xref: /openbmc/linux/drivers/spi/spi.c (revision f4356947f0297b0962fdd197672db7edf9f58be6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 				   char *buf, size_t offset)
122 {
123 	u64 val = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i) {
127 		const struct spi_statistics *pcpu_stats;
128 		u64_stats_t *field;
129 		unsigned int start;
130 		u64 inc;
131 
132 		pcpu_stats = per_cpu_ptr(stat, i);
133 		field = (void *)pcpu_stats + offset;
134 		do {
135 			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 			inc = u64_stats_read(field);
137 		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 		val += inc;
139 	}
140 	return sysfs_emit(buf, "%llu\n", val);
141 }
142 
143 #define SPI_STATISTICS_ATTRS(field, file)				\
144 static ssize_t spi_controller_##field##_show(struct device *dev,	\
145 					     struct device_attribute *attr, \
146 					     char *buf)			\
147 {									\
148 	struct spi_controller *ctlr = container_of(dev,			\
149 					 struct spi_controller, dev);	\
150 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }									\
152 static struct device_attribute dev_attr_spi_controller_##field = {	\
153 	.attr = { .name = file, .mode = 0444 },				\
154 	.show = spi_controller_##field##_show,				\
155 };									\
156 static ssize_t spi_device_##field##_show(struct device *dev,		\
157 					 struct device_attribute *attr,	\
158 					char *buf)			\
159 {									\
160 	struct spi_device *spi = to_spi_device(dev);			\
161 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }									\
163 static struct device_attribute dev_attr_spi_device_##field = {		\
164 	.attr = { .name = file, .mode = 0444 },				\
165 	.show = spi_device_##field##_show,				\
166 }
167 
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 					    char *buf)			\
171 {									\
172 	return spi_emit_pcpu_stats(stat, buf,				\
173 			offsetof(struct spi_statistics, field));	\
174 }									\
175 SPI_STATISTICS_ATTRS(name, file)
176 
177 #define SPI_STATISTICS_SHOW(field)					\
178 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
179 				 field)
180 
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185 
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189 
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193 
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
195 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
196 				 "transfer_bytes_histo_" number,	\
197 				 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215 
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217 
218 static struct attribute *spi_dev_attrs[] = {
219 	&dev_attr_modalias.attr,
220 	&dev_attr_driver_override.attr,
221 	NULL,
222 };
223 
224 static const struct attribute_group spi_dev_group = {
225 	.attrs  = spi_dev_attrs,
226 };
227 
228 static struct attribute *spi_device_statistics_attrs[] = {
229 	&dev_attr_spi_device_messages.attr,
230 	&dev_attr_spi_device_transfers.attr,
231 	&dev_attr_spi_device_errors.attr,
232 	&dev_attr_spi_device_timedout.attr,
233 	&dev_attr_spi_device_spi_sync.attr,
234 	&dev_attr_spi_device_spi_sync_immediate.attr,
235 	&dev_attr_spi_device_spi_async.attr,
236 	&dev_attr_spi_device_bytes.attr,
237 	&dev_attr_spi_device_bytes_rx.attr,
238 	&dev_attr_spi_device_bytes_tx.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
255 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
256 	&dev_attr_spi_device_transfers_split_maxsize.attr,
257 	NULL,
258 };
259 
260 static const struct attribute_group spi_device_statistics_group = {
261 	.name  = "statistics",
262 	.attrs  = spi_device_statistics_attrs,
263 };
264 
265 static const struct attribute_group *spi_dev_groups[] = {
266 	&spi_dev_group,
267 	&spi_device_statistics_group,
268 	NULL,
269 };
270 
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 	&dev_attr_spi_controller_messages.attr,
273 	&dev_attr_spi_controller_transfers.attr,
274 	&dev_attr_spi_controller_errors.attr,
275 	&dev_attr_spi_controller_timedout.attr,
276 	&dev_attr_spi_controller_spi_sync.attr,
277 	&dev_attr_spi_controller_spi_sync_immediate.attr,
278 	&dev_attr_spi_controller_spi_async.attr,
279 	&dev_attr_spi_controller_bytes.attr,
280 	&dev_attr_spi_controller_bytes_rx.attr,
281 	&dev_attr_spi_controller_bytes_tx.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
300 	NULL,
301 };
302 
303 static const struct attribute_group spi_controller_statistics_group = {
304 	.name  = "statistics",
305 	.attrs  = spi_controller_statistics_attrs,
306 };
307 
308 static const struct attribute_group *spi_master_groups[] = {
309 	&spi_controller_statistics_group,
310 	NULL,
311 };
312 
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 					      struct spi_transfer *xfer,
315 					      struct spi_controller *ctlr)
316 {
317 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 	struct spi_statistics *stats;
319 
320 	if (l2len < 0)
321 		l2len = 0;
322 
323 	get_cpu();
324 	stats = this_cpu_ptr(pcpu_stats);
325 	u64_stats_update_begin(&stats->syncp);
326 
327 	u64_stats_inc(&stats->transfers);
328 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329 
330 	u64_stats_add(&stats->bytes, xfer->len);
331 	if ((xfer->tx_buf) &&
332 	    (xfer->tx_buf != ctlr->dummy_tx))
333 		u64_stats_add(&stats->bytes_tx, xfer->len);
334 	if ((xfer->rx_buf) &&
335 	    (xfer->rx_buf != ctlr->dummy_rx))
336 		u64_stats_add(&stats->bytes_rx, xfer->len);
337 
338 	u64_stats_update_end(&stats->syncp);
339 	put_cpu();
340 }
341 
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348 	while (id->name[0]) {
349 		if (!strcmp(name, id->name))
350 			return id;
351 		id++;
352 	}
353 	return NULL;
354 }
355 
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359 
360 	return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363 
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366 	const void *match;
367 
368 	match = device_get_match_data(&sdev->dev);
369 	if (match)
370 		return match;
371 
372 	return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375 
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378 	const struct spi_device	*spi = to_spi_device(dev);
379 	const struct spi_driver	*sdrv = to_spi_driver(drv);
380 
381 	/* Check override first, and if set, only use the named driver */
382 	if (spi->driver_override)
383 		return strcmp(spi->driver_override, drv->name) == 0;
384 
385 	/* Attempt an OF style match */
386 	if (of_driver_match_device(dev, drv))
387 		return 1;
388 
389 	/* Then try ACPI */
390 	if (acpi_driver_match_device(dev, drv))
391 		return 1;
392 
393 	if (sdrv->id_table)
394 		return !!spi_match_id(sdrv->id_table, spi->modalias);
395 
396 	return strcmp(spi->modalias, drv->name) == 0;
397 }
398 
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401 	const struct spi_device		*spi = to_spi_device(dev);
402 	int rc;
403 
404 	rc = acpi_device_uevent_modalias(dev, env);
405 	if (rc != -ENODEV)
406 		return rc;
407 
408 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410 
411 static int spi_probe(struct device *dev)
412 {
413 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
414 	struct spi_device		*spi = to_spi_device(dev);
415 	int ret;
416 
417 	ret = of_clk_set_defaults(dev->of_node, false);
418 	if (ret)
419 		return ret;
420 
421 	if (dev->of_node) {
422 		spi->irq = of_irq_get(dev->of_node, 0);
423 		if (spi->irq == -EPROBE_DEFER)
424 			return -EPROBE_DEFER;
425 		if (spi->irq < 0)
426 			spi->irq = 0;
427 	}
428 
429 	ret = dev_pm_domain_attach(dev, true);
430 	if (ret)
431 		return ret;
432 
433 	if (sdrv->probe) {
434 		ret = sdrv->probe(spi);
435 		if (ret)
436 			dev_pm_domain_detach(dev, true);
437 	}
438 
439 	return ret;
440 }
441 
442 static void spi_remove(struct device *dev)
443 {
444 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
445 
446 	if (sdrv->remove)
447 		sdrv->remove(to_spi_device(dev));
448 
449 	dev_pm_domain_detach(dev, true);
450 }
451 
452 static void spi_shutdown(struct device *dev)
453 {
454 	if (dev->driver) {
455 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
456 
457 		if (sdrv->shutdown)
458 			sdrv->shutdown(to_spi_device(dev));
459 	}
460 }
461 
462 struct bus_type spi_bus_type = {
463 	.name		= "spi",
464 	.dev_groups	= spi_dev_groups,
465 	.match		= spi_match_device,
466 	.uevent		= spi_uevent,
467 	.probe		= spi_probe,
468 	.remove		= spi_remove,
469 	.shutdown	= spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472 
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483 	sdrv->driver.owner = owner;
484 	sdrv->driver.bus = &spi_bus_type;
485 
486 	/*
487 	 * For Really Good Reasons we use spi: modaliases not of:
488 	 * modaliases for DT so module autoloading won't work if we
489 	 * don't have a spi_device_id as well as a compatible string.
490 	 */
491 	if (sdrv->driver.of_match_table) {
492 		const struct of_device_id *of_id;
493 
494 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495 		     of_id++) {
496 			const char *of_name;
497 
498 			/* Strip off any vendor prefix */
499 			of_name = strnchr(of_id->compatible,
500 					  sizeof(of_id->compatible), ',');
501 			if (of_name)
502 				of_name++;
503 			else
504 				of_name = of_id->compatible;
505 
506 			if (sdrv->id_table) {
507 				const struct spi_device_id *spi_id;
508 
509 				spi_id = spi_match_id(sdrv->id_table, of_name);
510 				if (spi_id)
511 					continue;
512 			} else {
513 				if (strcmp(sdrv->driver.name, of_name) == 0)
514 					continue;
515 			}
516 
517 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 				sdrv->driver.name, of_id->compatible);
519 		}
520 	}
521 
522 	return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525 
526 /*-------------------------------------------------------------------------*/
527 
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534 
535 struct boardinfo {
536 	struct list_head	list;
537 	struct spi_board_info	board_info;
538 };
539 
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542 
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549 
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569 	struct spi_device	*spi;
570 
571 	if (!spi_controller_get(ctlr))
572 		return NULL;
573 
574 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575 	if (!spi) {
576 		spi_controller_put(ctlr);
577 		return NULL;
578 	}
579 
580 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 	if (!spi->pcpu_statistics) {
582 		kfree(spi);
583 		spi_controller_put(ctlr);
584 		return NULL;
585 	}
586 
587 	spi->master = spi->controller = ctlr;
588 	spi->dev.parent = &ctlr->dev;
589 	spi->dev.bus = &spi_bus_type;
590 	spi->dev.release = spidev_release;
591 	spi->mode = ctlr->buswidth_override_bits;
592 
593 	device_initialize(&spi->dev);
594 	return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597 
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601 
602 	if (adev) {
603 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604 		return;
605 	}
606 
607 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608 		     spi_get_chipselect(spi, 0));
609 }
610 
611 static int spi_dev_check(struct device *dev, void *data)
612 {
613 	struct spi_device *spi = to_spi_device(dev);
614 	struct spi_device *new_spi = data;
615 
616 	if (spi->controller == new_spi->controller &&
617 	    spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
618 		return -EBUSY;
619 	return 0;
620 }
621 
622 static void spi_cleanup(struct spi_device *spi)
623 {
624 	if (spi->controller->cleanup)
625 		spi->controller->cleanup(spi);
626 }
627 
628 static int __spi_add_device(struct spi_device *spi)
629 {
630 	struct spi_controller *ctlr = spi->controller;
631 	struct device *dev = ctlr->dev.parent;
632 	int status;
633 
634 	/*
635 	 * We need to make sure there's no other device with this
636 	 * chipselect **BEFORE** we call setup(), else we'll trash
637 	 * its configuration.
638 	 */
639 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
640 	if (status) {
641 		dev_err(dev, "chipselect %d already in use\n",
642 				spi_get_chipselect(spi, 0));
643 		return status;
644 	}
645 
646 	/* Controller may unregister concurrently */
647 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
648 	    !device_is_registered(&ctlr->dev)) {
649 		return -ENODEV;
650 	}
651 
652 	if (ctlr->cs_gpiods)
653 		spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
654 
655 	/*
656 	 * Drivers may modify this initial i/o setup, but will
657 	 * normally rely on the device being setup.  Devices
658 	 * using SPI_CS_HIGH can't coexist well otherwise...
659 	 */
660 	status = spi_setup(spi);
661 	if (status < 0) {
662 		dev_err(dev, "can't setup %s, status %d\n",
663 				dev_name(&spi->dev), status);
664 		return status;
665 	}
666 
667 	/* Device may be bound to an active driver when this returns */
668 	status = device_add(&spi->dev);
669 	if (status < 0) {
670 		dev_err(dev, "can't add %s, status %d\n",
671 				dev_name(&spi->dev), status);
672 		spi_cleanup(spi);
673 	} else {
674 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
675 	}
676 
677 	return status;
678 }
679 
680 /**
681  * spi_add_device - Add spi_device allocated with spi_alloc_device
682  * @spi: spi_device to register
683  *
684  * Companion function to spi_alloc_device.  Devices allocated with
685  * spi_alloc_device can be added onto the spi bus with this function.
686  *
687  * Return: 0 on success; negative errno on failure
688  */
689 int spi_add_device(struct spi_device *spi)
690 {
691 	struct spi_controller *ctlr = spi->controller;
692 	struct device *dev = ctlr->dev.parent;
693 	int status;
694 
695 	/* Chipselects are numbered 0..max; validate. */
696 	if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
697 		dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
698 			ctlr->num_chipselect);
699 		return -EINVAL;
700 	}
701 
702 	/* Set the bus ID string */
703 	spi_dev_set_name(spi);
704 
705 	mutex_lock(&ctlr->add_lock);
706 	status = __spi_add_device(spi);
707 	mutex_unlock(&ctlr->add_lock);
708 	return status;
709 }
710 EXPORT_SYMBOL_GPL(spi_add_device);
711 
712 static int spi_add_device_locked(struct spi_device *spi)
713 {
714 	struct spi_controller *ctlr = spi->controller;
715 	struct device *dev = ctlr->dev.parent;
716 
717 	/* Chipselects are numbered 0..max; validate. */
718 	if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
719 		dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
720 			ctlr->num_chipselect);
721 		return -EINVAL;
722 	}
723 
724 	/* Set the bus ID string */
725 	spi_dev_set_name(spi);
726 
727 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
728 	return __spi_add_device(spi);
729 }
730 
731 /**
732  * spi_new_device - instantiate one new SPI device
733  * @ctlr: Controller to which device is connected
734  * @chip: Describes the SPI device
735  * Context: can sleep
736  *
737  * On typical mainboards, this is purely internal; and it's not needed
738  * after board init creates the hard-wired devices.  Some development
739  * platforms may not be able to use spi_register_board_info though, and
740  * this is exported so that for example a USB or parport based adapter
741  * driver could add devices (which it would learn about out-of-band).
742  *
743  * Return: the new device, or NULL.
744  */
745 struct spi_device *spi_new_device(struct spi_controller *ctlr,
746 				  struct spi_board_info *chip)
747 {
748 	struct spi_device	*proxy;
749 	int			status;
750 
751 	/*
752 	 * NOTE:  caller did any chip->bus_num checks necessary.
753 	 *
754 	 * Also, unless we change the return value convention to use
755 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
756 	 * suggests syslogged diagnostics are best here (ugh).
757 	 */
758 
759 	proxy = spi_alloc_device(ctlr);
760 	if (!proxy)
761 		return NULL;
762 
763 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
764 
765 	spi_set_chipselect(proxy, 0, chip->chip_select);
766 	proxy->max_speed_hz = chip->max_speed_hz;
767 	proxy->mode = chip->mode;
768 	proxy->irq = chip->irq;
769 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
770 	proxy->dev.platform_data = (void *) chip->platform_data;
771 	proxy->controller_data = chip->controller_data;
772 	proxy->controller_state = NULL;
773 
774 	if (chip->swnode) {
775 		status = device_add_software_node(&proxy->dev, chip->swnode);
776 		if (status) {
777 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
778 				chip->modalias, status);
779 			goto err_dev_put;
780 		}
781 	}
782 
783 	status = spi_add_device(proxy);
784 	if (status < 0)
785 		goto err_dev_put;
786 
787 	return proxy;
788 
789 err_dev_put:
790 	device_remove_software_node(&proxy->dev);
791 	spi_dev_put(proxy);
792 	return NULL;
793 }
794 EXPORT_SYMBOL_GPL(spi_new_device);
795 
796 /**
797  * spi_unregister_device - unregister a single SPI device
798  * @spi: spi_device to unregister
799  *
800  * Start making the passed SPI device vanish. Normally this would be handled
801  * by spi_unregister_controller().
