1 /* 2 * spidev.c -- simple synchronous userspace interface to SPI devices 3 * 4 * Copyright (C) 2006 SWAPP 5 * Andrea Paterniani <a.paterniani@swapp-eng.it> 6 * Copyright (C) 2007 David Brownell (simplification, cleanup) 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/ioctl.h> 26 #include <linux/fs.h> 27 #include <linux/device.h> 28 #include <linux/err.h> 29 #include <linux/list.h> 30 #include <linux/errno.h> 31 #include <linux/mutex.h> 32 #include <linux/slab.h> 33 #include <linux/smp_lock.h> 34 35 #include <linux/spi/spi.h> 36 #include <linux/spi/spidev.h> 37 38 #include <asm/uaccess.h> 39 40 41 /* 42 * This supports acccess to SPI devices using normal userspace I/O calls. 43 * Note that while traditional UNIX/POSIX I/O semantics are half duplex, 44 * and often mask message boundaries, full SPI support requires full duplex 45 * transfers. There are several kinds of of internal message boundaries to 46 * handle chipselect management and other protocol options. 47 * 48 * SPI has a character major number assigned. We allocate minor numbers 49 * dynamically using a bitmask. You must use hotplug tools, such as udev 50 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device 51 * nodes, since there is no fixed association of minor numbers with any 52 * particular SPI bus or device. 53 */ 54 #define SPIDEV_MAJOR 153 /* assigned */ 55 #define N_SPI_MINORS 32 /* ... up to 256 */ 56 57 static unsigned long minors[N_SPI_MINORS / BITS_PER_LONG]; 58 59 60 /* Bit masks for spi_device.mode management. Note that incorrect 61 * settings for CS_HIGH and 3WIRE can cause *lots* of trouble for other 62 * devices on a shared bus: CS_HIGH, because this device will be 63 * active when it shouldn't be; 3WIRE, because when active it won't 64 * behave as it should. 65 * 66 * REVISIT should changing those two modes be privileged? 67 */ 68 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \ 69 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP) 70 71 struct spidev_data { 72 dev_t devt; 73 spinlock_t spi_lock; 74 struct spi_device *spi; 75 struct list_head device_entry; 76 77 /* buffer is NULL unless this device is open (users > 0) */ 78 struct mutex buf_lock; 79 unsigned users; 80 u8 *buffer; 81 }; 82 83 static LIST_HEAD(device_list); 84 static DEFINE_MUTEX(device_list_lock); 85 86 static unsigned bufsiz = 4096; 87 module_param(bufsiz, uint, S_IRUGO); 88 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message"); 89 90 /*-------------------------------------------------------------------------*/ 91 92 /* 93 * We can't use the standard synchronous wrappers for file I/O; we 94 * need to protect against async removal of the underlying spi_device. 95 */ 96 static void spidev_complete(void *arg) 97 { 98 complete(arg); 99 } 100 101 static ssize_t 102 spidev_sync(struct spidev_data *spidev, struct spi_message *message) 103 { 104 DECLARE_COMPLETION_ONSTACK(done); 105 int status; 106 107 message->complete = spidev_complete; 108 message->context = &done; 109 110 spin_lock_irq(&spidev->spi_lock); 111 if (spidev->spi == NULL) 112 status = -ESHUTDOWN; 113 else 114 status = spi_async(spidev->spi, message); 115 spin_unlock_irq(&spidev->spi_lock); 116 117 if (status == 0) { 118 wait_for_completion(&done); 119 status = message->status; 120 if (status == 0) 121 status = message->actual_length; 122 } 123 return status; 124 } 125 126 static inline ssize_t 127 spidev_sync_write(struct spidev_data *spidev, size_t len) 128 { 129 struct spi_transfer t = { 130 .tx_buf = spidev->buffer, 131 .len = len, 132 }; 133 struct spi_message m; 134 135 spi_message_init(&m); 136 spi_message_add_tail(&t, &m); 