xref: /openbmc/linux/drivers/spi/spi.c (revision e6dec923)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/spi.h>
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	/* spi controllers may cleanup for released devices */
52 	if (spi->controller->cleanup)
53 		spi->controller->cleanup(spi);
54 
55 	spi_controller_put(spi->controller);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 #define SPI_STATISTICS_ATTRS(field, file)				\
74 static ssize_t spi_controller_##field##_show(struct device *dev,	\
75 					     struct device_attribute *attr, \
76 					     char *buf)			\
77 {									\
78 	struct spi_controller *ctlr = container_of(dev,			\
79 					 struct spi_controller, dev);	\
80 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
81 }									\
82 static struct device_attribute dev_attr_spi_controller_##field = {	\
83 	.attr = { .name = file, .mode = 0444 },				\
84 	.show = spi_controller_##field##_show,				\
85 };									\
86 static ssize_t spi_device_##field##_show(struct device *dev,		\
87 					 struct device_attribute *attr,	\
88 					char *buf)			\
89 {									\
90 	struct spi_device *spi = to_spi_device(dev);			\
91 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
92 }									\
93 static struct device_attribute dev_attr_spi_device_##field = {		\
94 	.attr = { .name = file, .mode = 0444 },				\
95 	.show = spi_device_##field##_show,				\
96 }
97 
98 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
99 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
100 					    char *buf)			\
101 {									\
102 	unsigned long flags;						\
103 	ssize_t len;							\
104 	spin_lock_irqsave(&stat->lock, flags);				\
105 	len = sprintf(buf, format_string, stat->field);			\
106 	spin_unlock_irqrestore(&stat->lock, flags);			\
107 	return len;							\
108 }									\
109 SPI_STATISTICS_ATTRS(name, file)
110 
111 #define SPI_STATISTICS_SHOW(field, format_string)			\
112 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
113 				 field, format_string)
114 
115 SPI_STATISTICS_SHOW(messages, "%lu");
116 SPI_STATISTICS_SHOW(transfers, "%lu");
117 SPI_STATISTICS_SHOW(errors, "%lu");
118 SPI_STATISTICS_SHOW(timedout, "%lu");
119 
120 SPI_STATISTICS_SHOW(spi_sync, "%lu");
121 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
122 SPI_STATISTICS_SHOW(spi_async, "%lu");
123 
124 SPI_STATISTICS_SHOW(bytes, "%llu");
125 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
126 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
127 
128 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
129 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
130 				 "transfer_bytes_histo_" number,	\
131 				 transfer_bytes_histo[index],  "%lu")
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
149 
150 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
151 
152 static struct attribute *spi_dev_attrs[] = {
153 	&dev_attr_modalias.attr,
154 	NULL,
155 };
156 
157 static const struct attribute_group spi_dev_group = {
158 	.attrs  = spi_dev_attrs,
159 };
160 
161 static struct attribute *spi_device_statistics_attrs[] = {
162 	&dev_attr_spi_device_messages.attr,
163 	&dev_attr_spi_device_transfers.attr,
164 	&dev_attr_spi_device_errors.attr,
165 	&dev_attr_spi_device_timedout.attr,
166 	&dev_attr_spi_device_spi_sync.attr,
167 	&dev_attr_spi_device_spi_sync_immediate.attr,
168 	&dev_attr_spi_device_spi_async.attr,
169 	&dev_attr_spi_device_bytes.attr,
170 	&dev_attr_spi_device_bytes_rx.attr,
171 	&dev_attr_spi_device_bytes_tx.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
186 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
187 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
188 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
189 	&dev_attr_spi_device_transfers_split_maxsize.attr,
190 	NULL,
191 };
192 
193 static const struct attribute_group spi_device_statistics_group = {
194 	.name  = "statistics",
195 	.attrs  = spi_device_statistics_attrs,
196 };
197 
198 static const struct attribute_group *spi_dev_groups[] = {
199 	&spi_dev_group,
200 	&spi_device_statistics_group,
201 	NULL,
202 };
203 
204 static struct attribute *spi_controller_statistics_attrs[] = {
205 	&dev_attr_spi_controller_messages.attr,
206 	&dev_attr_spi_controller_transfers.attr,
207 	&dev_attr_spi_controller_errors.attr,
208 	&dev_attr_spi_controller_timedout.attr,
209 	&dev_attr_spi_controller_spi_sync.attr,
210 	&dev_attr_spi_controller_spi_sync_immediate.attr,
211 	&dev_attr_spi_controller_spi_async.attr,
212 	&dev_attr_spi_controller_bytes.attr,
213 	&dev_attr_spi_controller_bytes_rx.attr,
214 	&dev_attr_spi_controller_bytes_tx.attr,
215 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
216 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
217 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
218 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
219 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
220 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
221 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
222 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
223 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
224 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
225 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
226 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
227 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
228 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
229 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
230 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
231 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
232 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
233 	NULL,
234 };
235 
236 static const struct attribute_group spi_controller_statistics_group = {
237 	.name  = "statistics",
238 	.attrs  = spi_controller_statistics_attrs,
239 };
240 
241 static const struct attribute_group *spi_master_groups[] = {
242 	&spi_controller_statistics_group,
243 	NULL,
244 };
245 
246 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
247 				       struct spi_transfer *xfer,
248 				       struct spi_controller *ctlr)
249 {
250 	unsigned long flags;
251 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
252 
253 	if (l2len < 0)
254 		l2len = 0;
255 
256 	spin_lock_irqsave(&stats->lock, flags);
257 
258 	stats->transfers++;
259 	stats->transfer_bytes_histo[l2len]++;
260 
261 	stats->bytes += xfer->len;
262 	if ((xfer->tx_buf) &&
263 	    (xfer->tx_buf != ctlr->dummy_tx))
264 		stats->bytes_tx += xfer->len;
265 	if ((xfer->rx_buf) &&
266 	    (xfer->rx_buf != ctlr->dummy_rx))
267 		stats->bytes_rx += xfer->len;
268 
269 	spin_unlock_irqrestore(&stats->lock, flags);
270 }
271 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
272 
273 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
274  * and the sysfs version makes coldplug work too.
275  */
276 
277 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
278 						const struct spi_device *sdev)
279 {
280 	while (id->name[0]) {
281 		if (!strcmp(sdev->modalias, id->name))
282 			return id;
283 		id++;
284 	}
285 	return NULL;
286 }
287 
288 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
289 {
290 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
291 
292 	return spi_match_id(sdrv->id_table, sdev);
293 }
294 EXPORT_SYMBOL_GPL(spi_get_device_id);
295 
296 static int spi_match_device(struct device *dev, struct device_driver *drv)
297 {
298 	const struct spi_device	*spi = to_spi_device(dev);
299 	const struct spi_driver	*sdrv = to_spi_driver(drv);
300 
301 	/* Attempt an OF style match */
302 	if (of_driver_match_device(dev, drv))
303 		return 1;
304 
305 	/* Then try ACPI */
306 	if (acpi_driver_match_device(dev, drv))
307 		return 1;
308 
309 	if (sdrv->id_table)
310 		return !!spi_match_id(sdrv->id_table, spi);
311 
312 	return strcmp(spi->modalias, drv->name) == 0;
313 }
314 
315 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
316 {
317 	const struct spi_device		*spi = to_spi_device(dev);
318 	int rc;
319 
320 	rc = acpi_device_uevent_modalias(dev, env);
321 	if (rc != -ENODEV)
322 		return rc;
323 
324 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
325 	return 0;
326 }
327 
328 struct bus_type spi_bus_type = {
329 	.name		= "spi",
330 	.dev_groups	= spi_dev_groups,
331 	.match		= spi_match_device,
332 	.uevent		= spi_uevent,
333 };
334 EXPORT_SYMBOL_GPL(spi_bus_type);
335 
336 
337 static int spi_drv_probe(struct device *dev)
338 {
339 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
340 	struct spi_device		*spi = to_spi_device(dev);
341 	int ret;
342 
343 	ret = of_clk_set_defaults(dev->of_node, false);
344 	if (ret)
345 		return ret;
346 
347 	if (dev->of_node) {
348 		spi->irq = of_irq_get(dev->of_node, 0);
349 		if (spi->irq == -EPROBE_DEFER)
350 			return -EPROBE_DEFER;
351 		if (spi->irq < 0)
352 			spi->irq = 0;
353 	}
354 
355 	ret = dev_pm_domain_attach(dev, true);
356 	if (ret != -EPROBE_DEFER) {
357 		ret = sdrv->probe(spi);
358 		if (ret)
359 			dev_pm_domain_detach(dev, true);
360 	}
361 
362 	return ret;
363 }
364 
365 static int spi_drv_remove(struct device *dev)
366 {
367 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
368 	int ret;
369 
370 	ret = sdrv->remove(to_spi_device(dev));
371 	dev_pm_domain_detach(dev, true);
372 
373 	return ret;
374 }
375 
376 static void spi_drv_shutdown(struct device *dev)
377 {
378 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
379 
380 	sdrv->shutdown(to_spi_device(dev));
381 }
382 
383 /**
384  * __spi_register_driver - register a SPI driver
385  * @owner: owner module of the driver to register
386  * @sdrv: the driver to register
387  * Context: can sleep
388  *
389  * Return: zero on success, else a negative error code.
390  */
391 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
392 {
393 	sdrv->driver.owner = owner;
394 	sdrv->driver.bus = &spi_bus_type;
395 	if (sdrv->probe)
396 		sdrv->driver.probe = spi_drv_probe;
397 	if (sdrv->remove)
398 		sdrv->driver.remove = spi_drv_remove;
399 	if (sdrv->shutdown)
400 		sdrv->driver.shutdown = spi_drv_shutdown;
401 	return driver_register(&sdrv->driver);
402 }
403 EXPORT_SYMBOL_GPL(__spi_register_driver);
404 
405 /*-------------------------------------------------------------------------*/
406 
407 /* SPI devices should normally not be created by SPI device drivers; that
408  * would make them board-specific.  Similarly with SPI controller drivers.
409  * Device registration normally goes into like arch/.../mach.../board-YYY.c
410  * with other readonly (flashable) information about mainboard devices.
411  */
412 
413 struct boardinfo {
414 	struct list_head	list;
415 	struct spi_board_info	board_info;
416 };
417 
418 static LIST_HEAD(board_list);
419 static LIST_HEAD(spi_controller_list);
420 
421 /*
422  * Used to protect add/del opertion for board_info list and
423  * spi_controller list, and their matching process
424  */
425 static DEFINE_MUTEX(board_lock);
426 
427 /**
428  * spi_alloc_device - Allocate a new SPI device
429  * @ctlr: Controller to which device is connected
430  * Context: can sleep
431  *
432  * Allows a driver to allocate and initialize a spi_device without
433  * registering it immediately.  This allows a driver to directly
434  * fill the spi_device with device parameters before calling
435  * spi_add_device() on it.
436  *
437  * Caller is responsible to call spi_add_device() on the returned
438  * spi_device structure to add it to the SPI controller.  If the caller
439  * needs to discard the spi_device without adding it, then it should
440  * call spi_dev_put() on it.
441  *
442  * Return: a pointer to the new device, or NULL.
443  */
444 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
445 {
446 	struct spi_device	*spi;
447 
448 	if (!spi_controller_get(ctlr))
449 		return NULL;
450 
451 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
452 	if (!spi) {
453 		spi_controller_put(ctlr);
454 		return NULL;
455 	}
456 
457 	spi->master = spi->controller = ctlr;
458 	spi->dev.parent = &ctlr->dev;
459 	spi->dev.bus = &spi_bus_type;
460 	spi->dev.release = spidev_release;
461 	spi->cs_gpio = -ENOENT;
462 
463 	spin_lock_init(&spi->statistics.lock);
464 
465 	device_initialize(&spi->dev);
466 	return spi;
467 }
468 EXPORT_SYMBOL_GPL(spi_alloc_device);
469 
470 static void spi_dev_set_name(struct spi_device *spi)
471 {
472 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
473 
474 	if (adev) {
475 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
476 		return;
477 	}
478 
479 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
480 		     spi->chip_select);
481 }
482 
483 static int spi_dev_check(struct device *dev, void *data)
484 {
485 	struct spi_device *spi = to_spi_device(dev);
486 	struct spi_device *new_spi = data;
487 
488 	if (spi->controller == new_spi->controller &&
489 	    spi->chip_select == new_spi->chip_select)
490 		return -EBUSY;
491 	return 0;
492 }
493 
494 /**
495  * spi_add_device - Add spi_device allocated with spi_alloc_device
496  * @spi: spi_device to register
497  *
498  * Companion function to spi_alloc_device.  Devices allocated with
499  * spi_alloc_device can be added onto the spi bus with this function.