802  */
803 void spi_unregister_device(struct spi_device *spi)
804 {
805 	if (!spi)
806 		return;
807 
808 	if (spi->dev.of_node) {
809 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
810 		of_node_put(spi->dev.of_node);
811 	}
812 	if (ACPI_COMPANION(&spi->dev))
813 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
814 	device_remove_software_node(&spi->dev);
815 	device_del(&spi->dev);
816 	spi_cleanup(spi);
817 	put_device(&spi->dev);
818 }
819 EXPORT_SYMBOL_GPL(spi_unregister_device);
820 
821 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
822 					      struct spi_board_info *bi)
823 {
824 	struct spi_device *dev;
825 
826 	if (ctlr->bus_num != bi->bus_num)
827 		return;
828 
829 	dev = spi_new_device(ctlr, bi);
830 	if (!dev)
831 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
832 			bi->modalias);
833 }
834 
835 /**
836  * spi_register_board_info - register SPI devices for a given board
837  * @info: array of chip descriptors
838  * @n: how many descriptors are provided
839  * Context: can sleep
840  *
841  * Board-specific early init code calls this (probably during arch_initcall)
842  * with segments of the SPI device table.  Any device nodes are created later,
843  * after the relevant parent SPI controller (bus_num) is defined.  We keep
844  * this table of devices forever, so that reloading a controller driver will
845  * not make Linux forget about these hard-wired devices.
846  *
847  * Other code can also call this, e.g. a particular add-on board might provide
848  * SPI devices through its expansion connector, so code initializing that board
849  * would naturally declare its SPI devices.
850  *
851  * The board info passed can safely be __initdata ... but be careful of
852  * any embedded pointers (platform_data, etc), they're copied as-is.
853  *
854  * Return: zero on success, else a negative error code.
855  */
856 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
857 {
858 	struct boardinfo *bi;
859 	int i;
860 
861 	if (!n)
862 		return 0;
863 
864 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
865 	if (!bi)
866 		return -ENOMEM;
867 
868 	for (i = 0; i < n; i++, bi++, info++) {
869 		struct spi_controller *ctlr;
870 
871 		memcpy(&bi->board_info, info, sizeof(*info));
872 
873 		mutex_lock(&board_lock);
874 		list_add_tail(&bi->list, &board_list);
875 		list_for_each_entry(ctlr, &spi_controller_list, list)
876 			spi_match_controller_to_boardinfo(ctlr,
877 							  &bi->board_info);
878 		mutex_unlock(&board_lock);
879 	}
880 
881 	return 0;
882 }
883 
884 /*-------------------------------------------------------------------------*/
885 
886 /* Core methods for SPI resource management */
887 
888 /**
889  * spi_res_alloc - allocate a spi resource that is life-cycle managed
890  *                 during the processing of a spi_message while using
891  *                 spi_transfer_one
892  * @spi:     the spi device for which we allocate memory
893  * @release: the release code to execute for this resource
894  * @size:    size to alloc and return
895  * @gfp:     GFP allocation flags
896  *
897  * Return: the pointer to the allocated data
898  *
899  * This may get enhanced in the future to allocate from a memory pool
900  * of the @spi_device or @spi_controller to avoid repeated allocations.
901  */
902 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
903 			   size_t size, gfp_t gfp)
904 {
905 	struct spi_res *sres;
906 
907 	sres = kzalloc(sizeof(*sres) + size, gfp);
908 	if (!sres)
909 		return NULL;
910 
911 	INIT_LIST_HEAD(&sres->entry);
912 	sres->release = release;
913 
914 	return sres->data;
915 }
916 
917 /**
918  * spi_res_free - free an spi resource
919  * @res: pointer to the custom data of a resource
920  */
921 static void spi_res_free(void *res)
922 {
923 	struct spi_res *sres = container_of(res, struct spi_res, data);
924 
925 	if (!res)
926 		return;
927 
928 	WARN_ON(!list_empty(&sres->entry));
929 	kfree(sres);
930 }
931 
932 /**
933  * spi_res_add - add a spi_res to the spi_message
934  * @message: the spi message
935  * @res:     the spi_resource
936  */
937 static void spi_res_add(struct spi_message *message, void *res)
938 {
939 	struct spi_res *sres = container_of(res, struct spi_res, data);
940 
941 	WARN_ON(!list_empty(&sres->entry));
942 	list_add_tail(&sres->entry, &message->resources);
943 }
944 
945 /**
946  * spi_res_release - release all spi resources for this message
947  * @ctlr:  the @spi_controller
948  * @message: the @spi_message
949  */
950 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
951 {
952 	struct spi_res *res, *tmp;
953 
954 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
955 		if (res->release)
956 			res->release(ctlr, message, res->data);
957 
958 		list_del(&res->entry);
959 
960 		kfree(res);
961 	}
962 }
963 
964 /*-------------------------------------------------------------------------*/
965 
966 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
967 {
968 	bool activate = enable;
969 
970 	/*
971 	 * Avoid calling into the driver (or doing delays) if the chip select
972 	 * isn't actually changing from the last time this was called.
973 	 */
974 	if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
975 		       (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
976 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
977 		return;
978 
979 	trace_spi_set_cs(spi, activate);
980 
981 	spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
982 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
983 
984 	if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
985 		spi_delay_exec(&spi->cs_hold, NULL);
986 
987 	if (spi->mode & SPI_CS_HIGH)
988 		enable = !enable;
989 
990 	if (spi_get_csgpiod(spi, 0)) {
991 		if (!(spi->mode & SPI_NO_CS)) {
992 			/*
993 			 * Historically ACPI has no means of the GPIO polarity and
994 			 * thus the SPISerialBus() resource defines it on the per-chip
995 			 * basis. In order to avoid a chain of negations, the GPIO
996 			 * polarity is considered being Active High. Even for the cases
997 			 * when _DSD() is involved (in the updated versions of ACPI)
998 			 * the GPIO CS polarity must be defined Active High to avoid
999 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1000 			 * into account.
1001 			 */
1002 			if (has_acpi_companion(&spi->dev))
1003 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
1004 			else
1005 				/* Polarity handled by GPIO library */
1006 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
1007 		}
1008 		/* Some SPI masters need both GPIO CS & slave_select */
1009 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1010 		    spi->controller->set_cs)
1011 			spi->controller->set_cs(spi, !enable);
1012 	} else if (spi->controller->set_cs) {
1013 		spi->controller->set_cs(spi, !enable);
1014 	}
1015 
1016 	if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
1017 		if (activate)
1018 			spi_delay_exec(&spi->cs_setup, NULL);
1019 		else
1020 			spi_delay_exec(&spi->cs_inactive, NULL);
1021 	}
1022 }
1023 
1024 #ifdef CONFIG_HAS_DMA
1025 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1026 			     struct sg_table *sgt, void *buf, size_t len,
1027 			     enum dma_data_direction dir, unsigned long attrs)
1028 {
1029 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1030 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1031 #ifdef CONFIG_HIGHMEM
1032 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1033 				(unsigned long)buf < (PKMAP_BASE +
1034 					(LAST_PKMAP * PAGE_SIZE)));
1035 #else
1036 	const bool kmap_buf = false;
1037 #endif
1038 	int desc_len;
1039 	int sgs;
1040 	struct page *vm_page;
1041 	struct scatterlist *sg;
1042 	void *sg_buf;
1043 	size_t min;
1044 	int i, ret;
1045 
1046 	if (vmalloced_buf || kmap_buf) {
1047 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1048 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1049 	} else if (virt_addr_valid(buf)) {
1050 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1051 		sgs = DIV_ROUND_UP(len, desc_len);
1052 	} else {
1053 		return -EINVAL;
1054 	}
1055 
1056 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1057 	if (ret != 0)
1058 		return ret;
1059 
1060 	sg = &sgt->sgl[0];
1061 	for (i = 0; i < sgs; i++) {
1062 
1063 		if (vmalloced_buf || kmap_buf) {
1064 			/*
1065 			 * Next scatterlist entry size is the minimum between
1066 			 * the desc_len and the remaining buffer length that
1067 			 * fits in a page.
1068 			 */
1069 			min = min_t(size_t, desc_len,
1070 				    min_t(size_t, len,
1071 					  PAGE_SIZE - offset_in_page(buf)));
1072 			if (vmalloced_buf)
1073 				vm_page = vmalloc_to_page(buf);
1074 			else
1075 				vm_page = kmap_to_page(buf);
1076 			if (!vm_page) {
1077 				sg_free_table(sgt);
1078 				return -ENOMEM;
1079 			}
1080 			sg_set_page(sg, vm_page,
1081 				    min, offset_in_page(buf));
1082 		} else {
1083 			min = min_t(size_t, len, desc_len);
1084 			sg_buf = buf;
1085 			sg_set_buf(sg, sg_buf, min);
1086 		}
1087 
1088 		buf += min;
1089 		len -= min;
1090 		sg = sg_next(sg);
1091 	}
1092 
1093 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1094 	if (ret < 0) {
1095 		sg_free_table(sgt);
1096 		return ret;
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1103 		struct sg_table *sgt, void *buf, size_t len,
1104 		enum dma_data_direction dir)
1105 {
1106 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1107 }
1108 
1109 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1110 				struct device *dev, struct sg_table *sgt,
1111 				enum dma_data_direction dir,
1112 				unsigned long attrs)
1113 {
1114 	if (sgt->orig_nents) {
1115 		dma_unmap_sgtable(dev, sgt, dir, attrs);
1116 		sg_free_table(sgt);
1117 		sgt->orig_nents = 0;
1118 		sgt->nents = 0;
1119 	}
1120 }
1121 
1122 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1123 		   struct sg_table *sgt, enum dma_data_direction dir)
1124 {
1125 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1126 }
1127 
1128 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1129 {
1130 	struct device *tx_dev, *rx_dev;
1131 	struct spi_transfer *xfer;
1132 	int ret;
1133 
1134 	if (!ctlr->can_dma)
1135 		return 0;
1136 
1137 	if (ctlr->dma_tx)
1138 		tx_dev = ctlr->dma_tx->device->dev;
1139 	else if (ctlr->dma_map_dev)
1140 		tx_dev = ctlr->dma_map_dev;
1141 	else
1142 		tx_dev = ctlr->dev.parent;
1143 
1144 	if (ctlr->dma_rx)
1145 		rx_dev = ctlr->dma_rx->device->dev;
1146 	else if (ctlr->dma_map_dev)
1147 		rx_dev = ctlr->dma_map_dev;
1148 	else
1149 		rx_dev = ctlr->dev.parent;
1150 
1151 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1152 		/* The sync is done before each transfer. */
1153 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1154 
1155 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1156 			continue;
1157 
1158 		if (xfer->tx_buf != NULL) {
1159 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1160 						(void *)xfer->tx_buf,
1161 						xfer->len, DMA_TO_DEVICE,
1162 						attrs);
1163 			if (ret != 0)
1164 				return ret;
1165 		}
1166 
1167 		if (xfer->rx_buf != NULL) {
1168 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1169 						xfer->rx_buf, xfer->len,
1170 						DMA_FROM_DEVICE, attrs);
1171 			if (ret != 0) {
1172 				spi_unmap_buf_attrs(ctlr, tx_dev,
1173 						&xfer->tx_sg, DMA_TO_DEVICE,
1174 						attrs);
1175 
1176 				return ret;
1177 			}
1178 		}
1179 	}
1180 
1181 	ctlr->cur_rx_dma_dev = rx_dev;
1182 	ctlr->cur_tx_dma_dev = tx_dev;
1183 	ctlr->cur_msg_mapped = true;
1184 
1185 	return 0;
1186 }
1187 
1188 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1189 {
1190 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1191 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1192 	struct spi_transfer *xfer;
1193 
1194 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1195 		return 0;
1196 
1197 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1198 		/* The sync has already been done after each transfer. */
1199 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1200 
1201 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1202 			continue;
1203 
1204 		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1205 				    DMA_FROM_DEVICE, attrs);
1206 		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1207 				    DMA_TO_DEVICE, attrs);
1208 	}
1209 
1210 	ctlr->cur_msg_mapped = false;
1211 
1212 	return 0;
1213 }
1214 
1215 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1216 				    struct spi_transfer *xfer)
1217 {
1218 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1219 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1220 
1221 	if (!ctlr->cur_msg_mapped)
1222 		return;
1223 
1224 	if (xfer->tx_sg.orig_nents)
1225 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1226 	if (xfer->rx_sg.orig_nents)
1227 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1228 }
1229 
1230 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1231 				 struct spi_transfer *xfer)
1232 {
1233 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1234 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1235 
1236 	if (!ctlr->cur_msg_mapped)
1237 		return;
1238 
1239 	if (xfer->rx_sg.orig_nents)
1240 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1241 	if (xfer->tx_sg.orig_nents)
1242 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1243 }
1244 #else /* !CONFIG_HAS_DMA */
1245 static inline int __spi_map_msg(struct spi_controller *ctlr,
1246 				struct spi_message *msg)
1247 {
1248 	return 0;
1249 }
1250 
1251 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1252 				  struct spi_message *msg)
1253 {
1254 	return 0;
1255 }
1256 
1257 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1258 				    struct spi_transfer *xfer)
1259 {
1260 }
1261 
1262 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1263 				 struct spi_transfer *xfer)
1264 {
1265 }
1266 #endif /* !CONFIG_HAS_DMA */
1267 
1268 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1269 				struct spi_message *msg)
1270 {
1271 	struct spi_transfer *xfer;
1272 
1273 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1274 		/*
1275 		 * Restore the original value of tx_buf or rx_buf if they are
1276 		 * NULL.
1277 		 */
1278 		if (xfer->tx_buf == ctlr->dummy_tx)
1279 			xfer->tx_buf = NULL;
1280 		if (xfer->rx_buf == ctlr->dummy_rx)
1281 			xfer->rx_buf = NULL;
1282 	}
1283 
1284 	return __spi_unmap_msg(ctlr, msg);
1285 }
1286 
1287 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1288 {
1289 	struct spi_transfer *xfer;
1290 	void *tmp;
1291 	unsigned int max_tx, max_rx;
1292 
1293 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1294 		&& !(msg->spi->mode & SPI_3WIRE)) {
1295 		max_tx = 0;
1296 		max_rx = 0;
1297 
1298 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1299 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1300 			    !xfer->tx_buf)
1301 				max_tx = max(xfer->len, max_tx);
1302 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1303 			    !xfer->rx_buf)
1304 				max_rx = max(xfer->len, max_rx);
1305 		}
1306 
1307 		if (max_tx) {
1308 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1309 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1310 			if (!tmp)
1311 				return -ENOMEM;
1312 			ctlr->dummy_tx = tmp;
1313 		}
1314 
1315 		if (max_rx) {
1316 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1317 				       GFP_KERNEL | GFP_DMA);
1318 			if (!tmp)
1319 				return -ENOMEM;
1320 			ctlr->dummy_rx = tmp;
1321 		}
1322 
1323 		if (max_tx || max_rx) {
1324 			list_for_each_entry(xfer, &msg->transfers,
1325 					    transfer_list) {
1326 				if (!xfer->len)
1327 					continue;
1328 				if (!xfer->tx_buf)
1329 					xfer->tx_buf = ctlr->dummy_tx;
1330 				if (!xfer->rx_buf)
1331 					xfer->rx_buf = ctlr->dummy_rx;
1332 			}
1333 		}
1334 	}
1335 
1336 	return __spi_map_msg(ctlr, msg);
1337 }
1338 
1339 static int spi_transfer_wait(struct spi_controller *ctlr,
1340 			     struct spi_message *msg,
1341 			     struct spi_transfer *xfer)
1342 {
1343 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1344 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1345 	u32 speed_hz = xfer->speed_hz;
1346 	unsigned long long ms;
1347 
1348 	if (spi_controller_is_slave(ctlr)) {
1349 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1350 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1351 			return -EINTR;
1352 		}
1353 	} else {
1354 		if (!speed_hz)
1355 			speed_hz = 100000;
1356 
1357 		/*
1358 		 * For each byte we wait for 8 cycles of the SPI clock.
1359 		 * Since speed is defined in Hz and we want milliseconds,
1360 		 * use respective multiplier, but before the division,
1361 		 * otherwise we may get 0 for short transfers.
1362 		 */
1363 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1364 		do_div(ms, speed_hz);
1365 
1366 		/*
1367 		 * Increase it twice and add 200 ms tolerance, use
1368 		 * predefined maximum in case of overflow.
1369 		 */
1370 		ms += ms + 200;
1371 		if (ms > UINT_MAX)
1372 			ms = UINT_MAX;
1373 
1374 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1375 						 msecs_to_jiffies(ms));
1376 
1377 		if (ms == 0) {
1378 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1379 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1380 			dev_err(&msg->spi->dev,
1381 				"SPI transfer timed out\n");
1382 			return -ETIMEDOUT;
1383 		}
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static void _spi_transfer_delay_ns(u32 ns)
1390 {
1391 	if (!ns)
1392 		return;
1393 	if (ns <= NSEC_PER_USEC) {
1394 		ndelay(ns);
1395 	} else {
1396 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1397 
1398 		if (us <= 10)
1399 			udelay(us);
1400 		else
1401 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1402 	}
1403 }
1404 
1405 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1406 {
1407 	u32 delay = _delay->value;
1408 	u32 unit = _delay->unit;
1409 	u32 hz;
1410 
1411 	if (!delay)
1412 		return 0;
1413 
1414 	switch (unit) {
1415 	case SPI_DELAY_UNIT_USECS:
1416 		delay *= NSEC_PER_USEC;
1417 		break;
1418 	case SPI_DELAY_UNIT_NSECS:
1419 		/* Nothing to do here */
1420 		break;
1421 	case SPI_DELAY_UNIT_SCK:
1422 		/* Clock cycles need to be obtained from spi_transfer */
1423 		if (!xfer)
1424 			return -EINVAL;
1425 		/*
1426 		 * If there is unknown effective speed, approximate it
1427 		 * by underestimating with half of the requested hz.
