1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/kmod.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/cache.h> 27 #include <linux/mutex.h> 28 #include <linux/of_device.h> 29 #include <linux/of_irq.h> 30 #include <linux/slab.h> 31 #include <linux/mod_devicetable.h> 32 #include <linux/spi/spi.h> 33 #include <linux/of_gpio.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/export.h> 36 #include <linux/sched/rt.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/ioport.h> 40 #include <linux/acpi.h> 41 42 static void spidev_release(struct device *dev) 43 { 44 struct spi_device *spi = to_spi_device(dev); 45 46 /* spi masters may cleanup for released devices */ 47 if (spi->master->cleanup) 48 spi->master->cleanup(spi); 49 50 spi_master_put(spi->master); 51 kfree(spi); 52 } 53 54 static ssize_t 55 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 56 { 57 const struct spi_device *spi = to_spi_device(dev); 58 59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 60 } 61 62 static struct device_attribute spi_dev_attrs[] = { 63 __ATTR_RO(modalias), 64 __ATTR_NULL, 65 }; 66 67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 68 * and the sysfs version makes coldplug work too. 69 */ 70 71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 72 const struct spi_device *sdev) 73 { 74 while (id->name[0]) { 75 if (!strcmp(sdev->modalias, id->name)) 76 return id; 77 id++; 78 } 79 return NULL; 80 } 81 82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 83 { 84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 85 86 return spi_match_id(sdrv->id_table, sdev); 87 } 88 EXPORT_SYMBOL_GPL(spi_get_device_id); 89 90 static int spi_match_device(struct device *dev, struct device_driver *drv) 91 { 92 const struct spi_device *spi = to_spi_device(dev); 93 const struct spi_driver *sdrv = to_spi_driver(drv); 94 95 /* Attempt an OF style match */ 96 if (of_driver_match_device(dev, drv)) 97 return 1; 98 99 /* Then try ACPI */ 100 if (acpi_driver_match_device(dev, drv)) 101 return 1; 102 103 if (sdrv->id_table) 104 return !!spi_match_id(sdrv->id_table, spi); 105 106 return strcmp(spi->modalias, drv->name) == 0; 107 } 108 109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 110 { 111 const struct spi_device *spi = to_spi_device(dev); 112 113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 114 return 0; 115 } 116 117 #ifdef CONFIG_PM_SLEEP 118 static int spi_legacy_suspend(struct device *dev, pm_message_t message) 119 { 120 int value = 0; 121 struct spi_driver *drv = to_spi_driver(dev->driver); 122 123 /* suspend will stop irqs and dma; no more i/o */ 124 if (drv) { 125 if (drv->suspend) 126 value = drv->suspend(to_spi_device(dev), message); 127 else 128 dev_dbg(dev, "... can't suspend\n"); 129 } 130 return value; 131 } 132 133 static int spi_legacy_resume(struct device *dev) 134 { 135 int value = 0; 136 struct spi_driver *drv = to_spi_driver(dev->driver); 137 138 /* resume may restart the i/o queue */ 139 if (drv) { 140 if (drv->resume) 141 value = drv->resume(to_spi_device(dev)); 142 else 143 dev_dbg(dev, "... can't resume\n"); 144 } 145 return value; 146 } 147 148 static int spi_pm_suspend(struct device *dev) 149 { 150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 151 152 if (pm) 153 return pm_generic_suspend(dev); 154 else 155 return spi_legacy_suspend(dev, PMSG_SUSPEND); 156 } 157 158 static int spi_pm_resume(struct device *dev) 159 { 160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 161 162 if (pm) 163 return pm_generic_resume(dev); 164 else 165 return spi_legacy_resume(dev); 166 } 167 168 static int spi_pm_freeze(struct device *dev) 169 { 170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 171 172 if (pm) 173 return pm_generic_freeze(dev); 174 else 175 return spi_legacy_suspend(dev, PMSG_FREEZE); 176 } 177 178 static int spi_pm_thaw(struct device *dev) 179 { 180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 181 182 if (pm) 183 return pm_generic_thaw(dev); 184 else 185 return spi_legacy_resume(dev); 186 } 187 188 static int spi_pm_poweroff(struct device *dev) 189 { 190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 191 192 if (pm) 193 return pm_generic_poweroff(dev); 194 else 195 return spi_legacy_suspend(dev, PMSG_HIBERNATE); 196 } 197 198 static int spi_pm_restore(struct device *dev) 199 { 200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 201 202 if (pm) 203 return pm_generic_restore(dev); 204 else 205 return spi_legacy_resume(dev); 206 } 207 #else 208 #define spi_pm_suspend NULL 209 #define spi_pm_resume NULL 210 #define spi_pm_freeze NULL 211 #define spi_pm_thaw NULL 212 #define spi_pm_poweroff NULL 213 #define spi_pm_restore NULL 214 #endif 215 216 static const struct dev_pm_ops spi_pm = { 217 .suspend = spi_pm_suspend, 218 .resume = spi_pm_resume, 219 .freeze = spi_pm_freeze, 220 .thaw = spi_pm_thaw, 221 .poweroff = spi_pm_poweroff, 222 .restore = spi_pm_restore, 223 SET_RUNTIME_PM_OPS( 224 pm_generic_runtime_suspend, 225 pm_generic_runtime_resume, 226 pm_generic_runtime_idle 227 ) 228 }; 229 230 struct bus_type spi_bus_type = { 231 .name = "spi", 232 .dev_attrs = spi_dev_attrs, 233 .match = spi_match_device, 234 .uevent = spi_uevent, 235 .pm = &spi_pm, 236 }; 237 EXPORT_SYMBOL_GPL(spi_bus_type); 238 239 240 static int spi_drv_probe(struct device *dev) 241 { 242 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 243 244 return sdrv->probe(to_spi_device(dev)); 245 } 246 247 static int spi_drv_remove(struct device *dev) 248 { 249 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 250 251 return sdrv->remove(to_spi_device(dev)); 252 } 253 254 static void spi_drv_shutdown(struct device *dev) 255 { 256 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 257 258 sdrv->shutdown(to_spi_device(dev)); 259 } 260 261 /** 262 * spi_register_driver - register a SPI driver 263 * @sdrv: the driver to register 264 * Context: can sleep 265 */ 266 int spi_register_driver(struct spi_driver *sdrv) 267 { 268 sdrv->driver.bus = &spi_bus_type; 269 if (sdrv->probe) 270 sdrv->driver.probe = spi_drv_probe; 271 if (sdrv->remove) 272 sdrv->driver.remove = spi_drv_remove; 273 if (sdrv->shutdown) 274 sdrv->driver.shutdown = spi_drv_shutdown; 275 return driver_register(&sdrv->driver); 276 } 277 EXPORT_SYMBOL_GPL(spi_register_driver); 278 279 /*-------------------------------------------------------------------------*/ 280 281 /* SPI devices should normally not be created by SPI device drivers; that 282 * would make them board-specific. Similarly with SPI master drivers. 