xref: /openbmc/linux/drivers/spi/spidev.c (revision 80483c3a)
1 /*
2  * Simple synchronous userspace interface to SPI devices
3  *
4  * Copyright (C) 2006 SWAPP
5  *	Andrea Paterniani <a.paterniani@swapp-eng.it>
6  * Copyright (C) 2007 David Brownell (simplification, cleanup)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  */
18 
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/ioctl.h>
22 #include <linux/fs.h>
23 #include <linux/device.h>
24 #include <linux/err.h>
25 #include <linux/list.h>
26 #include <linux/errno.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/compat.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/acpi.h>
33 
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spidev.h>
36 
37 #include <linux/uaccess.h>
38 
39 
40 /*
41  * This supports access to SPI devices using normal userspace I/O calls.
42  * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
43  * and often mask message boundaries, full SPI support requires full duplex
44  * transfers.  There are several kinds of internal message boundaries to
45  * handle chipselect management and other protocol options.
46  *
47  * SPI has a character major number assigned.  We allocate minor numbers
48  * dynamically using a bitmask.  You must use hotplug tools, such as udev
49  * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
50  * nodes, since there is no fixed association of minor numbers with any
51  * particular SPI bus or device.
52  */
53 #define SPIDEV_MAJOR			153	/* assigned */
54 #define N_SPI_MINORS			32	/* ... up to 256 */
55 
56 static DECLARE_BITMAP(minors, N_SPI_MINORS);
57 
58 
59 /* Bit masks for spi_device.mode management.  Note that incorrect
60  * settings for some settings can cause *lots* of trouble for other
61  * devices on a shared bus:
62  *
63  *  - CS_HIGH ... this device will be active when it shouldn't be
64  *  - 3WIRE ... when active, it won't behave as it should
65  *  - NO_CS ... there will be no explicit message boundaries; this
66  *	is completely incompatible with the shared bus model
67  *  - READY ... transfers may proceed when they shouldn't.
68  *
69  * REVISIT should changing those flags be privileged?
70  */
71 #define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
72 				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
73 				| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
74 				| SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
75 
76 struct spidev_data {
77 	dev_t			devt;
78 	spinlock_t		spi_lock;
79 	struct spi_device	*spi;
80 	struct list_head	device_entry;
81 
82 	/* TX/RX buffers are NULL unless this device is open (users > 0) */
83 	struct mutex		buf_lock;
84 	unsigned		users;
85 	u8			*tx_buffer;
86 	u8			*rx_buffer;
87 	u32			speed_hz;
88 };
89 
90 static LIST_HEAD(device_list);
91 static DEFINE_MUTEX(device_list_lock);
92 
93 static unsigned bufsiz = 4096;
94 module_param(bufsiz, uint, S_IRUGO);
95 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
96 
97 /*-------------------------------------------------------------------------*/
98 
99 static ssize_t
100 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
101 {
102 	DECLARE_COMPLETION_ONSTACK(done);
103 	int status;
104 	struct spi_device *spi;
105 
106 	spin_lock_irq(&spidev->spi_lock);
107 	spi = spidev->spi;
108 	spin_unlock_irq(&spidev->spi_lock);
109 
110 	if (spi == NULL)
111 		status = -ESHUTDOWN;
112 	else
113 		status = spi_sync(spi, message);
114 
115 	if (status == 0)
116 		status = message->actual_length;
117 
118 	return status;