137 return spidev_sync(spidev, &m); 138 } 139 140 static inline ssize_t 141 spidev_sync_read(struct spidev_data *spidev, size_t len) 142 { 143 struct spi_transfer t = { 144 .rx_buf = spidev->buffer, 145 .len = len, 146 }; 147 struct spi_message m; 148 149 spi_message_init(&m); 150 spi_message_add_tail(&t, &m); 151 return spidev_sync(spidev, &m); 152 } 153 154 /*-------------------------------------------------------------------------*/ 155 156 /* Read-only message with current device setup */ 157 static ssize_t 158 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos) 159 { 160 struct spidev_data *spidev; 161 ssize_t status = 0; 162 163 /* chipselect only toggles at start or end of operation */ 164 if (count > bufsiz) 165 return -EMSGSIZE; 166 167 spidev = filp->private_data; 168 169 mutex_lock(&spidev->buf_lock); 170 status = spidev_sync_read(spidev, count); 171 if (status > 0) { 172 unsigned long missing; 173 174 missing = copy_to_user(buf, spidev->buffer, status); 175 if (missing == status) 176 status = -EFAULT; 177 else 178 status = status - missing; 179 } 180 mutex_unlock(&spidev->buf_lock); 181 182 return status; 183 } 184 185 /* Write-only message with current device setup */ 186 static ssize_t 187 spidev_write(struct file *filp, const char __user *buf, 188 size_t count, loff_t *f_pos) 189 { 190 struct spidev_data *spidev; 191 ssize_t status = 0; 192 unsigned long missing; 193 194 /* chipselect only toggles at start or end of operation */ 195 if (count > bufsiz) 196 return -EMSGSIZE; 197 198 spidev = filp->private_data; 199 200 mutex_lock(&spidev->buf_lock); 201 missing = copy_from_user(spidev->buffer, buf, count); 202 if (missing == 0) { 203 status = spidev_sync_write(spidev, count); 204 } else 205 status = -EFAULT; 206 mutex_unlock(&spidev->buf_lock); 207 208 return status; 209 } 210 211 static int spidev_message(struct spidev_data *spidev, 212 struct spi_ioc_transfer *u_xfers, unsigned n_xfers) 213 { 214 struct spi_message msg; 215 struct spi_transfer *k_xfers; 216 struct spi_transfer *k_tmp; 217 struct spi_ioc_transfer *u_tmp; 218 unsigned n, total; 219 u8 *buf; 220 int status = -EFAULT; 221 222 spi_message_init(&msg); 223 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL); 224 if (k_xfers == NULL) 225 return -ENOMEM; 226 227 /* Construct spi_message, copying any tx data to bounce buffer. 228 * We walk the array of user-provided transfers, using each one 229 * to initialize a kernel version of the same transfer. 230 */ 231 buf = spidev->buffer; 232 total = 0; 233 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers; 234 n; 235 n--, k_tmp++, u_tmp++) { 236 k_tmp->len = u_tmp->len; 237 238 total += k_tmp->len; 239 if (total > bufsiz) { 240 status = -EMSGSIZE; 241 goto done; 242 } 243 244 if (u_tmp->rx_buf) { 245 k_tmp->rx_buf = buf; 246 if (!access_ok(VERIFY_WRITE, (u8 __user *) 247 (uintptr_t) u_tmp->rx_buf, 248 u_tmp->len)) 249 goto done; 250 } 251 if (u_tmp->tx_buf) { 252 k_tmp->tx_buf = buf; 253 if (copy_from_user(buf, (const u8 __user *) 254 (uintptr_t) u_tmp->tx_buf, 255 u_tmp->len)) 256 goto done; 257 } 258 buf += k_tmp->len; 259 260 k_tmp->cs_change = !!u_tmp->cs_change; 261 k_tmp->bits_per_word = u_tmp->bits_per_word; 262 k_tmp->delay_usecs = u_tmp->delay_usecs; 263 k_tmp->speed_hz = u_tmp->speed_hz; 264 #ifdef VERBOSE 265 dev_dbg(&spi->dev, 266 " xfer len %zd %s%s%s%dbits %u usec %uHz\n", 267 u_tmp->len, 268 u_tmp->rx_buf ? "rx " : "", 269 u_tmp->tx_buf ? "tx " : "", 270 u_tmp->cs_change ? "cs " : "", 271 u_tmp->bits_per_word ? : spi->bits_per_word, 272 u_tmp->delay_usecs, 273 u_tmp->speed_hz ? : spi->max_speed_hz); 