xref: /openbmc/linux/drivers/spi/spi.c (revision f6723b56)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44 
45 static void spidev_release(struct device *dev)
46 {
47 	struct spi_device	*spi = to_spi_device(dev);
48 
49 	/* spi masters may cleanup for released devices */
50 	if (spi->master->cleanup)
51 		spi->master->cleanup(spi);
52 
53 	spi_master_put(spi->master);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static struct attribute *spi_dev_attrs[] = {
72 	&dev_attr_modalias.attr,
73 	NULL,
74 };
75 ATTRIBUTE_GROUPS(spi_dev);
76 
77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
78  * and the sysfs version makes coldplug work too.
79  */
80 
81 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
82 						const struct spi_device *sdev)
83 {
84 	while (id->name[0]) {
85 		if (!strcmp(sdev->modalias, id->name))
86 			return id;
87 		id++;
88 	}
89 	return NULL;
90 }
91 
92 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
93 {
94 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
95 
96 	return spi_match_id(sdrv->id_table, sdev);
97 }
98 EXPORT_SYMBOL_GPL(spi_get_device_id);
99 
100 static int spi_match_device(struct device *dev, struct device_driver *drv)
101 {
102 	const struct spi_device	*spi = to_spi_device(dev);
103 	const struct spi_driver	*sdrv = to_spi_driver(drv);
104 
105 	/* Attempt an OF style match */
106 	if (of_driver_match_device(dev, drv))
107 		return 1;
108 
109 	/* Then try ACPI */
110 	if (acpi_driver_match_device(dev, drv))
111 		return 1;
112 
113 	if (sdrv->id_table)
114 		return !!spi_match_id(sdrv->id_table, spi);
115 
116 	return strcmp(spi->modalias, drv->name) == 0;
117 }
118 
119 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
120 {
121 	const struct spi_device		*spi = to_spi_device(dev);
122 	int rc;
123 
124 	rc = acpi_device_uevent_modalias(dev, env);
125 	if (rc != -ENODEV)
126 		return rc;
127 
128 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
129 	return 0;
130 }
131 
132 #ifdef CONFIG_PM_SLEEP
133 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
134 {
135 	int			value = 0;
136 	struct spi_driver	*drv = to_spi_driver(dev->driver);
137 
138 	/* suspend will stop irqs and dma; no more i/o */
139 	if (drv) {
140 		if (drv->suspend)
141 			value = drv->suspend(to_spi_device(dev), message);
142 		else
143 			dev_dbg(dev, "... can't suspend\n");
144 	}
145 	return value;
146 }
147 
148 static int spi_legacy_resume(struct device *dev)
149 {
150 	int			value = 0;
151 	struct spi_driver	*drv = to_spi_driver(dev->driver);
152 
153 	/* resume may restart the i/o queue */
154 	if (drv) {
155 		if (drv->resume)
156 			value = drv->resume(to_spi_device(dev));
157 		else
158 			dev_dbg(dev, "... can't resume\n");
159 	}
160 	return value;
161 }
162 
163 static int spi_pm_suspend(struct device *dev)
164 {
165 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
166 
167 	if (pm)
168 		return pm_generic_suspend(dev);
169 	else
170 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
171 }
172 
173 static int spi_pm_resume(struct device *dev)
174 {
175 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
176 
177 	if (pm)
178 		return pm_generic_resume(dev);
179 	else
180 		return spi_legacy_resume(dev);
181 }
182 
183 static int spi_pm_freeze(struct device *dev)
184 {
185 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
186 
187 	if (pm)
188 		return pm_generic_freeze(dev);
189 	else
190 		return spi_legacy_suspend(dev, PMSG_FREEZE);
191 }
192 
193 static int spi_pm_thaw(struct device *dev)
194 {
195 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
196 
197 	if (pm)
198 		return pm_generic_thaw(dev);
199 	else
200 		return spi_legacy_resume(dev);
201 }
202 
203 static int spi_pm_poweroff(struct device *dev)
204 {
205 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
206 
207 	if (pm)
208 		return pm_generic_poweroff(dev);
209 	else
210 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
211 }
212 
213 static int spi_pm_restore(struct device *dev)
214 {
215 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
216 
217 	if (pm)
218 		return pm_generic_restore(dev);
219 	else
220 		return spi_legacy_resume(dev);
221 }
222 #else
223 #define spi_pm_suspend	NULL
224 #define spi_pm_resume	NULL
225 #define spi_pm_freeze	NULL
226 #define spi_pm_thaw	NULL
227 #define spi_pm_poweroff	NULL
228 #define spi_pm_restore	NULL
229 #endif
230 
231 static const struct dev_pm_ops spi_pm = {
232 	.suspend = spi_pm_suspend,
233 	.resume = spi_pm_resume,
234 	.freeze = spi_pm_freeze,
235 	.thaw = spi_pm_thaw,
236 	.poweroff = spi_pm_poweroff,
237 	.restore = spi_pm_restore,
238 	SET_RUNTIME_PM_OPS(
239 		pm_generic_runtime_suspend,
240 		pm_generic_runtime_resume,
241 		NULL
242 	)
243 };
244 
245 struct bus_type spi_bus_type = {
246 	.name		= "spi",
247 	.dev_groups	= spi_dev_groups,
248 	.match		= spi_match_device,
249 	.uevent		= spi_uevent,
250 	.pm		= &spi_pm,
251 };
252 EXPORT_SYMBOL_GPL(spi_bus_type);
253 
254 
255 static int spi_drv_probe(struct device *dev)
256 {
257 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
258 	struct spi_device		*spi = to_spi_device(dev);
259 	int ret;
260 
261 	acpi_dev_pm_attach(&spi->dev, true);
262 	ret = sdrv->probe(spi);
263 	if (ret)
264 		acpi_dev_pm_detach(&spi->dev, true);
265 
266 	return ret;
267 }
268 
269 static int spi_drv_remove(struct device *dev)
270 {
271 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
272 	struct spi_device		*spi = to_spi_device(dev);
273 	int ret;
274 
275 	ret = sdrv->remove(spi);
276 	acpi_dev_pm_detach(&spi->dev, true);
277 
278 	return ret;
279 }
280 
281 static void spi_drv_shutdown(struct device *dev)
282 {
283 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
284 
285 	sdrv->shutdown(to_spi_device(dev));
286 }
287 
288 /**
289  * spi_register_driver - register a SPI driver
290  * @sdrv: the driver to register
291  * Context: can sleep
292  */
293 int spi_register_driver(struct spi_driver *sdrv)
294 {
295 	sdrv->driver.bus = &spi_bus_type;
296 	if (sdrv->probe)
297 		sdrv->driver.probe = spi_drv_probe;
298 	if (sdrv->remove)
299 		sdrv->driver.remove = spi_drv_remove;
300 	if (sdrv->shutdown)
301 		sdrv->driver.shutdown = spi_drv_shutdown;
302 	return driver_register(&sdrv->driver);
303 }
304 EXPORT_SYMBOL_GPL(spi_register_driver);
305 
306 /*-------------------------------------------------------------------------*/
307 
308 /* SPI devices should normally not be created by SPI device drivers; that
309  * would make them board-specific.  Similarly with SPI master drivers.
310  * Device registration normally goes into like arch/.../mach.../board-YYY.c
311  * with other readonly (flashable) information about mainboard devices.
312  */
313 
314 struct boardinfo {
315 	struct list_head	list;
316 	struct spi_board_info	board_info;
317 };
318 
319 static LIST_HEAD(board_list);
320 static LIST_HEAD(spi_master_list);
321 
322 /*
323  * Used to protect add/del opertion for board_info list and
324  * spi_master list, and their matching process
325  */
326 static DEFINE_MUTEX(board_lock);
327 
328 /**
329  * spi_alloc_device - Allocate a new SPI device
330  * @master: Controller to which device is connected
331  * Context: can sleep
332  *
333  * Allows a driver to allocate and initialize a spi_device without
334  * registering it immediately.  This allows a driver to directly
335  * fill the spi_device with device parameters before calling
336  * spi_add_device() on it.