119 }
120 
121 static inline ssize_t
122 spidev_sync_write(struct spidev_data *spidev, size_t len)
123 {
124 	struct spi_transfer	t = {
125 			.tx_buf		= spidev->tx_buffer,
126 			.len		= len,
127 			.speed_hz	= spidev->speed_hz,
128 		};
129 	struct spi_message	m;
130 
131 	spi_message_init(&m);
132 	spi_message_add_tail(&t, &m);
133 	return spidev_sync(spidev, &m);
134 }
135 
136 static inline ssize_t
137 spidev_sync_read(struct spidev_data *spidev, size_t len)
138 {
139 	struct spi_transfer	t = {
140 			.rx_buf		= spidev->rx_buffer,
141 			.len		= len,
142 			.speed_hz	= spidev->speed_hz,
143 		};
144 	struct spi_message	m;
145 
146 	spi_message_init(&m);
147 	spi_message_add_tail(&t, &m);
148 	return spidev_sync(spidev, &m);
149 }
150 
151 /*-------------------------------------------------------------------------*/
152 
153 /* Read-only message with current device setup */
154 static ssize_t
155 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
156 {
157 	struct spidev_data	*spidev;
158 	ssize_t			status = 0;
159 
160 	/* chipselect only toggles at start or end of operation */
161 	if (count > bufsiz)
162 		return -EMSGSIZE;
163 
164 	spidev = filp->private_data;
165 
166 	mutex_lock(&spidev->buf_lock);
167 	status = spidev_sync_read(spidev, count);
168 	if (status > 0) {
169 		unsigned long	missing;
170 
171 		missing = copy_to_user(buf, spidev->rx_buffer, status);
172 		if (missing == status)
173 			status = -EFAULT;
174 		else
175 			status = status - missing;
176 	}
177 	mutex_unlock(&spidev->buf_lock);
178 
179 	return status;
180 }
181 
182 /* Write-only message with current device setup */
183 static ssize_t
184 spidev_write(struct file *filp, const char __user *buf,
185 		size_t count, loff_t *f_pos)
186 {
187 	struct spidev_data	*spidev;
188 	ssize_t			status = 0;
189 	unsigned long		missing;
190 
191 	/* chipselect only toggles at start or end of operation */
192 	if (count > bufsiz)
193 		return -EMSGSIZE;
194 
195 	spidev = filp->private_data;
196 
197 	mutex_lock(&spidev->buf_lock);
198 	missing = copy_from_user(spidev->tx_buffer, buf, count);
199 	if (missing == 0)
200 		status = spidev_sync_write(spidev, count);
201 	else
202 		status = -EFAULT;
203 	mutex_unlock(&spidev->buf_lock);
204 
205 	return status;
206 }
207 
208 static int spidev_message(struct spidev_data *spidev,
209 		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
210 {
211 	struct spi_message	msg;
212 	struct spi_transfer	*k_xfers;
213 	struct spi_transfer	*k_tmp;
214 	struct spi_ioc_transfer *u_tmp;
215 	unsigned		n, total, tx_total, rx_total;
216 	u8			*tx_buf, *rx_buf;
217 	int			status = -EFAULT;
218 
219 	spi_message_init(&msg);
220 	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
221 	if (k_xfers == NULL)
222 		return -ENOMEM;
223 
224 	/* Construct spi_message, copying any tx data to bounce buffer.
225 	 * We walk the array of user-provided transfers, using each one
226 	 * to initialize a kernel version of the same transfer.
227 	 */
228 	tx_buf = spidev->tx_buffer;
229 	rx_buf = spidev->rx_buffer;
230 	total = 0;
231 	tx_total = 0;
232 	rx_total = 0;
233 	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
234 			n;
235 			n--, k_tmp++, u_tmp++) {
236 		k_tmp->len = u_tmp->len;
237 
238 		total += k_tmp->len;
239 		/* Since the function returns the total length of transfers
240 		 * on success, restrict the total to positive int values to
241 		 * avoid the return value looking like an error.  Also check
242 		 * each transfer length to avoid arithmetic overflow.
