xref: /openbmc/linux/drivers/spi/spi.c (revision f7875966)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 				   char *buf, size_t offset)
122 {
123 	u64 val = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i) {
127 		const struct spi_statistics *pcpu_stats;
128 		u64_stats_t *field;
129 		unsigned int start;
130 		u64 inc;
131 
132 		pcpu_stats = per_cpu_ptr(stat, i);
133 		field = (void *)pcpu_stats + offset;
134 		do {
135 			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 			inc = u64_stats_read(field);
137 		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 		val += inc;
139 	}
140 	return sysfs_emit(buf, "%llu\n", val);
141 }
142 
143 #define SPI_STATISTICS_ATTRS(field, file)				\
144 static ssize_t spi_controller_##field##_show(struct device *dev,	\
145 					     struct device_attribute *attr, \
146 					     char *buf)			\
147 {									\
148 	struct spi_controller *ctlr = container_of(dev,			\
149 					 struct spi_controller, dev);	\
150 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }									\
152 static struct device_attribute dev_attr_spi_controller_##field = {	\
153 	.attr = { .name = file, .mode = 0444 },				\
154 	.show = spi_controller_##field##_show,				\
155 };									\
156 static ssize_t spi_device_##field##_show(struct device *dev,		\
157 					 struct device_attribute *attr,	\
158 					char *buf)			\
159 {									\
160 	struct spi_device *spi = to_spi_device(dev);			\
161 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }									\
163 static struct device_attribute dev_attr_spi_device_##field = {		\
164 	.attr = { .name = file, .mode = 0444 },				\
165 	.show = spi_device_##field##_show,				\
166 }
167 
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 					    char *buf)			\
171 {									\
172 	return spi_emit_pcpu_stats(stat, buf,				\
173 			offsetof(struct spi_statistics, field));	\
174 }									\
175 SPI_STATISTICS_ATTRS(name, file)
176 
177 #define SPI_STATISTICS_SHOW(field)					\
178 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
179 				 field)
180 
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185 
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189 
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193 
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
195 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
196 				 "transfer_bytes_histo_" number,	\
197 				 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215 
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217 
218 static struct attribute *spi_dev_attrs[] = {
219 	&dev_attr_modalias.attr,
220 	&dev_attr_driver_override.attr,
221 	NULL,
222 };
223 
224 static const struct attribute_group spi_dev_group = {
225 	.attrs  = spi_dev_attrs,
226 };
227 
228 static struct attribute *spi_device_statistics_attrs[] = {
229 	&dev_attr_spi_device_messages.attr,
230 	&dev_attr_spi_device_transfers.attr,
231 	&dev_attr_spi_device_errors.attr,
232 	&dev_attr_spi_device_timedout.attr,
233 	&dev_attr_spi_device_spi_sync.attr,
234 	&dev_attr_spi_device_spi_sync_immediate.attr,
235 	&dev_attr_spi_device_spi_async.attr,
236 	&dev_attr_spi_device_bytes.attr,
237 	&dev_attr_spi_device_bytes_rx.attr,
238 	&dev_attr_spi_device_bytes_tx.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
255 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
256 	&dev_attr_spi_device_transfers_split_maxsize.attr,
257 	NULL,
258 };
259 
260 static const struct attribute_group spi_device_statistics_group = {
261 	.name  = "statistics",
262 	.attrs  = spi_device_statistics_attrs,
263 };
264 
265 static const struct attribute_group *spi_dev_groups[] = {
266 	&spi_dev_group,
267 	&spi_device_statistics_group,
268 	NULL,
269 };
270 
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 	&dev_attr_spi_controller_messages.attr,
273 	&dev_attr_spi_controller_transfers.attr,
274 	&dev_attr_spi_controller_errors.attr,
275 	&dev_attr_spi_controller_timedout.attr,
276 	&dev_attr_spi_controller_spi_sync.attr,
277 	&dev_attr_spi_controller_spi_sync_immediate.attr,
278 	&dev_attr_spi_controller_spi_async.attr,
279 	&dev_attr_spi_controller_bytes.attr,
280 	&dev_attr_spi_controller_bytes_rx.attr,
281 	&dev_attr_spi_controller_bytes_tx.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
300 	NULL,
301 };
302 
303 static const struct attribute_group spi_controller_statistics_group = {
304 	.name  = "statistics",
305 	.attrs  = spi_controller_statistics_attrs,
306 };
307 
308 static const struct attribute_group *spi_master_groups[] = {
309 	&spi_controller_statistics_group,
310 	NULL,
311 };
312 
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 					      struct spi_transfer *xfer,
315 					      struct spi_controller *ctlr)
316 {
317 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 	struct spi_statistics *stats;
319 
320 	if (l2len < 0)
321 		l2len = 0;
322 
323 	get_cpu();
324 	stats = this_cpu_ptr(pcpu_stats);
325 	u64_stats_update_begin(&stats->syncp);
326 
327 	u64_stats_inc(&stats->transfers);
328 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329 
330 	u64_stats_add(&stats->bytes, xfer->len);
331 	if ((xfer->tx_buf) &&
332 	    (xfer->tx_buf != ctlr->dummy_tx))
333 		u64_stats_add(&stats->bytes_tx, xfer->len);
334 	if ((xfer->rx_buf) &&
335 	    (xfer->rx_buf != ctlr->dummy_rx))
336 		u64_stats_add(&stats->bytes_rx, xfer->len);
337 
338 	u64_stats_update_end(&stats->syncp);
339 	put_cpu();
340 }
341 
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348 	while (id->name[0]) {
349 		if (!strcmp(name, id->name))
350 			return id;
351 		id++;
352 	}
353 	return NULL;
354 }
355 
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359 
360 	return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363 
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366 	const void *match;
367 
368 	match = device_get_match_data(&sdev->dev);
369 	if (match)
370 		return match;
371 
372 	return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375 
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378 	const struct spi_device	*spi = to_spi_device(dev);
379 	const struct spi_driver	*sdrv = to_spi_driver(drv);
380 
381 	/* Check override first, and if set, only use the named driver */
382 	if (spi->driver_override)
383 		return strcmp(spi->driver_override, drv->name) == 0;
384 
385 	/* Attempt an OF style match */
386 	if (of_driver_match_device(dev, drv))
387 		return 1;
388 
389 	/* Then try ACPI */
390 	if (acpi_driver_match_device(dev, drv))
391 		return 1;
392 
393 	if (sdrv->id_table)
394 		return !!spi_match_id(sdrv->id_table, spi->modalias);
395 
396 	return strcmp(spi->modalias, drv->name) == 0;
397 }
398 
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401 	const struct spi_device		*spi = to_spi_device(dev);
402 	int rc;
403 
404 	rc = acpi_device_uevent_modalias(dev, env);
405 	if (rc != -ENODEV)
406 		return rc;
407 
408 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410 
411 static int spi_probe(struct device *dev)
412 {
413 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
414 	struct spi_device		*spi = to_spi_device(dev);
415 	int ret;
416 
417 	ret = of_clk_set_defaults(dev->of_node, false);
418 	if (ret)
419 		return ret;
420 
421 	if (dev->of_node) {
422 		spi->irq = of_irq_get(dev->of_node, 0);
423 		if (spi->irq == -EPROBE_DEFER)
424 			return -EPROBE_DEFER;
425 		if (spi->irq < 0)
426 			spi->irq = 0;
427 	}
428 
429 	ret = dev_pm_domain_attach(dev, true);
430 	if (ret)
431 		return ret;
432 
433 	if (sdrv->probe) {
434 		ret = sdrv->probe(spi);
435 		if (ret)
436 			dev_pm_domain_detach(dev, true);
437 	}
438 
439 	return ret;
440 }
441 
442 static void spi_remove(struct device *dev)
443 {
444 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
445 
446 	if (sdrv->remove)
447 		sdrv->remove(to_spi_device(dev));
448 
449 	dev_pm_domain_detach(dev, true);
450 }
451 
452 static void spi_shutdown(struct device *dev)
453 {
454 	if (dev->driver) {
455 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
456 
457 		if (sdrv->shutdown)
458 			sdrv->shutdown(to_spi_device(dev));
459 	}
460 }
461 
462 struct bus_type spi_bus_type = {
463 	.name		= "spi",
464 	.dev_groups	= spi_dev_groups,
465 	.match		= spi_match_device,
466 	.uevent		= spi_uevent,
467 	.probe		= spi_probe,
468 	.remove		= spi_remove,
469 	.shutdown	= spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472 
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483 	sdrv->driver.owner = owner;
484 	sdrv->driver.bus = &spi_bus_type;
485 
486 	/*
487 	 * For Really Good Reasons we use spi: modaliases not of:
488 	 * modaliases for DT so module autoloading won't work if we
489 	 * don't have a spi_device_id as well as a compatible string.
490 	 */
491 	if (sdrv->driver.of_match_table) {
492 		const struct of_device_id *of_id;
493 
494 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495 		     of_id++) {
496 			const char *of_name;
497 
498 			/* Strip off any vendor prefix */
499 			of_name = strnchr(of_id->compatible,
500 					  sizeof(of_id->compatible), ',');
501 			if (of_name)
502 				of_name++;
503 			else
504 				of_name = of_id->compatible;
505 
506 			if (sdrv->id_table) {
507 				const struct spi_device_id *spi_id;
508 
509 				spi_id = spi_match_id(sdrv->id_table, of_name);
510 				if (spi_id)
511 					continue;
512 			} else {
513 				if (strcmp(sdrv->driver.name, of_name) == 0)
514 					continue;
515 			}
516 
517 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 				sdrv->driver.name, of_id->compatible);
519 		}
520 	}
521 
522 	return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525 
526 /*-------------------------------------------------------------------------*/
527 
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534 
535 struct boardinfo {
536 	struct list_head	list;
537 	struct spi_board_info	board_info;
538 };
539 
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542 
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549 
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569 	struct spi_device	*spi;
570 
571 	if (!spi_controller_get(ctlr))
572 		return NULL;
573 
574 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575 	if (!spi) {
576 		spi_controller_put(ctlr);
577 		return NULL;
578 	}
579 
580 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 	if (!spi->pcpu_statistics) {
582 		kfree(spi);
583 		spi_controller_put(ctlr);
584 		return NULL;
585 	}
586 
587 	spi->master = spi->controller = ctlr;
588 	spi->dev.parent = &ctlr->dev;
589 	spi->dev.bus = &spi_bus_type;
590 	spi->dev.release = spidev_release;
591 	spi->mode = ctlr->buswidth_override_bits;
592 
593 	device_initialize(&spi->dev);
594 	return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597 
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601 
602 	if (adev) {
603 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604 		return;
605 	}
606 
607 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608 		     spi_get_chipselect(spi, 0));
609 }
610 
611 static int spi_dev_check(struct device *dev, void *data)
612 {
613 	struct spi_device *spi = to_spi_device(dev);
614 	struct spi_device *new_spi = data;
615 
616 	if (spi->controller == new_spi->controller &&
617 	    spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
618 		return -EBUSY;
619 	return 0;
620 }
621 
622 static void spi_cleanup(struct spi_device *spi)
623 {
624 	if (spi->controller->cleanup)
625 		spi->controller->cleanup(spi);
626 }
627 
628 static int __spi_add_device(struct spi_device *spi)
629 {
630 	struct spi_controller *ctlr = spi->controller;
631 	struct device *dev = ctlr->dev.parent;
632 	int status;
633 
634 	/* Chipselects are numbered 0..max; validate. */
635 	if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
636 		dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
637 			ctlr->num_chipselect);
638 		return -EINVAL;
639 	}
640 
641 	/* Set the bus ID string */
642 	spi_dev_set_name(spi);
643 
644 	/*
645 	 * We need to make sure there's no other device with this
646 	 * chipselect **BEFORE** we call setup(), else we'll trash
647 	 * its configuration.
648 	 */
649 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
650 	if (status) {
651 		dev_err(dev, "chipselect %d already in use\n",
652 				spi_get_chipselect(spi, 0));
653 		return status;
654 	}
655 
656 	/* Controller may unregister concurrently */
657 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
658 	    !device_is_registered(&ctlr->dev)) {
659 		return -ENODEV;
660 	}
661 
662 	if (ctlr->cs_gpiods)
663 		spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
664 
665 	/*
666 	 * Drivers may modify this initial i/o setup, but will
667 	 * normally rely on the device being setup.  Devices
668 	 * using SPI_CS_HIGH can't coexist well otherwise...
669 	 */
670 	status = spi_setup(spi);
671 	if (status < 0) {
672 		dev_err(dev, "can't setup %s, status %d\n",
673 				dev_name(&spi->dev), status);
674 		return status;
675 	}
676 
677 	/* Device may be bound to an active driver when this returns */
678 	status = device_add(&spi->dev);
679 	if (status < 0) {
680 		dev_err(dev, "can't add %s, status %d\n",
681 				dev_name(&spi->dev), status);
682 		spi_cleanup(spi);
683 	} else {
684 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
685 	}
686 
687 	return status;
688 }
689 
690 /**
691  * spi_add_device - Add spi_device allocated with spi_alloc_device
692  * @spi: spi_device to register
693  *
694  * Companion function to spi_alloc_device.  Devices allocated with
695  * spi_alloc_device can be added onto the SPI bus with this function.
696  *
697  * Return: 0 on success; negative errno on failure
698  */
699 int spi_add_device(struct spi_device *spi)
700 {
701 	struct spi_controller *ctlr = spi->controller;
702 	int status;
703 
704 	mutex_lock(&ctlr->add_lock);
705 	status = __spi_add_device(spi);
706 	mutex_unlock(&ctlr->add_lock);
707 	return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710 
711 /**
712  * spi_new_device - instantiate one new SPI device
713  * @ctlr: Controller to which device is connected
714  * @chip: Describes the SPI device
715  * Context: can sleep
716  *
717  * On typical mainboards, this is purely internal; and it's not needed
718  * after board init creates the hard-wired devices.  Some development
719  * platforms may not be able to use spi_register_board_info though, and
720  * this is exported so that for example a USB or parport based adapter
721  * driver could add devices (which it would learn about out-of-band).
722  *
723  * Return: the new device, or NULL.
724  */
725 struct spi_device *spi_new_device(struct spi_controller *ctlr,
726 				  struct spi_board_info *chip)
727 {
728 	struct spi_device	*proxy;
729 	int			status;
730 
731 	/*
732 	 * NOTE:  caller did any chip->bus_num checks necessary.
733 	 *
734 	 * Also, unless we change the return value convention to use
735 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
736 	 * suggests syslogged diagnostics are best here (ugh).
737 	 */
738 
739 	proxy = spi_alloc_device(ctlr);
740 	if (!proxy)
741 		return NULL;
742 
743 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
744 
745 	spi_set_chipselect(proxy, 0, chip->chip_select);
746 	proxy->max_speed_hz = chip->max_speed_hz;
747 	proxy->mode = chip->mode;
748 	proxy->irq = chip->irq;
749 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
750 	proxy->dev.platform_data = (void *) chip->platform_data;
751 	proxy->controller_data = chip->controller_data;
752 	proxy->controller_state = NULL;
753 
754 	if (chip->swnode) {
755 		status = device_add_software_node(&proxy->dev, chip->swnode);
756 		if (status) {
757 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
758 				chip->modalias, status);
759 			goto err_dev_put;
760 		}
761 	}
762 
763 	status = spi_add_device(proxy);
764 	if (status < 0)
765 		goto err_dev_put;
766 
767 	return proxy;
768 
769 err_dev_put:
770 	device_remove_software_node(&proxy->dev);
771 	spi_dev_put(proxy);
772 	return NULL;
773 }
774 EXPORT_SYMBOL_GPL(spi_new_device);
775 
776 /**
777  * spi_unregister_device - unregister a single SPI device
778  * @spi: spi_device to unregister
779  *
780  * Start making the passed SPI device vanish. Normally this would be handled
781  * by spi_unregister_controller().
782  */
783 void spi_unregister_device(struct spi_device *spi)
784 {
785 	if (!spi)
786 		return;
787 
788 	if (spi->dev.of_node) {
789 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
790 		of_node_put(spi->dev.of_node);
791 	}
792 	if (ACPI_COMPANION(&spi->dev))
793 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
794 	device_remove_software_node(&spi->dev);
795 	device_del(&spi->dev);
796 	spi_cleanup(spi);
797 	put_device(&spi->dev);
798 }
799 EXPORT_SYMBOL_GPL(spi_unregister_device);
800 
801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
802 					      struct spi_board_info *bi)
803 {
804 	struct spi_device *dev;
805 
806 	if (ctlr->bus_num != bi->bus_num)
807 		return;
808 
809 	dev = spi_new_device(ctlr, bi);
810 	if (!dev)
811 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
812 			bi->modalias);
813 }
814 
815 /**
816  * spi_register_board_info - register SPI devices for a given board
817  * @info: array of chip descriptors
818  * @n: how many descriptors are provided
819  * Context: can sleep
820  *
821  * Board-specific early init code calls this (probably during arch_initcall)
822  * with segments of the SPI device table.  Any device nodes are created later,
823  * after the relevant parent SPI controller (bus_num) is defined.  We keep
824  * this table of devices forever, so that reloading a controller driver will
825  * not make Linux forget about these hard-wired devices.