337  *
338  * Caller is responsible to call spi_add_device() on the returned
339  * spi_device structure to add it to the SPI master.  If the caller
340  * needs to discard the spi_device without adding it, then it should
341  * call spi_dev_put() on it.
342  *
343  * Returns a pointer to the new device, or NULL.
344  */
345 struct spi_device *spi_alloc_device(struct spi_master *master)
346 {
347 	struct spi_device	*spi;
348 	struct device		*dev = master->dev.parent;
349 
350 	if (!spi_master_get(master))
351 		return NULL;
352 
353 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
354 	if (!spi) {
355 		dev_err(dev, "cannot alloc spi_device\n");
356 		spi_master_put(master);
357 		return NULL;
358 	}
359 
360 	spi->master = master;
361 	spi->dev.parent = &master->dev;
362 	spi->dev.bus = &spi_bus_type;
363 	spi->dev.release = spidev_release;
364 	spi->cs_gpio = -ENOENT;
365 	device_initialize(&spi->dev);
366 	return spi;
367 }
368 EXPORT_SYMBOL_GPL(spi_alloc_device);
369 
370 static void spi_dev_set_name(struct spi_device *spi)
371 {
372 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
373 
374 	if (adev) {
375 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
376 		return;
377 	}
378 
379 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
380 		     spi->chip_select);
381 }
382 
383 static int spi_dev_check(struct device *dev, void *data)
384 {
385 	struct spi_device *spi = to_spi_device(dev);
386 	struct spi_device *new_spi = data;
387 
388 	if (spi->master == new_spi->master &&
389 	    spi->chip_select == new_spi->chip_select)
390 		return -EBUSY;
391 	return 0;
392 }
393 
394 /**
395  * spi_add_device - Add spi_device allocated with spi_alloc_device
396  * @spi: spi_device to register
397  *
398  * Companion function to spi_alloc_device.  Devices allocated with
399  * spi_alloc_device can be added onto the spi bus with this function.
400  *
401  * Returns 0 on success; negative errno on failure
402  */
403 int spi_add_device(struct spi_device *spi)
404 {
405 	static DEFINE_MUTEX(spi_add_lock);
406 	struct spi_master *master = spi->master;
407 	struct device *dev = master->dev.parent;
408 	int status;
409 
410 	/* Chipselects are numbered 0..max; validate. */
411 	if (spi->chip_select >= master->num_chipselect) {
412 		dev_err(dev, "cs%d >= max %d\n",
413 			spi->chip_select,
414 			master->num_chipselect);
415 		return -EINVAL;
416 	}
417 
418 	/* Set the bus ID string */
419 	spi_dev_set_name(spi);
420 
421 	/* We need to make sure there's no other device with this
422 	 * chipselect **BEFORE** we call setup(), else we'll trash
423 	 * its configuration.  Lock against concurrent add() calls.
424 	 */
425 	mutex_lock(&spi_add_lock);
426 
427 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
428 	if (status) {
429 		dev_err(dev, "chipselect %d already in use\n",
430 				spi->chip_select);
431 		goto done;
432 	}
433 
434 	if (master->cs_gpios)
435 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
436 
437 	/* Drivers may modify this initial i/o setup, but will
438 	 * normally rely on the device being setup.  Devices
439 	 * using SPI_CS_HIGH can't coexist well otherwise...
440 	 */
441 	status = spi_setup(spi);
442 	if (status < 0) {
443 		dev_err(dev, "can't setup %s, status %d\n",
444 				dev_name(&spi->dev), status);
445 		goto done;
446 	}
447 
448 	/* Device may be bound to an active driver when this returns */
449 	status = device_add(&spi->dev);
450 	if (status < 0)
451 		dev_err(dev, "can't add %s, status %d\n",
452 				dev_name(&spi->dev), status);
453 	else
454 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
455 
456 done:
457 	mutex_unlock(&spi_add_lock);
458 	return status;
459 }
460 EXPORT_SYMBOL_GPL(spi_add_device);
461 
462 /**
463  * spi_new_device - instantiate one new SPI device
464  * @master: Controller to which device is connected
465  * @chip: Describes the SPI device
466  * Context: can sleep
467  *
468  * On typical mainboards, this is purely internal; and it's not needed
469  * after board init creates the hard-wired devices.  Some development
470  * platforms may not be able to use spi_register_board_info though, and
471  * this is exported so that for example a USB or parport based adapter
472  * driver could add devices (which it would learn about out-of-band).
473  *
474  * Returns the new device, or NULL.
475  */
476 struct spi_device *spi_new_device(struct spi_master *master,
477 				  struct spi_board_info *chip)
478 {
479 	struct spi_device	*proxy;
480 	int			status;
481 
482 	/* NOTE:  caller did any chip->bus_num checks necessary.
483 	 *
484 	 * Also, unless we change the return value convention to use
485 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
486 	 * suggests syslogged diagnostics are best here (ugh).
487 	 */
488 
489 	proxy = spi_alloc_device(master);
490 	if (!proxy)
491 		return NULL;
492 
493 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
494 
495 	proxy->chip_select = chip->chip_select;
496 	proxy->max_speed_hz = chip->max_speed_hz;
497 	proxy->mode = chip->mode;
498 	proxy->irq = chip->irq;
499 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
500 	proxy->dev.platform_data = (void *) chip->platform_data;
501 	proxy->controller_data = chip->controller_data;
502 	proxy->controller_state = NULL;
503 
504 	status = spi_add_device(proxy);
505 	if (status < 0) {
506 		spi_dev_put(proxy);
507 		return NULL;
508 	}
509 
510 	return proxy;
511 }
512 EXPORT_SYMBOL_GPL(spi_new_device);
513 
514 static void spi_match_master_to_boardinfo(struct spi_master *master,
515 				struct spi_board_info *bi)
516 {
517 	struct spi_device *dev;
518 
519 	if (master->bus_num != bi->bus_num)
520 		return;
521 
522 	dev = spi_new_device(master, bi);
523 	if (!dev)
524 		dev_err(master->dev.parent, "can't create new device for %s\n",
525 			bi->modalias);
526 }
527 
528 /**
529  * spi_register_board_info - register SPI devices for a given board
530  * @info: array of chip descriptors
531  * @n: how many descriptors are provided
532  * Context: can sleep
533  *
534  * Board-specific early init code calls this (probably during arch_initcall)
535  * with segments of the SPI device table.  Any device nodes are created later,
536  * after the relevant parent SPI controller (bus_num) is defined.  We keep
537  * this table of devices forever, so that reloading a controller driver will
538  * not make Linux forget about these hard-wired devices.
539  *
540  * Other code can also call this, e.g. a particular add-on board might provide
541  * SPI devices through its expansion connector, so code initializing that board
542  * would naturally declare its SPI devices.
543  *
544  * The board info passed can safely be __initdata ... but be careful of
545  * any embedded pointers (platform_data, etc), they're copied as-is.
546  */
547 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
548 {
549 	struct boardinfo *bi;
550 	int i;
551 
552 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
553 	if (!bi)
554 		return -ENOMEM;
555 
556 	for (i = 0; i < n; i++, bi++, info++) {
557 		struct spi_master *master;
558 
559 		memcpy(&bi->board_info, info, sizeof(*info));
560 		mutex_lock(&board_lock);
561 		list_add_tail(&bi->list, &board_list);
562 		list_for_each_entry(master, &spi_master_list, list)
563 			spi_match_master_to_boardinfo(master, &bi->board_info);
564 		mutex_unlock(&board_lock);
565 	}
566 
567 	return 0;
568 }
569 
570 /*-------------------------------------------------------------------------*/
571 
572 static void spi_set_cs(struct spi_device *spi, bool enable)
573 {
574 	if (spi->mode & SPI_CS_HIGH)
575 		enable = !enable;
576 
577 	if (spi->cs_gpio >= 0)
578 		gpio_set_value(spi->cs_gpio, !enable);
579 	else if (spi->master->set_cs)
580 		spi->master->set_cs(spi, !enable);
581 }
582 
583 /*
584  * spi_transfer_one_message - Default implementation of transfer_one_message()
585  *
586  * This is a standard implementation of transfer_one_message() for
587  * drivers which impelment a transfer_one() operation.  It provides
588  * standard handling of delays and chip select management.
