1 /* 2 * spi.c - SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/cache.h> 25 #include <linux/mutex.h> 26 #include <linux/spi/spi.h> 27 28 29 /* SPI bustype and spi_master class are registered after board init code 30 * provides the SPI device tables, ensuring that both are present by the 31 * time controller driver registration causes spi_devices to "enumerate". 32 */ 33 static void spidev_release(struct device *dev) 34 { 35 struct spi_device *spi = to_spi_device(dev); 36 37 /* spi masters may cleanup for released devices */ 38 if (spi->master->cleanup) 39 spi->master->cleanup(spi); 40 41 spi_master_put(spi->master); 42 kfree(dev); 43 } 44 45 static ssize_t 46 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 47 { 48 const struct spi_device *spi = to_spi_device(dev); 49 50 return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias); 51 } 52 53 static struct device_attribute spi_dev_attrs[] = { 54 __ATTR_RO(modalias), 55 __ATTR_NULL, 56 }; 57 58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 59 * and the sysfs version makes coldplug work too. 60 */ 61 62 static int spi_match_device(struct device *dev, struct device_driver *drv) 63 { 64 const struct spi_device *spi = to_spi_device(dev); 65 66 return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0; 67 } 68 69 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 70 { 71 const struct spi_device *spi = to_spi_device(dev); 72 73 add_uevent_var(env, "MODALIAS=%s", spi->modalias); 74 return 0; 75 } 76 77 #ifdef CONFIG_PM 78 79 static int spi_suspend(struct device *dev, pm_message_t message) 80 { 81 int value = 0; 82 struct spi_driver *drv = to_spi_driver(dev->driver); 83 84 /* suspend will stop irqs and dma; no more i/o */ 85 if (drv) { 86 if (drv->suspend) 87 value = drv->suspend(to_spi_device(dev), message); 88 else 89 dev_dbg(dev, "... can't suspend\n"); 90 } 91 return value; 92 } 93 94 static int spi_resume(struct device *dev) 95 { 96 int value = 0; 97 struct spi_driver *drv = to_spi_driver(dev->driver); 98 99 /* resume may restart the i/o queue */ 100 if (drv) { 101 if (drv->resume) 102 value = drv->resume(to_spi_device(dev)); 103 else 104 dev_dbg(dev, "... can't resume\n"); 105 } 106 return value; 107 } 108 109 #else 110 #define spi_suspend NULL 111 #define spi_resume NULL 112 #endif 113 114 struct bus_type spi_bus_type = { 115 .name = "spi", 116 .dev_attrs = spi_dev_attrs, 117 .match = spi_match_device, 118 .uevent = spi_uevent, 119 .suspend = spi_suspend, 120 .resume = spi_resume, 121 }; 122 EXPORT_SYMBOL_GPL(spi_bus_type); 123 124 125 static int spi_drv_probe(struct device *dev) 126 { 127 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 128 129 return sdrv->probe(to_spi_device(dev)); 130 } 131 132 static int spi_drv_remove(struct device *dev) 133 { 134 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 135 136 return sdrv->remove(to_spi_device(dev)); 137 } 138 139 static void spi_drv_shutdown(struct device *dev) 140 { 141 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 142 143 sdrv->shutdown(to_spi_device(dev)); 144 } 145 146 /** 147 * spi_register_driver - register a SPI driver 148 * @sdrv: the driver to register 149 * Context: can sleep 150 */ 151 int spi_register_driver(struct spi_driver *sdrv) 152 { 153 sdrv->driver.bus = &spi_bus_type; 154 if (sdrv->probe) 155 sdrv->driver.probe = spi_drv_probe; 156 if (sdrv->remove) 157 sdrv->driver.remove = spi_drv_remove; 158 if (sdrv->shutdown) 159 sdrv->driver.shutdown = spi_drv_shutdown; 160 return driver_register(&sdrv->driver); 161 } 162 EXPORT_SYMBOL_GPL(spi_register_driver); 163 164 /*-------------------------------------------------------------------------*/ 165 166 /* SPI devices should normally not be created by SPI device drivers; that 167 * would make them board-specific. Similarly with SPI master drivers. 168 * Device registration normally goes into like arch/.../mach.../board-YYY.c 169 * with other readonly (flashable) information about mainboard devices. 