826  *
827  * Other code can also call this, e.g. a particular add-on board might provide
828  * SPI devices through its expansion connector, so code initializing that board
829  * would naturally declare its SPI devices.
830  *
831  * The board info passed can safely be __initdata ... but be careful of
832  * any embedded pointers (platform_data, etc), they're copied as-is.
833  *
834  * Return: zero on success, else a negative error code.
835  */
836 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
837 {
838 	struct boardinfo *bi;
839 	int i;
840 
841 	if (!n)
842 		return 0;
843 
844 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
845 	if (!bi)
846 		return -ENOMEM;
847 
848 	for (i = 0; i < n; i++, bi++, info++) {
849 		struct spi_controller *ctlr;
850 
851 		memcpy(&bi->board_info, info, sizeof(*info));
852 
853 		mutex_lock(&board_lock);
854 		list_add_tail(&bi->list, &board_list);
855 		list_for_each_entry(ctlr, &spi_controller_list, list)
856 			spi_match_controller_to_boardinfo(ctlr,
857 							  &bi->board_info);
858 		mutex_unlock(&board_lock);
859 	}
860 
861 	return 0;
862 }
863 
864 /*-------------------------------------------------------------------------*/
865 
866 /* Core methods for SPI resource management */
867 
868 /**
869  * spi_res_alloc - allocate a spi resource that is life-cycle managed
870  *                 during the processing of a spi_message while using
871  *                 spi_transfer_one
872  * @spi:     the SPI device for which we allocate memory
873  * @release: the release code to execute for this resource
874  * @size:    size to alloc and return
875  * @gfp:     GFP allocation flags
876  *
877  * Return: the pointer to the allocated data
878  *
879  * This may get enhanced in the future to allocate from a memory pool
880  * of the @spi_device or @spi_controller to avoid repeated allocations.
881  */
882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
883 			   size_t size, gfp_t gfp)
884 {
885 	struct spi_res *sres;
886 
887 	sres = kzalloc(sizeof(*sres) + size, gfp);
888 	if (!sres)
889 		return NULL;
890 
891 	INIT_LIST_HEAD(&sres->entry);
892 	sres->release = release;
893 
894 	return sres->data;
895 }
896 
897 /**
898  * spi_res_free - free an SPI resource
899  * @res: pointer to the custom data of a resource
900  */
901 static void spi_res_free(void *res)
902 {
903 	struct spi_res *sres = container_of(res, struct spi_res, data);
904 
905 	if (!res)
906 		return;
907 
908 	WARN_ON(!list_empty(&sres->entry));
909 	kfree(sres);
910 }
911 
912 /**
913  * spi_res_add - add a spi_res to the spi_message
914  * @message: the SPI message
915  * @res:     the spi_resource
916  */
917 static void spi_res_add(struct spi_message *message, void *res)
918 {
919 	struct spi_res *sres = container_of(res, struct spi_res, data);
920 
921 	WARN_ON(!list_empty(&sres->entry));
922 	list_add_tail(&sres->entry, &message->resources);
923 }
924 
925 /**
926  * spi_res_release - release all SPI resources for this message
927  * @ctlr:  the @spi_controller
928  * @message: the @spi_message
929  */
930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
931 {
932 	struct spi_res *res, *tmp;
933 
934 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
935 		if (res->release)
936 			res->release(ctlr, message, res->data);
937 
938 		list_del(&res->entry);
939 
940 		kfree(res);
941 	}
942 }
943 
944 /*-------------------------------------------------------------------------*/
945 
946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
947 {
948 	bool activate = enable;
949 
950 	/*
951 	 * Avoid calling into the driver (or doing delays) if the chip select
952 	 * isn't actually changing from the last time this was called.
953 	 */
954 	if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
955 		       (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
956 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
957 		return;
958 
959 	trace_spi_set_cs(spi, activate);
960 
961 	spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
962 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
963 
964 	if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
965 		spi_delay_exec(&spi->cs_hold, NULL);
966 
967 	if (spi->mode & SPI_CS_HIGH)
968 		enable = !enable;
969 
970 	if (spi_get_csgpiod(spi, 0)) {
971 		if (!(spi->mode & SPI_NO_CS)) {
972 			/*
973 			 * Historically ACPI has no means of the GPIO polarity and
974 			 * thus the SPISerialBus() resource defines it on the per-chip
975 			 * basis. In order to avoid a chain of negations, the GPIO
976 			 * polarity is considered being Active High. Even for the cases
977 			 * when _DSD() is involved (in the updated versions of ACPI)
978 			 * the GPIO CS polarity must be defined Active High to avoid
979 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
980 			 * into account.
981 			 */
982 			if (has_acpi_companion(&spi->dev))
983 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
984 			else
985 				/* Polarity handled by GPIO library */
986 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
987 		}
988 		/* Some SPI masters need both GPIO CS & slave_select */
989 		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
990 		    spi->controller->set_cs)
991 			spi->controller->set_cs(spi, !enable);
992 	} else if (spi->controller->set_cs) {
993 		spi->controller->set_cs(spi, !enable);
994 	}
995 
996 	if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
997 		if (activate)
998 			spi_delay_exec(&spi->cs_setup, NULL);
999 		else
1000 			spi_delay_exec(&spi->cs_inactive, NULL);
1001 	}
1002 }
1003 
1004 #ifdef CONFIG_HAS_DMA
1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1006 			     struct sg_table *sgt, void *buf, size_t len,
1007 			     enum dma_data_direction dir, unsigned long attrs)
1008 {
1009 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1010 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1011 #ifdef CONFIG_HIGHMEM
1012 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1013 				(unsigned long)buf < (PKMAP_BASE +
1014 					(LAST_PKMAP * PAGE_SIZE)));
1015 #else
1016 	const bool kmap_buf = false;
1017 #endif
1018 	int desc_len;
1019 	int sgs;
1020 	struct page *vm_page;
1021 	struct scatterlist *sg;
1022 	void *sg_buf;
1023 	size_t min;
1024 	int i, ret;
1025 
1026 	if (vmalloced_buf || kmap_buf) {
1027 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1028 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1029 	} else if (virt_addr_valid(buf)) {
1030 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1031 		sgs = DIV_ROUND_UP(len, desc_len);
1032 	} else {
1033 		return -EINVAL;
1034 	}
1035 
1036 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1037 	if (ret != 0)
1038 		return ret;
1039 
1040 	sg = &sgt->sgl[0];
1041 	for (i = 0; i < sgs; i++) {
1042 
1043 		if (vmalloced_buf || kmap_buf) {
1044 			/*
1045 			 * Next scatterlist entry size is the minimum between
1046 			 * the desc_len and the remaining buffer length that
1047 			 * fits in a page.
1048 			 */
1049 			min = min_t(size_t, desc_len,
1050 				    min_t(size_t, len,
1051 					  PAGE_SIZE - offset_in_page(buf)));
1052 			if (vmalloced_buf)
1053 				vm_page = vmalloc_to_page(buf);
1054 			else
1055 				vm_page = kmap_to_page(buf);
1056 			if (!vm_page) {
1057 				sg_free_table(sgt);
1058 				return -ENOMEM;
1059 			}
1060 			sg_set_page(sg, vm_page,
1061 				    min, offset_in_page(buf));
1062 		} else {
1063 			min = min_t(size_t, len, desc_len);
1064 			sg_buf = buf;
1065 			sg_set_buf(sg, sg_buf, min);
1066 		}
1067 
1068 		buf += min;
1069 		len -= min;
1070 		sg = sg_next(sg);
1071 	}
1072 
1073 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1074 	if (ret < 0) {
1075 		sg_free_table(sgt);
1076 		return ret;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1083 		struct sg_table *sgt, void *buf, size_t len,
1084 		enum dma_data_direction dir)
1085 {
1086 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1087 }
1088 
1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1090 				struct device *dev, struct sg_table *sgt,
1091 				enum dma_data_direction dir,
1092 				unsigned long attrs)
1093 {
1094 	if (sgt->orig_nents) {
1095 		dma_unmap_sgtable(dev, sgt, dir, attrs);
1096 		sg_free_table(sgt);
1097 		sgt->orig_nents = 0;
1098 		sgt->nents = 0;
1099 	}
1100 }
1101 
1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1103 		   struct sg_table *sgt, enum dma_data_direction dir)
1104 {
1105 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1106 }
1107 
1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1109 {
1110 	struct device *tx_dev, *rx_dev;
1111 	struct spi_transfer *xfer;
1112 	int ret;
1113 
1114 	if (!ctlr->can_dma)
1115 		return 0;
1116 
1117 	if (ctlr->dma_tx)
1118 		tx_dev = ctlr->dma_tx->device->dev;
1119 	else if (ctlr->dma_map_dev)
1120 		tx_dev = ctlr->dma_map_dev;
1121 	else
1122 		tx_dev = ctlr->dev.parent;
1123 
1124 	if (ctlr->dma_rx)
1125 		rx_dev = ctlr->dma_rx->device->dev;
1126 	else if (ctlr->dma_map_dev)
1127 		rx_dev = ctlr->dma_map_dev;
1128 	else
1129 		rx_dev = ctlr->dev.parent;
1130 
1131 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1132 		/* The sync is done before each transfer. */
1133 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1134 
1135 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1136 			continue;
1137 
1138 		if (xfer->tx_buf != NULL) {
1139 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1140 						(void *)xfer->tx_buf,
1141 						xfer->len, DMA_TO_DEVICE,
1142 						attrs);
1143 			if (ret != 0)
1144 				return ret;
1145 		}
1146 
1147 		if (xfer->rx_buf != NULL) {
1148 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1149 						xfer->rx_buf, xfer->len,
1150 						DMA_FROM_DEVICE, attrs);
1151 			if (ret != 0) {
1152 				spi_unmap_buf_attrs(ctlr, tx_dev,
1153 						&xfer->tx_sg, DMA_TO_DEVICE,
1154 						attrs);
1155 
1156 				return ret;
1157 			}
1158 		}
1159 	}
1160 
1161 	ctlr->cur_rx_dma_dev = rx_dev;
1162 	ctlr->cur_tx_dma_dev = tx_dev;
1163 	ctlr->cur_msg_mapped = true;
1164 
1165 	return 0;
1166 }
1167 
1168 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1169 {
1170 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1171 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1172 	struct spi_transfer *xfer;
1173 
1174 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1175 		return 0;
1176 
1177 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178 		/* The sync has already been done after each transfer. */
1179 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1180 
1181 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1182 			continue;
1183 
1184 		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1185 				    DMA_FROM_DEVICE, attrs);
1186 		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1187 				    DMA_TO_DEVICE, attrs);
1188 	}
1189 
1190 	ctlr->cur_msg_mapped = false;
1191 
1192 	return 0;
1193 }
1194 
1195 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1196 				    struct spi_transfer *xfer)
1197 {
1198 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1199 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1200 
1201 	if (!ctlr->cur_msg_mapped)
1202 		return;
1203 
1204 	if (xfer->tx_sg.orig_nents)
1205 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1206 	if (xfer->rx_sg.orig_nents)
1207 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1208 }
1209 
1210 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1211 				 struct spi_transfer *xfer)
1212 {
1213 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1214 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1215 
1216 	if (!ctlr->cur_msg_mapped)
1217 		return;
1218 
1219 	if (xfer->rx_sg.orig_nents)
1220 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1221 	if (xfer->tx_sg.orig_nents)
1222 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1223 }
1224 #else /* !CONFIG_HAS_DMA */
1225 static inline int __spi_map_msg(struct spi_controller *ctlr,
1226 				struct spi_message *msg)
1227 {
1228 	return 0;
1229 }
1230 
1231 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1232 				  struct spi_message *msg)
1233 {
1234 	return 0;
1235 }
1236 
1237 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1238 				    struct spi_transfer *xfer)
1239 {
1240 }
1241 
1242 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1243 				 struct spi_transfer *xfer)
1244 {
1245 }
1246 #endif /* !CONFIG_HAS_DMA */
1247 
1248 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1249 				struct spi_message *msg)
1250 {
1251 	struct spi_transfer *xfer;
1252 
1253 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1254 		/*
1255 		 * Restore the original value of tx_buf or rx_buf if they are
1256 		 * NULL.
1257 		 */
1258 		if (xfer->tx_buf == ctlr->dummy_tx)
1259 			xfer->tx_buf = NULL;
1260 		if (xfer->rx_buf == ctlr->dummy_rx)
1261 			xfer->rx_buf = NULL;
1262 	}
1263 
1264 	return __spi_unmap_msg(ctlr, msg);
1265 }
1266 
1267 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1268 {
1269 	struct spi_transfer *xfer;
1270 	void *tmp;
1271 	unsigned int max_tx, max_rx;
1272 
1273 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1274 		&& !(msg->spi->mode & SPI_3WIRE)) {
1275 		max_tx = 0;
1276 		max_rx = 0;
1277 
1278 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1279 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1280 			    !xfer->tx_buf)
1281 				max_tx = max(xfer->len, max_tx);
1282 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1283 			    !xfer->rx_buf)
1284 				max_rx = max(xfer->len, max_rx);
1285 		}
1286 
1287 		if (max_tx) {
1288 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1289 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1290 			if (!tmp)
1291 				return -ENOMEM;
1292 			ctlr->dummy_tx = tmp;
1293 		}
1294 
1295 		if (max_rx) {
1296 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1297 				       GFP_KERNEL | GFP_DMA);
1298 			if (!tmp)
1299 				return -ENOMEM;
1300 			ctlr->dummy_rx = tmp;
1301 		}
1302 
1303 		if (max_tx || max_rx) {
1304 			list_for_each_entry(xfer, &msg->transfers,
1305 					    transfer_list) {
1306 				if (!xfer->len)
1307 					continue;
1308 				if (!xfer->tx_buf)
1309 					xfer->tx_buf = ctlr->dummy_tx;
1310 				if (!xfer->rx_buf)
1311 					xfer->rx_buf = ctlr->dummy_rx;
1312 			}
1313 		}
1314 	}
1315 
1316 	return __spi_map_msg(ctlr, msg);
1317 }
1318 
1319 static int spi_transfer_wait(struct spi_controller *ctlr,
1320 			     struct spi_message *msg,
1321 			     struct spi_transfer *xfer)
1322 {
1323 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1324 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1325 	u32 speed_hz = xfer->speed_hz;
1326 	unsigned long long ms;
1327 
1328 	if (spi_controller_is_slave(ctlr)) {
1329 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1330 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1331 			return -EINTR;
1332 		}
1333 	} else {
1334 		if (!speed_hz)
1335 			speed_hz = 100000;
1336 
1337 		/*
1338 		 * For each byte we wait for 8 cycles of the SPI clock.
1339 		 * Since speed is defined in Hz and we want milliseconds,
1340 		 * use respective multiplier, but before the division,
1341 		 * otherwise we may get 0 for short transfers.
1342 		 */
1343 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1344 		do_div(ms, speed_hz);
1345 
1346 		/*
1347 		 * Increase it twice and add 200 ms tolerance, use
1348 		 * predefined maximum in case of overflow.
1349 		 */
1350 		ms += ms + 200;
1351 		if (ms > UINT_MAX)
1352 			ms = UINT_MAX;
1353 
1354 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1355 						 msecs_to_jiffies(ms));
1356 
1357 		if (ms == 0) {
1358 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1359 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1360 			dev_err(&msg->spi->dev,
1361 				"SPI transfer timed out\n");
1362 			return -ETIMEDOUT;
1363 		}
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 static void _spi_transfer_delay_ns(u32 ns)
1370 {
1371 	if (!ns)
1372 		return;
1373 	if (ns <= NSEC_PER_USEC) {
1374 		ndelay(ns);
1375 	} else {
1376 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1377 
1378 		if (us <= 10)
1379 			udelay(us);
1380 		else
1381 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1382 	}
1383 }
1384 
1385 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1386 {
1387 	u32 delay = _delay->value;
1388 	u32 unit = _delay->unit;
1389 	u32 hz;
1390 
1391 	if (!delay)
1392 		return 0;
1393 
1394 	switch (unit) {
1395 	case SPI_DELAY_UNIT_USECS:
1396 		delay *= NSEC_PER_USEC;
1397 		break;
1398 	case SPI_DELAY_UNIT_NSECS:
1399 		/* Nothing to do here */
1400 		break;
1401 	case SPI_DELAY_UNIT_SCK:
1402 		/* Clock cycles need to be obtained from spi_transfer */
1403 		if (!xfer)
1404 			return -EINVAL;
1405 		/*
1406 		 * If there is unknown effective speed, approximate it
1407 		 * by underestimating with half of the requested Hz.