1428 		 */
1429 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1430 		if (!hz)
1431 			return -EINVAL;
1432 
1433 		/* Convert delay to nanoseconds */
1434 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1435 		break;
1436 	default:
1437 		return -EINVAL;
1438 	}
1439 
1440 	return delay;
1441 }
1442 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1443 
1444 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1445 {
1446 	int delay;
1447 
1448 	might_sleep();
1449 
1450 	if (!_delay)
1451 		return -EINVAL;
1452 
1453 	delay = spi_delay_to_ns(_delay, xfer);
1454 	if (delay < 0)
1455 		return delay;
1456 
1457 	_spi_transfer_delay_ns(delay);
1458 
1459 	return 0;
1460 }
1461 EXPORT_SYMBOL_GPL(spi_delay_exec);
1462 
1463 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1464 					  struct spi_transfer *xfer)
1465 {
1466 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1467 	u32 delay = xfer->cs_change_delay.value;
1468 	u32 unit = xfer->cs_change_delay.unit;
1469 	int ret;
1470 
1471 	/* Return early on "fast" mode - for everything but USECS */
1472 	if (!delay) {
1473 		if (unit == SPI_DELAY_UNIT_USECS)
1474 			_spi_transfer_delay_ns(default_delay_ns);
1475 		return;
1476 	}
1477 
1478 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1479 	if (ret) {
1480 		dev_err_once(&msg->spi->dev,
1481 			     "Use of unsupported delay unit %i, using default of %luus\n",
1482 			     unit, default_delay_ns / NSEC_PER_USEC);
1483 		_spi_transfer_delay_ns(default_delay_ns);
1484 	}
1485 }
1486 
1487 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1488 						  struct spi_transfer *xfer)
1489 {
1490 	_spi_transfer_cs_change_delay(msg, xfer);
1491 }
1492 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1493 
1494 /*
1495  * spi_transfer_one_message - Default implementation of transfer_one_message()
1496  *
1497  * This is a standard implementation of transfer_one_message() for
1498  * drivers which implement a transfer_one() operation.  It provides
1499  * standard handling of delays and chip select management.
1500  */
1501 static int spi_transfer_one_message(struct spi_controller *ctlr,
1502 				    struct spi_message *msg)
1503 {
1504 	struct spi_transfer *xfer;
1505 	bool keep_cs = false;
1506 	int ret = 0;
1507 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1508 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1509 
1510 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1511 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1512 
1513 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1514 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1515 
1516 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1517 		trace_spi_transfer_start(msg, xfer);
1518 
1519 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1520 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1521 
1522 		if (!ctlr->ptp_sts_supported) {
1523 			xfer->ptp_sts_word_pre = 0;
1524 			ptp_read_system_prets(xfer->ptp_sts);
1525 		}
1526 
1527 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1528 			reinit_completion(&ctlr->xfer_completion);
1529 
1530 fallback_pio:
1531 			spi_dma_sync_for_device(ctlr, xfer);
1532 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1533 			if (ret < 0) {
1534 				spi_dma_sync_for_cpu(ctlr, xfer);
1535 
1536 				if (ctlr->cur_msg_mapped &&
1537 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1538 					__spi_unmap_msg(ctlr, msg);
1539 					ctlr->fallback = true;
1540 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1541 					goto fallback_pio;
1542 				}
1543 
1544 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1545 							       errors);
1546 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1547 							       errors);
1548 				dev_err(&msg->spi->dev,
1549 					"SPI transfer failed: %d\n", ret);
1550 				goto out;
1551 			}
1552 
1553 			if (ret > 0) {
1554 				ret = spi_transfer_wait(ctlr, msg, xfer);
1555 				if (ret < 0)
1556 					msg->status = ret;
1557 			}
1558 
1559 			spi_dma_sync_for_cpu(ctlr, xfer);
1560 		} else {
1561 			if (xfer->len)
1562 				dev_err(&msg->spi->dev,
1563 					"Bufferless transfer has length %u\n",
1564 					xfer->len);
1565 		}
1566 
1567 		if (!ctlr->ptp_sts_supported) {
1568 			ptp_read_system_postts(xfer->ptp_sts);
1569 			xfer->ptp_sts_word_post = xfer->len;
1570 		}
1571 
1572 		trace_spi_transfer_stop(msg, xfer);
1573 
1574 		if (msg->status != -EINPROGRESS)
1575 			goto out;
1576 
1577 		spi_transfer_delay_exec(xfer);
1578 
1579 		if (xfer->cs_change) {
1580 			if (list_is_last(&xfer->transfer_list,
1581 					 &msg->transfers)) {
1582 				keep_cs = true;
1583 			} else {
1584 				if (!xfer->cs_off)
1585 					spi_set_cs(msg->spi, false, false);
1586 				_spi_transfer_cs_change_delay(msg, xfer);
1587 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1588 					spi_set_cs(msg->spi, true, false);
1589 			}
1590 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1591 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1592 			spi_set_cs(msg->spi, xfer->cs_off, false);
1593 		}
1594 
1595 		msg->actual_length += xfer->len;
1596 	}
1597 
1598 out:
1599 	if (ret != 0 || !keep_cs)
1600 		spi_set_cs(msg->spi, false, false);
1601 
1602 	if (msg->status == -EINPROGRESS)
1603 		msg->status = ret;
1604 
1605 	if (msg->status && ctlr->handle_err)
1606 		ctlr->handle_err(ctlr, msg);
1607 
1608 	spi_finalize_current_message(ctlr);
1609 
1610 	return ret;
1611 }
1612 
1613 /**
1614  * spi_finalize_current_transfer - report completion of a transfer
1615  * @ctlr: the controller reporting completion
1616  *
1617  * Called by SPI drivers using the core transfer_one_message()
1618  * implementation to notify it that the current interrupt driven
1619  * transfer has finished and the next one may be scheduled.
1620  */
1621 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1622 {
1623 	complete(&ctlr->xfer_completion);
1624 }
1625 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1626 
1627 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1628 {
1629 	if (ctlr->auto_runtime_pm) {
1630 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1631 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1632 	}
1633 }
1634 
1635 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1636 		struct spi_message *msg, bool was_busy)
1637 {
1638 	struct spi_transfer *xfer;
1639 	int ret;
1640 
1641 	if (!was_busy && ctlr->auto_runtime_pm) {
1642 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1643 		if (ret < 0) {
1644 			pm_runtime_put_noidle(ctlr->dev.parent);
1645 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1646 				ret);
1647 			return ret;
1648 		}
1649 	}
1650 
1651 	if (!was_busy)
1652 		trace_spi_controller_busy(ctlr);
1653 
1654 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1655 		ret = ctlr->prepare_transfer_hardware(ctlr);
1656 		if (ret) {
1657 			dev_err(&ctlr->dev,
1658 				"failed to prepare transfer hardware: %d\n",
1659 				ret);
1660 
1661 			if (ctlr->auto_runtime_pm)
1662 				pm_runtime_put(ctlr->dev.parent);
1663 
1664 			msg->status = ret;
1665 			spi_finalize_current_message(ctlr);
1666 
1667 			return ret;
1668 		}
1669 	}
1670 
1671 	trace_spi_message_start(msg);
1672 
1673 	ret = spi_split_transfers_maxsize(ctlr, msg,
1674 					  spi_max_transfer_size(msg->spi),
1675 					  GFP_KERNEL | GFP_DMA);
1676 	if (ret) {
1677 		msg->status = ret;
1678 		spi_finalize_current_message(ctlr);
1679 		return ret;
1680 	}
1681 
1682 	if (ctlr->prepare_message) {
1683 		ret = ctlr->prepare_message(ctlr, msg);
1684 		if (ret) {
1685 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1686 				ret);
1687 			msg->status = ret;
1688 			spi_finalize_current_message(ctlr);
1689 			return ret;
1690 		}
1691 		msg->prepared = true;
1692 	}
1693 
1694 	ret = spi_map_msg(ctlr, msg);
1695 	if (ret) {
1696 		msg->status = ret;
1697 		spi_finalize_current_message(ctlr);
1698 		return ret;
1699 	}
1700 
1701 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1702 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1703 			xfer->ptp_sts_word_pre = 0;
1704 			ptp_read_system_prets(xfer->ptp_sts);
1705 		}
1706 	}
1707 
1708 	/*
1709 	 * Drivers implementation of transfer_one_message() must arrange for
1710 	 * spi_finalize_current_message() to get called. Most drivers will do
1711 	 * this in the calling context, but some don't. For those cases, a
1712 	 * completion is used to guarantee that this function does not return
1713 	 * until spi_finalize_current_message() is done accessing
1714 	 * ctlr->cur_msg.
1715 	 * Use of the following two flags enable to opportunistically skip the
1716 	 * use of the completion since its use involves expensive spin locks.
1717 	 * In case of a race with the context that calls
1718 	 * spi_finalize_current_message() the completion will always be used,
1719 	 * due to strict ordering of these flags using barriers.
1720 	 */
1721 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1722 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1723 	reinit_completion(&ctlr->cur_msg_completion);
1724 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1725 
1726 	ret = ctlr->transfer_one_message(ctlr, msg);
1727 	if (ret) {
1728 		dev_err(&ctlr->dev,
1729 			"failed to transfer one message from queue\n");
1730 		return ret;
1731 	}
1732 
1733 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1734 	smp_mb(); /* See spi_finalize_current_message()... */
1735 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1736 		wait_for_completion(&ctlr->cur_msg_completion);
1737 
1738 	return 0;
1739 }
1740 
1741 /**
1742  * __spi_pump_messages - function which processes spi message queue
1743  * @ctlr: controller to process queue for
1744  * @in_kthread: true if we are in the context of the message pump thread
1745  *
1746  * This function checks if there is any spi message in the queue that
1747  * needs processing and if so call out to the driver to initialize hardware
1748  * and transfer each message.
1749  *
1750  * Note that it is called both from the kthread itself and also from
1751  * inside spi_sync(); the queue extraction handling at the top of the
1752  * function should deal with this safely.
1753  */
1754 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1755 {
1756 	struct spi_message *msg;
1757 	bool was_busy = false;
1758 	unsigned long flags;
1759 	int ret;
1760 
1761 	/* Take the IO mutex */
1762 	mutex_lock(&ctlr->io_mutex);
1763 
1764 	/* Lock queue */
1765 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1766 
1767 	/* Make sure we are not already running a message */
1768 	if (ctlr->cur_msg)
1769 		goto out_unlock;
1770 
1771 	/* Check if the queue is idle */
1772 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1773 		if (!ctlr->busy)
1774 			goto out_unlock;
1775 
1776 		/* Defer any non-atomic teardown to the thread */
1777 		if (!in_kthread) {
1778 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1779 			    !ctlr->unprepare_transfer_hardware) {
1780 				spi_idle_runtime_pm(ctlr);
1781 				ctlr->busy = false;
1782 				ctlr->queue_empty = true;
1783 				trace_spi_controller_idle(ctlr);
1784 			} else {
1785 				kthread_queue_work(ctlr->kworker,
1786 						   &ctlr->pump_messages);
1787 			}
1788 			goto out_unlock;
1789 		}
1790 
1791 		ctlr->busy = false;
1792 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1793 
1794 		kfree(ctlr->dummy_rx);
1795 		ctlr->dummy_rx = NULL;
1796 		kfree(ctlr->dummy_tx);
1797 		ctlr->dummy_tx = NULL;
1798 		if (ctlr->unprepare_transfer_hardware &&
1799 		    ctlr->unprepare_transfer_hardware(ctlr))
1800 			dev_err(&ctlr->dev,
1801 				"failed to unprepare transfer hardware\n");
1802 		spi_idle_runtime_pm(ctlr);
1803 		trace_spi_controller_idle(ctlr);
1804 
1805 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1806 		ctlr->queue_empty = true;
1807 		goto out_unlock;
1808 	}
1809 
1810 	/* Extract head of queue */
1811 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1812 	ctlr->cur_msg = msg;
1813 
1814 	list_del_init(&msg->queue);
1815 	if (ctlr->busy)
1816 		was_busy = true;
1817 	else
1818 		ctlr->busy = true;
1819 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1820 
1821 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1822 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1823 
1824 	ctlr->cur_msg = NULL;
1825 	ctlr->fallback = false;
1826 
1827 	mutex_unlock(&ctlr->io_mutex);
1828 
1829 	/* Prod the scheduler in case transfer_one() was busy waiting */
1830 	if (!ret)
1831 		cond_resched();
1832 	return;
1833 
1834 out_unlock:
1835 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1836 	mutex_unlock(&ctlr->io_mutex);
1837 }
1838 
1839 /**
1840  * spi_pump_messages - kthread work function which processes spi message queue
1841  * @work: pointer to kthread work struct contained in the controller struct
1842  */
1843 static void spi_pump_messages(struct kthread_work *work)
1844 {
1845 	struct spi_controller *ctlr =
1846 		container_of(work, struct spi_controller, pump_messages);
1847 
1848 	__spi_pump_messages(ctlr, true);
1849 }
1850 
1851 /**
1852  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1853  * @ctlr: Pointer to the spi_controller structure of the driver
1854  * @xfer: Pointer to the transfer being timestamped
1855  * @progress: How many words (not bytes) have been transferred so far
1856  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1857  *	      transfer, for less jitter in time measurement. Only compatible
1858  *	      with PIO drivers. If true, must follow up with
1859  *	      spi_take_timestamp_post or otherwise system will crash.
1860  *	      WARNING: for fully predictable results, the CPU frequency must
1861  *	      also be under control (governor).
1862  *
1863  * This is a helper for drivers to collect the beginning of the TX timestamp
1864  * for the requested byte from the SPI transfer. The frequency with which this
1865  * function must be called (once per word, once for the whole transfer, once
1866  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1867  * greater than or equal to the requested byte at the time of the call. The
1868  * timestamp is only taken once, at the first such call. It is assumed that
1869  * the driver advances its @tx buffer pointer monotonically.
1870  */
1871 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1872 			    struct spi_transfer *xfer,
1873 			    size_t progress, bool irqs_off)
1874 {
1875 	if (!xfer->ptp_sts)
1876 		return;
1877 
1878 	if (xfer->timestamped)
1879 		return;
1880 
1881 	if (progress > xfer->ptp_sts_word_pre)
1882 		return;
1883 
1884 	/* Capture the resolution of the timestamp */
1885 	xfer->ptp_sts_word_pre = progress;
1886 
1887 	if (irqs_off) {
1888 		local_irq_save(ctlr->irq_flags);
1889 		preempt_disable();
1890 	}
1891 
1892 	ptp_read_system_prets(xfer->ptp_sts);
1893 }
1894 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1895 
1896 /**
1897  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1898  * @ctlr: Pointer to the spi_controller structure of the driver
1899  * @xfer: Pointer to the transfer being timestamped
1900  * @progress: How many words (not bytes) have been transferred so far
1901  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1902  *
1903  * This is a helper for drivers to collect the end of the TX timestamp for
1904  * the requested byte from the SPI transfer. Can be called with an arbitrary
1905  * frequency: only the first call where @tx exceeds or is equal to the
1906  * requested word will be timestamped.
1907  */
1908 void spi_take_timestamp_post(struct spi_controller *ctlr,
1909 			     struct spi_transfer *xfer,
1910 			     size_t progress, bool irqs_off)
1911 {
1912 	if (!xfer->ptp_sts)
1913 		return;
1914 
1915 	if (xfer->timestamped)
1916 		return;
1917 
1918 	if (progress < xfer->ptp_sts_word_post)
1919 		return;
1920 
1921 	ptp_read_system_postts(xfer->ptp_sts);
1922 
1923 	if (irqs_off) {
1924 		local_irq_restore(ctlr->irq_flags);
1925 		preempt_enable();
1926 	}
1927 
1928 	/* Capture the resolution of the timestamp */
1929 	xfer->ptp_sts_word_post = progress;
1930 
1931 	xfer->timestamped = 1;
1932 }
1933 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1934 
1935 /**
1936  * spi_set_thread_rt - set the controller to pump at realtime priority
1937  * @ctlr: controller to boost priority of
1938  *
1939  * This can be called because the controller requested realtime priority
1940  * (by setting the ->rt value before calling spi_register_controller()) or
1941  * because a device on the bus said that its transfers needed realtime
1942  * priority.
