xref: /openbmc/linux/drivers/spi/spi.c (revision fb00af92)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	spi_controller_put(spi->controller);
51 	kfree(spi->driver_override);
52 	kfree(spi);
53 }
54 
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 	const struct spi_device	*spi = to_spi_device(dev);
59 	int len;
60 
61 	len = of_device_modalias(dev, buf, PAGE_SIZE);
62 	if (len != -ENODEV)
63 		return len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Empty string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = of_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	rc = acpi_device_uevent_modalias(dev, env);
375 	if (rc != -ENODEV)
376 		return rc;
377 
378 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
379 }
380 
381 static int spi_probe(struct device *dev)
382 {
383 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
384 	struct spi_device		*spi = to_spi_device(dev);
385 	int ret;
386 
387 	ret = of_clk_set_defaults(dev->of_node, false);
388 	if (ret)
389 		return ret;
390 
391 	if (dev->of_node) {
392 		spi->irq = of_irq_get(dev->of_node, 0);
393 		if (spi->irq == -EPROBE_DEFER)
394 			return -EPROBE_DEFER;
395 		if (spi->irq < 0)
396 			spi->irq = 0;
397 	}
398 
399 	ret = dev_pm_domain_attach(dev, true);
400 	if (ret)
401 		return ret;
402 
403 	if (sdrv->probe) {
404 		ret = sdrv->probe(spi);
405 		if (ret)
406 			dev_pm_domain_detach(dev, true);
407 	}
408 
409 	return ret;
410 }
411 
412 static void spi_remove(struct device *dev)
413 {
414 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
415 
416 	if (sdrv->remove) {
417 		int ret;
418 
419 		ret = sdrv->remove(to_spi_device(dev));
420 		if (ret)
421 			dev_warn(dev,
422 				 "Failed to unbind driver (%pe), ignoring\n",
423 				 ERR_PTR(ret));
424 	}
425 
426 	dev_pm_domain_detach(dev, true);
427 }
428 
429 static void spi_shutdown(struct device *dev)
430 {
431 	if (dev->driver) {
432 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
433 
434 		if (sdrv->shutdown)
435 			sdrv->shutdown(to_spi_device(dev));
436 	}
437 }
438 
439 struct bus_type spi_bus_type = {
440 	.name		= "spi",
441 	.dev_groups	= spi_dev_groups,
442 	.match		= spi_match_device,
443 	.uevent		= spi_uevent,
444 	.probe		= spi_probe,
445 	.remove		= spi_remove,
446 	.shutdown	= spi_shutdown,
447 };
448 EXPORT_SYMBOL_GPL(spi_bus_type);
449 
450 /**
451  * __spi_register_driver - register a SPI driver
452  * @owner: owner module of the driver to register
453  * @sdrv: the driver to register
454  * Context: can sleep
455  *
456  * Return: zero on success, else a negative error code.
457  */
458 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
459 {
460 	sdrv->driver.owner = owner;
461 	sdrv->driver.bus = &spi_bus_type;
462 	return driver_register(&sdrv->driver);
463 }
464 EXPORT_SYMBOL_GPL(__spi_register_driver);
465 
466 /*-------------------------------------------------------------------------*/
467 
468 /* SPI devices should normally not be created by SPI device drivers; that
469  * would make them board-specific.  Similarly with SPI controller drivers.
470  * Device registration normally goes into like arch/.../mach.../board-YYY.c
471  * with other readonly (flashable) information about mainboard devices.
472  */
473 
474 struct boardinfo {
475 	struct list_head	list;
476 	struct spi_board_info	board_info;
477 };
478 
479 static LIST_HEAD(board_list);
480 static LIST_HEAD(spi_controller_list);
481 
482 /*
483  * Used to protect add/del operation for board_info list and
484  * spi_controller list, and their matching process
485  * also used to protect object of type struct idr
486  */
487 static DEFINE_MUTEX(board_lock);
488 
489 /*
490  * Prevents addition of devices with same chip select and
491  * addition of devices below an unregistering controller.
492  */
493 static DEFINE_MUTEX(spi_add_lock);
494 
495 /**
496  * spi_alloc_device - Allocate a new SPI device
497  * @ctlr: Controller to which device is connected
498  * Context: can sleep
499  *
500  * Allows a driver to allocate and initialize a spi_device without
501  * registering it immediately.  This allows a driver to directly
502  * fill the spi_device with device parameters before calling
503  * spi_add_device() on it.
504  *
505  * Caller is responsible to call spi_add_device() on the returned
506  * spi_device structure to add it to the SPI controller.  If the caller
507  * needs to discard the spi_device without adding it, then it should
508  * call spi_dev_put() on it.
509  *
510  * Return: a pointer to the new device, or NULL.
511  */
512 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
513 {
514 	struct spi_device	*spi;
515 
516 	if (!spi_controller_get(ctlr))
517 		return NULL;
518 
519 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
520 	if (!spi) {
521 		spi_controller_put(ctlr);
522 		return NULL;
523 	}
524 
525 	spi->master = spi->controller = ctlr;
526 	spi->dev.parent = &ctlr->dev;
527 	spi->dev.bus = &spi_bus_type;
528 	spi->dev.release = spidev_release;
529 	spi->cs_gpio = -ENOENT;
530 	spi->mode = ctlr->buswidth_override_bits;
531 
532 	spin_lock_init(&spi->statistics.lock);
533 
534 	device_initialize(&spi->dev);
535 	return spi;
536 }
537 EXPORT_SYMBOL_GPL(spi_alloc_device);
538 
539 static void spi_dev_set_name(struct spi_device *spi)
540 {
541 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
542 
543 	if (adev) {
544 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
545 		return;
546 	}
547 
548 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
549 		     spi->chip_select);
550 }
551 
552 static int spi_dev_check(struct device *dev, void *data)
553 {
554 	struct spi_device *spi = to_spi_device(dev);
555 	struct spi_device *new_spi = data;
556 
557 	if (spi->controller == new_spi->controller &&
558 	    spi->chip_select == new_spi->chip_select)
559 		return -EBUSY;
560 	return 0;
561 }
562 
563 static void spi_cleanup(struct spi_device *spi)
564 {
565 	if (spi->controller->cleanup)
566 		spi->controller->cleanup(spi);
567 }
568 
569 static int __spi_add_device(struct spi_device *spi)
570 {
571 	struct spi_controller *ctlr = spi->controller;
572 	struct device *dev = ctlr->dev.parent;
573 	int status;
574 
575 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
576 	if (status) {
577 		dev_err(dev, "chipselect %d already in use\n",
578 				spi->chip_select);
579 		return status;
580 	}
581 
582 	/* Controller may unregister concurrently */
583 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
584 	    !device_is_registered(&ctlr->dev)) {
585 		return -ENODEV;
586 	}
587 
588 	/* Descriptors take precedence */
589 	if (ctlr->cs_gpiods)
590 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
591 	else if (ctlr->cs_gpios)
592 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
593 
594 	/* Drivers may modify this initial i/o setup, but will
595 	 * normally rely on the device being setup.  Devices
596 	 * using SPI_CS_HIGH can't coexist well otherwise...
597 	 */
598 	status = spi_setup(spi);
599 	if (status < 0) {
600 		dev_err(dev, "can't setup %s, status %d\n",
601 				dev_name(&spi->dev), status);
602 		return status;
603 	}
604 
605 	/* Device may be bound to an active driver when this returns */
606 	status = device_add(&spi->dev);
607 	if (status < 0) {
608 		dev_err(dev, "can't add %s, status %d\n",
609 				dev_name(&spi->dev), status);
610 		spi_cleanup(spi);
611 	} else {
612 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
613 	}
614 
615 	return status;
616 }
617 
618 /**
619  * spi_add_device - Add spi_device allocated with spi_alloc_device
620  * @spi: spi_device to register
621  *
622  * Companion function to spi_alloc_device.  Devices allocated with
623  * spi_alloc_device can be added onto the spi bus with this function.
624  *
625  * Return: 0 on success; negative errno on failure
626  */
627 int spi_add_device(struct spi_device *spi)
628 {
629 	struct spi_controller *ctlr = spi->controller;
630 	struct device *dev = ctlr->dev.parent;
631 	int status;
632 
633 	/* Chipselects are numbered 0..max; validate. */
634 	if (spi->chip_select >= ctlr->num_chipselect) {
635 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
636 			ctlr->num_chipselect);
637 		return -EINVAL;
638 	}
639 
640 	/* Set the bus ID string */
641 	spi_dev_set_name(spi);
642 
643 	/* We need to make sure there's no other device with this
644 	 * chipselect **BEFORE** we call setup(), else we'll trash
645 	 * its configuration.  Lock against concurrent add() calls.
646 	 */
647 	mutex_lock(&spi_add_lock);
648 	status = __spi_add_device(spi);
649 	mutex_unlock(&spi_add_lock);
650 	return status;
651 }
652 EXPORT_SYMBOL_GPL(spi_add_device);
653 
654 static int spi_add_device_locked(struct spi_device *spi)
655 {
656 	struct spi_controller *ctlr = spi->controller;
657 	struct device *dev = ctlr->dev.parent;
658 
659 	/* Chipselects are numbered 0..max; validate. */
660 	if (spi->chip_select >= ctlr->num_chipselect) {
661 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
662 			ctlr->num_chipselect);
663 		return -EINVAL;
664 	}
665 
666 	/* Set the bus ID string */
667 	spi_dev_set_name(spi);
668 
669 	WARN_ON(!mutex_is_locked(&spi_add_lock));
670 	return __spi_add_device(spi);
671 }
672 
673 /**
674  * spi_new_device - instantiate one new SPI device
675  * @ctlr: Controller to which device is connected
676  * @chip: Describes the SPI device
677  * Context: can sleep
678  *
679  * On typical mainboards, this is purely internal; and it's not needed
680  * after board init creates the hard-wired devices.  Some development
681  * platforms may not be able to use spi_register_board_info though, and
682  * this is exported so that for example a USB or parport based adapter
683  * driver could add devices (which it would learn about out-of-band).
684  *
685  * Return: the new device, or NULL.
686  */
687 struct spi_device *spi_new_device(struct spi_controller *ctlr,
688 				  struct spi_board_info *chip)
689 {
690 	struct spi_device	*proxy;
691 	int			status;
692 
693 	/* NOTE:  caller did any chip->bus_num checks necessary.
694 	 *
695 	 * Also, unless we change the return value convention to use
696 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
697 	 * suggests syslogged diagnostics are best here (ugh).
698 	 */
699 
700 	proxy = spi_alloc_device(ctlr);
701 	if (!proxy)
702 		return NULL;
703 
704 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
705 
706 	proxy->chip_select = chip->chip_select;
707 	proxy->max_speed_hz = chip->max_speed_hz;
708 	proxy->mode = chip->mode;
709 	proxy->irq = chip->irq;
710 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
711 	proxy->dev.platform_data = (void *) chip->platform_data;
712 	proxy->controller_data = chip->controller_data;
713 	proxy->controller_state = NULL;
714 
715 	if (chip->swnode) {
716 		status = device_add_software_node(&proxy->dev, chip->swnode);
717 		if (status) {
718 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
719 				chip->modalias, status);
720 			goto err_dev_put;
721 		}
722 	}
723 
724 	status = spi_add_device(proxy);
725 	if (status < 0)
726 		goto err_dev_put;
727 
728 	return proxy;
729 
730 err_dev_put:
731 	device_remove_software_node(&proxy->dev);
732 	spi_dev_put(proxy);
733 	return NULL;
734 }
735 EXPORT_SYMBOL_GPL(spi_new_device);
736 
737 /**
738  * spi_unregister_device - unregister a single SPI device
739  * @spi: spi_device to unregister
740  *
741  * Start making the passed SPI device vanish. Normally this would be handled
742  * by spi_unregister_controller().
743  */
744 void spi_unregister_device(struct spi_device *spi)
745 {
746 	if (!spi)
747 		return;
748 
749 	if (spi->dev.of_node) {
750 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
751 		of_node_put(spi->dev.of_node);
752 	}
753 	if (ACPI_COMPANION(&spi->dev))
754 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
755 	device_remove_software_node(&spi->dev);
756 	device_del(&spi->dev);
757 	spi_cleanup(spi);
758 	put_device(&spi->dev);
759 }
760 EXPORT_SYMBOL_GPL(spi_unregister_device);
761 
762 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
763 					      struct spi_board_info *bi)
764 {
765 	struct spi_device *dev;
766 
767 	if (ctlr->bus_num != bi->bus_num)
768 		return;
769 
770 	dev = spi_new_device(ctlr, bi);
771 	if (!dev)
772 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
773 			bi->modalias);
774 }
775 
776 /**
777  * spi_register_board_info - register SPI devices for a given board
778  * @info: array of chip descriptors
779  * @n: how many descriptors are provided
780  * Context: can sleep
781  *
782  * Board-specific early init code calls this (probably during arch_initcall)
783  * with segments of the SPI device table.  Any device nodes are created later,
784  * after the relevant parent SPI controller (bus_num) is defined.  We keep
785  * this table of devices forever, so that reloading a controller driver will
786  * not make Linux forget about these hard-wired devices.
787  *
788  * Other code can also call this, e.g. a particular add-on board might provide
789  * SPI devices through its expansion connector, so code initializing that board
790  * would naturally declare its SPI devices.
791  *
792  * The board info passed can safely be __initdata ... but be careful of
793  * any embedded pointers (platform_data, etc), they're copied as-is.
794  *
795  * Return: zero on success, else a negative error code.
796  */
797 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
798 {
799 	struct boardinfo *bi;
800 	int i;
801 
802 	if (!n)
803 		return 0;
804 
805 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
806 	if (!bi)
807 		return -ENOMEM;
808 
809 	for (i = 0; i < n; i++, bi++, info++) {
810 		struct spi_controller *ctlr;
811 
812 		memcpy(&bi->board_info, info, sizeof(*info));
813 
814 		mutex_lock(&board_lock);
815 		list_add_tail(&bi->list, &board_list);
816 		list_for_each_entry(ctlr, &spi_controller_list, list)
817 			spi_match_controller_to_boardinfo(ctlr,
818 							  &bi->board_info);
819 		mutex_unlock(&board_lock);
820 	}
821 
822 	return 0;
823 }
824 
825 /*-------------------------------------------------------------------------*/
826 
827 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
828 {
829 	bool activate = enable;
830 
831 	/*
832 	 * Avoid calling into the driver (or doing delays) if the chip select
833 	 * isn't actually changing from the last time this was called.
834 	 */
835 	if (!force && (spi->controller->last_cs_enable == enable) &&
836 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
837 		return;
838 
839 	trace_spi_set_cs(spi, activate);
840 
841 	spi->controller->last_cs_enable = enable;
842 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
843 
844 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
845 	    !spi->controller->set_cs_timing) {
846 		if (activate)
847 			spi_delay_exec(&spi->cs_setup, NULL);
848 		else
849 			spi_delay_exec(&spi->cs_hold, NULL);
850 	}
851 
852 	if (spi->mode & SPI_CS_HIGH)
853 		enable = !enable;
854 
855 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
856 		if (!(spi->mode & SPI_NO_CS)) {
857 			if (spi->cs_gpiod) {
858 				/*
859 				 * Historically ACPI has no means of the GPIO polarity and
860 				 * thus the SPISerialBus() resource defines it on the per-chip
861 				 * basis. In order to avoid a chain of negations, the GPIO
862 				 * polarity is considered being Active High. Even for the cases
863 				 * when _DSD() is involved (in the updated versions of ACPI)
864 				 * the GPIO CS polarity must be defined Active High to avoid
865 				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
866 				 * into account.