1408 		 */
1409 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1410 		if (!hz)
1411 			return -EINVAL;
1412 
1413 		/* Convert delay to nanoseconds */
1414 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1415 		break;
1416 	default:
1417 		return -EINVAL;
1418 	}
1419 
1420 	return delay;
1421 }
1422 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1423 
1424 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1425 {
1426 	int delay;
1427 
1428 	might_sleep();
1429 
1430 	if (!_delay)
1431 		return -EINVAL;
1432 
1433 	delay = spi_delay_to_ns(_delay, xfer);
1434 	if (delay < 0)
1435 		return delay;
1436 
1437 	_spi_transfer_delay_ns(delay);
1438 
1439 	return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(spi_delay_exec);
1442 
1443 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1444 					  struct spi_transfer *xfer)
1445 {
1446 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1447 	u32 delay = xfer->cs_change_delay.value;
1448 	u32 unit = xfer->cs_change_delay.unit;
1449 	int ret;
1450 
1451 	/* Return early on "fast" mode - for everything but USECS */
1452 	if (!delay) {
1453 		if (unit == SPI_DELAY_UNIT_USECS)
1454 			_spi_transfer_delay_ns(default_delay_ns);
1455 		return;
1456 	}
1457 
1458 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1459 	if (ret) {
1460 		dev_err_once(&msg->spi->dev,
1461 			     "Use of unsupported delay unit %i, using default of %luus\n",
1462 			     unit, default_delay_ns / NSEC_PER_USEC);
1463 		_spi_transfer_delay_ns(default_delay_ns);
1464 	}
1465 }
1466 
1467 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1468 						  struct spi_transfer *xfer)
1469 {
1470 	_spi_transfer_cs_change_delay(msg, xfer);
1471 }
1472 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1473 
1474 /*
1475  * spi_transfer_one_message - Default implementation of transfer_one_message()
1476  *
1477  * This is a standard implementation of transfer_one_message() for
1478  * drivers which implement a transfer_one() operation.  It provides
1479  * standard handling of delays and chip select management.
1480  */
1481 static int spi_transfer_one_message(struct spi_controller *ctlr,
1482 				    struct spi_message *msg)
1483 {
1484 	struct spi_transfer *xfer;
1485 	bool keep_cs = false;
1486 	int ret = 0;
1487 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1488 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1489 
1490 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1491 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1492 
1493 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1494 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1495 
1496 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1497 		trace_spi_transfer_start(msg, xfer);
1498 
1499 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1500 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1501 
1502 		if (!ctlr->ptp_sts_supported) {
1503 			xfer->ptp_sts_word_pre = 0;
1504 			ptp_read_system_prets(xfer->ptp_sts);
1505 		}
1506 
1507 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1508 			reinit_completion(&ctlr->xfer_completion);
1509 
1510 fallback_pio:
1511 			spi_dma_sync_for_device(ctlr, xfer);
1512 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1513 			if (ret < 0) {
1514 				spi_dma_sync_for_cpu(ctlr, xfer);
1515 
1516 				if (ctlr->cur_msg_mapped &&
1517 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1518 					__spi_unmap_msg(ctlr, msg);
1519 					ctlr->fallback = true;
1520 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1521 					goto fallback_pio;
1522 				}
1523 
1524 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1525 							       errors);
1526 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1527 							       errors);
1528 				dev_err(&msg->spi->dev,
1529 					"SPI transfer failed: %d\n", ret);
1530 				goto out;
1531 			}
1532 
1533 			if (ret > 0) {
1534 				ret = spi_transfer_wait(ctlr, msg, xfer);
1535 				if (ret < 0)
1536 					msg->status = ret;
1537 			}
1538 
1539 			spi_dma_sync_for_cpu(ctlr, xfer);
1540 		} else {
1541 			if (xfer->len)
1542 				dev_err(&msg->spi->dev,
1543 					"Bufferless transfer has length %u\n",
1544 					xfer->len);
1545 		}
1546 
1547 		if (!ctlr->ptp_sts_supported) {
1548 			ptp_read_system_postts(xfer->ptp_sts);
1549 			xfer->ptp_sts_word_post = xfer->len;
1550 		}
1551 
1552 		trace_spi_transfer_stop(msg, xfer);
1553 
1554 		if (msg->status != -EINPROGRESS)
1555 			goto out;
1556 
1557 		spi_transfer_delay_exec(xfer);
1558 
1559 		if (xfer->cs_change) {
1560 			if (list_is_last(&xfer->transfer_list,
1561 					 &msg->transfers)) {
1562 				keep_cs = true;
1563 			} else {
1564 				if (!xfer->cs_off)
1565 					spi_set_cs(msg->spi, false, false);
1566 				_spi_transfer_cs_change_delay(msg, xfer);
1567 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1568 					spi_set_cs(msg->spi, true, false);
1569 			}
1570 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1571 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1572 			spi_set_cs(msg->spi, xfer->cs_off, false);
1573 		}
1574 
1575 		msg->actual_length += xfer->len;
1576 	}
1577 
1578 out:
1579 	if (ret != 0 || !keep_cs)
1580 		spi_set_cs(msg->spi, false, false);
1581 
1582 	if (msg->status == -EINPROGRESS)
1583 		msg->status = ret;
1584 
1585 	if (msg->status && ctlr->handle_err)
1586 		ctlr->handle_err(ctlr, msg);
1587 
1588 	spi_finalize_current_message(ctlr);
1589 
1590 	return ret;
1591 }
1592 
1593 /**
1594  * spi_finalize_current_transfer - report completion of a transfer
1595  * @ctlr: the controller reporting completion
1596  *
1597  * Called by SPI drivers using the core transfer_one_message()
1598  * implementation to notify it that the current interrupt driven
1599  * transfer has finished and the next one may be scheduled.
1600  */
1601 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1602 {
1603 	complete(&ctlr->xfer_completion);
1604 }
1605 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1606 
1607 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1608 {
1609 	if (ctlr->auto_runtime_pm) {
1610 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1611 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1612 	}
1613 }
1614 
1615 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1616 		struct spi_message *msg, bool was_busy)
1617 {
1618 	struct spi_transfer *xfer;
1619 	int ret;
1620 
1621 	if (!was_busy && ctlr->auto_runtime_pm) {
1622 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1623 		if (ret < 0) {
1624 			pm_runtime_put_noidle(ctlr->dev.parent);
1625 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1626 				ret);
1627 			return ret;
1628 		}
1629 	}
1630 
1631 	if (!was_busy)
1632 		trace_spi_controller_busy(ctlr);
1633 
1634 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1635 		ret = ctlr->prepare_transfer_hardware(ctlr);
1636 		if (ret) {
1637 			dev_err(&ctlr->dev,
1638 				"failed to prepare transfer hardware: %d\n",
1639 				ret);
1640 
1641 			if (ctlr->auto_runtime_pm)
1642 				pm_runtime_put(ctlr->dev.parent);
1643 
1644 			msg->status = ret;
1645 			spi_finalize_current_message(ctlr);
1646 
1647 			return ret;
1648 		}
1649 	}
1650 
1651 	trace_spi_message_start(msg);
1652 
1653 	ret = spi_split_transfers_maxsize(ctlr, msg,
1654 					  spi_max_transfer_size(msg->spi),
1655 					  GFP_KERNEL | GFP_DMA);
1656 	if (ret) {
1657 		msg->status = ret;
1658 		spi_finalize_current_message(ctlr);
1659 		return ret;
1660 	}
1661 
1662 	if (ctlr->prepare_message) {
1663 		ret = ctlr->prepare_message(ctlr, msg);
1664 		if (ret) {
1665 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1666 				ret);
1667 			msg->status = ret;
1668 			spi_finalize_current_message(ctlr);
1669 			return ret;
1670 		}
1671 		msg->prepared = true;
1672 	}
1673 
1674 	ret = spi_map_msg(ctlr, msg);
1675 	if (ret) {
1676 		msg->status = ret;
1677 		spi_finalize_current_message(ctlr);
1678 		return ret;
1679 	}
1680 
1681 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1682 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1683 			xfer->ptp_sts_word_pre = 0;
1684 			ptp_read_system_prets(xfer->ptp_sts);
1685 		}
1686 	}
1687 
1688 	/*
1689 	 * Drivers implementation of transfer_one_message() must arrange for
1690 	 * spi_finalize_current_message() to get called. Most drivers will do
1691 	 * this in the calling context, but some don't. For those cases, a
1692 	 * completion is used to guarantee that this function does not return
1693 	 * until spi_finalize_current_message() is done accessing
1694 	 * ctlr->cur_msg.
1695 	 * Use of the following two flags enable to opportunistically skip the
1696 	 * use of the completion since its use involves expensive spin locks.
1697 	 * In case of a race with the context that calls
1698 	 * spi_finalize_current_message() the completion will always be used,
1699 	 * due to strict ordering of these flags using barriers.
1700 	 */
1701 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1702 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1703 	reinit_completion(&ctlr->cur_msg_completion);
1704 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1705 
1706 	ret = ctlr->transfer_one_message(ctlr, msg);
1707 	if (ret) {
1708 		dev_err(&ctlr->dev,
1709 			"failed to transfer one message from queue\n");
1710 		return ret;
1711 	}
1712 
1713 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1714 	smp_mb(); /* See spi_finalize_current_message()... */
1715 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1716 		wait_for_completion(&ctlr->cur_msg_completion);
1717 
1718 	return 0;
1719 }
1720 
1721 /**
1722  * __spi_pump_messages - function which processes SPI message queue
1723  * @ctlr: controller to process queue for
1724  * @in_kthread: true if we are in the context of the message pump thread
1725  *
1726  * This function checks if there is any SPI message in the queue that
1727  * needs processing and if so call out to the driver to initialize hardware
1728  * and transfer each message.
1729  *
1730  * Note that it is called both from the kthread itself and also from
1731  * inside spi_sync(); the queue extraction handling at the top of the
1732  * function should deal with this safely.
1733  */
1734 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1735 {
1736 	struct spi_message *msg;
1737 	bool was_busy = false;
1738 	unsigned long flags;
1739 	int ret;
1740 
1741 	/* Take the I/O mutex */
1742 	mutex_lock(&ctlr->io_mutex);
1743 
1744 	/* Lock queue */
1745 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1746 
1747 	/* Make sure we are not already running a message */
1748 	if (ctlr->cur_msg)
1749 		goto out_unlock;
1750 
1751 	/* Check if the queue is idle */
1752 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1753 		if (!ctlr->busy)
1754 			goto out_unlock;
1755 
1756 		/* Defer any non-atomic teardown to the thread */
1757 		if (!in_kthread) {
1758 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1759 			    !ctlr->unprepare_transfer_hardware) {
1760 				spi_idle_runtime_pm(ctlr);
1761 				ctlr->busy = false;
1762 				ctlr->queue_empty = true;
1763 				trace_spi_controller_idle(ctlr);
1764 			} else {
1765 				kthread_queue_work(ctlr->kworker,
1766 						   &ctlr->pump_messages);
1767 			}
1768 			goto out_unlock;
1769 		}
1770 
1771 		ctlr->busy = false;
1772 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1773 
1774 		kfree(ctlr->dummy_rx);
1775 		ctlr->dummy_rx = NULL;
1776 		kfree(ctlr->dummy_tx);
1777 		ctlr->dummy_tx = NULL;
1778 		if (ctlr->unprepare_transfer_hardware &&
1779 		    ctlr->unprepare_transfer_hardware(ctlr))
1780 			dev_err(&ctlr->dev,
1781 				"failed to unprepare transfer hardware\n");
1782 		spi_idle_runtime_pm(ctlr);
1783 		trace_spi_controller_idle(ctlr);
1784 
1785 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1786 		ctlr->queue_empty = true;
1787 		goto out_unlock;
1788 	}
1789 
1790 	/* Extract head of queue */
1791 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1792 	ctlr->cur_msg = msg;
1793 
1794 	list_del_init(&msg->queue);
1795 	if (ctlr->busy)
1796 		was_busy = true;
1797 	else
1798 		ctlr->busy = true;
1799 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1800 
1801 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1802 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1803 
1804 	ctlr->cur_msg = NULL;
1805 	ctlr->fallback = false;
1806 
1807 	mutex_unlock(&ctlr->io_mutex);
1808 
1809 	/* Prod the scheduler in case transfer_one() was busy waiting */
1810 	if (!ret)
1811 		cond_resched();
1812 	return;
1813 
1814 out_unlock:
1815 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1816 	mutex_unlock(&ctlr->io_mutex);
1817 }
1818 
1819 /**
1820  * spi_pump_messages - kthread work function which processes spi message queue
1821  * @work: pointer to kthread work struct contained in the controller struct
1822  */
1823 static void spi_pump_messages(struct kthread_work *work)
1824 {
1825 	struct spi_controller *ctlr =
1826 		container_of(work, struct spi_controller, pump_messages);
1827 
1828 	__spi_pump_messages(ctlr, true);
1829 }
1830 
1831 /**
1832  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1833  * @ctlr: Pointer to the spi_controller structure of the driver
1834  * @xfer: Pointer to the transfer being timestamped
1835  * @progress: How many words (not bytes) have been transferred so far
1836  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1837  *	      transfer, for less jitter in time measurement. Only compatible
1838  *	      with PIO drivers. If true, must follow up with
1839  *	      spi_take_timestamp_post or otherwise system will crash.
1840  *	      WARNING: for fully predictable results, the CPU frequency must
1841  *	      also be under control (governor).
1842  *
1843  * This is a helper for drivers to collect the beginning of the TX timestamp
1844  * for the requested byte from the SPI transfer. The frequency with which this
1845  * function must be called (once per word, once for the whole transfer, once
1846  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1847  * greater than or equal to the requested byte at the time of the call. The
1848  * timestamp is only taken once, at the first such call. It is assumed that
1849  * the driver advances its @tx buffer pointer monotonically.
1850  */
1851 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1852 			    struct spi_transfer *xfer,
1853 			    size_t progress, bool irqs_off)
1854 {
1855 	if (!xfer->ptp_sts)
1856 		return;
1857 
1858 	if (xfer->timestamped)
1859 		return;
1860 
1861 	if (progress > xfer->ptp_sts_word_pre)
1862 		return;
1863 
1864 	/* Capture the resolution of the timestamp */
1865 	xfer->ptp_sts_word_pre = progress;
1866 
1867 	if (irqs_off) {
1868 		local_irq_save(ctlr->irq_flags);
1869 		preempt_disable();
1870 	}
1871 
1872 	ptp_read_system_prets(xfer->ptp_sts);
1873 }
1874 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1875 
1876 /**
1877  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1878  * @ctlr: Pointer to the spi_controller structure of the driver
1879  * @xfer: Pointer to the transfer being timestamped
1880  * @progress: How many words (not bytes) have been transferred so far
1881  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1882  *
1883  * This is a helper for drivers to collect the end of the TX timestamp for
1884  * the requested byte from the SPI transfer. Can be called with an arbitrary
1885  * frequency: only the first call where @tx exceeds or is equal to the
1886  * requested word will be timestamped.
1887  */
1888 void spi_take_timestamp_post(struct spi_controller *ctlr,
1889 			     struct spi_transfer *xfer,
1890 			     size_t progress, bool irqs_off)
1891 {
1892 	if (!xfer->ptp_sts)
1893 		return;
1894 
1895 	if (xfer->timestamped)
1896 		return;
1897 
1898 	if (progress < xfer->ptp_sts_word_post)
1899 		return;
1900 
1901 	ptp_read_system_postts(xfer->ptp_sts);
1902 
1903 	if (irqs_off) {
1904 		local_irq_restore(ctlr->irq_flags);
1905 		preempt_enable();
1906 	}
1907 
1908 	/* Capture the resolution of the timestamp */
1909 	xfer->ptp_sts_word_post = progress;
1910 
1911 	xfer->timestamped = 1;
1912 }
1913 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1914 
1915 /**
1916  * spi_set_thread_rt - set the controller to pump at realtime priority
1917  * @ctlr: controller to boost priority of
1918  *
1919  * This can be called because the controller requested realtime priority
1920  * (by setting the ->rt value before calling spi_register_controller()) or
1921  * because a device on the bus said that its transfers needed realtime
1922  * priority.
1923  *
1924  * NOTE: at the moment if any device on a bus says it needs realtime then
1925  * the thread will be at realtime priority for all transfers on that
1926  * controller.  If this eventually becomes a problem we may see if we can
1927  * find a way to boost the priority only temporarily during relevant
1928  * transfers.