589  */
590 static int spi_transfer_one_message(struct spi_master *master,
591 				    struct spi_message *msg)
592 {
593 	struct spi_transfer *xfer;
594 	bool cur_cs = true;
595 	bool keep_cs = false;
596 	int ret = 0;
597 
598 	spi_set_cs(msg->spi, true);
599 
600 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
601 		trace_spi_transfer_start(msg, xfer);
602 
603 		reinit_completion(&master->xfer_completion);
604 
605 		ret = master->transfer_one(master, msg->spi, xfer);
606 		if (ret < 0) {
607 			dev_err(&msg->spi->dev,
608 				"SPI transfer failed: %d\n", ret);
609 			goto out;
610 		}
611 
612 		if (ret > 0) {
613 			ret = 0;
614 			wait_for_completion(&master->xfer_completion);
615 		}
616 
617 		trace_spi_transfer_stop(msg, xfer);
618 
619 		if (msg->status != -EINPROGRESS)
620 			goto out;
621 
622 		if (xfer->delay_usecs)
623 			udelay(xfer->delay_usecs);
624 
625 		if (xfer->cs_change) {
626 			if (list_is_last(&xfer->transfer_list,
627 					 &msg->transfers)) {
628 				keep_cs = true;
629 			} else {
630 				cur_cs = !cur_cs;
631 				spi_set_cs(msg->spi, cur_cs);
632 			}
633 		}
634 
635 		msg->actual_length += xfer->len;
636 	}
637 
638 out:
639 	if (ret != 0 || !keep_cs)
640 		spi_set_cs(msg->spi, false);
641 
642 	if (msg->status == -EINPROGRESS)
643 		msg->status = ret;
644 
645 	spi_finalize_current_message(master);
646 
647 	return ret;
648 }
649 
650 /**
651  * spi_finalize_current_transfer - report completion of a transfer
652  *
653  * Called by SPI drivers using the core transfer_one_message()
654  * implementation to notify it that the current interrupt driven
655  * transfer has finished and the next one may be scheduled.
656  */
657 void spi_finalize_current_transfer(struct spi_master *master)
658 {
659 	complete(&master->xfer_completion);
660 }
661 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
662 
663 /**
664  * spi_pump_messages - kthread work function which processes spi message queue
665  * @work: pointer to kthread work struct contained in the master struct
666  *
667  * This function checks if there is any spi message in the queue that
668  * needs processing and if so call out to the driver to initialize hardware
669  * and transfer each message.
670  *
671  */
672 static void spi_pump_messages(struct kthread_work *work)
673 {
674 	struct spi_master *master =
675 		container_of(work, struct spi_master, pump_messages);
676 	unsigned long flags;
677 	bool was_busy = false;
678 	int ret;
679 
680 	/* Lock queue and check for queue work */
681 	spin_lock_irqsave(&master->queue_lock, flags);
682 	if (list_empty(&master->queue) || !master->running) {
683 		if (!master->busy) {
684 			spin_unlock_irqrestore(&master->queue_lock, flags);
685 			return;
686 		}
687 		master->busy = false;
688 		spin_unlock_irqrestore(&master->queue_lock, flags);
689 		if (master->unprepare_transfer_hardware &&
690 		    master->unprepare_transfer_hardware(master))
691 			dev_err(&master->dev,
692 				"failed to unprepare transfer hardware\n");
693 		if (master->auto_runtime_pm) {
694 			pm_runtime_mark_last_busy(master->dev.parent);
695 			pm_runtime_put_autosuspend(master->dev.parent);
696 		}
697 		trace_spi_master_idle(master);
698 		return;
699 	}
700 
701 	/* Make sure we are not already running a message */
702 	if (master->cur_msg) {
703 		spin_unlock_irqrestore(&master->queue_lock, flags);
704 		return;
705 	}
706 	/* Extract head of queue */
707 	master->cur_msg =
708 		list_first_entry(&master->queue, struct spi_message, queue);
709 
710 	list_del_init(&master->cur_msg->queue);
711 	if (master->busy)
712 		was_busy = true;
713 	else
714 		master->busy = true;
715 	spin_unlock_irqrestore(&master->queue_lock, flags);
716 
717 	if (!was_busy && master->auto_runtime_pm) {
718 		ret = pm_runtime_get_sync(master->dev.parent);
719 		if (ret < 0) {
720 			dev_err(&master->dev, "Failed to power device: %d\n",
721 				ret);
722 			return;
723 		}
724 	}
725 
726 	if (!was_busy)
727 		trace_spi_master_busy(master);
728 
729 	if (!was_busy && master->prepare_transfer_hardware) {
730 		ret = master->prepare_transfer_hardware(master);
731 		if (ret) {
732 			dev_err(&master->dev,
733 				"failed to prepare transfer hardware\n");
734 
735 			if (master->auto_runtime_pm)
736 				pm_runtime_put(master->dev.parent);
737 			return;
738 		}
739 	}
740 
741 	trace_spi_message_start(master->cur_msg);
742 
743 	if (master->prepare_message) {
744 		ret = master->prepare_message(master, master->cur_msg);
745 		if (ret) {
746 			dev_err(&master->dev,
747 				"failed to prepare message: %d\n", ret);
748 			master->cur_msg->status = ret;
749 			spi_finalize_current_message(master);
750 			return;
751 		}
752 		master->cur_msg_prepared = true;
753 	}
754 
755 	ret = master->transfer_one_message(master, master->cur_msg);
756 	if (ret) {
757 		dev_err(&master->dev,
758 			"failed to transfer one message from queue\n");
759 		return;
760 	}
761 }
762 
763 static int spi_init_queue(struct spi_master *master)
764 {
765 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
766 
767 	INIT_LIST_HEAD(&master->queue);
768 	spin_lock_init(&master->queue_lock);
769 
770 	master->running = false;
771 	master->busy = false;
772 
773 	init_kthread_worker(&master->kworker);
774 	master->kworker_task = kthread_run(kthread_worker_fn,
775 					   &master->kworker, "%s",
776 					   dev_name(&master->dev));
777 	if (IS_ERR(master->kworker_task)) {
778 		dev_err(&master->dev, "failed to create message pump task\n");
779 		return -ENOMEM;
780 	}
781 	init_kthread_work(&master->pump_messages, spi_pump_messages);
782 
783 	/*
784 	 * Master config will indicate if this controller should run the
785 	 * message pump with high (realtime) priority to reduce the transfer
786 	 * latency on the bus by minimising the delay between a transfer
787 	 * request and the scheduling of the message pump thread. Without this
788 	 * setting the message pump thread will remain at default priority.
789 	 */
790 	if (master->rt) {
791 		dev_info(&master->dev,
792 			"will run message pump with realtime priority\n");
793 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
794 	}
795 
796 	return 0;
797 }
798 
799 /**
800  * spi_get_next_queued_message() - called by driver to check for queued
801  * messages
802  * @master: the master to check for queued messages
803  *
804  * If there are more messages in the queue, the next message is returned from
805  * this call.
806  */
807 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
808 {
809 	struct spi_message *next;
810 	unsigned long flags;
811 
812 	/* get a pointer to the next message, if any */
813 	spin_lock_irqsave(&master->queue_lock, flags);
814 	next = list_first_entry_or_null(&master->queue, struct spi_message,
815 					queue);
816 	spin_unlock_irqrestore(&master->queue_lock, flags);
817 
818 	return next;
819 }
820 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
821 
822 /**
823  * spi_finalize_current_message() - the current message is complete
824  * @master: the master to return the message to
825  *
826  * Called by the driver to notify the core that the message in the front of the
827  * queue is complete and can be removed from the queue.