243 		 */
244 		if (total > INT_MAX || k_tmp->len > INT_MAX) {
245 			status = -EMSGSIZE;
246 			goto done;
247 		}
248 
249 		if (u_tmp->rx_buf) {
250 			/* this transfer needs space in RX bounce buffer */
251 			rx_total += k_tmp->len;
252 			if (rx_total > bufsiz) {
253 				status = -EMSGSIZE;
254 				goto done;
255 			}
256 			k_tmp->rx_buf = rx_buf;
257 			if (!access_ok(VERIFY_WRITE, (u8 __user *)
258 						(uintptr_t) u_tmp->rx_buf,
259 						u_tmp->len))
260 				goto done;
261 			rx_buf += k_tmp->len;
262 		}
263 		if (u_tmp->tx_buf) {
264 			/* this transfer needs space in TX bounce buffer */
265 			tx_total += k_tmp->len;
266 			if (tx_total > bufsiz) {
267 				status = -EMSGSIZE;
268 				goto done;
269 			}
270 			k_tmp->tx_buf = tx_buf;
271 			if (copy_from_user(tx_buf, (const u8 __user *)
272 						(uintptr_t) u_tmp->tx_buf,
273 					u_tmp->len))
274 				goto done;
275 			tx_buf += k_tmp->len;
276 		}
277 
278 		k_tmp->cs_change = !!u_tmp->cs_change;
279 		k_tmp->tx_nbits = u_tmp->tx_nbits;
280 		k_tmp->rx_nbits = u_tmp->rx_nbits;
281 		k_tmp->bits_per_word = u_tmp->bits_per_word;
282 		k_tmp->delay_usecs = u_tmp->delay_usecs;
283 		k_tmp->speed_hz = u_tmp->speed_hz;
284 		if (!k_tmp->speed_hz)
285 			k_tmp->speed_hz = spidev->speed_hz;
286 #ifdef VERBOSE
287 		dev_dbg(&spidev->spi->dev,
288 			"  xfer len %u %s%s%s%dbits %u usec %uHz\n",
289 			u_tmp->len,
290 			u_tmp->rx_buf ? "rx " : "",
291 			u_tmp->tx_buf ? "tx " : "",
292 			u_tmp->cs_change ? "cs " : "",
293 			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
294 			u_tmp->delay_usecs,
295 			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
296 #endif
297 		spi_message_add_tail(k_tmp, &msg);
298 	}
299 
300 	status = spidev_sync(spidev, &msg);
301 	if (status < 0)
302 		goto done;
303 
304 	/* copy any rx data out of bounce buffer */
305 	rx_buf = spidev->rx_buffer;
306 	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
307 		if (u_tmp->rx_buf) {
308 			if (__copy_to_user((u8 __user *)
309 					(uintptr_t) u_tmp->rx_buf, rx_buf,
310 					u_tmp->len)) {
311 				status = -EFAULT;
312 				goto done;
313 			}
314 			rx_buf += u_tmp->len;
315 		}
316 	}
317 	status = total;
318 
319 done:
320 	kfree(k_xfers);
321 	return status;
322 }
323 
324 static struct spi_ioc_transfer *
325 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
326 		unsigned *n_ioc)
327 {
328 	struct spi_ioc_transfer	*ioc;
329 	u32	tmp;
330 
331 	/* Check type, command number and direction */
332 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
333 			|| _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
334 			|| _IOC_DIR(cmd) != _IOC_WRITE)
335 		return ERR_PTR(-ENOTTY);
336 
337 	tmp = _IOC_SIZE(cmd);
338 	if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
339 		return ERR_PTR(-EINVAL);
340 	*n_ioc = tmp / sizeof(struct spi_ioc_transfer);
341 	if (*n_ioc == 0)
342 		return NULL;
343 
344 	/* copy into scratch area */
345 	ioc = kmalloc(tmp, GFP_KERNEL);
346 	if (!ioc)
347 		return ERR_PTR(-ENOMEM);
348 	if (__copy_from_user(ioc, u_ioc, tmp)) {
349 		kfree(ioc);
350 		return ERR_PTR(-EFAULT);
351 	}
352 	return ioc;
353 }
354 
355 static long
356 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
357 {
358 	int			err = 0;
359 	int			retval = 0;
360 	struct spidev_data	*spidev;
361 	struct spi_device	*spi;
362 	u32			tmp;
363 	unsigned		n_ioc;
364 	struct spi_ioc_transfer	*ioc;
365 
366 	/* Check type and command number */
367 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
368 		return -ENOTTY;
369 
370 	/* Check access direction once here; don't repeat below.
371 	 * IOC_DIR is from the user perspective, while access_ok is
372 	 * from the kernel perspective; so they look reversed.
373 	 */
374 	if (_IOC_DIR(cmd) & _IOC_READ)
375 		err = !access_ok(VERIFY_WRITE,
376 				(void __user *)arg, _IOC_SIZE(cmd));
377 	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
378 		err = !access_ok(VERIFY_READ,
379 				(void __user *)arg, _IOC_SIZE(cmd));
380 	if (err)
381 		return -EFAULT;
382 
383 	/* guard against device removal before, or while,
384 	 * we issue this ioctl.