500  *
501  * Return: 0 on success; negative errno on failure
502  */
503 int spi_add_device(struct spi_device *spi)
504 {
505 	static DEFINE_MUTEX(spi_add_lock);
506 	struct spi_controller *ctlr = spi->controller;
507 	struct device *dev = ctlr->dev.parent;
508 	int status;
509 
510 	/* Chipselects are numbered 0..max; validate. */
511 	if (spi->chip_select >= ctlr->num_chipselect) {
512 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
513 			ctlr->num_chipselect);
514 		return -EINVAL;
515 	}
516 
517 	/* Set the bus ID string */
518 	spi_dev_set_name(spi);
519 
520 	/* We need to make sure there's no other device with this
521 	 * chipselect **BEFORE** we call setup(), else we'll trash
522 	 * its configuration.  Lock against concurrent add() calls.
523 	 */
524 	mutex_lock(&spi_add_lock);
525 
526 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
527 	if (status) {
528 		dev_err(dev, "chipselect %d already in use\n",
529 				spi->chip_select);
530 		goto done;
531 	}
532 
533 	if (ctlr->cs_gpios)
534 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
535 
536 	/* Drivers may modify this initial i/o setup, but will
537 	 * normally rely on the device being setup.  Devices
538 	 * using SPI_CS_HIGH can't coexist well otherwise...
539 	 */
540 	status = spi_setup(spi);
541 	if (status < 0) {
542 		dev_err(dev, "can't setup %s, status %d\n",
543 				dev_name(&spi->dev), status);
544 		goto done;
545 	}
546 
547 	/* Device may be bound to an active driver when this returns */
548 	status = device_add(&spi->dev);
549 	if (status < 0)
550 		dev_err(dev, "can't add %s, status %d\n",
551 				dev_name(&spi->dev), status);
552 	else
553 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
554 
555 done:
556 	mutex_unlock(&spi_add_lock);
557 	return status;
558 }
559 EXPORT_SYMBOL_GPL(spi_add_device);
560 
561 /**
562  * spi_new_device - instantiate one new SPI device
563  * @ctlr: Controller to which device is connected
564  * @chip: Describes the SPI device
565  * Context: can sleep
566  *
567  * On typical mainboards, this is purely internal; and it's not needed
568  * after board init creates the hard-wired devices.  Some development
569  * platforms may not be able to use spi_register_board_info though, and
570  * this is exported so that for example a USB or parport based adapter
571  * driver could add devices (which it would learn about out-of-band).
572  *
573  * Return: the new device, or NULL.
574  */
575 struct spi_device *spi_new_device(struct spi_controller *ctlr,
576 				  struct spi_board_info *chip)
577 {
578 	struct spi_device	*proxy;
579 	int			status;
580 
581 	/* NOTE:  caller did any chip->bus_num checks necessary.
582 	 *
583 	 * Also, unless we change the return value convention to use
584 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
585 	 * suggests syslogged diagnostics are best here (ugh).
586 	 */
587 
588 	proxy = spi_alloc_device(ctlr);
589 	if (!proxy)
590 		return NULL;
591 
592 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
593 
594 	proxy->chip_select = chip->chip_select;
595 	proxy->max_speed_hz = chip->max_speed_hz;
596 	proxy->mode = chip->mode;
597 	proxy->irq = chip->irq;
598 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
599 	proxy->dev.platform_data = (void *) chip->platform_data;
600 	proxy->controller_data = chip->controller_data;
601 	proxy->controller_state = NULL;
602 
603 	if (chip->properties) {
604 		status = device_add_properties(&proxy->dev, chip->properties);
605 		if (status) {
606 			dev_err(&ctlr->dev,
607 				"failed to add properties to '%s': %d\n",
608 				chip->modalias, status);
609 			goto err_dev_put;
610 		}
611 	}
612 
613 	status = spi_add_device(proxy);
614 	if (status < 0)
615 		goto err_remove_props;
616 
617 	return proxy;
618 
619 err_remove_props:
620 	if (chip->properties)
621 		device_remove_properties(&proxy->dev);
622 err_dev_put:
623 	spi_dev_put(proxy);
624 	return NULL;
625 }
626 EXPORT_SYMBOL_GPL(spi_new_device);
627 
628 /**
629  * spi_unregister_device - unregister a single SPI device
630  * @spi: spi_device to unregister
631  *
632  * Start making the passed SPI device vanish. Normally this would be handled
633  * by spi_unregister_controller().
634  */
635 void spi_unregister_device(struct spi_device *spi)
636 {
637 	if (!spi)
638 		return;
639 
640 	if (spi->dev.of_node) {
641 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
642 		of_node_put(spi->dev.of_node);
643 	}
644 	if (ACPI_COMPANION(&spi->dev))
645 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
646 	device_unregister(&spi->dev);
647 }
648 EXPORT_SYMBOL_GPL(spi_unregister_device);
649 
650 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
651 					      struct spi_board_info *bi)
652 {
653 	struct spi_device *dev;
654 
655 	if (ctlr->bus_num != bi->bus_num)
656 		return;
657 
658 	dev = spi_new_device(ctlr, bi);
659 	if (!dev)
660 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
661 			bi->modalias);
662 }
663 
664 /**
665  * spi_register_board_info - register SPI devices for a given board
666  * @info: array of chip descriptors
667  * @n: how many descriptors are provided
668  * Context: can sleep
669  *
670  * Board-specific early init code calls this (probably during arch_initcall)
671  * with segments of the SPI device table.  Any device nodes are created later,
672  * after the relevant parent SPI controller (bus_num) is defined.  We keep
673  * this table of devices forever, so that reloading a controller driver will
674  * not make Linux forget about these hard-wired devices.
675  *
676  * Other code can also call this, e.g. a particular add-on board might provide
677  * SPI devices through its expansion connector, so code initializing that board
678  * would naturally declare its SPI devices.
679  *
680  * The board info passed can safely be __initdata ... but be careful of
681  * any embedded pointers (platform_data, etc), they're copied as-is.
682  * Device properties are deep-copied though.
683  *
684  * Return: zero on success, else a negative error code.
685  */
686 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
687 {
688 	struct boardinfo *bi;
689 	int i;
690 
691 	if (!n)
692 		return 0;
693 
694 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
695 	if (!bi)
696 		return -ENOMEM;
697 
698 	for (i = 0; i < n; i++, bi++, info++) {
699 		struct spi_controller *ctlr;
700 
701 		memcpy(&bi->board_info, info, sizeof(*info));
702 		if (info->properties) {
703 			bi->board_info.properties =
704 					property_entries_dup(info->properties);
705 			if (IS_ERR(bi->board_info.properties))
706 				return PTR_ERR(bi->board_info.properties);
707 		}
708 
709 		mutex_lock(&board_lock);
710 		list_add_tail(&bi->list, &board_list);
711 		list_for_each_entry(ctlr, &spi_controller_list, list)
712 			spi_match_controller_to_boardinfo(ctlr,
713 							  &bi->board_info);
714 		mutex_unlock(&board_lock);
715 	}
716 
717 	return 0;
718 }
719 
720 /*-------------------------------------------------------------------------*/
721 
722 static void spi_set_cs(struct spi_device *spi, bool enable)
723 {
724 	if (spi->mode & SPI_CS_HIGH)
725 		enable = !enable;
726 
727 	if (gpio_is_valid(spi->cs_gpio)) {
728 		gpio_set_value(spi->cs_gpio, !enable);
729 		/* Some SPI masters need both GPIO CS & slave_select */
730 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
731 		    spi->controller->set_cs)
732 			spi->controller->set_cs(spi, !enable);
733 	} else if (spi->controller->set_cs) {
734 		spi->controller->set_cs(spi, !enable);
735 	}
736 }
737 
738 #ifdef CONFIG_HAS_DMA
739 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
740 		       struct sg_table *sgt, void *buf, size_t len,
741 		       enum dma_data_direction dir)
742 {
743 	const bool vmalloced_buf = is_vmalloc_addr(buf);
744 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
745 #ifdef CONFIG_HIGHMEM
746 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
747 				(unsigned long)buf < (PKMAP_BASE +
748 					(LAST_PKMAP * PAGE_SIZE)));
749 #else
750 	const bool kmap_buf = false;
751 #endif
752 	int desc_len;
753 	int sgs;
754 	struct page *vm_page;
755 	struct scatterlist *sg;
756 	void *sg_buf;
757 	size_t min;
758 	int i, ret;
759 
760 	if (vmalloced_buf || kmap_buf) {
761 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
762 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
763 	} else if (virt_addr_valid(buf)) {
764 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
765 		sgs = DIV_ROUND_UP(len, desc_len);
766 	} else {
767 		return -EINVAL;
768 	}
769 
770 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
771 	if (ret != 0)
772 		return ret;
773 
774 	sg = &sgt->sgl[0];
775 	for (i = 0; i < sgs; i++) {
776 
777 		if (vmalloced_buf || kmap_buf) {
778 			min = min_t(size_t,
779 				    len, desc_len - offset_in_page(buf));
780 			if (vmalloced_buf)
781 				vm_page = vmalloc_to_page(buf);
782 			else
783 				vm_page = kmap_to_page(buf);
784 			if (!vm_page) {
785 				sg_free_table(sgt);
786 				return -ENOMEM;
787 			}
788 			sg_set_page(sg, vm_page,
789 				    min, offset_in_page(buf));
790 		} else {
791 			min = min_t(size_t, len, desc_len);
792 			sg_buf = buf;
793 			sg_set_buf(sg, sg_buf, min);
794 		}
795 
796 		buf += min;
797 		len -= min;
798 		sg = sg_next(sg);
799 	}
800 
801 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
802 	if (!ret)
803 		ret = -ENOMEM;
804 	if (ret < 0) {
805 		sg_free_table(sgt);
806 		return ret;
807 	}
808 
809 	sgt->nents = ret;
810 
811 	return 0;
812 }
813 
814 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
815 			  struct sg_table *sgt, enum dma_data_direction dir)
816 {
817 	if (sgt->orig_nents) {
818 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
819 		sg_free_table(sgt);
820 	}
821 }
822 
823 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
824 {
825 	struct device *tx_dev, *rx_dev;
826 	struct spi_transfer *xfer;
827 	int ret;
828 
829 	if (!ctlr->can_dma)
830 		return 0;
831 
832 	if (ctlr->dma_tx)
833 		tx_dev = ctlr->dma_tx->device->dev;
834 	else
835 		tx_dev = ctlr->dev.parent;
836 
837 	if (ctlr->dma_rx)
838 		rx_dev = ctlr->dma_rx->device->dev;
839 	else
840 		rx_dev = ctlr->dev.parent;
841 
842 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
843 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
844 			continue;
845 
846 		if (xfer->tx_buf != NULL) {
847 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
848 					  (void *)xfer->tx_buf, xfer->len,
849 					  DMA_TO_DEVICE);
850 			if (ret != 0)
851 				return ret;
852 		}
853 
854 		if (xfer->rx_buf != NULL) {
855 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
856 					  xfer->rx_buf, xfer->len,
857 					  DMA_FROM_DEVICE);
858 			if (ret != 0) {
859 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
860 					      DMA_TO_DEVICE);
861 				return ret;
862 			}
863 		}
864 	}
865 
866 	ctlr->cur_msg_mapped = true;
867 
868 	return 0;
869 }
870 
871 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
872 {
873 	struct spi_transfer *xfer;
874 	struct device *tx_dev, *rx_dev;
875 
876 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
877 		return 0;
878 
879 	if (ctlr->dma_tx)
880 		tx_dev = ctlr->dma_tx->device->dev;
881 	else
882 		tx_dev = ctlr->dev.parent;
883 
884 	if (ctlr->dma_rx)
885 		rx_dev = ctlr->dma_rx->device->dev;
886 	else
887 		rx_dev = ctlr->dev.parent;
888 
889 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
890 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
891 			continue;
892 
893 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
894 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
895 	}
896 
897 	return 0;
898 }
899 #else /* !CONFIG_HAS_DMA */
900 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
901 			      struct sg_table *sgt, void *buf, size_t len,
902 			      enum dma_data_direction dir)
903 {
904 	return -EINVAL;
905 }
906 
907 static inline void spi_unmap_buf(struct spi_controller *ctlr,
908 				 struct device *dev, struct sg_table *sgt,
909 				 enum dma_data_direction dir)
910 {
911 }
912 
913 static inline int __spi_map_msg(struct spi_controller *ctlr,
914 				struct spi_message *msg)
915 {
916 	return 0;
917 }
918 
919 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
920 				  struct spi_message *msg)
921 {
922 	return 0;
923 }
924 #endif /* !CONFIG_HAS_DMA */
925 
926 static inline int spi_unmap_msg(struct spi_controller *ctlr,
927 				struct spi_message *msg)
928 {
929 	struct spi_transfer *xfer;
930 
931 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
932 		/*
933 		 * Restore the original value of tx_buf or rx_buf if they are
934 		 * NULL.
