1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/kmod.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/cache.h> 27 #include <linux/mutex.h> 28 #include <linux/of_device.h> 29 #include <linux/of_irq.h> 30 #include <linux/slab.h> 31 #include <linux/mod_devicetable.h> 32 #include <linux/spi/spi.h> 33 #include <linux/of_gpio.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/export.h> 36 #include <linux/sched/rt.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/ioport.h> 40 #include <linux/acpi.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/spi.h> 44 45 static void spidev_release(struct device *dev) 46 { 47 struct spi_device *spi = to_spi_device(dev); 48 49 /* spi masters may cleanup for released devices */ 50 if (spi->master->cleanup) 51 spi->master->cleanup(spi); 52 53 spi_master_put(spi->master); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static struct attribute *spi_dev_attrs[] = { 72 &dev_attr_modalias.attr, 73 NULL, 74 }; 75 ATTRIBUTE_GROUPS(spi_dev); 76 77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 78 * and the sysfs version makes coldplug work too. 79 */ 80 81 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 82 const struct spi_device *sdev) 83 { 84 while (id->name[0]) { 85 if (!strcmp(sdev->modalias, id->name)) 86 return id; 87 id++; 88 } 89 return NULL; 90 } 91 92 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 93 { 94 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 95 96 return spi_match_id(sdrv->id_table, sdev); 97 } 98 EXPORT_SYMBOL_GPL(spi_get_device_id); 99 100 static int spi_match_device(struct device *dev, struct device_driver *drv) 101 { 102 const struct spi_device *spi = to_spi_device(dev); 103 const struct spi_driver *sdrv = to_spi_driver(drv); 104 105 /* Attempt an OF style match */ 106 if (of_driver_match_device(dev, drv)) 107 return 1; 108 109 /* Then try ACPI */ 110 if (acpi_driver_match_device(dev, drv)) 111 return 1; 112 113 if (sdrv->id_table) 114 return !!spi_match_id(sdrv->id_table, spi); 115 116 return strcmp(spi->modalias, drv->name) == 0; 117 } 118 119 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 120 { 121 const struct spi_device *spi = to_spi_device(dev); 122 int rc; 123 124 rc = acpi_device_uevent_modalias(dev, env); 125 if (rc != -ENODEV) 126 return rc; 127 128 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 129 return 0; 130 } 131 132 #ifdef CONFIG_PM_SLEEP 133 static int spi_legacy_suspend(struct device *dev, pm_message_t message) 134 { 135 int value = 0; 136 struct spi_driver *drv = to_spi_driver(dev->driver); 137 138 /* suspend will stop irqs and dma; no more i/o */ 139 if (drv) { 140 if (drv->suspend) 141 value = drv->suspend(to_spi_device(dev), message); 142 else 143 dev_dbg(dev, "... can't suspend\n"); 144 } 145 return value; 146 } 147 148 static int spi_legacy_resume(struct device *dev) 149 { 150 int value = 0; 151 struct spi_driver *drv = to_spi_driver(dev->driver); 152 153 /* resume may restart the i/o queue */ 154 if (drv) { 155 if (drv->resume) 156 value = drv->resume(to_spi_device(dev)); 157 else 158 dev_dbg(dev, "... can't resume\n"); 159 } 160 return value; 161 } 162 163 static int spi_pm_suspend(struct device *dev) 164 { 165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 166 167 if (pm) 168 return pm_generic_suspend(dev); 169 else 170 return spi_legacy_suspend(dev, PMSG_SUSPEND); 171 } 172 173 static int spi_pm_resume(struct device *dev) 174 { 175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 176 177 if (pm) 178 return pm_generic_resume(dev); 179 else 180 return spi_legacy_resume(dev); 181 } 182 183 static int spi_pm_freeze(struct device *dev) 184 { 185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 186 187 if (pm) 188 return pm_generic_freeze(dev); 189 else 190 return spi_legacy_suspend(dev, PMSG_FREEZE); 191 } 192 193 static int spi_pm_thaw(struct device *dev) 194 { 195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 196 197 if (pm) 198 return pm_generic_thaw(dev); 199 else 200 return spi_legacy_resume(dev); 201 } 202 203 static int spi_pm_poweroff(struct device *dev) 204 { 205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 206 207 if (pm) 208 return pm_generic_poweroff(dev); 209 else 210 return spi_legacy_suspend(dev, PMSG_HIBERNATE); 211 } 212 213 static int spi_pm_restore(struct device *dev) 214 { 215 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 216 217 if (pm) 218 return pm_generic_restore(dev); 219 else 220 return spi_legacy_resume(dev); 221 } 222 #else 223 #define spi_pm_suspend NULL 224 #define spi_pm_resume NULL 225 #define spi_pm_freeze NULL 226 #define spi_pm_thaw NULL 227 #define spi_pm_poweroff NULL 228 #define spi_pm_restore NULL 229 #endif 230 231 static const struct dev_pm_ops spi_pm = { 232 .suspend = spi_pm_suspend, 233 .resume = spi_pm_resume, 234 .freeze = spi_pm_freeze, 235 .thaw = spi_pm_thaw, 236 .poweroff = spi_pm_poweroff, 237 .restore = spi_pm_restore, 238 SET_RUNTIME_PM_OPS( 239 pm_generic_runtime_suspend, 240 pm_generic_runtime_resume, 241 NULL 242 ) 243 }; 244 245 struct bus_type spi_bus_type = { 246 .name = "spi", 247 .dev_groups = spi_dev_groups, 248 .match = spi_match_device, 249 .uevent = spi_uevent, 250 .pm = &spi_pm, 251 }; 252 EXPORT_SYMBOL_GPL(spi_bus_type); 253 254 255 static int spi_drv_probe(struct device *dev) 256 { 257 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 258 struct spi_device *spi = to_spi_device(dev); 259 int ret; 260 261 acpi_dev_pm_attach(&spi->dev, true); 262 ret = sdrv->probe(spi); 263 if (ret) 264 acpi_dev_pm_detach(&spi->dev, true); 265 266 return ret; 267 } 268 269 static int spi_drv_remove(struct device *dev) 270 { 271 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 272 struct spi_device *spi = to_spi_device(dev); 273 int ret; 274 275 ret = sdrv->remove(spi); 276 acpi_dev_pm_detach(&spi->dev, true); 277 278 return ret; 279 } 280 281 static void spi_drv_shutdown(struct device *dev) 282 { 283 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 284 285 sdrv->shutdown(to_spi_device(dev)); 286 } 287 288 /** 289 * spi_register_driver - register a SPI driver 290 * @sdrv: the driver to register 291 * Context: can sleep 292 */ 293 int spi_register_driver(struct spi_driver *sdrv) 294 { 295 sdrv->driver.bus = &spi_bus_type; 296 if (sdrv->probe) 297 sdrv->driver.probe = spi_drv_probe; 298 if (sdrv->remove) 299 sdrv->driver.remove = spi_drv_remove; 300 if (sdrv->shutdown) 301 sdrv->driver.shutdown = spi_drv_shutdown; 302 return driver_register(&sdrv->driver); 303 } 304 EXPORT_SYMBOL_GPL(spi_register_driver); 305 306 /*-------------------------------------------------------------------------*/ 307 308 /* SPI devices should normally not be created by SPI device drivers; that 309 * would make them board-specific. Similarly with SPI master drivers. 310 * Device registration normally goes into like arch/.../mach.../board-YYY.c 311 * with other readonly (flashable) information about mainboard devices. 