283 * Device registration normally goes into like arch/.../mach.../board-YYY.c 284 * with other readonly (flashable) information about mainboard devices. 285 */ 286 287 struct boardinfo { 288 struct list_head list; 289 struct spi_board_info board_info; 290 }; 291 292 static LIST_HEAD(board_list); 293 static LIST_HEAD(spi_master_list); 294 295 /* 296 * Used to protect add/del opertion for board_info list and 297 * spi_master list, and their matching process 298 */ 299 static DEFINE_MUTEX(board_lock); 300 301 /** 302 * spi_alloc_device - Allocate a new SPI device 303 * @master: Controller to which device is connected 304 * Context: can sleep 305 * 306 * Allows a driver to allocate and initialize a spi_device without 307 * registering it immediately. This allows a driver to directly 308 * fill the spi_device with device parameters before calling 309 * spi_add_device() on it. 310 * 311 * Caller is responsible to call spi_add_device() on the returned 312 * spi_device structure to add it to the SPI master. If the caller 313 * needs to discard the spi_device without adding it, then it should 314 * call spi_dev_put() on it. 315 * 316 * Returns a pointer to the new device, or NULL. 317 */ 318 struct spi_device *spi_alloc_device(struct spi_master *master) 319 { 320 struct spi_device *spi; 321 struct device *dev = master->dev.parent; 322 323 if (!spi_master_get(master)) 324 return NULL; 325 326 spi = kzalloc(sizeof *spi, GFP_KERNEL); 327 if (!spi) { 328 dev_err(dev, "cannot alloc spi_device\n"); 329 spi_master_put(master); 330 return NULL; 331 } 332 333 spi->master = master; 334 spi->dev.parent = &master->dev; 335 spi->dev.bus = &spi_bus_type; 336 spi->dev.release = spidev_release; 337 spi->cs_gpio = -EINVAL; 338 device_initialize(&spi->dev); 339 return spi; 340 } 341 EXPORT_SYMBOL_GPL(spi_alloc_device); 342 343 /** 344 * spi_add_device - Add spi_device allocated with spi_alloc_device 345 * @spi: spi_device to register 346 * 347 * Companion function to spi_alloc_device. Devices allocated with 348 * spi_alloc_device can be added onto the spi bus with this function. 349 * 350 * Returns 0 on success; negative errno on failure 351 */ 352 int spi_add_device(struct spi_device *spi) 353 { 354 static DEFINE_MUTEX(spi_add_lock); 355 struct spi_master *master = spi->master; 356 struct device *dev = master->dev.parent; 357 struct device *d; 358 int status; 359 360 /* Chipselects are numbered 0..max; validate. */ 361 if (spi->chip_select >= master->num_chipselect) { 362 dev_err(dev, "cs%d >= max %d\n", 363 spi->chip_select, 364 master->num_chipselect); 365 return -EINVAL; 366 } 367 368 /* Set the bus ID string */ 369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 370 spi->chip_select); 371 372 373 /* We need to make sure there's no other device with this 374 * chipselect **BEFORE** we call setup(), else we'll trash 375 * its configuration. Lock against concurrent add() calls. 376 */ 377 mutex_lock(&spi_add_lock); 378 379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev)); 380 if (d != NULL) { 381 dev_err(dev, "chipselect %d already in use\n", 382 spi->chip_select); 383 put_device(d); 384 status = -EBUSY; 385 goto done; 386 } 387 388 if (master->cs_gpios) 389 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 390 391 /* Drivers may modify this initial i/o setup, but will 392 * normally rely on the device being setup. Devices 393 * using SPI_CS_HIGH can't coexist well otherwise... 394 */ 395 status = spi_setup(spi); 396 if (status < 0) { 397 dev_err(dev, "can't setup %s, status %d\n", 398 dev_name(&spi->dev), status); 399 goto done; 400 } 401 402 /* Device may be bound to an active driver when this returns */ 403 status = device_add(&spi->dev); 404 if (status < 0) 405 dev_err(dev, "can't add %s, status %d\n", 406 dev_name(&spi->dev), status); 407 else 408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 409 410 done: 411 mutex_unlock(&spi_add_lock); 412 return status; 413 } 414 EXPORT_SYMBOL_GPL(spi_add_device); 415 416 /** 417 * spi_new_device - instantiate one new SPI device 418 * @master: Controller to which device is connected 419 * @chip: Describes the SPI device 420 * Context: can sleep 421 * 422 * On typical mainboards, this is purely internal; and it's not needed 423 * after board init creates the hard-wired devices. Some development 424 * platforms may not be able to use spi_register_board_info though, and 425 * this is exported so that for example a USB or parport based adapter 426 * driver could add devices (which it would learn about out-of-band). 427 * 428 * Returns the new device, or NULL. 429 */ 430 struct spi_device *spi_new_device(struct spi_master *master, 431 struct spi_board_info *chip) 432 { 433 struct spi_device *proxy; 434 int status; 435 436 /* NOTE: caller did any chip->bus_num checks necessary. 437 * 438 * Also, unless we change the return value convention to use 439 * error-or-pointer (not NULL-or-pointer), troubleshootability 440 * suggests syslogged diagnostics are best here (ugh). 441 */ 442 443 proxy = spi_alloc_device(master); 444 if (!proxy) 445 return NULL; 446 447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 448 449 proxy->chip_select = chip->chip_select; 450 proxy->max_speed_hz = chip->max_speed_hz; 451 proxy->mode = chip->mode; 452 proxy->irq = chip->irq; 453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 454 proxy->dev.platform_data = (void *) chip->platform_data; 455 proxy->controller_data = chip->controller_data; 456 proxy->controller_state = NULL; 457 458 status = spi_add_device(proxy); 459 if (status < 0) { 460 spi_dev_put(proxy); 461 return NULL; 462 } 463 464 return proxy; 465 } 466 EXPORT_SYMBOL_GPL(spi_new_device); 467 468 static void spi_match_master_to_boardinfo(struct spi_master *master, 469 struct spi_board_info *bi) 470 { 471 struct spi_device *dev; 472 473 if (master->bus_num != bi->bus_num) 474 return; 475 476 dev = spi_new_device(master, bi); 477 if (!dev) 478 dev_err(master->dev.parent, "can't create new device for %s\n", 479 bi->modalias); 480 } 481 482 /** 483 * spi_register_board_info - register SPI devices for a given board 484 * @info: array of chip descriptors 485 * @n: how many descriptors are provided 486 * Context: can sleep 487 * 488 * Board-specific early init code calls this (probably during arch_initcall) 489 * with segments of the SPI device table. Any device nodes are created later, 490 * after the relevant parent SPI controller (bus_num) is defined. We keep 491 * this table of devices forever, so that reloading a controller driver will 492 * not make Linux forget about these hard-wired devices. 