828  */
829 void spi_finalize_current_message(struct spi_master *master)
830 {
831 	struct spi_message *mesg;
832 	unsigned long flags;
833 	int ret;
834 
835 	spin_lock_irqsave(&master->queue_lock, flags);
836 	mesg = master->cur_msg;
837 	master->cur_msg = NULL;
838 
839 	queue_kthread_work(&master->kworker, &master->pump_messages);
840 	spin_unlock_irqrestore(&master->queue_lock, flags);
841 
842 	if (master->cur_msg_prepared && master->unprepare_message) {
843 		ret = master->unprepare_message(master, mesg);
844 		if (ret) {
845 			dev_err(&master->dev,
846 				"failed to unprepare message: %d\n", ret);
847 		}
848 	}
849 	master->cur_msg_prepared = false;
850 
851 	mesg->state = NULL;
852 	if (mesg->complete)
853 		mesg->complete(mesg->context);
854 
855 	trace_spi_message_done(mesg);
856 }
857 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
858 
859 static int spi_start_queue(struct spi_master *master)
860 {
861 	unsigned long flags;
862 
863 	spin_lock_irqsave(&master->queue_lock, flags);
864 
865 	if (master->running || master->busy) {
866 		spin_unlock_irqrestore(&master->queue_lock, flags);
867 		return -EBUSY;
868 	}
869 
870 	master->running = true;
871 	master->cur_msg = NULL;
872 	spin_unlock_irqrestore(&master->queue_lock, flags);
873 
874 	queue_kthread_work(&master->kworker, &master->pump_messages);
875 
876 	return 0;
877 }
878 
879 static int spi_stop_queue(struct spi_master *master)
880 {
881 	unsigned long flags;
882 	unsigned limit = 500;
883 	int ret = 0;
884 
885 	spin_lock_irqsave(&master->queue_lock, flags);
886 
887 	/*
888 	 * This is a bit lame, but is optimized for the common execution path.
889 	 * A wait_queue on the master->busy could be used, but then the common
890 	 * execution path (pump_messages) would be required to call wake_up or
891 	 * friends on every SPI message. Do this instead.
892 	 */
893 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
894 		spin_unlock_irqrestore(&master->queue_lock, flags);
895 		msleep(10);
896 		spin_lock_irqsave(&master->queue_lock, flags);
897 	}
898 
899 	if (!list_empty(&master->queue) || master->busy)
900 		ret = -EBUSY;
901 	else
902 		master->running = false;
903 
904 	spin_unlock_irqrestore(&master->queue_lock, flags);
905 
906 	if (ret) {
907 		dev_warn(&master->dev,
908 			 "could not stop message queue\n");
909 		return ret;
910 	}
911 	return ret;
912 }
913 
914 static int spi_destroy_queue(struct spi_master *master)
915 {
916 	int ret;
917 
918 	ret = spi_stop_queue(master);
919 
920 	/*
921 	 * flush_kthread_worker will block until all work is done.
922 	 * If the reason that stop_queue timed out is that the work will never
923 	 * finish, then it does no good to call flush/stop thread, so
924 	 * return anyway.
925 	 */
926 	if (ret) {
927 		dev_err(&master->dev, "problem destroying queue\n");
928 		return ret;
929 	}
930 
931 	flush_kthread_worker(&master->kworker);
932 	kthread_stop(master->kworker_task);
933 
934 	return 0;
935 }
936 
937 /**
938  * spi_queued_transfer - transfer function for queued transfers
939  * @spi: spi device which is requesting transfer
940  * @msg: spi message which is to handled is queued to driver queue
941  */
942 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
943 {
944 	struct spi_master *master = spi->master;
945 	unsigned long flags;
946 
947 	spin_lock_irqsave(&master->queue_lock, flags);
948 
949 	if (!master->running) {
950 		spin_unlock_irqrestore(&master->queue_lock, flags);
951 		return -ESHUTDOWN;
952 	}
953 	msg->actual_length = 0;
954 	msg->status = -EINPROGRESS;
955 
956 	list_add_tail(&msg->queue, &master->queue);
957 	if (!master->busy)
958 		queue_kthread_work(&master->kworker, &master->pump_messages);
959 
960 	spin_unlock_irqrestore(&master->queue_lock, flags);
961 	return 0;
962 }
963 
964 static int spi_master_initialize_queue(struct spi_master *master)
965 {
966 	int ret;
967 
968 	master->queued = true;
969 	master->transfer = spi_queued_transfer;
970 	if (!master->transfer_one_message)
971 		master->transfer_one_message = spi_transfer_one_message;
972 
973 	/* Initialize and start queue */
974 	ret = spi_init_queue(master);
975 	if (ret) {
976 		dev_err(&master->dev, "problem initializing queue\n");
977 		goto err_init_queue;
978 	}
979 	ret = spi_start_queue(master);
980 	if (ret) {
981 		dev_err(&master->dev, "problem starting queue\n");
982 		goto err_start_queue;
983 	}
984 
985 	return 0;
986 
987 err_start_queue:
988 err_init_queue:
989 	spi_destroy_queue(master);
990 	return ret;
991 }
992 
993 /*-------------------------------------------------------------------------*/
994 
995 #if defined(CONFIG_OF)
996 /**
997  * of_register_spi_devices() - Register child devices onto the SPI bus
998  * @master:	Pointer to spi_master device
999  *
1000  * Registers an spi_device for each child node of master node which has a 'reg'
1001  * property.
1002  */
1003 static void of_register_spi_devices(struct spi_master *master)
1004 {
1005 	struct spi_device *spi;
1006 	struct device_node *nc;
1007 	int rc;
1008 	u32 value;
1009 
1010 	if (!master->dev.of_node)
1011 		return;
1012 
1013 	for_each_available_child_of_node(master->dev.of_node, nc) {
1014 		/* Alloc an spi_device */
1015 		spi = spi_alloc_device(master);
1016 		if (!spi) {
1017 			dev_err(&master->dev, "spi_device alloc error for %s\n",
1018 				nc->full_name);
1019 			spi_dev_put(spi);
1020 			continue;
1021 		}
1022 
1023 		/* Select device driver */
1024 		if (of_modalias_node(nc, spi->modalias,
1025 				     sizeof(spi->modalias)) < 0) {
1026 			dev_err(&master->dev, "cannot find modalias for %s\n",
1027 				nc->full_name);
1028 			spi_dev_put(spi);
1029 			continue;
1030 		}
1031 
1032 		/* Device address */
1033 		rc = of_property_read_u32(nc, "reg", &value);
1034 		if (rc) {
1035 			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1036 				nc->full_name, rc);
1037 			spi_dev_put(spi);
1038 			continue;
1039 		}
1040 		spi->chip_select = value;
1041 
1042 		/* Mode (clock phase/polarity/etc.) */
1043 		if (of_find_property(nc, "spi-cpha", NULL))
1044 			spi->mode |= SPI_CPHA;
1045 		if (of_find_property(nc, "spi-cpol", NULL))
1046 			spi->mode |= SPI_CPOL;
1047 		if (of_find_property(nc, "spi-cs-high", NULL))
1048 			spi->mode |= SPI_CS_HIGH;
1049 		if (of_find_property(nc, "spi-3wire", NULL))
1050 			spi->mode |= SPI_3WIRE;
1051 
1052 		/* Device DUAL/QUAD mode */
1053 		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1054 			switch (value) {
1055 			case 1:
1056 				break;
1057 			case 2:
1058 				spi->mode |= SPI_TX_DUAL;
1059 				break;
1060 			case 4:
1061 				spi->mode |= SPI_TX_QUAD;
1062 				break;
1063 			default:
1064 				dev_err(&master->dev,
1065 					"spi-tx-bus-width %d not supported\n",
1066 					value);
1067 				spi_dev_put(spi);
1068 				continue;
1069 			}
1070 		}
1071 
1072 		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1073 			switch (value) {
1074 			case 1:
1075 				break;
1076 			case 2:
1077 				spi->mode |= SPI_RX_DUAL;
1078 				break;
1079 			case 4:
1080 				spi->mode |= SPI_RX_QUAD;
1081 				break;
1082 			default:
1083 				dev_err(&master->dev,
1084 					"spi-rx-bus-width %d not supported\n",
1085 					value);
1086 				spi_dev_put(spi);
1087 				continue;
1088 			}
1089 		}
1090 
1091 		/* Device speed */
1092 		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1093 		if (rc) {
1094 			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1095 				nc->full_name, rc);
1096 			spi_dev_put(spi);
