xref: /openbmc/linux/drivers/spi/spidev.c (revision 22246614)
1 /*
2  * spidev.c -- simple synchronous userspace interface to SPI devices
3  *
4  * Copyright (C) 2006 SWAPP
5  *	Andrea Paterniani <a.paterniani@swapp-eng.it>
6  * Copyright (C) 2007 David Brownell (simplification, cleanup)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
26 #include <linux/fs.h>
27 #include <linux/device.h>
28 #include <linux/list.h>
29 #include <linux/errno.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 
33 #include <linux/spi/spi.h>
34 #include <linux/spi/spidev.h>
35 
36 #include <asm/uaccess.h>
37 
38 
39 /*
40  * This supports acccess to SPI devices using normal userspace I/O calls.
41  * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
42  * and often mask message boundaries, full SPI support requires full duplex
43  * transfers.  There are several kinds of of internal message boundaries to
44  * handle chipselect management and other protocol options.
45  *
46  * SPI has a character major number assigned.  We allocate minor numbers
47  * dynamically using a bitmask.  You must use hotplug tools, such as udev
48  * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
49  * nodes, since there is no fixed association of minor numbers with any
50  * particular SPI bus or device.
51  */
52 #define SPIDEV_MAJOR			153	/* assigned */
53 #define N_SPI_MINORS			32	/* ... up to 256 */
54 
55 static unsigned long	minors[N_SPI_MINORS / BITS_PER_LONG];
56 
57 
58 /* Bit masks for spi_device.mode management.  Note that incorrect
59  * settings for CS_HIGH and 3WIRE can cause *lots* of trouble for other
60  * devices on a shared bus:  CS_HIGH, because this device will be
61  * active when it shouldn't be;  3WIRE, because when active it won't
62  * behave as it should.
63  *
64  * REVISIT should changing those two modes be privileged?
65  */
66 #define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
67 				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP)
68 
69 struct spidev_data {
70 	struct device		dev;
71 	struct spi_device	*spi;
72 	struct list_head	device_entry;
73 
74 	struct mutex		buf_lock;
75 	unsigned		users;
76 	u8			*buffer;
77 };
78 
79 static LIST_HEAD(device_list);
80 static DEFINE_MUTEX(device_list_lock);
81 
82 static unsigned bufsiz = 4096;
83 module_param(bufsiz, uint, S_IRUGO);
84 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
85 
86 /*-------------------------------------------------------------------------*/
87 
88 /* Read-only message with current device setup */
89 static ssize_t
90 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
91 {
92 	struct spidev_data	*spidev;
93 	struct spi_device	*spi;
94 	ssize_t			status = 0;
95 
96 	/* chipselect only toggles at start or end of operation */
97 	if (count > bufsiz)
98 		return -EMSGSIZE;
99 
100 	spidev = filp->private_data;
101 	spi = spidev->spi;
102 
103 	mutex_lock(&spidev->buf_lock);
104 	status = spi_read(spi, spidev->buffer, count);
105 	if (status == 0) {
106 		unsigned long	missing;
107 
108 		missing = copy_to_user(buf, spidev->buffer, count);
109 		if (count && missing == count)
110 			status = -EFAULT;
111 		else
112 			status = count - missing;
113 	}
114 	mutex_unlock(&spidev->buf_lock);
115 
116 	return status;
117 }
118 
119 /* Write-only message with current device setup */
120 static ssize_t
121 spidev_write(struct file *filp, const char __user *buf,
122 		size_t count, loff_t *f_pos)
123 {
124 	struct spidev_data	*spidev;
125 	struct spi_device	*spi;
126 	ssize_t			status = 0;
127 	unsigned long		missing;
128 
129 	/* chipselect only toggles at start or end of operation */
130 	if (count > bufsiz)
131 		return -EMSGSIZE;
132 
133 	spidev = filp->private_data;
134 	spi = spidev->spi;
135 
136 	mutex_lock(&spidev->buf_lock);
137 	missing = copy_from_user(spidev->buffer, buf, count);
138 	if (missing == 0) {
139 		status = spi_write(spi, spidev->buffer, count);
140 		if (status == 0)
141 			status = count;
142 	} else
143 		status = -EFAULT;
144 	mutex_unlock(&spidev->buf_lock);
145 
146 	return status;
147 }
148 
149 static int spidev_message(struct spidev_data *spidev,
150 		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
151 {
152 	struct spi_message	msg;
153 	struct spi_transfer	*k_xfers;
154 	struct spi_transfer	*k_tmp;
155 	struct spi_ioc_transfer *u_tmp;
156 	struct spi_device	*spi = spidev->spi;
157 	unsigned		n, total;
158 	u8			*buf;
159 	int			status = -EFAULT;
160 
161 	spi_message_init(&msg);
162 	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
163 	if (k_xfers == NULL)
164 		return -ENOMEM;
165 
166 	/* Construct spi_message, copying any tx data to bounce buffer.