493 * 494 * Other code can also call this, e.g. a particular add-on board might provide 495 * SPI devices through its expansion connector, so code initializing that board 496 * would naturally declare its SPI devices. 497 * 498 * The board info passed can safely be __initdata ... but be careful of 499 * any embedded pointers (platform_data, etc), they're copied as-is. 500 */ 501 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 502 { 503 struct boardinfo *bi; 504 int i; 505 506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 507 if (!bi) 508 return -ENOMEM; 509 510 for (i = 0; i < n; i++, bi++, info++) { 511 struct spi_master *master; 512 513 memcpy(&bi->board_info, info, sizeof(*info)); 514 mutex_lock(&board_lock); 515 list_add_tail(&bi->list, &board_list); 516 list_for_each_entry(master, &spi_master_list, list) 517 spi_match_master_to_boardinfo(master, &bi->board_info); 518 mutex_unlock(&board_lock); 519 } 520 521 return 0; 522 } 523 524 /*-------------------------------------------------------------------------*/ 525 526 /** 527 * spi_pump_messages - kthread work function which processes spi message queue 528 * @work: pointer to kthread work struct contained in the master struct 529 * 530 * This function checks if there is any spi message in the queue that 531 * needs processing and if so call out to the driver to initialize hardware 532 * and transfer each message. 533 * 534 */ 535 static void spi_pump_messages(struct kthread_work *work) 536 { 537 struct spi_master *master = 538 container_of(work, struct spi_master, pump_messages); 539 unsigned long flags; 540 bool was_busy = false; 541 int ret; 542 543 /* Lock queue and check for queue work */ 544 spin_lock_irqsave(&master->queue_lock, flags); 545 if (list_empty(&master->queue) || !master->running) { 546 if (!master->busy) { 547 spin_unlock_irqrestore(&master->queue_lock, flags); 548 return; 549 } 550 master->busy = false; 551 spin_unlock_irqrestore(&master->queue_lock, flags); 552 if (master->unprepare_transfer_hardware && 553 master->unprepare_transfer_hardware(master)) 554 dev_err(&master->dev, 555 "failed to unprepare transfer hardware\n"); 556 return; 557 } 558 559 /* Make sure we are not already running a message */ 560 if (master->cur_msg) { 561 spin_unlock_irqrestore(&master->queue_lock, flags); 562 return; 563 } 564 /* Extract head of queue */ 565 master->cur_msg = 566 list_entry(master->queue.next, struct spi_message, queue); 567 568 list_del_init(&master->cur_msg->queue); 569 if (master->busy) 570 was_busy = true; 571 else 572 master->busy = true; 573 spin_unlock_irqrestore(&master->queue_lock, flags); 574 575 if (!was_busy && master->prepare_transfer_hardware) { 576 ret = master->prepare_transfer_hardware(master); 577 if (ret) { 578 dev_err(&master->dev, 579 "failed to prepare transfer hardware\n"); 580 return; 581 } 582 } 583 584 ret = master->transfer_one_message(master, master->cur_msg); 585 if (ret) { 586 dev_err(&master->dev, 587 "failed to transfer one message from queue\n"); 588 return; 589 } 590 } 591 592 static int spi_init_queue(struct spi_master *master) 593 { 594 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 595 596 INIT_LIST_HEAD(&master->queue); 597 spin_lock_init(&master->queue_lock); 598 599 master->running = false; 600 master->busy = false; 601 602 init_kthread_worker(&master->kworker); 603 master->kworker_task = kthread_run(kthread_worker_fn, 604 &master->kworker, 605 dev_name(&master->dev)); 606 if (IS_ERR(master->kworker_task)) { 607 dev_err(&master->dev, "failed to create message pump task\n"); 608 return -ENOMEM; 609 } 610 init_kthread_work(&master->pump_messages, spi_pump_messages); 611 612 /* 613 * Master config will indicate if this controller should run the 614 * message pump with high (realtime) priority to reduce the transfer 615 * latency on the bus by minimising the delay between a transfer 616 * request and the scheduling of the message pump thread. Without this 617 * setting the message pump thread will remain at default priority. 618 */ 619 if (master->rt) { 620 dev_info(&master->dev, 621 "will run message pump with realtime priority\n"); 622 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 623 } 624 625 return 0; 626 } 627 628 /** 629 * spi_get_next_queued_message() - called by driver to check for queued 630 * messages 631 * @master: the master to check for queued messages 632 * 633 * If there are more messages in the queue, the next message is returned from 634 * this call. 635 */ 636 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 637 { 638 struct spi_message *next; 639 unsigned long flags; 640 641 /* get a pointer to the next message, if any */ 642 spin_lock_irqsave(&master->queue_lock, flags); 643 if (list_empty(&master->queue)) 644 next = NULL; 645 else 646 next = list_entry(master->queue.next, 647 struct spi_message, queue); 648 spin_unlock_irqrestore(&master->queue_lock, flags); 649 650 return next; 651 } 652 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 653 654 /** 655 * spi_finalize_current_message() - the current message is complete 656 * @master: the master to return the message to 657 * 658 * Called by the driver to notify the core that the message in the front of the 659 * queue is complete and can be removed from the queue. 660 */ 661 void spi_finalize_current_message(struct spi_master *master) 662 { 663 struct spi_message *mesg; 664 unsigned long flags; 665 666 spin_lock_irqsave(&master->queue_lock, flags); 667 mesg = master->cur_msg; 668 master->cur_msg = NULL; 669 670 queue_kthread_work(&master->kworker, &master->pump_messages); 671 spin_unlock_irqrestore(&master->queue_lock, flags); 672 673 mesg->state = NULL; 674 if (mesg->complete) 675 mesg->complete(mesg->context); 676 } 677 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 678 679 static int spi_start_queue(struct spi_master *master) 680 { 681 unsigned long flags; 682 683 spin_lock_irqsave(&master->queue_lock, flags); 684 685 if (master->running || master->busy) { 686 spin_unlock_irqrestore(&master->queue_lock, flags); 687 return -EBUSY; 688 } 689 690 master->running = true; 691 master->cur_msg = NULL; 692 spin_unlock_irqrestore(&master->queue_lock, flags); 693 694 queue_kthread_work(&master->kworker, &master->pump_messages); 695 696 return 0; 697 } 698 699 static int spi_stop_queue(struct spi_master *master) 700 { 701 unsigned long flags; 702 unsigned limit = 500; 703 int ret = 0; 704 705 spin_lock_irqsave(&master->queue_lock, flags); 706 707 /* 708 * This is a bit lame, but is optimized for the common execution path. 709 * A wait_queue on the master->busy could be used, but then the common 710 * execution path (pump_messages) would be required to call wake_up or 711 * friends on every SPI message. Do this instead. 