385 	 */
386 	spidev = filp->private_data;
387 	spin_lock_irq(&spidev->spi_lock);
388 	spi = spi_dev_get(spidev->spi);
389 	spin_unlock_irq(&spidev->spi_lock);
390 
391 	if (spi == NULL)
392 		return -ESHUTDOWN;
393 
394 	/* use the buffer lock here for triple duty:
395 	 *  - prevent I/O (from us) so calling spi_setup() is safe;
396 	 *  - prevent concurrent SPI_IOC_WR_* from morphing
397 	 *    data fields while SPI_IOC_RD_* reads them;
398 	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
399 	 */
400 	mutex_lock(&spidev->buf_lock);
401 
402 	switch (cmd) {
403 	/* read requests */
404 	case SPI_IOC_RD_MODE:
405 		retval = __put_user(spi->mode & SPI_MODE_MASK,
406 					(__u8 __user *)arg);
407 		break;
408 	case SPI_IOC_RD_MODE32:
409 		retval = __put_user(spi->mode & SPI_MODE_MASK,
410 					(__u32 __user *)arg);
411 		break;
412 	case SPI_IOC_RD_LSB_FIRST:
413 		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
414 					(__u8 __user *)arg);
415 		break;
416 	case SPI_IOC_RD_BITS_PER_WORD:
417 		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
418 		break;
419 	case SPI_IOC_RD_MAX_SPEED_HZ:
420 		retval = __put_user(spidev->speed_hz, (__u32 __user *)arg);
421 		break;
422 
423 	/* write requests */
424 	case SPI_IOC_WR_MODE:
425 	case SPI_IOC_WR_MODE32:
426 		if (cmd == SPI_IOC_WR_MODE)
427 			retval = __get_user(tmp, (u8 __user *)arg);
428 		else
429 			retval = __get_user(tmp, (u32 __user *)arg);
430 		if (retval == 0) {
431 			u32	save = spi->mode;
432 
433 			if (tmp & ~SPI_MODE_MASK) {
434 				retval = -EINVAL;
435 				break;
436 			}
437 
438 			tmp |= spi->mode & ~SPI_MODE_MASK;
439 			spi->mode = (u16)tmp;
440 			retval = spi_setup(spi);
441 			if (retval < 0)
442 				spi->mode = save;
443 			else
444 				dev_dbg(&spi->dev, "spi mode %x\n", tmp);
445 		}
446 		break;
447 	case SPI_IOC_WR_LSB_FIRST:
448 		retval = __get_user(tmp, (__u8 __user *)arg);
449 		if (retval == 0) {
450 			u32	save = spi->mode;
451 
452 			if (tmp)
453 				spi->mode |= SPI_LSB_FIRST;
454 			else
455 				spi->mode &= ~SPI_LSB_FIRST;
456 			retval = spi_setup(spi);
457 			if (retval < 0)
458 				spi->mode = save;
459 			else
460 				dev_dbg(&spi->dev, "%csb first\n",
461 						tmp ? 'l' : 'm');
462 		}
463 		break;
464 	case SPI_IOC_WR_BITS_PER_WORD:
465 		retval = __get_user(tmp, (__u8 __user *)arg);
466 		if (retval == 0) {
467 			u8	save = spi->bits_per_word;
468 
469 			spi->bits_per_word = tmp;
470 			retval = spi_setup(spi);
471 			if (retval < 0)
472 				spi->bits_per_word = save;
473 			else
474 				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
475 		}
476 		break;
477 	case SPI_IOC_WR_MAX_SPEED_HZ:
478 		retval = __get_user(tmp, (__u32 __user *)arg);
479 		if (retval == 0) {
480 			u32	save = spi->max_speed_hz;
481 
482 			spi->max_speed_hz = tmp;
483 			retval = spi_setup(spi);
484 			if (retval >= 0)
485 				spidev->speed_hz = tmp;
486 			else
487 				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
488 			spi->max_speed_hz = save;
489 		}
490 		break;
491 
492 	default:
493 		/* segmented and/or full-duplex I/O request */
494 		/* Check message and copy into scratch area */
495 		ioc = spidev_get_ioc_message(cmd,
496 				(struct spi_ioc_transfer __user *)arg, &n_ioc);
497 		if (IS_ERR(ioc)) {
498 			retval = PTR_ERR(ioc);
499 			break;
500 		}
501 		if (!ioc)
502 			break;	/* n_ioc is also 0 */
503 
504 		/* translate to spi_message, execute */
505 		retval = spidev_message(spidev, ioc, n_ioc);
506 		kfree(ioc);
507 		break;
508 	}
509 
510 	mutex_unlock(&spidev->buf_lock);
511 	spi_dev_put(spi);
512 	return retval;
513 }
514 
515 #ifdef CONFIG_COMPAT
516 static long
517 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
518 		unsigned long arg)
519 {
520 	struct spi_ioc_transfer __user	*u_ioc;
521 	int				retval = 0;
522 	struct spidev_data		*spidev;
523 	struct spi_device		*spi;
524 	unsigned			n_ioc, n;
525 	struct spi_ioc_transfer		*ioc;
526 
527 	u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
528 	if (!access_ok(VERIFY_READ, u_ioc, _IOC_SIZE(cmd)))
529 		return -EFAULT;
530 
531 	/* guard against device removal before, or while,
532 	 * we issue this ioctl.