167 	 * We walk the array of user-provided transfers, using each one
168 	 * to initialize a kernel version of the same transfer.
169 	 */
170 	mutex_lock(&spidev->buf_lock);
171 	buf = spidev->buffer;
172 	total = 0;
173 	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
174 			n;
175 			n--, k_tmp++, u_tmp++) {
176 		k_tmp->len = u_tmp->len;
177 
178 		total += k_tmp->len;
179 		if (total > bufsiz) {
180 			status = -EMSGSIZE;
181 			goto done;
182 		}
183 
184 		if (u_tmp->rx_buf) {
185 			k_tmp->rx_buf = buf;
186 			if (!access_ok(VERIFY_WRITE, (u8 __user *)
187 						(uintptr_t) u_tmp->rx_buf,
188 						u_tmp->len))
189 				goto done;
190 		}
191 		if (u_tmp->tx_buf) {
192 			k_tmp->tx_buf = buf;
193 			if (copy_from_user(buf, (const u8 __user *)
194 						(uintptr_t) u_tmp->tx_buf,
195 					u_tmp->len))
196 				goto done;
197 		}
198 		buf += k_tmp->len;
199 
200 		k_tmp->cs_change = !!u_tmp->cs_change;
201 		k_tmp->bits_per_word = u_tmp->bits_per_word;
202 		k_tmp->delay_usecs = u_tmp->delay_usecs;
203 		k_tmp->speed_hz = u_tmp->speed_hz;
204 #ifdef VERBOSE
205 		dev_dbg(&spi->dev,
206 			"  xfer len %zd %s%s%s%dbits %u usec %uHz\n",
207 			u_tmp->len,
208 			u_tmp->rx_buf ? "rx " : "",
209 			u_tmp->tx_buf ? "tx " : "",
210 			u_tmp->cs_change ? "cs " : "",
211 			u_tmp->bits_per_word ? : spi->bits_per_word,
212 			u_tmp->delay_usecs,
213 			u_tmp->speed_hz ? : spi->max_speed_hz);
214 #endif
215 		spi_message_add_tail(k_tmp, &msg);
216 	}
217 
218 	status = spi_sync(spi, &msg);
219 	if (status < 0)
220 		goto done;
221 
222 	/* copy any rx data out of bounce buffer */
223 	buf = spidev->buffer;
224 	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
225 		if (u_tmp->rx_buf) {
226 			if (__copy_to_user((u8 __user *)
227 					(uintptr_t) u_tmp->rx_buf, buf,
228 					u_tmp->len)) {
229 				status = -EFAULT;
230 				goto done;
231 			}
232 		}
233 		buf += u_tmp->len;
234 	}
235 	status = total;
236 
237 done:
238 	mutex_unlock(&spidev->buf_lock);
239 	kfree(k_xfers);
240 	return status;
241 }
242 
243 static int
244 spidev_ioctl(struct inode *inode, struct file *filp,
245 		unsigned int cmd, unsigned long arg)
246 {
247 	int			err = 0;
248 	int			retval = 0;
249 	struct spidev_data	*spidev;
250 	struct spi_device	*spi;
251 	u32			tmp;
252 	unsigned		n_ioc;
253 	struct spi_ioc_transfer	*ioc;
254 
255 	/* Check type and command number */
256 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
257 		return -ENOTTY;
258 
259 	/* Check access direction once here; don't repeat below.
260 	 * IOC_DIR is from the user perspective, while access_ok is
261 	 * from the kernel perspective; so they look reversed.