712 */ 713 while ((!list_empty(&master->queue) || master->busy) && limit--) { 714 spin_unlock_irqrestore(&master->queue_lock, flags); 715 msleep(10); 716 spin_lock_irqsave(&master->queue_lock, flags); 717 } 718 719 if (!list_empty(&master->queue) || master->busy) 720 ret = -EBUSY; 721 else 722 master->running = false; 723 724 spin_unlock_irqrestore(&master->queue_lock, flags); 725 726 if (ret) { 727 dev_warn(&master->dev, 728 "could not stop message queue\n"); 729 return ret; 730 } 731 return ret; 732 } 733 734 static int spi_destroy_queue(struct spi_master *master) 735 { 736 int ret; 737 738 ret = spi_stop_queue(master); 739 740 /* 741 * flush_kthread_worker will block until all work is done. 742 * If the reason that stop_queue timed out is that the work will never 743 * finish, then it does no good to call flush/stop thread, so 744 * return anyway. 745 */ 746 if (ret) { 747 dev_err(&master->dev, "problem destroying queue\n"); 748 return ret; 749 } 750 751 flush_kthread_worker(&master->kworker); 752 kthread_stop(master->kworker_task); 753 754 return 0; 755 } 756 757 /** 758 * spi_queued_transfer - transfer function for queued transfers 759 * @spi: spi device which is requesting transfer 760 * @msg: spi message which is to handled is queued to driver queue 761 */ 762 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 763 { 764 struct spi_master *master = spi->master; 765 unsigned long flags; 766 767 spin_lock_irqsave(&master->queue_lock, flags); 768 769 if (!master->running) { 770 spin_unlock_irqrestore(&master->queue_lock, flags); 771 return -ESHUTDOWN; 772 } 773 msg->actual_length = 0; 774 msg->status = -EINPROGRESS; 775 776 list_add_tail(&msg->queue, &master->queue); 777 if (master->running && !master->busy) 778 queue_kthread_work(&master->kworker, &master->pump_messages); 779 780 spin_unlock_irqrestore(&master->queue_lock, flags); 781 return 0; 782 } 783 784 static int spi_master_initialize_queue(struct spi_master *master) 785 { 786 int ret; 787 788 master->queued = true; 789 master->transfer = spi_queued_transfer; 790 791 /* Initialize and start queue */ 792 ret = spi_init_queue(master); 793 if (ret) { 794 dev_err(&master->dev, "problem initializing queue\n"); 795 goto err_init_queue; 796 } 797 ret = spi_start_queue(master); 798 if (ret) { 799 dev_err(&master->dev, "problem starting queue\n"); 800 goto err_start_queue; 801 } 802 803 return 0; 804 805 err_start_queue: 806 err_init_queue: 807 spi_destroy_queue(master); 808 return ret; 809 } 810 811 /*-------------------------------------------------------------------------*/ 812 813 #if defined(CONFIG_OF) 814 /** 815 * of_register_spi_devices() - Register child devices onto the SPI bus 816 * @master: Pointer to spi_master device 817 * 818 * Registers an spi_device for each child node of master node which has a 'reg' 819 * property. 820 */ 821 static void of_register_spi_devices(struct spi_master *master) 822 { 823 struct spi_device *spi; 824 struct device_node *nc; 825 const __be32 *prop; 826 char modalias[SPI_NAME_SIZE + 4]; 827 int rc; 828 int len; 829 830 if (!master->dev.of_node) 831 return; 832 833 for_each_available_child_of_node(master->dev.of_node, nc) { 834 /* Alloc an spi_device */ 835 spi = spi_alloc_device(master); 836 if (!spi) { 837 dev_err(&master->dev, "spi_device alloc error for %s\n", 838 nc->full_name); 839 spi_dev_put(spi); 840 continue; 841 } 842 843 /* Select device driver */ 844 if (of_modalias_node(nc, spi->modalias, 845 sizeof(spi->modalias)) < 0) { 846 dev_err(&master->dev, "cannot find modalias for %s\n", 847 nc->full_name); 848 spi_dev_put(spi); 849 continue; 850 } 851 852 /* Device address */ 853 prop = of_get_property(nc, "reg", &len); 854 if (!prop || len < sizeof(*prop)) { 855 dev_err(&master->dev, "%s has no 'reg' property\n", 856 nc->full_name); 857 spi_dev_put(spi); 858 continue; 859 } 860 spi->chip_select = be32_to_cpup(prop); 861 862 /* Mode (clock phase/polarity/etc.) */ 863 if (of_find_property(nc, "spi-cpha", NULL)) 864 spi->mode |= SPI_CPHA; 865 if (of_find_property(nc, "spi-cpol", NULL)) 866 spi->mode |= SPI_CPOL; 867 if (of_find_property(nc, "spi-cs-high", NULL)) 868 spi->mode |= SPI_CS_HIGH; 869 if (of_find_property(nc, "spi-3wire", NULL)) 870 spi->mode |= SPI_3WIRE; 871 872 /* Device speed */ 873 prop = of_get_property(nc, "spi-max-frequency", &len); 874 if (!prop || len < sizeof(*prop)) { 875 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n", 876 nc->full_name); 877 spi_dev_put(spi); 878 continue; 879 } 880 spi->max_speed_hz = be32_to_cpup(prop); 881 882 /* IRQ */ 883 spi->irq = irq_of_parse_and_map(nc, 0); 884 885 /* Store a pointer to the node in the device structure */ 886 of_node_get(nc); 887 spi->dev.of_node = nc; 888 889 /* Register the new device */ 890 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX, 891 spi->modalias); 892 request_module(modalias); 893 rc = spi_add_device(spi); 894 if (rc) { 895 dev_err(&master->dev, "spi_device register error %s\n", 896 nc->full_name); 897 spi_dev_put(spi); 898 } 899 900 } 901 } 902 #else 903 static void of_register_spi_devices(struct spi_master *master) { } 904 #endif 905 906 #ifdef CONFIG_ACPI 907 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 908 { 909 struct spi_device *spi = data; 910 911 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 912 struct acpi_resource_spi_serialbus *sb; 913 914 sb = &ares->data.spi_serial_bus; 915 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 916 spi->chip_select = sb->device_selection; 917 spi->max_speed_hz = sb->connection_speed; 918 919 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 920 spi->mode |= SPI_CPHA; 921 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 922 spi->mode |= SPI_CPOL; 923 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 924 spi->mode |= SPI_CS_HIGH; 925 } 926 } else if (spi->irq < 0) { 927 struct resource r; 928 929 if (acpi_dev_resource_interrupt(ares, 0, &r)) 930 spi->irq = r.start; 931 } 932 933 /* Always tell the ACPI core to skip this resource */ 934 return 1; 935 } 936 937 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 938 void *data, void **return_value) 939 { 940 struct spi_master *master = data; 941 struct list_head resource_list; 942 struct acpi_device *adev; 943 struct spi_device *spi; 944 int ret; 945 946 if (acpi_bus_get_device(handle, &adev)) 947 return