867 				 */
868 				if (has_acpi_companion(&spi->dev))
869 					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
870 				else
871 					/* Polarity handled by GPIO library */
872 					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
873 			} else {
874 				/*
875 				 * invert the enable line, as active low is
876 				 * default for SPI.
877 				 */
878 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
879 			}
880 		}
881 		/* Some SPI masters need both GPIO CS & slave_select */
882 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
883 		    spi->controller->set_cs)
884 			spi->controller->set_cs(spi, !enable);
885 	} else if (spi->controller->set_cs) {
886 		spi->controller->set_cs(spi, !enable);
887 	}
888 
889 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
890 	    !spi->controller->set_cs_timing) {
891 		if (!activate)
892 			spi_delay_exec(&spi->cs_inactive, NULL);
893 	}
894 }
895 
896 #ifdef CONFIG_HAS_DMA
897 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
898 		struct sg_table *sgt, void *buf, size_t len,
899 		enum dma_data_direction dir)
900 {
901 	const bool vmalloced_buf = is_vmalloc_addr(buf);
902 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
903 #ifdef CONFIG_HIGHMEM
904 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
905 				(unsigned long)buf < (PKMAP_BASE +
906 					(LAST_PKMAP * PAGE_SIZE)));
907 #else
908 	const bool kmap_buf = false;
909 #endif
910 	int desc_len;
911 	int sgs;
912 	struct page *vm_page;
913 	struct scatterlist *sg;
914 	void *sg_buf;
915 	size_t min;
916 	int i, ret;
917 
918 	if (vmalloced_buf || kmap_buf) {
919 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
920 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
921 	} else if (virt_addr_valid(buf)) {
922 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
923 		sgs = DIV_ROUND_UP(len, desc_len);
924 	} else {
925 		return -EINVAL;
926 	}
927 
928 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
929 	if (ret != 0)
930 		return ret;
931 
932 	sg = &sgt->sgl[0];
933 	for (i = 0; i < sgs; i++) {
934 
935 		if (vmalloced_buf || kmap_buf) {
936 			/*
937 			 * Next scatterlist entry size is the minimum between
938 			 * the desc_len and the remaining buffer length that
939 			 * fits in a page.
940 			 */
941 			min = min_t(size_t, desc_len,
942 				    min_t(size_t, len,
943 					  PAGE_SIZE - offset_in_page(buf)));
944 			if (vmalloced_buf)
945 				vm_page = vmalloc_to_page(buf);
946 			else
947 				vm_page = kmap_to_page(buf);
948 			if (!vm_page) {
949 				sg_free_table(sgt);
950 				return -ENOMEM;
951 			}
952 			sg_set_page(sg, vm_page,
953 				    min, offset_in_page(buf));
954 		} else {
955 			min = min_t(size_t, len, desc_len);
956 			sg_buf = buf;
957 			sg_set_buf(sg, sg_buf, min);
958 		}
959 
960 		buf += min;
961 		len -= min;
962 		sg = sg_next(sg);
963 	}
964 
965 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
966 	if (!ret)
967 		ret = -ENOMEM;
968 	if (ret < 0) {
969 		sg_free_table(sgt);
970 		return ret;
971 	}
972 
973 	sgt->nents = ret;
974 
975 	return 0;
976 }
977 
978 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
979 		   struct sg_table *sgt, enum dma_data_direction dir)
980 {
981 	if (sgt->orig_nents) {
982 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
983 		sg_free_table(sgt);
984 	}
985 }
986 
987 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
988 {
989 	struct device *tx_dev, *rx_dev;
990 	struct spi_transfer *xfer;
991 	int ret;
992 
993 	if (!ctlr->can_dma)
994 		return 0;
995 
996 	if (ctlr->dma_tx)
997 		tx_dev = ctlr->dma_tx->device->dev;
998 	else if (ctlr->dma_map_dev)
999 		tx_dev = ctlr->dma_map_dev;
1000 	else
1001 		tx_dev = ctlr->dev.parent;
1002 
1003 	if (ctlr->dma_rx)
1004 		rx_dev = ctlr->dma_rx->device->dev;
1005 	else if (ctlr->dma_map_dev)
1006 		rx_dev = ctlr->dma_map_dev;
1007 	else
1008 		rx_dev = ctlr->dev.parent;
1009 
1010 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1011 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1012 			continue;
1013 
1014 		if (xfer->tx_buf != NULL) {
1015 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1016 					  (void *)xfer->tx_buf, xfer->len,
1017 					  DMA_TO_DEVICE);
1018 			if (ret != 0)
1019 				return ret;
1020 		}
1021 
1022 		if (xfer->rx_buf != NULL) {
1023 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1024 					  xfer->rx_buf, xfer->len,
1025 					  DMA_FROM_DEVICE);
1026 			if (ret != 0) {
1027 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1028 					      DMA_TO_DEVICE);
1029 				return ret;
1030 			}
1031 		}
1032 	}
1033 
1034 	ctlr->cur_msg_mapped = true;
1035 
1036 	return 0;
1037 }
1038 
1039 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1040 {
1041 	struct spi_transfer *xfer;
1042 	struct device *tx_dev, *rx_dev;
1043 
1044 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1045 		return 0;
1046 
1047 	if (ctlr->dma_tx)
1048 		tx_dev = ctlr->dma_tx->device->dev;
1049 	else
1050 		tx_dev = ctlr->dev.parent;
1051 
1052 	if (ctlr->dma_rx)
1053 		rx_dev = ctlr->dma_rx->device->dev;
1054 	else
1055 		rx_dev = ctlr->dev.parent;
1056 
1057 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1058 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1059 			continue;
1060 
1061 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1062 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1063 	}
1064 
1065 	ctlr->cur_msg_mapped = false;
1066 
1067 	return 0;
1068 }
1069 #else /* !CONFIG_HAS_DMA */
1070 static inline int __spi_map_msg(struct spi_controller *ctlr,
1071 				struct spi_message *msg)
1072 {
1073 	return 0;
1074 }
1075 
1076 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1077 				  struct spi_message *msg)
1078 {
1079 	return 0;
1080 }
1081 #endif /* !CONFIG_HAS_DMA */
1082 
1083 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1084 				struct spi_message *msg)
1085 {
1086 	struct spi_transfer *xfer;
1087 
1088 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1089 		/*
1090 		 * Restore the original value of tx_buf or rx_buf if they are
1091 		 * NULL.
1092 		 */
1093 		if (xfer->tx_buf == ctlr->dummy_tx)
1094 			xfer->tx_buf = NULL;
1095 		if (xfer->rx_buf == ctlr->dummy_rx)
1096 			xfer->rx_buf = NULL;
1097 	}
1098 
1099 	return __spi_unmap_msg(ctlr, msg);
1100 }
1101 
1102 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1103 {
1104 	struct spi_transfer *xfer;
1105 	void *tmp;
1106 	unsigned int max_tx, max_rx;
1107 
1108 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1109 		&& !(msg->spi->mode & SPI_3WIRE)) {
1110 		max_tx = 0;
1111 		max_rx = 0;
1112 
1113 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1114 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1115 			    !xfer->tx_buf)
1116 				max_tx = max(xfer->len, max_tx);
1117 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1118 			    !xfer->rx_buf)
1119 				max_rx = max(xfer->len, max_rx);
1120 		}
1121 
1122 		if (max_tx) {
1123 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1124 				       GFP_KERNEL | GFP_DMA);
1125 			if (!tmp)
1126 				return -ENOMEM;
1127 			ctlr->dummy_tx = tmp;
1128 			memset(tmp, 0, max_tx);
1129 		}
1130 
1131 		if (max_rx) {
1132 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1133 				       GFP_KERNEL | GFP_DMA);
1134 			if (!tmp)
1135 				return -ENOMEM;
1136 			ctlr->dummy_rx = tmp;
1137 		}
1138 
1139 		if (max_tx || max_rx) {
1140 			list_for_each_entry(xfer, &msg->transfers,
1141 					    transfer_list) {
1142 				if (!xfer->len)
1143 					continue;
1144 				if (!xfer->tx_buf)
1145 					xfer->tx_buf = ctlr->dummy_tx;
1146 				if (!xfer->rx_buf)
1147 					xfer->rx_buf = ctlr->dummy_rx;
1148 			}
1149 		}
1150 	}
1151 
1152 	return __spi_map_msg(ctlr, msg);
1153 }
1154 
1155 static int spi_transfer_wait(struct spi_controller *ctlr,
1156 			     struct spi_message *msg,
1157 			     struct spi_transfer *xfer)
1158 {
1159 	struct spi_statistics *statm = &ctlr->statistics;
1160 	struct spi_statistics *stats = &msg->spi->statistics;
1161 	u32 speed_hz = xfer->speed_hz;
1162 	unsigned long long ms;
1163 
1164 	if (spi_controller_is_slave(ctlr)) {
1165 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1166 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1167 			return -EINTR;
1168 		}
1169 	} else {
1170 		if (!speed_hz)
1171 			speed_hz = 100000;
1172 
1173 		/*
1174 		 * For each byte we wait for 8 cycles of the SPI clock.
1175 		 * Since speed is defined in Hz and we want milliseconds,
1176 		 * use respective multiplier, but before the division,
1177 		 * otherwise we may get 0 for short transfers.
1178 		 */
1179 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1180 		do_div(ms, speed_hz);
1181 
1182 		/*
1183 		 * Increase it twice and add 200 ms tolerance, use
1184 		 * predefined maximum in case of overflow.
1185 		 */
1186 		ms += ms + 200;
1187 		if (ms > UINT_MAX)
1188 			ms = UINT_MAX;
1189 
1190 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1191 						 msecs_to_jiffies(ms));
1192 
1193 		if (ms == 0) {
1194 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1195 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1196 			dev_err(&msg->spi->dev,
1197 				"SPI transfer timed out\n");
1198 			return -ETIMEDOUT;
1199 		}
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static void _spi_transfer_delay_ns(u32 ns)
1206 {
1207 	if (!ns)
1208 		return;
1209 	if (ns <= NSEC_PER_USEC) {
1210 		ndelay(ns);
1211 	} else {
1212 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1213 
1214 		if (us <= 10)
1215 			udelay(us);
1216 		else
1217 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1218 	}
1219 }
1220 
1221 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1222 {
1223 	u32 delay = _delay->value;
1224 	u32 unit = _delay->unit;
1225 	u32 hz;
1226 
1227 	if (!delay)
1228 		return 0;
1229 
1230 	switch (unit) {
1231 	case SPI_DELAY_UNIT_USECS:
1232 		delay *= NSEC_PER_USEC;
1233 		break;
1234 	case SPI_DELAY_UNIT_NSECS:
1235 		/* Nothing to do here */
1236 		break;
1237 	case SPI_DELAY_UNIT_SCK:
1238 		/* clock cycles need to be obtained from spi_transfer */
1239 		if (!xfer)
1240 			return -EINVAL;
1241 		/*
1242 		 * If there is unknown effective speed, approximate it
1243 		 * by underestimating with half of the requested hz.
1244 		 */
1245 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1246 		if (!hz)
1247 			return -EINVAL;
1248 
1249 		/* Convert delay to nanoseconds */
1250 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1251 		break;
1252 	default:
1253 		return -EINVAL;
1254 	}
1255 
1256 	return delay;
1257 }
1258 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1259 
1260 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1261 {
1262 	int delay;
1263 
1264 	might_sleep();
1265 
1266 	if (!_delay)
1267 		return -EINVAL;
1268 
1269 	delay = spi_delay_to_ns(_delay, xfer);
1270 	if (delay < 0)
1271 		return delay;
1272 
1273 	_spi_transfer_delay_ns(delay);
1274 
1275 	return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(spi_delay_exec);
1278 
1279 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1280 					  struct spi_transfer *xfer)
1281 {
1282 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1283 	u32 delay = xfer->cs_change_delay.value;
1284 	u32 unit = xfer->cs_change_delay.unit;
1285 	int ret;
1286 
1287 	/* return early on "fast" mode - for everything but USECS */
1288 	if (!delay) {
1289 		if (unit == SPI_DELAY_UNIT_USECS)
1290 			_spi_transfer_delay_ns(default_delay_ns);
1291 		return;
1292 	}
1293 
1294 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1295 	if (ret) {
1296 		dev_err_once(&msg->spi->dev,
1297 			     "Use of unsupported delay unit %i, using default of %luus\n",
1298 			     unit, default_delay_ns / NSEC_PER_USEC);
1299 		_spi_transfer_delay_ns(default_delay_ns);
1300 	}
1301 }
1302 
1303 /*
1304  * spi_transfer_one_message - Default implementation of transfer_one_message()
1305  *
1306  * This is a standard implementation of transfer_one_message() for
1307  * drivers which implement a transfer_one() operation.  It provides
1308  * standard handling of delays and chip select management.
1309  */
1310 static int spi_transfer_one_message(struct spi_controller *ctlr,
1311 				    struct spi_message *msg)
1312 {
1313 	struct spi_transfer *xfer;
1314 	bool keep_cs = false;
1315 	int ret = 0;
1316 	struct spi_statistics *statm = &ctlr->statistics;
1317 	struct spi_statistics *stats = &msg->spi->statistics;
1318 
1319 	spi_set_cs(msg->spi, true, false);
1320 
1321 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1322 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1323 
1324 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1325 		trace_spi_transfer_start(msg, xfer);
1326 
1327 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1328 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1329 
1330 		if (!ctlr->ptp_sts_supported) {
1331 			xfer->ptp_sts_word_pre = 0;
1332 			ptp_read_system_prets(xfer->ptp_sts);
1333 		}
1334 
1335 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1336 			reinit_completion(&ctlr->xfer_completion);
1337 
1338 fallback_pio:
1339 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1340 			if (ret < 0) {
1341 				if (ctlr->cur_msg_mapped &&
1342 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1343 					__spi_unmap_msg(ctlr, msg);
1344 					ctlr->fallback = true;
1345 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1346 					goto fallback_pio;
1347 				}
1348 
1349 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1350 							       errors);
1351 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1352 							       errors);
1353 				dev_err(&msg->spi->dev,
1354 					"SPI transfer failed: %d\n", ret);
1355 				goto out;
1356 			}
1357 
1358 			if (ret > 0) {
1359 				ret = spi_transfer_wait(ctlr, msg, xfer);
1360 				if (ret < 0)
1361 					msg->status = ret;
1362 			}
1363 		} else {
1364 			if (xfer->len)
1365 				dev_err(&msg->spi->dev,
1366 					"Bufferless transfer has length %u\n",
1367 					xfer->len);
1368 		}
1369 
1370 		if (!ctlr->ptp_sts_supported) {
1371 			ptp_read_system_postts(xfer->ptp_sts);
1372 			xfer->ptp_sts_word_post = xfer->len;
1373 		}
1374 
1375 		trace_spi_transfer_stop(msg, xfer);
1376 
1377 		if (msg->status != -EINPROGRESS)
1378 			goto out;
1379 
1380 		spi_transfer_delay_exec(xfer);
1381 
1382 		if (xfer->cs_change) {
1383 			if (list_is_last(&xfer->transfer_list,
1384 					 &msg->transfers)) {
1385 				keep_cs = true;
1386 			} else {
1387 				spi_set_cs(msg->spi, false, false);
1388 				_spi_transfer_cs_change_delay(msg, xfer);
1389 				spi_set_cs(msg->spi, true, false);
1390 			}
1391 		}
1392 
1393 		msg->actual_length += xfer->len;
1394 	}
1395 
1396 out:
1397 	if (ret != 0 || !keep_cs)
1398 		spi_set_cs(msg->spi, false, false);
1399 
1400 	if (msg->status == -EINPROGRESS)
1401 		msg->status = ret;
1402 
1403 	if (msg->status && ctlr->handle_err)
1404 		ctlr->handle_err(ctlr, msg);
1405 
1406 	spi_finalize_current_message(ctlr);
1407 
1408 	return ret;
1409 }
1410 
1411 /**
1412  * spi_finalize_current_transfer - report completion of a transfer
1413  * @ctlr: the controller reporting completion
1414  *
1415  * Called by SPI drivers using the core transfer_one_message()
1416  * implementation to notify it that the current interrupt driven
1417  * transfer has finished and the next one may be scheduled.
