xref: /openbmc/linux/drivers/spi/spidev.c (revision 06d352f2)
1 /*
2  * spidev.c -- simple synchronous userspace interface to SPI devices
3  *
4  * Copyright (C) 2006 SWAPP
5  *	Andrea Paterniani <a.paterniani@swapp-eng.it>
6  * Copyright (C) 2007 David Brownell (simplification, cleanup)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
26 #include <linux/fs.h>
27 #include <linux/device.h>
28 #include <linux/err.h>
29 #include <linux/list.h>
30 #include <linux/errno.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spidev.h>
36 
37 #include <asm/uaccess.h>
38 
39 
40 /*
41  * This supports acccess to SPI devices using normal userspace I/O calls.
42  * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
43  * and often mask message boundaries, full SPI support requires full duplex
44  * transfers.  There are several kinds of internal message boundaries to
45  * handle chipselect management and other protocol options.
46  *
47  * SPI has a character major number assigned.  We allocate minor numbers
48  * dynamically using a bitmask.  You must use hotplug tools, such as udev
49  * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
50  * nodes, since there is no fixed association of minor numbers with any
51  * particular SPI bus or device.
52  */
53 #define SPIDEV_MAJOR			153	/* assigned */
54 #define N_SPI_MINORS			32	/* ... up to 256 */
55 
56 static DECLARE_BITMAP(minors, N_SPI_MINORS);
57 
58 
59 /* Bit masks for spi_device.mode management.  Note that incorrect
60  * settings for some settings can cause *lots* of trouble for other
61  * devices on a shared bus:
62  *
63  *  - CS_HIGH ... this device will be active when it shouldn't be
64  *  - 3WIRE ... when active, it won't behave as it should
65  *  - NO_CS ... there will be no explicit message boundaries; this
66  *	is completely incompatible with the shared bus model
67  *  - READY ... transfers may proceed when they shouldn't.
68  *
69  * REVISIT should changing those flags be privileged?
70  */
71 #define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
72 				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
73 				| SPI_NO_CS | SPI_READY)
74 
75 struct spidev_data {
76 	dev_t			devt;
77 	spinlock_t		spi_lock;
78 	struct spi_device	*spi;
79 	struct list_head	device_entry;
80 
81 	/* buffer is NULL unless this device is open (users > 0) */
82 	struct mutex		buf_lock;
83 	unsigned		users;
84 	u8			*buffer;
85 };
86 
87 static LIST_HEAD(device_list);
88 static DEFINE_MUTEX(device_list_lock);
89 
90 static unsigned bufsiz = 4096;
91 module_param(bufsiz, uint, S_IRUGO);
92 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
93 
94 /*-------------------------------------------------------------------------*/
95 
96 /*
97  * We can't use the standard synchronous wrappers for file I/O; we
98  * need to protect against async removal of the underlying spi_device.
99  */
100 static void spidev_complete(void *arg)
101 {
102 	complete(arg);
103 }
104 
105 static ssize_t
106 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
107 {
108 	DECLARE_COMPLETION_ONSTACK(done);
109 	int status;
110 
111 	message->complete = spidev_complete;
112 	message->context = &done;
113 
114 	spin_lock_irq(&spidev->spi_lock);
115 	if (spidev->spi == NULL)
116 		status = -ESHUTDOWN;
117 	else
118 		status = spi_async(spidev->spi, message);
119 	spin_unlock_irq(&spidev->spi_lock);
120 
121 	if (status == 0) {
122 		wait_for_completion(&done);
123 		status = message->status;
124 		if (status == 0)
125 			status = message->actual_length;
126 	}
127 	return status;
128 }
129 
130 static inline ssize_t
131 spidev_sync_write(struct spidev_data *spidev, size_t len)
132 {
133 	struct spi_transfer	t = {
134 			.tx_buf		= spidev->buffer,
135 			.len		= len,
136 		};
137 	struct spi_message	m;
138 
139 	spi_message_init(&m);
140 	spi_message_add_tail(&t, &m);
141 	return spidev_sync(spidev, &m);
142 }
143 
144 static inline ssize_t
145 spidev_sync_read(struct spidev_data *spidev, size_t len)
146 {
147 	struct spi_transfer	t = {
148 			.rx_buf		= spidev->buffer,
149 			.len		= len,
150 		};
151 	struct spi_message	m;
152 
153 	spi_message_init(&m);
154 	spi_message_add_tail(&t, &m);
155 	return spidev_sync(spidev, &m);
156 }
157 
158 /*-------------------------------------------------------------------------*/
159 
160 /* Read-only message with current device setup */