1097 			continue;
1098 		}
1099 		spi->max_speed_hz = value;
1100 
1101 		/* IRQ */
1102 		spi->irq = irq_of_parse_and_map(nc, 0);
1103 
1104 		/* Store a pointer to the node in the device structure */
1105 		of_node_get(nc);
1106 		spi->dev.of_node = nc;
1107 
1108 		/* Register the new device */
1109 		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1110 		rc = spi_add_device(spi);
1111 		if (rc) {
1112 			dev_err(&master->dev, "spi_device register error %s\n",
1113 				nc->full_name);
1114 			spi_dev_put(spi);
1115 		}
1116 
1117 	}
1118 }
1119 #else
1120 static void of_register_spi_devices(struct spi_master *master) { }
1121 #endif
1122 
1123 #ifdef CONFIG_ACPI
1124 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1125 {
1126 	struct spi_device *spi = data;
1127 
1128 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1129 		struct acpi_resource_spi_serialbus *sb;
1130 
1131 		sb = &ares->data.spi_serial_bus;
1132 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1133 			spi->chip_select = sb->device_selection;
1134 			spi->max_speed_hz = sb->connection_speed;
1135 
1136 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1137 				spi->mode |= SPI_CPHA;
1138 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1139 				spi->mode |= SPI_CPOL;
1140 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1141 				spi->mode |= SPI_CS_HIGH;
1142 		}
1143 	} else if (spi->irq < 0) {
1144 		struct resource r;
1145 
1146 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1147 			spi->irq = r.start;
1148 	}
1149 
1150 	/* Always tell the ACPI core to skip this resource */
1151 	return 1;
1152 }
1153 
1154 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1155 				       void *data, void **return_value)
1156 {
1157 	struct spi_master *master = data;
1158 	struct list_head resource_list;
1159 	struct acpi_device *adev;
1160 	struct spi_device *spi;
1161 	int ret;
1162 
1163 	if (acpi_bus_get_device(handle, &adev))
1164 		return AE_OK;
1165 	if (acpi_bus_get_status(adev) || !adev->status.present)
1166 		return AE_OK;
1167 
1168 	spi = spi_alloc_device(master);
1169 	if (!spi) {
1170 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1171 			dev_name(&adev->dev));
1172 		return AE_NO_MEMORY;
1173 	}
1174 
1175 	ACPI_COMPANION_SET(&spi->dev, adev);
1176 	spi->irq = -1;
1177 
1178 	INIT_LIST_HEAD(&resource_list);
1179 	ret = acpi_dev_get_resources(adev, &resource_list,
1180 				     acpi_spi_add_resource, spi);
1181 	acpi_dev_free_resource_list(&resource_list);
1182 
1183 	if (ret < 0 || !spi->max_speed_hz) {
1184 		spi_dev_put(spi);
1185 		return AE_OK;
1186 	}
1187 
1188 	adev->power.flags.ignore_parent = true;
1189 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1190 	if (spi_add_device(spi)) {
1191 		adev->power.flags.ignore_parent = false;
1192 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1193 			dev_name(&adev->dev));
1194 		spi_dev_put(spi);
1195 	}
1196 
1197 	return AE_OK;
1198 }
1199 
1200 static void acpi_register_spi_devices(struct spi_master *master)
1201 {
1202 	acpi_status status;
1203 	acpi_handle handle;
1204 
1205 	handle = ACPI_HANDLE(master->dev.parent);
1206 	if (!handle)
1207 		return;
1208 
1209 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1210 				     acpi_spi_add_device, NULL,
1211 				     master, NULL);
1212 	if (ACPI_FAILURE(status))
1213 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1214 }
1215 #else
1216 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1217 #endif /* CONFIG_ACPI */
1218 
1219 static void spi_master_release(struct device *dev)
1220 {
1221 	struct spi_master *master;
1222 
1223 	master = container_of(dev, struct spi_master, dev);
1224 	kfree(master);
1225 }
1226 
1227 static struct class spi_master_class = {
1228 	.name		= "spi_master",
1229 	.owner		= THIS_MODULE,
1230 	.dev_release	= spi_master_release,
1231 };
1232 
1233 
1234 
1235 /**
1236  * spi_alloc_master - allocate SPI master controller
1237  * @dev: the controller, possibly using the platform_bus
1238  * @size: how much zeroed driver-private data to allocate; the pointer to this
1239  *	memory is in the driver_data field of the returned device,
1240  *	accessible with spi_master_get_devdata().
1241  * Context: can sleep
1242  *
1243  * This call is used only by SPI master controller drivers, which are the
1244  * only ones directly touching chip registers.  It's how they allocate
1245  * an spi_master structure, prior to calling spi_register_master().
1246  *
1247  * This must be called from context that can sleep.  It returns the SPI
1248  * master structure on success, else NULL.
1249  *
1250  * The caller is responsible for assigning the bus number and initializing
1251  * the master's methods before calling spi_register_master(); and (after errors
1252  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1253  * leak.
1254  */
1255 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1256 {
1257 	struct spi_master	*master;
1258 
1259 	if (!dev)
1260 		return NULL;
1261 
1262 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1263 	if (!master)
1264 		return NULL;
1265 
1266 	device_initialize(&master->dev);
1267 	master->bus_num = -1;
1268 	master->num_chipselect = 1;
1269 	master->dev.class = &spi_master_class;
1270 	master->dev.parent = get_device(dev);
1271 	spi_master_set_devdata(master, &master[1]);
1272 
1273 	return master;
1274 }
1275 EXPORT_SYMBOL_GPL(spi_alloc_master);
1276 
1277 #ifdef CONFIG_OF
1278 static int of_spi_register_master(struct spi_master *master)
1279 {
1280 	int nb, i, *cs;
1281 	struct device_node *np = master->dev.of_node;
1282 
1283 	if (!np)
1284 		return 0;
1285 
1286 	nb = of_gpio_named_count(np, "cs-gpios");
1287 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1288 
1289 	/* Return error only for an incorrectly formed cs-gpios property */
1290 	if (nb == 0 || nb == -ENOENT)
1291 		return 0;
1292 	else if (nb < 0)
1293 		return nb;
1294 
1295 	cs = devm_kzalloc(&master->dev,
1296 			  sizeof(int) * master->num_chipselect,
1297 			  GFP_KERNEL);
1298 	master->cs_gpios = cs;
1299 
1300 	if (!master->cs_gpios)
1301 		return -ENOMEM;
1302 
1303 	for (i = 0; i < master->num_chipselect; i++)
1304 		cs[i] = -ENOENT;
1305 
1306 	for (i = 0; i < nb; i++)
1307 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1308 
1309 	return 0;
1310 }
1311 #else
1312 static int of_spi_register_master(struct spi_master *master)
1313 {
1314 	return 0;
1315 }
1316 #endif
1317 
1318 /**
1319  * spi_register_master - register SPI master controller
1320  * @master: initialized master, originally from spi_alloc_master()
1321  * Context: can sleep
1322  *
1323  * SPI master controllers connect to their drivers using some non-SPI bus,
1324  * such as the platform bus.  The final stage of probe() in that code
1325  * includes calling spi_register_master() to hook up to this SPI bus glue.
1326  *
1327  * SPI controllers use board specific (often SOC specific) bus numbers,
1328  * and board-specific addressing for SPI devices combines those numbers
1329  * with chip select numbers.  Since SPI does not directly support dynamic
1330  * device identification, boards need configuration tables telling which
1331  * chip is at which address.
1332  *
1333  * This must be called from context that can sleep.  It returns zero on
1334  * success, else a negative error code (dropping the master's refcount).
1335  * After a successful return, the caller is responsible for calling
1336  * spi_unregister_master().