312 */ 313 314 struct boardinfo { 315 struct list_head list; 316 struct spi_board_info board_info; 317 }; 318 319 static LIST_HEAD(board_list); 320 static LIST_HEAD(spi_master_list); 321 322 /* 323 * Used to protect add/del opertion for board_info list and 324 * spi_master list, and their matching process 325 */ 326 static DEFINE_MUTEX(board_lock); 327 328 /** 329 * spi_alloc_device - Allocate a new SPI device 330 * @master: Controller to which device is connected 331 * Context: can sleep 332 * 333 * Allows a driver to allocate and initialize a spi_device without 334 * registering it immediately. This allows a driver to directly 335 * fill the spi_device with device parameters before calling 336 * spi_add_device() on it. 337 * 338 * Caller is responsible to call spi_add_device() on the returned 339 * spi_device structure to add it to the SPI master. If the caller 340 * needs to discard the spi_device without adding it, then it should 341 * call spi_dev_put() on it. 342 * 343 * Returns a pointer to the new device, or NULL. 344 */ 345 struct spi_device *spi_alloc_device(struct spi_master *master) 346 { 347 struct spi_device *spi; 348 struct device *dev = master->dev.parent; 349 350 if (!spi_master_get(master)) 351 return NULL; 352 353 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 354 if (!spi) { 355 dev_err(dev, "cannot alloc spi_device\n"); 356 spi_master_put(master); 357 return NULL; 358 } 359 360 spi->master = master; 361 spi->dev.parent = &master->dev; 362 spi->dev.bus = &spi_bus_type; 363 spi->dev.release = spidev_release; 364 spi->cs_gpio = -ENOENT; 365 device_initialize(&spi->dev); 366 return spi; 367 } 368 EXPORT_SYMBOL_GPL(spi_alloc_device); 369 370 static void spi_dev_set_name(struct spi_device *spi) 371 { 372 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 373 374 if (adev) { 375 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 376 return; 377 } 378 379 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 380 spi->chip_select); 381 } 382 383 static int spi_dev_check(struct device *dev, void *data) 384 { 385 struct spi_device *spi = to_spi_device(dev); 386 struct spi_device *new_spi = data; 387 388 if (spi->master == new_spi->master && 389 spi->chip_select == new_spi->chip_select) 390 return -EBUSY; 391 return 0; 392 } 393 394 /** 395 * spi_add_device - Add spi_device allocated with spi_alloc_device 396 * @spi: spi_device to register 397 * 398 * Companion function to spi_alloc_device. Devices allocated with 399 * spi_alloc_device can be added onto the spi bus with this function. 400 * 401 * Returns 0 on success; negative errno on failure 402 */ 403 int spi_add_device(struct spi_device *spi) 404 { 405 static DEFINE_MUTEX(spi_add_lock); 406 struct spi_master *master = spi->master; 407 struct device *dev = master->dev.parent; 408 int status; 409 410 /* Chipselects are numbered 0..max; validate. */ 411 if (spi->chip_select >= master->num_chipselect) { 412 dev_err(dev, "cs%d >= max %d\n", 413 spi->chip_select, 414 master->num_chipselect); 415 return -EINVAL; 416 } 417 418 /* Set the bus ID string */ 419 spi_dev_set_name(spi); 420 421 /* We need to make sure there's no other device with this 422 * chipselect **BEFORE** we call setup(), else we'll trash 423 * its configuration. Lock against concurrent add() calls. 424 */ 425 mutex_lock(&spi_add_lock); 426 427 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 428 if (status) { 429 dev_err(dev, "chipselect %d already in use\n", 430 spi->chip_select); 431 goto done; 432 } 433 434 if (master->cs_gpios) 435 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 436 437 /* Drivers may modify this initial i/o setup, but will 438 * normally rely on the device being setup. Devices 439 * using SPI_CS_HIGH can't coexist well otherwise... 440 */ 441 status = spi_setup(spi); 442 if (status < 0) { 443 dev_err(dev, "can't setup %s, status %d\n", 444 dev_name(&spi->dev), status); 445 goto done; 446 } 447 448 /* Device may be bound to an active driver when this returns */ 449 status = device_add(&spi->dev); 450 if (status < 0) 451 dev_err(dev, "can't add %s, status %d\n", 452 dev_name(&spi->dev), status); 453 else 454 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 455 456 done: 457 mutex_unlock(&spi_add_lock); 458 return status; 459 } 460 EXPORT_SYMBOL_GPL(spi_add_device); 461 462 /** 463 * spi_new_device - instantiate one new SPI device 464 * @master: Controller to which device is connected 465 * @chip: Describes the SPI device 466 * Context: can sleep 467 * 468 * On typical mainboards, this is purely internal; and it's not needed 469 * after board init creates the hard-wired devices. Some development 470 * platforms may not be able to use spi_register_board_info though, and 471 * this is exported so that for example a USB or parport based adapter 472 * driver could add devices (which it would learn about out-of-band). 473 * 474 * Returns the new device, or NULL. 475 */ 476 struct spi_device *spi_new_device(struct spi_master *master, 477 struct spi_board_info *chip) 478 { 479 struct spi_device *proxy; 480 int status; 481 482 /* NOTE: caller did any chip->bus_num checks necessary. 483 * 484 * Also, unless we change the return value convention to use 485 * error-or-pointer (not NULL-or-pointer), troubleshootability 486 * suggests syslogged diagnostics are best here (ugh). 487 */ 488 489 proxy = spi_alloc_device(master); 490 if (!proxy) 491 return NULL; 492 493 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 494 495 proxy->chip_select = chip->chip_select; 496 proxy->max_speed_hz = chip->max_speed_hz; 497 proxy->mode = chip->mode; 498 proxy->irq = chip->irq; 499 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 500 proxy->dev.platform_data = (void *) chip->platform_data; 501 proxy->controller_data = chip->controller_data; 502 proxy->controller_state = NULL; 503 504 status = spi_add_device(proxy); 505 if (status < 0) { 506 spi_dev_put(proxy); 507 return NULL; 508 } 509 510 return proxy; 511 } 512 EXPORT_SYMBOL_GPL(spi_new_device); 513 514 static void spi_match_master_to_boardinfo(struct spi_master *master, 515 struct spi_board_info *bi) 516 { 517 struct spi_device *dev; 518 519 if (master->bus_num != bi->bus_num) 520 return; 521 522 dev = spi_new_device(master, bi); 523 if (!dev) 524 dev_err(master->dev.parent, "can't create new device for %s\n", 525 bi->modalias); 526 } 527 528 /** 529 * spi_register_board_info - register SPI devices for a given board 530 * @info: array of chip descriptors 531 * @n: how many descriptors are provided 532 * Context: can sleep 533 * 534 * Board-specific early init code calls this (probably during arch_initcall) 535 * with segments of the SPI device table. Any device nodes are created later, 536 * after the relevant parent SPI controller (bus_num) is defined. We keep 537 * this table of devices forever, so that reloading a controller driver will 538 * not make Linux forget about these hard-wired devices. 539 * 540 * Other code can also call this, e.g. a particular add-on board might provide 541 * SPI devices through its expansion connector, so code initializing that board 542 * would naturally declare its SPI devices. 543 * 544 * The board info passed can safely be __initdata ... but be careful of 545 * any embedded pointers (platform_data, etc), they're copied as-is. 546 */ 547 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 548 { 549 struct boardinfo *bi; 550 int i; 551 552 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 553 if (!bi) 554 return -ENOMEM; 555 556 for (i = 0; i < n; i++, bi++, info++) { 557 struct spi_master *master; 558 559 memcpy(&bi->board_info, info, sizeof(*info)); 560 mutex_lock(&board_lock); 561 list_add_tail(&bi->list, &board_list); 562 list_for_each_entry(master, &spi_master_list, list) 563 spi_match_master_to_boardinfo(master, &bi->board_info); 564 mutex_unlock(&board_lock); 565 } 566 567 return 0; 568 } 569 570 /*-------------------------------------------------------------------------*/ 571 572 static void spi_set_cs(struct spi_device *spi, bool enable) 573 { 574 if (spi->mode & SPI_CS_HIGH) 575 enable = !enable; 576 577 if (spi->cs_gpio >= 0) 578 gpio_set_value(spi->cs_gpio, !enable); 579 else if (spi->master->set_cs) 580 spi->master->set_cs(spi, !enable); 581 } 582 583 /* 584 * spi_transfer_one_message - Default implementation of transfer_one_message() 585 * 586 * This is a standard implementation of transfer_one_message() for 587 * drivers which impelment a transfer_one() operation. It provides 588 * standard handling of delays and chip select management. 