1929  */
1930 static void spi_set_thread_rt(struct spi_controller *ctlr)
1931 {
1932 	dev_info(&ctlr->dev,
1933 		"will run message pump with realtime priority\n");
1934 	sched_set_fifo(ctlr->kworker->task);
1935 }
1936 
1937 static int spi_init_queue(struct spi_controller *ctlr)
1938 {
1939 	ctlr->running = false;
1940 	ctlr->busy = false;
1941 	ctlr->queue_empty = true;
1942 
1943 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1944 	if (IS_ERR(ctlr->kworker)) {
1945 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1946 		return PTR_ERR(ctlr->kworker);
1947 	}
1948 
1949 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1950 
1951 	/*
1952 	 * Controller config will indicate if this controller should run the
1953 	 * message pump with high (realtime) priority to reduce the transfer
1954 	 * latency on the bus by minimising the delay between a transfer
1955 	 * request and the scheduling of the message pump thread. Without this
1956 	 * setting the message pump thread will remain at default priority.
1957 	 */
1958 	if (ctlr->rt)
1959 		spi_set_thread_rt(ctlr);
1960 
1961 	return 0;
1962 }
1963 
1964 /**
1965  * spi_get_next_queued_message() - called by driver to check for queued
1966  * messages
1967  * @ctlr: the controller to check for queued messages
1968  *
1969  * If there are more messages in the queue, the next message is returned from
1970  * this call.
1971  *
1972  * Return: the next message in the queue, else NULL if the queue is empty.
1973  */
1974 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1975 {
1976 	struct spi_message *next;
1977 	unsigned long flags;
1978 
1979 	/* Get a pointer to the next message, if any */
1980 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1981 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1982 					queue);
1983 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1984 
1985 	return next;
1986 }
1987 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1988 
1989 /**
1990  * spi_finalize_current_message() - the current message is complete
1991  * @ctlr: the controller to return the message to
1992  *
1993  * Called by the driver to notify the core that the message in the front of the
1994  * queue is complete and can be removed from the queue.
1995  */
1996 void spi_finalize_current_message(struct spi_controller *ctlr)
1997 {
1998 	struct spi_transfer *xfer;
1999 	struct spi_message *mesg;
2000 	int ret;
2001 
2002 	mesg = ctlr->cur_msg;
2003 
2004 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2005 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2006 			ptp_read_system_postts(xfer->ptp_sts);
2007 			xfer->ptp_sts_word_post = xfer->len;
2008 		}
2009 	}
2010 
2011 	if (unlikely(ctlr->ptp_sts_supported))
2012 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2013 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2014 
2015 	spi_unmap_msg(ctlr, mesg);
2016 
2017 	/*
2018 	 * In the prepare_messages callback the SPI bus has the opportunity
2019 	 * to split a transfer to smaller chunks.
2020 	 *
2021 	 * Release the split transfers here since spi_map_msg() is done on
2022 	 * the split transfers.
2023 	 */
2024 	spi_res_release(ctlr, mesg);
2025 
2026 	if (mesg->prepared && ctlr->unprepare_message) {
2027 		ret = ctlr->unprepare_message(ctlr, mesg);
2028 		if (ret) {
2029 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2030 				ret);
2031 		}
2032 	}
2033 
2034 	mesg->prepared = false;
2035 
2036 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2037 	smp_mb(); /* See __spi_pump_transfer_message()... */
2038 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2039 		complete(&ctlr->cur_msg_completion);
2040 
2041 	trace_spi_message_done(mesg);
2042 
2043 	mesg->state = NULL;
2044 	if (mesg->complete)
2045 		mesg->complete(mesg->context);
2046 }
2047 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2048 
2049 static int spi_start_queue(struct spi_controller *ctlr)
2050 {
2051 	unsigned long flags;
2052 
2053 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2054 
2055 	if (ctlr->running || ctlr->busy) {
2056 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2057 		return -EBUSY;
2058 	}
2059 
2060 	ctlr->running = true;
2061 	ctlr->cur_msg = NULL;
2062 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2063 
2064 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2065 
2066 	return 0;
2067 }
2068 
2069 static int spi_stop_queue(struct spi_controller *ctlr)
2070 {
2071 	unsigned long flags;
2072 	unsigned limit = 500;
2073 	int ret = 0;
2074 
2075 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2076 
2077 	/*
2078 	 * This is a bit lame, but is optimized for the common execution path.
2079 	 * A wait_queue on the ctlr->busy could be used, but then the common
2080 	 * execution path (pump_messages) would be required to call wake_up or
2081 	 * friends on every SPI message. Do this instead.
2082 	 */
2083 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2084 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2085 		usleep_range(10000, 11000);
2086 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2087 	}
2088 
2089 	if (!list_empty(&ctlr->queue) || ctlr->busy)
2090 		ret = -EBUSY;
2091 	else
2092 		ctlr->running = false;
2093 
2094 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2095 
2096 	if (ret) {
2097 		dev_warn(&ctlr->dev, "could not stop message queue\n");
2098 		return ret;
2099 	}
2100 	return ret;
2101 }
2102 
2103 static int spi_destroy_queue(struct spi_controller *ctlr)
2104 {
2105 	int ret;
2106 
2107 	ret = spi_stop_queue(ctlr);
2108 
2109 	/*
2110 	 * kthread_flush_worker will block until all work is done.
2111 	 * If the reason that stop_queue timed out is that the work will never
2112 	 * finish, then it does no good to call flush/stop thread, so
2113 	 * return anyway.
2114 	 */
2115 	if (ret) {
2116 		dev_err(&ctlr->dev, "problem destroying queue\n");
2117 		return ret;
2118 	}
2119 
2120 	kthread_destroy_worker(ctlr->kworker);
2121 
2122 	return 0;
2123 }
2124 
2125 static int __spi_queued_transfer(struct spi_device *spi,
2126 				 struct spi_message *msg,
2127 				 bool need_pump)
2128 {
2129 	struct spi_controller *ctlr = spi->controller;
2130 	unsigned long flags;
2131 
2132 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2133 
2134 	if (!ctlr->running) {
2135 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2136 		return -ESHUTDOWN;
2137 	}
2138 	msg->actual_length = 0;
2139 	msg->status = -EINPROGRESS;
2140 
2141 	list_add_tail(&msg->queue, &ctlr->queue);
2142 	ctlr->queue_empty = false;
2143 	if (!ctlr->busy && need_pump)
2144 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2145 
2146 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2147 	return 0;
2148 }
2149 
2150 /**
2151  * spi_queued_transfer - transfer function for queued transfers
2152  * @spi: SPI device which is requesting transfer
2153  * @msg: SPI message which is to handled is queued to driver queue
2154  *
2155  * Return: zero on success, else a negative error code.
2156  */
2157 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2158 {
2159 	return __spi_queued_transfer(spi, msg, true);
2160 }
2161 
2162 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2163 {
2164 	int ret;
2165 
2166 	ctlr->transfer = spi_queued_transfer;
2167 	if (!ctlr->transfer_one_message)
2168 		ctlr->transfer_one_message = spi_transfer_one_message;
2169 
2170 	/* Initialize and start queue */
2171 	ret = spi_init_queue(ctlr);
2172 	if (ret) {
2173 		dev_err(&ctlr->dev, "problem initializing queue\n");
2174 		goto err_init_queue;
2175 	}
2176 	ctlr->queued = true;
2177 	ret = spi_start_queue(ctlr);
2178 	if (ret) {
2179 		dev_err(&ctlr->dev, "problem starting queue\n");
2180 		goto err_start_queue;
2181 	}
2182 
2183 	return 0;
2184 
2185 err_start_queue:
2186 	spi_destroy_queue(ctlr);
2187 err_init_queue:
2188 	return ret;
2189 }
2190 
2191 /**
2192  * spi_flush_queue - Send all pending messages in the queue from the callers'
2193  *		     context
2194  * @ctlr: controller to process queue for
2195  *
2196  * This should be used when one wants to ensure all pending messages have been
2197  * sent before doing something. Is used by the spi-mem code to make sure SPI
2198  * memory operations do not preempt regular SPI transfers that have been queued
2199  * before the spi-mem operation.
2200  */
2201 void spi_flush_queue(struct spi_controller *ctlr)
2202 {
2203 	if (ctlr->transfer == spi_queued_transfer)
2204 		__spi_pump_messages(ctlr, false);
2205 }
2206 
2207 /*-------------------------------------------------------------------------*/
2208 
2209 #if defined(CONFIG_OF)
2210 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2211 				     struct spi_delay *delay, const char *prop)
2212 {
2213 	u32 value;
2214 
2215 	if (!of_property_read_u32(nc, prop, &value)) {
2216 		if (value > U16_MAX) {
2217 			delay->value = DIV_ROUND_UP(value, 1000);
2218 			delay->unit = SPI_DELAY_UNIT_USECS;
2219 		} else {
2220 			delay->value = value;
2221 			delay->unit = SPI_DELAY_UNIT_NSECS;
2222 		}
2223 	}
2224 }
2225 
2226 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2227 			   struct device_node *nc)
2228 {
2229 	u32 value;
2230 	int rc;
2231 
2232 	/* Mode (clock phase/polarity/etc.) */
2233 	if (of_property_read_bool(nc, "spi-cpha"))
2234 		spi->mode |= SPI_CPHA;
2235 	if (of_property_read_bool(nc, "spi-cpol"))
2236 		spi->mode |= SPI_CPOL;
2237 	if (of_property_read_bool(nc, "spi-3wire"))
2238 		spi->mode |= SPI_3WIRE;
2239 	if (of_property_read_bool(nc, "spi-lsb-first"))
2240 		spi->mode |= SPI_LSB_FIRST;
2241 	if (of_property_read_bool(nc, "spi-cs-high"))
2242 		spi->mode |= SPI_CS_HIGH;
2243 
2244 	/* Device DUAL/QUAD mode */
2245 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2246 		switch (value) {
2247 		case 0:
2248 			spi->mode |= SPI_NO_TX;
2249 			break;
2250 		case 1:
2251 			break;
2252 		case 2:
2253 			spi->mode |= SPI_TX_DUAL;
2254 			break;
2255 		case 4:
2256 			spi->mode |= SPI_TX_QUAD;
2257 			break;
2258 		case 8:
2259 			spi->mode |= SPI_TX_OCTAL;
2260 			break;
2261 		default:
2262 			dev_warn(&ctlr->dev,
2263 				"spi-tx-bus-width %d not supported\n",
2264 				value);
2265 			break;
2266 		}
2267 	}
2268 
2269 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2270 		switch (value) {
2271 		case 0:
2272 			spi->mode |= SPI_NO_RX;
2273 			break;
2274 		case 1:
2275 			break;
2276 		case 2:
2277 			spi->mode |= SPI_RX_DUAL;
2278 			break;
2279 		case 4:
2280 			spi->mode |= SPI_RX_QUAD;
2281 			break;
2282 		case 8:
2283 			spi->mode |= SPI_RX_OCTAL;
2284 			break;
2285 		default:
2286 			dev_warn(&ctlr->dev,
2287 				"spi-rx-bus-width %d not supported\n",
2288 				value);
2289 			break;
2290 		}
2291 	}
2292 
2293 	if (spi_controller_is_slave(ctlr)) {
2294 		if (!of_node_name_eq(nc, "slave")) {
2295 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2296 				nc);
2297 			return -EINVAL;
2298 		}
2299 		return 0;
2300 	}
2301 
2302 	/* Device address */
2303 	rc = of_property_read_u32(nc, "reg", &value);
2304 	if (rc) {
2305 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2306 			nc, rc);
2307 		return rc;
2308 	}
2309 	spi_set_chipselect(spi, 0, value);
2310 
2311 	/* Device speed */
2312 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2313 		spi->max_speed_hz = value;
2314 
2315 	/* Device CS delays */
2316 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2317 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2318 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2319 
2320 	return 0;
2321 }
2322 
2323 static struct spi_device *
2324 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2325 {
2326 	struct spi_device *spi;
2327 	int rc;
2328 
2329 	/* Alloc an spi_device */
2330 	spi = spi_alloc_device(ctlr);
2331 	if (!spi) {
2332 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2333 		rc = -ENOMEM;
2334 		goto err_out;
2335 	}
2336 
2337 	/* Select device driver */
2338 	rc = of_alias_from_compatible(nc, spi->modalias,
2339 				      sizeof(spi->modalias));
2340 	if (rc < 0) {
2341 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2342 		goto err_out;
2343 	}
2344 
2345 	rc = of_spi_parse_dt(ctlr, spi, nc);
2346 	if (rc)
2347 		goto err_out;
2348 
2349 	/* Store a pointer to the node in the device structure */
2350 	of_node_get(nc);
2351 
2352 	device_set_node(&spi->dev, of_fwnode_handle(nc));
2353 
2354 	/* Register the new device */
2355 	rc = spi_add_device(spi);
2356 	if (rc) {
2357 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2358 		goto err_of_node_put;
2359 	}
2360 
2361 	return spi;
2362 
2363 err_of_node_put:
2364 	of_node_put(nc);
2365 err_out:
2366 	spi_dev_put(spi);
2367 	return ERR_PTR(rc);
2368 }
2369 
2370 /**
2371  * of_register_spi_devices() - Register child devices onto the SPI bus
2372  * @ctlr:	Pointer to spi_controller device
2373  *
2374  * Registers an spi_device for each child node of controller node which
2375  * represents a valid SPI slave.
2376  */
2377 static void of_register_spi_devices(struct spi_controller *ctlr)
2378 {
2379 	struct spi_device *spi;
2380 	struct device_node *nc;
2381 
2382 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2383 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2384 			continue;
2385 		spi = of_register_spi_device(ctlr, nc);
2386 		if (IS_ERR(spi)) {
2387 			dev_warn(&ctlr->dev,
2388 				 "Failed to create SPI device for %pOF\n", nc);
2389 			of_node_clear_flag(nc, OF_POPULATED);
2390 		}
2391 	}
2392 }
2393 #else
2394 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2395 #endif
2396 
2397 /**
2398  * spi_new_ancillary_device() - Register ancillary SPI device
2399  * @spi:         Pointer to the main SPI device registering the ancillary device
2400  * @chip_select: Chip Select of the ancillary device
2401  *
2402  * Register an ancillary SPI device; for example some chips have a chip-select
2403  * for normal device usage and another one for setup/firmware upload.
2404  *
2405  * This may only be called from main SPI device's probe routine.
2406  *
2407  * Return: 0 on success; negative errno on failure
2408  */
2409 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2410 					     u8 chip_select)
2411 {
2412 	struct spi_controller *ctlr = spi->controller;
2413 	struct spi_device *ancillary;
2414 	int rc = 0;
2415 
2416 	/* Alloc an spi_device */
2417 	ancillary = spi_alloc_device(ctlr);
2418 	if (!ancillary) {
2419 		rc = -ENOMEM;
2420 		goto err_out;
2421 	}
2422 
2423 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2424 
2425 	/* Use provided chip-select for ancillary device */
2426 	spi_set_chipselect(ancillary, 0, chip_select);
2427 
2428 	/* Take over SPI mode/speed from SPI main device */
2429 	ancillary->max_speed_hz = spi->max_speed_hz;
2430 	ancillary->mode = spi->mode;
2431 
2432 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2433 
2434 	/* Register the new device */
2435 	rc = __spi_add_device(ancillary);
2436 	if (rc) {
2437 		dev_err(&spi->dev, "failed to register ancillary device\n");
2438 		goto err_out;
2439 	}
2440 
2441 	return ancillary;
2442 
2443 err_out:
2444 	spi_dev_put(ancillary);
2445 	return ERR_PTR(rc);
2446 }
2447 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2448 
2449 #ifdef CONFIG_ACPI
2450 struct acpi_spi_lookup {
2451 	struct spi_controller 	*ctlr;
2452 	u32			max_speed_hz;
2453 	u32			mode;
2454 	int			irq;
2455 	u8			bits_per_word;
2456 	u8			chip_select;
2457 	int			n;
2458 	int			index;
2459 };
2460 
2461 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2462 {
2463 	struct acpi_resource_spi_serialbus *sb;
2464 	int *count = data;
2465 
2466 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2467 		return 1;
2468 
2469 	sb = &ares->data.spi_serial_bus;
2470 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2471 		return 1;
2472 
2473 	*count = *count + 1;
2474 
2475 	return 1;
2476 }
2477 
2478 /**
2479  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2480  * @adev:	ACPI device
2481  *
2482  * Return: the number of SpiSerialBus resources in the ACPI-device's
2483  * resource-list; or a negative error code.