1418  */
1419 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1420 {
1421 	complete(&ctlr->xfer_completion);
1422 }
1423 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1424 
1425 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1426 {
1427 	if (ctlr->auto_runtime_pm) {
1428 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1429 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1430 	}
1431 }
1432 
1433 /**
1434  * __spi_pump_messages - function which processes spi message queue
1435  * @ctlr: controller to process queue for
1436  * @in_kthread: true if we are in the context of the message pump thread
1437  *
1438  * This function checks if there is any spi message in the queue that
1439  * needs processing and if so call out to the driver to initialize hardware
1440  * and transfer each message.
1441  *
1442  * Note that it is called both from the kthread itself and also from
1443  * inside spi_sync(); the queue extraction handling at the top of the
1444  * function should deal with this safely.
1445  */
1446 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1447 {
1448 	struct spi_transfer *xfer;
1449 	struct spi_message *msg;
1450 	bool was_busy = false;
1451 	unsigned long flags;
1452 	int ret;
1453 
1454 	/* Lock queue */
1455 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1456 
1457 	/* Make sure we are not already running a message */
1458 	if (ctlr->cur_msg) {
1459 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1460 		return;
1461 	}
1462 
1463 	/* If another context is idling the device then defer */
1464 	if (ctlr->idling) {
1465 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1466 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1467 		return;
1468 	}
1469 
1470 	/* Check if the queue is idle */
1471 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1472 		if (!ctlr->busy) {
1473 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1474 			return;
1475 		}
1476 
1477 		/* Defer any non-atomic teardown to the thread */
1478 		if (!in_kthread) {
1479 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1480 			    !ctlr->unprepare_transfer_hardware) {
1481 				spi_idle_runtime_pm(ctlr);
1482 				ctlr->busy = false;
1483 				trace_spi_controller_idle(ctlr);
1484 			} else {
1485 				kthread_queue_work(ctlr->kworker,
1486 						   &ctlr->pump_messages);
1487 			}
1488 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1489 			return;
1490 		}
1491 
1492 		ctlr->busy = false;
1493 		ctlr->idling = true;
1494 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1495 
1496 		kfree(ctlr->dummy_rx);
1497 		ctlr->dummy_rx = NULL;
1498 		kfree(ctlr->dummy_tx);
1499 		ctlr->dummy_tx = NULL;
1500 		if (ctlr->unprepare_transfer_hardware &&
1501 		    ctlr->unprepare_transfer_hardware(ctlr))
1502 			dev_err(&ctlr->dev,
1503 				"failed to unprepare transfer hardware\n");
1504 		spi_idle_runtime_pm(ctlr);
1505 		trace_spi_controller_idle(ctlr);
1506 
1507 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1508 		ctlr->idling = false;
1509 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1510 		return;
1511 	}
1512 
1513 	/* Extract head of queue */
1514 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1515 	ctlr->cur_msg = msg;
1516 
1517 	list_del_init(&msg->queue);
1518 	if (ctlr->busy)
1519 		was_busy = true;
1520 	else
1521 		ctlr->busy = true;
1522 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1523 
1524 	mutex_lock(&ctlr->io_mutex);
1525 
1526 	if (!was_busy && ctlr->auto_runtime_pm) {
1527 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1528 		if (ret < 0) {
1529 			pm_runtime_put_noidle(ctlr->dev.parent);
1530 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1531 				ret);
1532 			mutex_unlock(&ctlr->io_mutex);
1533 			return;
1534 		}
1535 	}
1536 
1537 	if (!was_busy)
1538 		trace_spi_controller_busy(ctlr);
1539 
1540 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1541 		ret = ctlr->prepare_transfer_hardware(ctlr);
1542 		if (ret) {
1543 			dev_err(&ctlr->dev,
1544 				"failed to prepare transfer hardware: %d\n",
1545 				ret);
1546 
1547 			if (ctlr->auto_runtime_pm)
1548 				pm_runtime_put(ctlr->dev.parent);
1549 
1550 			msg->status = ret;
1551 			spi_finalize_current_message(ctlr);
1552 
1553 			mutex_unlock(&ctlr->io_mutex);
1554 			return;
1555 		}
1556 	}
1557 
1558 	trace_spi_message_start(msg);
1559 
1560 	if (ctlr->prepare_message) {
1561 		ret = ctlr->prepare_message(ctlr, msg);
1562 		if (ret) {
1563 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1564 				ret);
1565 			msg->status = ret;
1566 			spi_finalize_current_message(ctlr);
1567 			goto out;
1568 		}
1569 		ctlr->cur_msg_prepared = true;
1570 	}
1571 
1572 	ret = spi_map_msg(ctlr, msg);
1573 	if (ret) {
1574 		msg->status = ret;
1575 		spi_finalize_current_message(ctlr);
1576 		goto out;
1577 	}
1578 
1579 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1580 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1581 			xfer->ptp_sts_word_pre = 0;
1582 			ptp_read_system_prets(xfer->ptp_sts);
1583 		}
1584 	}
1585 
1586 	ret = ctlr->transfer_one_message(ctlr, msg);
1587 	if (ret) {
1588 		dev_err(&ctlr->dev,
1589 			"failed to transfer one message from queue\n");
1590 		goto out;
1591 	}
1592 
1593 out:
1594 	mutex_unlock(&ctlr->io_mutex);
1595 
1596 	/* Prod the scheduler in case transfer_one() was busy waiting */
1597 	if (!ret)
1598 		cond_resched();
1599 }
1600 
1601 /**
1602  * spi_pump_messages - kthread work function which processes spi message queue
1603  * @work: pointer to kthread work struct contained in the controller struct
1604  */
1605 static void spi_pump_messages(struct kthread_work *work)
1606 {
1607 	struct spi_controller *ctlr =
1608 		container_of(work, struct spi_controller, pump_messages);
1609 
1610 	__spi_pump_messages(ctlr, true);
1611 }
1612 
1613 /**
1614  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1615  *			    TX timestamp for the requested byte from the SPI
1616  *			    transfer. The frequency with which this function
1617  *			    must be called (once per word, once for the whole
1618  *			    transfer, once per batch of words etc) is arbitrary
1619  *			    as long as the @tx buffer offset is greater than or
1620  *			    equal to the requested byte at the time of the
1621  *			    call. The timestamp is only taken once, at the
1622  *			    first such call. It is assumed that the driver
1623  *			    advances its @tx buffer pointer monotonically.
1624  * @ctlr: Pointer to the spi_controller structure of the driver
1625  * @xfer: Pointer to the transfer being timestamped
1626  * @progress: How many words (not bytes) have been transferred so far
1627  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1628  *	      transfer, for less jitter in time measurement. Only compatible
1629  *	      with PIO drivers. If true, must follow up with
1630  *	      spi_take_timestamp_post or otherwise system will crash.
1631  *	      WARNING: for fully predictable results, the CPU frequency must
1632  *	      also be under control (governor).
1633  */
1634 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1635 			    struct spi_transfer *xfer,
1636 			    size_t progress, bool irqs_off)
1637 {
1638 	if (!xfer->ptp_sts)
1639 		return;
1640 
1641 	if (xfer->timestamped)
1642 		return;
1643 
1644 	if (progress > xfer->ptp_sts_word_pre)
1645 		return;
1646 
1647 	/* Capture the resolution of the timestamp */
1648 	xfer->ptp_sts_word_pre = progress;
1649 
1650 	if (irqs_off) {
1651 		local_irq_save(ctlr->irq_flags);
1652 		preempt_disable();
1653 	}
1654 
1655 	ptp_read_system_prets(xfer->ptp_sts);
1656 }
1657 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1658 
1659 /**
1660  * spi_take_timestamp_post - helper for drivers to collect the end of the
1661  *			     TX timestamp for the requested byte from the SPI
1662  *			     transfer. Can be called with an arbitrary
1663  *			     frequency: only the first call where @tx exceeds
1664  *			     or is equal to the requested word will be
1665  *			     timestamped.
1666  * @ctlr: Pointer to the spi_controller structure of the driver
1667  * @xfer: Pointer to the transfer being timestamped
1668  * @progress: How many words (not bytes) have been transferred so far
1669  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1670  */
1671 void spi_take_timestamp_post(struct spi_controller *ctlr,
1672 			     struct spi_transfer *xfer,
1673 			     size_t progress, bool irqs_off)
1674 {
1675 	if (!xfer->ptp_sts)
1676 		return;
1677 
1678 	if (xfer->timestamped)
1679 		return;
1680 
1681 	if (progress < xfer->ptp_sts_word_post)
1682 		return;
1683 
1684 	ptp_read_system_postts(xfer->ptp_sts);
1685 
1686 	if (irqs_off) {
1687 		local_irq_restore(ctlr->irq_flags);
1688 		preempt_enable();
1689 	}
1690 
1691 	/* Capture the resolution of the timestamp */
1692 	xfer->ptp_sts_word_post = progress;
1693 
1694 	xfer->timestamped = true;
1695 }
1696 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1697 
1698 /**
1699  * spi_set_thread_rt - set the controller to pump at realtime priority
1700  * @ctlr: controller to boost priority of
1701  *
1702  * This can be called because the controller requested realtime priority
1703  * (by setting the ->rt value before calling spi_register_controller()) or
1704  * because a device on the bus said that its transfers needed realtime
1705  * priority.
1706  *
1707  * NOTE: at the moment if any device on a bus says it needs realtime then
1708  * the thread will be at realtime priority for all transfers on that
1709  * controller.  If this eventually becomes a problem we may see if we can
1710  * find a way to boost the priority only temporarily during relevant
1711  * transfers.
1712  */
1713 static void spi_set_thread_rt(struct spi_controller *ctlr)
1714 {
1715 	dev_info(&ctlr->dev,
1716 		"will run message pump with realtime priority\n");
1717 	sched_set_fifo(ctlr->kworker->task);
1718 }
1719 
1720 static int spi_init_queue(struct spi_controller *ctlr)
1721 {
1722 	ctlr->running = false;
1723 	ctlr->busy = false;
1724 
1725 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1726 	if (IS_ERR(ctlr->kworker)) {
1727 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1728 		return PTR_ERR(ctlr->kworker);
1729 	}
1730 
1731 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1732 
1733 	/*
1734 	 * Controller config will indicate if this controller should run the
1735 	 * message pump with high (realtime) priority to reduce the transfer
1736 	 * latency on the bus by minimising the delay between a transfer
1737 	 * request and the scheduling of the message pump thread. Without this
1738 	 * setting the message pump thread will remain at default priority.
1739 	 */
1740 	if (ctlr->rt)
1741 		spi_set_thread_rt(ctlr);
1742 
1743 	return 0;
1744 }
1745 
1746 /**
1747  * spi_get_next_queued_message() - called by driver to check for queued
1748  * messages
1749  * @ctlr: the controller to check for queued messages
1750  *
1751  * If there are more messages in the queue, the next message is returned from
1752  * this call.
1753  *
1754  * Return: the next message in the queue, else NULL if the queue is empty.
1755  */
1756 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1757 {
1758 	struct spi_message *next;
1759 	unsigned long flags;
1760 
1761 	/* get a pointer to the next message, if any */
1762 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1763 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1764 					queue);
1765 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1766 
1767 	return next;
1768 }
1769 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1770 
1771 /**
1772  * spi_finalize_current_message() - the current message is complete
1773  * @ctlr: the controller to return the message to
1774  *
1775  * Called by the driver to notify the core that the message in the front of the
1776  * queue is complete and can be removed from the queue.
1777  */
1778 void spi_finalize_current_message(struct spi_controller *ctlr)
1779 {
1780 	struct spi_transfer *xfer;
1781 	struct spi_message *mesg;
1782 	unsigned long flags;
1783 	int ret;
1784 
1785 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1786 	mesg = ctlr->cur_msg;
1787 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1788 
1789 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1790 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1791 			ptp_read_system_postts(xfer->ptp_sts);
1792 			xfer->ptp_sts_word_post = xfer->len;
1793 		}
1794 	}
1795 
1796 	if (unlikely(ctlr->ptp_sts_supported))
1797 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1798 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1799 
1800 	spi_unmap_msg(ctlr, mesg);
1801 
1802 	/* In the prepare_messages callback the spi bus has the opportunity to
1803 	 * split a transfer to smaller chunks.
1804 	 * Release splited transfers here since spi_map_msg is done on the
1805 	 * splited transfers.
1806 	 */
1807 	spi_res_release(ctlr, mesg);
1808 
1809 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1810 		ret = ctlr->unprepare_message(ctlr, mesg);
1811 		if (ret) {
1812 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1813 				ret);
1814 		}
1815 	}
1816 
1817 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1818 	ctlr->cur_msg = NULL;
1819 	ctlr->cur_msg_prepared = false;
1820 	ctlr->fallback = false;
1821 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1822 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1823 
1824 	trace_spi_message_done(mesg);
1825 
1826 	mesg->state = NULL;
1827 	if (mesg->complete)
1828 		mesg->complete(mesg->context);
1829 }
1830 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1831 
1832 static int spi_start_queue(struct spi_controller *ctlr)
1833 {
1834 	unsigned long flags;
1835 
1836 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1837 
1838 	if (ctlr->running || ctlr->busy) {
1839 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1840 		return -EBUSY;
1841 	}
1842 
1843 	ctlr->running = true;
1844 	ctlr->cur_msg = NULL;
1845 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1846 
1847 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1848 
1849 	return 0;
1850 }
1851 
1852 static int spi_stop_queue(struct spi_controller *ctlr)
1853 {
1854 	unsigned long flags;
1855 	unsigned limit = 500;
1856 	int ret = 0;
1857 
1858 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1859 
1860 	/*
1861 	 * This is a bit lame, but is optimized for the common execution path.
1862 	 * A wait_queue on the ctlr->busy could be used, but then the common
1863 	 * execution path (pump_messages) would be required to call wake_up or
1864 	 * friends on every SPI message. Do this instead.
1865 	 */
1866 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1867 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1868 		usleep_range(10000, 11000);
1869 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1870 	}
1871 
1872 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1873 		ret = -EBUSY;
1874 	else
1875 		ctlr->running = false;
1876 
1877 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1878 
1879 	if (ret) {
1880 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1881 		return ret;
1882 	}
1883 	return ret;
1884 }
1885 
1886 static int spi_destroy_queue(struct spi_controller *ctlr)
1887 {
1888 	int ret;
1889 
1890 	ret = spi_stop_queue(ctlr);
1891 
1892 	/*
1893 	 * kthread_flush_worker will block until all work is done.