589 */ 590 static int spi_transfer_one_message(struct spi_master *master, 591 struct spi_message *msg) 592 { 593 struct spi_transfer *xfer; 594 bool cur_cs = true; 595 bool keep_cs = false; 596 int ret = 0; 597 598 spi_set_cs(msg->spi, true); 599 600 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 601 trace_spi_transfer_start(msg, xfer); 602 603 reinit_completion(&master->xfer_completion); 604 605 ret = master->transfer_one(master, msg->spi, xfer); 606 if (ret < 0) { 607 dev_err(&msg->spi->dev, 608 "SPI transfer failed: %d\n", ret); 609 goto out; 610 } 611 612 if (ret > 0) { 613 ret = 0; 614 wait_for_completion(&master->xfer_completion); 615 } 616 617 trace_spi_transfer_stop(msg, xfer); 618 619 if (msg->status != -EINPROGRESS) 620 goto out; 621 622 if (xfer->delay_usecs) 623 udelay(xfer->delay_usecs); 624 625 if (xfer->cs_change) { 626 if (list_is_last(&xfer->transfer_list, 627 &msg->transfers)) { 628 keep_cs = true; 629 } else { 630 cur_cs = !cur_cs; 631 spi_set_cs(msg->spi, cur_cs); 632 } 633 } 634 635 msg->actual_length += xfer->len; 636 } 637 638 out: 639 if (ret != 0 || !keep_cs) 640 spi_set_cs(msg->spi, false); 641 642 if (msg->status == -EINPROGRESS) 643 msg->status = ret; 644 645 spi_finalize_current_message(master); 646 647 return ret; 648 } 649 650 /** 651 * spi_finalize_current_transfer - report completion of a transfer 652 * 653 * Called by SPI drivers using the core transfer_one_message() 654 * implementation to notify it that the current interrupt driven 655 * transfer has finished and the next one may be scheduled. 656 */ 657 void spi_finalize_current_transfer(struct spi_master *master) 658 { 659 complete(&master->xfer_completion); 660 } 661 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 662 663 /** 664 * spi_pump_messages - kthread work function which processes spi message queue 665 * @work: pointer to kthread work struct contained in the master struct 666 * 667 * This function checks if there is any spi message in the queue that 668 * needs processing and if so call out to the driver to initialize hardware 669 * and transfer each message. 670 * 671 */ 672 static void spi_pump_messages(struct kthread_work *work) 673 { 674 struct spi_master *master = 675 container_of(work, struct spi_master, pump_messages); 676 unsigned long flags; 677 bool was_busy = false; 678 int ret; 679 680 /* Lock queue and check for queue work */ 681 spin_lock_irqsave(&master->queue_lock, flags); 682 if (list_empty(&master->queue) || !master->running) { 683 if (!master->busy) { 684 spin_unlock_irqrestore(&master->queue_lock, flags); 685 return; 686 } 687 master->busy = false; 688 spin_unlock_irqrestore(&master->queue_lock, flags); 689 if (master->unprepare_transfer_hardware && 690 master->unprepare_transfer_hardware(master)) 691 dev_err(&master->dev, 692 "failed to unprepare transfer hardware\n"); 693 if (master->auto_runtime_pm) { 694 pm_runtime_mark_last_busy(master->dev.parent); 695 pm_runtime_put_autosuspend(master->dev.parent); 696 } 697 trace_spi_master_idle(master); 698 return; 699 } 700 701 /* Make sure we are not already running a message */ 702 if (master->cur_msg) { 703 spin_unlock_irqrestore(&master->queue_lock, flags); 704 return; 705 } 706 /* Extract head of queue */ 707 master->cur_msg = 708 list_first_entry(&master->queue, struct spi_message, queue); 709 710 list_del_init(&master->cur_msg->queue); 711 if (master->busy) 712 was_busy = true; 713 else 714 master->busy = true; 715 spin_unlock_irqrestore(&master->queue_lock, flags); 716 717 if (!was_busy && master->auto_runtime_pm) { 718 ret = pm_runtime_get_sync(master->dev.parent); 719 if (ret < 0) { 720 dev_err(&master->dev, "Failed to power device: %d\n", 721 ret); 722 return; 723 } 724 } 725 726 if (!was_busy) 727 trace_spi_master_busy(master); 728 729 if (!was_busy && master->prepare_transfer_hardware) { 730 ret = master->prepare_transfer_hardware(master); 731 if (ret) { 732 dev_err(&master->dev, 733 "failed to prepare transfer hardware\n"); 734 735 if (master->auto_runtime_pm) 736 pm_runtime_put(master->dev.parent); 737 return; 738 } 739 } 740 741 trace_spi_message_start(master->cur_msg); 742 743 if (master->prepare_message) { 744 ret = master->prepare_message(master, master->cur_msg); 745 if (ret) { 746 dev_err(&master->dev, 747 "failed to prepare message: %d\n", ret); 748 master->cur_msg->status = ret; 749 spi_finalize_current_message(master); 750 return; 751 } 752 master->cur_msg_prepared = true; 753 } 754 755 ret = master->transfer_one_message(master, master->cur_msg); 756 if (ret) { 757 dev_err(&master->dev, 758 "failed to transfer one message from queue\n"); 759 return; 760 } 761 } 762 763 static int spi_init_queue(struct spi_master *master) 764 { 765 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 766 767 INIT_LIST_HEAD(&master->queue); 768 spin_lock_init(&master->queue_lock); 769 770 master->running = false; 771 master->busy = false; 772 773 init_kthread_worker(&master->kworker); 774 master->kworker_task = kthread_run(kthread_worker_fn, 775 &master->kworker, "%s", 776 dev_name(&master->dev)); 777 if (IS_ERR(master->kworker_task)) { 778 dev_err(&master->dev, "failed to create message pump task\n"); 779 return -ENOMEM; 780 } 781 init_kthread_work(&master->pump_messages, spi_pump_messages); 782 783 /* 784 * Master config will indicate if this controller should run the 785 * message pump with high (realtime) priority to reduce the transfer 786 * latency on the bus by minimising the delay between a transfer 787 * request and the scheduling of the message pump thread. Without this 788 * setting the message pump thread will remain at default priority. 789 */ 790 if (master->rt) { 791 dev_info(&master->dev, 792 "will run message pump with realtime priority\n"); 793 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 794 } 795 796 return 0; 797 } 798 799 /** 800 * spi_get_next_queued_message() - called by driver to check for queued 801 * messages 802 * @master: the master to check for queued messages 803 * 804 * If there are more messages in the queue, the next message is returned from 805 * this call. 806 */ 807 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 808 { 809 struct spi_message *next; 810 unsigned long flags; 811 812 /* get a pointer to the next message, if any */ 813 spin_lock_irqsave(&master->queue_lock, flags); 814 next = list_first_entry_or_null(&master->queue, struct spi_message, 815 queue); 816 spin_unlock_irqrestore(&master->queue_lock, flags); 817 818 return next; 819 } 820 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 821 822 /** 823 * spi_finalize_current_message() - the current message is complete 824 * @master: the master to return the message to 825 * 826 * Called by the driver to notify the core that the message in the front of the 827 * queue is complete and can be removed from the queue. 