935 		 */
936 		if (xfer->tx_buf == ctlr->dummy_tx)
937 			xfer->tx_buf = NULL;
938 		if (xfer->rx_buf == ctlr->dummy_rx)
939 			xfer->rx_buf = NULL;
940 	}
941 
942 	return __spi_unmap_msg(ctlr, msg);
943 }
944 
945 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
946 {
947 	struct spi_transfer *xfer;
948 	void *tmp;
949 	unsigned int max_tx, max_rx;
950 
951 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
952 		max_tx = 0;
953 		max_rx = 0;
954 
955 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
956 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
957 			    !xfer->tx_buf)
958 				max_tx = max(xfer->len, max_tx);
959 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
960 			    !xfer->rx_buf)
961 				max_rx = max(xfer->len, max_rx);
962 		}
963 
964 		if (max_tx) {
965 			tmp = krealloc(ctlr->dummy_tx, max_tx,
966 				       GFP_KERNEL | GFP_DMA);
967 			if (!tmp)
968 				return -ENOMEM;
969 			ctlr->dummy_tx = tmp;
970 			memset(tmp, 0, max_tx);
971 		}
972 
973 		if (max_rx) {
974 			tmp = krealloc(ctlr->dummy_rx, max_rx,
975 				       GFP_KERNEL | GFP_DMA);
976 			if (!tmp)
977 				return -ENOMEM;
978 			ctlr->dummy_rx = tmp;
979 		}
980 
981 		if (max_tx || max_rx) {
982 			list_for_each_entry(xfer, &msg->transfers,
983 					    transfer_list) {
984 				if (!xfer->tx_buf)
985 					xfer->tx_buf = ctlr->dummy_tx;
986 				if (!xfer->rx_buf)
987 					xfer->rx_buf = ctlr->dummy_rx;
988 			}
989 		}
990 	}
991 
992 	return __spi_map_msg(ctlr, msg);
993 }
994 
995 /*
996  * spi_transfer_one_message - Default implementation of transfer_one_message()
997  *
998  * This is a standard implementation of transfer_one_message() for
999  * drivers which implement a transfer_one() operation.  It provides
1000  * standard handling of delays and chip select management.
1001  */
1002 static int spi_transfer_one_message(struct spi_controller *ctlr,
1003 				    struct spi_message *msg)
1004 {
1005 	struct spi_transfer *xfer;
1006 	bool keep_cs = false;
1007 	int ret = 0;
1008 	unsigned long long ms = 1;
1009 	struct spi_statistics *statm = &ctlr->statistics;
1010 	struct spi_statistics *stats = &msg->spi->statistics;
1011 
1012 	spi_set_cs(msg->spi, true);
1013 
1014 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1015 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1016 
1017 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1018 		trace_spi_transfer_start(msg, xfer);
1019 
1020 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1021 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1022 
1023 		if (xfer->tx_buf || xfer->rx_buf) {
1024 			reinit_completion(&ctlr->xfer_completion);
1025 
1026 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1027 			if (ret < 0) {
1028 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1029 							       errors);
1030 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1031 							       errors);
1032 				dev_err(&msg->spi->dev,
1033 					"SPI transfer failed: %d\n", ret);
1034 				goto out;
1035 			}
1036 
1037 			if (ret > 0) {
1038 				ret = 0;
1039 				ms = 8LL * 1000LL * xfer->len;
1040 				do_div(ms, xfer->speed_hz);
1041 				ms += ms + 200; /* some tolerance */
1042 
1043 				if (ms > UINT_MAX)
1044 					ms = UINT_MAX;
1045 
1046 				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1047 								 msecs_to_jiffies(ms));
1048 			}
1049 
1050 			if (ms == 0) {
1051 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1052 							       timedout);
1053 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1054 							       timedout);
1055 				dev_err(&msg->spi->dev,
1056 					"SPI transfer timed out\n");
1057 				msg->status = -ETIMEDOUT;
1058 			}
1059 		} else {
1060 			if (xfer->len)
1061 				dev_err(&msg->spi->dev,
1062 					"Bufferless transfer has length %u\n",
1063 					xfer->len);
1064 		}
1065 
1066 		trace_spi_transfer_stop(msg, xfer);
1067 
1068 		if (msg->status != -EINPROGRESS)
1069 			goto out;
1070 
1071 		if (xfer->delay_usecs) {
1072 			u16 us = xfer->delay_usecs;
1073 
1074 			if (us <= 10)
1075 				udelay(us);
1076 			else
1077 				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1078 		}
1079 
1080 		if (xfer->cs_change) {
1081 			if (list_is_last(&xfer->transfer_list,
1082 					 &msg->transfers)) {
1083 				keep_cs = true;
1084 			} else {
1085 				spi_set_cs(msg->spi, false);
1086 				udelay(10);
1087 				spi_set_cs(msg->spi, true);
1088 			}
1089 		}
1090 
1091 		msg->actual_length += xfer->len;
1092 	}
1093 
1094 out:
1095 	if (ret != 0 || !keep_cs)
1096 		spi_set_cs(msg->spi, false);
1097 
1098 	if (msg->status == -EINPROGRESS)
1099 		msg->status = ret;
1100 
1101 	if (msg->status && ctlr->handle_err)
1102 		ctlr->handle_err(ctlr, msg);
1103 
1104 	spi_res_release(ctlr, msg);
1105 
1106 	spi_finalize_current_message(ctlr);
1107 
1108 	return ret;
1109 }
1110 
1111 /**
1112  * spi_finalize_current_transfer - report completion of a transfer
1113  * @ctlr: the controller reporting completion
1114  *
1115  * Called by SPI drivers using the core transfer_one_message()
1116  * implementation to notify it that the current interrupt driven
1117  * transfer has finished and the next one may be scheduled.
1118  */
1119 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1120 {
1121 	complete(&ctlr->xfer_completion);
1122 }
1123 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1124 
1125 /**
1126  * __spi_pump_messages - function which processes spi message queue
1127  * @ctlr: controller to process queue for
1128  * @in_kthread: true if we are in the context of the message pump thread
1129  *
1130  * This function checks if there is any spi message in the queue that
1131  * needs processing and if so call out to the driver to initialize hardware
1132  * and transfer each message.
1133  *
1134  * Note that it is called both from the kthread itself and also from
1135  * inside spi_sync(); the queue extraction handling at the top of the
1136  * function should deal with this safely.
1137  */
1138 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1139 {
1140 	unsigned long flags;
1141 	bool was_busy = false;
1142 	int ret;
1143 
1144 	/* Lock queue */
1145 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1146 
1147 	/* Make sure we are not already running a message */
1148 	if (ctlr->cur_msg) {
1149 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1150 		return;
1151 	}
1152 
1153 	/* If another context is idling the device then defer */
1154 	if (ctlr->idling) {
1155 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1156 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1157 		return;
1158 	}
1159 
1160 	/* Check if the queue is idle */
1161 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1162 		if (!ctlr->busy) {
1163 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1164 			return;
1165 		}
1166 
1167 		/* Only do teardown in the thread */
1168 		if (!in_kthread) {
1169 			kthread_queue_work(&ctlr->kworker,
1170 					   &ctlr->pump_messages);
1171 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1172 			return;
1173 		}
1174 
1175 		ctlr->busy = false;
1176 		ctlr->idling = true;
1177 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1178 
1179 		kfree(ctlr->dummy_rx);
1180 		ctlr->dummy_rx = NULL;
1181 		kfree(ctlr->dummy_tx);
1182 		ctlr->dummy_tx = NULL;
1183 		if (ctlr->unprepare_transfer_hardware &&
1184 		    ctlr->unprepare_transfer_hardware(ctlr))
1185 			dev_err(&ctlr->dev,
1186 				"failed to unprepare transfer hardware\n");
1187 		if (ctlr->auto_runtime_pm) {
1188 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1189 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1190 		}
1191 		trace_spi_controller_idle(ctlr);
1192 
1193 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1194 		ctlr->idling = false;
1195 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1196 		return;
1197 	}
1198 
1199 	/* Extract head of queue */
1200 	ctlr->cur_msg =
1201 		list_first_entry(&ctlr->queue, struct spi_message, queue);
1202 
1203 	list_del_init(&ctlr->cur_msg->queue);
1204 	if (ctlr->busy)
1205 		was_busy = true;
1206 	else
1207 		ctlr->busy = true;
1208 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1209 
1210 	mutex_lock(&ctlr->io_mutex);
1211 
1212 	if (!was_busy && ctlr->auto_runtime_pm) {
1213 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1214 		if (ret < 0) {
1215 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1216 				ret);
1217 			mutex_unlock(&ctlr->io_mutex);
1218 			return;
1219 		}
1220 	}
1221 
1222 	if (!was_busy)
1223 		trace_spi_controller_busy(ctlr);
1224 
1225 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1226 		ret = ctlr->prepare_transfer_hardware(ctlr);
1227 		if (ret) {
1228 			dev_err(&ctlr->dev,
1229 				"failed to prepare transfer hardware\n");
1230 
1231 			if (ctlr->auto_runtime_pm)
1232 				pm_runtime_put(ctlr->dev.parent);
1233 			mutex_unlock(&ctlr->io_mutex);
1234 			return;
1235 		}
1236 	}
1237 
1238 	trace_spi_message_start(ctlr->cur_msg);
1239 
1240 	if (ctlr->prepare_message) {
1241 		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1242 		if (ret) {
1243 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1244 				ret);
1245 			ctlr->cur_msg->status = ret;
1246 			spi_finalize_current_message(ctlr);
1247 			goto out;
1248 		}
1249 		ctlr->cur_msg_prepared = true;
1250 	}
1251 
1252 	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1253 	if (ret) {
1254 		ctlr->cur_msg->status = ret;
1255 		spi_finalize_current_message(ctlr);
1256 		goto out;
1257 	}
1258 
1259 	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1260 	if (ret) {
1261 		dev_err(&ctlr->dev,
1262 			"failed to transfer one message from queue\n");
1263 		goto out;
1264 	}
1265 
1266 out:
1267 	mutex_unlock(&ctlr->io_mutex);
1268 
1269 	/* Prod the scheduler in case transfer_one() was busy waiting */
1270 	if (!ret)
1271 		cond_resched();
1272 }
1273 
1274 /**
1275  * spi_pump_messages - kthread work function which processes spi message queue
1276  * @work: pointer to kthread work struct contained in the controller struct
1277  */
1278 static void spi_pump_messages(struct kthread_work *work)
1279 {
1280 	struct spi_controller *ctlr =
1281 		container_of(work, struct spi_controller, pump_messages);
1282 
1283 	__spi_pump_messages(ctlr, true);
1284 }
1285 
1286 static int spi_init_queue(struct spi_controller *ctlr)
1287 {
1288 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1289 
1290 	ctlr->running = false;
1291 	ctlr->busy = false;
1292 
1293 	kthread_init_worker(&ctlr->kworker);
1294 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1295 					 "%s", dev_name(&ctlr->dev));
1296 	if (IS_ERR(ctlr->kworker_task)) {
1297 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1298 		return PTR_ERR(ctlr->kworker_task);
1299 	}
1300 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1301 
1302 	/*
1303 	 * Controller config will indicate if this controller should run the
1304 	 * message pump with high (realtime) priority to reduce the transfer
1305 	 * latency on the bus by minimising the delay between a transfer
1306 	 * request and the scheduling of the message pump thread. Without this
1307 	 * setting the message pump thread will remain at default priority.
1308 	 */
1309 	if (ctlr->rt) {
1310 		dev_info(&ctlr->dev,
1311 			"will run message pump with realtime priority\n");
1312 		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 /**
1319  * spi_get_next_queued_message() - called by driver to check for queued
1320  * messages
1321  * @ctlr: the controller to check for queued messages
1322  *
1323  * If there are more messages in the queue, the next message is returned from
1324  * this call.
1325  *
1326  * Return: the next message in the queue, else NULL if the queue is empty.
1327  */
1328 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1329 {
1330 	struct spi_message *next;
1331 	unsigned long flags;
1332 
1333 	/* get a pointer to the next message, if any */
1334 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1335 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1336 					queue);
1337 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1338 
1339 	return next;
1340 }
1341 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1342 
1343 /**
1344  * spi_finalize_current_message() - the current message is complete
1345  * @ctlr: the controller to return the message to
1346  *
1347  * Called by the driver to notify the core that the message in the front of the
1348  * queue is complete and can be removed from the queue.