1894 	 * If the reason that stop_queue timed out is that the work will never
1895 	 * finish, then it does no good to call flush/stop thread, so
1896 	 * return anyway.
1897 	 */
1898 	if (ret) {
1899 		dev_err(&ctlr->dev, "problem destroying queue\n");
1900 		return ret;
1901 	}
1902 
1903 	kthread_destroy_worker(ctlr->kworker);
1904 
1905 	return 0;
1906 }
1907 
1908 static int __spi_queued_transfer(struct spi_device *spi,
1909 				 struct spi_message *msg,
1910 				 bool need_pump)
1911 {
1912 	struct spi_controller *ctlr = spi->controller;
1913 	unsigned long flags;
1914 
1915 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1916 
1917 	if (!ctlr->running) {
1918 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1919 		return -ESHUTDOWN;
1920 	}
1921 	msg->actual_length = 0;
1922 	msg->status = -EINPROGRESS;
1923 
1924 	list_add_tail(&msg->queue, &ctlr->queue);
1925 	if (!ctlr->busy && need_pump)
1926 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1927 
1928 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1929 	return 0;
1930 }
1931 
1932 /**
1933  * spi_queued_transfer - transfer function for queued transfers
1934  * @spi: spi device which is requesting transfer
1935  * @msg: spi message which is to handled is queued to driver queue
1936  *
1937  * Return: zero on success, else a negative error code.
1938  */
1939 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1940 {
1941 	return __spi_queued_transfer(spi, msg, true);
1942 }
1943 
1944 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1945 {
1946 	int ret;
1947 
1948 	ctlr->transfer = spi_queued_transfer;
1949 	if (!ctlr->transfer_one_message)
1950 		ctlr->transfer_one_message = spi_transfer_one_message;
1951 
1952 	/* Initialize and start queue */
1953 	ret = spi_init_queue(ctlr);
1954 	if (ret) {
1955 		dev_err(&ctlr->dev, "problem initializing queue\n");
1956 		goto err_init_queue;
1957 	}
1958 	ctlr->queued = true;
1959 	ret = spi_start_queue(ctlr);
1960 	if (ret) {
1961 		dev_err(&ctlr->dev, "problem starting queue\n");
1962 		goto err_start_queue;
1963 	}
1964 
1965 	return 0;
1966 
1967 err_start_queue:
1968 	spi_destroy_queue(ctlr);
1969 err_init_queue:
1970 	return ret;
1971 }
1972 
1973 /**
1974  * spi_flush_queue - Send all pending messages in the queue from the callers'
1975  *		     context
1976  * @ctlr: controller to process queue for
1977  *
1978  * This should be used when one wants to ensure all pending messages have been
1979  * sent before doing something. Is used by the spi-mem code to make sure SPI
1980  * memory operations do not preempt regular SPI transfers that have been queued
1981  * before the spi-mem operation.
1982  */
1983 void spi_flush_queue(struct spi_controller *ctlr)
1984 {
1985 	if (ctlr->transfer == spi_queued_transfer)
1986 		__spi_pump_messages(ctlr, false);
1987 }
1988 
1989 /*-------------------------------------------------------------------------*/
1990 
1991 #if defined(CONFIG_OF)
1992 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1993 			   struct device_node *nc)
1994 {
1995 	u32 value;
1996 	int rc;
1997 
1998 	/* Mode (clock phase/polarity/etc.) */
1999 	if (of_property_read_bool(nc, "spi-cpha"))
2000 		spi->mode |= SPI_CPHA;
2001 	if (of_property_read_bool(nc, "spi-cpol"))
2002 		spi->mode |= SPI_CPOL;
2003 	if (of_property_read_bool(nc, "spi-3wire"))
2004 		spi->mode |= SPI_3WIRE;
2005 	if (of_property_read_bool(nc, "spi-lsb-first"))
2006 		spi->mode |= SPI_LSB_FIRST;
2007 	if (of_property_read_bool(nc, "spi-cs-high"))
2008 		spi->mode |= SPI_CS_HIGH;
2009 
2010 	/* Device DUAL/QUAD mode */
2011 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2012 		switch (value) {
2013 		case 0:
2014 			spi->mode |= SPI_NO_TX;
2015 			break;
2016 		case 1:
2017 			break;
2018 		case 2:
2019 			spi->mode |= SPI_TX_DUAL;
2020 			break;
2021 		case 4:
2022 			spi->mode |= SPI_TX_QUAD;
2023 			break;
2024 		case 8:
2025 			spi->mode |= SPI_TX_OCTAL;
2026 			break;
2027 		default:
2028 			dev_warn(&ctlr->dev,
2029 				"spi-tx-bus-width %d not supported\n",
2030 				value);
2031 			break;
2032 		}
2033 	}
2034 
2035 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2036 		switch (value) {
2037 		case 0:
2038 			spi->mode |= SPI_NO_RX;
2039 			break;
2040 		case 1:
2041 			break;
2042 		case 2:
2043 			spi->mode |= SPI_RX_DUAL;
2044 			break;
2045 		case 4:
2046 			spi->mode |= SPI_RX_QUAD;
2047 			break;
2048 		case 8:
2049 			spi->mode |= SPI_RX_OCTAL;
2050 			break;
2051 		default:
2052 			dev_warn(&ctlr->dev,
2053 				"spi-rx-bus-width %d not supported\n",
2054 				value);
2055 			break;
2056 		}
2057 	}
2058 
2059 	if (spi_controller_is_slave(ctlr)) {
2060 		if (!of_node_name_eq(nc, "slave")) {
2061 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2062 				nc);
2063 			return -EINVAL;
2064 		}
2065 		return 0;
2066 	}
2067 
2068 	/* Device address */
2069 	rc = of_property_read_u32(nc, "reg", &value);
2070 	if (rc) {
2071 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2072 			nc, rc);
2073 		return rc;
2074 	}
2075 	spi->chip_select = value;
2076 
2077 	/* Device speed */
2078 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2079 		spi->max_speed_hz = value;
2080 
2081 	return 0;
2082 }
2083 
2084 static struct spi_device *
2085 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2086 {
2087 	struct spi_device *spi;
2088 	int rc;
2089 
2090 	/* Alloc an spi_device */
2091 	spi = spi_alloc_device(ctlr);
2092 	if (!spi) {
2093 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2094 		rc = -ENOMEM;
2095 		goto err_out;
2096 	}
2097 
2098 	/* Select device driver */
2099 	rc = of_modalias_node(nc, spi->modalias,
2100 				sizeof(spi->modalias));
2101 	if (rc < 0) {
2102 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2103 		goto err_out;
2104 	}
2105 
2106 	rc = of_spi_parse_dt(ctlr, spi, nc);
2107 	if (rc)
2108 		goto err_out;
2109 
2110 	/* Store a pointer to the node in the device structure */
2111 	of_node_get(nc);
2112 	spi->dev.of_node = nc;
2113 	spi->dev.fwnode = of_fwnode_handle(nc);
2114 
2115 	/* Register the new device */
2116 	rc = spi_add_device(spi);
2117 	if (rc) {
2118 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2119 		goto err_of_node_put;
2120 	}
2121 
2122 	return spi;
2123 
2124 err_of_node_put:
2125 	of_node_put(nc);
2126 err_out:
2127 	spi_dev_put(spi);
2128 	return ERR_PTR(rc);
2129 }
2130 
2131 /**
2132  * of_register_spi_devices() - Register child devices onto the SPI bus
2133  * @ctlr:	Pointer to spi_controller device
2134  *
2135  * Registers an spi_device for each child node of controller node which
2136  * represents a valid SPI slave.
2137  */
2138 static void of_register_spi_devices(struct spi_controller *ctlr)
2139 {
2140 	struct spi_device *spi;
2141 	struct device_node *nc;
2142 
2143 	if (!ctlr->dev.of_node)
2144 		return;
2145 
2146 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2147 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2148 			continue;
2149 		spi = of_register_spi_device(ctlr, nc);
2150 		if (IS_ERR(spi)) {
2151 			dev_warn(&ctlr->dev,
2152 				 "Failed to create SPI device for %pOF\n", nc);
2153 			of_node_clear_flag(nc, OF_POPULATED);
2154 		}
2155 	}
2156 }
2157 #else
2158 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2159 #endif
2160 
2161 /**
2162  * spi_new_ancillary_device() - Register ancillary SPI device
2163  * @spi:         Pointer to the main SPI device registering the ancillary device
2164  * @chip_select: Chip Select of the ancillary device
2165  *
2166  * Register an ancillary SPI device; for example some chips have a chip-select
2167  * for normal device usage and another one for setup/firmware upload.
2168  *
2169  * This may only be called from main SPI device's probe routine.
2170  *
2171  * Return: 0 on success; negative errno on failure
2172  */
2173 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2174 					     u8 chip_select)
2175 {
2176 	struct spi_device *ancillary;
2177 	int rc = 0;
2178 
2179 	/* Alloc an spi_device */
2180 	ancillary = spi_alloc_device(spi->controller);
2181 	if (!ancillary) {
2182 		rc = -ENOMEM;
2183 		goto err_out;
2184 	}
2185 
2186 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2187 
2188 	/* Use provided chip-select for ancillary device */
2189 	ancillary->chip_select = chip_select;
2190 
2191 	/* Take over SPI mode/speed from SPI main device */
2192 	ancillary->max_speed_hz = spi->max_speed_hz;
2193 	ancillary->mode = spi->mode;
2194 
2195 	/* Register the new device */
2196 	rc = spi_add_device_locked(ancillary);
2197 	if (rc) {
2198 		dev_err(&spi->dev, "failed to register ancillary device\n");
2199 		goto err_out;
2200 	}
2201 
2202 	return ancillary;
2203 
2204 err_out:
2205 	spi_dev_put(ancillary);
2206 	return ERR_PTR(rc);
2207 }
2208 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2209 
2210 #ifdef CONFIG_ACPI
2211 struct acpi_spi_lookup {
2212 	struct spi_controller 	*ctlr;
2213 	u32			max_speed_hz;
2214 	u32			mode;
2215 	int			irq;
2216 	u8			bits_per_word;
2217 	u8			chip_select;
2218 };
2219 
2220 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2221 					    struct acpi_spi_lookup *lookup)
2222 {
2223 	const union acpi_object *obj;
2224 
2225 	if (!x86_apple_machine)
2226 		return;
2227 
2228 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2229 	    && obj->buffer.length >= 4)
2230 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2231 
2232 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2233 	    && obj->buffer.length == 8)
2234 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2235 
2236 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2237 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2238 		lookup->mode |= SPI_LSB_FIRST;
2239 
2240 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2241 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2242 		lookup->mode |= SPI_CPOL;
2243 
2244 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2245 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2246 		lookup->mode |= SPI_CPHA;
2247 }
2248 
2249 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2250 {
2251 	struct acpi_spi_lookup *lookup = data;
2252 	struct spi_controller *ctlr = lookup->ctlr;
2253 
2254 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2255 		struct acpi_resource_spi_serialbus *sb;
2256 		acpi_handle parent_handle;
2257 		acpi_status status;
2258 
2259 		sb = &ares->data.spi_serial_bus;
2260 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2261 
2262 			status = acpi_get_handle(NULL,
2263 						 sb->resource_source.string_ptr,
2264 						 &parent_handle);
2265 
2266 			if (ACPI_FAILURE(status) ||
2267 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2268 				return -ENODEV;
2269 
2270 			/*
2271 			 * ACPI DeviceSelection numbering is handled by the
2272 			 * host controller driver in Windows and can vary
2273 			 * from driver to driver. In Linux we always expect
2274 			 * 0 .. max - 1 so we need to ask the driver to
2275 			 * translate between the two schemes.