533 	 */
534 	spidev = filp->private_data;
535 	spin_lock_irq(&spidev->spi_lock);
536 	spi = spi_dev_get(spidev->spi);
537 	spin_unlock_irq(&spidev->spi_lock);
538 
539 	if (spi == NULL)
540 		return -ESHUTDOWN;
541 
542 	/* SPI_IOC_MESSAGE needs the buffer locked "normally" */
543 	mutex_lock(&spidev->buf_lock);
544 
545 	/* Check message and copy into scratch area */
546 	ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
547 	if (IS_ERR(ioc)) {
548 		retval = PTR_ERR(ioc);
549 		goto done;
550 	}
551 	if (!ioc)
552 		goto done;	/* n_ioc is also 0 */
553 
554 	/* Convert buffer pointers */
555 	for (n = 0; n < n_ioc; n++) {
556 		ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
557 		ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
558 	}
559 
560 	/* translate to spi_message, execute */
561 	retval = spidev_message(spidev, ioc, n_ioc);
562 	kfree(ioc);
563 
564 done:
565 	mutex_unlock(&spidev->buf_lock);
566 	spi_dev_put(spi);
567 	return retval;
568 }
569 
570 static long
571 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
572 {
573 	if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
574 			&& _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
575 			&& _IOC_DIR(cmd) == _IOC_WRITE)
576 		return spidev_compat_ioc_message(filp, cmd, arg);
577 
578 	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
579 }
580 #else
581 #define spidev_compat_ioctl NULL
582 #endif /* CONFIG_COMPAT */
583 
584 static int spidev_open(struct inode *inode, struct file *filp)
585 {
586 	struct spidev_data	*spidev;
587 	int			status = -ENXIO;
588 
589 	mutex_lock(&device_list_lock);
590 
591 	list_for_each_entry(spidev, &device_list, device_entry) {
592 		if (spidev->devt == inode->i_rdev) {
593 			status = 0;
594 			break;
595 		}
596 	}
597 
598 	if (status) {
599 		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
600 		goto err_find_dev;
601 	}
602 
603 	if (!spidev->tx_buffer) {
604 		spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
605 		if (!spidev->tx_buffer) {
606 			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
607 			status = -ENOMEM;
608 			goto err_find_dev;
609 		}
610 	}
611 
612 	if (!spidev->rx_buffer) {
613 		spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
614 		if (!spidev->rx_buffer) {
615 			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
616 			status = -ENOMEM;
617 			goto err_alloc_rx_buf;
618 		}
619 	}
620 
621 	spidev->users++;
622 	filp->private_data = spidev;
623 	nonseekable_open(inode, filp);
624 
625 	mutex_unlock(&device_list_lock);
626 	return 0;
627 
628 err_alloc_rx_buf:
629 	kfree(spidev->tx_buffer);
630 	spidev->tx_buffer = NULL;
631 err_find_dev:
632 	mutex_unlock(&device_list_lock);
633 	return status;
634 }
635 
636 static int spidev_release(struct inode *inode, struct file *filp)
637 {
638 	struct spidev_data	*spidev;
639 
640 	mutex_lock(&device_list_lock);
641 	spidev = filp->private_data;
642 	filp->private_data = NULL;
643 
644 	/* last close? */
645 	spidev->users--;
646 	if (!spidev->users) {
647 		int		dofree;
648 
649 		kfree(spidev->tx_buffer);
650 		spidev->tx_buffer = NULL;
651 
652 		kfree(spidev->rx_buffer);
653 		spidev->rx_buffer = NULL;
654 
655 		spin_lock_irq(&spidev->spi_lock);
656 		if (spidev->spi)
657 			spidev->speed_hz = spidev->spi->max_speed_hz;
658 
659 		/* ... after we unbound from the underlying device? */
660 		dofree = (spidev->spi == NULL);
661 		spin_unlock_irq(&spidev->spi_lock);
662 
663 		if (dofree)
664 			kfree(spidev);
665 	}
666 	mutex_unlock(&device_list_lock);
667 
668 	return 0;
669 }
670 
671 static const struct file_operations spidev_fops = {
672 	.owner =	THIS_MODULE,
673 	/* REVISIT switch to aio primitives, so that userspace
674 	 * gets more complete API coverage.  It'll simplify things
675 	 * too, except for the locking.