2484  */
2485 int acpi_spi_count_resources(struct acpi_device *adev)
2486 {
2487 	LIST_HEAD(r);
2488 	int count = 0;
2489 	int ret;
2490 
2491 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2492 	if (ret < 0)
2493 		return ret;
2494 
2495 	acpi_dev_free_resource_list(&r);
2496 
2497 	return count;
2498 }
2499 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2500 
2501 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2502 					    struct acpi_spi_lookup *lookup)
2503 {
2504 	const union acpi_object *obj;
2505 
2506 	if (!x86_apple_machine)
2507 		return;
2508 
2509 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2510 	    && obj->buffer.length >= 4)
2511 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2512 
2513 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2514 	    && obj->buffer.length == 8)
2515 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2516 
2517 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2518 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2519 		lookup->mode |= SPI_LSB_FIRST;
2520 
2521 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2522 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2523 		lookup->mode |= SPI_CPOL;
2524 
2525 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2526 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2527 		lookup->mode |= SPI_CPHA;
2528 }
2529 
2530 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2531 
2532 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2533 {
2534 	struct acpi_spi_lookup *lookup = data;
2535 	struct spi_controller *ctlr = lookup->ctlr;
2536 
2537 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2538 		struct acpi_resource_spi_serialbus *sb;
2539 		acpi_handle parent_handle;
2540 		acpi_status status;
2541 
2542 		sb = &ares->data.spi_serial_bus;
2543 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2544 
2545 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2546 				return 1;
2547 
2548 			status = acpi_get_handle(NULL,
2549 						 sb->resource_source.string_ptr,
2550 						 &parent_handle);
2551 
2552 			if (ACPI_FAILURE(status))
2553 				return -ENODEV;
2554 
2555 			if (ctlr) {
2556 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2557 					return -ENODEV;
2558 			} else {
2559 				struct acpi_device *adev;
2560 
2561 				adev = acpi_fetch_acpi_dev(parent_handle);
2562 				if (!adev)
2563 					return -ENODEV;
2564 
2565 				ctlr = acpi_spi_find_controller_by_adev(adev);
2566 				if (!ctlr)
2567 					return -EPROBE_DEFER;
2568 
2569 				lookup->ctlr = ctlr;
2570 			}
2571 
2572 			/*
2573 			 * ACPI DeviceSelection numbering is handled by the
2574 			 * host controller driver in Windows and can vary
2575 			 * from driver to driver. In Linux we always expect
2576 			 * 0 .. max - 1 so we need to ask the driver to
2577 			 * translate between the two schemes.
2578 			 */
2579 			if (ctlr->fw_translate_cs) {
2580 				int cs = ctlr->fw_translate_cs(ctlr,
2581 						sb->device_selection);
2582 				if (cs < 0)
2583 					return cs;
2584 				lookup->chip_select = cs;
2585 			} else {
2586 				lookup->chip_select = sb->device_selection;
2587 			}
2588 
2589 			lookup->max_speed_hz = sb->connection_speed;
2590 			lookup->bits_per_word = sb->data_bit_length;
2591 
2592 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2593 				lookup->mode |= SPI_CPHA;
2594 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2595 				lookup->mode |= SPI_CPOL;
2596 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2597 				lookup->mode |= SPI_CS_HIGH;
2598 		}
2599 	} else if (lookup->irq < 0) {
2600 		struct resource r;
2601 
2602 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2603 			lookup->irq = r.start;
2604 	}
2605 
2606 	/* Always tell the ACPI core to skip this resource */
2607 	return 1;
2608 }
2609 
2610 /**
2611  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2612  * @ctlr: controller to which the spi device belongs
2613  * @adev: ACPI Device for the spi device
2614  * @index: Index of the spi resource inside the ACPI Node
2615  *
2616  * This should be used to allocate a new SPI device from and ACPI Device node.
2617  * The caller is responsible for calling spi_add_device to register the SPI device.
2618  *
2619  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2620  * using the resource.
2621  * If index is set to -1, index is not used.
2622  * Note: If index is -1, ctlr must be set.
2623  *
2624  * Return: a pointer to the new device, or ERR_PTR on error.
2625  */
2626 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2627 					 struct acpi_device *adev,
2628 					 int index)
2629 {
2630 	acpi_handle parent_handle = NULL;
2631 	struct list_head resource_list;
2632 	struct acpi_spi_lookup lookup = {};
2633 	struct spi_device *spi;
2634 	int ret;
2635 
2636 	if (!ctlr && index == -1)
2637 		return ERR_PTR(-EINVAL);
2638 
2639 	lookup.ctlr		= ctlr;
2640 	lookup.irq		= -1;
2641 	lookup.index		= index;
2642 	lookup.n		= 0;
2643 
2644 	INIT_LIST_HEAD(&resource_list);
2645 	ret = acpi_dev_get_resources(adev, &resource_list,
2646 				     acpi_spi_add_resource, &lookup);
2647 	acpi_dev_free_resource_list(&resource_list);
2648 
2649 	if (ret < 0)
2650 		/* Found SPI in _CRS but it points to another controller */
2651 		return ERR_PTR(ret);
2652 
2653 	if (!lookup.max_speed_hz &&
2654 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2655 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2656 		/* Apple does not use _CRS but nested devices for SPI slaves */
2657 		acpi_spi_parse_apple_properties(adev, &lookup);
2658 	}
2659 
2660 	if (!lookup.max_speed_hz)
2661 		return ERR_PTR(-ENODEV);
2662 
2663 	spi = spi_alloc_device(lookup.ctlr);
2664 	if (!spi) {
2665 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2666 			dev_name(&adev->dev));
2667 		return ERR_PTR(-ENOMEM);
2668 	}
2669 
2670 	ACPI_COMPANION_SET(&spi->dev, adev);
2671 	spi->max_speed_hz	= lookup.max_speed_hz;
2672 	spi->mode		|= lookup.mode;
2673 	spi->irq		= lookup.irq;
2674 	spi->bits_per_word	= lookup.bits_per_word;
2675 	spi_set_chipselect(spi, 0, lookup.chip_select);
2676 
2677 	return spi;
2678 }
2679 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2680 
2681 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2682 					    struct acpi_device *adev)
2683 {
2684 	struct spi_device *spi;
2685 
2686 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2687 	    acpi_device_enumerated(adev))
2688 		return AE_OK;
2689 
2690 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2691 	if (IS_ERR(spi)) {
2692 		if (PTR_ERR(spi) == -ENOMEM)
2693 			return AE_NO_MEMORY;
2694 		else
2695 			return AE_OK;
2696 	}
2697 
2698 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2699 			  sizeof(spi->modalias));
2700 
2701 	if (spi->irq < 0)
2702 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2703 
2704 	acpi_device_set_enumerated(adev);
2705 
2706 	adev->power.flags.ignore_parent = true;
2707 	if (spi_add_device(spi)) {
2708 		adev->power.flags.ignore_parent = false;
2709 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2710 			dev_name(&adev->dev));
2711 		spi_dev_put(spi);
2712 	}
2713 
2714 	return AE_OK;
2715 }
2716 
2717 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2718 				       void *data, void **return_value)
2719 {
2720 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2721 	struct spi_controller *ctlr = data;
2722 
2723 	if (!adev)
2724 		return AE_OK;
2725 
2726 	return acpi_register_spi_device(ctlr, adev);
2727 }
2728 
2729 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2730 
2731 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2732 {
2733 	acpi_status status;
2734 	acpi_handle handle;
2735 
2736 	handle = ACPI_HANDLE(ctlr->dev.parent);
2737 	if (!handle)
2738 		return;
2739 
2740 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2741 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2742 				     acpi_spi_add_device, NULL, ctlr, NULL);
2743 	if (ACPI_FAILURE(status))
2744 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2745 }
2746 #else
2747 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2748 #endif /* CONFIG_ACPI */
2749 
2750 static void spi_controller_release(struct device *dev)
2751 {
2752 	struct spi_controller *ctlr;
2753 
2754 	ctlr = container_of(dev, struct spi_controller, dev);
2755 	kfree(ctlr);
2756 }
2757 
2758 static struct class spi_master_class = {
2759 	.name		= "spi_master",
2760 	.dev_release	= spi_controller_release,
2761 	.dev_groups	= spi_master_groups,
2762 };
2763 
2764 #ifdef CONFIG_SPI_SLAVE
2765 /**
2766  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2767  *		     controller
2768  * @spi: device used for the current transfer
2769  */
2770 int spi_slave_abort(struct spi_device *spi)
2771 {
2772 	struct spi_controller *ctlr = spi->controller;
2773 
2774 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2775 		return ctlr->slave_abort(ctlr);
2776 
2777 	return -ENOTSUPP;
2778 }
2779 EXPORT_SYMBOL_GPL(spi_slave_abort);
2780 
2781 int spi_target_abort(struct spi_device *spi)
2782 {
2783 	struct spi_controller *ctlr = spi->controller;
2784 
2785 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2786 		return ctlr->target_abort(ctlr);
2787 
2788 	return -ENOTSUPP;
2789 }
2790 EXPORT_SYMBOL_GPL(spi_target_abort);
2791 
2792 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2793 			  char *buf)
2794 {
2795 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2796 						   dev);
2797 	struct device *child;
2798 
2799 	child = device_find_any_child(&ctlr->dev);
2800 	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2801 }
2802 
2803 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2804 			   const char *buf, size_t count)
2805 {
2806 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2807 						   dev);
2808 	struct spi_device *spi;
2809 	struct device *child;
2810 	char name[32];
2811 	int rc;
2812 
2813 	rc = sscanf(buf, "%31s", name);
2814 	if (rc != 1 || !name[0])
2815 		return -EINVAL;
2816 
2817 	child = device_find_any_child(&ctlr->dev);
2818 	if (child) {
2819 		/* Remove registered slave */
2820 		device_unregister(child);
2821 		put_device(child);
2822 	}
2823 
2824 	if (strcmp(name, "(null)")) {
2825 		/* Register new slave */
2826 		spi = spi_alloc_device(ctlr);
2827 		if (!spi)
2828 			return -ENOMEM;
2829 
2830 		strscpy(spi->modalias, name, sizeof(spi->modalias));
2831 
2832 		rc = spi_add_device(spi);
2833 		if (rc) {
2834 			spi_dev_put(spi);
2835 			return rc;
2836 		}
2837 	}
2838 
2839 	return count;
2840 }
2841 
2842 static DEVICE_ATTR_RW(slave);
2843 
2844 static struct attribute *spi_slave_attrs[] = {
2845 	&dev_attr_slave.attr,
2846 	NULL,
2847 };
2848 
2849 static const struct attribute_group spi_slave_group = {
2850 	.attrs = spi_slave_attrs,
2851 };
2852 
2853 static const struct attribute_group *spi_slave_groups[] = {
2854 	&spi_controller_statistics_group,
2855 	&spi_slave_group,
2856 	NULL,
2857 };
2858 
2859 static struct class spi_slave_class = {
2860 	.name		= "spi_slave",
2861 	.dev_release	= spi_controller_release,
2862 	.dev_groups	= spi_slave_groups,
2863 };
2864 #else
2865 extern struct class spi_slave_class;	/* dummy */
2866 #endif
2867 
2868 /**
2869  * __spi_alloc_controller - allocate an SPI master or slave controller
2870  * @dev: the controller, possibly using the platform_bus
2871  * @size: how much zeroed driver-private data to allocate; the pointer to this
2872  *	memory is in the driver_data field of the returned device, accessible
2873  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2874  *	drivers granting DMA access to portions of their private data need to
2875  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2876  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2877  *	slave (true) controller
2878  * Context: can sleep
2879  *
2880  * This call is used only by SPI controller drivers, which are the
2881  * only ones directly touching chip registers.  It's how they allocate
2882  * an spi_controller structure, prior to calling spi_register_controller().
2883  *
2884  * This must be called from context that can sleep.
2885  *
2886  * The caller is responsible for assigning the bus number and initializing the
2887  * controller's methods before calling spi_register_controller(); and (after
2888  * errors adding the device) calling spi_controller_put() to prevent a memory
2889  * leak.
2890  *
2891  * Return: the SPI controller structure on success, else NULL.
2892  */
2893 struct spi_controller *__spi_alloc_controller(struct device *dev,
2894 					      unsigned int size, bool slave)
2895 {
2896 	struct spi_controller	*ctlr;
2897 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2898 
2899 	if (!dev)
2900 		return NULL;
2901 
2902 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2903 	if (!ctlr)
2904 		return NULL;
2905 
2906 	device_initialize(&ctlr->dev);
2907 	INIT_LIST_HEAD(&ctlr->queue);
2908 	spin_lock_init(&ctlr->queue_lock);
2909 	spin_lock_init(&ctlr->bus_lock_spinlock);
2910 	mutex_init(&ctlr->bus_lock_mutex);
2911 	mutex_init(&ctlr->io_mutex);
2912 	mutex_init(&ctlr->add_lock);
2913 	ctlr->bus_num = -1;
2914 	ctlr->num_chipselect = 1;
2915 	ctlr->slave = slave;
2916 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2917 		ctlr->dev.class = &spi_slave_class;
2918 	else
2919 		ctlr->dev.class = &spi_master_class;
2920 	ctlr->dev.parent = dev;
2921 	pm_suspend_ignore_children(&ctlr->dev, true);
2922 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2923 
2924 	return ctlr;
2925 }
2926 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2927 
2928 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2929 {
2930 	spi_controller_put(*(struct spi_controller **)ctlr);
2931 }
2932 
2933 /**
2934  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2935  * @dev: physical device of SPI controller
2936  * @size: how much zeroed driver-private data to allocate
2937  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2938  * Context: can sleep
2939  *
2940  * Allocate an SPI controller and automatically release a reference on it
2941  * when @dev is unbound from its driver.  Drivers are thus relieved from
2942  * having to call spi_controller_put().
2943  *
2944  * The arguments to this function are identical to __spi_alloc_controller().
2945  *
2946  * Return: the SPI controller structure on success, else NULL.
2947  */
2948 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2949 						   unsigned int size,
2950 						   bool slave)
2951 {
2952 	struct spi_controller **ptr, *ctlr;
2953 
2954 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2955 			   GFP_KERNEL);
2956 	if (!ptr)
2957 		return NULL;
2958 
2959 	ctlr = __spi_alloc_controller(dev, size, slave);
2960 	if (ctlr) {
2961 		ctlr->devm_allocated = true;
2962 		*ptr = ctlr;
2963 		devres_add(dev, ptr);
2964 	} else {
2965 		devres_free(ptr);
2966 	}
2967 
2968 	return ctlr;
2969 }
2970 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2971 
2972 /**
2973  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2974  * @ctlr: The SPI master to grab GPIO descriptors for
2975  */
2976 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2977 {
2978 	int nb, i;
2979 	struct gpio_desc **cs;
2980 	struct device *dev = &ctlr->dev;
2981 	unsigned long native_cs_mask = 0;
2982 	unsigned int num_cs_gpios = 0;
2983 
2984 	nb = gpiod_count(dev, "cs");
2985 	if (nb < 0) {
2986 		/* No GPIOs at all is fine, else return the error */
2987 		if (nb == -ENOENT)
2988 			return 0;
2989 		return nb;
2990 	}
2991 
2992 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2993 
2994 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2995 			  GFP_KERNEL);
2996 	if (!cs)
2997 		return -ENOMEM;
2998 	ctlr->cs_gpiods = cs;
2999 
3000 	for (i = 0; i < nb; i++) {
3001 		/*
3002 		 * Most chipselects are active low, the inverted
3003 		 * semantics are handled by special quirks in gpiolib,
3004 		 * so initializing them GPIOD_OUT_LOW here means
3005 		 * "unasserted", in most cases this will drive the physical
3006 		 * line high.
3007 		 */
3008 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3009 						      GPIOD_OUT_LOW);
3010 		if (IS_ERR(cs[i]))
3011 			return PTR_ERR(cs[i]);
3012 
3013 		if (cs[i]) {
3014 			/*
3015 			 * If we find a CS GPIO, name it after the device and
3016 			 * chip select line.
3017 			 */
3018 			char *gpioname;
3019 
3020 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3021 						  dev_name(dev), i);
3022 			if (!gpioname)
3023 				return -ENOMEM;
3024 			gpiod_set_consumer_name(cs[i], gpioname);
3025 			num_cs_gpios++;
3026 			continue;
3027 		}
3028 
3029 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3030 			dev_err(dev, "Invalid native chip select %d\n", i);
3031 			return -EINVAL;
3032 		}
3033 		native_cs_mask |= BIT(i);
3034 	}
3035 
3036 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3037 
3038 	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3039 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3040 		dev_err(dev, "No unused native chip select available\n");
3041 		return -EINVAL;
3042 	}
3043 
3044 	return 0;
3045 }
3046 
3047 static int spi_controller_check_ops(struct spi_controller *ctlr)
3048 {
3049 	/*
3050 	 * The controller may implement only the high-level SPI-memory like
3051 	 * operations if it does not support regular SPI transfers, and this is
3052 	 * valid use case.
