xref: /openbmc/linux/drivers/spi/spi.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/spi/spi.h>
27 
28 
29 /* SPI bustype and spi_master class are registered after board init code
30  * provides the SPI device tables, ensuring that both are present by the
31  * time controller driver registration causes spi_devices to "enumerate".
32  */
33 static void spidev_release(struct device *dev)
34 {
35 	struct spi_device	*spi = to_spi_device(dev);
36 
37 	/* spi masters may cleanup for released devices */
38 	if (spi->master->cleanup)
39 		spi->master->cleanup(spi);
40 
41 	spi_master_put(spi->master);
42 	kfree(dev);
43 }
44 
45 static ssize_t
46 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
47 {
48 	const struct spi_device	*spi = to_spi_device(dev);
49 
50 	return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
51 }
52 
53 static struct device_attribute spi_dev_attrs[] = {
54 	__ATTR_RO(modalias),
55 	__ATTR_NULL,
56 };
57 
58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
59  * and the sysfs version makes coldplug work too.
60  */
61 
62 static int spi_match_device(struct device *dev, struct device_driver *drv)
63 {
64 	const struct spi_device	*spi = to_spi_device(dev);
65 
66 	return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
67 }
68 
69 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
70 {
71 	const struct spi_device		*spi = to_spi_device(dev);
72 
73 	add_uevent_var(env, "MODALIAS=%s", spi->modalias);
74 	return 0;
75 }
76 
77 #ifdef	CONFIG_PM
78 
79 static int spi_suspend(struct device *dev, pm_message_t message)
80 {
81 	int			value = 0;
82 	struct spi_driver	*drv = to_spi_driver(dev->driver);
83 
84 	/* suspend will stop irqs and dma; no more i/o */
85 	if (drv) {
86 		if (drv->suspend)
87 			value = drv->suspend(to_spi_device(dev), message);
88 		else
89 			dev_dbg(dev, "... can't suspend\n");
90 	}
91 	return value;
92 }
93 
94 static int spi_resume(struct device *dev)
95 {
96 	int			value = 0;
97 	struct spi_driver	*drv = to_spi_driver(dev->driver);
98 
99 	/* resume may restart the i/o queue */
100 	if (drv) {
101 		if (drv->resume)
102 			value = drv->resume(to_spi_device(dev));
103 		else
104 			dev_dbg(dev, "... can't resume\n");
105 	}
106 	return value;
107 }
108 
109 #else
110 #define spi_suspend	NULL
111 #define spi_resume	NULL
112 #endif
113 
114 struct bus_type spi_bus_type = {
115 	.name		= "spi",
116 	.dev_attrs	= spi_dev_attrs,
117 	.match		= spi_match_device,
118 	.uevent		= spi_uevent,
119 	.suspend	= spi_suspend,
120 	.resume		= spi_resume,
121 };
122 EXPORT_SYMBOL_GPL(spi_bus_type);
123 
124 
125 static int spi_drv_probe(struct device *dev)
126 {
127 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
128 
129 	return sdrv->probe(to_spi_device(dev));
130 }
131 
132 static int spi_drv_remove(struct device *dev)
133 {
134 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
135 
136 	return sdrv->remove(to_spi_device(dev));
137 }
138 
139 static void spi_drv_shutdown(struct device *dev)
140 {
141 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
142 
143 	sdrv->shutdown(to_spi_device(dev));
144 }
145 
146 /**
147  * spi_register_driver - register a SPI driver
148  * @sdrv: the driver to register
149  * Context: can sleep
150  */
151 int spi_register_driver(struct spi_driver *sdrv)
152 {
153 	sdrv->driver.bus = &spi_bus_type;
154 	if (sdrv->probe)
155 		sdrv->driver.probe = spi_drv_probe;
156 	if (sdrv->remove)
157 		sdrv->driver.remove = spi_drv_remove;
158 	if (sdrv->shutdown)
159 		sdrv->driver.shutdown = spi_drv_shutdown;
160 	return driver_register(&sdrv->driver);
161 }
162 EXPORT_SYMBOL_GPL(spi_register_driver);
163 
164 /*-------------------------------------------------------------------------*/
165 
166 /* SPI devices should normally not be created by SPI device drivers; that
167  * would make them board-specific.  Similarly with SPI master drivers.