676 	 */
677 	.write =	spidev_write,
678 	.read =		spidev_read,
679 	.unlocked_ioctl = spidev_ioctl,
680 	.compat_ioctl = spidev_compat_ioctl,
681 	.open =		spidev_open,
682 	.release =	spidev_release,
683 	.llseek =	no_llseek,
684 };
685 
686 /*-------------------------------------------------------------------------*/
687 
688 /* The main reason to have this class is to make mdev/udev create the
689  * /dev/spidevB.C character device nodes exposing our userspace API.
690  * It also simplifies memory management.
691  */
692 
693 static struct class *spidev_class;
694 
695 #ifdef CONFIG_OF
696 static const struct of_device_id spidev_dt_ids[] = {
697 	{ .compatible = "rohm,dh2228fv" },
698 	{ .compatible = "lineartechnology,ltc2488" },
699 	{},
700 };
701 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
702 #endif
703 
704 #ifdef CONFIG_ACPI
705 
706 /* Dummy SPI devices not to be used in production systems */
707 #define SPIDEV_ACPI_DUMMY	1
708 
709 static const struct acpi_device_id spidev_acpi_ids[] = {
710 	/*
711 	 * The ACPI SPT000* devices are only meant for development and
712 	 * testing. Systems used in production should have a proper ACPI
713 	 * description of the connected peripheral and they should also use
714 	 * a proper driver instead of poking directly to the SPI bus.
715 	 */
716 	{ "SPT0001", SPIDEV_ACPI_DUMMY },
717 	{ "SPT0002", SPIDEV_ACPI_DUMMY },
718 	{ "SPT0003", SPIDEV_ACPI_DUMMY },
719 	{},
720 };
721 MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
722 
723 static void spidev_probe_acpi(struct spi_device *spi)
724 {
725 	const struct acpi_device_id *id;
726 
727 	if (!has_acpi_companion(&spi->dev))
728 		return;
729 
730 	id = acpi_match_device(spidev_acpi_ids, &spi->dev);
731 	if (WARN_ON(!id))
732 		return;
733 
734 	if (id->driver_data == SPIDEV_ACPI_DUMMY)
735 		dev_warn(&spi->dev, "do not use this driver in production systems!\n");
736 }
737 #else
738 static inline void spidev_probe_acpi(struct spi_device *spi) {}
739 #endif
740 
741 /*-------------------------------------------------------------------------*/
742 
743 static int spidev_probe(struct spi_device *spi)
744 {
745 	struct spidev_data	*spidev;
746 	int			status;
747 	unsigned long		minor;
748 
749 	/*
750 	 * spidev should never be referenced in DT without a specific
751 	 * compatible string, it is a Linux implementation thing
752 	 * rather than a description of the hardware.