161 static ssize_t
162 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
163 {
164 	struct spidev_data	*spidev;
165 	ssize_t			status = 0;
166 
167 	/* chipselect only toggles at start or end of operation */
168 	if (count > bufsiz)
169 		return -EMSGSIZE;
170 
171 	spidev = filp->private_data;
172 
173 	mutex_lock(&spidev->buf_lock);
174 	status = spidev_sync_read(spidev, count);
175 	if (status > 0) {
176 		unsigned long	missing;
177 
178 		missing = copy_to_user(buf, spidev->buffer, status);
179 		if (missing == status)
180 			status = -EFAULT;
181 		else
182 			status = status - missing;
183 	}
184 	mutex_unlock(&spidev->buf_lock);
185 
186 	return status;
187 }
188 
189 /* Write-only message with current device setup */
190 static ssize_t
191 spidev_write(struct file *filp, const char __user *buf,
192 		size_t count, loff_t *f_pos)
193 {
194 	struct spidev_data	*spidev;
195 	ssize_t			status = 0;
196 	unsigned long		missing;
197 
198 	/* chipselect only toggles at start or end of operation */
199 	if (count > bufsiz)
200 		return -EMSGSIZE;
201 
202 	spidev = filp->private_data;
203 
204 	mutex_lock(&spidev->buf_lock);
205 	missing = copy_from_user(spidev->buffer, buf, count);
206 	if (missing == 0) {
207 		status = spidev_sync_write(spidev, count);
208 	} else
209 		status = -EFAULT;
210 	mutex_unlock(&spidev->buf_lock);
211 
212 	return status;
213 }
214 
215 static int spidev_message(struct spidev_data *spidev,
216 		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
217 {
218 	struct spi_message	msg;
219 	struct spi_transfer	*k_xfers;
220 	struct spi_transfer	*k_tmp;
221 	struct spi_ioc_transfer *u_tmp;
222 	unsigned		n, total;
223 	u8			*buf;
224 	int			status = -EFAULT;
225 
226 	spi_message_init(&msg);
227 	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
228 	if (k_xfers == NULL)
229 		return -ENOMEM;
230 
231 	/* Construct spi_message, copying any tx data to bounce buffer.
232 	 * We walk the array of user-provided transfers, using each one
233 	 * to initialize a kernel version of the same transfer.
234 	 */
235 	buf = spidev->buffer;
236 	total = 0;
237 	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
238 			n;
239 			n--, k_tmp++, u_tmp++) {
240 		k_tmp->len = u_tmp->len;
241 
242 		total += k_tmp->len;
243 		if (total > bufsiz) {
244 			status = -EMSGSIZE;
245 			goto done;
246 		}
247 
248 		if (u_tmp->rx_buf) {
249 			k_tmp->rx_buf = buf;
250 			if (!access_ok(VERIFY_WRITE, (u8 __user *)
251 						(uintptr_t) u_tmp->rx_buf,
252 						u_tmp->len))
253 				goto done;
254 		}
255 		if (u_tmp->tx_buf) {
256 			k_tmp->tx_buf = buf;
257 			if (copy_from_user(buf, (const u8 __user *)
258 						(uintptr_t) u_tmp->tx_buf,
259 					u_tmp->len))
260 				goto done;
261 		}
262 		buf += k_tmp->len;
263 
264 		k_tmp->cs_change = !!u_tmp->cs_change;
265 		k_tmp->bits_per_word = u_tmp->bits_per_word;
266 		k_tmp->delay_usecs = u_tmp->delay_usecs;
267 		k_tmp->speed_hz = u_tmp->speed_hz;
268 #ifdef VERBOSE
269 		dev_dbg(&spidev->spi->dev,
270 			"  xfer len %zd %s%s%s%dbits %u usec %uHz\n",
271 			u_tmp->len,
272 			u_tmp->rx_buf ? "rx " : "",
273 			u_tmp->tx_buf ? "tx " : "",
274 			u_tmp->cs_change ? "cs " : "",
275 			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
276 			u_tmp->delay_usecs,
277 			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
278 #endif
279 		spi_message_add_tail(k_tmp, &msg);
280 	}
281 
282 	status = spidev_sync(spidev, &msg);
283 	if (status < 0)
284 		goto done;
285 
286 	/* copy any rx data out of bounce buffer */
287 	buf = spidev->buffer;
288 	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
289 		if (u_tmp->rx_buf) {
290 			if (__copy_to_user((u8 __user *)
291 					(uintptr_t) u_tmp->rx_buf, buf,
292 					u_tmp->len)) {
293 				status = -EFAULT;
294 				goto done;
295 			}
296 		}
297 		buf += u_tmp->len;
298 	}
299 	status = total;
300 
301 done:
302 	kfree(k_xfers);
303 	return status;
304 }
305 
306 static long
307 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
308 {
309 	int			err = 0;
310 	int			retval = 0;
311 	struct spidev_data	*spidev;
312 	struct spi_device	*spi;
313 	u32			tmp;
314 	unsigned		n_ioc;
315 	struct spi_ioc_transfer	*ioc;
316 
317 	/* Check type and command number */
318 	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
319 		return -ENOTTY;
320 
321 	/* Check access direction once here; don't repeat below.