3053 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3054 	 * one of the ->transfer_xxx() method be implemented.
3055 	 */
3056 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3057 		if (!ctlr->transfer && !ctlr->transfer_one &&
3058 		   !ctlr->transfer_one_message) {
3059 			return -EINVAL;
3060 		}
3061 	}
3062 
3063 	return 0;
3064 }
3065 
3066 /* Allocate dynamic bus number using Linux idr */
3067 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3068 {
3069 	int id;
3070 
3071 	mutex_lock(&board_lock);
3072 	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3073 	mutex_unlock(&board_lock);
3074 	if (WARN(id < 0, "couldn't get idr"))
3075 		return id == -ENOSPC ? -EBUSY : id;
3076 	ctlr->bus_num = id;
3077 	return 0;
3078 }
3079 
3080 /**
3081  * spi_register_controller - register SPI master or slave controller
3082  * @ctlr: initialized master, originally from spi_alloc_master() or
3083  *	spi_alloc_slave()
3084  * Context: can sleep
3085  *
3086  * SPI controllers connect to their drivers using some non-SPI bus,
3087  * such as the platform bus.  The final stage of probe() in that code
3088  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3089  *
3090  * SPI controllers use board specific (often SOC specific) bus numbers,
3091  * and board-specific addressing for SPI devices combines those numbers
3092  * with chip select numbers.  Since SPI does not directly support dynamic
3093  * device identification, boards need configuration tables telling which
3094  * chip is at which address.
3095  *
3096  * This must be called from context that can sleep.  It returns zero on
3097  * success, else a negative error code (dropping the controller's refcount).
3098  * After a successful return, the caller is responsible for calling
3099  * spi_unregister_controller().
3100  *
3101  * Return: zero on success, else a negative error code.
3102  */
3103 int spi_register_controller(struct spi_controller *ctlr)
3104 {
3105 	struct device		*dev = ctlr->dev.parent;
3106 	struct boardinfo	*bi;
3107 	int			first_dynamic;
3108 	int			status;
3109 
3110 	if (!dev)
3111 		return -ENODEV;
3112 
3113 	/*
3114 	 * Make sure all necessary hooks are implemented before registering
3115 	 * the SPI controller.
3116 	 */
3117 	status = spi_controller_check_ops(ctlr);
3118 	if (status)
3119 		return status;
3120 
3121 	if (ctlr->bus_num < 0)
3122 		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3123 	if (ctlr->bus_num >= 0) {
3124 		/* Devices with a fixed bus num must check-in with the num */
3125 		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3126 		if (status)
3127 			return status;
3128 	}
3129 	if (ctlr->bus_num < 0) {
3130 		first_dynamic = of_alias_get_highest_id("spi");
3131 		if (first_dynamic < 0)
3132 			first_dynamic = 0;
3133 		else
3134 			first_dynamic++;
3135 
3136 		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3137 		if (status)
3138 			return status;
3139 	}
3140 	ctlr->bus_lock_flag = 0;
3141 	init_completion(&ctlr->xfer_completion);
3142 	init_completion(&ctlr->cur_msg_completion);
3143 	if (!ctlr->max_dma_len)
3144 		ctlr->max_dma_len = INT_MAX;
3145 
3146 	/*
3147 	 * Register the device, then userspace will see it.
3148 	 * Registration fails if the bus ID is in use.
3149 	 */
3150 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3151 
3152 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3153 		status = spi_get_gpio_descs(ctlr);
3154 		if (status)
3155 			goto free_bus_id;
3156 		/*
3157 		 * A controller using GPIO descriptors always
3158 		 * supports SPI_CS_HIGH if need be.
3159 		 */
3160 		ctlr->mode_bits |= SPI_CS_HIGH;
3161 	}
3162 
3163 	/*
3164 	 * Even if it's just one always-selected device, there must
3165 	 * be at least one chipselect.
3166 	 */
3167 	if (!ctlr->num_chipselect) {
3168 		status = -EINVAL;
3169 		goto free_bus_id;
3170 	}
3171 
3172 	/* Setting last_cs to -1 means no chip selected */
3173 	ctlr->last_cs = -1;
3174 
3175 	status = device_add(&ctlr->dev);
3176 	if (status < 0)
3177 		goto free_bus_id;
3178 	dev_dbg(dev, "registered %s %s\n",
3179 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3180 			dev_name(&ctlr->dev));
3181 
3182 	/*
3183 	 * If we're using a queued driver, start the queue. Note that we don't
3184 	 * need the queueing logic if the driver is only supporting high-level
3185 	 * memory operations.
3186 	 */
3187 	if (ctlr->transfer) {
3188 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3189 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3190 		status = spi_controller_initialize_queue(ctlr);
3191 		if (status) {
3192 			device_del(&ctlr->dev);
3193 			goto free_bus_id;
3194 		}
3195 	}
3196 	/* Add statistics */
3197 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3198 	if (!ctlr->pcpu_statistics) {
3199 		dev_err(dev, "Error allocating per-cpu statistics\n");
3200 		status = -ENOMEM;
3201 		goto destroy_queue;
3202 	}
3203 
3204 	mutex_lock(&board_lock);
3205 	list_add_tail(&ctlr->list, &spi_controller_list);
3206 	list_for_each_entry(bi, &board_list, list)
3207 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3208 	mutex_unlock(&board_lock);
3209 
3210 	/* Register devices from the device tree and ACPI */
3211 	of_register_spi_devices(ctlr);
3212 	acpi_register_spi_devices(ctlr);
3213 	return status;
3214 
3215 destroy_queue:
3216 	spi_destroy_queue(ctlr);
3217 free_bus_id:
3218 	mutex_lock(&board_lock);
3219 	idr_remove(&spi_master_idr, ctlr->bus_num);
3220 	mutex_unlock(&board_lock);
3221 	return status;
3222 }
3223 EXPORT_SYMBOL_GPL(spi_register_controller);
3224 
3225 static void devm_spi_unregister(struct device *dev, void *res)
3226 {
3227 	spi_unregister_controller(*(struct spi_controller **)res);
3228 }
3229 
3230 /**
3231  * devm_spi_register_controller - register managed SPI master or slave
3232  *	controller
3233  * @dev:    device managing SPI controller
3234  * @ctlr: initialized controller, originally from spi_alloc_master() or
3235  *	spi_alloc_slave()
3236  * Context: can sleep
3237  *
3238  * Register a SPI device as with spi_register_controller() which will
3239  * automatically be unregistered and freed.
3240  *
3241  * Return: zero on success, else a negative error code.
3242  */
3243 int devm_spi_register_controller(struct device *dev,
3244 				 struct spi_controller *ctlr)
3245 {
3246 	struct spi_controller **ptr;
3247 	int ret;
3248 
3249 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3250 	if (!ptr)
3251 		return -ENOMEM;
3252 
3253 	ret = spi_register_controller(ctlr);
3254 	if (!ret) {
3255 		*ptr = ctlr;
3256 		devres_add(dev, ptr);
3257 	} else {
3258 		devres_free(ptr);
3259 	}
3260 
3261 	return ret;
3262 }
3263 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3264 
3265 static int __unregister(struct device *dev, void *null)
3266 {
3267 	spi_unregister_device(to_spi_device(dev));
3268 	return 0;
3269 }
3270 
3271 /**
3272  * spi_unregister_controller - unregister SPI master or slave controller
3273  * @ctlr: the controller being unregistered
3274  * Context: can sleep
3275  *
3276  * This call is used only by SPI controller drivers, which are the
3277  * only ones directly touching chip registers.
3278  *
3279  * This must be called from context that can sleep.
3280  *
3281  * Note that this function also drops a reference to the controller.
3282  */
3283 void spi_unregister_controller(struct spi_controller *ctlr)
3284 {
3285 	struct spi_controller *found;
3286 	int id = ctlr->bus_num;
3287 
3288 	/* Prevent addition of new devices, unregister existing ones */
3289 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3290 		mutex_lock(&ctlr->add_lock);
3291 
3292 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3293 
3294 	/* First make sure that this controller was ever added */
3295 	mutex_lock(&board_lock);
3296 	found = idr_find(&spi_master_idr, id);
3297 	mutex_unlock(&board_lock);
3298 	if (ctlr->queued) {
3299 		if (spi_destroy_queue(ctlr))
3300 			dev_err(&ctlr->dev, "queue remove failed\n");
3301 	}
3302 	mutex_lock(&board_lock);
3303 	list_del(&ctlr->list);
3304 	mutex_unlock(&board_lock);
3305 
3306 	device_del(&ctlr->dev);
3307 
3308 	/* Free bus id */
3309 	mutex_lock(&board_lock);
3310 	if (found == ctlr)
3311 		idr_remove(&spi_master_idr, id);
3312 	mutex_unlock(&board_lock);
3313 
3314 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3315 		mutex_unlock(&ctlr->add_lock);
3316 
3317 	/*
3318 	 * Release the last reference on the controller if its driver
3319 	 * has not yet been converted to devm_spi_alloc_master/slave().
3320 	 */
3321 	if (!ctlr->devm_allocated)
3322 		put_device(&ctlr->dev);
3323 }
3324 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3325 
3326 int spi_controller_suspend(struct spi_controller *ctlr)
3327 {
3328 	int ret;
3329 
3330 	/* Basically no-ops for non-queued controllers */
3331 	if (!ctlr->queued)
3332 		return 0;
3333 
3334 	ret = spi_stop_queue(ctlr);
3335 	if (ret)
3336 		dev_err(&ctlr->dev, "queue stop failed\n");
3337 
3338 	return ret;
3339 }
3340 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3341 
3342 int spi_controller_resume(struct spi_controller *ctlr)
3343 {
3344 	int ret;
3345 
3346 	if (!ctlr->queued)
3347 		return 0;
3348 
3349 	ret = spi_start_queue(ctlr);
3350 	if (ret)
3351 		dev_err(&ctlr->dev, "queue restart failed\n");
3352 
3353 	return ret;
3354 }
3355 EXPORT_SYMBOL_GPL(spi_controller_resume);
3356 
3357 /*-------------------------------------------------------------------------*/
3358 
3359 /* Core methods for spi_message alterations */
3360 
3361 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3362 					    struct spi_message *msg,
3363 					    void *res)
3364 {
3365 	struct spi_replaced_transfers *rxfer = res;
3366 	size_t i;
3367 
3368 	/* Call extra callback if requested */
3369 	if (rxfer->release)
3370 		rxfer->release(ctlr, msg, res);
3371 
3372 	/* Insert replaced transfers back into the message */
3373 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3374 
3375 	/* Remove the formerly inserted entries */
3376 	for (i = 0; i < rxfer->inserted; i++)
3377 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3378 }
3379 
3380 /**
3381  * spi_replace_transfers - replace transfers with several transfers
3382  *                         and register change with spi_message.resources
3383  * @msg:           the spi_message we work upon
3384  * @xfer_first:    the first spi_transfer we want to replace
3385  * @remove:        number of transfers to remove
3386  * @insert:        the number of transfers we want to insert instead
3387  * @release:       extra release code necessary in some circumstances
3388  * @extradatasize: extra data to allocate (with alignment guarantees
3389  *                 of struct @spi_transfer)
3390  * @gfp:           gfp flags
3391  *
3392  * Returns: pointer to @spi_replaced_transfers,
3393  *          PTR_ERR(...) in case of errors.
3394  */
3395 static struct spi_replaced_transfers *spi_replace_transfers(
3396 	struct spi_message *msg,
3397 	struct spi_transfer *xfer_first,
3398 	size_t remove,
3399 	size_t insert,
3400 	spi_replaced_release_t release,
3401 	size_t extradatasize,
3402 	gfp_t gfp)
3403 {
3404 	struct spi_replaced_transfers *rxfer;
3405 	struct spi_transfer *xfer;
3406 	size_t i;
3407 
3408 	/* Allocate the structure using spi_res */
3409 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3410 			      struct_size(rxfer, inserted_transfers, insert)
3411 			      + extradatasize,
3412 			      gfp);
3413 	if (!rxfer)
3414 		return ERR_PTR(-ENOMEM);
3415 
3416 	/* The release code to invoke before running the generic release */
3417 	rxfer->release = release;
3418 
3419 	/* Assign extradata */
3420 	if (extradatasize)
3421 		rxfer->extradata =
3422 			&rxfer->inserted_transfers[insert];
3423 
3424 	/* Init the replaced_transfers list */
3425 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3426 
3427 	/*
3428 	 * Assign the list_entry after which we should reinsert
3429 	 * the @replaced_transfers - it may be spi_message.messages!
3430 	 */
3431 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3432 
3433 	/* Remove the requested number of transfers */
3434 	for (i = 0; i < remove; i++) {
3435 		/*
3436 		 * If the entry after replaced_after it is msg->transfers
3437 		 * then we have been requested to remove more transfers
3438 		 * than are in the list.
3439 		 */
3440 		if (rxfer->replaced_after->next == &msg->transfers) {
3441 			dev_err(&msg->spi->dev,
3442 				"requested to remove more spi_transfers than are available\n");
3443 			/* Insert replaced transfers back into the message */
3444 			list_splice(&rxfer->replaced_transfers,
3445 				    rxfer->replaced_after);
3446 
3447 			/* Free the spi_replace_transfer structure... */
3448 			spi_res_free(rxfer);
3449 
3450 			/* ...and return with an error */
3451 			return ERR_PTR(-EINVAL);
3452 		}
3453 
3454 		/*
3455 		 * Remove the entry after replaced_after from list of
3456 		 * transfers and add it to list of replaced_transfers.
3457 		 */
3458 		list_move_tail(rxfer->replaced_after->next,
3459 			       &rxfer->replaced_transfers);
3460 	}
3461 
3462 	/*
3463 	 * Create copy of the given xfer with identical settings
3464 	 * based on the first transfer to get removed.
3465 	 */
3466 	for (i = 0; i < insert; i++) {
3467 		/* We need to run in reverse order */
3468 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3469 
3470 		/* Copy all spi_transfer data */
3471 		memcpy(xfer, xfer_first, sizeof(*xfer));
3472 
3473 		/* Add to list */
3474 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3475 
3476 		/* Clear cs_change and delay for all but the last */
3477 		if (i) {
3478 			xfer->cs_change = false;
3479 			xfer->delay.value = 0;
3480 		}
3481 	}
3482 
3483 	/* Set up inserted... */
3484 	rxfer->inserted = insert;
3485 
3486 	/* ...and register it with spi_res/spi_message */
3487 	spi_res_add(msg, rxfer);
3488 
3489 	return rxfer;
3490 }
3491 
3492 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3493 					struct spi_message *msg,
3494 					struct spi_transfer **xferp,
3495 					size_t maxsize,
3496 					gfp_t gfp)
3497 {
3498 	struct spi_transfer *xfer = *xferp, *xfers;
3499 	struct spi_replaced_transfers *srt;
3500 	size_t offset;
3501 	size_t count, i;
3502 
3503 	/* Calculate how many we have to replace */
3504 	count = DIV_ROUND_UP(xfer->len, maxsize);
3505 
3506 	/* Create replacement */
3507 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3508 	if (IS_ERR(srt))
3509 		return PTR_ERR(srt);
3510 	xfers = srt->inserted_transfers;
3511 
3512 	/*
3513 	 * Now handle each of those newly inserted spi_transfers.
3514 	 * Note that the replacements spi_transfers all are preset
3515 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3516 	 * are all identical (as well as most others)
3517 	 * so we just have to fix up len and the pointers.
3518 	 *
3519 	 * This also includes support for the depreciated
3520 	 * spi_message.is_dma_mapped interface.
3521 	 */
3522 
3523 	/*
3524 	 * The first transfer just needs the length modified, so we
3525 	 * run it outside the loop.
3526 	 */
3527 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3528 
3529 	/* All the others need rx_buf/tx_buf also set */
3530 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3531 		/* Update rx_buf, tx_buf and DMA */
3532 		if (xfers[i].rx_buf)
3533 			xfers[i].rx_buf += offset;
3534 		if (xfers[i].rx_dma)
3535 			xfers[i].rx_dma += offset;
3536 		if (xfers[i].tx_buf)
3537 			xfers[i].tx_buf += offset;
3538 		if (xfers[i].tx_dma)
3539 			xfers[i].tx_dma += offset;
3540 
3541 		/* Update length */
3542 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3543 	}
3544 
3545 	/*
3546 	 * We set up xferp to the last entry we have inserted,
3547 	 * so that we skip those already split transfers.