1337  */
1338 int spi_register_master(struct spi_master *master)
1339 {
1340 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1341 	struct device		*dev = master->dev.parent;
1342 	struct boardinfo	*bi;
1343 	int			status = -ENODEV;
1344 	int			dynamic = 0;
1345 
1346 	if (!dev)
1347 		return -ENODEV;
1348 
1349 	status = of_spi_register_master(master);
1350 	if (status)
1351 		return status;
1352 
1353 	/* even if it's just one always-selected device, there must
1354 	 * be at least one chipselect
1355 	 */
1356 	if (master->num_chipselect == 0)
1357 		return -EINVAL;
1358 
1359 	if ((master->bus_num < 0) && master->dev.of_node)
1360 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1361 
1362 	/* convention:  dynamically assigned bus IDs count down from the max */
1363 	if (master->bus_num < 0) {
1364 		/* FIXME switch to an IDR based scheme, something like
1365 		 * I2C now uses, so we can't run out of "dynamic" IDs
1366 		 */
1367 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1368 		dynamic = 1;
1369 	}
1370 
1371 	spin_lock_init(&master->bus_lock_spinlock);
1372 	mutex_init(&master->bus_lock_mutex);
1373 	master->bus_lock_flag = 0;
1374 	init_completion(&master->xfer_completion);
1375 
1376 	/* register the device, then userspace will see it.
1377 	 * registration fails if the bus ID is in use.
1378 	 */
1379 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1380 	status = device_add(&master->dev);
1381 	if (status < 0)
1382 		goto done;
1383 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1384 			dynamic ? " (dynamic)" : "");
1385 
1386 	/* If we're using a queued driver, start the queue */
1387 	if (master->transfer)
1388 		dev_info(dev, "master is unqueued, this is deprecated\n");
1389 	else {
1390 		status = spi_master_initialize_queue(master);
1391 		if (status) {
1392 			device_del(&master->dev);
1393 			goto done;
1394 		}
1395 	}
1396 
1397 	mutex_lock(&board_lock);
1398 	list_add_tail(&master->list, &spi_master_list);
1399 	list_for_each_entry(bi, &board_list, list)
1400 		spi_match_master_to_boardinfo(master, &bi->board_info);
1401 	mutex_unlock(&board_lock);
1402 
1403 	/* Register devices from the device tree and ACPI */
1404 	of_register_spi_devices(master);
1405 	acpi_register_spi_devices(master);
1406 done:
1407 	return status;
1408 }
1409 EXPORT_SYMBOL_GPL(spi_register_master);
1410 
1411 static void devm_spi_unregister(struct device *dev, void *res)
1412 {
1413 	spi_unregister_master(*(struct spi_master **)res);
1414 }
1415 
1416 /**
1417  * dev_spi_register_master - register managed SPI master controller
1418  * @dev:    device managing SPI master
1419  * @master: initialized master, originally from spi_alloc_master()
1420  * Context: can sleep
1421  *
1422  * Register a SPI device as with spi_register_master() which will
1423  * automatically be unregister
1424  */
1425 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1426 {
1427 	struct spi_master **ptr;
1428 	int ret;
1429 
1430 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1431 	if (!ptr)
1432 		return -ENOMEM;
1433 
1434 	ret = spi_register_master(master);
1435 	if (!ret) {
1436 		*ptr = master;
1437 		devres_add(dev, ptr);
1438 	} else {
1439 		devres_free(ptr);
1440 	}
1441 
1442 	return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1445 
1446 static int __unregister(struct device *dev, void *null)
1447 {
1448 	spi_unregister_device(to_spi_device(dev));
1449 	return 0;
1450 }
1451 
1452 /**
1453  * spi_unregister_master - unregister SPI master controller
1454  * @master: the master being unregistered
1455  * Context: can sleep
1456  *
1457  * This call is used only by SPI master controller drivers, which are the
1458  * only ones directly touching chip registers.
1459  *
1460  * This must be called from context that can sleep.
1461  */
1462 void spi_unregister_master(struct spi_master *master)
1463 {
1464 	int dummy;
1465 
1466 	if (master->queued) {
1467 		if (spi_destroy_queue(master))
1468 			dev_err(&master->dev, "queue remove failed\n");
1469 	}
1470 
1471 	mutex_lock(&board_lock);
1472 	list_del(&master->list);
1473 	mutex_unlock(&board_lock);
1474 
1475 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1476 	device_unregister(&master->dev);
1477 }
1478 EXPORT_SYMBOL_GPL(spi_unregister_master);
1479 
1480 int spi_master_suspend(struct spi_master *master)
1481 {
1482 	int ret;
1483 
1484 	/* Basically no-ops for non-queued masters */
1485 	if (!master->queued)
1486 		return 0;
1487 
1488 	ret = spi_stop_queue(master);
1489 	if (ret)
1490 		dev_err(&master->dev, "queue stop failed\n");
1491 
1492 	return ret;
1493 }
1494 EXPORT_SYMBOL_GPL(spi_master_suspend);
1495 
1496 int spi_master_resume(struct spi_master *master)
1497 {
1498 	int ret;
1499 
1500 	if (!master->queued)
1501 		return 0;
1502 
1503 	ret = spi_start_queue(master);
1504 	if (ret)
1505 		dev_err(&master->dev, "queue restart failed\n");
1506 
1507 	return ret;
1508 }
1509 EXPORT_SYMBOL_GPL(spi_master_resume);
1510 
1511 static int __spi_master_match(struct device *dev, const void *data)
1512 {
1513 	struct spi_master *m;
1514 	const u16 *bus_num = data;
1515 
1516 	m = container_of(dev, struct spi_master, dev);
1517 	return m->bus_num == *bus_num;
1518 }
1519 
1520 /**
1521  * spi_busnum_to_master - look up master associated with bus_num
1522  * @bus_num: the master's bus number
1523  * Context: can sleep
1524  *
1525  * This call may be used with devices that are registered after
1526  * arch init time.  It returns a refcounted pointer to the relevant
1527  * spi_master (which the caller must release), or NULL if there is
1528  * no such master registered.
1529  */
1530 struct spi_master *spi_busnum_to_master(u16 bus_num)
1531 {
1532 	struct device		*dev;
1533 	struct spi_master	*master = NULL;
1534 
1535 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1536 				__spi_master_match);
1537 	if (dev)
1538 		master = container_of(dev, struct spi_master, dev);
1539 	/* reference got in class_find_device */
1540 	return master;
1541 }
1542 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1543 
1544 
1545 /*-------------------------------------------------------------------------*/
1546 
1547 /* Core methods for SPI master protocol drivers.  Some of the
1548  * other core methods are currently defined as inline functions.
1549  */
1550 
1551 /**
1552  * spi_setup - setup SPI mode and clock rate
1553  * @spi: the device whose settings are being modified
1554  * Context: can sleep, and no requests are queued to the device
1555  *
1556  * SPI protocol drivers may need to update the transfer mode if the
1557  * device doesn't work with its default.  They may likewise need
1558  * to update clock rates or word sizes from initial values.  This function
1559  * changes those settings, and must be called from a context that can sleep.
1560  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1561  * effect the next time the device is selected and data is transferred to
1562  * or from it.  When this function returns, the spi device is deselected.
1563  *
1564  * Note that this call will fail if the protocol driver specifies an option
1565  * that the underlying controller or its driver does not support.  For
1566  * example, not all hardware supports wire transfers using nine bit words,
1567  * LSB-first wire encoding, or active-high chipselects.
1568  */
1569 int spi_setup(struct spi_device *spi)
1570 {
1571 	unsigned	bad_bits;
1572 	int		status = 0;
1573 
1574 	/* check mode to prevent that DUAL and QUAD set at the same time
1575 	 */
1576 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1577 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1578 		dev_err(&spi->dev,
1579 		"setup: can not select dual and quad at the same time\n");
1580 		return -EINVAL;
1581 	}
1582 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1583 	 */
1584 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1585 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1586 		return -EINVAL;
1587 	/* help drivers fail *cleanly* when they need options
1588 	 * that aren't supported with their current master
1589 	 */
1590 	bad_bits = spi->mode & ~spi->master->mode_bits;
1591 	if (bad_bits) {
1592 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1593 			bad_bits);
1594 		return -EINVAL;
1595 	}
1596 
1597 	if (!spi->bits_per_word)
1598 		spi->bits_per_word = 8;
1599 
1600 	if (spi->master->setup)
1601 		status = spi->master->setup(spi);
1602 
1603 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1604 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1605 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1606 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1607 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1608 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1609 			spi->bits_per_word, spi->max_speed_hz,
1610 			status);
1611 
1612 	return status;
1613 }
1614 EXPORT_SYMBOL_GPL(spi_setup);
1615 
1616 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1617 {
1618 	struct spi_master *master = spi->master;
1619 	struct spi_transfer *xfer;
1620 
1621 	if (list_empty(&message->transfers))
1622 		return -EINVAL;
1623 	if (!message->complete)
1624 		return -EINVAL;
1625 
1626 	/* Half-duplex links include original MicroWire, and ones with
1627 	 * only one data pin like SPI_3WIRE (switches direction) or where
1628 	 * either MOSI or MISO is missing.  They can also be caused by
1629 	 * software limitations.