828 */ 829 void spi_finalize_current_message(struct spi_master *master) 830 { 831 struct spi_message *mesg; 832 unsigned long flags; 833 int ret; 834 835 spin_lock_irqsave(&master->queue_lock, flags); 836 mesg = master->cur_msg; 837 master->cur_msg = NULL; 838 839 queue_kthread_work(&master->kworker, &master->pump_messages); 840 spin_unlock_irqrestore(&master->queue_lock, flags); 841 842 if (master->cur_msg_prepared && master->unprepare_message) { 843 ret = master->unprepare_message(master, mesg); 844 if (ret) { 845 dev_err(&master->dev, 846 "failed to unprepare message: %d\n", ret); 847 } 848 } 849 master->cur_msg_prepared = false; 850 851 mesg->state = NULL; 852 if (mesg->complete) 853 mesg->complete(mesg->context); 854 855 trace_spi_message_done(mesg); 856 } 857 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 858 859 static int spi_start_queue(struct spi_master *master) 860 { 861 unsigned long flags; 862 863 spin_lock_irqsave(&master->queue_lock, flags); 864 865 if (master->running || master->busy) { 866 spin_unlock_irqrestore(&master->queue_lock, flags); 867 return -EBUSY; 868 } 869 870 master->running = true; 871 master->cur_msg = NULL; 872 spin_unlock_irqrestore(&master->queue_lock, flags); 873 874 queue_kthread_work(&master->kworker, &master->pump_messages); 875 876 return 0; 877 } 878 879 static int spi_stop_queue(struct spi_master *master) 880 { 881 unsigned long flags; 882 unsigned limit = 500; 883 int ret = 0; 884 885 spin_lock_irqsave(&master->queue_lock, flags); 886 887 /* 888 * This is a bit lame, but is optimized for the common execution path. 889 * A wait_queue on the master->busy could be used, but then the common 890 * execution path (pump_messages) would be required to call wake_up or 891 * friends on every SPI message. Do this instead. 892 */ 893 while ((!list_empty(&master->queue) || master->busy) && limit--) { 894 spin_unlock_irqrestore(&master->queue_lock, flags); 895 msleep(10); 896 spin_lock_irqsave(&master->queue_lock, flags); 897 } 898 899 if (!list_empty(&master->queue) || master->busy) 900 ret = -EBUSY; 901 else 902 master->running = false; 903 904 spin_unlock_irqrestore(&master->queue_lock, flags); 905 906 if (ret) { 907 dev_warn(&master->dev, 908 "could not stop message queue\n"); 909 return ret; 910 } 911 return ret; 912 } 913 914 static int spi_destroy_queue(struct spi_master *master) 915 { 916 int ret; 917 918 ret = spi_stop_queue(master); 919 920 /* 921 * flush_kthread_worker will block until all work is done. 922 * If the reason that stop_queue timed out is that the work will never 923 * finish, then it does no good to call flush/stop thread, so 924 * return anyway. 925 */ 926 if (ret) { 927 dev_err(&master->dev, "problem destroying queue\n"); 928 return ret; 929 } 930 931 flush_kthread_worker(&master->kworker); 932 kthread_stop(master->kworker_task); 933 934 return 0; 935 } 936 937 /** 938 * spi_queued_transfer - transfer function for queued transfers 939 * @spi: spi device which is requesting transfer 940 * @msg: spi message which is to handled is queued to driver queue 941 */ 942 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 943 { 944 struct spi_master *master = spi->master; 945 unsigned long flags; 946 947 spin_lock_irqsave(&master->queue_lock, flags); 948 949 if (!master->running) { 950 spin_unlock_irqrestore(&master->queue_lock, flags); 951 return -ESHUTDOWN; 952 } 953 msg->actual_length = 0; 954 msg->status = -EINPROGRESS; 955 956 list_add_tail(&msg->queue, &master->queue); 957 if (!master->busy) 958 queue_kthread_work(&master->kworker, &master->pump_messages); 959 960 spin_unlock_irqrestore(&master->queue_lock, flags); 961 return 0; 962 } 963 964 static int spi_master_initialize_queue(struct spi_master *master) 965 { 966 int ret; 967 968 master->queued = true; 969 master->transfer = spi_queued_transfer; 970 if (!master->transfer_one_message) 971 master->transfer_one_message = spi_transfer_one_message; 972 973 /* Initialize and start queue */ 974 ret = spi_init_queue(master); 975 if (ret) { 976 dev_err(&master->dev, "problem initializing queue\n"); 977 goto err_init_queue; 978 } 979 ret = spi_start_queue(master); 980 if (ret) { 981 dev_err(&master->dev, "problem starting queue\n"); 982 goto err_start_queue; 983 } 984 985 return 0; 986 987 err_start_queue: 988 err_init_queue: 989 spi_destroy_queue(master); 990 return ret; 991 } 992 993 /*-------------------------------------------------------------------------*/ 994 995 #if defined(CONFIG_OF) 996 /** 997 * of_register_spi_devices() - Register child devices onto the SPI bus 998 * @master: Pointer to spi_master device 999 * 1000 * Registers an spi_device for each child node of master node which has a 'reg' 1001 * property. 1002 */ 1003 static void of_register_spi_devices(struct spi_master *master) 1004 { 1005 struct spi_device *spi; 1006 struct device_node *nc; 1007 int rc; 1008 u32 value; 1009 1010 if (!master->dev.of_node) 1011 return; 1012 1013 for_each_available_child_of_node(master->dev.of_node, nc) { 1014 /* Alloc an spi_device */ 1015 spi = spi_alloc_device(master); 1016 if (!spi) { 1017 dev_err(&master->dev, "spi_device alloc error for %s\n", 1018 nc->full_name); 1019 spi_dev_put(spi); 1020 continue; 1021 } 1022 1023 /* Select device driver */ 1024 if (of_modalias_node(nc, spi->modalias, 1025 sizeof(spi->modalias)) < 0) { 1026 dev_err(&master->dev, "cannot find modalias for %s\n", 1027 nc->full_name); 1028 spi_dev_put(spi); 1029 continue; 1030 } 1031 1032 /* Device address */ 1033 rc = of_property_read_u32(nc, "reg", &value); 1034 if (rc) { 1035 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", 1036 nc->full_name, rc); 1037 spi_dev_put(spi); 1038 continue; 1039 } 1040 spi->chip_select = value; 1041 1042 /* Mode (clock phase/polarity/etc.) */ 1043 if (of_find_property(nc, "spi-cpha", NULL)) 1044 spi->mode |= SPI_CPHA; 1045 if (of_find_property(nc, "spi-cpol", NULL)) 1046 spi->mode |= SPI_CPOL; 1047 if (of_find_property(nc, "spi-cs-high", NULL)) 1048 spi->mode |= SPI_CS_HIGH; 1049 if (of_find_property(nc, "spi-3wire", NULL)) 1050 spi->mode |= SPI_3WIRE; 1051 1052 /* Device DUAL/QUAD mode */ 1053 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1054 switch (value) { 1055 case 1: 1056 break; 1057 case 2: 1058 spi->mode |= SPI_TX_DUAL; 1059 break; 1060 case 4: 1061 spi->mode |= SPI_TX_QUAD; 1062 break; 1063 default: 1064 dev_err(&master->dev, 1065 "spi-tx-bus-width %d not supported\n", 1066 value); 1067 spi_dev_put(spi); 1068 continue; 1069 } 1070 } 1071 1072 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1073 switch (value) { 1074 case 1: 1075 break; 1076 case 2: 1077 spi->mode |= SPI_RX_DUAL; 1078 break; 1079 case 4: 1080 spi->mode |= SPI_RX_QUAD; 1081 break; 1082 default: 1083 dev_err(&master->dev, 1084 "spi-rx-bus-width %d not supported\n", 1085 value); 1086 spi_dev_put(spi); 1087 continue; 1088 } 1089 } 1090 1091 /* Device speed */ 1092 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1093 if (rc) { 1094 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", 1095 nc->full_name, rc); 1096 spi_dev_put(spi); 1097 continue; 1098 } 1099 spi->max_speed_hz = value; 1100 1101 /* IRQ */ 1102 spi->irq = irq_of_parse_and_map(nc, 0); 1103 1104 /* Store a pointer to the node in the device structure */ 1105 of_node_get(nc); 1106 spi->dev.of_node = nc; 1107 1108 /* Register the new device */ 1109 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias); 1110 rc = spi_add_device(spi); 1111 if (rc) { 1112 dev_err(&master->dev, "spi_device register error %s\n", 1113 nc->full_name); 1114 spi_dev_put(spi); 1115 } 1116 1117 } 1118 } 1119 #else 1120 static void of_register_spi_devices(struct spi_master *master) { } 1121 #endif 1122 1123 #ifdef CONFIG_ACPI 1124 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1125 { 1126 struct spi_device *spi = data; 1127 1128 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1129 struct acpi_resource_spi_serialbus *sb; 1130 1131 sb = &ares->data.spi_serial_bus; 1132 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1133 spi->chip_select = sb->device_selection; 1134 spi->max_speed_hz = sb->connection_speed; 1135 1136 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1137 spi->mode |= SPI_CPHA; 1138 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1139 spi->mode |= SPI_CPOL; 1140 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1141 spi->mode |= SPI_CS_HIGH; 1142 } 1143 } else if (spi->irq < 