1349  */
1350 void spi_finalize_current_message(struct spi_controller *ctlr)
1351 {
1352 	struct spi_message *mesg;
1353 	unsigned long flags;
1354 	int ret;
1355 
1356 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1357 	mesg = ctlr->cur_msg;
1358 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1359 
1360 	spi_unmap_msg(ctlr, mesg);
1361 
1362 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1363 		ret = ctlr->unprepare_message(ctlr, mesg);
1364 		if (ret) {
1365 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1366 				ret);
1367 		}
1368 	}
1369 
1370 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1371 	ctlr->cur_msg = NULL;
1372 	ctlr->cur_msg_prepared = false;
1373 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1374 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1375 
1376 	trace_spi_message_done(mesg);
1377 
1378 	mesg->state = NULL;
1379 	if (mesg->complete)
1380 		mesg->complete(mesg->context);
1381 }
1382 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1383 
1384 static int spi_start_queue(struct spi_controller *ctlr)
1385 {
1386 	unsigned long flags;
1387 
1388 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1389 
1390 	if (ctlr->running || ctlr->busy) {
1391 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1392 		return -EBUSY;
1393 	}
1394 
1395 	ctlr->running = true;
1396 	ctlr->cur_msg = NULL;
1397 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1398 
1399 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1400 
1401 	return 0;
1402 }
1403 
1404 static int spi_stop_queue(struct spi_controller *ctlr)
1405 {
1406 	unsigned long flags;
1407 	unsigned limit = 500;
1408 	int ret = 0;
1409 
1410 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1411 
1412 	/*
1413 	 * This is a bit lame, but is optimized for the common execution path.
1414 	 * A wait_queue on the ctlr->busy could be used, but then the common
1415 	 * execution path (pump_messages) would be required to call wake_up or
1416 	 * friends on every SPI message. Do this instead.
1417 	 */
1418 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1419 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1420 		usleep_range(10000, 11000);
1421 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1422 	}
1423 
1424 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1425 		ret = -EBUSY;
1426 	else
1427 		ctlr->running = false;
1428 
1429 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1430 
1431 	if (ret) {
1432 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1433 		return ret;
1434 	}
1435 	return ret;
1436 }
1437 
1438 static int spi_destroy_queue(struct spi_controller *ctlr)
1439 {
1440 	int ret;
1441 
1442 	ret = spi_stop_queue(ctlr);
1443 
1444 	/*
1445 	 * kthread_flush_worker will block until all work is done.
1446 	 * If the reason that stop_queue timed out is that the work will never
1447 	 * finish, then it does no good to call flush/stop thread, so
1448 	 * return anyway.
1449 	 */
1450 	if (ret) {
1451 		dev_err(&ctlr->dev, "problem destroying queue\n");
1452 		return ret;
1453 	}
1454 
1455 	kthread_flush_worker(&ctlr->kworker);
1456 	kthread_stop(ctlr->kworker_task);
1457 
1458 	return 0;
1459 }
1460 
1461 static int __spi_queued_transfer(struct spi_device *spi,
1462 				 struct spi_message *msg,
1463 				 bool need_pump)
1464 {
1465 	struct spi_controller *ctlr = spi->controller;
1466 	unsigned long flags;
1467 
1468 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1469 
1470 	if (!ctlr->running) {
1471 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1472 		return -ESHUTDOWN;
1473 	}
1474 	msg->actual_length = 0;
1475 	msg->status = -EINPROGRESS;
1476 
1477 	list_add_tail(&msg->queue, &ctlr->queue);
1478 	if (!ctlr->busy && need_pump)
1479 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1480 
1481 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1482 	return 0;
1483 }
1484 
1485 /**
1486  * spi_queued_transfer - transfer function for queued transfers
1487  * @spi: spi device which is requesting transfer
1488  * @msg: spi message which is to handled is queued to driver queue
1489  *
1490  * Return: zero on success, else a negative error code.
1491  */
1492 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1493 {
1494 	return __spi_queued_transfer(spi, msg, true);
1495 }
1496 
1497 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1498 {
1499 	int ret;
1500 
1501 	ctlr->transfer = spi_queued_transfer;
1502 	if (!ctlr->transfer_one_message)
1503 		ctlr->transfer_one_message = spi_transfer_one_message;
1504 
1505 	/* Initialize and start queue */
1506 	ret = spi_init_queue(ctlr);
1507 	if (ret) {
1508 		dev_err(&ctlr->dev, "problem initializing queue\n");
1509 		goto err_init_queue;
1510 	}
1511 	ctlr->queued = true;
1512 	ret = spi_start_queue(ctlr);
1513 	if (ret) {
1514 		dev_err(&ctlr->dev, "problem starting queue\n");
1515 		goto err_start_queue;
1516 	}
1517 
1518 	return 0;
1519 
1520 err_start_queue:
1521 	spi_destroy_queue(ctlr);
1522 err_init_queue:
1523 	return ret;
1524 }
1525 
1526 /*-------------------------------------------------------------------------*/
1527 
1528 #if defined(CONFIG_OF)
1529 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1530 			   struct device_node *nc)
1531 {
1532 	u32 value;
1533 	int rc;
1534 
1535 	/* Mode (clock phase/polarity/etc.) */
1536 	if (of_find_property(nc, "spi-cpha", NULL))
1537 		spi->mode |= SPI_CPHA;
1538 	if (of_find_property(nc, "spi-cpol", NULL))
1539 		spi->mode |= SPI_CPOL;
1540 	if (of_find_property(nc, "spi-cs-high", NULL))
1541 		spi->mode |= SPI_CS_HIGH;
1542 	if (of_find_property(nc, "spi-3wire", NULL))
1543 		spi->mode |= SPI_3WIRE;
1544 	if (of_find_property(nc, "spi-lsb-first", NULL))
1545 		spi->mode |= SPI_LSB_FIRST;
1546 
1547 	/* Device DUAL/QUAD mode */
1548 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1549 		switch (value) {
1550 		case 1:
1551 			break;
1552 		case 2:
1553 			spi->mode |= SPI_TX_DUAL;
1554 			break;
1555 		case 4:
1556 			spi->mode |= SPI_TX_QUAD;
1557 			break;
1558 		default:
1559 			dev_warn(&ctlr->dev,
1560 				"spi-tx-bus-width %d not supported\n",
1561 				value);
1562 			break;
1563 		}
1564 	}
1565 
1566 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1567 		switch (value) {
1568 		case 1:
1569 			break;
1570 		case 2:
1571 			spi->mode |= SPI_RX_DUAL;
1572 			break;
1573 		case 4:
1574 			spi->mode |= SPI_RX_QUAD;
1575 			break;
1576 		default:
1577 			dev_warn(&ctlr->dev,
1578 				"spi-rx-bus-width %d not supported\n",
1579 				value);
1580 			break;
1581 		}
1582 	}
1583 
1584 	if (spi_controller_is_slave(ctlr)) {
1585 		if (strcmp(nc->name, "slave")) {
1586 			dev_err(&ctlr->dev, "%s is not called 'slave'\n",
1587 				nc->full_name);
1588 			return -EINVAL;
1589 		}
1590 		return 0;
1591 	}
1592 
1593 	/* Device address */
1594 	rc = of_property_read_u32(nc, "reg", &value);
1595 	if (rc) {
1596 		dev_err(&ctlr->dev, "%s has no valid 'reg' property (%d)\n",
1597 			nc->full_name, rc);
1598 		return rc;
1599 	}
1600 	spi->chip_select = value;
1601 
1602 	/* Device speed */
1603 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1604 	if (rc) {
1605 		dev_err(&ctlr->dev,
1606 			"%s has no valid 'spi-max-frequency' property (%d)\n",
1607 			nc->full_name, rc);
1608 		return rc;
1609 	}
1610 	spi->max_speed_hz = value;
1611 
1612 	return 0;
1613 }
1614 
1615 static struct spi_device *
1616 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1617 {
1618 	struct spi_device *spi;
1619 	int rc;
1620 
1621 	/* Alloc an spi_device */
1622 	spi = spi_alloc_device(ctlr);
1623 	if (!spi) {
1624 		dev_err(&ctlr->dev, "spi_device alloc error for %s\n",
1625 			nc->full_name);
1626 		rc = -ENOMEM;
1627 		goto err_out;
1628 	}
1629 
1630 	/* Select device driver */
1631 	rc = of_modalias_node(nc, spi->modalias,
1632 				sizeof(spi->modalias));
1633 	if (rc < 0) {
1634 		dev_err(&ctlr->dev, "cannot find modalias for %s\n",
1635 			nc->full_name);
1636 		goto err_out;
1637 	}
1638 
1639 	rc = of_spi_parse_dt(ctlr, spi, nc);
1640 	if (rc)
1641 		goto err_out;
1642 
1643 	/* Store a pointer to the node in the device structure */
1644 	of_node_get(nc);
1645 	spi->dev.of_node = nc;
1646 
1647 	/* Register the new device */
1648 	rc = spi_add_device(spi);
1649 	if (rc) {
1650 		dev_err(&ctlr->dev, "spi_device register error %s\n",
1651 			nc->full_name);
1652 		goto err_of_node_put;
1653 	}
1654 
1655 	return spi;
1656 
1657 err_of_node_put:
1658 	of_node_put(nc);
1659 err_out:
1660 	spi_dev_put(spi);
1661 	return ERR_PTR(rc);
1662 }
1663 
1664 /**
1665  * of_register_spi_devices() - Register child devices onto the SPI bus
1666  * @ctlr:	Pointer to spi_controller device
1667  *
1668  * Registers an spi_device for each child node of controller node which
1669  * represents a valid SPI slave.
1670  */
1671 static void of_register_spi_devices(struct spi_controller *ctlr)
1672 {
1673 	struct spi_device *spi;
1674 	struct device_node *nc;
1675 
1676 	if (!ctlr->dev.of_node)
1677 		return;
1678 
1679 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1680 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1681 			continue;
1682 		spi = of_register_spi_device(ctlr, nc);
1683 		if (IS_ERR(spi)) {
1684 			dev_warn(&ctlr->dev,
1685 				 "Failed to create SPI device for %s\n",
1686 				 nc->full_name);
1687 			of_node_clear_flag(nc, OF_POPULATED);
1688 		}
1689 	}
1690 }
1691 #else
1692 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1693 #endif
1694 
1695 #ifdef CONFIG_ACPI
1696 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1697 {
1698 	struct spi_device *spi = data;
1699 	struct spi_controller *ctlr = spi->controller;
1700 
1701 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1702 		struct acpi_resource_spi_serialbus *sb;
1703 
1704 		sb = &ares->data.spi_serial_bus;
1705 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1706 			/*
1707 			 * ACPI DeviceSelection numbering is handled by the
1708 			 * host controller driver in Windows and can vary
1709 			 * from driver to driver. In Linux we always expect
1710 			 * 0 .. max - 1 so we need to ask the driver to
1711 			 * translate between the two schemes.