170 */ 171 172 struct boardinfo { 173 struct list_head list; 174 unsigned n_board_info; 175 struct spi_board_info board_info[0]; 176 }; 177 178 static LIST_HEAD(board_list); 179 static DEFINE_MUTEX(board_lock); 180 181 /** 182 * spi_alloc_device - Allocate a new SPI device 183 * @master: Controller to which device is connected 184 * Context: can sleep 185 * 186 * Allows a driver to allocate and initialize a spi_device without 187 * registering it immediately. This allows a driver to directly 188 * fill the spi_device with device parameters before calling 189 * spi_add_device() on it. 190 * 191 * Caller is responsible to call spi_add_device() on the returned 192 * spi_device structure to add it to the SPI master. If the caller 193 * needs to discard the spi_device without adding it, then it should 194 * call spi_dev_put() on it. 195 * 196 * Returns a pointer to the new device, or NULL. 197 */ 198 struct spi_device *spi_alloc_device(struct spi_master *master) 199 { 200 struct spi_device *spi; 201 struct device *dev = master->dev.parent; 202 203 if (!spi_master_get(master)) 204 return NULL; 205 206 spi = kzalloc(sizeof *spi, GFP_KERNEL); 207 if (!spi) { 208 dev_err(dev, "cannot alloc spi_device\n"); 209 spi_master_put(master); 210 return NULL; 211 } 212 213 spi->master = master; 214 spi->dev.parent = dev; 215 spi->dev.bus = &spi_bus_type; 216 spi->dev.release = spidev_release; 217 device_initialize(&spi->dev); 218 return spi; 219 } 220 EXPORT_SYMBOL_GPL(spi_alloc_device); 221 222 /** 223 * spi_add_device - Add spi_device allocated with spi_alloc_device 224 * @spi: spi_device to register 225 * 226 * Companion function to spi_alloc_device. Devices allocated with 227 * spi_alloc_device can be added onto the spi bus with this function. 228 * 229 * Returns 0 on success; non-zero on failure 230 */ 231 int spi_add_device(struct spi_device *spi) 232 { 233 struct device *dev = spi->master->dev.parent; 234 int status; 235 236 /* Chipselects are numbered 0..max; validate. */ 237 if (spi->chip_select >= spi->master->num_chipselect) { 238 dev_err(dev, "cs%d >= max %d\n", 239 spi->chip_select, 240 spi->master->num_chipselect); 241 return -EINVAL; 242 } 243 244 /* Set the bus ID string */ 245 snprintf(spi->dev.bus_id, sizeof spi->dev.bus_id, 246 "%s.%u", spi->master->dev.bus_id, 247 spi->chip_select); 248 249 /* drivers may modify this initial i/o setup */ 250 status = spi->master->setup(spi); 251 if (status < 0) { 252 dev_err(dev, "can't %s %s, status %d\n", 253 "setup", spi->dev.bus_id, status); 254 return status; 255 } 256 257 /* driver core catches callers that misbehave by defining 258 * devices that already exist. 259 */ 260 status = device_add(&spi->dev); 261 if (status < 0) { 262 dev_err(dev, "can't %s %s, status %d\n", 263 "add", spi->dev.bus_id, status); 264 return status; 265 } 266 267 dev_dbg(dev, "registered child %s\n", spi->dev.bus_id); 268 return 0; 269 } 270 EXPORT_SYMBOL_GPL(spi_add_device); 271 272 /** 273 * spi_new_device - instantiate one new SPI device 274 * @master: Controller to which device is connected 275 * @chip: Describes the SPI device 276 * Context: can sleep 277 * 278 * On typical mainboards, this is purely internal; and it's not needed 279 * after board init creates the hard-wired devices. Some development 280 * platforms may not be able to use spi_register_board_info though, and 281 * this is exported so that for example a USB or parport based adapter 282 * driver could add devices (which it would learn about out-of-band). 283 * 284 * Returns the new device, or NULL. 285 */ 286 struct spi_device *spi_new_device(struct spi_master *master, 287 struct spi_board_info *chip) 288 { 289 struct spi_device *proxy; 290 int status; 291 292 /* NOTE: caller did any chip->bus_num checks necessary. 293 * 294 * Also, unless we change the return value convention to use 295 * error-or-pointer (not NULL-or-pointer), troubleshootability 296 * suggests syslogged diagnostics are best here (ugh). 297 */ 298 299 proxy = spi_alloc_device(master); 300 if (!proxy) 301 return NULL; 302 303 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 304 305 proxy->chip_select = chip->chip_select; 306 proxy->max_speed_hz = chip->max_speed_hz; 307 proxy->mode = chip->mode; 308 proxy->irq = chip->irq; 309 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 310 proxy->dev.platform_data = (void *) chip->platform_data; 311 proxy->controller_data = chip->controller_data; 312 proxy->controller_state = NULL; 313 314 status = spi_add_device(proxy); 315 if (status < 0) { 316 spi_dev_put(proxy); 317 return NULL; 318 } 319 320 return proxy; 321 } 322 EXPORT_SYMBOL_GPL(spi_new_device); 323 324 /** 325 * spi_register_board_info - register SPI devices for a given board 326 * @info: array of chip descriptors 327 * @n: how many descriptors are provided 328 * Context: can sleep 329 * 330 * Board-specific early init code calls this (probably during arch_initcall) 331 * with segments of the SPI device table. Any device nodes are created later, 332 * after the relevant parent SPI controller (bus_num) is defined. We keep 333 * this table of devices forever, so that reloading a controller driver will 334 * not make Linux forget about these hard-wired devices. 