168  * Device registration normally goes into like arch/.../mach.../board-YYY.c
169  * with other readonly (flashable) information about mainboard devices.
170  */
171 
172 struct boardinfo {
173 	struct list_head	list;
174 	unsigned		n_board_info;
175 	struct spi_board_info	board_info[0];
176 };
177 
178 static LIST_HEAD(board_list);
179 static DEFINE_MUTEX(board_lock);
180 
181 /**
182  * spi_alloc_device - Allocate a new SPI device
183  * @master: Controller to which device is connected
184  * Context: can sleep
185  *
186  * Allows a driver to allocate and initialize a spi_device without
187  * registering it immediately.  This allows a driver to directly
188  * fill the spi_device with device parameters before calling
189  * spi_add_device() on it.
190  *
191  * Caller is responsible to call spi_add_device() on the returned
192  * spi_device structure to add it to the SPI master.  If the caller
193  * needs to discard the spi_device without adding it, then it should
194  * call spi_dev_put() on it.
195  *
196  * Returns a pointer to the new device, or NULL.
197  */
198 struct spi_device *spi_alloc_device(struct spi_master *master)
199 {
200 	struct spi_device	*spi;
201 	struct device		*dev = master->dev.parent;
202 
203 	if (!spi_master_get(master))
204 		return NULL;
205 
206 	spi = kzalloc(sizeof *spi, GFP_KERNEL);
207 	if (!spi) {
208 		dev_err(dev, "cannot alloc spi_device\n");
209 		spi_master_put(master);
210 		return NULL;
211 	}
212 
213 	spi->master = master;
214 	spi->dev.parent = dev;
215 	spi->dev.bus = &spi_bus_type;
216 	spi->dev.release = spidev_release;
217 	device_initialize(&spi->dev);
218 	return spi;
219 }
220 EXPORT_SYMBOL_GPL(spi_alloc_device);
221 
222 /**
223  * spi_add_device - Add spi_device allocated with spi_alloc_device
224  * @spi: spi_device to register
225  *
226  * Companion function to spi_alloc_device.  Devices allocated with
227  * spi_alloc_device can be added onto the spi bus with this function.
228  *
229  * Returns 0 on success; non-zero on failure
230  */
231 int spi_add_device(struct spi_device *spi)
232 {
233 	struct device *dev = spi->master->dev.parent;
234 	int status;
235 
236 	/* Chipselects are numbered 0..max; validate. */
237 	if (spi->chip_select >= spi->master->num_chipselect) {
238 		dev_err(dev, "cs%d >= max %d\n",
239 			spi->chip_select,
240 			spi->master->num_chipselect);
241 		return -EINVAL;
242 	}
243 
244 	/* Set the bus ID string */
245 	snprintf(spi->dev.bus_id, sizeof spi->dev.bus_id,
246 			"%s.%u", spi->master->dev.bus_id,
247 			spi->chip_select);
248 
249 	/* drivers may modify this initial i/o setup */
250 	status = spi->master->setup(spi);
251 	if (status < 0) {
252 		dev_err(dev, "can't %s %s, status %d\n",
253 				"setup", spi->dev.bus_id, status);
254 		return status;
255 	}
256 
257 	/* driver core catches callers that misbehave by defining
258 	 * devices that already exist.