1712 			 */
1713 			if (ctlr->fw_translate_cs) {
1714 				int cs = ctlr->fw_translate_cs(ctlr,
1715 						sb->device_selection);
1716 				if (cs < 0)
1717 					return cs;
1718 				spi->chip_select = cs;
1719 			} else {
1720 				spi->chip_select = sb->device_selection;
1721 			}
1722 
1723 			spi->max_speed_hz = sb->connection_speed;
1724 
1725 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1726 				spi->mode |= SPI_CPHA;
1727 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1728 				spi->mode |= SPI_CPOL;
1729 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1730 				spi->mode |= SPI_CS_HIGH;
1731 		}
1732 	} else if (spi->irq < 0) {
1733 		struct resource r;
1734 
1735 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1736 			spi->irq = r.start;
1737 	}
1738 
1739 	/* Always tell the ACPI core to skip this resource */
1740 	return 1;
1741 }
1742 
1743 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1744 					    struct acpi_device *adev)
1745 {
1746 	struct list_head resource_list;
1747 	struct spi_device *spi;
1748 	int ret;
1749 
1750 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1751 	    acpi_device_enumerated(adev))
1752 		return AE_OK;
1753 
1754 	spi = spi_alloc_device(ctlr);
1755 	if (!spi) {
1756 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1757 			dev_name(&adev->dev));
1758 		return AE_NO_MEMORY;
1759 	}
1760 
1761 	ACPI_COMPANION_SET(&spi->dev, adev);
1762 	spi->irq = -1;
1763 
1764 	INIT_LIST_HEAD(&resource_list);
1765 	ret = acpi_dev_get_resources(adev, &resource_list,
1766 				     acpi_spi_add_resource, spi);
1767 	acpi_dev_free_resource_list(&resource_list);
1768 
1769 	if (ret < 0 || !spi->max_speed_hz) {
1770 		spi_dev_put(spi);
1771 		return AE_OK;
1772 	}
1773 
1774 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1775 			  sizeof(spi->modalias));
1776 
1777 	if (spi->irq < 0)
1778 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1779 
1780 	acpi_device_set_enumerated(adev);
1781 
1782 	adev->power.flags.ignore_parent = true;
1783 	if (spi_add_device(spi)) {
1784 		adev->power.flags.ignore_parent = false;
1785 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1786 			dev_name(&adev->dev));
1787 		spi_dev_put(spi);
1788 	}
1789 
1790 	return AE_OK;
1791 }
1792 
1793 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1794 				       void *data, void **return_value)
1795 {
1796 	struct spi_controller *ctlr = data;
1797 	struct acpi_device *adev;
1798 
1799 	if (acpi_bus_get_device(handle, &adev))
1800 		return AE_OK;
1801 
1802 	return acpi_register_spi_device(ctlr, adev);
1803 }
1804 
1805 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1806 {
1807 	acpi_status status;
1808 	acpi_handle handle;
1809 
1810 	handle = ACPI_HANDLE(ctlr->dev.parent);
1811 	if (!handle)
1812 		return;
1813 
1814 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1815 				     acpi_spi_add_device, NULL, ctlr, NULL);
1816 	if (ACPI_FAILURE(status))
1817 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1818 }
1819 #else
1820 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1821 #endif /* CONFIG_ACPI */
1822 
1823 static void spi_controller_release(struct device *dev)
1824 {
1825 	struct spi_controller *ctlr;
1826 
1827 	ctlr = container_of(dev, struct spi_controller, dev);
1828 	kfree(ctlr);
1829 }
1830 
1831 static struct class spi_master_class = {
1832 	.name		= "spi_master",
1833 	.owner		= THIS_MODULE,
1834 	.dev_release	= spi_controller_release,
1835 	.dev_groups	= spi_master_groups,
1836 };
1837 
1838 #ifdef CONFIG_SPI_SLAVE
1839 /**
1840  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1841  *		     controller
1842  * @spi: device used for the current transfer
1843  */
1844 int spi_slave_abort(struct spi_device *spi)
1845 {
1846 	struct spi_controller *ctlr = spi->controller;
1847 
1848 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1849 		return ctlr->slave_abort(ctlr);
1850 
1851 	return -ENOTSUPP;
1852 }
1853 EXPORT_SYMBOL_GPL(spi_slave_abort);
1854 
1855 static int match_true(struct device *dev, void *data)
1856 {
1857 	return 1;
1858 }
1859 
1860 static ssize_t spi_slave_show(struct device *dev,
1861 			      struct device_attribute *attr, char *buf)
1862 {
1863 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1864 						   dev);
1865 	struct device *child;
1866 
1867 	child = device_find_child(&ctlr->dev, NULL, match_true);
1868 	return sprintf(buf, "%s\n",
1869 		       child ? to_spi_device(child)->modalias : NULL);
1870 }
1871 
1872 static ssize_t spi_slave_store(struct device *dev,
1873 			       struct device_attribute *attr, const char *buf,
1874 			       size_t count)
1875 {
1876 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1877 						   dev);
1878 	struct spi_device *spi;
1879 	struct device *child;
1880 	char name[32];
1881 	int rc;
1882 
1883 	rc = sscanf(buf, "%31s", name);
1884 	if (rc != 1 || !name[0])
1885 		return -EINVAL;
1886 
1887 	child = device_find_child(&ctlr->dev, NULL, match_true);
1888 	if (child) {
1889 		/* Remove registered slave */
1890 		device_unregister(child);
1891 		put_device(child);
1892 	}
1893 
1894 	if (strcmp(name, "(null)")) {
1895 		/* Register new slave */
1896 		spi = spi_alloc_device(ctlr);
1897 		if (!spi)
1898 			return -ENOMEM;
1899 
1900 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
1901 
1902 		rc = spi_add_device(spi);
1903 		if (rc) {
1904 			spi_dev_put(spi);
1905 			return rc;
1906 		}
1907 	}
1908 
1909 	return count;
1910 }
1911 
1912 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1913 
1914 static struct attribute *spi_slave_attrs[] = {
1915 	&dev_attr_slave.attr,
1916 	NULL,
1917 };
1918 
1919 static const struct attribute_group spi_slave_group = {
1920 	.attrs = spi_slave_attrs,
1921 };
1922 
1923 static const struct attribute_group *spi_slave_groups[] = {
1924 	&spi_controller_statistics_group,
1925 	&spi_slave_group,
1926 	NULL,
1927 };
1928 
1929 static struct class spi_slave_class = {
1930 	.name		= "spi_slave",
1931 	.owner		= THIS_MODULE,
1932 	.dev_release	= spi_controller_release,
1933 	.dev_groups	= spi_slave_groups,
1934 };
1935 #else
1936 extern struct class spi_slave_class;	/* dummy */
1937 #endif
1938 
1939 /**
1940  * __spi_alloc_controller - allocate an SPI master or slave controller
1941  * @dev: the controller, possibly using the platform_bus
1942  * @size: how much zeroed driver-private data to allocate; the pointer to this
1943  *	memory is in the driver_data field of the returned device,
1944  *	accessible with spi_controller_get_devdata().
1945  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1946  *	slave (true) controller
1947  * Context: can sleep
1948  *
1949  * This call is used only by SPI controller drivers, which are the
1950  * only ones directly touching chip registers.  It's how they allocate
1951  * an spi_controller structure, prior to calling spi_register_controller().
1952  *
1953  * This must be called from context that can sleep.
1954  *
1955  * The caller is responsible for assigning the bus number and initializing the
1956  * controller's methods before calling spi_register_controller(); and (after
1957  * errors adding the device) calling spi_controller_put() to prevent a memory
1958  * leak.
1959  *
1960  * Return: the SPI controller structure on success, else NULL.
1961  */
1962 struct spi_controller *__spi_alloc_controller(struct device *dev,
1963 					      unsigned int size, bool slave)
1964 {
1965 	struct spi_controller	*ctlr;
1966 
1967 	if (!dev)
1968 		return NULL;
1969 
1970 	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
1971 	if (!ctlr)
1972 		return NULL;
1973 
1974 	device_initialize(&ctlr->dev);
1975 	ctlr->bus_num = -1;
1976 	ctlr->num_chipselect = 1;
1977 	ctlr->slave = slave;
1978 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
1979 		ctlr->dev.class = &spi_slave_class;
1980 	else
1981 		ctlr->dev.class = &spi_master_class;
1982 	ctlr->dev.parent = dev;
1983 	pm_suspend_ignore_children(&ctlr->dev, true);
1984 	spi_controller_set_devdata(ctlr, &ctlr[1]);
1985 
1986 	return ctlr;
1987 }
1988 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
1989 
1990 #ifdef CONFIG_OF
1991 static int of_spi_register_master(struct spi_controller *ctlr)
1992 {
1993 	int nb, i, *cs;
1994 	struct device_node *np = ctlr->dev.of_node;
1995 
1996 	if (!np)
1997 		return 0;
1998 
1999 	nb = of_gpio_named_count(np, "cs-gpios");
2000 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2001 
2002 	/* Return error only for an incorrectly formed cs-gpios property */
2003 	if (nb == 0 || nb == -ENOENT)
2004 		return 0;
2005 	else if (nb < 0)
2006 		return nb;
2007 
2008 	cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2009 			  GFP_KERNEL);
2010 	ctlr->cs_gpios = cs;
2011 
2012 	if (!ctlr->cs_gpios)
2013 		return -ENOMEM;
2014 
2015 	for (i = 0; i < ctlr->num_chipselect; i++)
2016 		cs[i] = -ENOENT;
2017 
2018 	for (i = 0; i < nb; i++)
2019 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2020 
2021 	return 0;
2022 }
2023 #else
2024 static int of_spi_register_master(struct spi_controller *ctlr)
2025 {
2026 	return 0;
2027 }
2028 #endif
2029 
2030 /**
2031  * spi_register_controller - register SPI master or slave controller
2032  * @ctlr: initialized master, originally from spi_alloc_master() or
2033  *	spi_alloc_slave()
2034  * Context: can sleep
2035  *
2036  * SPI controllers connect to their drivers using some non-SPI bus,
2037  * such as the platform bus.  The final stage of probe() in that code
2038  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2039  *
2040  * SPI controllers use board specific (often SOC specific) bus numbers,
2041  * and board-specific addressing for SPI devices combines those numbers
2042  * with chip select numbers.  Since SPI does not directly support dynamic
2043  * device identification, boards need configuration tables telling which
2044  * chip is at which address.
2045  *
2046  * This must be called from context that can sleep.  It returns zero on
2047  * success, else a negative error code (dropping the controller's refcount).
2048  * After a successful return, the caller is responsible for calling
2049  * spi_unregister_controller().
2050  *
2051  * Return: zero on success, else a negative error code.
2052  */
2053 int spi_register_controller(struct spi_controller *ctlr)
2054 {
2055 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
2056 	struct device		*dev = ctlr->dev.parent;
2057 	struct boardinfo	*bi;
2058 	int			status = -ENODEV;
2059 	int			dynamic = 0;
2060 
2061 	if (!dev)
2062 		return -ENODEV;
2063 
2064 	if (!spi_controller_is_slave(ctlr)) {
2065 		status = of_spi_register_master(ctlr);
2066 		if (status)
2067 			return status;
2068 	}
2069 
2070 	/* even if it's just one always-selected device, there must
2071 	 * be at least one chipselect
2072 	 */
2073 	if (ctlr->num_chipselect == 0)
2074 		return -EINVAL;
2075 
2076 	if ((ctlr->bus_num < 0) && ctlr->dev.of_node)
2077 		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
2078 
2079 	/* convention:  dynamically assigned bus IDs count down from the max */
2080 	if (ctlr->bus_num < 0) {
2081 		/* FIXME switch to an IDR based scheme, something like
2082 		 * I2C now uses, so we can't run out of "dynamic" IDs
2083 		 */
2084 		ctlr->bus_num = atomic_dec_return(&dyn_bus_id);
2085 		dynamic = 1;
2086 	}
2087 
2088 	INIT_LIST_HEAD(&ctlr->queue);
2089 	spin_lock_init(&ctlr->queue_lock);
2090 	spin_lock_init(&ctlr->bus_lock_spinlock);
2091 	mutex_init(&ctlr->bus_lock_mutex);
2092 	mutex_init(&ctlr->io_mutex);
2093 	ctlr->bus_lock_flag = 0;
2094 	init_completion(&ctlr->xfer_completion);
2095 	if (!ctlr->max_dma_len)
2096 		ctlr->max_dma_len = INT_MAX;
2097 
2098 	/* register the device, then userspace will see it.
2099 	 * registration fails if the bus ID is in use.
2100 	 */
2101 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2102 	status = device_add(&ctlr->dev);
2103 	if (status < 0)
2104 		goto done;
2105 	dev_dbg(dev, "registered %s %s%s\n",
2106 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2107 			dev_name(&ctlr->dev), dynamic ? " (dynamic)" : "");
2108 
2109 	/* If we're using a queued driver, start the queue */
2110 	if (ctlr->transfer)
2111 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2112 	else {
2113 		status = spi_controller_initialize_queue(ctlr);
2114 		if (status) {
2115 			device_del(&ctlr->dev);
2116 			goto done;
2117 		}
2118 	}
2119 	/* add statistics */
2120 	spin_lock_init(&ctlr->statistics.lock);
2121 
2122 	mutex_lock(&board_lock);
2123 	list_add_tail(&ctlr->list, &spi_controller_list);
2124 	list_for_each_entry(bi, &board_list, list)
2125 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2126 	mutex_unlock(&board_lock);
2127 
2128 	/* Register devices from the device tree and ACPI */
2129 	of_register_spi_devices(ctlr);
2130 	acpi_register_spi_devices(ctlr);
2131 done:
2132 	return status;
2133 }
2134 EXPORT_SYMBOL_GPL(spi_register_controller);
2135 
2136 static void devm_spi_unregister(struct device *dev, void *res)
2137 {
2138 	spi_unregister_controller(*(struct spi_controller **)res);
2139 }
2140 
2141 /**
2142  * devm_spi_register_controller - register managed SPI master or slave
2143  *	controller
2144  * @dev:    device managing SPI controller
2145  * @ctlr: initialized controller, originally from spi_alloc_master() or
2146  *	spi_alloc_slave()
2147  * Context: can sleep
2148  *
2149  * Register a SPI device as with spi_register_controller() which will
2150  * automatically be unregister
2151  *
2152  * Return: zero on success, else a negative error code.
2153  */
2154 int devm_spi_register_controller(struct device *dev,
2155 				 struct spi_controller *ctlr)
2156 {
2157 	struct spi_controller **ptr;
2158 	int ret;
2159 
2160 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2161 	if (!ptr)
2162 		return -ENOMEM;
2163 
2164 	ret = spi_register_controller(ctlr);
2165 	if (!ret) {
2166 		*ptr = ctlr;
2167 		devres_add(dev, ptr);
2168 	} else {
2169 		devres_free(ptr);
2170 	}
2171 
2172 	return ret;
2173 }
2174 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2175 
2176 static int __unregister(struct device *dev, void *null)
2177 {
2178 	spi_unregister_device(to_spi_device(dev));
2179 	return 0;
2180 }
2181 
2182 /**
2183  * spi_unregister_controller - unregister SPI master or slave controller
2184  * @ctlr: the controller being unregistered
2185  * Context: can sleep
2186  *
2187  * This call is used only by SPI controller drivers, which are the
2188  * only ones directly touching chip registers.
2189  *
2190  * This must be called from context that can sleep.