AE_OK; 948 if (acpi_bus_get_status(adev) || !adev->status.present) 949 return AE_OK; 950 951 spi = spi_alloc_device(master); 952 if (!spi) { 953 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 954 dev_name(&adev->dev)); 955 return AE_NO_MEMORY; 956 } 957 958 ACPI_HANDLE_SET(&spi->dev, handle); 959 spi->irq = -1; 960 961 INIT_LIST_HEAD(&resource_list); 962 ret = acpi_dev_get_resources(adev, &resource_list, 963 acpi_spi_add_resource, spi); 964 acpi_dev_free_resource_list(&resource_list); 965 966 if (ret < 0 || !spi->max_speed_hz) { 967 spi_dev_put(spi); 968 return AE_OK; 969 } 970 971 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias)); 972 if (spi_add_device(spi)) { 973 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 974 dev_name(&adev->dev)); 975 spi_dev_put(spi); 976 } 977 978 return AE_OK; 979 } 980 981 static void acpi_register_spi_devices(struct spi_master *master) 982 { 983 acpi_status status; 984 acpi_handle handle; 985 986 handle = ACPI_HANDLE(master->dev.parent); 987 if (!handle) 988 return; 989 990 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 991 acpi_spi_add_device, NULL, 992 master, NULL); 993 if (ACPI_FAILURE(status)) 994 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 995 } 996 #else 997 static inline void acpi_register_spi_devices(struct spi_master *master) {} 998 #endif /* CONFIG_ACPI */ 999 1000 static void spi_master_release(struct device *dev) 1001 { 1002 struct spi_master *master; 1003 1004 master = container_of(dev, struct spi_master, dev); 1005 kfree(master); 1006 } 1007 1008 static struct class spi_master_class = { 1009 .name = "spi_master", 1010 .owner = THIS_MODULE, 1011 .dev_release = spi_master_release, 1012 }; 1013 1014 1015 1016 /** 1017 * spi_alloc_master - allocate SPI master controller 1018 * @dev: the controller, possibly using the platform_bus 1019 * @size: how much zeroed driver-private data to allocate; the pointer to this 1020 * memory is in the driver_data field of the returned device, 1021 * accessible with spi_master_get_devdata(). 1022 * Context: can sleep 1023 * 1024 * This call is used only by SPI master controller drivers, which are the 1025 * only ones directly touching chip registers. It's how they allocate 1026 * an spi_master structure, prior to calling spi_register_master(). 1027 * 1028 * This must be called from context that can sleep. It returns the SPI 1029 * master structure on success, else NULL. 1030 * 1031 * The caller is responsible for assigning the bus number and initializing 1032 * the master's methods before calling spi_register_master(); and (after errors 1033 * adding the device) calling spi_master_put() and kfree() to prevent a memory 1034 * leak. 1035 */ 1036 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1037 { 1038 struct spi_master *master; 1039 1040 if (!dev) 1041 return NULL; 1042 1043 master = kzalloc(size + sizeof *master, GFP_KERNEL); 1044 if (!master) 1045 return NULL; 1046 1047 device_initialize(&master->dev); 1048 master->bus_num = -1; 1049 master->num_chipselect = 1; 1050 master->dev.class = &spi_master_class; 1051 master->dev.parent = get_device(dev); 1052 spi_master_set_devdata(master, &master[1]); 1053 1054 return master; 1055 } 1056 EXPORT_SYMBOL_GPL(spi_alloc_master); 1057 1058 #ifdef CONFIG_OF 1059 static int of_spi_register_master(struct spi_master *master) 1060 { 1061 int nb, i, *cs; 1062 struct device_node *np = master->dev.of_node; 1063 1064 if (!np) 1065 return 0; 1066 1067 nb = of_gpio_named_count(np, "cs-gpios"); 1068 master->num_chipselect = max(nb, (int)master->num_chipselect); 1069 1070 if (nb < 1) 1071 return 0; 1072 1073 cs = devm_kzalloc(&master->dev, 1074 sizeof(int) * master->num_chipselect, 1075 GFP_KERNEL); 1076 master->cs_gpios = cs; 1077 1078 if (!master->cs_gpios) 1079 return -ENOMEM; 1080 1081 for (i = 0; i < master->num_chipselect; i++) 1082 cs[i] = -EINVAL; 1083 1084 for (i = 0; i < nb; i++) 1085 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1086 1087 return 0; 1088 } 1089 #else 1090 static int of_spi_register_master(struct spi_master *master) 1091 { 1092 return 0; 1093 } 1094 #endif 1095 1096 /** 1097 * spi_register_master - register SPI master controller 1098 * @master: initialized master, originally from spi_alloc_master() 1099 * Context: can sleep 1100 * 1101 * SPI master controllers connect to their drivers using some non-SPI bus, 1102 * such as the platform bus. The final stage of probe() in that code 1103 * includes calling spi_register_master() to hook up to this SPI bus glue. 1104 * 1105 * SPI controllers use board specific (often SOC specific) bus numbers, 1106 * and board-specific addressing for SPI devices combines those numbers 1107 * with chip select numbers. Since SPI does not directly support dynamic 1108 * device identification, boards need configuration tables telling which 1109 * chip is at which address. 1110 * 1111 * This must be called from context that can sleep. It returns zero on 1112 * success, else a negative error code (dropping the master's refcount). 1113 * After a successful return, the caller is responsible for calling 1114 * spi_unregister_master(). 1115 */ 1116 int spi_register_master(struct spi_master *master) 1117 { 1118 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1119 struct device *dev = master->dev.parent; 1120 struct boardinfo *bi; 1121 int status = -ENODEV; 1122 int dynamic = 0; 1123 1124 if (!dev) 1125 return -ENODEV; 1126 1127 status = of_spi_register_master(master); 1128 if (status) 1129 return status; 1130 1131 /* even if it's just one always-selected device, there must 1132 * be at least one chipselect 1133 */ 1134 if (master->num_chipselect == 0) 1135 return -EINVAL; 1136 1137 if ((master->bus_num < 0) && master->dev.of_node) 1138 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1139 1140 /* convention: dynamically assigned bus IDs count down from the max */ 1141 if (master->bus_num < 0) { 1142 /* FIXME switch to an IDR based scheme, something like 1143 * I2C now uses, so we can't run out of "dynamic" IDs 1144 */ 1145 master->bus_num = atomic_dec_return(&dyn_bus_id); 1146 dynamic = 1; 1147 } 1148 1149 spin_lock_init(&master->bus_lock_spinlock); 1150 mutex_init(&master->bus_lock_mutex); 1151 master->bus_lock_flag = 0; 1152 1153 /* register the device, then userspace will see it. 1154 * registration fails if the bus ID is in use. 1155 */ 1156 dev_set_name(&master->dev, "spi%u", master->bus_num); 1157 status = device_add(&master->dev); 1158 if (status < 0) 1159 goto done; 1160 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1161 