274 #endif 275 spi_message_add_tail(k_tmp, &msg); 276 } 277 278 status = spidev_sync(spidev, &msg); 279 if (status < 0) 280 goto done; 281 282 /* copy any rx data out of bounce buffer */ 283 buf = spidev->buffer; 284 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) { 285 if (u_tmp->rx_buf) { 286 if (__copy_to_user((u8 __user *) 287 (uintptr_t) u_tmp->rx_buf, buf, 288 u_tmp->len)) { 289 status = -EFAULT; 290 goto done; 291 } 292 } 293 buf += u_tmp->len; 294 } 295 status = total; 296 297 done: 298 kfree(k_xfers); 299 return status; 300 } 301 302 static long 303 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 304 { 305 int err = 0; 306 int retval = 0; 307 struct spidev_data *spidev; 308 struct spi_device *spi; 309 u32 tmp; 310 unsigned n_ioc; 311 struct spi_ioc_transfer *ioc; 312 313 /* Check type and command number */ 314 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC) 315 return -ENOTTY; 316 317 /* Check access direction once here; don't repeat below. 318 * IOC_DIR is from the user perspective, while access_ok is 319 * from the kernel perspective; so they look reversed. 320 */ 321 if (_IOC_DIR(cmd) & _IOC_READ) 322 err = !access_ok(VERIFY_WRITE, 323 (void __user *)arg, _IOC_SIZE(cmd)); 324 if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE) 325 err = !access_ok(VERIFY_READ, 326 (void __user *)arg, _IOC_SIZE(cmd)); 327 if (err) 328 return -EFAULT; 329 330 /* guard against device removal before, or while, 331 * we issue this ioctl. 332 */ 333 spidev = filp->private_data; 334 spin_lock_irq(&spidev->spi_lock); 335 spi = spi_dev_get(spidev->spi); 336 spin_unlock_irq(&spidev->spi_lock); 337 338 if (spi == NULL) 339 return -ESHUTDOWN; 340 341 /* use the buffer lock here for triple duty: 342 * - prevent I/O (from us) so calling spi_setup() is safe; 343 * - prevent concurrent SPI_IOC_WR_* from morphing 344 * data fields while SPI_IOC_RD_* reads them; 345 * - SPI_IOC_MESSAGE needs the buffer locked "normally". 346 */ 347 mutex_lock(&spidev->buf_lock); 348 349 switch (cmd) { 350 /* read requests */ 351 case SPI_IOC_RD_MODE: 352 retval = __put_user(spi->mode & SPI_MODE_MASK, 353 (__u8 __user *)arg); 354 break; 355 case SPI_IOC_RD_LSB_FIRST: 356 retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0, 357 (__u8 __user *)arg); 358 break; 359 case SPI_IOC_RD_BITS_PER_WORD: 360 retval = __put_user(spi->bits_per_word, (__u8 __user *)arg); 361 break; 362 case SPI_IOC_RD_MAX_SPEED_HZ: 363 retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg); 364 break; 365 366 /* write requests */ 367 case SPI_IOC_WR_MODE: 368 retval = __get_user(tmp, (u8 __user *)arg); 369 if (retval == 0) { 370 u8 save = spi->mode; 371 372 if (tmp & ~SPI_MODE_MASK) { 373 retval = -EINVAL; 374 break; 375 } 376 377 tmp |= spi->mode & ~SPI_MODE_MASK; 378 spi->mode = (u8)tmp; 379 retval = spi_setup(spi); 380 if (retval < 0) 381 spi->mode = save; 382 else 383 dev_dbg(&spi->dev, "spi mode %02x\n", tmp); 384 } 385 break; 386 case SPI_IOC_WR_LSB_FIRST: 387 retval = __get_user(tmp, (__u8 __user *)arg); 388 if (retval == 0) { 389 u8 save = spi->mode; 390 391 if (tmp) 392 spi->mode |= SPI_LSB_FIRST; 393 else 394 spi->mode &= ~SPI_LSB_FIRST; 395 retval = spi_setup(spi); 396 if (retval < 0) 397 spi->mode = save; 398 else 399 dev_dbg(&spi->dev, "%csb first\n", 400 tmp ? 