335 * 336 * Other code can also call this, e.g. a particular add-on board might provide 337 * SPI devices through its expansion connector, so code initializing that board 338 * would naturally declare its SPI devices. 339 * 340 * The board info passed can safely be __initdata ... but be careful of 341 * any embedded pointers (platform_data, etc), they're copied as-is. 342 */ 343 int __init 344 spi_register_board_info(struct spi_board_info const *info, unsigned n) 345 { 346 struct boardinfo *bi; 347 348 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL); 349 if (!bi) 350 return -ENOMEM; 351 bi->n_board_info = n; 352 memcpy(bi->board_info, info, n * sizeof *info); 353 354 mutex_lock(&board_lock); 355 list_add_tail(&bi->list, &board_list); 356 mutex_unlock(&board_lock); 357 return 0; 358 } 359 360 /* FIXME someone should add support for a __setup("spi", ...) that 361 * creates board info from kernel command lines 362 */ 363 364 static void scan_boardinfo(struct spi_master *master) 365 { 366 struct boardinfo *bi; 367 368 mutex_lock(&board_lock); 369 list_for_each_entry(bi, &board_list, list) { 370 struct spi_board_info *chip = bi->board_info; 371 unsigned n; 372 373 for (n = bi->n_board_info; n > 0; n--, chip++) { 374 if (chip->bus_num != master->bus_num) 375 continue; 376 /* NOTE: this relies on spi_new_device to 377 * issue diagnostics when given bogus inputs 378 */ 379 (void) spi_new_device(master, chip); 380 } 381 } 382 mutex_unlock(&board_lock); 383 } 384 385 /*-------------------------------------------------------------------------*/ 386 387 static void spi_master_release(struct device *dev) 388 { 389 struct spi_master *master; 390 391 master = container_of(dev, struct spi_master, dev); 392 kfree(master); 393 } 394 395 static struct class spi_master_class = { 396 .name = "spi_master", 397 .owner = THIS_MODULE, 398 .dev_release = spi_master_release, 399 }; 400 401 402 /** 403 * spi_alloc_master - allocate SPI master controller 404 * @dev: the controller, possibly using the platform_bus 405 * @size: how much zeroed driver-private data to allocate; the pointer to this 406 * memory is in the driver_data field of the returned device, 407 * accessible with spi_master_get_devdata(). 408 * Context: can sleep 409 * 410 * This call is used only by SPI master controller drivers, which are the 411 * only ones directly touching chip registers. It's how they allocate 412 * an spi_master structure, prior to calling spi_register_master(). 413 * 414 * This must be called from context that can sleep. It returns the SPI 415 * master structure on success, else NULL. 416 * 417 * The caller is responsible for assigning the bus number and initializing 418 * the master's methods before calling spi_register_master(); and (after errors 419 * adding the device) calling spi_master_put() to prevent a memory leak. 420 */ 421 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 422 { 423 struct spi_master *master; 424 425 if (!dev) 426 return NULL; 427 428 master = kzalloc(size + sizeof *master, GFP_KERNEL); 429 if (!master) 430 return NULL; 431 432 device_initialize(&master->dev); 433 master->dev.class = &spi_master_class; 434 master->dev.parent = get_device(dev); 435 spi_master_set_devdata(master, &master[1]); 436 437 return master; 438 } 439 EXPORT_SYMBOL_GPL(spi_alloc_master); 440 441 /** 442 * spi_register_master - register SPI master controller 443 * @master: initialized master, originally from spi_alloc_master() 444 * Context: can sleep 445 * 446 * SPI master controllers connect to their drivers using some non-SPI bus, 447 * such as the platform bus. The final stage of probe() in that code 448 * includes calling spi_register_master() to hook up to this SPI bus glue. 449 * 450 * SPI controllers use board specific (often SOC specific) bus numbers, 451 * and board-specific addressing for SPI devices combines those numbers 452 * with chip select numbers. Since SPI does not directly support dynamic 453 * device identification, boards need configuration tables telling which 454 * chip is at which address. 