1630 	 */
1631 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1632 			|| (spi->mode & SPI_3WIRE)) {
1633 		unsigned flags = master->flags;
1634 
1635 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1636 			if (xfer->rx_buf && xfer->tx_buf)
1637 				return -EINVAL;
1638 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1639 				return -EINVAL;
1640 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1641 				return -EINVAL;
1642 		}
1643 	}
1644 
1645 	/**
1646 	 * Set transfer bits_per_word and max speed as spi device default if
1647 	 * it is not set for this transfer.
1648 	 * Set transfer tx_nbits and rx_nbits as single transfer default
1649 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1650 	 */
1651 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1652 		message->frame_length += xfer->len;
1653 		if (!xfer->bits_per_word)
1654 			xfer->bits_per_word = spi->bits_per_word;
1655 		if (!xfer->speed_hz) {
1656 			xfer->speed_hz = spi->max_speed_hz;
1657 			if (master->max_speed_hz &&
1658 			    xfer->speed_hz > master->max_speed_hz)
1659 				xfer->speed_hz = master->max_speed_hz;
1660 		}
1661 
1662 		if (master->bits_per_word_mask) {
1663 			/* Only 32 bits fit in the mask */
1664 			if (xfer->bits_per_word > 32)
1665 				return -EINVAL;
1666 			if (!(master->bits_per_word_mask &
1667 					BIT(xfer->bits_per_word - 1)))
1668 				return -EINVAL;
1669 		}
1670 
1671 		if (xfer->speed_hz && master->min_speed_hz &&
1672 		    xfer->speed_hz < master->min_speed_hz)
1673 			return -EINVAL;
1674 		if (xfer->speed_hz && master->max_speed_hz &&
1675 		    xfer->speed_hz > master->max_speed_hz)
1676 			return -EINVAL;
1677 
1678 		if (xfer->tx_buf && !xfer->tx_nbits)
1679 			xfer->tx_nbits = SPI_NBITS_SINGLE;
1680 		if (xfer->rx_buf && !xfer->rx_nbits)
1681 			xfer->rx_nbits = SPI_NBITS_SINGLE;
1682 		/* check transfer tx/rx_nbits:
1683 		 * 1. check the value matches one of single, dual and quad
1684 		 * 2. check tx/rx_nbits match the mode in spi_device
1685 		 */
1686 		if (xfer->tx_buf) {
1687 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1688 				xfer->tx_nbits != SPI_NBITS_DUAL &&
1689 				xfer->tx_nbits != SPI_NBITS_QUAD)
1690 				return -EINVAL;
1691 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1692 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1693 				return -EINVAL;
1694 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1695 				!(spi->mode & SPI_TX_QUAD))
1696 				return -EINVAL;
1697 		}
1698 		/* check transfer rx_nbits */
1699 		if (xfer->rx_buf) {
1700 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1701 				xfer->rx_nbits != SPI_NBITS_DUAL &&
1702 				xfer->rx_nbits != SPI_NBITS_QUAD)
1703 				return -EINVAL;
1704 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1705 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1706 				return -EINVAL;
1707 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1708 				!(spi->mode & SPI_RX_QUAD))
1709 				return -EINVAL;
1710 		}
1711 	}
1712 
1713 	message->status = -EINPROGRESS;
1714 
1715 	return 0;
1716 }
1717 
1718 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1719 {
1720 	struct spi_master *master = spi->master;
1721 
1722 	message->spi = spi;
1723 
1724 	trace_spi_message_submit(message);
1725 
1726 	return master->transfer(spi, message);
1727 }
1728 
1729 /**
1730  * spi_async - asynchronous SPI transfer
1731  * @spi: device with which data will be exchanged
1732  * @message: describes the data transfers, including completion callback
1733  * Context: any (irqs may be blocked, etc)
1734  *
1735  * This call may be used in_irq and other contexts which can't sleep,
1736  * as well as from task contexts which can sleep.
1737  *
1738  * The completion callback is invoked in a context which can't sleep.
1739  * Before that invocation, the value of message->status is undefined.
1740  * When the callback is issued, message->status holds either zero (to
1741  * indicate complete success) or a negative error code.  After that
1742  * callback returns, the driver which issued the transfer request may
1743  * deallocate the associated memory; it's no longer in use by any SPI
1744  * core or controller driver code.
1745  *
1746  * Note that although all messages to a spi_device are handled in
1747  * FIFO order, messages may go to different devices in other orders.
1748  * Some device might be higher priority, or have various "hard" access
1749  * time requirements, for example.
1750  *
1751  * On detection of any fault during the transfer, processing of
1752  * the entire message is aborted, and the device is deselected.
1753  * Until returning from the associated message completion callback,
1754  * no other spi_message queued to that device will be processed.
1755  * (This rule applies equally to all the synchronous transfer calls,
1756  * which are wrappers around this core asynchronous primitive.)
1757  */
1758 int spi_async(struct spi_device *spi, struct spi_message *message)
1759 {
1760 	struct spi_master *master = spi->master;
1761 	int ret;
1762 	unsigned long flags;
1763 
1764 	ret = __spi_validate(spi, message);
1765 	if (ret != 0)
1766 		return ret;
1767 
1768 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1769 
1770 	if (master->bus_lock_flag)
1771 		ret = -EBUSY;
1772 	else
1773 		ret = __spi_async(spi, message);
1774 
1775 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1776 
1777 	return ret;
1778 }
1779 EXPORT_SYMBOL_GPL(spi_async);
1780 
1781 /**
1782  * spi_async_locked - version of spi_async with exclusive bus usage
1783  * @spi: device with which data will be exchanged
1784  * @message: describes the data transfers, including completion callback
1785  * Context: any (irqs may be blocked, etc)
1786  *
1787  * This call may be used in_irq and other contexts which can't sleep,
1788  * as well as from task contexts which can sleep.
1789  *
1790  * The completion callback is invoked in a context which can't sleep.
1791  * Before that invocation, the value of message->status is undefined.
1792  * When the callback is issued, message->status holds either zero (to
1793  * indicate complete success) or a negative error code.  After that
1794  * callback returns, the driver which issued the transfer request may
1795  * deallocate the associated memory; it's no longer in use by any SPI
1796  * core or controller driver code.
1797  *
1798  * Note that although all messages to a spi_device are handled in
1799  * FIFO order, messages may go to different devices in other orders.
1800  * Some device might be higher priority, or have various "hard" access
1801  * time requirements, for example.
1802  *
1803  * On detection of any fault during the transfer, processing of
1804  * the entire message is aborted, and the device is deselected.
1805  * Until returning from the associated message completion callback,
1806  * no other spi_message queued to that device will be processed.
1807  * (This rule applies equally to all the synchronous transfer calls,
1808  * which are wrappers around this core asynchronous primitive.)
1809  */
1810 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1811 {
1812 	struct spi_master *master = spi->master;
1813 	int ret;
1814 	unsigned long flags;
1815 
1816 	ret = __spi_validate(spi, message);
1817 	if (ret != 0)
1818 		return ret;
1819 
1820 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1821 
1822 	ret = __spi_async(spi, message);
1823 
1824 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1825 
1826 	return ret;
1827 
1828 }
1829 EXPORT_SYMBOL_GPL(spi_async_locked);
1830 
1831 
1832 /*-------------------------------------------------------------------------*/
1833 
1834 /* Utility methods for SPI master protocol drivers, layered on
1835  * top of the core.  Some other utility methods are defined as
1836  * inline functions.