2276 			 */
2277 			if (ctlr->fw_translate_cs) {
2278 				int cs = ctlr->fw_translate_cs(ctlr,
2279 						sb->device_selection);
2280 				if (cs < 0)
2281 					return cs;
2282 				lookup->chip_select = cs;
2283 			} else {
2284 				lookup->chip_select = sb->device_selection;
2285 			}
2286 
2287 			lookup->max_speed_hz = sb->connection_speed;
2288 			lookup->bits_per_word = sb->data_bit_length;
2289 
2290 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2291 				lookup->mode |= SPI_CPHA;
2292 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2293 				lookup->mode |= SPI_CPOL;
2294 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2295 				lookup->mode |= SPI_CS_HIGH;
2296 		}
2297 	} else if (lookup->irq < 0) {
2298 		struct resource r;
2299 
2300 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2301 			lookup->irq = r.start;
2302 	}
2303 
2304 	/* Always tell the ACPI core to skip this resource */
2305 	return 1;
2306 }
2307 
2308 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2309 					    struct acpi_device *adev)
2310 {
2311 	acpi_handle parent_handle = NULL;
2312 	struct list_head resource_list;
2313 	struct acpi_spi_lookup lookup = {};
2314 	struct spi_device *spi;
2315 	int ret;
2316 
2317 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2318 	    acpi_device_enumerated(adev))
2319 		return AE_OK;
2320 
2321 	lookup.ctlr		= ctlr;
2322 	lookup.irq		= -1;
2323 
2324 	INIT_LIST_HEAD(&resource_list);
2325 	ret = acpi_dev_get_resources(adev, &resource_list,
2326 				     acpi_spi_add_resource, &lookup);
2327 	acpi_dev_free_resource_list(&resource_list);
2328 
2329 	if (ret < 0)
2330 		/* found SPI in _CRS but it points to another controller */
2331 		return AE_OK;
2332 
2333 	if (!lookup.max_speed_hz &&
2334 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2335 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2336 		/* Apple does not use _CRS but nested devices for SPI slaves */
2337 		acpi_spi_parse_apple_properties(adev, &lookup);
2338 	}
2339 
2340 	if (!lookup.max_speed_hz)
2341 		return AE_OK;
2342 
2343 	spi = spi_alloc_device(ctlr);
2344 	if (!spi) {
2345 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2346 			dev_name(&adev->dev));
2347 		return AE_NO_MEMORY;
2348 	}
2349 
2350 
2351 	ACPI_COMPANION_SET(&spi->dev, adev);
2352 	spi->max_speed_hz	= lookup.max_speed_hz;
2353 	spi->mode		|= lookup.mode;
2354 	spi->irq		= lookup.irq;
2355 	spi->bits_per_word	= lookup.bits_per_word;
2356 	spi->chip_select	= lookup.chip_select;
2357 
2358 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2359 			  sizeof(spi->modalias));
2360 
2361 	if (spi->irq < 0)
2362 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2363 
2364 	acpi_device_set_enumerated(adev);
2365 
2366 	adev->power.flags.ignore_parent = true;
2367 	if (spi_add_device(spi)) {
2368 		adev->power.flags.ignore_parent = false;
2369 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2370 			dev_name(&adev->dev));
2371 		spi_dev_put(spi);
2372 	}
2373 
2374 	return AE_OK;
2375 }
2376 
2377 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2378 				       void *data, void **return_value)
2379 {
2380 	struct spi_controller *ctlr = data;
2381 	struct acpi_device *adev;
2382 
2383 	if (acpi_bus_get_device(handle, &adev))
2384 		return AE_OK;
2385 
2386 	return acpi_register_spi_device(ctlr, adev);
2387 }
2388 
2389 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2390 
2391 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2392 {
2393 	acpi_status status;
2394 	acpi_handle handle;
2395 
2396 	handle = ACPI_HANDLE(ctlr->dev.parent);
2397 	if (!handle)
2398 		return;
2399 
2400 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2401 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2402 				     acpi_spi_add_device, NULL, ctlr, NULL);
2403 	if (ACPI_FAILURE(status))
2404 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2405 }
2406 #else
2407 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2408 #endif /* CONFIG_ACPI */
2409 
2410 static void spi_controller_release(struct device *dev)
2411 {
2412 	struct spi_controller *ctlr;
2413 
2414 	ctlr = container_of(dev, struct spi_controller, dev);
2415 	kfree(ctlr);
2416 }
2417 
2418 static struct class spi_master_class = {
2419 	.name		= "spi_master",
2420 	.owner		= THIS_MODULE,
2421 	.dev_release	= spi_controller_release,
2422 	.dev_groups	= spi_master_groups,
2423 };
2424 
2425 #ifdef CONFIG_SPI_SLAVE
2426 /**
2427  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2428  *		     controller
2429  * @spi: device used for the current transfer
2430  */
2431 int spi_slave_abort(struct spi_device *spi)
2432 {
2433 	struct spi_controller *ctlr = spi->controller;
2434 
2435 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2436 		return ctlr->slave_abort(ctlr);
2437 
2438 	return -ENOTSUPP;
2439 }
2440 EXPORT_SYMBOL_GPL(spi_slave_abort);
2441 
2442 static int match_true(struct device *dev, void *data)
2443 {
2444 	return 1;
2445 }
2446 
2447 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2448 			  char *buf)
2449 {
2450 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2451 						   dev);
2452 	struct device *child;
2453 
2454 	child = device_find_child(&ctlr->dev, NULL, match_true);
2455 	return sprintf(buf, "%s\n",
2456 		       child ? to_spi_device(child)->modalias : NULL);
2457 }
2458 
2459 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2460 			   const char *buf, size_t count)
2461 {
2462 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2463 						   dev);
2464 	struct spi_device *spi;
2465 	struct device *child;
2466 	char name[32];
2467 	int rc;
2468 
2469 	rc = sscanf(buf, "%31s", name);
2470 	if (rc != 1 || !name[0])
2471 		return -EINVAL;
2472 
2473 	child = device_find_child(&ctlr->dev, NULL, match_true);
2474 	if (child) {
2475 		/* Remove registered slave */
2476 		device_unregister(child);
2477 		put_device(child);
2478 	}
2479 
2480 	if (strcmp(name, "(null)")) {
2481 		/* Register new slave */
2482 		spi = spi_alloc_device(ctlr);
2483 		if (!spi)
2484 			return -ENOMEM;
2485 
2486 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2487 
2488 		rc = spi_add_device(spi);
2489 		if (rc) {
2490 			spi_dev_put(spi);
2491 			return rc;
2492 		}
2493 	}
2494 
2495 	return count;
2496 }
2497 
2498 static DEVICE_ATTR_RW(slave);
2499 
2500 static struct attribute *spi_slave_attrs[] = {
2501 	&dev_attr_slave.attr,
2502 	NULL,
2503 };
2504 
2505 static const struct attribute_group spi_slave_group = {
2506 	.attrs = spi_slave_attrs,
2507 };
2508 
2509 static const struct attribute_group *spi_slave_groups[] = {
2510 	&spi_controller_statistics_group,
2511 	&spi_slave_group,
2512 	NULL,
2513 };
2514 
2515 static struct class spi_slave_class = {
2516 	.name		= "spi_slave",
2517 	.owner		= THIS_MODULE,
2518 	.dev_release	= spi_controller_release,
2519 	.dev_groups	= spi_slave_groups,
2520 };
2521 #else
2522 extern struct class spi_slave_class;	/* dummy */
2523 #endif
2524 
2525 /**
2526  * __spi_alloc_controller - allocate an SPI master or slave controller
2527  * @dev: the controller, possibly using the platform_bus
2528  * @size: how much zeroed driver-private data to allocate; the pointer to this
2529  *	memory is in the driver_data field of the returned device, accessible
2530  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2531  *	drivers granting DMA access to portions of their private data need to
2532  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2533  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2534  *	slave (true) controller
2535  * Context: can sleep
2536  *
2537  * This call is used only by SPI controller drivers, which are the
2538  * only ones directly touching chip registers.  It's how they allocate
2539  * an spi_controller structure, prior to calling spi_register_controller().
2540  *
2541  * This must be called from context that can sleep.
2542  *
2543  * The caller is responsible for assigning the bus number and initializing the
2544  * controller's methods before calling spi_register_controller(); and (after
2545  * errors adding the device) calling spi_controller_put() to prevent a memory
2546  * leak.
2547  *
2548  * Return: the SPI controller structure on success, else NULL.
2549  */
2550 struct spi_controller *__spi_alloc_controller(struct device *dev,
2551 					      unsigned int size, bool slave)
2552 {
2553 	struct spi_controller	*ctlr;
2554 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2555 
2556 	if (!dev)
2557 		return NULL;
2558 
2559 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2560 	if (!ctlr)
2561 		return NULL;
2562 
2563 	device_initialize(&ctlr->dev);
2564 	ctlr->bus_num = -1;
2565 	ctlr->num_chipselect = 1;
2566 	ctlr->slave = slave;
2567 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2568 		ctlr->dev.class = &spi_slave_class;
2569 	else
2570 		ctlr->dev.class = &spi_master_class;
2571 	ctlr->dev.parent = dev;
2572 	pm_suspend_ignore_children(&ctlr->dev, true);
2573 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2574 
2575 	return ctlr;
2576 }
2577 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2578 
2579 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2580 {
2581 	spi_controller_put(*(struct spi_controller **)ctlr);
2582 }
2583 
2584 /**
2585  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2586  * @dev: physical device of SPI controller
2587  * @size: how much zeroed driver-private data to allocate
2588  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2589  * Context: can sleep
2590  *
2591  * Allocate an SPI controller and automatically release a reference on it
2592  * when @dev is unbound from its driver.  Drivers are thus relieved from
2593  * having to call spi_controller_put().
2594  *
2595  * The arguments to this function are identical to __spi_alloc_controller().
2596  *
2597  * Return: the SPI controller structure on success, else NULL.
2598  */
2599 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2600 						   unsigned int size,
2601 						   bool slave)
2602 {
2603 	struct spi_controller **ptr, *ctlr;
2604 
2605 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2606 			   GFP_KERNEL);
2607 	if (!ptr)
2608 		return NULL;
2609 
2610 	ctlr = __spi_alloc_controller(dev, size, slave);
2611 	if (ctlr) {
2612 		ctlr->devm_allocated = true;
2613 		*ptr = ctlr;
2614 		devres_add(dev, ptr);
2615 	} else {
2616 		devres_free(ptr);
2617 	}
2618 
2619 	return ctlr;
2620 }
2621 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2622 
2623 #ifdef CONFIG_OF
2624 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2625 {
2626 	int nb, i, *cs;
2627 	struct device_node *np = ctlr->dev.of_node;
2628 
2629 	if (!np)
2630 		return 0;
2631 
2632 	nb = of_gpio_named_count(np, "cs-gpios");
2633 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2634 
2635 	/* Return error only for an incorrectly formed cs-gpios property */
2636 	if (nb == 0 || nb == -ENOENT)
2637 		return 0;
2638 	else if (nb < 0)
2639 		return nb;
2640 
2641 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2642 			  GFP_KERNEL);
2643 	ctlr->cs_gpios = cs;
2644 
2645 	if (!ctlr->cs_gpios)
2646 		return -ENOMEM;
2647 
2648 	for (i = 0; i < ctlr->num_chipselect; i++)
2649 		cs[i] = -ENOENT;
2650 
2651 	for (i = 0; i < nb; i++)
2652 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2653 
2654 	return 0;
2655 }
2656 #else
2657 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2658 {
2659 	return 0;
2660 }
2661 #endif
2662 
2663 /**
2664  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2665  * @ctlr: The SPI master to grab GPIO descriptors for
2666  */
2667 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2668 {
2669 	int nb, i;
2670 	struct gpio_desc **cs;
2671 	struct device *dev = &ctlr->dev;
2672 	unsigned long native_cs_mask = 0;
2673 	unsigned int num_cs_gpios = 0;
2674 
2675 	nb = gpiod_count(dev, "cs");
2676 	if (nb < 0) {
2677 		/* No GPIOs at all is fine, else return the error */
2678 		if (nb == -ENOENT)
2679 			return 0;
2680 		return nb;
2681 	}
2682 
2683 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2684 
2685 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2686 			  GFP_KERNEL);
2687 	if (!cs)
2688 		return -ENOMEM;
2689 	ctlr->cs_gpiods = cs;
2690 
2691 	for (i = 0; i < nb; i++) {
2692 		/*
2693 		 * Most chipselects are active low, the inverted
2694 		 * semantics are handled by special quirks in gpiolib,
2695 		 * so initializing them GPIOD_OUT_LOW here means
2696 		 * "unasserted", in most cases this will drive the physical
2697 		 * line high.
2698 		 */
2699 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2700 						      GPIOD_OUT_LOW);
2701 		if (IS_ERR(cs[i]))
2702 			return PTR_ERR(cs[i]);
2703 
2704 		if (cs[i]) {
2705 			/*
2706 			 * If we find a CS GPIO, name it after the device and
2707 			 * chip select line.
2708 			 */
2709 			char *gpioname;
2710 
2711 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2712 						  dev_name(dev), i);
2713 			if (!gpioname)
2714 				return -ENOMEM;
2715 			gpiod_set_consumer_name(cs[i], gpioname);
2716 			num_cs_gpios++;
2717 			continue;
2718 		}
2719 
2720 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2721 			dev_err(dev, "Invalid native chip select %d\n", i);
2722 			return -EINVAL;
2723 		}
2724 		native_cs_mask |= BIT(i);
2725 	}
2726 
2727 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2728 
2729 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2730 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2731 		dev_err(dev, "No unused native chip select available\n");
2732 		return -EINVAL;
2733 	}
2734 
2735 	return 0;
2736 }
2737 
2738 static int spi_controller_check_ops(struct spi_controller *ctlr)
2739 {
2740 	/*
2741 	 * The controller may implement only the high-level SPI-memory like
2742 	 * operations if it does not support regular SPI transfers, and this is
2743 	 * valid use case.
2744 	 * If ->mem_ops is NULL, we request that at least one of the
2745 	 * ->transfer_xxx() method be implemented.
2746 	 */
2747 	if (ctlr->mem_ops) {
2748 		if (!ctlr->mem_ops->exec_op)
2749 			return -EINVAL;
2750 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2751 		   !ctlr->transfer_one_message) {
2752 		return -EINVAL;
2753 	}
2754 
2755 	return 0;
2756 }
2757 
2758 /**
2759  * spi_register_controller - register SPI master or slave controller
2760  * @ctlr: initialized master, originally from spi_alloc_master() or
2761  *	spi_alloc_slave()
2762  * Context: can sleep
2763  *
2764  * SPI controllers connect to their drivers using some non-SPI bus,
2765  * such as the platform bus.  The final stage of probe() in that code
2766  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2767  *
2768  * SPI controllers use board specific (often SOC specific) bus numbers,
2769  * and board-specific addressing for SPI devices combines those numbers
2770  * with chip select numbers.  Since SPI does not directly support dynamic
2771  * device identification, boards need configuration tables telling which
2772  * chip is at which address.
2773  *
2774  * This must be called from context that can sleep.  It returns zero on
2775  * success, else a negative error code (dropping the controller's refcount).
2776  * After a successful return, the caller is responsible for calling
2777  * spi_unregister_controller().
2778  *
2779  * Return: zero on success, else a negative error code.
2780  */
2781 int spi_register_controller(struct spi_controller *ctlr)
2782 {
2783 	struct device		*dev = ctlr->dev.parent;
2784 	struct boardinfo	*bi;
2785 	int			status;
2786 	int			id, first_dynamic;
2787 
2788 	if (!dev)
2789 		return -ENODEV;
2790 
2791 	/*
2792 	 * Make sure all necessary hooks are implemented before registering
2793 	 * the SPI controller.
2794 	 */
2795 	status = spi_controller_check_ops(ctlr);
2796 	if (status)
2797 		return status;
2798 
2799 	if (ctlr->bus_num >= 0) {
2800 		/* devices with a fixed bus num must check-in with the num */
2801 		mutex_lock(&board_lock);
2802 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2803 			ctlr->bus_num + 1, GFP_KERNEL);
2804 		mutex_unlock(&board_lock);
2805 		if (WARN(id < 0, "couldn't get idr"))
2806 			return id == -ENOSPC ? -EBUSY : id;
2807 		ctlr->bus_num = id;
2808 	} else if (ctlr->dev.of_node) {
2809 		/* allocate dynamic bus number using Linux idr */
2810 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2811 		if (id >= 0) {
2812 			ctlr->bus_num = id;
2813 			mutex_lock(&board_lock);
2814 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2815 				       ctlr->bus_num + 1, GFP_KERNEL);
2816 			mutex_unlock(&board_lock);
2817 			if (WARN(id < 0, "couldn't get idr"))
2818 				return id == -ENOSPC ? -EBUSY : id;
2819 		}
2820 	}
2821 	if (ctlr->bus_num < 0) {
2822 		first_dynamic = of_alias_get_highest_id("spi");
2823 		if (first_dynamic < 0)
2824 			first_dynamic = 0;
2825 		else
2826 			first_dynamic++;
2827 
2828 		mutex_lock(&board_lock);
2829 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2830 			       0, GFP_KERNEL);
2831 		mutex_unlock(&board_lock);
2832 		if (WARN(id < 0, "couldn't get idr"))
2833 			return id;
2834 		ctlr->bus_num = id;
2835 	}
2836 	INIT_LIST_HEAD(&ctlr->queue);
2837 	spin_lock_init(&ctlr->queue_lock);
2838 	spin_lock_init(&ctlr->bus_lock_spinlock);
2839 	mutex_init(&ctlr->bus_lock_mutex);
2840 	mutex_init(&ctlr->io_mutex);
2841 	ctlr->bus_lock_flag = 0;
2842 	init_completion(&ctlr->xfer_completion);
2843 	if (!ctlr->max_dma_len)
2844 		ctlr->max_dma_len = INT_MAX;
2845 
2846 	/* register the device, then userspace will see it.
2847 	 * registration fails if the bus ID is in use.
2848 	 */
2849 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2850 
2851 	if (!spi_controller_is_slave(ctlr)) {
2852 		if (ctlr->use_gpio_descriptors) {
2853 			status = spi_get_gpio_descs(ctlr);
2854 			if (status)
2855 				goto free_bus_id;
2856 			/*
2857 			 * A controller using GPIO descriptors always
2858 			 * supports SPI_CS_HIGH if need be.
2859 			 */
2860 			ctlr->mode_bits |= SPI_CS_HIGH;
2861 		} else {
2862 			/* Legacy code path for GPIOs from DT */
2863 			status = of_spi_get_gpio_numbers(ctlr);
2864 			if (status)
2865 				goto free_bus_id;
2866 		}
2867 	}
2868 
2869 	/*
2870 	 * Even if it's just one always-selected device, there must
2871 	 * be at least one chipselect.