455 * 456 * This must be called from context that can sleep. It returns zero on 457 * success, else a negative error code (dropping the master's refcount). 458 * After a successful return, the caller is responsible for calling 459 * spi_unregister_master(). 460 */ 461 int spi_register_master(struct spi_master *master) 462 { 463 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 464 struct device *dev = master->dev.parent; 465 int status = -ENODEV; 466 int dynamic = 0; 467 468 if (!dev) 469 return -ENODEV; 470 471 /* even if it's just one always-selected device, there must 472 * be at least one chipselect 473 */ 474 if (master->num_chipselect == 0) 475 return -EINVAL; 476 477 /* convention: dynamically assigned bus IDs count down from the max */ 478 if (master->bus_num < 0) { 479 /* FIXME switch to an IDR based scheme, something like 480 * I2C now uses, so we can't run out of "dynamic" IDs 481 */ 482 master->bus_num = atomic_dec_return(&dyn_bus_id); 483 dynamic = 1; 484 } 485 486 /* register the device, then userspace will see it. 487 * registration fails if the bus ID is in use. 488 */ 489 snprintf(master->dev.bus_id, sizeof master->dev.bus_id, 490 "spi%u", master->bus_num); 491 status = device_add(&master->dev); 492 if (status < 0) 493 goto done; 494 dev_dbg(dev, "registered master %s%s\n", master->dev.bus_id, 495 dynamic ? " (dynamic)" : ""); 496 497 /* populate children from any spi device tables */ 498 scan_boardinfo(master); 499 status = 0; 500 done: 501 return status; 502 } 503 EXPORT_SYMBOL_GPL(spi_register_master); 504 505 506 static int __unregister(struct device *dev, void *master_dev) 507 { 508 /* note: before about 2.6.14-rc1 this would corrupt memory: */ 509 if (dev != master_dev) 510 spi_unregister_device(to_spi_device(dev)); 511 return 0; 512 } 513 514 /** 515 * spi_unregister_master - unregister SPI master controller 516 * @master: the master being unregistered 517 * Context: can sleep 518 * 519 * This call is used only by SPI master controller drivers, which are the 520 * only ones directly touching chip registers. 521 * 522 * This must be called from context that can sleep. 523 */ 524 void spi_unregister_master(struct spi_master *master) 525 { 526 int dummy; 527 528 dummy = device_for_each_child(master->dev.parent, &master->dev, 529 __unregister); 530 device_unregister(&master->dev); 531 } 532 EXPORT_SYMBOL_GPL(spi_unregister_master); 533 534 static int __spi_master_match(struct device *dev, void *data) 535 { 536 struct spi_master *m; 537 u16 *bus_num = data; 538 539 m = container_of(dev, struct spi_master, dev); 540 return m->bus_num == *bus_num; 541 } 542 543 /** 544 * spi_busnum_to_master - look up master associated with bus_num 545 * @bus_num: the master's bus number 546 * Context: can sleep 547 * 548 * This call may be used with devices that are registered after 549 * arch init time. It returns a refcounted pointer to the relevant 550 * spi_master (which the caller must release), or NULL if there is 551 * no such master registered. 552 */ 553 struct spi_master *spi_busnum_to_master(u16 bus_num) 554 { 555 struct device *dev; 556 struct spi_master *master = NULL; 557 558 dev = class_find_device(&spi_master_class, NULL, &bus_num, 559 __spi_master_match); 560 if (dev) 561 master = container_of(dev, struct spi_master, dev); 562 /* reference got in class_find_device */ 563 return master; 564 } 565 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 566 567 568 /*-------------------------------------------------------------------------*/ 569 570 static void spi_complete(void *arg) 571 { 572 complete(arg); 573 } 574 575 /** 576 * spi_sync - blocking/synchronous SPI data transfers 577 * @spi: device with which data will be exchanged 578 * @message: describes the data transfers 579 * Context: can sleep 580 * 581 * This call may only be used from a context that may sleep. The sleep 582 * is non-interruptible, and has no timeout. Low-overhead controller 583 * drivers may DMA directly into and out of the message buffers. 