1943  *
1944  * NOTE: at the moment if any device on a bus says it needs realtime then
1945  * the thread will be at realtime priority for all transfers on that
1946  * controller.  If this eventually becomes a problem we may see if we can
1947  * find a way to boost the priority only temporarily during relevant
1948  * transfers.
1949  */
1950 static void spi_set_thread_rt(struct spi_controller *ctlr)
1951 {
1952 	dev_info(&ctlr->dev,
1953 		"will run message pump with realtime priority\n");
1954 	sched_set_fifo(ctlr->kworker->task);
1955 }
1956 
1957 static int spi_init_queue(struct spi_controller *ctlr)
1958 {
1959 	ctlr->running = false;
1960 	ctlr->busy = false;
1961 	ctlr->queue_empty = true;
1962 
1963 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1964 	if (IS_ERR(ctlr->kworker)) {
1965 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1966 		return PTR_ERR(ctlr->kworker);
1967 	}
1968 
1969 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1970 
1971 	/*
1972 	 * Controller config will indicate if this controller should run the
1973 	 * message pump with high (realtime) priority to reduce the transfer
1974 	 * latency on the bus by minimising the delay between a transfer
1975 	 * request and the scheduling of the message pump thread. Without this
1976 	 * setting the message pump thread will remain at default priority.
1977 	 */
1978 	if (ctlr->rt)
1979 		spi_set_thread_rt(ctlr);
1980 
1981 	return 0;
1982 }
1983 
1984 /**
1985  * spi_get_next_queued_message() - called by driver to check for queued
1986  * messages
1987  * @ctlr: the controller to check for queued messages
1988  *
1989  * If there are more messages in the queue, the next message is returned from
1990  * this call.
1991  *
1992  * Return: the next message in the queue, else NULL if the queue is empty.
1993  */
1994 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1995 {
1996 	struct spi_message *next;
1997 	unsigned long flags;
1998 
1999 	/* Get a pointer to the next message, if any */
2000 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2001 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2002 					queue);
2003 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2004 
2005 	return next;
2006 }
2007 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2008 
2009 /**
2010  * spi_finalize_current_message() - the current message is complete
2011  * @ctlr: the controller to return the message to
2012  *
2013  * Called by the driver to notify the core that the message in the front of the
2014  * queue is complete and can be removed from the queue.
2015  */
2016 void spi_finalize_current_message(struct spi_controller *ctlr)
2017 {
2018 	struct spi_transfer *xfer;
2019 	struct spi_message *mesg;
2020 	int ret;
2021 
2022 	mesg = ctlr->cur_msg;
2023 
2024 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2025 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2026 			ptp_read_system_postts(xfer->ptp_sts);
2027 			xfer->ptp_sts_word_post = xfer->len;
2028 		}
2029 	}
2030 
2031 	if (unlikely(ctlr->ptp_sts_supported))
2032 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2033 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2034 
2035 	spi_unmap_msg(ctlr, mesg);
2036 
2037 	/*
2038 	 * In the prepare_messages callback the SPI bus has the opportunity
2039 	 * to split a transfer to smaller chunks.
2040 	 *
2041 	 * Release the split transfers here since spi_map_msg() is done on
2042 	 * the split transfers.
2043 	 */
2044 	spi_res_release(ctlr, mesg);
2045 
2046 	if (mesg->prepared && ctlr->unprepare_message) {
2047 		ret = ctlr->unprepare_message(ctlr, mesg);
2048 		if (ret) {
2049 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2050 				ret);
2051 		}
2052 	}
2053 
2054 	mesg->prepared = false;
2055 
2056 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2057 	smp_mb(); /* See __spi_pump_transfer_message()... */
2058 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2059 		complete(&ctlr->cur_msg_completion);
2060 
2061 	trace_spi_message_done(mesg);
2062 
2063 	mesg->state = NULL;
2064 	if (mesg->complete)
2065 		mesg->complete(mesg->context);
2066 }
2067 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2068 
2069 static int spi_start_queue(struct spi_controller *ctlr)
2070 {
2071 	unsigned long flags;
2072 
2073 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2074 
2075 	if (ctlr->running || ctlr->busy) {
2076 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2077 		return -EBUSY;
2078 	}
2079 
2080 	ctlr->running = true;
2081 	ctlr->cur_msg = NULL;
2082 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2083 
2084 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2085 
2086 	return 0;
2087 }
2088 
2089 static int spi_stop_queue(struct spi_controller *ctlr)
2090 {
2091 	unsigned long flags;
2092 	unsigned limit = 500;
2093 	int ret = 0;
2094 
2095 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2096 
2097 	/*
2098 	 * This is a bit lame, but is optimized for the common execution path.
2099 	 * A wait_queue on the ctlr->busy could be used, but then the common
2100 	 * execution path (pump_messages) would be required to call wake_up or
2101 	 * friends on every SPI message. Do this instead.
2102 	 */
2103 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2104 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2105 		usleep_range(10000, 11000);
2106 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2107 	}
2108 
2109 	if (!list_empty(&ctlr->queue) || ctlr->busy)
2110 		ret = -EBUSY;
2111 	else
2112 		ctlr->running = false;
2113 
2114 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2115 
2116 	if (ret) {
2117 		dev_warn(&ctlr->dev, "could not stop message queue\n");
2118 		return ret;
2119 	}
2120 	return ret;
2121 }
2122 
2123 static int spi_destroy_queue(struct spi_controller *ctlr)
2124 {
2125 	int ret;
2126 
2127 	ret = spi_stop_queue(ctlr);
2128 
2129 	/*
2130 	 * kthread_flush_worker will block until all work is done.
2131 	 * If the reason that stop_queue timed out is that the work will never
2132 	 * finish, then it does no good to call flush/stop thread, so
2133 	 * return anyway.
2134 	 */
2135 	if (ret) {
2136 		dev_err(&ctlr->dev, "problem destroying queue\n");
2137 		return ret;
2138 	}
2139 
2140 	kthread_destroy_worker(ctlr->kworker);
2141 
2142 	return 0;
2143 }
2144 
2145 static int __spi_queued_transfer(struct spi_device *spi,
2146 				 struct spi_message *msg,
2147 				 bool need_pump)
2148 {
2149 	struct spi_controller *ctlr = spi->controller;
2150 	unsigned long flags;
2151 
2152 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2153 
2154 	if (!ctlr->running) {
2155 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2156 		return -ESHUTDOWN;
2157 	}
2158 	msg->actual_length = 0;
2159 	msg->status = -EINPROGRESS;
2160 
2161 	list_add_tail(&msg->queue, &ctlr->queue);
2162 	ctlr->queue_empty = false;
2163 	if (!ctlr->busy && need_pump)
2164 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2165 
2166 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2167 	return 0;
2168 }
2169 
2170 /**
2171  * spi_queued_transfer - transfer function for queued transfers
2172  * @spi: spi device which is requesting transfer
2173  * @msg: spi message which is to handled is queued to driver queue
2174  *
2175  * Return: zero on success, else a negative error code.
2176  */
2177 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2178 {
2179 	return __spi_queued_transfer(spi, msg, true);
2180 }
2181 
2182 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2183 {
2184 	int ret;
2185 
2186 	ctlr->transfer = spi_queued_transfer;
2187 	if (!ctlr->transfer_one_message)
2188 		ctlr->transfer_one_message = spi_transfer_one_message;
2189 
2190 	/* Initialize and start queue */
2191 	ret = spi_init_queue(ctlr);
2192 	if (ret) {
2193 		dev_err(&ctlr->dev, "problem initializing queue\n");
2194 		goto err_init_queue;
2195 	}
2196 	ctlr->queued = true;
2197 	ret = spi_start_queue(ctlr);
2198 	if (ret) {
2199 		dev_err(&ctlr->dev, "problem starting queue\n");
2200 		goto err_start_queue;
2201 	}
2202 
2203 	return 0;
2204 
2205 err_start_queue:
2206 	spi_destroy_queue(ctlr);
2207 err_init_queue:
2208 	return ret;
2209 }
2210 
2211 /**
2212  * spi_flush_queue - Send all pending messages in the queue from the callers'
2213  *		     context
2214  * @ctlr: controller to process queue for
2215  *
2216  * This should be used when one wants to ensure all pending messages have been
2217  * sent before doing something. Is used by the spi-mem code to make sure SPI
2218  * memory operations do not preempt regular SPI transfers that have been queued
2219  * before the spi-mem operation.
2220  */
2221 void spi_flush_queue(struct spi_controller *ctlr)
2222 {
2223 	if (ctlr->transfer == spi_queued_transfer)
2224 		__spi_pump_messages(ctlr, false);
2225 }
2226 
2227 /*-------------------------------------------------------------------------*/
2228 
2229 #if defined(CONFIG_OF)
2230 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2231 				     struct spi_delay *delay, const char *prop)
2232 {
2233 	u32 value;
2234 
2235 	if (!of_property_read_u32(nc, prop, &value)) {
2236 		if (value > U16_MAX) {
2237 			delay->value = DIV_ROUND_UP(value, 1000);
2238 			delay->unit = SPI_DELAY_UNIT_USECS;
2239 		} else {
2240 			delay->value = value;
2241 			delay->unit = SPI_DELAY_UNIT_NSECS;
2242 		}
2243 	}
2244 }
2245 
2246 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2247 			   struct device_node *nc)
2248 {
2249 	u32 value;
2250 	int rc;
2251 
2252 	/* Mode (clock phase/polarity/etc.) */
2253 	if (of_property_read_bool(nc, "spi-cpha"))
2254 		spi->mode |= SPI_CPHA;
2255 	if (of_property_read_bool(nc, "spi-cpol"))
2256 		spi->mode |= SPI_CPOL;
2257 	if (of_property_read_bool(nc, "spi-3wire"))
2258 		spi->mode |= SPI_3WIRE;
2259 	if (of_property_read_bool(nc, "spi-lsb-first"))
2260 		spi->mode |= SPI_LSB_FIRST;
2261 	if (of_property_read_bool(nc, "spi-cs-high"))
2262 		spi->mode |= SPI_CS_HIGH;
2263 
2264 	/* Device DUAL/QUAD mode */
2265 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2266 		switch (value) {
2267 		case 0:
2268 			spi->mode |= SPI_NO_TX;
2269 			break;
2270 		case 1:
2271 			break;
2272 		case 2:
2273 			spi->mode |= SPI_TX_DUAL;
2274 			break;
2275 		case 4:
2276 			spi->mode |= SPI_TX_QUAD;
2277 			break;
2278 		case 8:
2279 			spi->mode |= SPI_TX_OCTAL;
2280 			break;
2281 		default:
2282 			dev_warn(&ctlr->dev,
2283 				"spi-tx-bus-width %d not supported\n",
2284 				value);
2285 			break;
2286 		}
2287 	}
2288 
2289 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2290 		switch (value) {
2291 		case 0:
2292 			spi->mode |= SPI_NO_RX;
2293 			break;
2294 		case 1:
2295 			break;
2296 		case 2:
2297 			spi->mode |= SPI_RX_DUAL;
2298 			break;
2299 		case 4:
2300 			spi->mode |= SPI_RX_QUAD;
2301 			break;
2302 		case 8:
2303 			spi->mode |= SPI_RX_OCTAL;
2304 			break;
2305 		default:
2306 			dev_warn(&ctlr->dev,
2307 				"spi-rx-bus-width %d not supported\n",
2308 				value);
2309 			break;
2310 		}
2311 	}
2312 
2313 	if (spi_controller_is_slave(ctlr)) {
2314 		if (!of_node_name_eq(nc, "slave")) {
2315 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2316 				nc);
2317 			return -EINVAL;
2318 		}
2319 		return 0;
2320 	}
2321 
2322 	/* Device address */
2323 	rc = of_property_read_u32(nc, "reg", &value);
2324 	if (rc) {
2325 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2326 			nc, rc);
2327 		return rc;
2328 	}
2329 	spi_set_chipselect(spi, 0, value);
2330 
2331 	/* Device speed */
2332 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2333 		spi->max_speed_hz = value;
2334 
2335 	/* Device CS delays */
2336 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2337 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2338 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2339 
2340 	return 0;
2341 }
2342 
2343 static struct spi_device *
2344 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2345 {
2346 	struct spi_device *spi;
2347 	int rc;
2348 
2349 	/* Alloc an spi_device */
2350 	spi = spi_alloc_device(ctlr);
2351 	if (!spi) {
2352 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2353 		rc = -ENOMEM;
2354 		goto err_out;
2355 	}
2356 
2357 	/* Select device driver */
2358 	rc = of_alias_from_compatible(nc, spi->modalias,
2359 				      sizeof(spi->modalias));
2360 	if (rc < 0) {
2361 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2362 		goto err_out;
2363 	}
2364 
2365 	rc = of_spi_parse_dt(ctlr, spi, nc);
2366 	if (rc)
2367 		goto err_out;
2368 
2369 	/* Store a pointer to the node in the device structure */
2370 	of_node_get(nc);
2371 
2372 	device_set_node(&spi->dev, of_fwnode_handle(nc));
2373 
2374 	/* Register the new device */
2375 	rc = spi_add_device(spi);
2376 	if (rc) {
2377 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2378 		goto err_of_node_put;
2379 	}
2380 
2381 	return spi;
2382 
2383 err_of_node_put:
2384 	of_node_put(nc);
2385 err_out:
2386 	spi_dev_put(spi);
2387 	return ERR_PTR(rc);
2388 }
2389 
2390 /**
2391  * of_register_spi_devices() - Register child devices onto the SPI bus
2392  * @ctlr:	Pointer to spi_controller device
2393  *
2394  * Registers an spi_device for each child node of controller node which
2395  * represents a valid SPI slave.
2396  */
2397 static void of_register_spi_devices(struct spi_controller *ctlr)
2398 {
2399 	struct spi_device *spi;
2400 	struct device_node *nc;
2401 
2402 	if (!ctlr->dev.of_node)
2403 		return;
2404 
2405 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2406 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2407 			continue;
2408 		spi = of_register_spi_device(ctlr, nc);
2409 		if (IS_ERR(spi)) {
2410 			dev_warn(&ctlr->dev,
2411 				 "Failed to create SPI device for %pOF\n", nc);
2412 			of_node_clear_flag(nc, OF_POPULATED);
2413 		}
2414 	}
2415 }
2416 #else
2417 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2418 #endif
2419 
2420 /**
2421  * spi_new_ancillary_device() - Register ancillary SPI device
2422  * @spi:         Pointer to the main SPI device registering the ancillary device
2423  * @chip_select: Chip Select of the ancillary device
2424  *
2425  * Register an ancillary SPI device; for example some chips have a chip-select
2426  * for normal device usage and another one for setup/firmware upload.
2427  *
2428  * This may only be called from main SPI device's probe routine.
2429  *
2430  * Return: 0 on success; negative errno on failure
2431  */
2432 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2433 					     u8 chip_select)
2434 {
2435 	struct spi_device *ancillary;
2436 	int rc = 0;
2437 
2438 	/* Alloc an spi_device */
2439 	ancillary = spi_alloc_device(spi->controller);
2440 	if (!ancillary) {
2441 		rc = -ENOMEM;
2442 		goto err_out;
2443 	}
2444 
2445 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2446 
2447 	/* Use provided chip-select for ancillary device */
2448 	spi_set_chipselect(ancillary, 0, chip_select);
2449 
2450 	/* Take over SPI mode/speed from SPI main device */
2451 	ancillary->max_speed_hz = spi->max_speed_hz;
2452 	ancillary->mode = spi->mode;
2453 
2454 	/* Register the new device */
2455 	rc = spi_add_device_locked(ancillary);
2456 	if (rc) {
2457 		dev_err(&spi->dev, "failed to register ancillary device\n");
2458 		goto err_out;
2459 	}
2460 
2461 	return ancillary;
2462 
2463 err_out:
2464 	spi_dev_put(ancillary);
2465 	return ERR_PTR(rc);
2466 }
2467 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2468 
2469 #ifdef CONFIG_ACPI
2470 struct acpi_spi_lookup {
2471 	struct spi_controller 	*ctlr;
2472 	u32			max_speed_hz;
2473 	u32			mode;
2474 	int			irq;
2475 	u8			bits_per_word;
2476 	u8			chip_select;
2477 	int			n;
2478 	int			index;
2479 };
2480 
2481 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2482 {
2483 	struct acpi_resource_spi_serialbus *sb;
2484 	int *count = data;
2485 
2486 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2487 		return 1;
2488 
2489 	sb = &ares->data.spi_serial_bus;
2490 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2491 		return 1;
2492 
2493 	*count = *count + 1;
2494 
2495 	return 1;
2496 }
2497 
2498 /**
2499  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2500  * @adev:	ACPI device
2501  *
2502  * Returns the number of SpiSerialBus resources in the ACPI-device's
2503  * resource-list; or a negative error code.