259 	 */
260 	status = device_add(&spi->dev);
261 	if (status < 0) {
262 		dev_err(dev, "can't %s %s, status %d\n",
263 				"add", spi->dev.bus_id, status);
264 		return status;
265 	}
266 
267 	dev_dbg(dev, "registered child %s\n", spi->dev.bus_id);
268 	return 0;
269 }
270 EXPORT_SYMBOL_GPL(spi_add_device);
271 
272 /**
273  * spi_new_device - instantiate one new SPI device
274  * @master: Controller to which device is connected
275  * @chip: Describes the SPI device
276  * Context: can sleep
277  *
278  * On typical mainboards, this is purely internal; and it's not needed
279  * after board init creates the hard-wired devices.  Some development
280  * platforms may not be able to use spi_register_board_info though, and
281  * this is exported so that for example a USB or parport based adapter
282  * driver could add devices (which it would learn about out-of-band).
283  *
284  * Returns the new device, or NULL.
285  */
286 struct spi_device *spi_new_device(struct spi_master *master,
287 				  struct spi_board_info *chip)
288 {
289 	struct spi_device	*proxy;
290 	int			status;
291 
292 	/* NOTE:  caller did any chip->bus_num checks necessary.
293 	 *
294 	 * Also, unless we change the return value convention to use
295 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
296 	 * suggests syslogged diagnostics are best here (ugh).
297 	 */
298 
299 	proxy = spi_alloc_device(master);
300 	if (!proxy)
301 		return NULL;
302 
303 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
304 
305 	proxy->chip_select = chip->chip_select;
306 	proxy->max_speed_hz = chip->max_speed_hz;
307 	proxy->mode = chip->mode;
308 	proxy->irq = chip->irq;
309 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
310 	proxy->dev.platform_data = (void *) chip->platform_data;
311 	proxy->controller_data = chip->controller_data;
312 	proxy->controller_state = NULL;
313 
314 	status = spi_add_device(proxy);
315 	if (status < 0) {
316 		spi_dev_put(proxy);
317 		return NULL;
318 	}
319 
320 	return proxy;
321 }
322 EXPORT_SYMBOL_GPL(spi_new_device);
323 
324 /**
325  * spi_register_board_info - register SPI devices for a given board
326  * @info: array of chip descriptors
327  * @n: how many descriptors are provided
328  * Context: can sleep
329  *
330  * Board-specific early init code calls this (probably during arch_initcall)
331  * with segments of the SPI device table.  Any device nodes are created later,
332  * after the relevant parent SPI controller (bus_num) is defined.  We keep
333  * this table of devices forever, so that reloading a controller driver will
334  * not make Linux forget about these hard-wired devices.
335  *
336  * Other code can also call this, e.g. a particular add-on board might provide
337  * SPI devices through its expansion connector, so code initializing that board
338  * would naturally declare its SPI devices.
339  *
340  * The board info passed can safely be __initdata ... but be careful of
341  * any embedded pointers (platform_data, etc), they're copied as-is.
342  */
343 int __init
344 spi_register_board_info(struct spi_board_info const *info, unsigned n)
345 {
346 	struct boardinfo	*bi;
347 
348 	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
349 	if (!bi)
350 		return -ENOMEM;
351 	bi->n_board_info = n;
352 	memcpy(bi->board_info, info, n * sizeof *info);
353 
354 	mutex_lock(&board_lock);
355 	list_add_tail(&bi->list, &board_list);
356 	mutex_unlock(&board_lock);
357 	return 0;
358 }
359 
360 /* FIXME someone should add support for a __setup("spi", ...) that
361  * creates board info from kernel command lines
362  */
363 
364 static void scan_boardinfo(struct spi_master *master)
365 {
366 	struct boardinfo	*bi;
367 
368 	mutex_lock(&board_lock);
369 	list_for_each_entry(bi, &board_list, list) {
370 		struct spi_board_info	*chip = bi->board_info;
371 		unsigned		n;
372 
373 		for (n = bi->n_board_info; n > 0; n--, chip++) {
374 			if (chip->bus_num != master->bus_num)
375 				continue;
376 			/* NOTE: this relies on spi_new_device to
377 			 * issue diagnostics when given bogus inputs
378 			 */
379 			(void) spi_new_device(master, chip);
380 		}
381 	}
382 	mutex_unlock(&board_lock);
383 }
384 
385 /*-------------------------------------------------------------------------*/
386 
387 static void spi_master_release(struct device *dev)
388 {
389 	struct spi_master *master;
390 
391 	master = container_of(dev, struct spi_master, dev);
392 	kfree(master);
393 }
394 
395 static struct class spi_master_class = {
396 	.name		= "spi_master",
397 	.owner		= THIS_MODULE,
398 	.dev_release	= spi_master_release,
399 };
400 
401 
402 /**
403  * spi_alloc_master - allocate SPI master controller
404  * @dev: the controller, possibly using the platform_bus
405  * @size: how much zeroed driver-private data to allocate; the pointer to this
406  *	memory is in the driver_data field of the returned device,
407  *	accessible with spi_master_get_devdata().