584 * 585 * Note that the SPI device's chip select is active during the message, 586 * and then is normally disabled between messages. Drivers for some 587 * frequently-used devices may want to minimize costs of selecting a chip, 588 * by leaving it selected in anticipation that the next message will go 589 * to the same chip. (That may increase power usage.) 590 * 591 * Also, the caller is guaranteeing that the memory associated with the 592 * message will not be freed before this call returns. 593 * 594 * It returns zero on success, else a negative error code. 595 */ 596 int spi_sync(struct spi_device *spi, struct spi_message *message) 597 { 598 DECLARE_COMPLETION_ONSTACK(done); 599 int status; 600 601 message->complete = spi_complete; 602 message->context = &done; 603 status = spi_async(spi, message); 604 if (status == 0) { 605 wait_for_completion(&done); 606 status = message->status; 607 } 608 message->context = NULL; 609 return status; 610 } 611 EXPORT_SYMBOL_GPL(spi_sync); 612 613 /* portable code must never pass more than 32 bytes */ 614 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 615 616 static u8 *buf; 617 618 /** 619 * spi_write_then_read - SPI synchronous write followed by read 620 * @spi: device with which data will be exchanged 621 * @txbuf: data to be written (need not be dma-safe) 622 * @n_tx: size of txbuf, in bytes 623 * @rxbuf: buffer into which data will be read 624 * @n_rx: size of rxbuf, in bytes (need not be dma-safe) 625 * Context: can sleep 626 * 627 * This performs a half duplex MicroWire style transaction with the 628 * device, sending txbuf and then reading rxbuf. The return value 629 * is zero for success, else a negative errno status code. 630 * This call may only be used from a context that may sleep. 631 * 632 * Parameters to this routine are always copied using a small buffer; 633 * portable code should never use this for more than 32 bytes. 634 * Performance-sensitive or bulk transfer code should instead use 635 * spi_{async,sync}() calls with dma-safe buffers. 636 */ 637 int spi_write_then_read(struct spi_device *spi, 638 const u8 *txbuf, unsigned n_tx, 639 u8 *rxbuf, unsigned n_rx) 640 { 641 static DEFINE_MUTEX(lock); 642 643 int status; 644 struct spi_message message; 645 struct spi_transfer x[2]; 646 u8 *local_buf; 647 648 /* Use preallocated DMA-safe buffer. We can't avoid copying here, 649 * (as a pure convenience thing), but we can keep heap costs 650 * out of the hot path ... 651 */ 652 if ((n_tx + n_rx) > SPI_BUFSIZ) 653 return -EINVAL; 654 655 spi_message_init(&message); 656 memset(x, 0, sizeof x); 657 if (n_tx) { 658 x[0].len = n_tx; 659 spi_message_add_tail(&x[0], &message); 660 } 661 if (n_rx) { 662 x[1].len = n_rx; 663 spi_message_add_tail(&x[1], &message); 664 } 665 666 /* ... unless someone else is using the pre-allocated buffer */ 667 if (!mutex_trylock(&lock)) { 668 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 669 if (!local_buf) 670 return -ENOMEM; 671 } else 672 local_buf = buf; 673 674 memcpy(local_buf, txbuf, n_tx); 675 x[0].tx_buf = local_buf; 676 x[1].rx_buf = local_buf + n_tx; 677 678 /* do the i/o */ 679 status = spi_sync(spi, &message); 680 if (status == 0) 681 memcpy(rxbuf, x[1].rx_buf, n_rx); 682 683 if (x[0].tx_buf == buf) 684 mutex_unlock(&lock); 685 else 686 kfree(local_buf); 687 688 return status; 689 } 690 EXPORT_SYMBOL_GPL(spi_write_then_read); 691 692 /*-------------------------------------------------------------------------*/ 693 694 static int __init spi_init(void) 695 { 696 int status; 697 698 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 699 if (!buf) { 700 status = -ENOMEM; 701 goto err0; 702 } 703 704 status = bus_register(&spi_bus_type); 705 if (status < 0) 706 goto err1; 707 708 status = class_register(&spi_master_class); 709 if (status < 0) 710 goto err2; 711 return 0; 712 713 err2: 714 bus_unregister(&spi_bus_type); 715 err1: 716 kfree(buf); 717 buf = NULL; 718 err0: 719 return status; 720 } 721 722 /* board_info is normally registered in arch_initcall(), 723 * but even essential drivers wait till later 724 * 725 * REVISIT only boardinfo really needs static linking. the rest (device and 726 * driver registration) _could_ be dynamically linked (modular) ... costs 727 * include needing to have boardinfo data structures be much more public. 728 */ 729 subsys_initcall(spi_init); 730 731