2872 	 */
2873 	if (!ctlr->num_chipselect) {
2874 		status = -EINVAL;
2875 		goto free_bus_id;
2876 	}
2877 
2878 	status = device_add(&ctlr->dev);
2879 	if (status < 0)
2880 		goto free_bus_id;
2881 	dev_dbg(dev, "registered %s %s\n",
2882 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2883 			dev_name(&ctlr->dev));
2884 
2885 	/*
2886 	 * If we're using a queued driver, start the queue. Note that we don't
2887 	 * need the queueing logic if the driver is only supporting high-level
2888 	 * memory operations.
2889 	 */
2890 	if (ctlr->transfer) {
2891 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2892 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2893 		status = spi_controller_initialize_queue(ctlr);
2894 		if (status) {
2895 			device_del(&ctlr->dev);
2896 			goto free_bus_id;
2897 		}
2898 	}
2899 	/* add statistics */
2900 	spin_lock_init(&ctlr->statistics.lock);
2901 
2902 	mutex_lock(&board_lock);
2903 	list_add_tail(&ctlr->list, &spi_controller_list);
2904 	list_for_each_entry(bi, &board_list, list)
2905 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2906 	mutex_unlock(&board_lock);
2907 
2908 	/* Register devices from the device tree and ACPI */
2909 	of_register_spi_devices(ctlr);
2910 	acpi_register_spi_devices(ctlr);
2911 	return status;
2912 
2913 free_bus_id:
2914 	mutex_lock(&board_lock);
2915 	idr_remove(&spi_master_idr, ctlr->bus_num);
2916 	mutex_unlock(&board_lock);
2917 	return status;
2918 }
2919 EXPORT_SYMBOL_GPL(spi_register_controller);
2920 
2921 static void devm_spi_unregister(void *ctlr)
2922 {
2923 	spi_unregister_controller(ctlr);
2924 }
2925 
2926 /**
2927  * devm_spi_register_controller - register managed SPI master or slave
2928  *	controller
2929  * @dev:    device managing SPI controller
2930  * @ctlr: initialized controller, originally from spi_alloc_master() or
2931  *	spi_alloc_slave()
2932  * Context: can sleep
2933  *
2934  * Register a SPI device as with spi_register_controller() which will
2935  * automatically be unregistered and freed.
2936  *
2937  * Return: zero on success, else a negative error code.
2938  */
2939 int devm_spi_register_controller(struct device *dev,
2940 				 struct spi_controller *ctlr)
2941 {
2942 	int ret;
2943 
2944 	ret = spi_register_controller(ctlr);
2945 	if (ret)
2946 		return ret;
2947 
2948 	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
2949 }
2950 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2951 
2952 static int __unregister(struct device *dev, void *null)
2953 {
2954 	spi_unregister_device(to_spi_device(dev));
2955 	return 0;
2956 }
2957 
2958 /**
2959  * spi_unregister_controller - unregister SPI master or slave controller
2960  * @ctlr: the controller being unregistered
2961  * Context: can sleep
2962  *
2963  * This call is used only by SPI controller drivers, which are the
2964  * only ones directly touching chip registers.
2965  *
2966  * This must be called from context that can sleep.
2967  *
2968  * Note that this function also drops a reference to the controller.
2969  */
2970 void spi_unregister_controller(struct spi_controller *ctlr)
2971 {
2972 	struct spi_controller *found;
2973 	int id = ctlr->bus_num;
2974 
2975 	/* Prevent addition of new devices, unregister existing ones */
2976 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2977 		mutex_lock(&spi_add_lock);
2978 
2979 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2980 
2981 	/* First make sure that this controller was ever added */
2982 	mutex_lock(&board_lock);
2983 	found = idr_find(&spi_master_idr, id);
2984 	mutex_unlock(&board_lock);
2985 	if (ctlr->queued) {
2986 		if (spi_destroy_queue(ctlr))
2987 			dev_err(&ctlr->dev, "queue remove failed\n");
2988 	}
2989 	mutex_lock(&board_lock);
2990 	list_del(&ctlr->list);
2991 	mutex_unlock(&board_lock);
2992 
2993 	device_del(&ctlr->dev);
2994 
2995 	/* Release the last reference on the controller if its driver
2996 	 * has not yet been converted to devm_spi_alloc_master/slave().
2997 	 */
2998 	if (!ctlr->devm_allocated)
2999 		put_device(&ctlr->dev);
3000 
3001 	/* free bus id */
3002 	mutex_lock(&board_lock);
3003 	if (found == ctlr)
3004 		idr_remove(&spi_master_idr, id);
3005 	mutex_unlock(&board_lock);
3006 
3007 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3008 		mutex_unlock(&spi_add_lock);
3009 }
3010 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3011 
3012 int spi_controller_suspend(struct spi_controller *ctlr)
3013 {
3014 	int ret;
3015 
3016 	/* Basically no-ops for non-queued controllers */
3017 	if (!ctlr->queued)
3018 		return 0;
3019 
3020 	ret = spi_stop_queue(ctlr);
3021 	if (ret)
3022 		dev_err(&ctlr->dev, "queue stop failed\n");
3023 
3024 	return ret;
3025 }
3026 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3027 
3028 int spi_controller_resume(struct spi_controller *ctlr)
3029 {
3030 	int ret;
3031 
3032 	if (!ctlr->queued)
3033 		return 0;
3034 
3035 	ret = spi_start_queue(ctlr);
3036 	if (ret)
3037 		dev_err(&ctlr->dev, "queue restart failed\n");
3038 
3039 	return ret;
3040 }
3041 EXPORT_SYMBOL_GPL(spi_controller_resume);
3042 
3043 static int __spi_controller_match(struct device *dev, const void *data)
3044 {
3045 	struct spi_controller *ctlr;
3046 	const u16 *bus_num = data;
3047 
3048 	ctlr = container_of(dev, struct spi_controller, dev);
3049 	return ctlr->bus_num == *bus_num;
3050 }
3051 
3052 /**
3053  * spi_busnum_to_master - look up master associated with bus_num
3054  * @bus_num: the master's bus number
3055  * Context: can sleep
3056  *
3057  * This call may be used with devices that are registered after
3058  * arch init time.  It returns a refcounted pointer to the relevant
3059  * spi_controller (which the caller must release), or NULL if there is
3060  * no such master registered.
3061  *
3062  * Return: the SPI master structure on success, else NULL.
3063  */
3064 struct spi_controller *spi_busnum_to_master(u16 bus_num)
3065 {
3066 	struct device		*dev;
3067 	struct spi_controller	*ctlr = NULL;
3068 
3069 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
3070 				__spi_controller_match);
3071 	if (dev)
3072 		ctlr = container_of(dev, struct spi_controller, dev);
3073 	/* reference got in class_find_device */
3074 	return ctlr;
3075 }
3076 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3077 
3078 /*-------------------------------------------------------------------------*/
3079 
3080 /* Core methods for SPI resource management */
3081 
3082 /**
3083  * spi_res_alloc - allocate a spi resource that is life-cycle managed
3084  *                 during the processing of a spi_message while using
3085  *                 spi_transfer_one
3086  * @spi:     the spi device for which we allocate memory
3087  * @release: the release code to execute for this resource
3088  * @size:    size to alloc and return
3089  * @gfp:     GFP allocation flags
3090  *
3091  * Return: the pointer to the allocated data
3092  *
3093  * This may get enhanced in the future to allocate from a memory pool
3094  * of the @spi_device or @spi_controller to avoid repeated allocations.
3095  */
3096 void *spi_res_alloc(struct spi_device *spi,
3097 		    spi_res_release_t release,
3098 		    size_t size, gfp_t gfp)
3099 {
3100 	struct spi_res *sres;
3101 
3102 	sres = kzalloc(sizeof(*sres) + size, gfp);
3103 	if (!sres)
3104 		return NULL;
3105 
3106 	INIT_LIST_HEAD(&sres->entry);
3107 	sres->release = release;
3108 
3109 	return sres->data;
3110 }
3111 EXPORT_SYMBOL_GPL(spi_res_alloc);
3112 
3113 /**
3114  * spi_res_free - free an spi resource
3115  * @res: pointer to the custom data of a resource
3116  *
3117  */
3118 void spi_res_free(void *res)
3119 {
3120 	struct spi_res *sres = container_of(res, struct spi_res, data);
3121 
3122 	if (!res)
3123 		return;
3124 
3125 	WARN_ON(!list_empty(&sres->entry));
3126 	kfree(sres);
3127 }
3128 EXPORT_SYMBOL_GPL(spi_res_free);
3129 
3130 /**
3131  * spi_res_add - add a spi_res to the spi_message
3132  * @message: the spi message
3133  * @res:     the spi_resource
3134  */
3135 void spi_res_add(struct spi_message *message, void *res)
3136 {
3137 	struct spi_res *sres = container_of(res, struct spi_res, data);
3138 
3139 	WARN_ON(!list_empty(&sres->entry));
3140 	list_add_tail(&sres->entry, &message->resources);
3141 }
3142 EXPORT_SYMBOL_GPL(spi_res_add);
3143 
3144 /**
3145  * spi_res_release - release all spi resources for this message
3146  * @ctlr:  the @spi_controller
3147  * @message: the @spi_message
3148  */
3149 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3150 {
3151 	struct spi_res *res, *tmp;
3152 
3153 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3154 		if (res->release)
3155 			res->release(ctlr, message, res->data);
3156 
3157 		list_del(&res->entry);
3158 
3159 		kfree(res);
3160 	}
3161 }
3162 EXPORT_SYMBOL_GPL(spi_res_release);
3163 
3164 /*-------------------------------------------------------------------------*/
3165 
3166 /* Core methods for spi_message alterations */
3167 
3168 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3169 					    struct spi_message *msg,
3170 					    void *res)
3171 {
3172 	struct spi_replaced_transfers *rxfer = res;
3173 	size_t i;
3174 
3175 	/* call extra callback if requested */
3176 	if (rxfer->release)
3177 		rxfer->release(ctlr, msg, res);
3178 
3179 	/* insert replaced transfers back into the message */
3180 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3181 
3182 	/* remove the formerly inserted entries */
3183 	for (i = 0; i < rxfer->inserted; i++)
3184 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3185 }
3186 
3187 /**
3188  * spi_replace_transfers - replace transfers with several transfers
3189  *                         and register change with spi_message.resources
3190  * @msg:           the spi_message we work upon
3191  * @xfer_first:    the first spi_transfer we want to replace
3192  * @remove:        number of transfers to remove
3193  * @insert:        the number of transfers we want to insert instead
3194  * @release:       extra release code necessary in some circumstances
3195  * @extradatasize: extra data to allocate (with alignment guarantees
3196  *                 of struct @spi_transfer)
3197  * @gfp:           gfp flags
3198  *
3199  * Returns: pointer to @spi_replaced_transfers,
3200  *          PTR_ERR(...) in case of errors.
3201  */
3202 struct spi_replaced_transfers *spi_replace_transfers(
3203 	struct spi_message *msg,
3204 	struct spi_transfer *xfer_first,
3205 	size_t remove,
3206 	size_t insert,
3207 	spi_replaced_release_t release,
3208 	size_t extradatasize,
3209 	gfp_t gfp)
3210 {
3211 	struct spi_replaced_transfers *rxfer;
3212 	struct spi_transfer *xfer;
3213 	size_t i;
3214 
3215 	/* allocate the structure using spi_res */
3216 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3217 			      struct_size(rxfer, inserted_transfers, insert)
3218 			      + extradatasize,
3219 			      gfp);
3220 	if (!rxfer)
3221 		return ERR_PTR(-ENOMEM);
3222 
3223 	/* the release code to invoke before running the generic release */
3224 	rxfer->release = release;
3225 
3226 	/* assign extradata */
3227 	if (extradatasize)
3228 		rxfer->extradata =
3229 			&rxfer->inserted_transfers[insert];
3230 
3231 	/* init the replaced_transfers list */
3232 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3233 
3234 	/* assign the list_entry after which we should reinsert
3235 	 * the @replaced_transfers - it may be spi_message.messages!
3236 	 */
3237 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3238 
3239 	/* remove the requested number of transfers */
3240 	for (i = 0; i < remove; i++) {
3241 		/* if the entry after replaced_after it is msg->transfers
3242 		 * then we have been requested to remove more transfers
3243 		 * than are in the list
3244 		 */
3245 		if (rxfer->replaced_after->next == &msg->transfers) {
3246 			dev_err(&msg->spi->dev,
3247 				"requested to remove more spi_transfers than are available\n");
3248 			/* insert replaced transfers back into the message */
3249 			list_splice(&rxfer->replaced_transfers,
3250 				    rxfer->replaced_after);
3251 
3252 			/* free the spi_replace_transfer structure */
3253 			spi_res_free(rxfer);
3254 
3255 			/* and return with an error */
3256 			return ERR_PTR(-EINVAL);
3257 		}
3258 
3259 		/* remove the entry after replaced_after from list of
3260 		 * transfers and add it to list of replaced_transfers
3261 		 */
3262 		list_move_tail(rxfer->replaced_after->next,
3263 			       &rxfer->replaced_transfers);
3264 	}
3265 
3266 	/* create copy of the given xfer with identical settings
3267 	 * based on the first transfer to get removed
3268 	 */
3269 	for (i = 0; i < insert; i++) {
3270 		/* we need to run in reverse order */
3271 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3272 
3273 		/* copy all spi_transfer data */
3274 		memcpy(xfer, xfer_first, sizeof(*xfer));
3275 
3276 		/* add to list */
3277 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3278 
3279 		/* clear cs_change and delay for all but the last */
3280 		if (i) {
3281 			xfer->cs_change = false;
3282 			xfer->delay.value = 0;
3283 		}
3284 	}
3285 
3286 	/* set up inserted */
3287 	rxfer->inserted = insert;
3288 
3289 	/* and register it with spi_res/spi_message */
3290 	spi_res_add(msg, rxfer);
3291 
3292 	return rxfer;
3293 }
3294 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3295 
3296 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3297 					struct spi_message *msg,
3298 					struct spi_transfer **xferp,
3299 					size_t maxsize,
3300 					gfp_t gfp)
3301 {
3302 	struct spi_transfer *xfer = *xferp, *xfers;
3303 	struct spi_replaced_transfers *srt;
3304 	size_t offset;
3305 	size_t count, i;
3306 
3307 	/* calculate how many we have to replace */
3308 	count = DIV_ROUND_UP(xfer->len, maxsize);
3309 
3310 	/* create replacement */
3311 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3312 	if (IS_ERR(srt))
3313 		return PTR_ERR(srt);
3314 	xfers = srt->inserted_transfers;
3315 
3316 	/* now handle each of those newly inserted spi_transfers
3317 	 * note that the replacements spi_transfers all are preset
3318 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3319 	 * are all identical (as well as most others)
3320 	 * so we just have to fix up len and the pointers.