1837  */
1838 
1839 static void spi_complete(void *arg)
1840 {
1841 	complete(arg);
1842 }
1843 
1844 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1845 		      int bus_locked)
1846 {
1847 	DECLARE_COMPLETION_ONSTACK(done);
1848 	int status;
1849 	struct spi_master *master = spi->master;
1850 
1851 	message->complete = spi_complete;
1852 	message->context = &done;
1853 
1854 	if (!bus_locked)
1855 		mutex_lock(&master->bus_lock_mutex);
1856 
1857 	status = spi_async_locked(spi, message);
1858 
1859 	if (!bus_locked)
1860 		mutex_unlock(&master->bus_lock_mutex);
1861 
1862 	if (status == 0) {
1863 		wait_for_completion(&done);
1864 		status = message->status;
1865 	}
1866 	message->context = NULL;
1867 	return status;
1868 }
1869 
1870 /**
1871  * spi_sync - blocking/synchronous SPI data transfers
1872  * @spi: device with which data will be exchanged
1873  * @message: describes the data transfers
1874  * Context: can sleep
1875  *
1876  * This call may only be used from a context that may sleep.  The sleep
1877  * is non-interruptible, and has no timeout.  Low-overhead controller
1878  * drivers may DMA directly into and out of the message buffers.
1879  *
1880  * Note that the SPI device's chip select is active during the message,
1881  * and then is normally disabled between messages.  Drivers for some
1882  * frequently-used devices may want to minimize costs of selecting a chip,
1883  * by leaving it selected in anticipation that the next message will go
1884  * to the same chip.  (That may increase power usage.)
1885  *
1886  * Also, the caller is guaranteeing that the memory associated with the
1887  * message will not be freed before this call returns.
1888  *
1889  * It returns zero on success, else a negative error code.
1890  */
1891 int spi_sync(struct spi_device *spi, struct spi_message *message)
1892 {
1893 	return __spi_sync(spi, message, 0);
1894 }
1895 EXPORT_SYMBOL_GPL(spi_sync);
1896 
1897 /**
1898  * spi_sync_locked - version of spi_sync with exclusive bus usage
1899  * @spi: device with which data will be exchanged
1900  * @message: describes the data transfers
1901  * Context: can sleep
1902  *
1903  * This call may only be used from a context that may sleep.  The sleep
1904  * is non-interruptible, and has no timeout.  Low-overhead controller
1905  * drivers may DMA directly into and out of the message buffers.
1906  *
1907  * This call should be used by drivers that require exclusive access to the
1908  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1909  * be released by a spi_bus_unlock call when the exclusive access is over.
1910  *
1911  * It returns zero on success, else a negative error code.
1912  */
1913 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1914 {
1915 	return __spi_sync(spi, message, 1);
1916 }
1917 EXPORT_SYMBOL_GPL(spi_sync_locked);
1918 
1919 /**
1920  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1921  * @master: SPI bus master that should be locked for exclusive bus access
1922  * Context: can sleep
1923  *
1924  * This call may only be used from a context that may sleep.  The sleep
1925  * is non-interruptible, and has no timeout.
1926  *
1927  * This call should be used by drivers that require exclusive access to the
1928  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1929  * exclusive access is over. Data transfer must be done by spi_sync_locked
1930  * and spi_async_locked calls when the SPI bus lock is held.
1931  *
1932  * It returns zero on success, else a negative error code.
1933  */
1934 int spi_bus_lock(struct spi_master *master)
1935 {
1936 	unsigned long flags;
1937 
1938 	mutex_lock(&master->bus_lock_mutex);
1939 
1940 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1941 	master->bus_lock_flag = 1;
1942 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1943 
1944 	/* mutex remains locked until spi_bus_unlock is called */
1945 
1946 	return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(spi_bus_lock);
1949 
1950 /**
1951  * spi_bus_unlock - release the lock for exclusive SPI bus usage
1952  * @master: SPI bus master that was locked for exclusive bus access
1953  * Context: can sleep
1954  *
1955  * This call may only be used from a context that may sleep.  The sleep
1956  * is non-interruptible, and has no timeout.
1957  *
1958  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1959  * call.
1960  *
1961  * It returns zero on success, else a negative error code.
1962  */
1963 int spi_bus_unlock(struct spi_master *master)
1964 {
1965 	master->bus_lock_flag = 0;
1966 
1967 	mutex_unlock(&master->bus_lock_mutex);
1968 
1969 	return 0;
1970 }
1971 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1972 
1973 /* portable code must never pass more than 32 bytes */
1974 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
1975 
1976 static u8	*buf;
1977 
1978 /**
1979  * spi_write_then_read - SPI synchronous write followed by read
1980  * @spi: device with which data will be exchanged
1981  * @txbuf: data to be written (need not be dma-safe)
1982  * @n_tx: size of txbuf, in bytes
1983  * @rxbuf: buffer into which data will be read (need not be dma-safe)
1984  * @n_rx: size of rxbuf, in bytes
1985  * Context: can sleep
1986  *
1987  * This performs a half duplex MicroWire style transaction with the
1988  * device, sending txbuf and then reading rxbuf.  The return value
1989  * is zero for success, else a negative errno status code.
1990  * This call may only be used from a context that may sleep.
1991  *
1992  * Parameters to this routine are always copied using a small buffer;
1993  * portable code should never use this for more than 32 bytes.
1994  * Performance-sensitive or bulk transfer code should instead use
1995  * spi_{async,sync}() calls with dma-safe buffers.
1996  */
1997 int spi_write_then_read(struct spi_device *spi,
1998 		const void *txbuf, unsigned n_tx,
1999 		void *rxbuf, unsigned n_rx)
2000 {
2001 	static DEFINE_MUTEX(lock);
2002 
2003 	int			status;
2004 	struct spi_message	message;
2005 	struct spi_transfer	x[2];
2006 	u8			*local_buf;
2007 
2008 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2009 	 * copying here, (as a pure convenience thing), but we can
2010 	 * keep heap costs out of the hot path unless someone else is
2011 	 * using the pre-allocated buffer or the transfer is too large.
2012 	 */
2013 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2014 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2015 				    GFP_KERNEL | GFP_DMA);
2016 		if (!local_buf)
2017 			return -ENOMEM;
2018 	} else {
2019 		local_buf = buf;
2020 	}
2021 
2022 	spi_message_init(&message);
2023 	memset(x, 0, sizeof(x));
2024 	if (n_tx) {
2025 		x[0].len = n_tx;
2026 		spi_message_add_tail(&x[0], &message);
2027 	}
2028 	if (n_rx) {
2029 		x[1].len = n_rx;
2030 		spi_message_add_tail(&x[1], &message);
2031 	}
2032 
2033 	memcpy(local_buf, txbuf, n_tx);
2034 	x[0].tx_buf = local_buf;
2035 	x[1].rx_buf = local_buf + n_tx;
2036 
2037 	/* do the i/o */
2038 	status = spi_sync(spi, &message);
2039 	if (status == 0)
2040 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2041 
2042 	if (x[0].tx_buf == buf)
2043 		mutex_unlock(&lock);
2044 	else
2045 		kfree(local_buf);
2046 
2047 	return status;
2048 }
2049 EXPORT_SYMBOL_GPL(spi_write_then_read);
2050 
2051 /*-------------------------------------------------------------------------*/
2052 
2053 static int __init spi_init(void)
2054 {
2055 	int	status;
2056 
2057 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2058 	if (!buf) {
2059 		status = -ENOMEM;
2060 		goto err0;
2061 	}
2062 
2063 	status = bus_register(&spi_bus_type);
2064 	if (status < 0)
2065 		goto err1;
2066 
2067 	status = class_register(&spi_master_class);
2068 	if (status < 0)
2069 		goto err2;
2070 	return 0;
2071 
2072 err2:
2073 	bus_unregister(&spi_bus_type);
2074 err1:
2075 	kfree(buf);
2076 	buf = NULL;
2077 err0:
2078 	return status;
2079 }
2080 
2081 /* board_info is normally registered in arch_initcall(),
2082  * but even essential drivers wait till later
2083  *
2084  * REVISIT only boardinfo really needs static linking. the rest (device and
2085  * driver registration) _could_ be dynamically linked (modular) ... costs
2086  * include needing to have boardinfo data structures be much more public.
2087  */
2088 postcore_initcall(spi_init);
2089 
2090