3548 	 */
3549 	*xferp = &xfers[count - 1];
3550 
3551 	/* Increment statistics counters */
3552 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3553 				       transfers_split_maxsize);
3554 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3555 				       transfers_split_maxsize);
3556 
3557 	return 0;
3558 }
3559 
3560 /**
3561  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3562  *                               when an individual transfer exceeds a
3563  *                               certain size
3564  * @ctlr:    the @spi_controller for this transfer
3565  * @msg:   the @spi_message to transform
3566  * @maxsize:  the maximum when to apply this
3567  * @gfp: GFP allocation flags
3568  *
3569  * Return: status of transformation
3570  */
3571 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3572 				struct spi_message *msg,
3573 				size_t maxsize,
3574 				gfp_t gfp)
3575 {
3576 	struct spi_transfer *xfer;
3577 	int ret;
3578 
3579 	/*
3580 	 * Iterate over the transfer_list,
3581 	 * but note that xfer is advanced to the last transfer inserted
3582 	 * to avoid checking sizes again unnecessarily (also xfer does
3583 	 * potentially belong to a different list by the time the
3584 	 * replacement has happened).
3585 	 */
3586 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3587 		if (xfer->len > maxsize) {
3588 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3589 							   maxsize, gfp);
3590 			if (ret)
3591 				return ret;
3592 		}
3593 	}
3594 
3595 	return 0;
3596 }
3597 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3598 
3599 
3600 /**
3601  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3602  *                                when an individual transfer exceeds a
3603  *                                certain number of SPI words
3604  * @ctlr:     the @spi_controller for this transfer
3605  * @msg:      the @spi_message to transform
3606  * @maxwords: the number of words to limit each transfer to
3607  * @gfp:      GFP allocation flags
3608  *
3609  * Return: status of transformation
3610  */
3611 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3612 				 struct spi_message *msg,
3613 				 size_t maxwords,
3614 				 gfp_t gfp)
3615 {
3616 	struct spi_transfer *xfer;
3617 
3618 	/*
3619 	 * Iterate over the transfer_list,
3620 	 * but note that xfer is advanced to the last transfer inserted
3621 	 * to avoid checking sizes again unnecessarily (also xfer does
3622 	 * potentially belong to a different list by the time the
3623 	 * replacement has happened).
3624 	 */
3625 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3626 		size_t maxsize;
3627 		int ret;
3628 
3629 		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3630 		if (xfer->len > maxsize) {
3631 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3632 							   maxsize, gfp);
3633 			if (ret)
3634 				return ret;
3635 		}
3636 	}
3637 
3638 	return 0;
3639 }
3640 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3641 
3642 /*-------------------------------------------------------------------------*/
3643 
3644 /*
3645  * Core methods for SPI controller protocol drivers. Some of the
3646  * other core methods are currently defined as inline functions.
3647  */
3648 
3649 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3650 					u8 bits_per_word)
3651 {
3652 	if (ctlr->bits_per_word_mask) {
3653 		/* Only 32 bits fit in the mask */
3654 		if (bits_per_word > 32)
3655 			return -EINVAL;
3656 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3657 			return -EINVAL;
3658 	}
3659 
3660 	return 0;
3661 }
3662 
3663 /**
3664  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3665  * @spi: the device that requires specific CS timing configuration
3666  *
3667  * Return: zero on success, else a negative error code.
3668  */
3669 static int spi_set_cs_timing(struct spi_device *spi)
3670 {
3671 	struct device *parent = spi->controller->dev.parent;
3672 	int status = 0;
3673 
3674 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3675 		if (spi->controller->auto_runtime_pm) {
3676 			status = pm_runtime_get_sync(parent);
3677 			if (status < 0) {
3678 				pm_runtime_put_noidle(parent);
3679 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3680 					status);
3681 				return status;
3682 			}
3683 
3684 			status = spi->controller->set_cs_timing(spi);
3685 			pm_runtime_mark_last_busy(parent);
3686 			pm_runtime_put_autosuspend(parent);
3687 		} else {
3688 			status = spi->controller->set_cs_timing(spi);
3689 		}
3690 	}
3691 	return status;
3692 }
3693 
3694 /**
3695  * spi_setup - setup SPI mode and clock rate
3696  * @spi: the device whose settings are being modified
3697  * Context: can sleep, and no requests are queued to the device
3698  *
3699  * SPI protocol drivers may need to update the transfer mode if the
3700  * device doesn't work with its default.  They may likewise need
3701  * to update clock rates or word sizes from initial values.  This function
3702  * changes those settings, and must be called from a context that can sleep.
3703  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3704  * effect the next time the device is selected and data is transferred to
3705  * or from it.  When this function returns, the SPI device is deselected.
3706  *
3707  * Note that this call will fail if the protocol driver specifies an option
3708  * that the underlying controller or its driver does not support.  For
3709  * example, not all hardware supports wire transfers using nine bit words,
3710  * LSB-first wire encoding, or active-high chipselects.
3711  *
3712  * Return: zero on success, else a negative error code.
3713  */
3714 int spi_setup(struct spi_device *spi)
3715 {
3716 	unsigned	bad_bits, ugly_bits;
3717 	int		status = 0;
3718 
3719 	/*
3720 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3721 	 * are set at the same time.
3722 	 */
3723 	if ((hweight_long(spi->mode &
3724 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3725 	    (hweight_long(spi->mode &
3726 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3727 		dev_err(&spi->dev,
3728 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3729 		return -EINVAL;
3730 	}
3731 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3732 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3733 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3734 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3735 		return -EINVAL;
3736 	/*
3737 	 * Help drivers fail *cleanly* when they need options
3738 	 * that aren't supported with their current controller.
3739 	 * SPI_CS_WORD has a fallback software implementation,
3740 	 * so it is ignored here.
3741 	 */
3742 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3743 				 SPI_NO_TX | SPI_NO_RX);
3744 	ugly_bits = bad_bits &
3745 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3746 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3747 	if (ugly_bits) {
3748 		dev_warn(&spi->dev,
3749 			 "setup: ignoring unsupported mode bits %x\n",
3750 			 ugly_bits);
3751 		spi->mode &= ~ugly_bits;
3752 		bad_bits &= ~ugly_bits;
3753 	}
3754 	if (bad_bits) {
3755 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3756 			bad_bits);
3757 		return -EINVAL;
3758 	}
3759 
3760 	if (!spi->bits_per_word) {
3761 		spi->bits_per_word = 8;
3762 	} else {
3763 		/*
3764 		 * Some controllers may not support the default 8 bits-per-word
3765 		 * so only perform the check when this is explicitly provided.
3766 		 */
3767 		status = __spi_validate_bits_per_word(spi->controller,
3768 						      spi->bits_per_word);
3769 		if (status)
3770 			return status;
3771 	}
3772 
3773 	if (spi->controller->max_speed_hz &&
3774 	    (!spi->max_speed_hz ||
3775 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3776 		spi->max_speed_hz = spi->controller->max_speed_hz;
3777 
3778 	mutex_lock(&spi->controller->io_mutex);
3779 
3780 	if (spi->controller->setup) {
3781 		status = spi->controller->setup(spi);
3782 		if (status) {
3783 			mutex_unlock(&spi->controller->io_mutex);
3784 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3785 				status);
3786 			return status;
3787 		}
3788 	}
3789 
3790 	status = spi_set_cs_timing(spi);
3791 	if (status) {
3792 		mutex_unlock(&spi->controller->io_mutex);
3793 		return status;
3794 	}
3795 
3796 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3797 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3798 		if (status < 0) {
3799 			mutex_unlock(&spi->controller->io_mutex);
3800 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3801 				status);
3802 			return status;
3803 		}
3804 
3805 		/*
3806 		 * We do not want to return positive value from pm_runtime_get,
3807 		 * there are many instances of devices calling spi_setup() and
3808 		 * checking for a non-zero return value instead of a negative
3809 		 * return value.
3810 		 */
3811 		status = 0;
3812 
3813 		spi_set_cs(spi, false, true);
3814 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3815 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3816 	} else {
3817 		spi_set_cs(spi, false, true);
3818 	}
3819 
3820 	mutex_unlock(&spi->controller->io_mutex);
3821 
3822 	if (spi->rt && !spi->controller->rt) {
3823 		spi->controller->rt = true;
3824 		spi_set_thread_rt(spi->controller);
3825 	}
3826 
3827 	trace_spi_setup(spi, status);
3828 
3829 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3830 			spi->mode & SPI_MODE_X_MASK,
3831 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3832 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3833 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3834 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3835 			spi->bits_per_word, spi->max_speed_hz,
3836 			status);
3837 
3838 	return status;
3839 }
3840 EXPORT_SYMBOL_GPL(spi_setup);
3841 
3842 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3843 				       struct spi_device *spi)
3844 {
3845 	int delay1, delay2;
3846 
3847 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3848 	if (delay1 < 0)
3849 		return delay1;
3850 
3851 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3852 	if (delay2 < 0)
3853 		return delay2;
3854 
3855 	if (delay1 < delay2)
3856 		memcpy(&xfer->word_delay, &spi->word_delay,
3857 		       sizeof(xfer->word_delay));
3858 
3859 	return 0;
3860 }
3861 
3862 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3863 {
3864 	struct spi_controller *ctlr = spi->controller;
3865 	struct spi_transfer *xfer;
3866 	int w_size;
3867 
3868 	if (list_empty(&message->transfers))
3869 		return -EINVAL;
3870 
3871 	/*
3872 	 * If an SPI controller does not support toggling the CS line on each
3873 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3874 	 * for the CS line, we can emulate the CS-per-word hardware function by
3875 	 * splitting transfers into one-word transfers and ensuring that
3876 	 * cs_change is set for each transfer.
3877 	 */
3878 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3879 					  spi_get_csgpiod(spi, 0))) {
3880 		size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
3881 		int ret;
3882 
3883 		/* spi_split_transfers_maxsize() requires message->spi */
3884 		message->spi = spi;
3885 
3886 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3887 						  GFP_KERNEL);
3888 		if (ret)
3889 			return ret;
3890 
3891 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3892 			/* Don't change cs_change on the last entry in the list */
3893 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3894 				break;
3895 			xfer->cs_change = 1;
3896 		}
3897 	}
3898 
3899 	/*
3900 	 * Half-duplex links include original MicroWire, and ones with
3901 	 * only one data pin like SPI_3WIRE (switches direction) or where
3902 	 * either MOSI or MISO is missing.  They can also be caused by
3903 	 * software limitations.
3904 	 */
3905 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3906 	    (spi->mode & SPI_3WIRE)) {
3907 		unsigned flags = ctlr->flags;
3908 
3909 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3910 			if (xfer->rx_buf && xfer->tx_buf)
3911 				return -EINVAL;
3912 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3913 				return -EINVAL;
3914 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3915 				return -EINVAL;
3916 		}
3917 	}
3918 
3919 	/*
3920 	 * Set transfer bits_per_word and max speed as spi device default if
3921 	 * it is not set for this transfer.
3922 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3923 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3924 	 * Ensure transfer word_delay is at least as long as that required by
3925 	 * device itself.
3926 	 */
3927 	message->frame_length = 0;
3928 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3929 		xfer->effective_speed_hz = 0;
3930 		message->frame_length += xfer->len;
3931 		if (!xfer->bits_per_word)
3932 			xfer->bits_per_word = spi->bits_per_word;
3933 
3934 		if (!xfer->speed_hz)
3935 			xfer->speed_hz = spi->max_speed_hz;
3936 
3937 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3938 			xfer->speed_hz = ctlr->max_speed_hz;
3939 
3940 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3941 			return -EINVAL;
3942 
3943 		/*
3944 		 * SPI transfer length should be multiple of SPI word size
3945 		 * where SPI word size should be power-of-two multiple.
3946 		 */
3947 		if (xfer->bits_per_word <= 8)
3948 			w_size = 1;
3949 		else if (xfer->bits_per_word <= 16)
3950 			w_size = 2;
3951 		else
3952 			w_size = 4;
3953 
3954 		/* No partial transfers accepted */
3955 		if (xfer->len % w_size)
3956 			return -EINVAL;
3957 
3958 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3959 		    xfer->speed_hz < ctlr->min_speed_hz)
3960 			return -EINVAL;
3961 
3962 		if (xfer->tx_buf && !xfer->tx_nbits)
3963 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3964 		if (xfer->rx_buf && !xfer->rx_nbits)
3965 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3966 		/*
3967 		 * Check transfer tx/rx_nbits:
3968 		 * 1. check the value matches one of single, dual and quad
3969 		 * 2. check tx/rx_nbits match the mode in spi_device
3970 		 */
3971 		if (xfer->tx_buf) {
3972 			if (spi->mode & SPI_NO_TX)
3973 				return -EINVAL;
3974 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3975 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3976 				xfer->tx_nbits != SPI_NBITS_QUAD)
3977 				return -EINVAL;
3978 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3979 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3980 				return -EINVAL;
3981 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3982 				!(spi->mode & SPI_TX_QUAD))
3983 				return -EINVAL;
3984 		}
3985 		/* Check transfer rx_nbits */
3986 		if (xfer->rx_buf) {
3987 			if (spi->mode & SPI_NO_RX)
3988 				return -EINVAL;
3989 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3990 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3991 				xfer->rx_nbits != SPI_NBITS_QUAD)
3992 				return -EINVAL;
3993 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3994 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3995 				return -EINVAL;
3996 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3997 				!(spi->mode & SPI_RX_QUAD))
3998 				return -EINVAL;
3999 		}
4000 
4001 		if (_spi_xfer_word_delay_update(xfer, spi))
4002 			return -EINVAL;
4003 	}
4004 
4005 	message->status = -EINPROGRESS;
4006 
4007 	return 0;
4008 }
4009 
4010 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4011 {
4012 	struct spi_controller *ctlr = spi->controller;
4013 	struct spi_transfer *xfer;
4014 
4015 	/*
4016 	 * Some controllers do not support doing regular SPI transfers. Return
4017 	 * ENOTSUPP when this is the case.
4018 	 */
4019 	if (!ctlr->transfer)
4020 		return -ENOTSUPP;
4021 
4022 	message->spi = spi;
4023 
4024 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4025 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4026 
4027 	trace_spi_message_submit(message);
4028 
4029 	if (!ctlr->ptp_sts_supported) {
4030 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4031 			xfer->ptp_sts_word_pre = 0;
4032 			ptp_read_system_prets(xfer->ptp_sts);
4033 		}
4034 	}
4035 
4036 	return ctlr->transfer(spi, message);
4037 }
4038 
4039 /**
4040  * spi_async - asynchronous SPI transfer
4041  * @spi: device with which data will be exchanged
4042  * @message: describes the data transfers, including completion callback
4043  * Context: any (IRQs may be blocked, etc)
4044  *
4045  * This call may be used in_irq and other contexts which can't sleep,
4046  * as well as from task contexts which can sleep.
4047  *
4048  * The completion callback is invoked in a context which can't sleep.
4049  * Before that invocation, the value of message->status is undefined.
4050  * When the callback is issued, message->status holds either zero (to
4051  * indicate complete success) or a negative error code.  After that
4052  * callback returns, the driver which issued the transfer request may
4053  * deallocate the associated memory; it's no longer in use by any SPI
4054  * core or controller driver code.
4055  *
4056  * Note that although all messages to a spi_device are handled in
4057  * FIFO order, messages may go to different devices in other orders.
4058  * Some device might be higher priority, or have various "hard" access
4059  * time requirements, for example.
4060  *
4061  * On detection of any fault during the transfer, processing of
4062  * the entire message is aborted, and the device is deselected.
4063  * Until returning from the associated message completion callback,
4064  * no other spi_message queued to that device will be processed.
4065  * (This rule applies equally to all the synchronous transfer calls,
4066  * which are wrappers around this core asynchronous primitive.)
4067  *
4068  * Return: zero on success, else a negative error code.
4069  */
4070 int spi_async(struct spi_device *spi, struct spi_message *message)
4071 {
4072 	struct spi_controller *ctlr = spi->controller;
4073 	int ret;
4074 	unsigned long flags;
4075 
4076 	ret = __spi_validate(spi, message);
4077 	if (ret != 0)
4078 		return ret;
4079 
4080 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4081 
4082 	if (ctlr->bus_lock_flag)
4083 		ret = -EBUSY;
4084 	else
4085 		ret = __spi_async(spi, message);
4086 
4087 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4088 
4089 	return ret;
4090 }
4091 EXPORT_SYMBOL_GPL(spi_async);
4092 
4093 /**
4094  * spi_async_locked - version of spi_async with exclusive bus usage
4095  * @spi: device with which data will be exchanged
4096  * @message: describes the data transfers, including completion callback
4097  * Context: any (IRQs may be blocked, etc)
4098  *
4099  * This call may be used in_irq and other contexts which can't sleep,
4100  * as well as from task contexts which can sleep.