2504  */
2505 int acpi_spi_count_resources(struct acpi_device *adev)
2506 {
2507 	LIST_HEAD(r);
2508 	int count = 0;
2509 	int ret;
2510 
2511 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2512 	if (ret < 0)
2513 		return ret;
2514 
2515 	acpi_dev_free_resource_list(&r);
2516 
2517 	return count;
2518 }
2519 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2520 
2521 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2522 					    struct acpi_spi_lookup *lookup)
2523 {
2524 	const union acpi_object *obj;
2525 
2526 	if (!x86_apple_machine)
2527 		return;
2528 
2529 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2530 	    && obj->buffer.length >= 4)
2531 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2532 
2533 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2534 	    && obj->buffer.length == 8)
2535 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2536 
2537 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2538 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2539 		lookup->mode |= SPI_LSB_FIRST;
2540 
2541 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2542 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2543 		lookup->mode |= SPI_CPOL;
2544 
2545 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2546 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2547 		lookup->mode |= SPI_CPHA;
2548 }
2549 
2550 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2551 
2552 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2553 {
2554 	struct acpi_spi_lookup *lookup = data;
2555 	struct spi_controller *ctlr = lookup->ctlr;
2556 
2557 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2558 		struct acpi_resource_spi_serialbus *sb;
2559 		acpi_handle parent_handle;
2560 		acpi_status status;
2561 
2562 		sb = &ares->data.spi_serial_bus;
2563 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2564 
2565 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2566 				return 1;
2567 
2568 			status = acpi_get_handle(NULL,
2569 						 sb->resource_source.string_ptr,
2570 						 &parent_handle);
2571 
2572 			if (ACPI_FAILURE(status))
2573 				return -ENODEV;
2574 
2575 			if (ctlr) {
2576 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2577 					return -ENODEV;
2578 			} else {
2579 				struct acpi_device *adev;
2580 
2581 				adev = acpi_fetch_acpi_dev(parent_handle);
2582 				if (!adev)
2583 					return -ENODEV;
2584 
2585 				ctlr = acpi_spi_find_controller_by_adev(adev);
2586 				if (!ctlr)
2587 					return -EPROBE_DEFER;
2588 
2589 				lookup->ctlr = ctlr;
2590 			}
2591 
2592 			/*
2593 			 * ACPI DeviceSelection numbering is handled by the
2594 			 * host controller driver in Windows and can vary
2595 			 * from driver to driver. In Linux we always expect
2596 			 * 0 .. max - 1 so we need to ask the driver to
2597 			 * translate between the two schemes.
2598 			 */
2599 			if (ctlr->fw_translate_cs) {
2600 				int cs = ctlr->fw_translate_cs(ctlr,
2601 						sb->device_selection);
2602 				if (cs < 0)
2603 					return cs;
2604 				lookup->chip_select = cs;
2605 			} else {
2606 				lookup->chip_select = sb->device_selection;
2607 			}
2608 
2609 			lookup->max_speed_hz = sb->connection_speed;
2610 			lookup->bits_per_word = sb->data_bit_length;
2611 
2612 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2613 				lookup->mode |= SPI_CPHA;
2614 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2615 				lookup->mode |= SPI_CPOL;
2616 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2617 				lookup->mode |= SPI_CS_HIGH;
2618 		}
2619 	} else if (lookup->irq < 0) {
2620 		struct resource r;
2621 
2622 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2623 			lookup->irq = r.start;
2624 	}
2625 
2626 	/* Always tell the ACPI core to skip this resource */
2627 	return 1;
2628 }
2629 
2630 /**
2631  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2632  * @ctlr: controller to which the spi device belongs
2633  * @adev: ACPI Device for the spi device
2634  * @index: Index of the spi resource inside the ACPI Node
2635  *
2636  * This should be used to allocate a new spi device from and ACPI Node.
2637  * The caller is responsible for calling spi_add_device to register the spi device.
2638  *
2639  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2640  * using the resource.
2641  * If index is set to -1, index is not used.
2642  * Note: If index is -1, ctlr must be set.
2643  *
2644  * Return: a pointer to the new device, or ERR_PTR on error.
2645  */
2646 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2647 					 struct acpi_device *adev,
2648 					 int index)
2649 {
2650 	acpi_handle parent_handle = NULL;
2651 	struct list_head resource_list;
2652 	struct acpi_spi_lookup lookup = {};
2653 	struct spi_device *spi;
2654 	int ret;
2655 
2656 	if (!ctlr && index == -1)
2657 		return ERR_PTR(-EINVAL);
2658 
2659 	lookup.ctlr		= ctlr;
2660 	lookup.irq		= -1;
2661 	lookup.index		= index;
2662 	lookup.n		= 0;
2663 
2664 	INIT_LIST_HEAD(&resource_list);
2665 	ret = acpi_dev_get_resources(adev, &resource_list,
2666 				     acpi_spi_add_resource, &lookup);
2667 	acpi_dev_free_resource_list(&resource_list);
2668 
2669 	if (ret < 0)
2670 		/* Found SPI in _CRS but it points to another controller */
2671 		return ERR_PTR(ret);
2672 
2673 	if (!lookup.max_speed_hz &&
2674 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2675 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2676 		/* Apple does not use _CRS but nested devices for SPI slaves */
2677 		acpi_spi_parse_apple_properties(adev, &lookup);
2678 	}
2679 
2680 	if (!lookup.max_speed_hz)
2681 		return ERR_PTR(-ENODEV);
2682 
2683 	spi = spi_alloc_device(lookup.ctlr);
2684 	if (!spi) {
2685 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2686 			dev_name(&adev->dev));
2687 		return ERR_PTR(-ENOMEM);
2688 	}
2689 
2690 	ACPI_COMPANION_SET(&spi->dev, adev);
2691 	spi->max_speed_hz	= lookup.max_speed_hz;
2692 	spi->mode		|= lookup.mode;
2693 	spi->irq		= lookup.irq;
2694 	spi->bits_per_word	= lookup.bits_per_word;
2695 	spi_set_chipselect(spi, 0, lookup.chip_select);
2696 
2697 	return spi;
2698 }
2699 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2700 
2701 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2702 					    struct acpi_device *adev)
2703 {
2704 	struct spi_device *spi;
2705 
2706 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2707 	    acpi_device_enumerated(adev))
2708 		return AE_OK;
2709 
2710 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2711 	if (IS_ERR(spi)) {
2712 		if (PTR_ERR(spi) == -ENOMEM)
2713 			return AE_NO_MEMORY;
2714 		else
2715 			return AE_OK;
2716 	}
2717 
2718 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2719 			  sizeof(spi->modalias));
2720 
2721 	if (spi->irq < 0)
2722 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2723 
2724 	acpi_device_set_enumerated(adev);
2725 
2726 	adev->power.flags.ignore_parent = true;
2727 	if (spi_add_device(spi)) {
2728 		adev->power.flags.ignore_parent = false;
2729 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2730 			dev_name(&adev->dev));
2731 		spi_dev_put(spi);
2732 	}
2733 
2734 	return AE_OK;
2735 }
2736 
2737 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2738 				       void *data, void **return_value)
2739 {
2740 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2741 	struct spi_controller *ctlr = data;
2742 
2743 	if (!adev)
2744 		return AE_OK;
2745 
2746 	return acpi_register_spi_device(ctlr, adev);
2747 }
2748 
2749 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2750 
2751 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2752 {
2753 	acpi_status status;
2754 	acpi_handle handle;
2755 
2756 	handle = ACPI_HANDLE(ctlr->dev.parent);
2757 	if (!handle)
2758 		return;
2759 
2760 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2761 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2762 				     acpi_spi_add_device, NULL, ctlr, NULL);
2763 	if (ACPI_FAILURE(status))
2764 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2765 }
2766 #else
2767 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2768 #endif /* CONFIG_ACPI */
2769 
2770 static void spi_controller_release(struct device *dev)
2771 {
2772 	struct spi_controller *ctlr;
2773 
2774 	ctlr = container_of(dev, struct spi_controller, dev);
2775 	kfree(ctlr);
2776 }
2777 
2778 static struct class spi_master_class = {
2779 	.name		= "spi_master",
2780 	.dev_release	= spi_controller_release,
2781 	.dev_groups	= spi_master_groups,
2782 };
2783 
2784 #ifdef CONFIG_SPI_SLAVE
2785 /**
2786  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2787  *		     controller
2788  * @spi: device used for the current transfer
2789  */
2790 int spi_slave_abort(struct spi_device *spi)
2791 {
2792 	struct spi_controller *ctlr = spi->controller;
2793 
2794 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2795 		return ctlr->slave_abort(ctlr);
2796 
2797 	return -ENOTSUPP;
2798 }
2799 EXPORT_SYMBOL_GPL(spi_slave_abort);
2800 
2801 int spi_target_abort(struct spi_device *spi)
2802 {
2803 	struct spi_controller *ctlr = spi->controller;
2804 
2805 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2806 		return ctlr->target_abort(ctlr);
2807 
2808 	return -ENOTSUPP;
2809 }
2810 EXPORT_SYMBOL_GPL(spi_target_abort);
2811 
2812 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2813 			  char *buf)
2814 {
2815 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2816 						   dev);
2817 	struct device *child;
2818 
2819 	child = device_find_any_child(&ctlr->dev);
2820 	return sprintf(buf, "%s\n",
2821 		       child ? to_spi_device(child)->modalias : NULL);
2822 }
2823 
2824 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2825 			   const char *buf, size_t count)
2826 {
2827 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2828 						   dev);
2829 	struct spi_device *spi;
2830 	struct device *child;
2831 	char name[32];
2832 	int rc;
2833 
2834 	rc = sscanf(buf, "%31s", name);
2835 	if (rc != 1 || !name[0])
2836 		return -EINVAL;
2837 
2838 	child = device_find_any_child(&ctlr->dev);
2839 	if (child) {
2840 		/* Remove registered slave */
2841 		device_unregister(child);
2842 		put_device(child);
2843 	}
2844 
2845 	if (strcmp(name, "(null)")) {
2846 		/* Register new slave */
2847 		spi = spi_alloc_device(ctlr);
2848 		if (!spi)
2849 			return -ENOMEM;
2850 
2851 		strscpy(spi->modalias, name, sizeof(spi->modalias));
2852 
2853 		rc = spi_add_device(spi);
2854 		if (rc) {
2855 			spi_dev_put(spi);
2856 			return rc;
2857 		}
2858 	}
2859 
2860 	return count;
2861 }
2862 
2863 static DEVICE_ATTR_RW(slave);
2864 
2865 static struct attribute *spi_slave_attrs[] = {
2866 	&dev_attr_slave.attr,
2867 	NULL,
2868 };
2869 
2870 static const struct attribute_group spi_slave_group = {
2871 	.attrs = spi_slave_attrs,
2872 };
2873 
2874 static const struct attribute_group *spi_slave_groups[] = {
2875 	&spi_controller_statistics_group,
2876 	&spi_slave_group,
2877 	NULL,
2878 };
2879 
2880 static struct class spi_slave_class = {
2881 	.name		= "spi_slave",
2882 	.dev_release	= spi_controller_release,
2883 	.dev_groups	= spi_slave_groups,
2884 };
2885 #else
2886 extern struct class spi_slave_class;	/* dummy */
2887 #endif
2888 
2889 /**
2890  * __spi_alloc_controller - allocate an SPI master or slave controller
2891  * @dev: the controller, possibly using the platform_bus
2892  * @size: how much zeroed driver-private data to allocate; the pointer to this
2893  *	memory is in the driver_data field of the returned device, accessible
2894  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2895  *	drivers granting DMA access to portions of their private data need to
2896  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2897  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2898  *	slave (true) controller
2899  * Context: can sleep
2900  *
2901  * This call is used only by SPI controller drivers, which are the
2902  * only ones directly touching chip registers.  It's how they allocate
2903  * an spi_controller structure, prior to calling spi_register_controller().
2904  *
2905  * This must be called from context that can sleep.
2906  *
2907  * The caller is responsible for assigning the bus number and initializing the
2908  * controller's methods before calling spi_register_controller(); and (after
2909  * errors adding the device) calling spi_controller_put() to prevent a memory
2910  * leak.
2911  *
2912  * Return: the SPI controller structure on success, else NULL.
2913  */
2914 struct spi_controller *__spi_alloc_controller(struct device *dev,
2915 					      unsigned int size, bool slave)
2916 {
2917 	struct spi_controller	*ctlr;
2918 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2919 
2920 	if (!dev)
2921 		return NULL;
2922 
2923 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2924 	if (!ctlr)
2925 		return NULL;
2926 
2927 	device_initialize(&ctlr->dev);
2928 	INIT_LIST_HEAD(&ctlr->queue);
2929 	spin_lock_init(&ctlr->queue_lock);
2930 	spin_lock_init(&ctlr->bus_lock_spinlock);
2931 	mutex_init(&ctlr->bus_lock_mutex);
2932 	mutex_init(&ctlr->io_mutex);
2933 	mutex_init(&ctlr->add_lock);
2934 	ctlr->bus_num = -1;
2935 	ctlr->num_chipselect = 1;
2936 	ctlr->slave = slave;
2937 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2938 		ctlr->dev.class = &spi_slave_class;
2939 	else
2940 		ctlr->dev.class = &spi_master_class;
2941 	ctlr->dev.parent = dev;
2942 	pm_suspend_ignore_children(&ctlr->dev, true);
2943 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2944 
2945 	return ctlr;
2946 }
2947 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2948 
2949 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2950 {
2951 	spi_controller_put(*(struct spi_controller **)ctlr);
2952 }
2953 
2954 /**
2955  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2956  * @dev: physical device of SPI controller
2957  * @size: how much zeroed driver-private data to allocate
2958  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2959  * Context: can sleep
2960  *
2961  * Allocate an SPI controller and automatically release a reference on it
2962  * when @dev is unbound from its driver.  Drivers are thus relieved from
2963  * having to call spi_controller_put().
2964  *
2965  * The arguments to this function are identical to __spi_alloc_controller().
2966  *
2967  * Return: the SPI controller structure on success, else NULL.
2968  */
2969 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2970 						   unsigned int size,
2971 						   bool slave)
2972 {
2973 	struct spi_controller **ptr, *ctlr;
2974 
2975 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2976 			   GFP_KERNEL);
2977 	if (!ptr)
2978 		return NULL;
2979 
2980 	ctlr = __spi_alloc_controller(dev, size, slave);
2981 	if (ctlr) {
2982 		ctlr->devm_allocated = true;
2983 		*ptr = ctlr;
2984 		devres_add(dev, ptr);
2985 	} else {
2986 		devres_free(ptr);
2987 	}
2988 
2989 	return ctlr;
2990 }
2991 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2992 
2993 /**
2994  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2995  * @ctlr: The SPI master to grab GPIO descriptors for
2996  */
2997 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2998 {
2999 	int nb, i;
3000 	struct gpio_desc **cs;
3001 	struct device *dev = &ctlr->dev;
3002 	unsigned long native_cs_mask = 0;
3003 	unsigned int num_cs_gpios = 0;
3004 
3005 	nb = gpiod_count(dev, "cs");
3006 	if (nb < 0) {
3007 		/* No GPIOs at all is fine, else return the error */
3008 		if (nb == -ENOENT)
3009 			return 0;
3010 		return nb;
3011 	}
3012 
3013 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3014 
3015 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3016 			  GFP_KERNEL);
3017 	if (!cs)
3018 		return -ENOMEM;
3019 	ctlr->cs_gpiods = cs;
3020 
3021 	for (i = 0; i < nb; i++) {
3022 		/*
3023 		 * Most chipselects are active low, the inverted
3024 		 * semantics are handled by special quirks in gpiolib,
3025 		 * so initializing them GPIOD_OUT_LOW here means
3026 		 * "unasserted", in most cases this will drive the physical
3027 		 * line high.
3028 		 */
3029 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3030 						      GPIOD_OUT_LOW);
3031 		if (IS_ERR(cs[i]))
3032 			return PTR_ERR(cs[i]);
3033 
3034 		if (cs[i]) {
3035 			/*
3036 			 * If we find a CS GPIO, name it after the device and
3037 			 * chip select line.
3038 			 */
3039 			char *gpioname;
3040 
3041 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3042 						  dev_name(dev), i);
3043 			if (!gpioname)
3044 				return -ENOMEM;
3045 			gpiod_set_consumer_name(cs[i], gpioname);
3046 			num_cs_gpios++;
3047 			continue;
3048 		}
3049 
3050 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3051 			dev_err(dev, "Invalid native chip select %d\n", i);
3052 			return -EINVAL;
3053 		}
3054 		native_cs_mask |= BIT(i);
3055 	}
3056 
3057 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3058 
3059 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3060 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3061 		dev_err(dev, "No unused native chip select available\n");
3062 		return -EINVAL;
3063 	}
3064 
3065 	return 0;
3066 }
3067 
3068 static int spi_controller_check_ops(struct spi_controller *ctlr)
3069 {
3070 	/*
3071 	 * The controller may implement only the high-level SPI-memory like
3072 	 * operations if it does not support regular SPI transfers, and this is
3073 	 * valid use case.
3074 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3075 	 * one of the ->transfer_xxx() method be implemented.