408  * Context: can sleep
409  *
410  * This call is used only by SPI master controller drivers, which are the
411  * only ones directly touching chip registers.  It's how they allocate
412  * an spi_master structure, prior to calling spi_register_master().
413  *
414  * This must be called from context that can sleep.  It returns the SPI
415  * master structure on success, else NULL.
416  *
417  * The caller is responsible for assigning the bus number and initializing
418  * the master's methods before calling spi_register_master(); and (after errors
419  * adding the device) calling spi_master_put() to prevent a memory leak.
420  */
421 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
422 {
423 	struct spi_master	*master;
424 
425 	if (!dev)
426 		return NULL;
427 
428 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
429 	if (!master)
430 		return NULL;
431 
432 	device_initialize(&master->dev);
433 	master->dev.class = &spi_master_class;
434 	master->dev.parent = get_device(dev);
435 	spi_master_set_devdata(master, &master[1]);
436 
437 	return master;
438 }
439 EXPORT_SYMBOL_GPL(spi_alloc_master);
440 
441 /**
442  * spi_register_master - register SPI master controller
443  * @master: initialized master, originally from spi_alloc_master()
444  * Context: can sleep
445  *
446  * SPI master controllers connect to their drivers using some non-SPI bus,
447  * such as the platform bus.  The final stage of probe() in that code
448  * includes calling spi_register_master() to hook up to this SPI bus glue.
449  *
450  * SPI controllers use board specific (often SOC specific) bus numbers,
451  * and board-specific addressing for SPI devices combines those numbers
452  * with chip select numbers.  Since SPI does not directly support dynamic
453  * device identification, boards need configuration tables telling which
454  * chip is at which address.
455  *
456  * This must be called from context that can sleep.  It returns zero on
457  * success, else a negative error code (dropping the master's refcount).
458  * After a successful return, the caller is responsible for calling
459  * spi_unregister_master().
460  */
461 int spi_register_master(struct spi_master *master)
462 {
463 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
464 	struct device		*dev = master->dev.parent;
465 	int			status = -ENODEV;
466 	int			dynamic = 0;
467 
468 	if (!dev)
469 		return -ENODEV;
470 
471 	/* even if it's just one always-selected device, there must
472 	 * be at least one chipselect
473 	 */
474 	if (master->num_chipselect == 0)
475 		return -EINVAL;
476 
477 	/* convention:  dynamically assigned bus IDs count down from the max */
478 	if (master->bus_num < 0) {
479 		/* FIXME switch to an IDR based scheme, something like
480 		 * I2C now uses, so we can't run out of "dynamic" IDs
481 		 */
482 		master->bus_num = atomic_dec_return(&dyn_bus_id);
483 		dynamic = 1;
484 	}
485 
486 	/* register the device, then userspace will see it.
487 	 * registration fails if the bus ID is in use.