753 	 */
754 	if (spi->dev.of_node && !of_match_device(spidev_dt_ids, &spi->dev)) {
755 		dev_err(&spi->dev, "buggy DT: spidev listed directly in DT\n");
756 		WARN_ON(spi->dev.of_node &&
757 			!of_match_device(spidev_dt_ids, &spi->dev));
758 	}
759 
760 	spidev_probe_acpi(spi);
761 
762 	/* Allocate driver data */
763 	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
764 	if (!spidev)
765 		return -ENOMEM;
766 
767 	/* Initialize the driver data */
768 	spidev->spi = spi;
769 	spin_lock_init(&spidev->spi_lock);
770 	mutex_init(&spidev->buf_lock);
771 
772 	INIT_LIST_HEAD(&spidev->device_entry);
773 
774 	/* If we can allocate a minor number, hook up this device.
775 	 * Reusing minors is fine so long as udev or mdev is working.
776 	 */
777 	mutex_lock(&device_list_lock);
778 	minor = find_first_zero_bit(minors, N_SPI_MINORS);
779 	if (minor < N_SPI_MINORS) {
780 		struct device *dev;
781 
782 		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
783 		dev = device_create(spidev_class, &spi->dev, spidev->devt,
784 				    spidev, "spidev%d.%d",
785 				    spi->master->bus_num, spi->chip_select);
786 		status = PTR_ERR_OR_ZERO(dev);
787 	} else {
788 		dev_dbg(&spi->dev, "no minor number available!\n");
789 		status = -ENODEV;
790 	}
791 	if (status == 0) {
792 		set_bit(minor, minors);
793 		list_add(&spidev->device_entry, &device_list);
794 	}
795 	mutex_unlock(&device_list_lock);
796 
797 	spidev->speed_hz = spi->max_speed_hz;
798 
799 	if (status == 0)
800 		spi_set_drvdata(spi, spidev);
801 	else
802 		kfree(spidev);
803 
804 	return status;
805 }
806 
807 static int spidev_remove(struct spi_device *spi)
808 {
809 	struct spidev_data	*spidev = spi_get_drvdata(spi);
810 
811 	/* make sure ops on existing fds can abort cleanly */
812 	spin_lock_irq(&spidev->spi_lock);
813 	spidev->spi = NULL;
814 	spin_unlock_irq(&spidev->spi_lock);
815 
816 	/* prevent new opens */
817 	mutex_lock(&device_list_lock);
818 	list_del(&spidev->device_entry);
819 	device_destroy(spidev_class, spidev->devt);
820 	clear_bit(MINOR(spidev->devt), minors);
821 	if (spidev->users == 0)
822 		kfree(spidev);
823 	mutex_unlock(&device_list_lock);
824 
825 	return 0;
826 }
827 
828 static struct spi_driver spidev_spi_driver = {
829 	.driver = {
830 		.name =		"spidev",
831 		.of_match_table = of_match_ptr(spidev_dt_ids),
832 		.acpi_match_table = ACPI_PTR(spidev_acpi_ids),
833 	},
834 	.probe =	spidev_probe,
835 	.remove =	spidev_remove,
836 
837 	/* NOTE:  suspend/resume methods are not necessary here.
838 	 * We don't do anything except pass the requests to/from
839 	 * the underlying controller.  The refrigerator handles
840 	 * most issues; the controller driver handles the rest.
841 	 */
842 };
843 
844 /*-------------------------------------------------------------------------*/
845 
846 static int __init spidev_init(void)
847 {
848 	int status;
849 
850 	/* Claim our 256 reserved device numbers.  Then register a class
851 	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
852 	 * the driver which manages those device numbers.
853 	 */
854 	BUILD_BUG_ON(N_SPI_MINORS > 256);
855 	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
856 	if (status < 0)
857 		return status;
858 
859 	spidev_class = class_create(THIS_MODULE, "spidev");
860 	if (IS_ERR(spidev_class)) {
861 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
862 		return PTR_ERR(spidev_class);
863 	}
864 
865 	status = spi_register_driver(&spidev_spi_driver);
866 	if (status < 0) {
867 		class_destroy(spidev_class);
868 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
869 	}
870 	return status;
871 }
872 module_init(spidev_init);
873 
874 static void __exit spidev_exit(void)
875 {
876 	spi_unregister_driver(&spidev_spi_driver);
877 	class_destroy(spidev_class);
878 	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
879 }
880 module_exit(spidev_exit);
881 
882 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
883 MODULE_DESCRIPTION("User mode SPI device interface");
884 MODULE_LICENSE("GPL");
885 MODULE_ALIAS("spi:spidev");
886