0) { 1144 struct resource r; 1145 1146 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1147 spi->irq = r.start; 1148 } 1149 1150 /* Always tell the ACPI core to skip this resource */ 1151 return 1; 1152 } 1153 1154 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1155 void *data, void **return_value) 1156 { 1157 struct spi_master *master = data; 1158 struct list_head resource_list; 1159 struct acpi_device *adev; 1160 struct spi_device *spi; 1161 int ret; 1162 1163 if (acpi_bus_get_device(handle, &adev)) 1164 return AE_OK; 1165 if (acpi_bus_get_status(adev) || !adev->status.present) 1166 return AE_OK; 1167 1168 spi = spi_alloc_device(master); 1169 if (!spi) { 1170 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 1171 dev_name(&adev->dev)); 1172 return AE_NO_MEMORY; 1173 } 1174 1175 ACPI_COMPANION_SET(&spi->dev, adev); 1176 spi->irq = -1; 1177 1178 INIT_LIST_HEAD(&resource_list); 1179 ret = acpi_dev_get_resources(adev, &resource_list, 1180 acpi_spi_add_resource, spi); 1181 acpi_dev_free_resource_list(&resource_list); 1182 1183 if (ret < 0 || !spi->max_speed_hz) { 1184 spi_dev_put(spi); 1185 return AE_OK; 1186 } 1187 1188 adev->power.flags.ignore_parent = true; 1189 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); 1190 if (spi_add_device(spi)) { 1191 adev->power.flags.ignore_parent = false; 1192 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 1193 dev_name(&adev->dev)); 1194 spi_dev_put(spi); 1195 } 1196 1197 return AE_OK; 1198 } 1199 1200 static void acpi_register_spi_devices(struct spi_master *master) 1201 { 1202 acpi_status status; 1203 acpi_handle handle; 1204 1205 handle = ACPI_HANDLE(master->dev.parent); 1206 if (!handle) 1207 return; 1208 1209 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1210 acpi_spi_add_device, NULL, 1211 master, NULL); 1212 if (ACPI_FAILURE(status)) 1213 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 1214 } 1215 #else 1216 static inline void acpi_register_spi_devices(struct spi_master *master) {} 1217 #endif /* CONFIG_ACPI */ 1218 1219 static void spi_master_release(struct device *dev) 1220 { 1221 struct spi_master *master; 1222 1223 master = container_of(dev, struct spi_master, dev); 1224 kfree(master); 1225 } 1226 1227 static struct class spi_master_class = { 1228 .name = "spi_master", 1229 .owner = THIS_MODULE, 1230 .dev_release = spi_master_release, 1231 }; 1232 1233 1234 1235 /** 1236 * spi_alloc_master - allocate SPI master controller 1237 * @dev: the controller, possibly using the platform_bus 1238 * @size: how much zeroed driver-private data to allocate; the pointer to this 1239 * memory is in the driver_data field of the returned device, 1240 * accessible with spi_master_get_devdata(). 1241 * Context: can sleep 1242 * 1243 * This call is used only by SPI master controller drivers, which are the 1244 * only ones directly touching chip registers. It's how they allocate 1245 * an spi_master structure, prior to calling spi_register_master(). 1246 * 1247 * This must be called from context that can sleep. It returns the SPI 1248 * master structure on success, else NULL. 1249 * 1250 * The caller is responsible for assigning the bus number and initializing 1251 * the master's methods before calling spi_register_master(); and (after errors 1252 * adding the device) calling spi_master_put() and kfree() to prevent a memory 1253 * leak. 1254 */ 1255 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1256 { 1257 struct spi_master *master; 1258 1259 if (!dev) 1260 return NULL; 1261 1262 master = kzalloc(size + sizeof(*master), GFP_KERNEL); 1263 if (!master) 1264 return NULL; 1265 1266 device_initialize(&master->dev); 1267 master->bus_num = -1; 1268 master->num_chipselect = 1; 1269 master->dev.class = &spi_master_class; 1270 master->dev.parent = get_device(dev); 1271 spi_master_set_devdata(master, &master[1]); 1272 1273 return master; 1274 } 1275 EXPORT_SYMBOL_GPL(spi_alloc_master); 1276 1277 #ifdef CONFIG_OF 1278 static int of_spi_register_master(struct spi_master *master) 1279 { 1280 int nb, i, *cs; 1281 struct device_node *np = master->dev.of_node; 1282 1283 if (!np) 1284 return 0; 1285 1286 nb = of_gpio_named_count(np, "cs-gpios"); 1287 master->num_chipselect = max_t(int, nb, master->num_chipselect); 1288 1289 /* Return error only for an incorrectly formed cs-gpios property */ 1290 if (nb == 0 || nb == -ENOENT) 1291 return 0; 1292 else if (nb < 0) 1293 return nb; 1294 1295 cs = devm_kzalloc(&master->dev, 1296 sizeof(int) * master->num_chipselect, 1297 GFP_KERNEL); 1298 master->cs_gpios = cs; 1299 1300 if (!master->cs_gpios) 1301 return -ENOMEM; 1302 1303 for (i = 0; i < master->num_chipselect; i++) 1304 cs[i] = -ENOENT; 1305 1306 for (i = 0; i < nb; i++) 1307 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1308 1309 return 0; 1310 } 1311 #else 1312 static int of_spi_register_master(struct spi_master *master) 1313 { 1314 return 0; 1315 } 1316 #endif 1317 1318 /** 1319 * spi_register_master - register SPI master controller 1320 * @master: initialized master, originally from spi_alloc_master() 1321 * Context: can sleep 1322 * 1323 * SPI master controllers connect to their drivers using some non-SPI bus, 1324 * such as the platform bus. The final stage of probe() in that code 1325 * includes calling spi_register_master() to hook up to this SPI bus glue. 1326 * 1327 * SPI controllers use board specific (often SOC specific) bus numbers, 1328 * and board-specific addressing for SPI devices combines those numbers 1329 * with chip select numbers. Since SPI does not directly support dynamic 1330 * device identification, boards need configuration tables telling which 1331 * chip is at which address. 1332 * 1333 * This must be called from context that can sleep. It returns zero on 1334 * success, else a negative error code (dropping the master's refcount). 1335 * After a successful return, the caller is responsible for calling 1336 * spi_unregister_master(). 1337 */ 1338 int spi_register_master(struct spi_master *master) 1339 { 1340 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1341 struct device *dev = master->dev.parent; 1342 struct boardinfo *bi; 1343 int status = -ENODEV; 1344 int dynamic = 0; 1345 1346 if (!dev) 1347 return -ENODEV; 1348 1349 status = of_spi_register_master(master); 1350 if (status) 1351 return status; 1352 1353 /* even if it's just one always-selected device, there must 1354 * be at least one chipselect 1355 */ 1356 if (master->num_chipselect == 0) 1357 return -EINVAL; 1358 1359 if ((master->bus_num < 0) && master->dev.of_node) 1360 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1361 1362 /* convention: dynamically assigned bus IDs count down from the max */ 1363 if (master->bus_num < 0) { 1364 /* FIXME switch to an IDR based scheme, something like 1365 * I2C now uses, so we can't run out of "dynamic" IDs 1366 */ 1367 master->bus_num = atomic_dec_return(&dyn_bus_id); 1368 dynamic = 1; 1369 } 1370 1371 spin_lock_init(&master->bus_lock_spinlock); 1372 mutex_init(&master->bus_lock_mutex); 1373 master->bus_lock_flag = 0; 1374 init_completion(&master->xfer_completion); 1375 1376 /* register the device, then userspace will see it. 1377 * registration fails if the bus ID is in use. 1378 */ 1379 dev_set_name(&master->dev, "spi%u", master->bus_num); 1380 status = device_add(&master->dev); 1381 if (status < 0) 1382 goto done; 1383 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1384 dynamic ? " (dynamic)" : ""); 1385 1386 /* If we're using a queued driver, start the queue */ 1387 if (master->transfer) 1388 dev_info(dev, "master is unqueued, this is deprecated\n"); 1389 else { 1390 status = spi_master_initialize_queue(master); 1391 if (status) { 1392 