322 	 * IOC_DIR is from the user perspective, while access_ok is
323 	 * from the kernel perspective; so they look reversed.
324 	 */
325 	if (_IOC_DIR(cmd) & _IOC_READ)
326 		err = !access_ok(VERIFY_WRITE,
327 				(void __user *)arg, _IOC_SIZE(cmd));
328 	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
329 		err = !access_ok(VERIFY_READ,
330 				(void __user *)arg, _IOC_SIZE(cmd));
331 	if (err)
332 		return -EFAULT;
333 
334 	/* guard against device removal before, or while,
335 	 * we issue this ioctl.
336 	 */
337 	spidev = filp->private_data;
338 	spin_lock_irq(&spidev->spi_lock);
339 	spi = spi_dev_get(spidev->spi);
340 	spin_unlock_irq(&spidev->spi_lock);
341 
342 	if (spi == NULL)
343 		return -ESHUTDOWN;
344 
345 	/* use the buffer lock here for triple duty:
346 	 *  - prevent I/O (from us) so calling spi_setup() is safe;
347 	 *  - prevent concurrent SPI_IOC_WR_* from morphing
348 	 *    data fields while SPI_IOC_RD_* reads them;
349 	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
350 	 */
351 	mutex_lock(&spidev->buf_lock);
352 
353 	switch (cmd) {
354 	/* read requests */
355 	case SPI_IOC_RD_MODE:
356 		retval = __put_user(spi->mode & SPI_MODE_MASK,
357 					(__u8 __user *)arg);
358 		break;
359 	case SPI_IOC_RD_LSB_FIRST:
360 		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
361 					(__u8 __user *)arg);
362 		break;
363 	case SPI_IOC_RD_BITS_PER_WORD:
364 		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
365 		break;
366 	case SPI_IOC_RD_MAX_SPEED_HZ:
367 		retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
368 		break;
369 
370 	/* write requests */
371 	case SPI_IOC_WR_MODE:
372 		retval = __get_user(tmp, (u8 __user *)arg);
373 		if (retval == 0) {
374 			u8	save = spi->mode;
375 
376 			if (tmp & ~SPI_MODE_MASK) {
377 				retval = -EINVAL;
378 				break;
379 			}
380 
381 			tmp |= spi->mode & ~SPI_MODE_MASK;
382 			spi->mode = (u8)tmp;
383 			retval = spi_setup(spi);
384 			if (retval < 0)
385 				spi->mode = save;
386 			else
387 				dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
388 		}
389 		break;
390 	case SPI_IOC_WR_LSB_FIRST:
391 		retval = __get_user(tmp, (__u8 __user *)arg);
392 		if (retval == 0) {
393 			u8	save = spi->mode;
394 
395 			if (tmp)
396 				spi->mode |= SPI_LSB_FIRST;
397 			else
398 				spi->mode &= ~SPI_LSB_FIRST;
399 			retval = spi_setup(spi);
400 			if (retval < 0)
401 				spi->mode = save;
402 			else
403 				dev_dbg(&spi->dev, "%csb first\n",
404 						tmp ? 'l' : 'm');
405 		}
406 		break;
407 	case SPI_IOC_WR_BITS_PER_WORD:
408 		retval = __get_user(tmp, (__u8 __user *)arg);
409 		if (retval == 0) {
410 			u8	save = spi->bits_per_word;
411 
412 			spi->bits_per_word = tmp;
413 			retval = spi_setup(spi);
414 			if (retval < 0)
415 				spi->bits_per_word = save;
416 			else
417 				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
418 		}
419 		break;
420 	case SPI_IOC_WR_MAX_SPEED_HZ:
421 		retval = __get_user(tmp, (__u32 __user *)arg);
422 		if (retval == 0) {
423 			u32	save = spi->max_speed_hz;
424 
425 			spi->max_speed_hz = tmp;
426 			retval = spi_setup(spi);
427 			if (retval < 0)
428 				spi->max_speed_hz = save;
429 			else
430 				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