3321 	 *
3322 	 * this also includes support for the depreciated
3323 	 * spi_message.is_dma_mapped interface
3324 	 */
3325 
3326 	/* the first transfer just needs the length modified, so we
3327 	 * run it outside the loop
3328 	 */
3329 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3330 
3331 	/* all the others need rx_buf/tx_buf also set */
3332 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3333 		/* update rx_buf, tx_buf and dma */
3334 		if (xfers[i].rx_buf)
3335 			xfers[i].rx_buf += offset;
3336 		if (xfers[i].rx_dma)
3337 			xfers[i].rx_dma += offset;
3338 		if (xfers[i].tx_buf)
3339 			xfers[i].tx_buf += offset;
3340 		if (xfers[i].tx_dma)
3341 			xfers[i].tx_dma += offset;
3342 
3343 		/* update length */
3344 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3345 	}
3346 
3347 	/* we set up xferp to the last entry we have inserted,
3348 	 * so that we skip those already split transfers
3349 	 */
3350 	*xferp = &xfers[count - 1];
3351 
3352 	/* increment statistics counters */
3353 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3354 				       transfers_split_maxsize);
3355 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3356 				       transfers_split_maxsize);
3357 
3358 	return 0;
3359 }
3360 
3361 /**
3362  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3363  *                               when an individual transfer exceeds a
3364  *                               certain size
3365  * @ctlr:    the @spi_controller for this transfer
3366  * @msg:   the @spi_message to transform
3367  * @maxsize:  the maximum when to apply this
3368  * @gfp: GFP allocation flags
3369  *
3370  * Return: status of transformation
3371  */
3372 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3373 				struct spi_message *msg,
3374 				size_t maxsize,
3375 				gfp_t gfp)
3376 {
3377 	struct spi_transfer *xfer;
3378 	int ret;
3379 
3380 	/* iterate over the transfer_list,
3381 	 * but note that xfer is advanced to the last transfer inserted
3382 	 * to avoid checking sizes again unnecessarily (also xfer does
3383 	 * potentiall belong to a different list by the time the
3384 	 * replacement has happened
3385 	 */
3386 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3387 		if (xfer->len > maxsize) {
3388 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3389 							   maxsize, gfp);
3390 			if (ret)
3391 				return ret;
3392 		}
3393 	}
3394 
3395 	return 0;
3396 }
3397 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3398 
3399 /*-------------------------------------------------------------------------*/
3400 
3401 /* Core methods for SPI controller protocol drivers.  Some of the
3402  * other core methods are currently defined as inline functions.
3403  */
3404 
3405 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3406 					u8 bits_per_word)
3407 {
3408 	if (ctlr->bits_per_word_mask) {
3409 		/* Only 32 bits fit in the mask */
3410 		if (bits_per_word > 32)
3411 			return -EINVAL;
3412 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3413 			return -EINVAL;
3414 	}
3415 
3416 	return 0;
3417 }
3418 
3419 /**
3420  * spi_setup - setup SPI mode and clock rate
3421  * @spi: the device whose settings are being modified
3422  * Context: can sleep, and no requests are queued to the device
3423  *
3424  * SPI protocol drivers may need to update the transfer mode if the
3425  * device doesn't work with its default.  They may likewise need
3426  * to update clock rates or word sizes from initial values.  This function
3427  * changes those settings, and must be called from a context that can sleep.
3428  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3429  * effect the next time the device is selected and data is transferred to
3430  * or from it.  When this function returns, the spi device is deselected.
3431  *
3432  * Note that this call will fail if the protocol driver specifies an option
3433  * that the underlying controller or its driver does not support.  For
3434  * example, not all hardware supports wire transfers using nine bit words,
3435  * LSB-first wire encoding, or active-high chipselects.
3436  *
3437  * Return: zero on success, else a negative error code.
3438  */
3439 int spi_setup(struct spi_device *spi)
3440 {
3441 	unsigned	bad_bits, ugly_bits;
3442 	int		status;
3443 
3444 	/*
3445 	 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3446 	 * are set at the same time
3447 	 */
3448 	if ((hweight_long(spi->mode &
3449 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3450 	    (hweight_long(spi->mode &
3451 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3452 		dev_err(&spi->dev,
3453 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3454 		return -EINVAL;
3455 	}
3456 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3457 	 */
3458 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3459 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3460 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3461 		return -EINVAL;
3462 	/* help drivers fail *cleanly* when they need options
3463 	 * that aren't supported with their current controller
3464 	 * SPI_CS_WORD has a fallback software implementation,
3465 	 * so it is ignored here.
3466 	 */
3467 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3468 				 SPI_NO_TX | SPI_NO_RX);
3469 	/* nothing prevents from working with active-high CS in case if it
3470 	 * is driven by GPIO.
3471 	 */
3472 	if (gpio_is_valid(spi->cs_gpio))
3473 		bad_bits &= ~SPI_CS_HIGH;
3474 	ugly_bits = bad_bits &
3475 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3476 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3477 	if (ugly_bits) {
3478 		dev_warn(&spi->dev,
3479 			 "setup: ignoring unsupported mode bits %x\n",
3480 			 ugly_bits);
3481 		spi->mode &= ~ugly_bits;
3482 		bad_bits &= ~ugly_bits;
3483 	}
3484 	if (bad_bits) {
3485 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3486 			bad_bits);
3487 		return -EINVAL;
3488 	}
3489 
3490 	if (!spi->bits_per_word)
3491 		spi->bits_per_word = 8;
3492 
3493 	status = __spi_validate_bits_per_word(spi->controller,
3494 					      spi->bits_per_word);
3495 	if (status)
3496 		return status;
3497 
3498 	if (spi->controller->max_speed_hz &&
3499 	    (!spi->max_speed_hz ||
3500 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3501 		spi->max_speed_hz = spi->controller->max_speed_hz;
3502 
3503 	mutex_lock(&spi->controller->io_mutex);
3504 
3505 	if (spi->controller->setup) {
3506 		status = spi->controller->setup(spi);
3507 		if (status) {
3508 			mutex_unlock(&spi->controller->io_mutex);
3509 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3510 				status);
3511 			return status;
3512 		}
3513 	}
3514 
3515 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3516 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3517 		if (status < 0) {
3518 			mutex_unlock(&spi->controller->io_mutex);
3519 			pm_runtime_put_noidle(spi->controller->dev.parent);
3520 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3521 				status);
3522 			return status;
3523 		}
3524 
3525 		/*
3526 		 * We do not want to return positive value from pm_runtime_get,
3527 		 * there are many instances of devices calling spi_setup() and
3528 		 * checking for a non-zero return value instead of a negative
3529 		 * return value.
3530 		 */
3531 		status = 0;
3532 
3533 		spi_set_cs(spi, false, true);
3534 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3535 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3536 	} else {
3537 		spi_set_cs(spi, false, true);
3538 	}
3539 
3540 	mutex_unlock(&spi->controller->io_mutex);
3541 
3542 	if (spi->rt && !spi->controller->rt) {
3543 		spi->controller->rt = true;
3544 		spi_set_thread_rt(spi->controller);
3545 	}
3546 
3547 	trace_spi_setup(spi, status);
3548 
3549 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3550 			spi->mode & SPI_MODE_X_MASK,
3551 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3552 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3553 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3554 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3555 			spi->bits_per_word, spi->max_speed_hz,
3556 			status);
3557 
3558 	return status;
3559 }
3560 EXPORT_SYMBOL_GPL(spi_setup);
3561 
3562 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3563 				       struct spi_device *spi)
3564 {
3565 	int delay1, delay2;
3566 
3567 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3568 	if (delay1 < 0)
3569 		return delay1;
3570 
3571 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3572 	if (delay2 < 0)
3573 		return delay2;
3574 
3575 	if (delay1 < delay2)
3576 		memcpy(&xfer->word_delay, &spi->word_delay,
3577 		       sizeof(xfer->word_delay));
3578 
3579 	return 0;
3580 }
3581 
3582 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3583 {
3584 	struct spi_controller *ctlr = spi->controller;
3585 	struct spi_transfer *xfer;
3586 	int w_size;
3587 
3588 	if (list_empty(&message->transfers))
3589 		return -EINVAL;
3590 
3591 	/* If an SPI controller does not support toggling the CS line on each
3592 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3593 	 * for the CS line, we can emulate the CS-per-word hardware function by
3594 	 * splitting transfers into one-word transfers and ensuring that
3595 	 * cs_change is set for each transfer.
3596 	 */
3597 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3598 					  spi->cs_gpiod ||
3599 					  gpio_is_valid(spi->cs_gpio))) {
3600 		size_t maxsize;
3601 		int ret;
3602 
3603 		maxsize = (spi->bits_per_word + 7) / 8;
3604 
3605 		/* spi_split_transfers_maxsize() requires message->spi */
3606 		message->spi = spi;
3607 
3608 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3609 						  GFP_KERNEL);
3610 		if (ret)
3611 			return ret;
3612 
3613 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3614 			/* don't change cs_change on the last entry in the list */
3615 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3616 				break;
3617 			xfer->cs_change = 1;
3618 		}
3619 	}
3620 
3621 	/* Half-duplex links include original MicroWire, and ones with
3622 	 * only one data pin like SPI_3WIRE (switches direction) or where
3623 	 * either MOSI or MISO is missing.  They can also be caused by
3624 	 * software limitations.
3625 	 */
3626 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3627 	    (spi->mode & SPI_3WIRE)) {
3628 		unsigned flags = ctlr->flags;
3629 
3630 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3631 			if (xfer->rx_buf && xfer->tx_buf)
3632 				return -EINVAL;
3633 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3634 				return -EINVAL;
3635 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3636 				return -EINVAL;
3637 		}
3638 	}
3639 
3640 	/**
3641 	 * Set transfer bits_per_word and max speed as spi device default if
3642 	 * it is not set for this transfer.
3643 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3644 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3645 	 * Ensure transfer word_delay is at least as long as that required by
3646 	 * device itself.
3647 	 */
3648 	message->frame_length = 0;
3649 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3650 		xfer->effective_speed_hz = 0;
3651 		message->frame_length += xfer->len;
3652 		if (!xfer->bits_per_word)
3653 			xfer->bits_per_word = spi->bits_per_word;
3654 
3655 		if (!xfer->speed_hz)
3656 			xfer->speed_hz = spi->max_speed_hz;
3657 
3658 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3659 			xfer->speed_hz = ctlr->max_speed_hz;
3660 
3661 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3662 			return -EINVAL;
3663 
3664 		/*
3665 		 * SPI transfer length should be multiple of SPI word size
3666 		 * where SPI word size should be power-of-two multiple
3667 		 */
3668 		if (xfer->bits_per_word <= 8)
3669 			w_size = 1;
3670 		else if (xfer->bits_per_word <= 16)
3671 			w_size = 2;
3672 		else
3673 			w_size = 4;
3674 
3675 		/* No partial transfers accepted */
3676 		if (xfer->len % w_size)
3677 			return -EINVAL;
3678 
3679 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3680 		    xfer->speed_hz < ctlr->min_speed_hz)
3681 			return -EINVAL;
3682 
3683 		if (xfer->tx_buf && !xfer->tx_nbits)
3684 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3685 		if (xfer->rx_buf && !xfer->rx_nbits)
3686 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3687 		/* check transfer tx/rx_nbits:
3688 		 * 1. check the value matches one of single, dual and quad
3689 		 * 2. check tx/rx_nbits match the mode in spi_device
3690 		 */
3691 		if (xfer->tx_buf) {
3692 			if (spi->mode & SPI_NO_TX)
3693 				return -EINVAL;
3694 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3695 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3696 				xfer->tx_nbits != SPI_NBITS_QUAD)
3697 				return -EINVAL;
3698 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3699 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3700 				return -EINVAL;
3701 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3702 				!(spi->mode & SPI_TX_QUAD))
3703 				return -EINVAL;
3704 		}
3705 		/* check transfer rx_nbits */
3706 		if (xfer->rx_buf) {
3707 			if (spi->mode & SPI_NO_RX)
3708 				return -EINVAL;
3709 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3710 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3711 				xfer->rx_nbits != SPI_NBITS_QUAD)
3712 				return -EINVAL;
3713 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3714 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3715 				return -EINVAL;
3716 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3717 				!(spi->mode & SPI_RX_QUAD))
3718 				return -EINVAL;
3719 		}
3720 
3721 		if (_spi_xfer_word_delay_update(xfer, spi))
3722 			return -EINVAL;
3723 	}
3724 
3725 	message->status = -EINPROGRESS;
3726 
3727 	return 0;
3728 }
3729 
3730 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3731 {
3732 	struct spi_controller *ctlr = spi->controller;
3733 	struct spi_transfer *xfer;
3734 
3735 	/*
3736 	 * Some controllers do not support doing regular SPI transfers. Return
3737 	 * ENOTSUPP when this is the case.
3738 	 */
3739 	if (!ctlr->transfer)
3740 		return -ENOTSUPP;
3741 
3742 	message->spi = spi;
3743 
3744 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3745 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3746 
3747 	trace_spi_message_submit(message);
3748 
3749 	if (!ctlr->ptp_sts_supported) {
3750 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3751 			xfer->ptp_sts_word_pre = 0;
3752 			ptp_read_system_prets(xfer->ptp_sts);
3753 		}
3754 	}
3755 
3756 	return ctlr->transfer(spi, message);
3757 }
3758 
3759 /**
3760  * spi_async - asynchronous SPI transfer
3761  * @spi: device with which data will be exchanged
3762  * @message: describes the data transfers, including completion callback
3763  * Context: any (irqs may be blocked, etc)
3764  *
3765  * This call may be used in_irq and other contexts which can't sleep,
3766  * as well as from task contexts which can sleep.
3767  *
3768  * The completion callback is invoked in a context which can't sleep.
3769  * Before that invocation, the value of message->status is undefined.
3770  * When the callback is issued, message->status holds either zero (to
3771  * indicate complete success) or a negative error code.  After that
3772  * callback returns, the driver which issued the transfer request may
3773  * deallocate the associated memory; it's no longer in use by any SPI
3774  * core or controller driver code.
3775  *
3776  * Note that although all messages to a spi_device are handled in
3777  * FIFO order, messages may go to different devices in other orders.
3778  * Some device might be higher priority, or have various "hard" access
3779  * time requirements, for example.
3780  *
3781  * On detection of any fault during the transfer, processing of
3782  * the entire message is aborted, and the device is deselected.
3783  * Until returning from the associated message completion callback,
3784  * no other spi_message queued to that device will be processed.
3785  * (This rule applies equally to all the synchronous transfer calls,
3786  * which are wrappers around this core asynchronous primitive.)
3787  *
3788  * Return: zero on success, else a negative error code.
3789  */
3790 int spi_async(struct spi_device *spi, struct spi_message *message)
3791 {
3792 	struct spi_controller *ctlr = spi->controller;
3793 	int ret;
3794 	unsigned long flags;
3795 
3796 	ret = __spi_validate(spi, message);
3797 	if (ret != 0)
3798 		return ret;
3799 
3800 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3801 
3802 	if (ctlr->bus_lock_flag)
3803 		ret = -EBUSY;
3804 	else
3805 		ret = __spi_async(spi, message);
3806 
3807 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3808 
3809 	return ret;
3810 }
3811 EXPORT_SYMBOL_GPL(spi_async);
3812 
3813 /**
3814  * spi_async_locked - version of spi_async with exclusive bus usage
3815  * @spi: device with which data will be exchanged
3816  * @message: describes the data transfers, including completion callback
3817  * Context: any (irqs may be blocked, etc)
3818  *
3819  * This call may be used in_irq and other contexts which can't sleep,
3820  * as well as from task contexts which can sleep.
3821  *
3822  * The completion callback is invoked in a context which can't sleep.
3823  * Before that invocation, the value of message->status is undefined.
3824  * When the callback is issued, message->status holds either zero (to
3825  * indicate complete success) or a negative error code.  After that
3826  * callback returns, the driver which issued the transfer request may
3827  * deallocate the associated memory; it's no longer in use by any SPI
3828  * core or controller driver code.