488 	 */
489 	snprintf(master->dev.bus_id, sizeof master->dev.bus_id,
490 		"spi%u", master->bus_num);
491 	status = device_add(&master->dev);
492 	if (status < 0)
493 		goto done;
494 	dev_dbg(dev, "registered master %s%s\n", master->dev.bus_id,
495 			dynamic ? " (dynamic)" : "");
496 
497 	/* populate children from any spi device tables */
498 	scan_boardinfo(master);
499 	status = 0;
500 done:
501 	return status;
502 }
503 EXPORT_SYMBOL_GPL(spi_register_master);
504 
505 
506 static int __unregister(struct device *dev, void *master_dev)
507 {
508 	/* note: before about 2.6.14-rc1 this would corrupt memory: */
509 	if (dev != master_dev)
510 		spi_unregister_device(to_spi_device(dev));
511 	return 0;
512 }
513 
514 /**
515  * spi_unregister_master - unregister SPI master controller
516  * @master: the master being unregistered
517  * Context: can sleep
518  *
519  * This call is used only by SPI master controller drivers, which are the
520  * only ones directly touching chip registers.
521  *
522  * This must be called from context that can sleep.
523  */
524 void spi_unregister_master(struct spi_master *master)
525 {
526 	int dummy;
527 
528 	dummy = device_for_each_child(master->dev.parent, &master->dev,
529 					__unregister);
530 	device_unregister(&master->dev);
531 }
532 EXPORT_SYMBOL_GPL(spi_unregister_master);
533 
534 static int __spi_master_match(struct device *dev, void *data)
535 {
536 	struct spi_master *m;
537 	u16 *bus_num = data;
538 
539 	m = container_of(dev, struct spi_master, dev);
540 	return m->bus_num == *bus_num;
541 }
542 
543 /**
544  * spi_busnum_to_master - look up master associated with bus_num
545  * @bus_num: the master's bus number
546  * Context: can sleep
547  *
548  * This call may be used with devices that are registered after
549  * arch init time.  It returns a refcounted pointer to the relevant
550  * spi_master (which the caller must release), or NULL if there is
551  * no such master registered.
552  */
553 struct spi_master *spi_busnum_to_master(u16 bus_num)
554 {
555 	struct device		*dev;
556 	struct spi_master	*master = NULL;
557 
558 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
559 				__spi_master_match);
560 	if (dev)
561 		master = container_of(dev, struct spi_master, dev);
562 	/* reference got in class_find_device */
563 	return master;
564 }
565 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
566 
567 
568 /*-------------------------------------------------------------------------*/
569 
570 static void spi_complete(void *arg)
571 {
572 	complete(arg);
573 }
574 
575 /**
576  * spi_sync - blocking/synchronous SPI data transfers
577  * @spi: device with which data will be exchanged
578  * @message: describes the data transfers
579  * Context: can sleep
580  *
581  * This call may only be used from a context that may sleep.  The sleep
582  * is non-interruptible, and has no timeout.  Low-overhead controller
583  * drivers may DMA directly into and out of the message buffers.
584  *
585  * Note that the SPI device's chip select is active during the message,
586  * and then is normally disabled between messages.  Drivers for some
587  * frequently-used devices may want to minimize costs of selecting a chip,
588  * by leaving it selected in anticipation that the next message will go
589  * to the same chip.  (That may increase power usage.)
590  *
591  * Also, the caller is guaranteeing that the memory associated with the
592  * message will not be freed before this call returns.
593  *
594  * It returns zero on success, else a negative error code.