4101  *
4102  * The completion callback is invoked in a context which can't sleep.
4103  * Before that invocation, the value of message->status is undefined.
4104  * When the callback is issued, message->status holds either zero (to
4105  * indicate complete success) or a negative error code.  After that
4106  * callback returns, the driver which issued the transfer request may
4107  * deallocate the associated memory; it's no longer in use by any SPI
4108  * core or controller driver code.
4109  *
4110  * Note that although all messages to a spi_device are handled in
4111  * FIFO order, messages may go to different devices in other orders.
4112  * Some device might be higher priority, or have various "hard" access
4113  * time requirements, for example.
4114  *
4115  * On detection of any fault during the transfer, processing of
4116  * the entire message is aborted, and the device is deselected.
4117  * Until returning from the associated message completion callback,
4118  * no other spi_message queued to that device will be processed.
4119  * (This rule applies equally to all the synchronous transfer calls,
4120  * which are wrappers around this core asynchronous primitive.)
4121  *
4122  * Return: zero on success, else a negative error code.
4123  */
4124 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4125 {
4126 	struct spi_controller *ctlr = spi->controller;
4127 	int ret;
4128 	unsigned long flags;
4129 
4130 	ret = __spi_validate(spi, message);
4131 	if (ret != 0)
4132 		return ret;
4133 
4134 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4135 
4136 	ret = __spi_async(spi, message);
4137 
4138 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4139 
4140 	return ret;
4141 
4142 }
4143 
4144 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4145 {
4146 	bool was_busy;
4147 	int ret;
4148 
4149 	mutex_lock(&ctlr->io_mutex);
4150 
4151 	was_busy = ctlr->busy;
4152 
4153 	ctlr->cur_msg = msg;
4154 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4155 	if (ret)
4156 		goto out;
4157 
4158 	ctlr->cur_msg = NULL;
4159 	ctlr->fallback = false;
4160 
4161 	if (!was_busy) {
4162 		kfree(ctlr->dummy_rx);
4163 		ctlr->dummy_rx = NULL;
4164 		kfree(ctlr->dummy_tx);
4165 		ctlr->dummy_tx = NULL;
4166 		if (ctlr->unprepare_transfer_hardware &&
4167 		    ctlr->unprepare_transfer_hardware(ctlr))
4168 			dev_err(&ctlr->dev,
4169 				"failed to unprepare transfer hardware\n");
4170 		spi_idle_runtime_pm(ctlr);
4171 	}
4172 
4173 out:
4174 	mutex_unlock(&ctlr->io_mutex);
4175 }
4176 
4177 /*-------------------------------------------------------------------------*/
4178 
4179 /*
4180  * Utility methods for SPI protocol drivers, layered on
4181  * top of the core.  Some other utility methods are defined as
4182  * inline functions.
4183  */
4184 
4185 static void spi_complete(void *arg)
4186 {
4187 	complete(arg);
4188 }
4189 
4190 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4191 {
4192 	DECLARE_COMPLETION_ONSTACK(done);
4193 	int status;
4194 	struct spi_controller *ctlr = spi->controller;
4195 
4196 	status = __spi_validate(spi, message);
4197 	if (status != 0)
4198 		return status;
4199 
4200 	message->spi = spi;
4201 
4202 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4203 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4204 
4205 	/*
4206 	 * Checking queue_empty here only guarantees async/sync message
4207 	 * ordering when coming from the same context. It does not need to
4208 	 * guard against reentrancy from a different context. The io_mutex
4209 	 * will catch those cases.
4210 	 */
4211 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4212 		message->actual_length = 0;
4213 		message->status = -EINPROGRESS;
4214 
4215 		trace_spi_message_submit(message);
4216 
4217 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4218 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4219 
4220 		__spi_transfer_message_noqueue(ctlr, message);
4221 
4222 		return message->status;
4223 	}
4224 
4225 	/*
4226 	 * There are messages in the async queue that could have originated
4227 	 * from the same context, so we need to preserve ordering.
4228 	 * Therefor we send the message to the async queue and wait until they
4229 	 * are completed.
4230 	 */
4231 	message->complete = spi_complete;
4232 	message->context = &done;
4233 	status = spi_async_locked(spi, message);
4234 	if (status == 0) {
4235 		wait_for_completion(&done);
4236 		status = message->status;
4237 	}
4238 	message->context = NULL;
4239 
4240 	return status;
4241 }
4242 
4243 /**
4244  * spi_sync - blocking/synchronous SPI data transfers
4245  * @spi: device with which data will be exchanged
4246  * @message: describes the data transfers
4247  * Context: can sleep
4248  *
4249  * This call may only be used from a context that may sleep.  The sleep
4250  * is non-interruptible, and has no timeout.  Low-overhead controller
4251  * drivers may DMA directly into and out of the message buffers.
4252  *
4253  * Note that the SPI device's chip select is active during the message,
4254  * and then is normally disabled between messages.  Drivers for some
4255  * frequently-used devices may want to minimize costs of selecting a chip,
4256  * by leaving it selected in anticipation that the next message will go
4257  * to the same chip.  (That may increase power usage.)
4258  *
4259  * Also, the caller is guaranteeing that the memory associated with the
4260  * message will not be freed before this call returns.
4261  *
4262  * Return: zero on success, else a negative error code.
4263  */
4264 int spi_sync(struct spi_device *spi, struct spi_message *message)
4265 {
4266 	int ret;
4267 
4268 	mutex_lock(&spi->controller->bus_lock_mutex);
4269 	ret = __spi_sync(spi, message);
4270 	mutex_unlock(&spi->controller->bus_lock_mutex);
4271 
4272 	return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(spi_sync);
4275 
4276 /**
4277  * spi_sync_locked - version of spi_sync with exclusive bus usage
4278  * @spi: device with which data will be exchanged
4279  * @message: describes the data transfers
4280  * Context: can sleep
4281  *
4282  * This call may only be used from a context that may sleep.  The sleep
4283  * is non-interruptible, and has no timeout.  Low-overhead controller
4284  * drivers may DMA directly into and out of the message buffers.
4285  *
4286  * This call should be used by drivers that require exclusive access to the
4287  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4288  * be released by a spi_bus_unlock call when the exclusive access is over.
4289  *
4290  * Return: zero on success, else a negative error code.
4291  */
4292 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4293 {
4294 	return __spi_sync(spi, message);
4295 }
4296 EXPORT_SYMBOL_GPL(spi_sync_locked);
4297 
4298 /**
4299  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4300  * @ctlr: SPI bus master that should be locked for exclusive bus access
4301  * Context: can sleep
4302  *
4303  * This call may only be used from a context that may sleep.  The sleep
4304  * is non-interruptible, and has no timeout.
4305  *
4306  * This call should be used by drivers that require exclusive access to the
4307  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4308  * exclusive access is over. Data transfer must be done by spi_sync_locked
4309  * and spi_async_locked calls when the SPI bus lock is held.
4310  *
4311  * Return: always zero.
4312  */
4313 int spi_bus_lock(struct spi_controller *ctlr)
4314 {
4315 	unsigned long flags;
4316 
4317 	mutex_lock(&ctlr->bus_lock_mutex);
4318 
4319 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4320 	ctlr->bus_lock_flag = 1;
4321 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4322 
4323 	/* Mutex remains locked until spi_bus_unlock() is called */
4324 
4325 	return 0;
4326 }
4327 EXPORT_SYMBOL_GPL(spi_bus_lock);
4328 
4329 /**
4330  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4331  * @ctlr: SPI bus master that was locked for exclusive bus access
4332  * Context: can sleep
4333  *
4334  * This call may only be used from a context that may sleep.  The sleep
4335  * is non-interruptible, and has no timeout.
4336  *
4337  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4338  * call.
4339  *
4340  * Return: always zero.
4341  */
4342 int spi_bus_unlock(struct spi_controller *ctlr)
4343 {
4344 	ctlr->bus_lock_flag = 0;
4345 
4346 	mutex_unlock(&ctlr->bus_lock_mutex);
4347 
4348 	return 0;
4349 }
4350 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4351 
4352 /* Portable code must never pass more than 32 bytes */
4353 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4354 
4355 static u8	*buf;
4356 
4357 /**
4358  * spi_write_then_read - SPI synchronous write followed by read
4359  * @spi: device with which data will be exchanged
4360  * @txbuf: data to be written (need not be DMA-safe)
4361  * @n_tx: size of txbuf, in bytes
4362  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4363  * @n_rx: size of rxbuf, in bytes
4364  * Context: can sleep
4365  *
4366  * This performs a half duplex MicroWire style transaction with the
4367  * device, sending txbuf and then reading rxbuf.  The return value
4368  * is zero for success, else a negative errno status code.
4369  * This call may only be used from a context that may sleep.
4370  *
4371  * Parameters to this routine are always copied using a small buffer.
4372  * Performance-sensitive or bulk transfer code should instead use
4373  * spi_{async,sync}() calls with DMA-safe buffers.
4374  *
4375  * Return: zero on success, else a negative error code.
4376  */
4377 int spi_write_then_read(struct spi_device *spi,
4378 		const void *txbuf, unsigned n_tx,
4379 		void *rxbuf, unsigned n_rx)
4380 {
4381 	static DEFINE_MUTEX(lock);
4382 
4383 	int			status;
4384 	struct spi_message	message;
4385 	struct spi_transfer	x[2];
4386 	u8			*local_buf;
4387 
4388 	/*
4389 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4390 	 * copying here, (as a pure convenience thing), but we can
4391 	 * keep heap costs out of the hot path unless someone else is
4392 	 * using the pre-allocated buffer or the transfer is too large.
4393 	 */
4394 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4395 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4396 				    GFP_KERNEL | GFP_DMA);
4397 		if (!local_buf)
4398 			return -ENOMEM;
4399 	} else {
4400 		local_buf = buf;
4401 	}
4402 
4403 	spi_message_init(&message);
4404 	memset(x, 0, sizeof(x));
4405 	if (n_tx) {
4406 		x[0].len = n_tx;
4407 		spi_message_add_tail(&x[0], &message);
4408 	}
4409 	if (n_rx) {
4410 		x[1].len = n_rx;
4411 		spi_message_add_tail(&x[1], &message);
4412 	}
4413 
4414 	memcpy(local_buf, txbuf, n_tx);
4415 	x[0].tx_buf = local_buf;
4416 	x[1].rx_buf = local_buf + n_tx;
4417 
4418 	/* Do the I/O */
4419 	status = spi_sync(spi, &message);
4420 	if (status == 0)
4421 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4422 
4423 	if (x[0].tx_buf == buf)
4424 		mutex_unlock(&lock);
4425 	else
4426 		kfree(local_buf);
4427 
4428 	return status;
4429 }
4430 EXPORT_SYMBOL_GPL(spi_write_then_read);
4431 
4432 /*-------------------------------------------------------------------------*/
4433 
4434 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4435 /* Must call put_device() when done with returned spi_device device */
4436 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4437 {
4438 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4439 
4440 	return dev ? to_spi_device(dev) : NULL;
4441 }
4442 
4443 /* The spi controllers are not using spi_bus, so we find it with another way */
4444 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4445 {
4446 	struct device *dev;
4447 
4448 	dev = class_find_device_by_of_node(&spi_master_class, node);
4449 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4450 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4451 	if (!dev)
4452 		return NULL;
4453 
4454 	/* Reference got in class_find_device */
4455 	return container_of(dev, struct spi_controller, dev);
4456 }
4457 
4458 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4459 			 void *arg)
4460 {
4461 	struct of_reconfig_data *rd = arg;
4462 	struct spi_controller *ctlr;
4463 	struct spi_device *spi;
4464 
4465 	switch (of_reconfig_get_state_change(action, arg)) {
4466 	case OF_RECONFIG_CHANGE_ADD:
4467 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4468 		if (ctlr == NULL)
4469 			return NOTIFY_OK;	/* Not for us */
4470 
4471 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4472 			put_device(&ctlr->dev);
4473 			return NOTIFY_OK;
4474 		}
4475 
4476 		/*
4477 		 * Clear the flag before adding the device so that fw_devlink
4478 		 * doesn't skip adding consumers to this device.
4479 		 */
4480 		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4481 		spi = of_register_spi_device(ctlr, rd->dn);
4482 		put_device(&ctlr->dev);
4483 
4484 		if (IS_ERR(spi)) {
4485 			pr_err("%s: failed to create for '%pOF'\n",
4486 					__func__, rd->dn);
4487 			of_node_clear_flag(rd->dn, OF_POPULATED);
4488 			return notifier_from_errno(PTR_ERR(spi));
4489 		}
4490 		break;
4491 
4492 	case OF_RECONFIG_CHANGE_REMOVE:
4493 		/* Already depopulated? */
4494 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4495 			return NOTIFY_OK;
4496 
4497 		/* Find our device by node */
4498 		spi = of_find_spi_device_by_node(rd->dn);
4499 		if (spi == NULL)
4500 			return NOTIFY_OK;	/* No? not meant for us */
4501 
4502 		/* Unregister takes one ref away */
4503 		spi_unregister_device(spi);
4504 
4505 		/* And put the reference of the find */
4506 		put_device(&spi->dev);
4507 		break;
4508 	}
4509 
4510 	return NOTIFY_OK;
4511 }
4512 
4513 static struct notifier_block spi_of_notifier = {
4514 	.notifier_call = of_spi_notify,
4515 };
4516 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4517 extern struct notifier_block spi_of_notifier;
4518 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4519 
4520 #if IS_ENABLED(CONFIG_ACPI)
4521 static int spi_acpi_controller_match(struct device *dev, const void *data)
4522 {
4523 	return ACPI_COMPANION(dev->parent) == data;
4524 }
4525 
4526 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4527 {
4528 	struct device *dev;
4529 
4530 	dev = class_find_device(&spi_master_class, NULL, adev,
4531 				spi_acpi_controller_match);
4532 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4533 		dev = class_find_device(&spi_slave_class, NULL, adev,
4534 					spi_acpi_controller_match);
4535 	if (!dev)
4536 		return NULL;
4537 
4538 	return container_of(dev, struct spi_controller, dev);
4539 }
4540 
4541 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4542 {
4543 	struct device *dev;
4544 
4545 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4546 	return to_spi_device(dev);
4547 }
4548 
4549 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4550 			   void *arg)
4551 {
4552 	struct acpi_device *adev = arg;
4553 	struct spi_controller *ctlr;
4554 	struct spi_device *spi;
4555 
4556 	switch (value) {
4557 	case ACPI_RECONFIG_DEVICE_ADD:
4558 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4559 		if (!ctlr)
4560 			break;
4561 
4562 		acpi_register_spi_device(ctlr, adev);
4563 		put_device(&ctlr->dev);
4564 		break;
4565 	case ACPI_RECONFIG_DEVICE_REMOVE:
4566 		if (!acpi_device_enumerated(adev))
4567 			break;
4568 
4569 		spi = acpi_spi_find_device_by_adev(adev);
4570 		if (!spi)
4571 			break;
4572 
4573 		spi_unregister_device(spi);
4574 		put_device(&spi->dev);
4575 		break;
4576 	}
4577 
4578 	return NOTIFY_OK;
4579 }
4580 
4581 static struct notifier_block spi_acpi_notifier = {
4582 	.notifier_call = acpi_spi_notify,
4583 };
4584 #else
4585 extern struct notifier_block spi_acpi_notifier;
4586 #endif
4587 
4588 static int __init spi_init(void)
4589 {
4590 	int	status;
4591 
4592 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4593 	if (!buf) {
4594 		status = -ENOMEM;
4595 		goto err0;
4596 	}
4597 
4598 	status = bus_register(&spi_bus_type);
4599 	if (status < 0)
4600 		goto err1;
4601 
4602 	status = class_register(&spi_master_class);
4603 	if (status < 0)
4604 		goto err2;
4605 
4606 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4607 		status = class_register(&spi_slave_class);
4608 		if (status < 0)
4609 			goto err3;
4610 	}
4611 
4612 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4613 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4614 	if (IS_ENABLED(CONFIG_ACPI))
4615 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4616 
4617 	return 0;
4618 
4619 err3:
4620 	class_unregister(&spi_master_class);
4621 err2:
4622 	bus_unregister(&spi_bus_type);
4623 err1:
4624 	kfree(buf);
4625 	buf = NULL;
4626 err0:
4627 	return status;
4628 }
4629 
4630 /*
4631  * A board_info is normally registered in arch_initcall(),
4632  * but even essential drivers wait till later.
4633  *
4634  * REVISIT only boardinfo really needs static linking. The rest (device and
4635  * driver registration) _could_ be dynamically linked (modular) ... Costs
4636  * include needing to have boardinfo data structures be much more public.
4637  */
4638 postcore_initcall(spi_init);
4639