3829  *
3830  * Note that although all messages to a spi_device are handled in
3831  * FIFO order, messages may go to different devices in other orders.
3832  * Some device might be higher priority, or have various "hard" access
3833  * time requirements, for example.
3834  *
3835  * On detection of any fault during the transfer, processing of
3836  * the entire message is aborted, and the device is deselected.
3837  * Until returning from the associated message completion callback,
3838  * no other spi_message queued to that device will be processed.
3839  * (This rule applies equally to all the synchronous transfer calls,
3840  * which are wrappers around this core asynchronous primitive.)
3841  *
3842  * Return: zero on success, else a negative error code.
3843  */
3844 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3845 {
3846 	struct spi_controller *ctlr = spi->controller;
3847 	int ret;
3848 	unsigned long flags;
3849 
3850 	ret = __spi_validate(spi, message);
3851 	if (ret != 0)
3852 		return ret;
3853 
3854 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3855 
3856 	ret = __spi_async(spi, message);
3857 
3858 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3859 
3860 	return ret;
3861 
3862 }
3863 EXPORT_SYMBOL_GPL(spi_async_locked);
3864 
3865 /*-------------------------------------------------------------------------*/
3866 
3867 /* Utility methods for SPI protocol drivers, layered on
3868  * top of the core.  Some other utility methods are defined as
3869  * inline functions.
3870  */
3871 
3872 static void spi_complete(void *arg)
3873 {
3874 	complete(arg);
3875 }
3876 
3877 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3878 {
3879 	DECLARE_COMPLETION_ONSTACK(done);
3880 	int status;
3881 	struct spi_controller *ctlr = spi->controller;
3882 	unsigned long flags;
3883 
3884 	status = __spi_validate(spi, message);
3885 	if (status != 0)
3886 		return status;
3887 
3888 	message->complete = spi_complete;
3889 	message->context = &done;
3890 	message->spi = spi;
3891 
3892 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3893 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3894 
3895 	/* If we're not using the legacy transfer method then we will
3896 	 * try to transfer in the calling context so special case.
3897 	 * This code would be less tricky if we could remove the
3898 	 * support for driver implemented message queues.
3899 	 */
3900 	if (ctlr->transfer == spi_queued_transfer) {
3901 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3902 
3903 		trace_spi_message_submit(message);
3904 
3905 		status = __spi_queued_transfer(spi, message, false);
3906 
3907 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3908 	} else {
3909 		status = spi_async_locked(spi, message);
3910 	}
3911 
3912 	if (status == 0) {
3913 		/* Push out the messages in the calling context if we
3914 		 * can.
3915 		 */
3916 		if (ctlr->transfer == spi_queued_transfer) {
3917 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3918 						       spi_sync_immediate);
3919 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3920 						       spi_sync_immediate);
3921 			__spi_pump_messages(ctlr, false);
3922 		}
3923 
3924 		wait_for_completion(&done);
3925 		status = message->status;
3926 	}
3927 	message->context = NULL;
3928 	return status;
3929 }
3930 
3931 /**
3932  * spi_sync - blocking/synchronous SPI data transfers
3933  * @spi: device with which data will be exchanged
3934  * @message: describes the data transfers
3935  * Context: can sleep
3936  *
3937  * This call may only be used from a context that may sleep.  The sleep
3938  * is non-interruptible, and has no timeout.  Low-overhead controller
3939  * drivers may DMA directly into and out of the message buffers.
3940  *
3941  * Note that the SPI device's chip select is active during the message,
3942  * and then is normally disabled between messages.  Drivers for some
3943  * frequently-used devices may want to minimize costs of selecting a chip,
3944  * by leaving it selected in anticipation that the next message will go
3945  * to the same chip.  (That may increase power usage.)
3946  *
3947  * Also, the caller is guaranteeing that the memory associated with the
3948  * message will not be freed before this call returns.
3949  *
3950  * Return: zero on success, else a negative error code.
3951  */
3952 int spi_sync(struct spi_device *spi, struct spi_message *message)
3953 {
3954 	int ret;
3955 
3956 	mutex_lock(&spi->controller->bus_lock_mutex);
3957 	ret = __spi_sync(spi, message);
3958 	mutex_unlock(&spi->controller->bus_lock_mutex);
3959 
3960 	return ret;
3961 }
3962 EXPORT_SYMBOL_GPL(spi_sync);
3963 
3964 /**
3965  * spi_sync_locked - version of spi_sync with exclusive bus usage
3966  * @spi: device with which data will be exchanged
3967  * @message: describes the data transfers
3968  * Context: can sleep
3969  *
3970  * This call may only be used from a context that may sleep.  The sleep
3971  * is non-interruptible, and has no timeout.  Low-overhead controller
3972  * drivers may DMA directly into and out of the message buffers.
3973  *
3974  * This call should be used by drivers that require exclusive access to the
3975  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3976  * be released by a spi_bus_unlock call when the exclusive access is over.
3977  *
3978  * Return: zero on success, else a negative error code.
3979  */
3980 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3981 {
3982 	return __spi_sync(spi, message);
3983 }
3984 EXPORT_SYMBOL_GPL(spi_sync_locked);
3985 
3986 /**
3987  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3988  * @ctlr: SPI bus master that should be locked for exclusive bus access
3989  * Context: can sleep
3990  *
3991  * This call may only be used from a context that may sleep.  The sleep
3992  * is non-interruptible, and has no timeout.
3993  *
3994  * This call should be used by drivers that require exclusive access to the
3995  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3996  * exclusive access is over. Data transfer must be done by spi_sync_locked
3997  * and spi_async_locked calls when the SPI bus lock is held.
3998  *
3999  * Return: always zero.
4000  */
4001 int spi_bus_lock(struct spi_controller *ctlr)
4002 {
4003 	unsigned long flags;
4004 
4005 	mutex_lock(&ctlr->bus_lock_mutex);
4006 
4007 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4008 	ctlr->bus_lock_flag = 1;
4009 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4010 
4011 	/* mutex remains locked until spi_bus_unlock is called */
4012 
4013 	return 0;
4014 }
4015 EXPORT_SYMBOL_GPL(spi_bus_lock);
4016 
4017 /**
4018  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4019  * @ctlr: SPI bus master that was locked for exclusive bus access
4020  * Context: can sleep
4021  *
4022  * This call may only be used from a context that may sleep.  The sleep
4023  * is non-interruptible, and has no timeout.
4024  *
4025  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4026  * call.
4027  *
4028  * Return: always zero.
4029  */
4030 int spi_bus_unlock(struct spi_controller *ctlr)
4031 {
4032 	ctlr->bus_lock_flag = 0;
4033 
4034 	mutex_unlock(&ctlr->bus_lock_mutex);
4035 
4036 	return 0;
4037 }
4038 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4039 
4040 /* portable code must never pass more than 32 bytes */
4041 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4042 
4043 static u8	*buf;
4044 
4045 /**
4046  * spi_write_then_read - SPI synchronous write followed by read
4047  * @spi: device with which data will be exchanged
4048  * @txbuf: data to be written (need not be dma-safe)
4049  * @n_tx: size of txbuf, in bytes
4050  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4051  * @n_rx: size of rxbuf, in bytes
4052  * Context: can sleep
4053  *
4054  * This performs a half duplex MicroWire style transaction with the
4055  * device, sending txbuf and then reading rxbuf.  The return value
4056  * is zero for success, else a negative errno status code.
4057  * This call may only be used from a context that may sleep.
4058  *
4059  * Parameters to this routine are always copied using a small buffer.
4060  * Performance-sensitive or bulk transfer code should instead use
4061  * spi_{async,sync}() calls with dma-safe buffers.
4062  *
4063  * Return: zero on success, else a negative error code.
4064  */
4065 int spi_write_then_read(struct spi_device *spi,
4066 		const void *txbuf, unsigned n_tx,
4067 		void *rxbuf, unsigned n_rx)
4068 {
4069 	static DEFINE_MUTEX(lock);
4070 
4071 	int			status;
4072 	struct spi_message	message;
4073 	struct spi_transfer	x[2];
4074 	u8			*local_buf;
4075 
4076 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
4077 	 * copying here, (as a pure convenience thing), but we can
4078 	 * keep heap costs out of the hot path unless someone else is
4079 	 * using the pre-allocated buffer or the transfer is too large.
4080 	 */
4081 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4082 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4083 				    GFP_KERNEL | GFP_DMA);
4084 		if (!local_buf)
4085 			return -ENOMEM;
4086 	} else {
4087 		local_buf = buf;
4088 	}
4089 
4090 	spi_message_init(&message);
4091 	memset(x, 0, sizeof(x));
4092 	if (n_tx) {
4093 		x[0].len = n_tx;
4094 		spi_message_add_tail(&x[0], &message);
4095 	}
4096 	if (n_rx) {
4097 		x[1].len = n_rx;
4098 		spi_message_add_tail(&x[1], &message);
4099 	}
4100 
4101 	memcpy(local_buf, txbuf, n_tx);
4102 	x[0].tx_buf = local_buf;
4103 	x[1].rx_buf = local_buf + n_tx;
4104 
4105 	/* do the i/o */
4106 	status = spi_sync(spi, &message);
4107 	if (status == 0)
4108 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4109 
4110 	if (x[0].tx_buf == buf)
4111 		mutex_unlock(&lock);
4112 	else
4113 		kfree(local_buf);
4114 
4115 	return status;
4116 }
4117 EXPORT_SYMBOL_GPL(spi_write_then_read);
4118 
4119 /*-------------------------------------------------------------------------*/
4120 
4121 #if IS_ENABLED(CONFIG_OF)
4122 /* must call put_device() when done with returned spi_device device */
4123 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4124 {
4125 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4126 
4127 	return dev ? to_spi_device(dev) : NULL;
4128 }
4129 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4130 #endif /* IS_ENABLED(CONFIG_OF) */
4131 
4132 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4133 /* the spi controllers are not using spi_bus, so we find it with another way */
4134 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4135 {
4136 	struct device *dev;
4137 
4138 	dev = class_find_device_by_of_node(&spi_master_class, node);
4139 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4140 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4141 	if (!dev)
4142 		return NULL;
4143 
4144 	/* reference got in class_find_device */
4145 	return container_of(dev, struct spi_controller, dev);
4146 }
4147 
4148 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4149 			 void *arg)
4150 {
4151 	struct of_reconfig_data *rd = arg;
4152 	struct spi_controller *ctlr;
4153 	struct spi_device *spi;
4154 
4155 	switch (of_reconfig_get_state_change(action, arg)) {
4156 	case OF_RECONFIG_CHANGE_ADD:
4157 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4158 		if (ctlr == NULL)
4159 			return NOTIFY_OK;	/* not for us */
4160 
4161 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4162 			put_device(&ctlr->dev);
4163 			return NOTIFY_OK;
4164 		}
4165 
4166 		spi = of_register_spi_device(ctlr, rd->dn);
4167 		put_device(&ctlr->dev);
4168 
4169 		if (IS_ERR(spi)) {
4170 			pr_err("%s: failed to create for '%pOF'\n",
4171 					__func__, rd->dn);
4172 			of_node_clear_flag(rd->dn, OF_POPULATED);
4173 			return notifier_from_errno(PTR_ERR(spi));
4174 		}
4175 		break;
4176 
4177 	case OF_RECONFIG_CHANGE_REMOVE:
4178 		/* already depopulated? */
4179 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4180 			return NOTIFY_OK;
4181 
4182 		/* find our device by node */
4183 		spi = of_find_spi_device_by_node(rd->dn);
4184 		if (spi == NULL)
4185 			return NOTIFY_OK;	/* no? not meant for us */
4186 
4187 		/* unregister takes one ref away */
4188 		spi_unregister_device(spi);
4189 
4190 		/* and put the reference of the find */
4191 		put_device(&spi->dev);
4192 		break;
4193 	}
4194 
4195 	return NOTIFY_OK;
4196 }
4197 
4198 static struct notifier_block spi_of_notifier = {
4199 	.notifier_call = of_spi_notify,
4200 };
4201 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4202 extern struct notifier_block spi_of_notifier;
4203 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4204 
4205 #if IS_ENABLED(CONFIG_ACPI)
4206 static int spi_acpi_controller_match(struct device *dev, const void *data)
4207 {
4208 	return ACPI_COMPANION(dev->parent) == data;
4209 }
4210 
4211 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4212 {
4213 	struct device *dev;
4214 
4215 	dev = class_find_device(&spi_master_class, NULL, adev,
4216 				spi_acpi_controller_match);
4217 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4218 		dev = class_find_device(&spi_slave_class, NULL, adev,
4219 					spi_acpi_controller_match);
4220 	if (!dev)
4221 		return NULL;
4222 
4223 	return container_of(dev, struct spi_controller, dev);
4224 }
4225 
4226 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4227 {
4228 	struct device *dev;
4229 
4230 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4231 	return to_spi_device(dev);
4232 }
4233 
4234 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4235 			   void *arg)
4236 {
4237 	struct acpi_device *adev = arg;
4238 	struct spi_controller *ctlr;
4239 	struct spi_device *spi;
4240 
4241 	switch (value) {
4242 	case ACPI_RECONFIG_DEVICE_ADD:
4243 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4244 		if (!ctlr)
4245 			break;
4246 
4247 		acpi_register_spi_device(ctlr, adev);
4248 		put_device(&ctlr->dev);
4249 		break;
4250 	case ACPI_RECONFIG_DEVICE_REMOVE:
4251 		if (!acpi_device_enumerated(adev))
4252 			break;
4253 
4254 		spi = acpi_spi_find_device_by_adev(adev);
4255 		if (!spi)
4256 			break;
4257 
4258 		spi_unregister_device(spi);
4259 		put_device(&spi->dev);
4260 		break;
4261 	}
4262 
4263 	return NOTIFY_OK;
4264 }
4265 
4266 static struct notifier_block spi_acpi_notifier = {
4267 	.notifier_call = acpi_spi_notify,
4268 };
4269 #else
4270 extern struct notifier_block spi_acpi_notifier;
4271 #endif
4272 
4273 static int __init spi_init(void)
4274 {
4275 	int	status;
4276 
4277 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4278 	if (!buf) {
4279 		status = -ENOMEM;
4280 		goto err0;
4281 	}
4282 
4283 	status = bus_register(&spi_bus_type);
4284 	if (status < 0)
4285 		goto err1;
4286 
4287 	status = class_register(&spi_master_class);
4288 	if (status < 0)
4289 		goto err2;
4290 
4291 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4292 		status = class_register(&spi_slave_class);
4293 		if (status < 0)
4294 			goto err3;
4295 	}
4296 
4297 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4298 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4299 	if (IS_ENABLED(CONFIG_ACPI))
4300 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4301 
4302 	return 0;
4303 
4304 err3:
4305 	class_unregister(&spi_master_class);
4306 err2:
4307 	bus_unregister(&spi_bus_type);
4308 err1:
4309 	kfree(buf);
4310 	buf = NULL;
4311 err0:
4312 	return status;
4313 }
4314 
4315 /* board_info is normally registered in arch_initcall(),
4316  * but even essential drivers wait till later
4317  *
4318  * REVISIT only boardinfo really needs static linking. the rest (device and
4319  * driver registration) _could_ be dynamically linked (modular) ... costs
4320  * include needing to have boardinfo data structures be much more public.
4321  */
4322 postcore_initcall(spi_init);
4323