3076 	 */
3077 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3078 		if (!ctlr->transfer && !ctlr->transfer_one &&
3079 		   !ctlr->transfer_one_message) {
3080 			return -EINVAL;
3081 		}
3082 	}
3083 
3084 	return 0;
3085 }
3086 
3087 /**
3088  * spi_register_controller - register SPI master or slave controller
3089  * @ctlr: initialized master, originally from spi_alloc_master() or
3090  *	spi_alloc_slave()
3091  * Context: can sleep
3092  *
3093  * SPI controllers connect to their drivers using some non-SPI bus,
3094  * such as the platform bus.  The final stage of probe() in that code
3095  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3096  *
3097  * SPI controllers use board specific (often SOC specific) bus numbers,
3098  * and board-specific addressing for SPI devices combines those numbers
3099  * with chip select numbers.  Since SPI does not directly support dynamic
3100  * device identification, boards need configuration tables telling which
3101  * chip is at which address.
3102  *
3103  * This must be called from context that can sleep.  It returns zero on
3104  * success, else a negative error code (dropping the controller's refcount).
3105  * After a successful return, the caller is responsible for calling
3106  * spi_unregister_controller().
3107  *
3108  * Return: zero on success, else a negative error code.
3109  */
3110 int spi_register_controller(struct spi_controller *ctlr)
3111 {
3112 	struct device		*dev = ctlr->dev.parent;
3113 	struct boardinfo	*bi;
3114 	int			status;
3115 	int			id, first_dynamic;
3116 
3117 	if (!dev)
3118 		return -ENODEV;
3119 
3120 	/*
3121 	 * Make sure all necessary hooks are implemented before registering
3122 	 * the SPI controller.
3123 	 */
3124 	status = spi_controller_check_ops(ctlr);
3125 	if (status)
3126 		return status;
3127 
3128 	if (ctlr->bus_num >= 0) {
3129 		/* Devices with a fixed bus num must check-in with the num */
3130 		mutex_lock(&board_lock);
3131 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3132 			ctlr->bus_num + 1, GFP_KERNEL);
3133 		mutex_unlock(&board_lock);
3134 		if (WARN(id < 0, "couldn't get idr"))
3135 			return id == -ENOSPC ? -EBUSY : id;
3136 		ctlr->bus_num = id;
3137 	} else if (ctlr->dev.of_node) {
3138 		/* Allocate dynamic bus number using Linux idr */
3139 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
3140 		if (id >= 0) {
3141 			ctlr->bus_num = id;
3142 			mutex_lock(&board_lock);
3143 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3144 				       ctlr->bus_num + 1, GFP_KERNEL);
3145 			mutex_unlock(&board_lock);
3146 			if (WARN(id < 0, "couldn't get idr"))
3147 				return id == -ENOSPC ? -EBUSY : id;
3148 		}
3149 	}
3150 	if (ctlr->bus_num < 0) {
3151 		first_dynamic = of_alias_get_highest_id("spi");
3152 		if (first_dynamic < 0)
3153 			first_dynamic = 0;
3154 		else
3155 			first_dynamic++;
3156 
3157 		mutex_lock(&board_lock);
3158 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3159 			       0, GFP_KERNEL);
3160 		mutex_unlock(&board_lock);
3161 		if (WARN(id < 0, "couldn't get idr"))
3162 			return id;
3163 		ctlr->bus_num = id;
3164 	}
3165 	ctlr->bus_lock_flag = 0;
3166 	init_completion(&ctlr->xfer_completion);
3167 	init_completion(&ctlr->cur_msg_completion);
3168 	if (!ctlr->max_dma_len)
3169 		ctlr->max_dma_len = INT_MAX;
3170 
3171 	/*
3172 	 * Register the device, then userspace will see it.
3173 	 * Registration fails if the bus ID is in use.
3174 	 */
3175 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3176 
3177 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3178 		status = spi_get_gpio_descs(ctlr);
3179 		if (status)
3180 			goto free_bus_id;
3181 		/*
3182 		 * A controller using GPIO descriptors always
3183 		 * supports SPI_CS_HIGH if need be.
3184 		 */
3185 		ctlr->mode_bits |= SPI_CS_HIGH;
3186 	}
3187 
3188 	/*
3189 	 * Even if it's just one always-selected device, there must
3190 	 * be at least one chipselect.
3191 	 */
3192 	if (!ctlr->num_chipselect) {
3193 		status = -EINVAL;
3194 		goto free_bus_id;
3195 	}
3196 
3197 	/* Setting last_cs to -1 means no chip selected */
3198 	ctlr->last_cs = -1;
3199 
3200 	status = device_add(&ctlr->dev);
3201 	if (status < 0)
3202 		goto free_bus_id;
3203 	dev_dbg(dev, "registered %s %s\n",
3204 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3205 			dev_name(&ctlr->dev));
3206 
3207 	/*
3208 	 * If we're using a queued driver, start the queue. Note that we don't
3209 	 * need the queueing logic if the driver is only supporting high-level
3210 	 * memory operations.
3211 	 */
3212 	if (ctlr->transfer) {
3213 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3214 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3215 		status = spi_controller_initialize_queue(ctlr);
3216 		if (status) {
3217 			device_del(&ctlr->dev);
3218 			goto free_bus_id;
3219 		}
3220 	}
3221 	/* Add statistics */
3222 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3223 	if (!ctlr->pcpu_statistics) {
3224 		dev_err(dev, "Error allocating per-cpu statistics\n");
3225 		status = -ENOMEM;
3226 		goto destroy_queue;
3227 	}
3228 
3229 	mutex_lock(&board_lock);
3230 	list_add_tail(&ctlr->list, &spi_controller_list);
3231 	list_for_each_entry(bi, &board_list, list)
3232 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3233 	mutex_unlock(&board_lock);
3234 
3235 	/* Register devices from the device tree and ACPI */
3236 	of_register_spi_devices(ctlr);
3237 	acpi_register_spi_devices(ctlr);
3238 	return status;
3239 
3240 destroy_queue:
3241 	spi_destroy_queue(ctlr);
3242 free_bus_id:
3243 	mutex_lock(&board_lock);
3244 	idr_remove(&spi_master_idr, ctlr->bus_num);
3245 	mutex_unlock(&board_lock);
3246 	return status;
3247 }
3248 EXPORT_SYMBOL_GPL(spi_register_controller);
3249 
3250 static void devm_spi_unregister(struct device *dev, void *res)
3251 {
3252 	spi_unregister_controller(*(struct spi_controller **)res);
3253 }
3254 
3255 /**
3256  * devm_spi_register_controller - register managed SPI master or slave
3257  *	controller
3258  * @dev:    device managing SPI controller
3259  * @ctlr: initialized controller, originally from spi_alloc_master() or
3260  *	spi_alloc_slave()
3261  * Context: can sleep
3262  *
3263  * Register a SPI device as with spi_register_controller() which will
3264  * automatically be unregistered and freed.
3265  *
3266  * Return: zero on success, else a negative error code.
3267  */
3268 int devm_spi_register_controller(struct device *dev,
3269 				 struct spi_controller *ctlr)
3270 {
3271 	struct spi_controller **ptr;
3272 	int ret;
3273 
3274 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3275 	if (!ptr)
3276 		return -ENOMEM;
3277 
3278 	ret = spi_register_controller(ctlr);
3279 	if (!ret) {
3280 		*ptr = ctlr;
3281 		devres_add(dev, ptr);
3282 	} else {
3283 		devres_free(ptr);
3284 	}
3285 
3286 	return ret;
3287 }
3288 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3289 
3290 static int __unregister(struct device *dev, void *null)
3291 {
3292 	spi_unregister_device(to_spi_device(dev));
3293 	return 0;
3294 }
3295 
3296 /**
3297  * spi_unregister_controller - unregister SPI master or slave controller
3298  * @ctlr: the controller being unregistered
3299  * Context: can sleep
3300  *
3301  * This call is used only by SPI controller drivers, which are the
3302  * only ones directly touching chip registers.
3303  *
3304  * This must be called from context that can sleep.
3305  *
3306  * Note that this function also drops a reference to the controller.
3307  */
3308 void spi_unregister_controller(struct spi_controller *ctlr)
3309 {
3310 	struct spi_controller *found;
3311 	int id = ctlr->bus_num;
3312 
3313 	/* Prevent addition of new devices, unregister existing ones */
3314 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3315 		mutex_lock(&ctlr->add_lock);
3316 
3317 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3318 
3319 	/* First make sure that this controller was ever added */
3320 	mutex_lock(&board_lock);
3321 	found = idr_find(&spi_master_idr, id);
3322 	mutex_unlock(&board_lock);
3323 	if (ctlr->queued) {
3324 		if (spi_destroy_queue(ctlr))
3325 			dev_err(&ctlr->dev, "queue remove failed\n");
3326 	}
3327 	mutex_lock(&board_lock);
3328 	list_del(&ctlr->list);
3329 	mutex_unlock(&board_lock);
3330 
3331 	device_del(&ctlr->dev);
3332 
3333 	/* Free bus id */
3334 	mutex_lock(&board_lock);
3335 	if (found == ctlr)
3336 		idr_remove(&spi_master_idr, id);
3337 	mutex_unlock(&board_lock);
3338 
3339 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3340 		mutex_unlock(&ctlr->add_lock);
3341 
3342 	/* Release the last reference on the controller if its driver
3343 	 * has not yet been converted to devm_spi_alloc_master/slave().
3344 	 */
3345 	if (!ctlr->devm_allocated)
3346 		put_device(&ctlr->dev);
3347 }
3348 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3349 
3350 int spi_controller_suspend(struct spi_controller *ctlr)
3351 {
3352 	int ret;
3353 
3354 	/* Basically no-ops for non-queued controllers */
3355 	if (!ctlr->queued)
3356 		return 0;
3357 
3358 	ret = spi_stop_queue(ctlr);
3359 	if (ret)
3360 		dev_err(&ctlr->dev, "queue stop failed\n");
3361 
3362 	return ret;
3363 }
3364 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3365 
3366 int spi_controller_resume(struct spi_controller *ctlr)
3367 {
3368 	int ret;
3369 
3370 	if (!ctlr->queued)
3371 		return 0;
3372 
3373 	ret = spi_start_queue(ctlr);
3374 	if (ret)
3375 		dev_err(&ctlr->dev, "queue restart failed\n");
3376 
3377 	return ret;
3378 }
3379 EXPORT_SYMBOL_GPL(spi_controller_resume);
3380 
3381 /*-------------------------------------------------------------------------*/
3382 
3383 /* Core methods for spi_message alterations */
3384 
3385 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3386 					    struct spi_message *msg,
3387 					    void *res)
3388 {
3389 	struct spi_replaced_transfers *rxfer = res;
3390 	size_t i;
3391 
3392 	/* Call extra callback if requested */
3393 	if (rxfer->release)
3394 		rxfer->release(ctlr, msg, res);
3395 
3396 	/* Insert replaced transfers back into the message */
3397 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3398 
3399 	/* Remove the formerly inserted entries */
3400 	for (i = 0; i < rxfer->inserted; i++)
3401 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3402 }
3403 
3404 /**
3405  * spi_replace_transfers - replace transfers with several transfers
3406  *                         and register change with spi_message.resources
3407  * @msg:           the spi_message we work upon
3408  * @xfer_first:    the first spi_transfer we want to replace
3409  * @remove:        number of transfers to remove
3410  * @insert:        the number of transfers we want to insert instead
3411  * @release:       extra release code necessary in some circumstances
3412  * @extradatasize: extra data to allocate (with alignment guarantees
3413  *                 of struct @spi_transfer)
3414  * @gfp:           gfp flags
3415  *
3416  * Returns: pointer to @spi_replaced_transfers,
3417  *          PTR_ERR(...) in case of errors.
3418  */
3419 static struct spi_replaced_transfers *spi_replace_transfers(
3420 	struct spi_message *msg,
3421 	struct spi_transfer *xfer_first,
3422 	size_t remove,
3423 	size_t insert,
3424 	spi_replaced_release_t release,
3425 	size_t extradatasize,
3426 	gfp_t gfp)
3427 {
3428 	struct spi_replaced_transfers *rxfer;
3429 	struct spi_transfer *xfer;
3430 	size_t i;
3431 
3432 	/* Allocate the structure using spi_res */
3433 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3434 			      struct_size(rxfer, inserted_transfers, insert)
3435 			      + extradatasize,
3436 			      gfp);
3437 	if (!rxfer)
3438 		return ERR_PTR(-ENOMEM);
3439 
3440 	/* The release code to invoke before running the generic release */
3441 	rxfer->release = release;
3442 
3443 	/* Assign extradata */
3444 	if (extradatasize)
3445 		rxfer->extradata =
3446 			&rxfer->inserted_transfers[insert];
3447 
3448 	/* Init the replaced_transfers list */
3449 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3450 
3451 	/*
3452 	 * Assign the list_entry after which we should reinsert
3453 	 * the @replaced_transfers - it may be spi_message.messages!
3454 	 */
3455 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3456 
3457 	/* Remove the requested number of transfers */
3458 	for (i = 0; i < remove; i++) {
3459 		/*
3460 		 * If the entry after replaced_after it is msg->transfers
3461 		 * then we have been requested to remove more transfers
3462 		 * than are in the list.
3463 		 */
3464 		if (rxfer->replaced_after->next == &msg->transfers) {
3465 			dev_err(&msg->spi->dev,
3466 				"requested to remove more spi_transfers than are available\n");
3467 			/* Insert replaced transfers back into the message */
3468 			list_splice(&rxfer->replaced_transfers,
3469 				    rxfer->replaced_after);
3470 
3471 			/* Free the spi_replace_transfer structure... */
3472 			spi_res_free(rxfer);
3473 
3474 			/* ...and return with an error */
3475 			return ERR_PTR(-EINVAL);
3476 		}
3477 
3478 		/*
3479 		 * Remove the entry after replaced_after from list of
3480 		 * transfers and add it to list of replaced_transfers.
3481 		 */
3482 		list_move_tail(rxfer->replaced_after->next,
3483 			       &rxfer->replaced_transfers);
3484 	}
3485 
3486 	/*
3487 	 * Create copy of the given xfer with identical settings
3488 	 * based on the first transfer to get removed.
3489 	 */
3490 	for (i = 0; i < insert; i++) {
3491 		/* We need to run in reverse order */
3492 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3493 
3494 		/* Copy all spi_transfer data */
3495 		memcpy(xfer, xfer_first, sizeof(*xfer));
3496 
3497 		/* Add to list */
3498 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3499 
3500 		/* Clear cs_change and delay for all but the last */
3501 		if (i) {
3502 			xfer->cs_change = false;
3503 			xfer->delay.value = 0;
3504 		}
3505 	}
3506 
3507 	/* Set up inserted... */
3508 	rxfer->inserted = insert;
3509 
3510 	/* ...and register it with spi_res/spi_message */
3511 	spi_res_add(msg, rxfer);
3512 
3513 	return rxfer;
3514 }
3515 
3516 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3517 					struct spi_message *msg,
3518 					struct spi_transfer **xferp,
3519 					size_t maxsize,
3520 					gfp_t gfp)
3521 {
3522 	struct spi_transfer *xfer = *xferp, *xfers;
3523 	struct spi_replaced_transfers *srt;
3524 	size_t offset;
3525 	size_t count, i;
3526 
3527 	/* Calculate how many we have to replace */
3528 	count = DIV_ROUND_UP(xfer->len, maxsize);
3529 
3530 	/* Create replacement */
3531 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3532 	if (IS_ERR(srt))
3533 		return PTR_ERR(srt);
3534 	xfers = srt->inserted_transfers;
3535 
3536 	/*
3537 	 * Now handle each of those newly inserted spi_transfers.
3538 	 * Note that the replacements spi_transfers all are preset
3539 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3540 	 * are all identical (as well as most others)
3541 	 * so we just have to fix up len and the pointers.
3542 	 *
3543 	 * This also includes support for the depreciated
3544 	 * spi_message.is_dma_mapped interface.
3545 	 */
3546 
3547 	/*
3548 	 * The first transfer just needs the length modified, so we
3549 	 * run it outside the loop.
3550 	 */
3551 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3552 
3553 	/* All the others need rx_buf/tx_buf also set */
3554 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3555 		/* Update rx_buf, tx_buf and dma */
3556 		if (xfers[i].rx_buf)
3557 			xfers[i].rx_buf += offset;
3558 		if (xfers[i].rx_dma)
3559 			xfers[i].rx_dma += offset;
3560 		if (xfers[i].tx_buf)
3561 			xfers[i].tx_buf += offset;
3562 		if (xfers[i].tx_dma)
3563 			xfers[i].tx_dma += offset;
3564 
3565 		/* Update length */
3566 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3567 	}
3568 
3569 	/*
3570 	 * We set up xferp to the last entry we have inserted,
3571 	 * so that we skip those already split transfers.