2191  */
2192 void spi_unregister_controller(struct spi_controller *ctlr)
2193 {
2194 	int dummy;
2195 
2196 	if (ctlr->queued) {
2197 		if (spi_destroy_queue(ctlr))
2198 			dev_err(&ctlr->dev, "queue remove failed\n");
2199 	}
2200 
2201 	mutex_lock(&board_lock);
2202 	list_del(&ctlr->list);
2203 	mutex_unlock(&board_lock);
2204 
2205 	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2206 	device_unregister(&ctlr->dev);
2207 }
2208 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2209 
2210 int spi_controller_suspend(struct spi_controller *ctlr)
2211 {
2212 	int ret;
2213 
2214 	/* Basically no-ops for non-queued controllers */
2215 	if (!ctlr->queued)
2216 		return 0;
2217 
2218 	ret = spi_stop_queue(ctlr);
2219 	if (ret)
2220 		dev_err(&ctlr->dev, "queue stop failed\n");
2221 
2222 	return ret;
2223 }
2224 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2225 
2226 int spi_controller_resume(struct spi_controller *ctlr)
2227 {
2228 	int ret;
2229 
2230 	if (!ctlr->queued)
2231 		return 0;
2232 
2233 	ret = spi_start_queue(ctlr);
2234 	if (ret)
2235 		dev_err(&ctlr->dev, "queue restart failed\n");
2236 
2237 	return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(spi_controller_resume);
2240 
2241 static int __spi_controller_match(struct device *dev, const void *data)
2242 {
2243 	struct spi_controller *ctlr;
2244 	const u16 *bus_num = data;
2245 
2246 	ctlr = container_of(dev, struct spi_controller, dev);
2247 	return ctlr->bus_num == *bus_num;
2248 }
2249 
2250 /**
2251  * spi_busnum_to_master - look up master associated with bus_num
2252  * @bus_num: the master's bus number
2253  * Context: can sleep
2254  *
2255  * This call may be used with devices that are registered after
2256  * arch init time.  It returns a refcounted pointer to the relevant
2257  * spi_controller (which the caller must release), or NULL if there is
2258  * no such master registered.
2259  *
2260  * Return: the SPI master structure on success, else NULL.
2261  */
2262 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2263 {
2264 	struct device		*dev;
2265 	struct spi_controller	*ctlr = NULL;
2266 
2267 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2268 				__spi_controller_match);
2269 	if (dev)
2270 		ctlr = container_of(dev, struct spi_controller, dev);
2271 	/* reference got in class_find_device */
2272 	return ctlr;
2273 }
2274 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2275 
2276 /*-------------------------------------------------------------------------*/
2277 
2278 /* Core methods for SPI resource management */
2279 
2280 /**
2281  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2282  *                 during the processing of a spi_message while using
2283  *                 spi_transfer_one
2284  * @spi:     the spi device for which we allocate memory
2285  * @release: the release code to execute for this resource
2286  * @size:    size to alloc and return
2287  * @gfp:     GFP allocation flags
2288  *
2289  * Return: the pointer to the allocated data
2290  *
2291  * This may get enhanced in the future to allocate from a memory pool
2292  * of the @spi_device or @spi_controller to avoid repeated allocations.
2293  */
2294 void *spi_res_alloc(struct spi_device *spi,
2295 		    spi_res_release_t release,
2296 		    size_t size, gfp_t gfp)
2297 {
2298 	struct spi_res *sres;
2299 
2300 	sres = kzalloc(sizeof(*sres) + size, gfp);
2301 	if (!sres)
2302 		return NULL;
2303 
2304 	INIT_LIST_HEAD(&sres->entry);
2305 	sres->release = release;
2306 
2307 	return sres->data;
2308 }
2309 EXPORT_SYMBOL_GPL(spi_res_alloc);
2310 
2311 /**
2312  * spi_res_free - free an spi resource
2313  * @res: pointer to the custom data of a resource
2314  *
2315  */
2316 void spi_res_free(void *res)
2317 {
2318 	struct spi_res *sres = container_of(res, struct spi_res, data);
2319 
2320 	if (!res)
2321 		return;
2322 
2323 	WARN_ON(!list_empty(&sres->entry));
2324 	kfree(sres);
2325 }
2326 EXPORT_SYMBOL_GPL(spi_res_free);
2327 
2328 /**
2329  * spi_res_add - add a spi_res to the spi_message
2330  * @message: the spi message
2331  * @res:     the spi_resource
2332  */
2333 void spi_res_add(struct spi_message *message, void *res)
2334 {
2335 	struct spi_res *sres = container_of(res, struct spi_res, data);
2336 
2337 	WARN_ON(!list_empty(&sres->entry));
2338 	list_add_tail(&sres->entry, &message->resources);
2339 }
2340 EXPORT_SYMBOL_GPL(spi_res_add);
2341 
2342 /**
2343  * spi_res_release - release all spi resources for this message
2344  * @ctlr:  the @spi_controller
2345  * @message: the @spi_message
2346  */
2347 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2348 {
2349 	struct spi_res *res;
2350 
2351 	while (!list_empty(&message->resources)) {
2352 		res = list_last_entry(&message->resources,
2353 				      struct spi_res, entry);
2354 
2355 		if (res->release)
2356 			res->release(ctlr, message, res->data);
2357 
2358 		list_del(&res->entry);
2359 
2360 		kfree(res);
2361 	}
2362 }
2363 EXPORT_SYMBOL_GPL(spi_res_release);
2364 
2365 /*-------------------------------------------------------------------------*/
2366 
2367 /* Core methods for spi_message alterations */
2368 
2369 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2370 					    struct spi_message *msg,
2371 					    void *res)
2372 {
2373 	struct spi_replaced_transfers *rxfer = res;
2374 	size_t i;
2375 
2376 	/* call extra callback if requested */
2377 	if (rxfer->release)
2378 		rxfer->release(ctlr, msg, res);
2379 
2380 	/* insert replaced transfers back into the message */
2381 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2382 
2383 	/* remove the formerly inserted entries */
2384 	for (i = 0; i < rxfer->inserted; i++)
2385 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2386 }
2387 
2388 /**
2389  * spi_replace_transfers - replace transfers with several transfers
2390  *                         and register change with spi_message.resources
2391  * @msg:           the spi_message we work upon
2392  * @xfer_first:    the first spi_transfer we want to replace
2393  * @remove:        number of transfers to remove
2394  * @insert:        the number of transfers we want to insert instead
2395  * @release:       extra release code necessary in some circumstances
2396  * @extradatasize: extra data to allocate (with alignment guarantees
2397  *                 of struct @spi_transfer)
2398  * @gfp:           gfp flags
2399  *
2400  * Returns: pointer to @spi_replaced_transfers,
2401  *          PTR_ERR(...) in case of errors.
2402  */
2403 struct spi_replaced_transfers *spi_replace_transfers(
2404 	struct spi_message *msg,
2405 	struct spi_transfer *xfer_first,
2406 	size_t remove,
2407 	size_t insert,
2408 	spi_replaced_release_t release,
2409 	size_t extradatasize,
2410 	gfp_t gfp)
2411 {
2412 	struct spi_replaced_transfers *rxfer;
2413 	struct spi_transfer *xfer;
2414 	size_t i;
2415 
2416 	/* allocate the structure using spi_res */
2417 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2418 			      insert * sizeof(struct spi_transfer)
2419 			      + sizeof(struct spi_replaced_transfers)
2420 			      + extradatasize,
2421 			      gfp);
2422 	if (!rxfer)
2423 		return ERR_PTR(-ENOMEM);
2424 
2425 	/* the release code to invoke before running the generic release */
2426 	rxfer->release = release;
2427 
2428 	/* assign extradata */
2429 	if (extradatasize)
2430 		rxfer->extradata =
2431 			&rxfer->inserted_transfers[insert];
2432 
2433 	/* init the replaced_transfers list */
2434 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2435 
2436 	/* assign the list_entry after which we should reinsert
2437 	 * the @replaced_transfers - it may be spi_message.messages!
2438 	 */
2439 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2440 
2441 	/* remove the requested number of transfers */
2442 	for (i = 0; i < remove; i++) {
2443 		/* if the entry after replaced_after it is msg->transfers
2444 		 * then we have been requested to remove more transfers
2445 		 * than are in the list
2446 		 */
2447 		if (rxfer->replaced_after->next == &msg->transfers) {
2448 			dev_err(&msg->spi->dev,
2449 				"requested to remove more spi_transfers than are available\n");
2450 			/* insert replaced transfers back into the message */
2451 			list_splice(&rxfer->replaced_transfers,
2452 				    rxfer->replaced_after);
2453 
2454 			/* free the spi_replace_transfer structure */
2455 			spi_res_free(rxfer);
2456 
2457 			/* and return with an error */
2458 			return ERR_PTR(-EINVAL);
2459 		}
2460 
2461 		/* remove the entry after replaced_after from list of
2462 		 * transfers and add it to list of replaced_transfers
2463 		 */
2464 		list_move_tail(rxfer->replaced_after->next,
2465 			       &rxfer->replaced_transfers);
2466 	}
2467 
2468 	/* create copy of the given xfer with identical settings
2469 	 * based on the first transfer to get removed
2470 	 */
2471 	for (i = 0; i < insert; i++) {
2472 		/* we need to run in reverse order */
2473 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2474 
2475 		/* copy all spi_transfer data */
2476 		memcpy(xfer, xfer_first, sizeof(*xfer));
2477 
2478 		/* add to list */
2479 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2480 
2481 		/* clear cs_change and delay_usecs for all but the last */
2482 		if (i) {
2483 			xfer->cs_change = false;
2484 			xfer->delay_usecs = 0;
2485 		}
2486 	}
2487 
2488 	/* set up inserted */
2489 	rxfer->inserted = insert;
2490 
2491 	/* and register it with spi_res/spi_message */
2492 	spi_res_add(msg, rxfer);
2493 
2494 	return rxfer;
2495 }
2496 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2497 
2498 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2499 					struct spi_message *msg,
2500 					struct spi_transfer **xferp,
2501 					size_t maxsize,
2502 					gfp_t gfp)
2503 {
2504 	struct spi_transfer *xfer = *xferp, *xfers;
2505 	struct spi_replaced_transfers *srt;
2506 	size_t offset;
2507 	size_t count, i;
2508 
2509 	/* warn once about this fact that we are splitting a transfer */
2510 	dev_warn_once(&msg->spi->dev,
2511 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2512 		      xfer->len, maxsize);
2513 
2514 	/* calculate how many we have to replace */
2515 	count = DIV_ROUND_UP(xfer->len, maxsize);
2516 
2517 	/* create replacement */
2518 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2519 	if (IS_ERR(srt))
2520 		return PTR_ERR(srt);
2521 	xfers = srt->inserted_transfers;
2522 
2523 	/* now handle each of those newly inserted spi_transfers
2524 	 * note that the replacements spi_transfers all are preset
2525 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2526 	 * are all identical (as well as most others)
2527 	 * so we just have to fix up len and the pointers.
2528 	 *
2529 	 * this also includes support for the depreciated
2530 	 * spi_message.is_dma_mapped interface
2531 	 */
2532 
2533 	/* the first transfer just needs the length modified, so we
2534 	 * run it outside the loop
2535 	 */
2536 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2537 
2538 	/* all the others need rx_buf/tx_buf also set */
2539 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2540 		/* update rx_buf, tx_buf and dma */
2541 		if (xfers[i].rx_buf)
2542 			xfers[i].rx_buf += offset;
2543 		if (xfers[i].rx_dma)
2544 			xfers[i].rx_dma += offset;
2545 		if (xfers[i].tx_buf)
2546 			xfers[i].tx_buf += offset;
2547 		if (xfers[i].tx_dma)
2548 			xfers[i].tx_dma += offset;
2549 
2550 		/* update length */
2551 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2552 	}
2553 
2554 	/* we set up xferp to the last entry we have inserted,
2555 	 * so that we skip those already split transfers
2556 	 */
2557 	*xferp = &xfers[count - 1];
2558 
2559 	/* increment statistics counters */
2560 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2561 				       transfers_split_maxsize);
2562 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2563 				       transfers_split_maxsize);
2564 
2565 	return 0;
2566 }
2567 
2568 /**
2569  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2570  *                              when an individual transfer exceeds a
2571  *                              certain size
2572  * @ctlr:    the @spi_controller for this transfer
2573  * @msg:   the @spi_message to transform
2574  * @maxsize:  the maximum when to apply this
2575  * @gfp: GFP allocation flags
2576  *
2577  * Return: status of transformation
2578  */
2579 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2580 				struct spi_message *msg,
2581 				size_t maxsize,
2582 				gfp_t gfp)
2583 {
2584 	struct spi_transfer *xfer;
2585 	int ret;
2586 
2587 	/* iterate over the transfer_list,
2588 	 * but note that xfer is advanced to the last transfer inserted
2589 	 * to avoid checking sizes again unnecessarily (also xfer does
2590 	 * potentiall belong to a different list by the time the
2591 	 * replacement has happened
2592 	 */
2593 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2594 		if (xfer->len > maxsize) {
2595 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2596 							   maxsize, gfp);
2597 			if (ret)
2598 				return ret;
2599 		}
2600 	}
2601 
2602 	return 0;
2603 }
2604 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2605 
2606 /*-------------------------------------------------------------------------*/
2607 
2608 /* Core methods for SPI controller protocol drivers.  Some of the
2609  * other core methods are currently defined as inline functions.
