_put(spi);
494 	return retval;
495 }
496 
497 #ifdef CONFIG_COMPAT
498 static long
499 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
500 {
501 	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
502 }
503 #else
504 #define spidev_compat_ioctl NULL
505 #endif /* CONFIG_COMPAT */
506 
507 static int spidev_open(struct inode *inode, struct file *filp)
508 {
509 	struct spidev_data	*spidev;
510 	int			status = -ENXIO;
511 
512 	mutex_lock(&device_list_lock);
513 
514 	list_for_each_entry(spidev, &device_list, device_entry) {
515 		if (spidev->devt == inode->i_rdev) {
516 			status = 0;
517 			break;
518 		}
519 	}
520 
521 	if (status) {
522 		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
523 		goto err_find_dev;
524 	}
525 
526 	if (!spidev->tx_buffer) {
527 		spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
528 		if (!spidev->tx_buffer) {
529 				dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
530 				status = -ENOMEM;
531 			goto err_find_dev;
532 			}
533 		}
534 
535 	if (!spidev->rx_buffer) {
536 		spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
537 		if (!spidev->rx_buffer) {
538 			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
539 			status = -ENOMEM;
540 			goto err_alloc_rx_buf;
541 		}
542 	}
543 
544 	spidev->users++;
545 	filp->private_data = spidev;
546 	nonseekable_open(inode, filp);
547 
548 	mutex_unlock(&device_list_lock);
549 	return 0;
550 
551 err_alloc_rx_buf:
552 	kfree(spidev->tx_buffer);
553 	spidev->tx_buffer = NULL;
554 err_find_dev:
555 	mutex_unlock(&device_list_lock);
556 	return status;
557 }
558 
559 static int spidev_release(struct inode *inode, struct file *filp)
560 {
561 	struct spidev_data	*spidev;
562 	int			status = 0;
563 
564 	mutex_lock(&device_list_lock);
565 	spidev = filp->private_data;
566 	filp->private_data = NULL;
567 
568 	/* last close? */
569 	spidev->users--;
570 	if (!spidev->users) {
571 		int		dofree;
572 
573 		kfree(spidev->tx_buffer);
574 		spidev->tx_buffer = NULL;
575 
576 		kfree(spidev->rx_buffer);
577 		spidev->rx_buffer = NULL;
578 
579 		spidev->speed_hz = spidev->spi->max_speed_hz;
580 
581 		/* ... after we unbound from the underlying device? */
582 		spin_lock_irq(&spidev->spi_lock);
583 		dofree = (spidev->spi == NULL);
584 		spin_unlock_irq(&spidev->spi_lock);
585 
586 		if (dofree)
587 			kfree(spidev);
588 	}
589 	mutex_unlock(&device_list_lock);
590 
591 	return status;
592 }
593 
594 static const struct file_operations spidev_fops = {
595 	.owner =	THIS_MODULE,
596 	/* REVISIT switch to aio primitives, so that userspace
597 	 * gets more complete API coverage.  It'll simplify things
598 	 * too, except for the locking.
599 	 */
600 	.write =	spidev_write,
601 	.read =		spidev_read,
602 	.unlocked_ioctl = spidev_ioctl,
603 	.compat_ioctl = spidev_compat_ioctl,
604 	.open =		spidev_open,
605 	.release =	spidev_release,
606 	.llseek =	no_llseek,
607 };
608 
609 /*-------------------------------------------------------------------------*/
610 
611 /* The main reason to have this class is to make mdev/udev create the
612  * /dev/spidevB.C character device nodes exposing our userspace API.
613  * It also simplifies memory management.
614  */
615 
616 static struct class *spidev_class;
617 
618 /*-------------------------------------------------------------------------*/
619 
620 static int spidev_probe(struct spi_device *spi)
621 {
622 	struct spidev_data	*spidev;
623 	int			status;
624 	unsigned long		minor;
625 
626 	/* Allocate driver data */
627 	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
628 	if (!spidev)
629 		return -ENOMEM;
630 
631 	/* Initialize the driver data */
632 	spidev->spi = spi;
633 	spin_lock_init(&spidev->spi_lock);
634 	mutex_init(&spidev->buf_lock);
635 
636 	INIT_LIST_HEAD(&spidev->device_entry);
637 
638 	/* If we can allocate a minor number, hook up this device.