device_del(&master->dev); 1393 goto done; 1394 } 1395 } 1396 1397 mutex_lock(&board_lock); 1398 list_add_tail(&master->list, &spi_master_list); 1399 list_for_each_entry(bi, &board_list, list) 1400 spi_match_master_to_boardinfo(master, &bi->board_info); 1401 mutex_unlock(&board_lock); 1402 1403 /* Register devices from the device tree and ACPI */ 1404 of_register_spi_devices(master); 1405 acpi_register_spi_devices(master); 1406 done: 1407 return status; 1408 } 1409 EXPORT_SYMBOL_GPL(spi_register_master); 1410 1411 static void devm_spi_unregister(struct device *dev, void *res) 1412 { 1413 spi_unregister_master(*(struct spi_master **)res); 1414 } 1415 1416 /** 1417 * dev_spi_register_master - register managed SPI master controller 1418 * @dev: device managing SPI master 1419 * @master: initialized master, originally from spi_alloc_master() 1420 * Context: can sleep 1421 * 1422 * Register a SPI device as with spi_register_master() which will 1423 * automatically be unregister 1424 */ 1425 int devm_spi_register_master(struct device *dev, struct spi_master *master) 1426 { 1427 struct spi_master **ptr; 1428 int ret; 1429 1430 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 1431 if (!ptr) 1432 return -ENOMEM; 1433 1434 ret = spi_register_master(master); 1435 if (!ret) { 1436 *ptr = master; 1437 devres_add(dev, ptr); 1438 } else { 1439 devres_free(ptr); 1440 } 1441 1442 return ret; 1443 } 1444 EXPORT_SYMBOL_GPL(devm_spi_register_master); 1445 1446 static int __unregister(struct device *dev, void *null) 1447 { 1448 spi_unregister_device(to_spi_device(dev)); 1449 return 0; 1450 } 1451 1452 /** 1453 * spi_unregister_master - unregister SPI master controller 1454 * @master: the master being unregistered 1455 * Context: can sleep 1456 * 1457 * This call is used only by SPI master controller drivers, which are the 1458 * only ones directly touching chip registers. 1459 * 1460 * This must be called from context that can sleep. 1461 */ 1462 void spi_unregister_master(struct spi_master *master) 1463 { 1464 int dummy; 1465 1466 if (master->queued) { 1467 if (spi_destroy_queue(master)) 1468 dev_err(&master->dev, "queue remove failed\n"); 1469 } 1470 1471 mutex_lock(&board_lock); 1472 list_del(&master->list); 1473 mutex_unlock(&board_lock); 1474 1475 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1476 device_unregister(&master->dev); 1477 } 1478 EXPORT_SYMBOL_GPL(spi_unregister_master); 1479 1480 int spi_master_suspend(struct spi_master *master) 1481 { 1482 int ret; 1483 1484 /* Basically no-ops for non-queued masters */ 1485 if (!master->queued) 1486 return 0; 1487 1488 ret = spi_stop_queue(master); 1489 if (ret) 1490 dev_err(&master->dev, "queue stop failed\n"); 1491 1492 return ret; 1493 } 1494 EXPORT_SYMBOL_GPL(spi_master_suspend); 1495 1496 int spi_master_resume(struct spi_master *master) 1497 { 1498 int ret; 1499 1500 if (!master->queued) 1501 return 0; 1502 1503 ret = spi_start_queue(master); 1504 if (ret) 1505 dev_err(&master->dev, "queue restart failed\n"); 1506 1507 return ret; 1508 } 1509 EXPORT_SYMBOL_GPL(spi_master_resume); 1510 1511 static int __spi_master_match(struct device *dev, const void *data) 1512 { 1513 struct spi_master *m; 1514 const u16 *bus_num = data; 1515 1516 m = container_of(dev, struct spi_master, dev); 1517 return m->bus_num == *bus_num; 1518 } 1519 1520 /** 1521 * spi_busnum_to_master - look up master associated with bus_num 1522 * @bus_num: the master's bus number 1523 * Context: can sleep 1524 * 1525 * This call may be used with devices that are registered after 1526 * arch init time. It returns a refcounted pointer to the relevant 1527 * spi_master (which the caller must release), or NULL if there is 1528 * no such master registered. 1529 */ 1530 struct spi_master *spi_busnum_to_master(u16 bus_num) 1531 { 1532 struct device *dev; 1533 struct spi_master *master = NULL; 1534 1535 dev = class_find_device(&spi_master_class, NULL, &bus_num, 1536 __spi_master_match); 1537 if (dev) 1538 master = container_of(dev, struct spi_master, dev); 1539 /* reference got in class_find_device */ 1540 return master; 1541 } 1542 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 1543 1544 1545 /*-------------------------------------------------------------------------*/ 1546 1547 /* Core methods for SPI master protocol drivers. Some of the 1548 * other core methods are currently defined as inline functions. 1549 */ 1550 1551 /** 1552 * spi_setup - setup SPI mode and clock rate 1553 * @spi: the device whose settings are being modified 1554 * Context: can sleep, and no requests are queued to the device 1555 * 1556 * SPI protocol drivers may need to update the transfer mode if the 1557 * device doesn't work with its default. They may likewise need 1558 * to update clock rates or word sizes from initial values. This function 1559 * changes those settings, and must be called from a context that can sleep. 1560 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 1561 * effect the next time the device is selected and data is transferred to 1562 * or from it. When this function returns, the spi device is deselected. 1563 * 1564 * Note that this call will fail if the protocol driver specifies an option 1565 * that the underlying controller or its driver does not support. For 1566 * example, not all hardware supports wire transfers using nine bit words, 1567 * LSB-first wire encoding, or active-high chipselects. 1568 */ 1569 int spi_setup(struct spi_device *spi) 1570 { 1571 unsigned bad_bits; 1572 int status = 0; 1573 1574 /* check mode to prevent that DUAL and QUAD set at the same time 1575 */ 1576 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 1577 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 1578 dev_err(&spi->dev, 1579 "setup: can not select dual and quad at the same time\n"); 1580 return -EINVAL; 1581 } 1582 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 1583 */ 1584 if ((spi->mode & SPI_3WIRE) && (spi->mode & 1585 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 1586 return -EINVAL; 1587 /* help drivers fail *cleanly* when they need options 1588 * that aren't supported with their current master 1589 */ 1590 bad_bits = spi->mode & ~spi->master->mode_bits; 1591 if (bad_bits) { 1592 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 1593 bad_bits); 1594 return -EINVAL; 1595 } 1596 1597 if (!spi->bits_per_word) 1598 spi->bits_per_word = 8; 1599 1600 if (spi->master->setup) 1601 status = spi->master->setup(spi); 1602 1603 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 1604 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 1605 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 1606 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 1607 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 1608 (spi->mode & SPI_LOOP) ? "loopback, " : "", 1609 spi->bits_per_word, spi->max_speed_hz, 1610 status); 1611 1612 return status; 1613 } 1614 EXPORT_SYMBOL_GPL(spi_setup); 1615 1616 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 1617 { 1618 struct spi_master *master = spi->master; 1619 struct spi_transfer *xfer; 1620 1621 if (list_empty(&message->transfers)) 1622 return -EINVAL; 1623 if (!message->complete) 1624 return -EINVAL; 1625 1626 /* Half-duplex links include original MicroWire, and ones with 1627 * only one data pin like SPI_3WIRE (switches direction) or where 1628 * either MOSI or MISO is missing. They can also be caused by 1629 * software limitations. 