'l' : 'm'); 401 } 402 break; 403 case SPI_IOC_WR_BITS_PER_WORD: 404 retval = __get_user(tmp, (__u8 __user *)arg); 405 if (retval == 0) { 406 u8 save = spi->bits_per_word; 407 408 spi->bits_per_word = tmp; 409 retval = spi_setup(spi); 410 if (retval < 0) 411 spi->bits_per_word = save; 412 else 413 dev_dbg(&spi->dev, "%d bits per word\n", tmp); 414 } 415 break; 416 case SPI_IOC_WR_MAX_SPEED_HZ: 417 retval = __get_user(tmp, (__u32 __user *)arg); 418 if (retval == 0) { 419 u32 save = spi->max_speed_hz; 420 421 spi->max_speed_hz = tmp; 422 retval = spi_setup(spi); 423 if (retval < 0) 424 spi->max_speed_hz = save; 425 else 426 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp); 427 } 428 break; 429 430 default: 431 /* segmented and/or full-duplex I/O request */ 432 if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0)) 433 || _IOC_DIR(cmd) != _IOC_WRITE) { 434 retval = -ENOTTY; 435 break; 436 } 437 438 tmp = _IOC_SIZE(cmd); 439 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) { 440 retval = -EINVAL; 441 break; 442 } 443 n_ioc = tmp / sizeof(struct spi_ioc_transfer); 444 if (n_ioc == 0) 445 break; 446 447 /* copy into scratch area */ 448 ioc = kmalloc(tmp, GFP_KERNEL); 449 if (!ioc) { 450 retval = -ENOMEM; 451 break; 452 } 453 if (__copy_from_user(ioc, (void __user *)arg, tmp)) { 454 kfree(ioc); 455 retval = -EFAULT; 456 break; 457 } 458 459 /* translate to spi_message, execute */ 460 retval = spidev_message(spidev, ioc, n_ioc); 461 kfree(ioc); 462 break; 463 } 464 465 mutex_unlock(&spidev->buf_lock); 466 spi_dev_put(spi); 467 return retval; 468 } 469 470 static int spidev_open(struct inode *inode, struct file *filp) 471 { 472 struct spidev_data *spidev; 473 int status = -ENXIO; 474 475 lock_kernel(); 476 mutex_lock(&device_list_lock); 477 478 list_for_each_entry(spidev, &device_list, device_entry) { 479 if (spidev->devt == inode->i_rdev) { 480 status = 0; 481 break; 482 } 483 } 484 if (status == 0) { 485 if (!spidev->buffer) { 486 spidev->buffer = kmalloc(bufsiz, GFP_KERNEL); 487 if (!spidev->buffer) { 488 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n"); 489 status = -ENOMEM; 490 } 491 } 492 if (status == 0) { 493 spidev->users++; 494 filp->private_data = spidev; 495 nonseekable_open(inode, filp); 496 } 497 } else 498 pr_debug("spidev: nothing for minor %d\n", iminor(inode)); 499 500 mutex_unlock(&device_list_lock); 501 unlock_kernel(); 502 return status; 503 } 504 505 static int spidev_release(struct inode *inode, struct file *filp) 506 { 507 struct spidev_data *spidev; 508 int status = 0; 509 510 mutex_lock(&device_list_lock); 511 spidev = filp->private_data; 512 filp->private_data = NULL; 513 514 /* last close? */ 515 spidev->users--; 516 if (!spidev->users) { 517 int dofree; 518 519 kfree(spidev->buffer); 520 spidev->buffer = NULL; 521 522 /* ... after we unbound from the underlying device? */ 523 spin_lock_irq(&spidev->spi_lock); 524 dofree = (spidev->spi == NULL); 525 spin_unlock_irq(&spidev->spi_lock); 526 527 if (dofree) 528 kfree(spidev); 529 } 530 mutex_unlock(&device_list_lock); 531 532 return status; 533 } 534 535 static struct file_operations spidev_fops = { 536 .owner = THIS_MODULE, 537 /* REVISIT switch to aio primitives, so that userspace 538 * gets more complete API coverage. It'll simplify things 539 * too, except for the locking. 540 */ 541 .write = spidev_write, 542 .read = spidev_read, 543 .unlocked_ioctl = spidev_ioctl, 544 .open = spidev_open, 545 .release = spidev_release, 546 }; 547 548 /*-------------------------------------------------------------------------*/ 549 550 /* The main reason to have this class is to make mdev/udev create the 551 * /dev/spidevB.C character device nodes exposing our userspace API. 552 * It also simplifies memory management. 