2610  */
2611 
2612 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2613 					u8 bits_per_word)
2614 {
2615 	if (ctlr->bits_per_word_mask) {
2616 		/* Only 32 bits fit in the mask */
2617 		if (bits_per_word > 32)
2618 			return -EINVAL;
2619 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2620 			return -EINVAL;
2621 	}
2622 
2623 	return 0;
2624 }
2625 
2626 /**
2627  * spi_setup - setup SPI mode and clock rate
2628  * @spi: the device whose settings are being modified
2629  * Context: can sleep, and no requests are queued to the device
2630  *
2631  * SPI protocol drivers may need to update the transfer mode if the
2632  * device doesn't work with its default.  They may likewise need
2633  * to update clock rates or word sizes from initial values.  This function
2634  * changes those settings, and must be called from a context that can sleep.
2635  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2636  * effect the next time the device is selected and data is transferred to
2637  * or from it.  When this function returns, the spi device is deselected.
2638  *
2639  * Note that this call will fail if the protocol driver specifies an option
2640  * that the underlying controller or its driver does not support.  For
2641  * example, not all hardware supports wire transfers using nine bit words,
2642  * LSB-first wire encoding, or active-high chipselects.
2643  *
2644  * Return: zero on success, else a negative error code.
2645  */
2646 int spi_setup(struct spi_device *spi)
2647 {
2648 	unsigned	bad_bits, ugly_bits;
2649 	int		status;
2650 
2651 	/* check mode to prevent that DUAL and QUAD set at the same time
2652 	 */
2653 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2654 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2655 		dev_err(&spi->dev,
2656 		"setup: can not select dual and quad at the same time\n");
2657 		return -EINVAL;
2658 	}
2659 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2660 	 */
2661 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2662 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2663 		return -EINVAL;
2664 	/* help drivers fail *cleanly* when they need options
2665 	 * that aren't supported with their current controller
2666 	 */
2667 	bad_bits = spi->mode & ~spi->controller->mode_bits;
2668 	ugly_bits = bad_bits &
2669 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2670 	if (ugly_bits) {
2671 		dev_warn(&spi->dev,
2672 			 "setup: ignoring unsupported mode bits %x\n",
2673 			 ugly_bits);
2674 		spi->mode &= ~ugly_bits;
2675 		bad_bits &= ~ugly_bits;
2676 	}
2677 	if (bad_bits) {
2678 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2679 			bad_bits);
2680 		return -EINVAL;
2681 	}
2682 
2683 	if (!spi->bits_per_word)
2684 		spi->bits_per_word = 8;
2685 
2686 	status = __spi_validate_bits_per_word(spi->controller,
2687 					      spi->bits_per_word);
2688 	if (status)
2689 		return status;
2690 
2691 	if (!spi->max_speed_hz)
2692 		spi->max_speed_hz = spi->controller->max_speed_hz;
2693 
2694 	if (spi->controller->setup)
2695 		status = spi->controller->setup(spi);
2696 
2697 	spi_set_cs(spi, false);
2698 
2699 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2700 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2701 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2702 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2703 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2704 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2705 			spi->bits_per_word, spi->max_speed_hz,
2706 			status);
2707 
2708 	return status;
2709 }
2710 EXPORT_SYMBOL_GPL(spi_setup);
2711 
2712 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2713 {
2714 	struct spi_controller *ctlr = spi->controller;
2715 	struct spi_transfer *xfer;
2716 	int w_size;
2717 
2718 	if (list_empty(&message->transfers))
2719 		return -EINVAL;
2720 
2721 	/* Half-duplex links include original MicroWire, and ones with
2722 	 * only one data pin like SPI_3WIRE (switches direction) or where
2723 	 * either MOSI or MISO is missing.  They can also be caused by
2724 	 * software limitations.
2725 	 */
2726 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2727 	    (spi->mode & SPI_3WIRE)) {
2728 		unsigned flags = ctlr->flags;
2729 
2730 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2731 			if (xfer->rx_buf && xfer->tx_buf)
2732 				return -EINVAL;
2733 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2734 				return -EINVAL;
2735 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2736 				return -EINVAL;
2737 		}
2738 	}
2739 
2740 	/**
2741 	 * Set transfer bits_per_word and max speed as spi device default if
2742 	 * it is not set for this transfer.
2743 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2744 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2745 	 */
2746 	message->frame_length = 0;
2747 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2748 		message->frame_length += xfer->len;
2749 		if (!xfer->bits_per_word)
2750 			xfer->bits_per_word = spi->bits_per_word;
2751 
2752 		if (!xfer->speed_hz)
2753 			xfer->speed_hz = spi->max_speed_hz;
2754 		if (!xfer->speed_hz)
2755 			xfer->speed_hz = ctlr->max_speed_hz;
2756 
2757 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2758 			xfer->speed_hz = ctlr->max_speed_hz;
2759 
2760 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2761 			return -EINVAL;
2762 
2763 		/*
2764 		 * SPI transfer length should be multiple of SPI word size
2765 		 * where SPI word size should be power-of-two multiple
2766 		 */
2767 		if (xfer->bits_per_word <= 8)
2768 			w_size = 1;
2769 		else if (xfer->bits_per_word <= 16)
2770 			w_size = 2;
2771 		else
2772 			w_size = 4;
2773 
2774 		/* No partial transfers accepted */
2775 		if (xfer->len % w_size)
2776 			return -EINVAL;
2777 
2778 		if (xfer->speed_hz && ctlr->min_speed_hz &&
2779 		    xfer->speed_hz < ctlr->min_speed_hz)
2780 			return -EINVAL;
2781 
2782 		if (xfer->tx_buf && !xfer->tx_nbits)
2783 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2784 		if (xfer->rx_buf && !xfer->rx_nbits)
2785 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2786 		/* check transfer tx/rx_nbits:
2787 		 * 1. check the value matches one of single, dual and quad
2788 		 * 2. check tx/rx_nbits match the mode in spi_device
2789 		 */
2790 		if (xfer->tx_buf) {
2791 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2792 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2793 				xfer->tx_nbits != SPI_NBITS_QUAD)
2794 				return -EINVAL;
2795 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2796 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2797 				return -EINVAL;
2798 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2799 				!(spi->mode & SPI_TX_QUAD))
2800 				return -EINVAL;
2801 		}
2802 		/* check transfer rx_nbits */
2803 		if (xfer->rx_buf) {
2804 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2805 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2806 				xfer->rx_nbits != SPI_NBITS_QUAD)
2807 				return -EINVAL;
2808 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2809 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2810 				return -EINVAL;
2811 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2812 				!(spi->mode & SPI_RX_QUAD))
2813 				return -EINVAL;
2814 		}
2815 	}
2816 
2817 	message->status = -EINPROGRESS;
2818 
2819 	return 0;
2820 }
2821 
2822 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2823 {
2824 	struct spi_controller *ctlr = spi->controller;
2825 
2826 	message->spi = spi;
2827 
2828 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2829 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2830 
2831 	trace_spi_message_submit(message);
2832 
2833 	return ctlr->transfer(spi, message);
2834 }
2835 
2836 /**
2837  * spi_async - asynchronous SPI transfer
2838  * @spi: device with which data will be exchanged
2839  * @message: describes the data transfers, including completion callback
2840  * Context: any (irqs may be blocked, etc)
2841  *
2842  * This call may be used in_irq and other contexts which can't sleep,
2843  * as well as from task contexts which can sleep.
2844  *
2845  * The completion callback is invoked in a context which can't sleep.
2846  * Before that invocation, the value of message->status is undefined.
2847  * When the callback is issued, message->status holds either zero (to
2848  * indicate complete success) or a negative error code.  After that
2849  * callback returns, the driver which issued the transfer request may
2850  * deallocate the associated memory; it's no longer in use by any SPI
2851  * core or controller driver code.
2852  *
2853  * Note that although all messages to a spi_device are handled in
2854  * FIFO order, messages may go to different devices in other orders.
2855  * Some device might be higher priority, or have various "hard" access
2856  * time requirements, for example.
2857  *
2858  * On detection of any fault during the transfer, processing of
2859  * the entire message is aborted, and the device is deselected.
2860  * Until returning from the associated message completion callback,
2861  * no other spi_message queued to that device will be processed.
2862  * (This rule applies equally to all the synchronous transfer calls,
2863  * which are wrappers around this core asynchronous primitive.)
2864  *
2865  * Return: zero on success, else a negative error code.
2866  */
2867 int spi_async(struct spi_device *spi, struct spi_message *message)
2868 {
2869 	struct spi_controller *ctlr = spi->controller;
2870 	int ret;
2871 	unsigned long flags;
2872 
2873 	ret = __spi_validate(spi, message);
2874 	if (ret != 0)
2875 		return ret;
2876 
2877 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2878 
2879 	if (ctlr->bus_lock_flag)
2880 		ret = -EBUSY;
2881 	else
2882 		ret = __spi_async(spi, message);
2883 
2884 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2885 
2886 	return ret;
2887 }
2888 EXPORT_SYMBOL_GPL(spi_async);
2889 
2890 /**
2891  * spi_async_locked - version of spi_async with exclusive bus usage
2892  * @spi: device with which data will be exchanged
2893  * @message: describes the data transfers, including completion callback
2894  * Context: any (irqs may be blocked, etc)
2895  *
2896  * This call may be used in_irq and other contexts which can't sleep,
2897  * as well as from task contexts which can sleep.
2898  *
2899  * The completion callback is invoked in a context which can't sleep.
2900  * Before that invocation, the value of message->status is undefined.
2901  * When the callback is issued, message->status holds either zero (to
2902  * indicate complete success) or a negative error code.  After that
2903  * callback returns, the driver which issued the transfer request may
2904  * deallocate the associated memory; it's no longer in use by any SPI
2905  * core or controller driver code.
2906  *
2907  * Note that although all messages to a spi_device are handled in
2908  * FIFO order, messages may go to different devices in other orders.
2909  * Some device might be higher priority, or have various "hard" access
2910  * time requirements, for example.
2911  *
2912  * On detection of any fault during the transfer, processing of
2913  * the entire message is aborted, and the device is deselected.
2914  * Until returning from the associated message completion callback,
2915  * no other spi_message queued to that device will be processed.
2916  * (This rule applies equally to all the synchronous transfer calls,
2917  * which are wrappers around this core asynchronous primitive.)
2918  *
2919  * Return: zero on success, else a negative error code.
2920  */
2921 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2922 {
2923 	struct spi_controller *ctlr = spi->controller;
2924 	int ret;
2925 	unsigned long flags;
2926 
2927 	ret = __spi_validate(spi, message);
2928 	if (ret != 0)
2929 		return ret;
2930 
2931 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2932 
2933 	ret = __spi_async(spi, message);
2934 
2935 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2936 
2937 	return ret;
2938 
2939 }
2940 EXPORT_SYMBOL_GPL(spi_async_locked);
2941 
2942 
2943 int spi_flash_read(struct spi_device *spi,
2944 		   struct spi_flash_read_message *msg)
2945 
2946 {
2947 	struct spi_controller *master = spi->controller;
2948 	struct device *rx_dev = NULL;
2949 	int ret;
2950 
2951 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2952 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2953 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2954 		return -EINVAL;
2955 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2956 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2957 	    !(spi->mode & SPI_TX_QUAD))
2958 		return -EINVAL;
2959 	if (msg->data_nbits == SPI_NBITS_DUAL &&
2960 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2961 		return -EINVAL;
2962 	if (msg->data_nbits == SPI_NBITS_QUAD &&
2963 	    !(spi->mode &  SPI_RX_QUAD))
2964 		return -EINVAL;
2965 
2966 	if (master->auto_runtime_pm) {
2967 		ret = pm_runtime_get_sync(master->dev.parent);
2968 		if (ret < 0) {
2969 			dev_err(&master->dev, "Failed to power device: %d\n",
2970 				ret);
2971 			return ret;
2972 		}
2973 	}
2974 
2975 	mutex_lock(&master->bus_lock_mutex);
2976 	mutex_lock(&master->io_mutex);
2977 	if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
2978 		rx_dev = master->dma_rx->device->dev;
2979 		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2980 				  msg->buf, msg->len,
2981 				  DMA_FROM_DEVICE);
2982 		if (!ret)
2983 			msg->cur_msg_mapped = true;
2984 	}
2985 	ret = master->spi_flash_read(spi, msg);
2986 	if (msg->cur_msg_mapped)
2987 		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2988 			      DMA_FROM_DEVICE);
2989 	mutex_unlock(&master->io_mutex);
2990 	mutex_unlock(&master->bus_lock_mutex);
2991 
2992 	if (master->auto_runtime_pm)
2993 		pm_runtime_put(master->dev.parent);
2994 
2995 	return ret;
2996 }
2997 EXPORT_SYMBOL_GPL(spi_flash_read);
2998 
2999 /*-------------------------------------------------------------------------*/
3000 
3001 /* Utility methods for SPI protocol drivers, layered on
3002  * top of the core.  Some other utility methods are defined as
3003  * inline functions.