dynamic ? " (dynamic)" : ""); 1162 1163 /* If we're using a queued driver, start the queue */ 1164 if (master->transfer) 1165 dev_info(dev, "master is unqueued, this is deprecated\n"); 1166 else { 1167 status = spi_master_initialize_queue(master); 1168 if (status) { 1169 device_unregister(&master->dev); 1170 goto done; 1171 } 1172 } 1173 1174 mutex_lock(&board_lock); 1175 list_add_tail(&master->list, &spi_master_list); 1176 list_for_each_entry(bi, &board_list, list) 1177 spi_match_master_to_boardinfo(master, &bi->board_info); 1178 mutex_unlock(&board_lock); 1179 1180 /* Register devices from the device tree and ACPI */ 1181 of_register_spi_devices(master); 1182 acpi_register_spi_devices(master); 1183 done: 1184 return status; 1185 } 1186 EXPORT_SYMBOL_GPL(spi_register_master); 1187 1188 static int __unregister(struct device *dev, void *null) 1189 { 1190 spi_unregister_device(to_spi_device(dev)); 1191 return 0; 1192 } 1193 1194 /** 1195 * spi_unregister_master - unregister SPI master controller 1196 * @master: the master being unregistered 1197 * Context: can sleep 1198 * 1199 * This call is used only by SPI master controller drivers, which are the 1200 * only ones directly touching chip registers. 1201 * 1202 * This must be called from context that can sleep. 1203 */ 1204 void spi_unregister_master(struct spi_master *master) 1205 { 1206 int dummy; 1207 1208 if (master->queued) { 1209 if (spi_destroy_queue(master)) 1210 dev_err(&master->dev, "queue remove failed\n"); 1211 } 1212 1213 mutex_lock(&board_lock); 1214 list_del(&master->list); 1215 mutex_unlock(&board_lock); 1216 1217 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1218 device_unregister(&master->dev); 1219 } 1220 EXPORT_SYMBOL_GPL(spi_unregister_master); 1221 1222 int spi_master_suspend(struct spi_master *master) 1223 { 1224 int ret; 1225 1226 /* Basically no-ops for non-queued masters */ 1227 if (!master->queued) 1228 return 0; 1229 1230 ret = spi_stop_queue(master); 1231 if (ret) 1232 dev_err(&master->dev, "queue stop failed\n"); 1233 1234 return ret; 1235 } 1236 EXPORT_SYMBOL_GPL(spi_master_suspend); 1237 1238 int spi_master_resume(struct spi_master *master) 1239 { 1240 int ret; 1241 1242 if (!master->queued) 1243 return 0; 1244 1245 ret = spi_start_queue(master); 1246 if (ret) 1247 dev_err(&master->dev, "queue restart failed\n"); 1248 1249 return ret; 1250 } 1251 EXPORT_SYMBOL_GPL(spi_master_resume); 1252 1253 static int __spi_master_match(struct device *dev, const void *data) 1254 { 1255 struct spi_master *m; 1256 const u16 *bus_num = data; 1257 1258 m = container_of(dev, struct spi_master, dev); 1259 return m->bus_num == *bus_num; 1260 } 1261 1262 /** 1263 * spi_busnum_to_master - look up master associated with bus_num 1264 * @bus_num: the master's bus number 1265 * Context: can sleep 1266 * 1267 * This call may be used with devices that are registered after 1268 * arch init time. It returns a refcounted pointer to the relevant 1269 * spi_master (which the caller must release), or NULL if there is 1270 * no such master registered. 1271 */ 1272 struct spi_master *spi_busnum_to_master(u16 bus_num) 1273 { 1274 struct device *dev; 1275 struct spi_master *master = NULL; 1276 1277 dev = class_find_device(&spi_master_class, NULL, &bus_num, 1278 __spi_master_match); 1279 if (dev) 1280 master = container_of(dev, struct spi_master, dev); 1281 /* reference got in class_find_device */ 1282 return master; 1283 } 1284 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 1285 1286 1287 /*-------------------------------------------------------------------------*/ 1288 1289 /* Core methods for SPI master protocol drivers. Some of the 1290 * other core methods are currently defined as inline functions. 1291 */ 1292 1293 /** 1294 * spi_setup - setup SPI mode and clock rate 1295 * @spi: the device whose settings are being modified 1296 * Context: can sleep, and no requests are queued to the device 1297 * 1298 * SPI protocol drivers may need to update the transfer mode if the 1299 * device doesn't work with its default. They may likewise need 1300 * to update clock rates or word sizes from initial values. This function 1301 * changes those settings, and must be called from a context that can sleep. 1302 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 1303 * effect the next time the device is selected and data is transferred to 1304 * or from it. When this function returns, the spi device is deselected. 1305 * 1306 * Note that this call will fail if the protocol driver specifies an option 1307 * that the underlying controller or its driver does not support. For 1308 * example, not all hardware supports wire transfers using nine bit words, 1309 * LSB-first wire encoding, or active-high chipselects. 1310 */ 1311 int spi_setup(struct spi_device *spi) 1312 { 1313 unsigned bad_bits; 1314 int status = 0; 1315 1316 /* help drivers fail *cleanly* when they need options 1317 * that aren't supported with their current master 1318 */ 1319 bad_bits = spi->mode & ~spi->master->mode_bits; 1320 if (bad_bits) { 1321 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 1322 bad_bits); 1323 return -EINVAL; 1324 } 1325 1326 if (!spi->bits_per_word) 1327 spi->bits_per_word = 8; 1328 1329 if (spi->master->setup) 1330 status = spi->master->setup(spi); 1331 1332 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s" 1333 "%u bits/w, %u Hz max --> %d\n", 1334 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 1335 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 1336 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 1337 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 1338 (spi->mode & SPI_LOOP) ? "loopback, " : "", 1339 spi->bits_per_word, spi->max_speed_hz, 1340 status); 1341 1342 return status; 1343 } 1344 EXPORT_SYMBOL_GPL(spi_setup); 1345 1346 static int __spi_async(struct spi_device *spi, struct spi_message *message) 1347 { 1348 struct spi_master *master = spi->master; 1349 struct spi_transfer *xfer; 1350 1351 /* Half-duplex links include original MicroWire, and ones with 1352 * only one data pin like SPI_3WIRE (switches direction) or where 1353 * either MOSI or MISO is missing. They can also be caused by 1354 * software limitations. 1355 */ 1356 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 1357 || (spi->mode & SPI_3WIRE)) { 1358 unsigned flags = master->flags; 1359 1360 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1361 if (xfer->rx_buf && xfer->tx_buf) 1362 return -EINVAL; 1363 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 1364 return -EINVAL; 1365 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 1366 return -EINVAL; 1367 } 1368 } 1369 1370 /** 1371 * Set transfer bits_per_word and max speed as spi device default if 1372 * it is not set for this transfer. 