262 	 */
263 	if (_IOC_DIR(cmd) & _IOC_READ)
264 		err = !access_ok(VERIFY_WRITE,
265 				(void __user *)arg, _IOC_SIZE(cmd));
266 	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
267 		err = !access_ok(VERIFY_READ,
268 				(void __user *)arg, _IOC_SIZE(cmd));
269 	if (err)
270 		return -EFAULT;
271 
272 	spidev = filp->private_data;
273 	spi = spidev->spi;
274 
275 	switch (cmd) {
276 	/* read requests */
277 	case SPI_IOC_RD_MODE:
278 		retval = __put_user(spi->mode & SPI_MODE_MASK,
279 					(__u8 __user *)arg);
280 		break;
281 	case SPI_IOC_RD_LSB_FIRST:
282 		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
283 					(__u8 __user *)arg);
284 		break;
285 	case SPI_IOC_RD_BITS_PER_WORD:
286 		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
287 		break;
288 	case SPI_IOC_RD_MAX_SPEED_HZ:
289 		retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
290 		break;
291 
292 	/* write requests */
293 	case SPI_IOC_WR_MODE:
294 		retval = __get_user(tmp, (u8 __user *)arg);
295 		if (retval == 0) {
296 			u8	save = spi->mode;
297 
298 			if (tmp & ~SPI_MODE_MASK) {
299 				retval = -EINVAL;
300 				break;
301 			}
302 
303 			tmp |= spi->mode & ~SPI_MODE_MASK;
304 			spi->mode = (u8)tmp;
305 			retval = spi_setup(spi);
306 			if (retval < 0)
307 				spi->mode = save;
308 			else
309 				dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
310 		}
311 		break;
312 	case SPI_IOC_WR_LSB_FIRST:
313 		retval = __get_user(tmp, (__u8 __user *)arg);
314 		if (retval == 0) {
315 			u8	save = spi->mode;
316 
317 			if (tmp)
318 				spi->mode |= SPI_LSB_FIRST;
319 			else
320 				spi->mode &= ~SPI_LSB_FIRST;
321 			retval = spi_setup(spi);
322 			if (retval < 0)
323 				spi->mode = save;
324 			else
325 				dev_dbg(&spi->dev, "%csb first\n",
326 						tmp ? 'l' : 'm');
327 		}
328 		break;
329 	case SPI_IOC_WR_BITS_PER_WORD:
330 		retval = __get_user(tmp, (__u8 __user *)arg);
331 		if (retval == 0) {
332 			u8	save = spi->bits_per_word;
333 
334 			spi->bits_per_word = tmp;
335 			retval = spi_setup(spi);
336 			if (retval < 0)
337 				spi->bits_per_word = save;
338 			else
339 				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
340 		}
341 		break;
342 	case SPI_IOC_WR_MAX_SPEED_HZ:
343 		retval = __get_user(tmp, (__u32 __user *)arg);
344 		if (retval == 0) {
345 			u32	save = spi->max_speed_hz;
346 
347 			spi->max_speed_hz = tmp;
348 			retval = spi_setup(spi);
349 			if (retval < 0)
350 				spi->max_speed_hz = save;
351 			else
352 				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
353 		}
354 		break;
355 
356 	default:
357 		/* segmented and/or full-duplex I/O request */
358 		if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
359 				|| _IOC_DIR(cmd) != _IOC_WRITE)
360 			return -ENOTTY;
361 
362 		tmp = _IOC_SIZE(cmd);
363 		if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
364 			retval = -EINVAL;
365 			break;
366 		}
367 		n_ioc = tmp / sizeof(struct spi_ioc_transfer);
368 		if (n_ioc == 0)
369 			break;
370 
371 		/* copy into scratch area */
372 		ioc = kmalloc(tmp, GFP_KERNEL);
373 		if (!ioc) {
374 			retval = -ENOMEM;
375 			break;
376 		}
377 		if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
378 			kfree(ioc);
379 			retval = -EFAULT;
380 			break;
381 		}
382 
383 		/* translate to spi_message, execute */
384 		retval = spidev_message(spidev, ioc, n_ioc);
385 		kfree(ioc);
386 		break;
387 	}
388 	return retval;
389 }
390 
391 static int spidev_open(struct inode *inode, struct file *filp)
392 {
393 	struct spidev_data	*spidev;
394 	int			status = -ENXIO;
395 
396 	mutex_lock(&device_list_lock);
397 
398 	list_for_each_entry(spidev, &device_list, device_entry) {
399 		if (spidev->dev.devt == inode->i_rdev) {
400 			status = 0;
401 			break;
402 		}
403 	}
404 	if (status == 0) {
405 		if (!spidev->buffer) {
406 			spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
407 			if (!spidev->buffer) {
408 				dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
409 				status = -ENOMEM;
410 			}
411 		}
412 		if (status == 0) {
413 			spidev->users++;
414 			filp->private_data = spidev;
415 			nonseekable_open(inode, filp);
416 		}
417 	} else
418 		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
419 
420 	mutex_unlock(&device_list_lock);
421 	return status;
422 }
423 
424 static int spidev_release(struct inode *inode, struct file *filp)
425 {
426 	struct spidev_data	*spidev;
427 	int			status = 0;
428 
429 	mutex_lock(&device_list_lock);
430 	spidev = filp->private_data;
431 	filp->private_data = NULL;
432 	spidev->users--;
433 	if (!spidev->users) {
434 		kfree(spidev->buffer);
435 		spidev->buffer = NULL;
436 	}
437 	mutex_unlock(&device_list_lock);
438 
439 	return status;
440 }
441 
442 static struct file_operations spidev_fops = {
443 	.owner =	THIS_MODULE,
444 	/* REVISIT switch to aio primitives, so that userspace
445 	 * gets more complete API coverage.  It'll simplify things
446 	 * too, except for the locking.