3572 	 */
3573 	*xferp = &xfers[count - 1];
3574 
3575 	/* Increment statistics counters */
3576 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3577 				       transfers_split_maxsize);
3578 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3579 				       transfers_split_maxsize);
3580 
3581 	return 0;
3582 }
3583 
3584 /**
3585  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3586  *                               when an individual transfer exceeds a
3587  *                               certain size
3588  * @ctlr:    the @spi_controller for this transfer
3589  * @msg:   the @spi_message to transform
3590  * @maxsize:  the maximum when to apply this
3591  * @gfp: GFP allocation flags
3592  *
3593  * Return: status of transformation
3594  */
3595 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3596 				struct spi_message *msg,
3597 				size_t maxsize,
3598 				gfp_t gfp)
3599 {
3600 	struct spi_transfer *xfer;
3601 	int ret;
3602 
3603 	/*
3604 	 * Iterate over the transfer_list,
3605 	 * but note that xfer is advanced to the last transfer inserted
3606 	 * to avoid checking sizes again unnecessarily (also xfer does
3607 	 * potentially belong to a different list by the time the
3608 	 * replacement has happened).
3609 	 */
3610 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3611 		if (xfer->len > maxsize) {
3612 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3613 							   maxsize, gfp);
3614 			if (ret)
3615 				return ret;
3616 		}
3617 	}
3618 
3619 	return 0;
3620 }
3621 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3622 
3623 
3624 /**
3625  * spi_split_transfers_maxwords - split spi transfers into multiple transfers
3626  *                                when an individual transfer exceeds a
3627  *                                certain number of SPI words
3628  * @ctlr:     the @spi_controller for this transfer
3629  * @msg:      the @spi_message to transform
3630  * @maxwords: the number of words to limit each transfer to
3631  * @gfp:      GFP allocation flags
3632  *
3633  * Return: status of transformation
3634  */
3635 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3636 				 struct spi_message *msg,
3637 				 size_t maxwords,
3638 				 gfp_t gfp)
3639 {
3640 	struct spi_transfer *xfer;
3641 
3642 	/*
3643 	 * Iterate over the transfer_list,
3644 	 * but note that xfer is advanced to the last transfer inserted
3645 	 * to avoid checking sizes again unnecessarily (also xfer does
3646 	 * potentially belong to a different list by the time the
3647 	 * replacement has happened).
3648 	 */
3649 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3650 		size_t maxsize;
3651 		int ret;
3652 
3653 		if (xfer->bits_per_word <= 8)
3654 			maxsize = maxwords;
3655 		else if (xfer->bits_per_word <= 16)
3656 			maxsize = 2 * maxwords;
3657 		else
3658 			maxsize = 4 * maxwords;
3659 
3660 		if (xfer->len > maxsize) {
3661 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3662 							   maxsize, gfp);
3663 			if (ret)
3664 				return ret;
3665 		}
3666 	}
3667 
3668 	return 0;
3669 }
3670 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3671 
3672 /*-------------------------------------------------------------------------*/
3673 
3674 /* Core methods for SPI controller protocol drivers.  Some of the
3675  * other core methods are currently defined as inline functions.
3676  */
3677 
3678 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3679 					u8 bits_per_word)
3680 {
3681 	if (ctlr->bits_per_word_mask) {
3682 		/* Only 32 bits fit in the mask */
3683 		if (bits_per_word > 32)
3684 			return -EINVAL;
3685 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3686 			return -EINVAL;
3687 	}
3688 
3689 	return 0;
3690 }
3691 
3692 /**
3693  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3694  * @spi: the device that requires specific CS timing configuration
3695  *
3696  * Return: zero on success, else a negative error code.
3697  */
3698 static int spi_set_cs_timing(struct spi_device *spi)
3699 {
3700 	struct device *parent = spi->controller->dev.parent;
3701 	int status = 0;
3702 
3703 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3704 		if (spi->controller->auto_runtime_pm) {
3705 			status = pm_runtime_get_sync(parent);
3706 			if (status < 0) {
3707 				pm_runtime_put_noidle(parent);
3708 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3709 					status);
3710 				return status;
3711 			}
3712 
3713 			status = spi->controller->set_cs_timing(spi);
3714 			pm_runtime_mark_last_busy(parent);
3715 			pm_runtime_put_autosuspend(parent);
3716 		} else {
3717 			status = spi->controller->set_cs_timing(spi);
3718 		}
3719 	}
3720 	return status;
3721 }
3722 
3723 /**
3724  * spi_setup - setup SPI mode and clock rate
3725  * @spi: the device whose settings are being modified
3726  * Context: can sleep, and no requests are queued to the device
3727  *
3728  * SPI protocol drivers may need to update the transfer mode if the
3729  * device doesn't work with its default.  They may likewise need
3730  * to update clock rates or word sizes from initial values.  This function
3731  * changes those settings, and must be called from a context that can sleep.
3732  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3733  * effect the next time the device is selected and data is transferred to
3734  * or from it.  When this function returns, the spi device is deselected.
3735  *
3736  * Note that this call will fail if the protocol driver specifies an option
3737  * that the underlying controller or its driver does not support.  For
3738  * example, not all hardware supports wire transfers using nine bit words,
3739  * LSB-first wire encoding, or active-high chipselects.
3740  *
3741  * Return: zero on success, else a negative error code.
3742  */
3743 int spi_setup(struct spi_device *spi)
3744 {
3745 	unsigned	bad_bits, ugly_bits;
3746 	int		status = 0;
3747 
3748 	/*
3749 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3750 	 * are set at the same time.
3751 	 */
3752 	if ((hweight_long(spi->mode &
3753 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3754 	    (hweight_long(spi->mode &
3755 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3756 		dev_err(&spi->dev,
3757 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3758 		return -EINVAL;
3759 	}
3760 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3761 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3762 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3763 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3764 		return -EINVAL;
3765 	/*
3766 	 * Help drivers fail *cleanly* when they need options
3767 	 * that aren't supported with their current controller.
3768 	 * SPI_CS_WORD has a fallback software implementation,
3769 	 * so it is ignored here.
3770 	 */
3771 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3772 				 SPI_NO_TX | SPI_NO_RX);
3773 	ugly_bits = bad_bits &
3774 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3775 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3776 	if (ugly_bits) {
3777 		dev_warn(&spi->dev,
3778 			 "setup: ignoring unsupported mode bits %x\n",
3779 			 ugly_bits);
3780 		spi->mode &= ~ugly_bits;
3781 		bad_bits &= ~ugly_bits;
3782 	}
3783 	if (bad_bits) {
3784 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3785 			bad_bits);
3786 		return -EINVAL;
3787 	}
3788 
3789 	if (!spi->bits_per_word) {
3790 		spi->bits_per_word = 8;
3791 	} else {
3792 		/*
3793 		 * Some controllers may not support the default 8 bits-per-word
3794 		 * so only perform the check when this is explicitly provided.
3795 		 */
3796 		status = __spi_validate_bits_per_word(spi->controller,
3797 						      spi->bits_per_word);
3798 		if (status)
3799 			return status;
3800 	}
3801 
3802 	if (spi->controller->max_speed_hz &&
3803 	    (!spi->max_speed_hz ||
3804 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3805 		spi->max_speed_hz = spi->controller->max_speed_hz;
3806 
3807 	mutex_lock(&spi->controller->io_mutex);
3808 
3809 	if (spi->controller->setup) {
3810 		status = spi->controller->setup(spi);
3811 		if (status) {
3812 			mutex_unlock(&spi->controller->io_mutex);
3813 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3814 				status);
3815 			return status;
3816 		}
3817 	}
3818 
3819 	status = spi_set_cs_timing(spi);
3820 	if (status) {
3821 		mutex_unlock(&spi->controller->io_mutex);
3822 		return status;
3823 	}
3824 
3825 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3826 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3827 		if (status < 0) {
3828 			mutex_unlock(&spi->controller->io_mutex);
3829 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3830 				status);
3831 			return status;
3832 		}
3833 
3834 		/*
3835 		 * We do not want to return positive value from pm_runtime_get,
3836 		 * there are many instances of devices calling spi_setup() and
3837 		 * checking for a non-zero return value instead of a negative
3838 		 * return value.
3839 		 */
3840 		status = 0;
3841 
3842 		spi_set_cs(spi, false, true);
3843 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3844 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3845 	} else {
3846 		spi_set_cs(spi, false, true);
3847 	}
3848 
3849 	mutex_unlock(&spi->controller->io_mutex);
3850 
3851 	if (spi->rt && !spi->controller->rt) {
3852 		spi->controller->rt = true;
3853 		spi_set_thread_rt(spi->controller);
3854 	}
3855 
3856 	trace_spi_setup(spi, status);
3857 
3858 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3859 			spi->mode & SPI_MODE_X_MASK,
3860 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3861 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3862 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3863 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3864 			spi->bits_per_word, spi->max_speed_hz,
3865 			status);
3866 
3867 	return status;
3868 }
3869 EXPORT_SYMBOL_GPL(spi_setup);
3870 
3871 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3872 				       struct spi_device *spi)
3873 {
3874 	int delay1, delay2;
3875 
3876 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3877 	if (delay1 < 0)
3878 		return delay1;
3879 
3880 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3881 	if (delay2 < 0)
3882 		return delay2;
3883 
3884 	if (delay1 < delay2)
3885 		memcpy(&xfer->word_delay, &spi->word_delay,
3886 		       sizeof(xfer->word_delay));
3887 
3888 	return 0;
3889 }
3890 
3891 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3892 {
3893 	struct spi_controller *ctlr = spi->controller;
3894 	struct spi_transfer *xfer;
3895 	int w_size;
3896 
3897 	if (list_empty(&message->transfers))
3898 		return -EINVAL;
3899 
3900 	/*
3901 	 * If an SPI controller does not support toggling the CS line on each
3902 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3903 	 * for the CS line, we can emulate the CS-per-word hardware function by
3904 	 * splitting transfers into one-word transfers and ensuring that
3905 	 * cs_change is set for each transfer.
3906 	 */
3907 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3908 					  spi_get_csgpiod(spi, 0))) {
3909 		size_t maxsize;
3910 		int ret;
3911 
3912 		maxsize = (spi->bits_per_word + 7) / 8;
3913 
3914 		/* spi_split_transfers_maxsize() requires message->spi */
3915 		message->spi = spi;
3916 
3917 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3918 						  GFP_KERNEL);
3919 		if (ret)
3920 			return ret;
3921 
3922 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3923 			/* Don't change cs_change on the last entry in the list */
3924 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3925 				break;
3926 			xfer->cs_change = 1;
3927 		}
3928 	}
3929 
3930 	/*
3931 	 * Half-duplex links include original MicroWire, and ones with
3932 	 * only one data pin like SPI_3WIRE (switches direction) or where
3933 	 * either MOSI or MISO is missing.  They can also be caused by
3934 	 * software limitations.
3935 	 */
3936 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3937 	    (spi->mode & SPI_3WIRE)) {
3938 		unsigned flags = ctlr->flags;
3939 
3940 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3941 			if (xfer->rx_buf && xfer->tx_buf)
3942 				return -EINVAL;
3943 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3944 				return -EINVAL;
3945 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3946 				return -EINVAL;
3947 		}
3948 	}
3949 
3950 	/*
3951 	 * Set transfer bits_per_word and max speed as spi device default if
3952 	 * it is not set for this transfer.
3953 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3954 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3955 	 * Ensure transfer word_delay is at least as long as that required by
3956 	 * device itself.
3957 	 */
3958 	message->frame_length = 0;
3959 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3960 		xfer->effective_speed_hz = 0;
3961 		message->frame_length += xfer->len;
3962 		if (!xfer->bits_per_word)
3963 			xfer->bits_per_word = spi->bits_per_word;
3964 
3965 		if (!xfer->speed_hz)
3966 			xfer->speed_hz = spi->max_speed_hz;
3967 
3968 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3969 			xfer->speed_hz = ctlr->max_speed_hz;
3970 
3971 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3972 			return -EINVAL;
3973 
3974 		/*
3975 		 * SPI transfer length should be multiple of SPI word size
3976 		 * where SPI word size should be power-of-two multiple.
3977 		 */
3978 		if (xfer->bits_per_word <= 8)
3979 			w_size = 1;
3980 		else if (xfer->bits_per_word <= 16)
3981 			w_size = 2;
3982 		else
3983 			w_size = 4;
3984 
3985 		/* No partial transfers accepted */
3986 		if (xfer->len % w_size)
3987 			return -EINVAL;
3988 
3989 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3990 		    xfer->speed_hz < ctlr->min_speed_hz)
3991 			return -EINVAL;
3992 
3993 		if (xfer->tx_buf && !xfer->tx_nbits)
3994 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3995 		if (xfer->rx_buf && !xfer->rx_nbits)
3996 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3997 		/*
3998 		 * Check transfer tx/rx_nbits:
3999 		 * 1. check the value matches one of single, dual and quad
4000 		 * 2. check tx/rx_nbits match the mode in spi_device
4001 		 */
4002 		if (xfer->tx_buf) {
4003 			if (spi->mode & SPI_NO_TX)
4004 				return -EINVAL;
4005 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4006 				xfer->tx_nbits != SPI_NBITS_DUAL &&
4007 				xfer->tx_nbits != SPI_NBITS_QUAD)
4008 				return -EINVAL;
4009 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4010 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4011 				return -EINVAL;
4012 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4013 				!(spi->mode & SPI_TX_QUAD))
4014 				return -EINVAL;
4015 		}
4016 		/* Check transfer rx_nbits */
4017 		if (xfer->rx_buf) {
4018 			if (spi->mode & SPI_NO_RX)
4019 				return -EINVAL;
4020 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4021 				xfer->rx_nbits != SPI_NBITS_DUAL &&
4022 				xfer->rx_nbits != SPI_NBITS_QUAD)
4023 				return -EINVAL;
4024 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4025 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4026 				return -EINVAL;
4027 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4028 				!(spi->mode & SPI_RX_QUAD))
4029 				return -EINVAL;
4030 		}
4031 
4032 		if (_spi_xfer_word_delay_update(xfer, spi))
4033 			return -EINVAL;
4034 	}
4035 
4036 	message->status = -EINPROGRESS;
4037 
4038 	return 0;
4039 }
4040 
4041 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4042 {
4043 	struct spi_controller *ctlr = spi->controller;
4044 	struct spi_transfer *xfer;
4045 
4046 	/*
4047 	 * Some controllers do not support doing regular SPI transfers. Return
4048 	 * ENOTSUPP when this is the case.
4049 	 */
4050 	if (!ctlr->transfer)
4051 		return -ENOTSUPP;
4052 
4053 	message->spi = spi;
4054 
4055 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4056 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4057 
4058 	trace_spi_message_submit(message);
4059 
4060 	if (!ctlr->ptp_sts_supported) {
4061 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4062 			xfer->ptp_sts_word_pre = 0;
4063 			ptp_read_system_prets(xfer->ptp_sts);
4064 		}
4065 	}
4066 
4067 	return ctlr->transfer(spi, message);
4068 }
4069 
4070 /**
4071  * spi_async - asynchronous SPI transfer
4072  * @spi: device with which data will be exchanged
4073  * @message: describes the data transfers, including completion callback
4074  * Context: any (irqs may be blocked, etc)
4075  *
4076  * This call may be used in_irq and other contexts which can't sleep,
4077  * as well as from task contexts which can sleep.
4078  *
4079  * The completion callback is invoked in a context which can't sleep.
4080  * Before that invocation, the value of message->status is undefined.
4081  * When the callback is issued, message->status holds either zero (to
4082  * indicate complete success) or a negative error code.  After that
4083  * callback returns, the driver which issued the transfer request may
4084  * deallocate the associated memory; it's no longer in use by any SPI
4085  * core or controller driver code.
4086  *
4087  * Note that although all messages to a spi_device are handled in
4088  * FIFO order, messages may go to different devices in other orders.
4089  * Some device might be higher priority, or have various "hard" access
4090  * time requirements, for example.
4091  *
4092  * On detection of any fault during the transfer, processing of
4093  * the entire message is aborted, and the device is deselected.
4094  * Until returning from the associated message completion callback,
4095  * no other spi_message queued to that device will be processed.
4096  * (This rule applies equally to all the synchronous transfer calls,
4097  * which are wrappers around this core asynchronous primitive.)
4098  *
4099  * Return: zero on success, else a negative error code.
4100  */
4101 int spi_async(struct spi_device *spi, struct spi_message *message)
4102 {
4103 	struct spi_controller *ctlr = spi->controller;
4104 	int ret;
4105 	unsigned long flags;
4106 
4107 	ret = __spi_validate(spi, message);
4108 	if (ret != 0)
4109 		return ret;
4110 
4111 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4112 
4113 	if (ctlr->bus_lock_flag)
4114 		ret = -EBUSY;
4115 	else
4116 		ret = __spi_async(spi, message);
4117 
4118 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4119 
4120 	return ret;
4121 }
4122 EXPORT_SYMBOL_GPL(spi_async);
4123 
4124 /**
4125  * spi_async_locked - version of spi_async with exclusive bus usage
4126  * @spi: device with which data will be exchanged
4127  * @message: describes the data transfers, including completion callback
4128  * Context: any (irqs may be blocked, etc)
4129  *
4130  * This call may be used in_irq and other contexts which can't sleep,
4131  * as well as from task contexts which can sleep.