595  */
596 int spi_sync(struct spi_device *spi, struct spi_message *message)
597 {
598 	DECLARE_COMPLETION_ONSTACK(done);
599 	int status;
600 
601 	message->complete = spi_complete;
602 	message->context = &done;
603 	status = spi_async(spi, message);
604 	if (status == 0) {
605 		wait_for_completion(&done);
606 		status = message->status;
607 	}
608 	message->context = NULL;
609 	return status;
610 }
611 EXPORT_SYMBOL_GPL(spi_sync);
612 
613 /* portable code must never pass more than 32 bytes */
614 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
615 
616 static u8	*buf;
617 
618 /**
619  * spi_write_then_read - SPI synchronous write followed by read
620  * @spi: device with which data will be exchanged
621  * @txbuf: data to be written (need not be dma-safe)
622  * @n_tx: size of txbuf, in bytes
623  * @rxbuf: buffer into which data will be read
624  * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
625  * Context: can sleep
626  *
627  * This performs a half duplex MicroWire style transaction with the
628  * device, sending txbuf and then reading rxbuf.  The return value
629  * is zero for success, else a negative errno status code.
630  * This call may only be used from a context that may sleep.
631  *
632  * Parameters to this routine are always copied using a small buffer;
633  * portable code should never use this for more than 32 bytes.
634  * Performance-sensitive or bulk transfer code should instead use
635  * spi_{async,sync}() calls with dma-safe buffers.
636  */
637 int spi_write_then_read(struct spi_device *spi,
638 		const u8 *txbuf, unsigned n_tx,
639 		u8 *rxbuf, unsigned n_rx)
640 {
641 	static DEFINE_MUTEX(lock);
642 
643 	int			status;
644 	struct spi_message	message;
645 	struct spi_transfer	x[2];
646 	u8			*local_buf;
647 
648 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
649 	 * (as a pure convenience thing), but we can keep heap costs
650 	 * out of the hot path ...
651 	 */
652 	if ((n_tx + n_rx) > SPI_BUFSIZ)
653 		return -EINVAL;
654 
655 	spi_message_init(&message);
656 	memset(x, 0, sizeof x);
657 	if (n_tx) {
658 		x[0].len = n_tx;
659 		spi_message_add_tail(&x[0], &message);
660 	}
661 	if (n_rx) {
662 		x[1].len = n_rx;
663 		spi_message_add_tail(&x[1], &message);
664 	}
665 
666 	/* ... unless someone else is using the pre-allocated buffer */
667 	if (!mutex_trylock(&lock)) {
668 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
669 		if (!local_buf)
670 			return -ENOMEM;
671 	} else
672 		local_buf = buf;
673 
674 	memcpy(local_buf, txbuf, n_tx);
675 	x[0].tx_buf = local_buf;
676 	x[1].rx_buf = local_buf + n_tx;
677 
678 	/* do the i/o */
679 	status = spi_sync(spi, &message);
680 	if (status == 0)
681 		memcpy(rxbuf, x[1].rx_buf, n_rx);
682 
683 	if (x[0].tx_buf == buf)
684 		mutex_unlock(&lock);
685 	else
686 		kfree(local_buf);
687 
688 	return status;
689 }
690 EXPORT_SYMBOL_GPL(spi_write_then_read);
691 
692 /*-------------------------------------------------------------------------*/
693 
694 static int __init spi_init(void)
695 {
696 	int	status;
697 
698 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
699 	if (!buf) {
700 		status = -ENOMEM;
701 		goto err0;
702 	}
703 
704 	status = bus_register(&spi_bus_type);
705 	if (status < 0)
706 		goto err1;
707 
708 	status = class_register(&spi_master_class);
709 	if (status < 0)
710 		goto err2;
711 	return 0;
712 
713 err2:
714 	bus_unregister(&spi_bus_type);
715 err1:
716 	kfree(buf);
717 	buf = NULL;
718 err0:
719 	return status;
720 }
721 
722 /* board_info is normally registered in arch_initcall(),
723  * but even essential drivers wait till later
724  *
725  * REVISIT only boardinfo really needs static linking. the rest (device and
726  * driver registration) _could_ be dynamically linked (modular) ... costs
727  * include needing to have boardinfo data structures be much more public.
728  */
729 subsys_initcall(spi_init);
730 
731