431 		}
432 		break;
433 
434 	default:
435 		/* segmented and/or full-duplex I/O request */
436 		if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
437 				|| _IOC_DIR(cmd) != _IOC_WRITE) {
438 			retval = -ENOTTY;
439 			break;
440 		}
441 
442 		tmp = _IOC_SIZE(cmd);
443 		if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
444 			retval = -EINVAL;
445 			break;
446 		}
447 		n_ioc = tmp / sizeof(struct spi_ioc_transfer);
448 		if (n_ioc == 0)
449 			break;
450 
451 		/* copy into scratch area */
452 		ioc = kmalloc(tmp, GFP_KERNEL);
453 		if (!ioc) {
454 			retval = -ENOMEM;
455 			break;
456 		}
457 		if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
458 			kfree(ioc);
459 			retval = -EFAULT;
460 			break;
461 		}
462 
463 		/* translate to spi_message, execute */
464 		retval = spidev_message(spidev, ioc, n_ioc);
465 		kfree(ioc);
466 		break;
467 	}
468 
469 	mutex_unlock(&spidev->buf_lock);
470 	spi_dev_put(spi);
471 	return retval;
472 }
473 
474 static int spidev_open(struct inode *inode, struct file *filp)
475 {
476 	struct spidev_data	*spidev;
477 	int			status = -ENXIO;
478 
479 	mutex_lock(&device_list_lock);
480 
481 	list_for_each_entry(spidev, &device_list, device_entry) {
482 		if (spidev->devt == inode->i_rdev) {
483 			status = 0;
484 			break;
485 		}
486 	}
487 	if (status == 0) {
488 		if (!spidev->buffer) {
489 			spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
490 			if (!spidev->buffer) {
491 				dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
492 				status = -ENOMEM;
493 			}
494 		}
495 		if (status == 0) {
496 			spidev->users++;
497 			filp->private_data = spidev;
498 			nonseekable_open(inode, filp);
499 		}
500 	} else
501 		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
502 
503 	mutex_unlock(&device_list_lock);
504 	return status;
505 }
506 
507 static int spidev_release(struct inode *inode, struct file *filp)
508 {
509 	struct spidev_data	*spidev;
510 	int			status = 0;
511 
512 	mutex_lock(&device_list_lock);
513 	spidev = filp->private_data;
514 	filp->private_data = NULL;
515 
516 	/* last close? */
517 	spidev->users--;
518 	if (!spidev->users) {
519 		int		dofree;
520 
521 		kfree(spidev->buffer);
522 		spidev->buffer = NULL;
523 
524 		/* ... after we unbound from the underlying device? */
525 		spin_lock_irq(&spidev->spi_lock);
526 		dofree = (spidev->spi == NULL);
527 		spin_unlock_irq(&spidev->spi_lock);
528 
529 		if (dofree)
530 			kfree(spidev);
531 	}
532 	mutex_unlock(&device_list_lock);
533 
534 	return status;
535 }
536 
537 static const struct file_operations spidev_fops = {
538 	.owner =	THIS_MODULE,
539 	/* REVISIT switch to aio primitives, so that userspace
540 	 * gets more complete API coverage.  It'll simplify things
541 	 * too, except for the locking.
542 	 */
543 	.write =	spidev_write,
544 	.read =		spidev_read,
545 	.unlocked_ioctl = spidev_ioctl,
546 	.open =		spidev_open,
547 	.release =	spidev_release,
548 };
549 
550 /*-------------------------------------------------------------------------*/
551 
552 /* The main reason to have this class is to make mdev/udev create the
553  * /dev/spidevB.C character device nodes exposing our userspace API.
554  * It also simplifies memory management.