1373 */ 1374 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1375 if (!xfer->bits_per_word) 1376 xfer->bits_per_word = spi->bits_per_word; 1377 if (!xfer->speed_hz) 1378 xfer->speed_hz = spi->max_speed_hz; 1379 if (master->bits_per_word_mask) { 1380 /* Only 32 bits fit in the mask */ 1381 if (xfer->bits_per_word > 32) 1382 return -EINVAL; 1383 if (!(master->bits_per_word_mask & 1384 BIT(xfer->bits_per_word - 1))) 1385 return -EINVAL; 1386 } 1387 } 1388 1389 message->spi = spi; 1390 message->status = -EINPROGRESS; 1391 return master->transfer(spi, message); 1392 } 1393 1394 /** 1395 * spi_async - asynchronous SPI transfer 1396 * @spi: device with which data will be exchanged 1397 * @message: describes the data transfers, including completion callback 1398 * Context: any (irqs may be blocked, etc) 1399 * 1400 * This call may be used in_irq and other contexts which can't sleep, 1401 * as well as from task contexts which can sleep. 1402 * 1403 * The completion callback is invoked in a context which can't sleep. 1404 * Before that invocation, the value of message->status is undefined. 1405 * When the callback is issued, message->status holds either zero (to 1406 * indicate complete success) or a negative error code. After that 1407 * callback returns, the driver which issued the transfer request may 1408 * deallocate the associated memory; it's no longer in use by any SPI 1409 * core or controller driver code. 1410 * 1411 * Note that although all messages to a spi_device are handled in 1412 * FIFO order, messages may go to different devices in other orders. 1413 * Some device might be higher priority, or have various "hard" access 1414 * time requirements, for example. 1415 * 1416 * On detection of any fault during the transfer, processing of 1417 * the entire message is aborted, and the device is deselected. 1418 * Until returning from the associated message completion callback, 1419 * no other spi_message queued to that device will be processed. 1420 * (This rule applies equally to all the synchronous transfer calls, 1421 * which are wrappers around this core asynchronous primitive.) 1422 */ 1423 int spi_async(struct spi_device *spi, struct spi_message *message) 1424 { 1425 struct spi_master *master = spi->master; 1426 int ret; 1427 unsigned long flags; 1428 1429 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1430 1431 if (master->bus_lock_flag) 1432 ret = -EBUSY; 1433 else 1434 ret = __spi_async(spi, message); 1435 1436 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1437 1438 return ret; 1439 } 1440 EXPORT_SYMBOL_GPL(spi_async); 1441 1442 /** 1443 * spi_async_locked - version of spi_async with exclusive bus usage 1444 * @spi: device with which data will be exchanged 1445 * @message: describes the data transfers, including completion callback 1446 * Context: any (irqs may be blocked, etc) 1447 * 1448 * This call may be used in_irq and other contexts which can't sleep, 1449 * as well as from task contexts which can sleep. 1450 * 1451 * The completion callback is invoked in a context which can't sleep. 1452 * Before that invocation, the value of message->status is undefined. 1453 * When the callback is issued, message->status holds either zero (to 1454 * indicate complete success) or a negative error code. After that 1455 * callback returns, the driver which issued the transfer request may 1456 * deallocate the associated memory; it's no longer in use by any SPI 1457 * core or controller driver code. 1458 * 1459 * Note that although all messages to a spi_device are handled in 1460 * FIFO order, messages may go to different devices in other orders. 1461 * Some device might be higher priority, or have various "hard" access 1462 * time requirements, for example. 1463 * 1464 * On detection of any fault during the transfer, processing of 1465 * the entire message is aborted, and the device is deselected. 1466 * Until returning from the associated message completion callback, 1467 * no other spi_message queued to that device will be processed. 1468 * (This rule applies equally to all the synchronous transfer calls, 1469 * which are wrappers around this core asynchronous primitive.) 1470 */ 1471 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 1472 { 1473 struct spi_master *master = spi->master; 1474 int ret; 1475 unsigned long flags; 1476 1477 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1478 1479 ret = __spi_async(spi, message); 1480 1481 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1482 1483 return ret; 1484 1485 } 1486 EXPORT_SYMBOL_GPL(spi_async_locked); 1487 1488 1489 /*-------------------------------------------------------------------------*/ 1490 1491 /* Utility methods for SPI master protocol drivers, layered on 1492 * top of the core. Some other utility methods are defined as 1493 * inline functions. 1494 */ 1495 1496 static void spi_complete(void *arg) 1497 { 1498 complete(arg); 1499 } 1500 1501 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 1502 int bus_locked) 1503 { 1504 DECLARE_COMPLETION_ONSTACK(done); 1505 int status; 1506 struct spi_master *master = spi->master; 1507 1508 message->complete = spi_complete; 1509 message->context = &done; 1510 1511 if (!bus_locked) 1512 mutex_lock(&master->bus_lock_mutex); 1513 1514 status = spi_async_locked(spi, message); 1515 1516 if (!bus_locked) 1517 mutex_unlock(&master->bus_lock_mutex); 1518 1519 if (status == 0) { 1520 wait_for_completion(&done); 1521 status = message->status; 1522 } 1523 message->context = NULL; 1524 return status; 1525 } 1526 1527 /** 1528 * spi_sync - blocking/synchronous SPI data transfers 1529 * @spi: device with which data will be exchanged 1530 * @message: describes the data transfers 1531 * Context: can sleep 1532 * 1533 * This call may only be used from a context that may sleep. The sleep 1534 * is non-interruptible, and has no timeout. Low-overhead controller 1535 * drivers may DMA directly into and out of the message buffers. 1536 * 1537 * Note that the SPI device's chip select is active during the message, 1538 * and then is normally disabled between messages. Drivers for some 1539 * frequently-used devices may want to minimize costs of selecting a chip, 1540 * by leaving it selected in anticipation that the next message will go 1541 * to the same chip. (That may increase power usage.) 