447 	 */
448 	.write =	spidev_write,
449 	.read =		spidev_read,
450 	.ioctl =	spidev_ioctl,
451 	.open =		spidev_open,
452 	.release =	spidev_release,
453 };
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* The main reason to have this class is to make mdev/udev create the
458  * /dev/spidevB.C character device nodes exposing our userspace API.
459  * It also simplifies memory management.
460  */
461 
462 static void spidev_classdev_release(struct device *dev)
463 {
464 	struct spidev_data	*spidev;
465 
466 	spidev = container_of(dev, struct spidev_data, dev);
467 	kfree(spidev);
468 }
469 
470 static struct class spidev_class = {
471 	.name		= "spidev",
472 	.owner		= THIS_MODULE,
473 	.dev_release	= spidev_classdev_release,
474 };
475 
476 /*-------------------------------------------------------------------------*/
477 
478 static int spidev_probe(struct spi_device *spi)
479 {
480 	struct spidev_data	*spidev;
481 	int			status;
482 	unsigned long		minor;
483 
484 	/* Allocate driver data */
485 	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
486 	if (!spidev)
487 		return -ENOMEM;
488 
489 	/* Initialize the driver data */
490 	spidev->spi = spi;
491 	mutex_init(&spidev->buf_lock);
492 
493 	INIT_LIST_HEAD(&spidev->device_entry);
494 
495 	/* If we can allocate a minor number, hook up this device.
496 	 * Reusing minors is fine so long as udev or mdev is working.
497 	 */
498 	mutex_lock(&device_list_lock);
499 	minor = find_first_zero_bit(minors, N_SPI_MINORS);
500 	if (minor < N_SPI_MINORS) {
501 		spidev->dev.parent = &spi->dev;
502 		spidev->dev.class = &spidev_class;
503 		spidev->dev.devt = MKDEV(SPIDEV_MAJOR, minor);
504 		snprintf(spidev->dev.bus_id, sizeof spidev->dev.bus_id,
505 				"spidev%d.%d",
506 				spi->master->bus_num, spi->chip_select);
507 		status = device_register(&spidev->dev);
508 	} else {
509 		dev_dbg(&spi->dev, "no minor number available!\n");
510 		status = -ENODEV;
511 	}
512 	if (status == 0) {
513 		set_bit(minor, minors);
514 		dev_set_drvdata(&spi->dev, spidev);
515 		list_add(&spidev->device_entry, &device_list);
516 	}
517 	mutex_unlock(&device_list_lock);
518 
519 	if (status != 0)
520 		kfree(spidev);
521 
522 	return status;
523 }
524 
525 static int spidev_remove(struct spi_device *spi)
526 {
527 	struct spidev_data	*spidev = dev_get_drvdata(&spi->dev);
528 
529 	mutex_lock(&device_list_lock);
530 
531 	list_del(&spidev->device_entry);
532 	dev_set_drvdata(&spi->dev, NULL);
533 	clear_bit(MINOR(spidev->dev.devt), minors);
534 	device_unregister(&spidev->dev);
535 
536 	mutex_unlock(&device_list_lock);
537 
538 	return 0;
539 }
540 
541 static struct spi_driver spidev_spi = {
542 	.driver = {
543 		.name =		"spidev",
544 		.owner =	THIS_MODULE,
545 	},
546 	.probe =	spidev_probe,
547 	.remove =	__devexit_p(spidev_remove),
548 
549 	/* NOTE:  suspend/resume methods are not necessary here.
550 	 * We don't do anything except pass the requests to/from
551 	 * the underlying controller.  The refrigerator handles
552 	 * most issues; the controller driver handles the rest.
553 	 */
554 };
555 
556 /*-------------------------------------------------------------------------*/
557 
558 static int __init spidev_init(void)
559 {
560 	int status;
561 
562 	/* Claim our 256 reserved device numbers.  Then register a class
563 	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
564 	 * the driver which manages those device numbers.
565 	 */
566 	BUILD_BUG_ON(N_SPI_MINORS > 256);
567 	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
568 	if (status < 0)
569 		return status;
570 
571 	status = class_register(&spidev_class);
572 	if (status < 0) {
573 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
574 		return status;
575 	}
576 
577 	status = spi_register_driver(&spidev_spi);
578 	if (status < 0) {
579 		class_unregister(&spidev_class);
580 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
581 	}
582 	return status;
583 }
584 module_init(spidev_init);
585 
586 static void __exit spidev_exit(void)
587 {
588 	spi_unregister_driver(&spidev_spi);
589 	class_unregister(&spidev_class);
590 	unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
591 }
592 module_exit(spidev_exit);
593 
594 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
595 MODULE_DESCRIPTION("User mode SPI device interface");
596 MODULE_LICENSE("GPL");
597