1630 */ 1631 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 1632 || (spi->mode & SPI_3WIRE)) { 1633 unsigned flags = master->flags; 1634 1635 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1636 if (xfer->rx_buf && xfer->tx_buf) 1637 return -EINVAL; 1638 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 1639 return -EINVAL; 1640 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 1641 return -EINVAL; 1642 } 1643 } 1644 1645 /** 1646 * Set transfer bits_per_word and max speed as spi device default if 1647 * it is not set for this transfer. 1648 * Set transfer tx_nbits and rx_nbits as single transfer default 1649 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 1650 */ 1651 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1652 message->frame_length += xfer->len; 1653 if (!xfer->bits_per_word) 1654 xfer->bits_per_word = spi->bits_per_word; 1655 if (!xfer->speed_hz) { 1656 xfer->speed_hz = spi->max_speed_hz; 1657 if (master->max_speed_hz && 1658 xfer->speed_hz > master->max_speed_hz) 1659 xfer->speed_hz = master->max_speed_hz; 1660 } 1661 1662 if (master->bits_per_word_mask) { 1663 /* Only 32 bits fit in the mask */ 1664 if (xfer->bits_per_word > 32) 1665 return -EINVAL; 1666 if (!(master->bits_per_word_mask & 1667 BIT(xfer->bits_per_word - 1))) 1668 return -EINVAL; 1669 } 1670 1671 if (xfer->speed_hz && master->min_speed_hz && 1672 xfer->speed_hz < master->min_speed_hz) 1673 return -EINVAL; 1674 if (xfer->speed_hz && master->max_speed_hz && 1675 xfer->speed_hz > master->max_speed_hz) 1676 return -EINVAL; 1677 1678 if (xfer->tx_buf && !xfer->tx_nbits) 1679 xfer->tx_nbits = SPI_NBITS_SINGLE; 1680 if (xfer->rx_buf && !xfer->rx_nbits) 1681 xfer->rx_nbits = SPI_NBITS_SINGLE; 1682 /* check transfer tx/rx_nbits: 1683 * 1. check the value matches one of single, dual and quad 1684 * 2. check tx/rx_nbits match the mode in spi_device 1685 */ 1686 if (xfer->tx_buf) { 1687 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 1688 xfer->tx_nbits != SPI_NBITS_DUAL && 1689 xfer->tx_nbits != SPI_NBITS_QUAD) 1690 return -EINVAL; 1691 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 1692 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 1693 return -EINVAL; 1694 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 1695 !(spi->mode & SPI_TX_QUAD)) 1696 return -EINVAL; 1697 } 1698 /* check transfer rx_nbits */ 1699 if (xfer->rx_buf) { 1700 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 1701 xfer->rx_nbits != SPI_NBITS_DUAL && 1702 xfer->rx_nbits != SPI_NBITS_QUAD) 1703 return -EINVAL; 1704 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 1705 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 1706 return -EINVAL; 1707 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 1708 !(spi->mode & SPI_RX_QUAD)) 1709 return -EINVAL; 1710 } 1711 } 1712 1713 message->status = -EINPROGRESS; 1714 1715 return 0; 1716 } 1717 1718 static int __spi_async(struct spi_device *spi, struct spi_message *message) 1719 { 1720 struct spi_master *master = spi->master; 1721 1722 message->spi = spi; 1723 1724 trace_spi_message_submit(message); 1725 1726 return master->transfer(spi, message); 1727 } 1728 1729 /** 1730 * spi_async - asynchronous SPI transfer 1731 * @spi: device with which data will be exchanged 1732 * @message: describes the data transfers, including completion callback 1733 * Context: any (irqs may be blocked, etc) 1734 * 1735 * This call may be used in_irq and other contexts which can't sleep, 1736 * as well as from task contexts which can sleep. 1737 * 1738 * The completion callback is invoked in a context which can't sleep. 1739 * Before that invocation, the value of message->status is undefined. 1740 * When the callback is issued, message->status holds either zero (to 1741 * indicate complete success) or a negative error code. After that 1742 * callback returns, the driver which issued the transfer request may 1743 * deallocate the associated memory; it's no longer in use by any SPI 1744 * core or controller driver code. 1745 * 1746 * Note that although all messages to a spi_device are handled in 1747 * FIFO order, messages may go to different devices in other orders. 1748 * Some device might be higher priority, or have various "hard" access 1749 * time requirements, for example. 1750 * 1751 * On detection of any fault during the transfer, processing of 1752 * the entire message is aborted, and the device is deselected. 1753 * Until returning from the associated message completion callback, 1754 * no other spi_message queued to that device will be processed. 1755 * (This rule applies equally to all the synchronous transfer calls, 1756 * which are wrappers around this core asynchronous primitive.) 1757 */ 1758 int spi_async(struct spi_device *spi, struct spi_message *message) 1759 { 1760 struct spi_master *master = spi->master; 1761 int ret; 1762 unsigned long flags; 1763 1764 ret = __spi_validate(spi, message); 1765 if (ret != 0) 1766 return ret; 1767 1768 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1769 1770 if (master->bus_lock_flag) 1771 ret = -EBUSY; 1772 else 1773 ret = __spi_async(spi, message); 1774 1775 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1776 1777 return ret; 1778 } 1779 EXPORT_SYMBOL_GPL(spi_async); 1780 1781 /** 1782 * spi_async_locked - version of spi_async with exclusive bus usage 1783 * @spi: device with which data will be exchanged 1784 * @message: describes the data transfers, including completion callback 1785 * Context: any (irqs may be blocked, etc) 1786 * 1787 * This call may be used in_irq and other contexts which can't sleep, 1788 * as well as from task contexts which can sleep. 1789 * 1790 * The completion callback is invoked in a context which can't sleep. 1791 * Before that invocation, the value of message->status is undefined. 1792 * When the callback is issued, message->status holds either zero (to 1793 * indicate complete success) or a negative error code. After that 1794 * callback returns, the driver which issued the transfer request may 1795 * deallocate the associated memory; it's no longer in use by any SPI 1796 * core or controller driver code. 1797 * 1798 * Note that although all messages to a spi_device are handled in 1799 * FIFO order, messages may go to different devices in other orders. 1800 * Some device might be higher priority, or have various "hard" access 1801 * time requirements, for example. 1802 * 1803 * On detection of any fault during the transfer, processing of 1804 * the entire message is aborted, and the device is deselected. 1805 * Until returning from the associated message completion callback, 1806 * no other spi_message queued to that device will be processed. 1807 * (This rule applies equally to all the synchronous transfer calls, 1808 * which are wrappers around this core asynchronous primitive.) 1809 */ 1810 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 1811 { 1812 struct spi_master *master = spi->master; 1813 int ret; 1814 unsigned long flags; 1815 1816 ret = __spi_validate(spi, message); 1817 if (ret != 0) 1818 return ret; 1819 1820 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1821 1822 ret = __spi_async(spi, message); 1823 1824 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1825 1826 return ret; 1827 1828 } 1829 EXPORT_SYMBOL_GPL(spi_async_locked); 1830 1831 1832 /*-------------------------------------------------------------------------*/ 1833 1834 /* Utility methods for SPI master protocol drivers, layered on 1835 * top of the core. Some other utility methods are defined as 1836 * inline functions. 