553 */ 554 555 static struct class *spidev_class; 556 557 /*-------------------------------------------------------------------------*/ 558 559 static int spidev_probe(struct spi_device *spi) 560 { 561 struct spidev_data *spidev; 562 int status; 563 unsigned long minor; 564 565 /* Allocate driver data */ 566 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL); 567 if (!spidev) 568 return -ENOMEM; 569 570 /* Initialize the driver data */ 571 spidev->spi = spi; 572 spin_lock_init(&spidev->spi_lock); 573 mutex_init(&spidev->buf_lock); 574 575 INIT_LIST_HEAD(&spidev->device_entry); 576 577 /* If we can allocate a minor number, hook up this device. 578 * Reusing minors is fine so long as udev or mdev is working. 579 */ 580 mutex_lock(&device_list_lock); 581 minor = find_first_zero_bit(minors, N_SPI_MINORS); 582 if (minor < N_SPI_MINORS) { 583 struct device *dev; 584 585 spidev->devt = MKDEV(SPIDEV_MAJOR, minor); 586 dev = device_create_drvdata(spidev_class, &spi->dev, 587 spidev->devt, spidev, 588 "spidev%d.%d", 589 spi->master->bus_num, spi->chip_select); 590 status = IS_ERR(dev) ? PTR_ERR(dev) : 0; 591 } else { 592 dev_dbg(&spi->dev, "no minor number available!\n"); 593 status = -ENODEV; 594 } 595 if (status == 0) { 596 set_bit(minor, minors); 597 list_add(&spidev->device_entry, &device_list); 598 } 599 mutex_unlock(&device_list_lock); 600 601 if (status != 0) 602 kfree(spidev); 603 604 return status; 605 } 606 607 static int spidev_remove(struct spi_device *spi) 608 { 609 struct spidev_data *spidev = spi_get_drvdata(spi); 610 611 /* make sure ops on existing fds can abort cleanly */ 612 spin_lock_irq(&spidev->spi_lock); 613 spidev->spi = NULL; 614 spi_set_drvdata(spi, NULL); 615 spin_unlock_irq(&spidev->spi_lock); 616 617 /* prevent new opens */ 618 mutex_lock(&device_list_lock); 619 list_del(&spidev->device_entry); 620 device_destroy(spidev_class, spidev->devt); 621 clear_bit(MINOR(spidev->devt), minors); 622 if (spidev->users == 0) 623 kfree(spidev); 624 mutex_unlock(&device_list_lock); 625 626 return 0; 627 } 628 629 static struct spi_driver spidev_spi = { 630 .driver = { 631 .name = "spidev", 632 .owner = THIS_MODULE, 633 }, 634 .probe = spidev_probe, 635 .remove = __devexit_p(spidev_remove), 636 637 /* NOTE: suspend/resume methods are not necessary here. 638 * We don't do anything except pass the requests to/from 639 * the underlying controller. The refrigerator handles 640 * most issues; the controller driver handles the rest. 641 */ 642 }; 643 644 /*-------------------------------------------------------------------------*/ 645 646 static int __init spidev_init(void) 647 { 648 int status; 649 650 /* Claim our 256 reserved device numbers. Then register a class 651 * that will key udev/mdev to add/remove /dev nodes. Last, register 652 * the driver which manages those device numbers. 653 */ 654 BUILD_BUG_ON(N_SPI_MINORS > 256); 655 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops); 656 if (status < 0) 657 return status; 658 659 spidev_class = class_create(THIS_MODULE, "spidev"); 660 if (IS_ERR(spidev_class)) { 661 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name); 662 return PTR_ERR(spidev_class); 663 } 664 665 status = spi_register_driver(&spidev_spi); 666 if (status < 0) { 667 class_destroy(spidev_class); 668 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name); 669 } 670 return status; 671 } 672 module_init(spidev_init); 673 674 static void __exit spidev_exit(void) 675 { 676 spi_unregister_driver(&spidev_spi); 677 class_destroy(spidev_class); 678 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name); 679 } 680 module_exit(spidev_exit); 681 682 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>"); 683 MODULE_DESCRIPTION("User mode SPI device interface"); 684 MODULE_LICENSE("GPL"); 685