4132  *
4133  * The completion callback is invoked in a context which can't sleep.
4134  * Before that invocation, the value of message->status is undefined.
4135  * When the callback is issued, message->status holds either zero (to
4136  * indicate complete success) or a negative error code.  After that
4137  * callback returns, the driver which issued the transfer request may
4138  * deallocate the associated memory; it's no longer in use by any SPI
4139  * core or controller driver code.
4140  *
4141  * Note that although all messages to a spi_device are handled in
4142  * FIFO order, messages may go to different devices in other orders.
4143  * Some device might be higher priority, or have various "hard" access
4144  * time requirements, for example.
4145  *
4146  * On detection of any fault during the transfer, processing of
4147  * the entire message is aborted, and the device is deselected.
4148  * Until returning from the associated message completion callback,
4149  * no other spi_message queued to that device will be processed.
4150  * (This rule applies equally to all the synchronous transfer calls,
4151  * which are wrappers around this core asynchronous primitive.)
4152  *
4153  * Return: zero on success, else a negative error code.
4154  */
4155 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4156 {
4157 	struct spi_controller *ctlr = spi->controller;
4158 	int ret;
4159 	unsigned long flags;
4160 
4161 	ret = __spi_validate(spi, message);
4162 	if (ret != 0)
4163 		return ret;
4164 
4165 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4166 
4167 	ret = __spi_async(spi, message);
4168 
4169 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4170 
4171 	return ret;
4172 
4173 }
4174 
4175 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4176 {
4177 	bool was_busy;
4178 	int ret;
4179 
4180 	mutex_lock(&ctlr->io_mutex);
4181 
4182 	was_busy = ctlr->busy;
4183 
4184 	ctlr->cur_msg = msg;
4185 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4186 	if (ret)
4187 		goto out;
4188 
4189 	ctlr->cur_msg = NULL;
4190 	ctlr->fallback = false;
4191 
4192 	if (!was_busy) {
4193 		kfree(ctlr->dummy_rx);
4194 		ctlr->dummy_rx = NULL;
4195 		kfree(ctlr->dummy_tx);
4196 		ctlr->dummy_tx = NULL;
4197 		if (ctlr->unprepare_transfer_hardware &&
4198 		    ctlr->unprepare_transfer_hardware(ctlr))
4199 			dev_err(&ctlr->dev,
4200 				"failed to unprepare transfer hardware\n");
4201 		spi_idle_runtime_pm(ctlr);
4202 	}
4203 
4204 out:
4205 	mutex_unlock(&ctlr->io_mutex);
4206 }
4207 
4208 /*-------------------------------------------------------------------------*/
4209 
4210 /*
4211  * Utility methods for SPI protocol drivers, layered on
4212  * top of the core.  Some other utility methods are defined as
4213  * inline functions.
4214  */
4215 
4216 static void spi_complete(void *arg)
4217 {
4218 	complete(arg);
4219 }
4220 
4221 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4222 {
4223 	DECLARE_COMPLETION_ONSTACK(done);
4224 	int status;
4225 	struct spi_controller *ctlr = spi->controller;
4226 
4227 	status = __spi_validate(spi, message);
4228 	if (status != 0)
4229 		return status;
4230 
4231 	message->spi = spi;
4232 
4233 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4234 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4235 
4236 	/*
4237 	 * Checking queue_empty here only guarantees async/sync message
4238 	 * ordering when coming from the same context. It does not need to
4239 	 * guard against reentrancy from a different context. The io_mutex
4240 	 * will catch those cases.
4241 	 */
4242 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4243 		message->actual_length = 0;
4244 		message->status = -EINPROGRESS;
4245 
4246 		trace_spi_message_submit(message);
4247 
4248 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4249 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4250 
4251 		__spi_transfer_message_noqueue(ctlr, message);
4252 
4253 		return message->status;
4254 	}
4255 
4256 	/*
4257 	 * There are messages in the async queue that could have originated
4258 	 * from the same context, so we need to preserve ordering.
4259 	 * Therefor we send the message to the async queue and wait until they
4260 	 * are completed.
4261 	 */
4262 	message->complete = spi_complete;
4263 	message->context = &done;
4264 	status = spi_async_locked(spi, message);
4265 	if (status == 0) {
4266 		wait_for_completion(&done);
4267 		status = message->status;
4268 	}
4269 	message->context = NULL;
4270 
4271 	return status;
4272 }
4273 
4274 /**
4275  * spi_sync - blocking/synchronous SPI data transfers
4276  * @spi: device with which data will be exchanged
4277  * @message: describes the data transfers
4278  * Context: can sleep
4279  *
4280  * This call may only be used from a context that may sleep.  The sleep
4281  * is non-interruptible, and has no timeout.  Low-overhead controller
4282  * drivers may DMA directly into and out of the message buffers.
4283  *
4284  * Note that the SPI device's chip select is active during the message,
4285  * and then is normally disabled between messages.  Drivers for some
4286  * frequently-used devices may want to minimize costs of selecting a chip,
4287  * by leaving it selected in anticipation that the next message will go
4288  * to the same chip.  (That may increase power usage.)
4289  *
4290  * Also, the caller is guaranteeing that the memory associated with the
4291  * message will not be freed before this call returns.
4292  *
4293  * Return: zero on success, else a negative error code.
4294  */
4295 int spi_sync(struct spi_device *spi, struct spi_message *message)
4296 {
4297 	int ret;
4298 
4299 	mutex_lock(&spi->controller->bus_lock_mutex);
4300 	ret = __spi_sync(spi, message);
4301 	mutex_unlock(&spi->controller->bus_lock_mutex);
4302 
4303 	return ret;
4304 }
4305 EXPORT_SYMBOL_GPL(spi_sync);
4306 
4307 /**
4308  * spi_sync_locked - version of spi_sync with exclusive bus usage
4309  * @spi: device with which data will be exchanged
4310  * @message: describes the data transfers
4311  * Context: can sleep
4312  *
4313  * This call may only be used from a context that may sleep.  The sleep
4314  * is non-interruptible, and has no timeout.  Low-overhead controller
4315  * drivers may DMA directly into and out of the message buffers.
4316  *
4317  * This call should be used by drivers that require exclusive access to the
4318  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4319  * be released by a spi_bus_unlock call when the exclusive access is over.
4320  *
4321  * Return: zero on success, else a negative error code.
4322  */
4323 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4324 {
4325 	return __spi_sync(spi, message);
4326 }
4327 EXPORT_SYMBOL_GPL(spi_sync_locked);
4328 
4329 /**
4330  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4331  * @ctlr: SPI bus master that should be locked for exclusive bus access
4332  * Context: can sleep
4333  *
4334  * This call may only be used from a context that may sleep.  The sleep
4335  * is non-interruptible, and has no timeout.
4336  *
4337  * This call should be used by drivers that require exclusive access to the
4338  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4339  * exclusive access is over. Data transfer must be done by spi_sync_locked
4340  * and spi_async_locked calls when the SPI bus lock is held.
4341  *
4342  * Return: always zero.
4343  */
4344 int spi_bus_lock(struct spi_controller *ctlr)
4345 {
4346 	unsigned long flags;
4347 
4348 	mutex_lock(&ctlr->bus_lock_mutex);
4349 
4350 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4351 	ctlr->bus_lock_flag = 1;
4352 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4353 
4354 	/* Mutex remains locked until spi_bus_unlock() is called */
4355 
4356 	return 0;
4357 }
4358 EXPORT_SYMBOL_GPL(spi_bus_lock);
4359 
4360 /**
4361  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4362  * @ctlr: SPI bus master that was locked for exclusive bus access
4363  * Context: can sleep
4364  *
4365  * This call may only be used from a context that may sleep.  The sleep
4366  * is non-interruptible, and has no timeout.
4367  *
4368  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4369  * call.
4370  *
4371  * Return: always zero.
4372  */
4373 int spi_bus_unlock(struct spi_controller *ctlr)
4374 {
4375 	ctlr->bus_lock_flag = 0;
4376 
4377 	mutex_unlock(&ctlr->bus_lock_mutex);
4378 
4379 	return 0;
4380 }
4381 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4382 
4383 /* Portable code must never pass more than 32 bytes */
4384 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4385 
4386 static u8	*buf;
4387 
4388 /**
4389  * spi_write_then_read - SPI synchronous write followed by read
4390  * @spi: device with which data will be exchanged
4391  * @txbuf: data to be written (need not be dma-safe)
4392  * @n_tx: size of txbuf, in bytes
4393  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4394  * @n_rx: size of rxbuf, in bytes
4395  * Context: can sleep
4396  *
4397  * This performs a half duplex MicroWire style transaction with the
4398  * device, sending txbuf and then reading rxbuf.  The return value
4399  * is zero for success, else a negative errno status code.
4400  * This call may only be used from a context that may sleep.
4401  *
4402  * Parameters to this routine are always copied using a small buffer.
4403  * Performance-sensitive or bulk transfer code should instead use
4404  * spi_{async,sync}() calls with dma-safe buffers.
4405  *
4406  * Return: zero on success, else a negative error code.
4407  */
4408 int spi_write_then_read(struct spi_device *spi,
4409 		const void *txbuf, unsigned n_tx,
4410 		void *rxbuf, unsigned n_rx)
4411 {
4412 	static DEFINE_MUTEX(lock);
4413 
4414 	int			status;
4415 	struct spi_message	message;
4416 	struct spi_transfer	x[2];
4417 	u8			*local_buf;
4418 
4419 	/*
4420 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4421 	 * copying here, (as a pure convenience thing), but we can
4422 	 * keep heap costs out of the hot path unless someone else is
4423 	 * using the pre-allocated buffer or the transfer is too large.
4424 	 */
4425 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4426 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4427 				    GFP_KERNEL | GFP_DMA);
4428 		if (!local_buf)
4429 			return -ENOMEM;
4430 	} else {
4431 		local_buf = buf;
4432 	}
4433 
4434 	spi_message_init(&message);
4435 	memset(x, 0, sizeof(x));
4436 	if (n_tx) {
4437 		x[0].len = n_tx;
4438 		spi_message_add_tail(&x[0], &message);
4439 	}
4440 	if (n_rx) {
4441 		x[1].len = n_rx;
4442 		spi_message_add_tail(&x[1], &message);
4443 	}
4444 
4445 	memcpy(local_buf, txbuf, n_tx);
4446 	x[0].tx_buf = local_buf;
4447 	x[1].rx_buf = local_buf + n_tx;
4448 
4449 	/* Do the i/o */
4450 	status = spi_sync(spi, &message);
4451 	if (status == 0)
4452 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4453 
4454 	if (x[0].tx_buf == buf)
4455 		mutex_unlock(&lock);
4456 	else
4457 		kfree(local_buf);
4458 
4459 	return status;
4460 }
4461 EXPORT_SYMBOL_GPL(spi_write_then_read);
4462 
4463 /*-------------------------------------------------------------------------*/
4464 
4465 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4466 /* Must call put_device() when done with returned spi_device device */
4467 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4468 {
4469 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4470 
4471 	return dev ? to_spi_device(dev) : NULL;
4472 }
4473 
4474 /* The spi controllers are not using spi_bus, so we find it with another way */
4475 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4476 {
4477 	struct device *dev;
4478 
4479 	dev = class_find_device_by_of_node(&spi_master_class, node);
4480 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4481 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4482 	if (!dev)
4483 		return NULL;
4484 
4485 	/* Reference got in class_find_device */
4486 	return container_of(dev, struct spi_controller, dev);
4487 }
4488 
4489 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4490 			 void *arg)
4491 {
4492 	struct of_reconfig_data *rd = arg;
4493 	struct spi_controller *ctlr;
4494 	struct spi_device *spi;
4495 
4496 	switch (of_reconfig_get_state_change(action, arg)) {
4497 	case OF_RECONFIG_CHANGE_ADD:
4498 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4499 		if (ctlr == NULL)
4500 			return NOTIFY_OK;	/* Not for us */
4501 
4502 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4503 			put_device(&ctlr->dev);
4504 			return NOTIFY_OK;
4505 		}
4506 
4507 		/*
4508 		 * Clear the flag before adding the device so that fw_devlink
4509 		 * doesn't skip adding consumers to this device.
4510 		 */
4511 		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4512 		spi = of_register_spi_device(ctlr, rd->dn);
4513 		put_device(&ctlr->dev);
4514 
4515 		if (IS_ERR(spi)) {
4516 			pr_err("%s: failed to create for '%pOF'\n",
4517 					__func__, rd->dn);
4518 			of_node_clear_flag(rd->dn, OF_POPULATED);
4519 			return notifier_from_errno(PTR_ERR(spi));
4520 		}
4521 		break;
4522 
4523 	case OF_RECONFIG_CHANGE_REMOVE:
4524 		/* Already depopulated? */
4525 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4526 			return NOTIFY_OK;
4527 
4528 		/* Find our device by node */
4529 		spi = of_find_spi_device_by_node(rd->dn);
4530 		if (spi == NULL)
4531 			return NOTIFY_OK;	/* No? not meant for us */
4532 
4533 		/* Unregister takes one ref away */
4534 		spi_unregister_device(spi);
4535 
4536 		/* And put the reference of the find */
4537 		put_device(&spi->dev);
4538 		break;
4539 	}
4540 
4541 	return NOTIFY_OK;
4542 }
4543 
4544 static struct notifier_block spi_of_notifier = {
4545 	.notifier_call = of_spi_notify,
4546 };
4547 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4548 extern struct notifier_block spi_of_notifier;
4549 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4550 
4551 #if IS_ENABLED(CONFIG_ACPI)
4552 static int spi_acpi_controller_match(struct device *dev, const void *data)
4553 {
4554 	return ACPI_COMPANION(dev->parent) == data;
4555 }
4556 
4557 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4558 {
4559 	struct device *dev;
4560 
4561 	dev = class_find_device(&spi_master_class, NULL, adev,
4562 				spi_acpi_controller_match);
4563 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4564 		dev = class_find_device(&spi_slave_class, NULL, adev,
4565 					spi_acpi_controller_match);
4566 	if (!dev)
4567 		return NULL;
4568 
4569 	return container_of(dev, struct spi_controller, dev);
4570 }
4571 
4572 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4573 {
4574 	struct device *dev;
4575 
4576 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4577 	return to_spi_device(dev);
4578 }
4579 
4580 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4581 			   void *arg)
4582 {
4583 	struct acpi_device *adev = arg;
4584 	struct spi_controller *ctlr;
4585 	struct spi_device *spi;
4586 
4587 	switch (value) {
4588 	case ACPI_RECONFIG_DEVICE_ADD:
4589 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4590 		if (!ctlr)
4591 			break;
4592 
4593 		acpi_register_spi_device(ctlr, adev);
4594 		put_device(&ctlr->dev);
4595 		break;
4596 	case ACPI_RECONFIG_DEVICE_REMOVE:
4597 		if (!acpi_device_enumerated(adev))
4598 			break;
4599 
4600 		spi = acpi_spi_find_device_by_adev(adev);
4601 		if (!spi)
4602 			break;
4603 
4604 		spi_unregister_device(spi);
4605 		put_device(&spi->dev);
4606 		break;
4607 	}
4608 
4609 	return NOTIFY_OK;
4610 }
4611 
4612 static struct notifier_block spi_acpi_notifier = {
4613 	.notifier_call = acpi_spi_notify,
4614 };
4615 #else
4616 extern struct notifier_block spi_acpi_notifier;
4617 #endif
4618 
4619 static int __init spi_init(void)
4620 {
4621 	int	status;
4622 
4623 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4624 	if (!buf) {
4625 		status = -ENOMEM;
4626 		goto err0;
4627 	}
4628 
4629 	status = bus_register(&spi_bus_type);
4630 	if (status < 0)
4631 		goto err1;
4632 
4633 	status = class_register(&spi_master_class);
4634 	if (status < 0)
4635 		goto err2;
4636 
4637 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4638 		status = class_register(&spi_slave_class);
4639 		if (status < 0)
4640 			goto err3;
4641 	}
4642 
4643 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4644 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4645 	if (IS_ENABLED(CONFIG_ACPI))
4646 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4647 
4648 	return 0;
4649 
4650 err3:
4651 	class_unregister(&spi_master_class);
4652 err2:
4653 	bus_unregister(&spi_bus_type);
4654 err1:
4655 	kfree(buf);
4656 	buf = NULL;
4657 err0:
4658 	return status;
4659 }
4660 
4661 /*
4662  * A board_info is normally registered in arch_initcall(),
4663  * but even essential drivers wait till later.
4664  *
4665  * REVISIT only boardinfo really needs static linking. The rest (device and
4666  * driver registration) _could_ be dynamically linked (modular) ... Costs
4667  * include needing to have boardinfo data structures be much more public.
4668  */
4669 postcore_initcall(spi_init);
4670