555  */
556 
557 static struct class *spidev_class;
558 
559 /*-------------------------------------------------------------------------*/
560 
561 static int __devinit spidev_probe(struct spi_device *spi)
562 {
563 	struct spidev_data	*spidev;
564 	int			status;
565 	unsigned long		minor;
566 
567 	/* Allocate driver data */
568 	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
569 	if (!spidev)
570 		return -ENOMEM;
571 
572 	/* Initialize the driver data */
573 	spidev->spi = spi;
574 	spin_lock_init(&spidev->spi_lock);
575 	mutex_init(&spidev->buf_lock);
576 
577 	INIT_LIST_HEAD(&spidev->device_entry);
578 
579 	/* If we can allocate a minor number, hook up this device.
580 	 * Reusing minors is fine so long as udev or mdev is working.
581 	 */
582 	mutex_lock(&device_list_lock);
583 	minor = find_first_zero_bit(minors, N_SPI_MINORS);
584 	if (minor < N_SPI_MINORS) {
585 		struct device *dev;
586 
587 		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
588 		dev = device_create(spidev_class, &spi->dev, spidev->devt,
589 				    spidev, "spidev%d.%d",
590 				    spi->master->bus_num, spi->chip_select);
591 		status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
592 	} else {
593 		dev_dbg(&spi->dev, "no minor number available!\n");
594 		status = -ENODEV;
595 	}
596 	if (status == 0) {
597 		set_bit(minor, minors);
598 		list_add(&spidev->device_entry, &device_list);
599 	}
600 	mutex_unlock(&device_list_lock);
601 
602 	if (status == 0)
603 		spi_set_drvdata(spi, spidev);
604 	else
605 		kfree(spidev);
606 
607 	return status;
608 }
609 
610 static int __devexit spidev_remove(struct spi_device *spi)
611 {
612 	struct spidev_data	*spidev = spi_get_drvdata(spi);
613 
614 	/* make sure ops on existing fds can abort cleanly */
615 	spin_lock_irq(&spidev->spi_lock);
616 	spidev->spi = NULL;
617 	spi_set_drvdata(spi, NULL);
618 	spin_unlock_irq(&spidev->spi_lock);
619 
620 	/* prevent new opens */
621 	mutex_lock(&device_list_lock);
622 	list_del(&spidev->device_entry);
623 	device_destroy(spidev_class, spidev->devt);
624 	clear_bit(MINOR(spidev->devt), minors);
625 	if (spidev->users == 0)
626 		kfree(spidev);
627 	mutex_unlock(&device_list_lock);
628 
629 	return 0;
630 }
631 
632 static struct spi_driver spidev_spi_driver = {
633 	.driver = {
634 		.name =		"spidev",
635 		.owner =	THIS_MODULE,
636 	},
637 	.probe =	spidev_probe,
638 	.remove =	__devexit_p(spidev_remove),
639 
640 	/* NOTE:  suspend/resume methods are not necessary here.
641 	 * We don't do anything except pass the requests to/from
642 	 * the underlying controller.  The refrigerator handles
643 	 * most issues; the controller driver handles the rest.
644 	 */
645 };
646 
647 /*-------------------------------------------------------------------------*/
648 
649 static int __init spidev_init(void)
650 {
651 	int status;
652 
653 	/* Claim our 256 reserved device numbers.  Then register a class
654 	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
655 	 * the driver which manages those device numbers.
656 	 */
657 	BUILD_BUG_ON(N_SPI_MINORS > 256);
658 	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
659 	if (status < 0)
660 		return status;
661 
662 	spidev_class = class_create(THIS_MODULE, "spidev");
663 	if (IS_ERR(spidev_class)) {
664 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
665 		return PTR_ERR(spidev_class);
666 	}
667 
668 	status = spi_register_driver(&spidev_spi_driver);
669 	if (status < 0) {
670 		class_destroy(spidev_class);
671 		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
672 	}
673 	return status;
674 }
675 module_init(spidev_init);
676 
677 static void __exit spidev_exit(void)
678 {
679 	spi_unregister_driver(&spidev_spi_driver);
680 	class_destroy(spidev_class);
681 	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
682 }
683 module_exit(spidev_exit);
684 
685 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
686 MODULE_DESCRIPTION("User mode SPI device interface");
687 MODULE_LICENSE("GPL");
688 MODULE_ALIAS("spi:spidev");
689