1837 */ 1838 1839 static void spi_complete(void *arg) 1840 { 1841 complete(arg); 1842 } 1843 1844 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 1845 int bus_locked) 1846 { 1847 DECLARE_COMPLETION_ONSTACK(done); 1848 int status; 1849 struct spi_master *master = spi->master; 1850 1851 message->complete = spi_complete; 1852 message->context = &done; 1853 1854 if (!bus_locked) 1855 mutex_lock(&master->bus_lock_mutex); 1856 1857 status = spi_async_locked(spi, message); 1858 1859 if (!bus_locked) 1860 mutex_unlock(&master->bus_lock_mutex); 1861 1862 if (status == 0) { 1863 wait_for_completion(&done); 1864 status = message->status; 1865 } 1866 message->context = NULL; 1867 return status; 1868 } 1869 1870 /** 1871 * spi_sync - blocking/synchronous SPI data transfers 1872 * @spi: device with which data will be exchanged 1873 * @message: describes the data transfers 1874 * Context: can sleep 1875 * 1876 * This call may only be used from a context that may sleep. The sleep 1877 * is non-interruptible, and has no timeout. Low-overhead controller 1878 * drivers may DMA directly into and out of the message buffers. 1879 * 1880 * Note that the SPI device's chip select is active during the message, 1881 * and then is normally disabled between messages. Drivers for some 1882 * frequently-used devices may want to minimize costs of selecting a chip, 1883 * by leaving it selected in anticipation that the next message will go 1884 * to the same chip. (That may increase power usage.) 1885 * 1886 * Also, the caller is guaranteeing that the memory associated with the 1887 * message will not be freed before this call returns. 1888 * 1889 * It returns zero on success, else a negative error code. 1890 */ 1891 int spi_sync(struct spi_device *spi, struct spi_message *message) 1892 { 1893 return __spi_sync(spi, message, 0); 1894 } 1895 EXPORT_SYMBOL_GPL(spi_sync); 1896 1897 /** 1898 * spi_sync_locked - version of spi_sync with exclusive bus usage 1899 * @spi: device with which data will be exchanged 1900 * @message: describes the data transfers 1901 * Context: can sleep 1902 * 1903 * This call may only be used from a context that may sleep. The sleep 1904 * is non-interruptible, and has no timeout. Low-overhead controller 1905 * drivers may DMA directly into and out of the message buffers. 1906 * 1907 * This call should be used by drivers that require exclusive access to the 1908 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 1909 * be released by a spi_bus_unlock call when the exclusive access is over. 1910 * 1911 * It returns zero on success, else a negative error code. 1912 */ 1913 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 1914 { 1915 return __spi_sync(spi, message, 1); 1916 } 1917 EXPORT_SYMBOL_GPL(spi_sync_locked); 1918 1919 /** 1920 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 1921 * @master: SPI bus master that should be locked for exclusive bus access 1922 * Context: can sleep 1923 * 1924 * This call may only be used from a context that may sleep. The sleep 1925 * is non-interruptible, and has no timeout. 1926 * 1927 * This call should be used by drivers that require exclusive access to the 1928 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 1929 * exclusive access is over. Data transfer must be done by spi_sync_locked 1930 * and spi_async_locked calls when the SPI bus lock is held. 1931 * 1932 * It returns zero on success, else a negative error code. 1933 */ 1934 int spi_bus_lock(struct spi_master *master) 1935 { 1936 unsigned long flags; 1937 1938 mutex_lock(&master->bus_lock_mutex); 1939 1940 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1941 master->bus_lock_flag = 1; 1942 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1943 1944 /* mutex remains locked until spi_bus_unlock is called */ 1945 1946 return 0; 1947 } 1948 EXPORT_SYMBOL_GPL(spi_bus_lock); 1949 1950 /** 1951 * spi_bus_unlock - release the lock for exclusive SPI bus usage 1952 * @master: SPI bus master that was locked for exclusive bus access 1953 * Context: can sleep 1954 * 1955 * This call may only be used from a context that may sleep. The sleep 1956 * is non-interruptible, and has no timeout. 1957 * 1958 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 1959 * call. 1960 * 1961 * It returns zero on success, else a negative error code. 1962 */ 1963 int spi_bus_unlock(struct spi_master *master) 1964 { 1965 master->bus_lock_flag = 0; 1966 1967 mutex_unlock(&master->bus_lock_mutex); 1968 1969 return 0; 1970 } 1971 EXPORT_SYMBOL_GPL(spi_bus_unlock); 1972 1973 /* portable code must never pass more than 32 bytes */ 1974 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 1975 1976 static u8 *buf; 1977 1978 /** 1979 * spi_write_then_read - SPI synchronous write followed by read 1980 * @spi: device with which data will be exchanged 1981 * @txbuf: data to be written (need not be dma-safe) 1982 * @n_tx: size of txbuf, in bytes 1983 * @rxbuf: buffer into which data will be read (need not be dma-safe) 1984 * @n_rx: size of rxbuf, in bytes 1985 * Context: can sleep 1986 * 1987 * This performs a half duplex MicroWire style transaction with the 1988 * device, sending txbuf and then reading rxbuf. The return value 1989 * is zero for success, else a negative errno status code. 1990 * This call may only be used from a context that may sleep. 1991 * 1992 * Parameters to this routine are always copied using a small buffer; 1993 * portable code should never use this for more than 32 bytes. 1994 * Performance-sensitive or bulk transfer code should instead use 1995 * spi_{async,sync}() calls with dma-safe buffers. 1996 */ 1997 int spi_write_then_read(struct spi_device *spi, 1998 const void *txbuf, unsigned n_tx, 1999 void *rxbuf, unsigned n_rx) 2000 { 2001 static DEFINE_MUTEX(lock); 2002 2003 int status; 2004 struct spi_message message; 2005 struct spi_transfer x[2]; 2006 u8 *local_buf; 2007 2008 /* Use preallocated DMA-safe buffer if we can. We can't avoid 2009 * copying here, (as a pure convenience thing), but we can 2010 * keep heap costs out of the hot path unless someone else is 2011 * using the pre-allocated buffer or the transfer is too large. 2012 */ 2013 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 2014 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 2015 GFP_KERNEL | GFP_DMA); 2016 if (!local_buf) 2017 return -ENOMEM; 2018 } else { 2019 local_buf = buf; 2020 } 2021 2022 spi_message_init(&message); 2023 memset(x, 0, sizeof(x)); 2024 if (n_tx) { 2025 x[0].len = n_tx; 2026 spi_message_add_tail(&x[0], &message); 2027 } 2028 if (n_rx) { 2029 x[1].len = n_rx; 2030 spi_message_add_tail(&x[1], &message); 2031 } 2032 2033 memcpy(local_buf, txbuf, n_tx); 2034 x[0].tx_buf = local_buf; 2035 x[1].rx_buf = local_buf + n_tx; 2036 2037 /* do the i/o */ 2038 status = spi_sync(spi, &message); 2039 if (status == 0) 2040 memcpy(rxbuf, x[1].rx_buf, n_rx); 2041 2042 if (x[0].tx_buf == buf) 2043 mutex_unlock(&lock); 2044 else 2045 kfree(local_buf); 2046 2047 return status; 2048 } 2049 EXPORT_SYMBOL_GPL(spi_write_then_read); 2050 2051 /*-------------------------------------------------------------------------*/ 2052 2053 static int __init spi_init(void) 2054 { 2055 int status; 2056 2057 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 2058 if (!buf) { 2059 status = -ENOMEM; 2060 goto err0; 2061 } 2062 2063 status = bus_register(&spi_bus_type); 2064 if (status < 0) 2065 goto err1; 2066 2067 status = class_register(&spi_master_class); 2068 if (status < 0) 2069 goto err2; 2070 return 0; 2071 2072 err2: 2073 bus_unregister(&spi_bus_type); 2074 err1: 2075 kfree(buf); 2076 buf = NULL; 2077 err0: 2078 return status; 2079 } 2080 2081 /* board_info is normally registered in arch_initcall(), 2082 * but even essential drivers wait till later 2083 * 2084 * REVISIT only boardinfo really needs static linking. the rest (device and 2085 * driver registration) _could_ be dynamically linked (modular) ... costs 2086 * include needing to have boardinfo data structures be much more public. 2087 */ 2088 postcore_initcall(spi_init); 2089 2090