639 	 * Reusing minors is fine so long as udev or mdev is working.
640 	 */
641 	mutex_lock(&device_list_lock);
642 	minor = find_first_zero_bit(minors, N_SPI_MINORS);
643 	if (minor < N_SPI_MINORS) {
644 		struct device *dev;
645 
646 		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
647 		dev = device_create(spidev_class, &spi->dev, spidev->devt,
648 				    spidev, "spidev%d.%d",
649 				    spi->master->bus_num, spi->chip_select);
650 		status = PTR_ERR_OR_ZERO(dev);
651 	} else {
652 		dev_dbg(&spi->dev, "no minor number available!\n");
653 		status = -ENODEV;
654 	}
655 	if (status == 0) {
656 		set_bit(minor, minors);
657 		list_add(&spidev->device_entry, &device_list);
658 	}
659 	mutex_unlock(&device_list_lock);
660 
661 	spidev->speed_hz = spi->max_speed_hz;
662 
663 	if (status == 0)
664 		spi_set_drvdata(spi, spidev);
665 	else
666 		kfree(spidev);
667 
668 	return status;
669 }
670 
671 static int spidev_remove(struct spi_device *spi)
672 {
673 	struct spidev_data	*spidev = spi_get_drvdata(spi);
674 
675 	/* make sure ops on existing fds can abort cleanly */
676 	spin_lock_irq(&spidev->spi_lock);
677 	spidev->spi = NULL;
678 	spin_unlock_irq(&spidev->spi_lock);
679 
680 	/* prevent new opens */
681 	mutex_lock(&device_list_lock);
682 	list_del(&spidev->device_entry);
683 	device_destroy(spidev_class, spidev->devt);
684 	clear_bit(MINOR(spidev->devt), minors);
685 	if (spidev->users == 0)
686 		kfree(spidev);
687 	mutex_unlock(&device_list_lock);
688 
689 	return 0;
690 }
691 
692 static const struct of_device_id spidev_dt_ids[] = {
693 	{ .compatible = "rohm,dh2228fv" },
694 	{},
695 };
696 
697 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
698 
699 static struct spi_driver spidev_spi_driver = {
700 	.driver = {
701 		.name =		"spidev",
702 		.owner =	THIS_MODULE,
703 		.of_match_table = of_match_ptr(spidev_dt_ids),
704 	},
705 	.probe =	spidev_probe,
706 	.remove =	spidev_remove,
707 
708 	/* NOTE:  suspend/resume methods are not necessary here.
709 	 * We don't do anything except pass the requests to/from
710 	 * the underlying controller.  The refrigerator handles
711 	 * most issues; the controller driver handles the rest.
712 	 */
713 };
714 
715 /*-------------------------------------------------------------------------*/
716 
717 static int __init spidev_init(void)
718 {
719 	int status;
720 
721 	/* Claim our 256 reserved device numbers.  Then register a class
722 	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
723 	 * the driver which manages those device numbers.
724 	 */
725 	BUILD_BUG_ON(N_SPI_MINORS > 256);
726 	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
727 	if (status < 0)
728 		return status;
729 
730 	spidev_class = class_create(THIS_MODULE, "spidev");
731 	if (IS_ERR(spidev_class)) {
732 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
733 		return PTR_ERR(spidev_class);
734 	}
735 
736 	status = spi_register_driver(&spidev_spi_driver);
737 	if (status < 0) {
738 		class_destroy(spidev_class);
739 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
740 	}
741 	return status;
742 }
743 module_init(spidev_init);
744 
745 static void __exit spidev_exit(void)
746 {
747 	spi_unregister_driver(&spidev_spi_driver);
748 	class_destroy(spidev_class);
749 	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
750 }
751 module_exit(spidev_exit);
752 
753 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
754 MODULE_DESCRIPTION("User mode SPI device interface");
755 MODULE_LICENSE("GPL");
756 MODULE_ALIAS("spi:spidev");
757