1542 * 1543 * Also, the caller is guaranteeing that the memory associated with the 1544 * message will not be freed before this call returns. 1545 * 1546 * It returns zero on success, else a negative error code. 1547 */ 1548 int spi_sync(struct spi_device *spi, struct spi_message *message) 1549 { 1550 return __spi_sync(spi, message, 0); 1551 } 1552 EXPORT_SYMBOL_GPL(spi_sync); 1553 1554 /** 1555 * spi_sync_locked - version of spi_sync with exclusive bus usage 1556 * @spi: device with which data will be exchanged 1557 * @message: describes the data transfers 1558 * Context: can sleep 1559 * 1560 * This call may only be used from a context that may sleep. The sleep 1561 * is non-interruptible, and has no timeout. Low-overhead controller 1562 * drivers may DMA directly into and out of the message buffers. 1563 * 1564 * This call should be used by drivers that require exclusive access to the 1565 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 1566 * be released by a spi_bus_unlock call when the exclusive access is over. 1567 * 1568 * It returns zero on success, else a negative error code. 1569 */ 1570 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 1571 { 1572 return __spi_sync(spi, message, 1); 1573 } 1574 EXPORT_SYMBOL_GPL(spi_sync_locked); 1575 1576 /** 1577 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 1578 * @master: SPI bus master that should be locked for exclusive bus access 1579 * Context: can sleep 1580 * 1581 * This call may only be used from a context that may sleep. The sleep 1582 * is non-interruptible, and has no timeout. 1583 * 1584 * This call should be used by drivers that require exclusive access to the 1585 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 1586 * exclusive access is over. Data transfer must be done by spi_sync_locked 1587 * and spi_async_locked calls when the SPI bus lock is held. 1588 * 1589 * It returns zero on success, else a negative error code. 1590 */ 1591 int spi_bus_lock(struct spi_master *master) 1592 { 1593 unsigned long flags; 1594 1595 mutex_lock(&master->bus_lock_mutex); 1596 1597 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1598 master->bus_lock_flag = 1; 1599 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1600 1601 /* mutex remains locked until spi_bus_unlock is called */ 1602 1603 return 0; 1604 } 1605 EXPORT_SYMBOL_GPL(spi_bus_lock); 1606 1607 /** 1608 * spi_bus_unlock - release the lock for exclusive SPI bus usage 1609 * @master: SPI bus master that was locked for exclusive bus access 1610 * Context: can sleep 1611 * 1612 * This call may only be used from a context that may sleep. The sleep 1613 * is non-interruptible, and has no timeout. 1614 * 1615 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 1616 * call. 1617 * 1618 * It returns zero on success, else a negative error code. 1619 */ 1620 int spi_bus_unlock(struct spi_master *master) 1621 { 1622 master->bus_lock_flag = 0; 1623 1624 mutex_unlock(&master->bus_lock_mutex); 1625 1626 return 0; 1627 } 1628 EXPORT_SYMBOL_GPL(spi_bus_unlock); 1629 1630 /* portable code must never pass more than 32 bytes */ 1631 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 1632 1633 static u8 *buf; 1634 1635 /** 1636 * spi_write_then_read - SPI synchronous write followed by read 1637 * @spi: device with which data will be exchanged 1638 * @txbuf: data to be written (need not be dma-safe) 1639 * @n_tx: size of txbuf, in bytes 1640 * @rxbuf: buffer into which data will be read (need not be dma-safe) 1641 * @n_rx: size of rxbuf, in bytes 1642 * Context: can sleep 1643 * 1644 * This performs a half duplex MicroWire style transaction with the 1645 * device, sending txbuf and then reading rxbuf. The return value 1646 * is zero for success, else a negative errno status code. 1647 * This call may only be used from a context that may sleep. 1648 * 1649 * Parameters to this routine are always copied using a small buffer; 1650 * portable code should never use this for more than 32 bytes. 1651 * Performance-sensitive or bulk transfer code should instead use 1652 * spi_{async,sync}() calls with dma-safe buffers. 1653 */ 1654 int spi_write_then_read(struct spi_device *spi, 1655 const void *txbuf, unsigned n_tx, 1656 void *rxbuf, unsigned n_rx) 1657 { 1658 static DEFINE_MUTEX(lock); 1659 1660 int status; 1661 struct spi_message message; 1662 struct spi_transfer x[2]; 1663 u8 *local_buf; 1664 1665 /* Use preallocated DMA-safe buffer if we can. We can't avoid 1666 * copying here, (as a pure convenience thing), but we can 1667 * keep heap costs out of the hot path unless someone else is 1668 * using the pre-allocated buffer or the transfer is too large. 1669 */ 1670 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 1671 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 1672 GFP_KERNEL | GFP_DMA); 1673 if (!local_buf) 1674 return -ENOMEM; 1675 } else { 1676 local_buf = buf; 1677 } 1678 1679 spi_message_init(&message); 1680 memset(x, 0, sizeof x); 1681 if (n_tx) { 1682 x[0].len = n_tx; 1683 spi_message_add_tail(&x[0], &message); 1684 } 1685 if (n_rx) { 1686 x[1].len = n_rx; 1687 spi_message_add_tail(&x[1], &message); 1688 } 1689 1690 memcpy(local_buf, txbuf, n_tx); 1691 x[0].tx_buf = local_buf; 1692 x[1].rx_buf = local_buf + n_tx; 1693 1694 /* do the i/o */ 1695 status = spi_sync(spi, &message); 1696 if (status == 0) 1697 memcpy(rxbuf, x[1].rx_buf, n_rx); 1698 1699 if (x[0].tx_buf == buf) 1700 mutex_unlock(&lock); 1701 else 1702 kfree(local_buf); 1703 1704 return status; 1705 } 1706 EXPORT_SYMBOL_GPL(spi_write_then_read); 1707 1708 /*-------------------------------------------------------------------------*/ 1709 1710 static int __init spi_init(void) 1711 { 1712 int status; 1713 1714 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 1715 if (!buf) { 1716 status = -ENOMEM; 1717 goto err0; 1718 } 1719 1720 status = bus_register(&spi_bus_type); 1721 if (status < 0) 1722 goto err1; 1723 1724 status = class_register(&spi_master_class); 1725 if (status < 0) 1726 goto err2; 1727 return 0; 1728 1729 err2: 1730 bus_unregister(&spi_bus_type); 1731 err1: 1732 kfree(buf); 1733 buf = NULL; 1734 err0: 1735 return status; 1736 } 1737 1738 /* board_info is normally registered in arch_initcall(), 1739 * but even essential drivers wait till later 1740 * 1741 * REVISIT only boardinfo really needs static linking. the rest (device and 1742 * driver registration) _could_ be dynamically linked (modular) ... costs 1743 * include needing to have boardinfo data structures be much more public. 1744 */ 1745 postcore_initcall(spi_init); 1746 1747