3004  */
3005 
3006 static void spi_complete(void *arg)
3007 {
3008 	complete(arg);
3009 }
3010 
3011 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3012 {
3013 	DECLARE_COMPLETION_ONSTACK(done);
3014 	int status;
3015 	struct spi_controller *ctlr = spi->controller;
3016 	unsigned long flags;
3017 
3018 	status = __spi_validate(spi, message);
3019 	if (status != 0)
3020 		return status;
3021 
3022 	message->complete = spi_complete;
3023 	message->context = &done;
3024 	message->spi = spi;
3025 
3026 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3027 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3028 
3029 	/* If we're not using the legacy transfer method then we will
3030 	 * try to transfer in the calling context so special case.
3031 	 * This code would be less tricky if we could remove the
3032 	 * support for driver implemented message queues.
3033 	 */
3034 	if (ctlr->transfer == spi_queued_transfer) {
3035 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3036 
3037 		trace_spi_message_submit(message);
3038 
3039 		status = __spi_queued_transfer(spi, message, false);
3040 
3041 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3042 	} else {
3043 		status = spi_async_locked(spi, message);
3044 	}
3045 
3046 	if (status == 0) {
3047 		/* Push out the messages in the calling context if we
3048 		 * can.
3049 		 */
3050 		if (ctlr->transfer == spi_queued_transfer) {
3051 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3052 						       spi_sync_immediate);
3053 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3054 						       spi_sync_immediate);
3055 			__spi_pump_messages(ctlr, false);
3056 		}
3057 
3058 		wait_for_completion(&done);
3059 		status = message->status;
3060 	}
3061 	message->context = NULL;
3062 	return status;
3063 }
3064 
3065 /**
3066  * spi_sync - blocking/synchronous SPI data transfers
3067  * @spi: device with which data will be exchanged
3068  * @message: describes the data transfers
3069  * Context: can sleep
3070  *
3071  * This call may only be used from a context that may sleep.  The sleep
3072  * is non-interruptible, and has no timeout.  Low-overhead controller
3073  * drivers may DMA directly into and out of the message buffers.
3074  *
3075  * Note that the SPI device's chip select is active during the message,
3076  * and then is normally disabled between messages.  Drivers for some
3077  * frequently-used devices may want to minimize costs of selecting a chip,
3078  * by leaving it selected in anticipation that the next message will go
3079  * to the same chip.  (That may increase power usage.)
3080  *
3081  * Also, the caller is guaranteeing that the memory associated with the
3082  * message will not be freed before this call returns.
3083  *
3084  * Return: zero on success, else a negative error code.
3085  */
3086 int spi_sync(struct spi_device *spi, struct spi_message *message)
3087 {
3088 	int ret;
3089 
3090 	mutex_lock(&spi->controller->bus_lock_mutex);
3091 	ret = __spi_sync(spi, message);
3092 	mutex_unlock(&spi->controller->bus_lock_mutex);
3093 
3094 	return ret;
3095 }
3096 EXPORT_SYMBOL_GPL(spi_sync);
3097 
3098 /**
3099  * spi_sync_locked - version of spi_sync with exclusive bus usage
3100  * @spi: device with which data will be exchanged
3101  * @message: describes the data transfers
3102  * Context: can sleep
3103  *
3104  * This call may only be used from a context that may sleep.  The sleep
3105  * is non-interruptible, and has no timeout.  Low-overhead controller
3106  * drivers may DMA directly into and out of the message buffers.
3107  *
3108  * This call should be used by drivers that require exclusive access to the
3109  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3110  * be released by a spi_bus_unlock call when the exclusive access is over.
3111  *
3112  * Return: zero on success, else a negative error code.
3113  */
3114 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3115 {
3116 	return __spi_sync(spi, message);
3117 }
3118 EXPORT_SYMBOL_GPL(spi_sync_locked);
3119 
3120 /**
3121  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3122  * @ctlr: SPI bus master that should be locked for exclusive bus access
3123  * Context: can sleep
3124  *
3125  * This call may only be used from a context that may sleep.  The sleep
3126  * is non-interruptible, and has no timeout.
3127  *
3128  * This call should be used by drivers that require exclusive access to the
3129  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3130  * exclusive access is over. Data transfer must be done by spi_sync_locked
3131  * and spi_async_locked calls when the SPI bus lock is held.
3132  *
3133  * Return: always zero.
3134  */
3135 int spi_bus_lock(struct spi_controller *ctlr)
3136 {
3137 	unsigned long flags;
3138 
3139 	mutex_lock(&ctlr->bus_lock_mutex);
3140 
3141 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3142 	ctlr->bus_lock_flag = 1;
3143 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3144 
3145 	/* mutex remains locked until spi_bus_unlock is called */
3146 
3147 	return 0;
3148 }
3149 EXPORT_SYMBOL_GPL(spi_bus_lock);
3150 
3151 /**
3152  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3153  * @ctlr: SPI bus master that was locked for exclusive bus access
3154  * Context: can sleep
3155  *
3156  * This call may only be used from a context that may sleep.  The sleep
3157  * is non-interruptible, and has no timeout.
3158  *
3159  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3160  * call.
3161  *
3162  * Return: always zero.
3163  */
3164 int spi_bus_unlock(struct spi_controller *ctlr)
3165 {
3166 	ctlr->bus_lock_flag = 0;
3167 
3168 	mutex_unlock(&ctlr->bus_lock_mutex);
3169 
3170 	return 0;
3171 }
3172 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3173 
3174 /* portable code must never pass more than 32 bytes */
3175 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3176 
3177 static u8	*buf;
3178 
3179 /**
3180  * spi_write_then_read - SPI synchronous write followed by read
3181  * @spi: device with which data will be exchanged
3182  * @txbuf: data to be written (need not be dma-safe)
3183  * @n_tx: size of txbuf, in bytes
3184  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3185  * @n_rx: size of rxbuf, in bytes
3186  * Context: can sleep
3187  *
3188  * This performs a half duplex MicroWire style transaction with the
3189  * device, sending txbuf and then reading rxbuf.  The return value
3190  * is zero for success, else a negative errno status code.
3191  * This call may only be used from a context that may sleep.
3192  *
3193  * Parameters to this routine are always copied using a small buffer;
3194  * portable code should never use this for more than 32 bytes.
3195  * Performance-sensitive or bulk transfer code should instead use
3196  * spi_{async,sync}() calls with dma-safe buffers.
3197  *
3198  * Return: zero on success, else a negative error code.
3199  */
3200 int spi_write_then_read(struct spi_device *spi,
3201 		const void *txbuf, unsigned n_tx,
3202 		void *rxbuf, unsigned n_rx)
3203 {
3204 	static DEFINE_MUTEX(lock);
3205 
3206 	int			status;
3207 	struct spi_message	message;
3208 	struct spi_transfer	x[2];
3209 	u8			*local_buf;
3210 
3211 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3212 	 * copying here, (as a pure convenience thing), but we can
3213 	 * keep heap costs out of the hot path unless someone else is
3214 	 * using the pre-allocated buffer or the transfer is too large.
3215 	 */
3216 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3217 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3218 				    GFP_KERNEL | GFP_DMA);
3219 		if (!local_buf)
3220 			return -ENOMEM;
3221 	} else {
3222 		local_buf = buf;
3223 	}
3224 
3225 	spi_message_init(&message);
3226 	memset(x, 0, sizeof(x));
3227 	if (n_tx) {
3228 		x[0].len = n_tx;
3229 		spi_message_add_tail(&x[0], &message);
3230 	}
3231 	if (n_rx) {
3232 		x[1].len = n_rx;
3233 		spi_message_add_tail(&x[1], &message);
3234 	}
3235 
3236 	memcpy(local_buf, txbuf, n_tx);
3237 	x[0].tx_buf = local_buf;
3238 	x[1].rx_buf = local_buf + n_tx;
3239 
3240 	/* do the i/o */
3241 	status = spi_sync(spi, &message);
3242 	if (status == 0)
3243 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3244 
3245 	if (x[0].tx_buf == buf)
3246 		mutex_unlock(&lock);
3247 	else
3248 		kfree(local_buf);
3249 
3250 	return status;
3251 }
3252 EXPORT_SYMBOL_GPL(spi_write_then_read);
3253 
3254 /*-------------------------------------------------------------------------*/
3255 
3256 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3257 static int __spi_of_device_match(struct device *dev, void *data)
3258 {
3259 	return dev->of_node == data;
3260 }
3261 
3262 /* must call put_device() when done with returned spi_device device */
3263 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3264 {
3265 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3266 						__spi_of_device_match);
3267 	return dev ? to_spi_device(dev) : NULL;
3268 }
3269 
3270 static int __spi_of_controller_match(struct device *dev, const void *data)
3271 {
3272 	return dev->of_node == data;
3273 }
3274 
3275 /* the spi controllers are not using spi_bus, so we find it with another way */
3276 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3277 {
3278 	struct device *dev;
3279 
3280 	dev = class_find_device(&spi_master_class, NULL, node,
3281 				__spi_of_controller_match);
3282 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3283 		dev = class_find_device(&spi_slave_class, NULL, node,
3284 					__spi_of_controller_match);
3285 	if (!dev)
3286 		return NULL;
3287 
3288 	/* reference got in class_find_device */
3289 	return container_of(dev, struct spi_controller, dev);
3290 }
3291 
3292 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3293 			 void *arg)
3294 {
3295 	struct of_reconfig_data *rd = arg;
3296 	struct spi_controller *ctlr;
3297 	struct spi_device *spi;
3298 
3299 	switch (of_reconfig_get_state_change(action, arg)) {
3300 	case OF_RECONFIG_CHANGE_ADD:
3301 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3302 		if (ctlr == NULL)
3303 			return NOTIFY_OK;	/* not for us */
3304 
3305 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3306 			put_device(&ctlr->dev);
3307 			return NOTIFY_OK;
3308 		}
3309 
3310 		spi = of_register_spi_device(ctlr, rd->dn);
3311 		put_device(&ctlr->dev);
3312 
3313 		if (IS_ERR(spi)) {
3314 			pr_err("%s: failed to create for '%s'\n",
3315 					__func__, rd->dn->full_name);
3316 			of_node_clear_flag(rd->dn, OF_POPULATED);
3317 			return notifier_from_errno(PTR_ERR(spi));
3318 		}
3319 		break;
3320 
3321 	case OF_RECONFIG_CHANGE_REMOVE:
3322 		/* already depopulated? */
3323 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3324 			return NOTIFY_OK;
3325 
3326 		/* find our device by node */
3327 		spi = of_find_spi_device_by_node(rd->dn);
3328 		if (spi == NULL)
3329 			return NOTIFY_OK;	/* no? not meant for us */
3330 
3331 		/* unregister takes one ref away */
3332 		spi_unregister_device(spi);
3333 
3334 		/* and put the reference of the find */
3335 		put_device(&spi->dev);
3336 		break;
3337 	}
3338 
3339 	return NOTIFY_OK;
3340 }
3341 
3342 static struct notifier_block spi_of_notifier = {
3343 	.notifier_call = of_spi_notify,
3344 };
3345 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3346 extern struct notifier_block spi_of_notifier;
3347 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3348 
3349 #if IS_ENABLED(CONFIG_ACPI)
3350 static int spi_acpi_controller_match(struct device *dev, const void *data)
3351 {
3352 	return ACPI_COMPANION(dev->parent) == data;
3353 }
3354 
3355 static int spi_acpi_device_match(struct device *dev, void *data)
3356 {
3357 	return ACPI_COMPANION(dev) == data;
3358 }
3359 
3360 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3361 {
3362 	struct device *dev;
3363 
3364 	dev = class_find_device(&spi_master_class, NULL, adev,
3365 				spi_acpi_controller_match);
3366 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3367 		dev = class_find_device(&spi_slave_class, NULL, adev,
3368 					spi_acpi_controller_match);
3369 	if (!dev)
3370 		return NULL;
3371 
3372 	return container_of(dev, struct spi_controller, dev);
3373 }
3374 
3375 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3376 {
3377 	struct device *dev;
3378 
3379 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3380 
3381 	return dev ? to_spi_device(dev) : NULL;
3382 }
3383 
3384 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3385 			   void *arg)
3386 {
3387 	struct acpi_device *adev = arg;
3388 	struct spi_controller *ctlr;
3389 	struct spi_device *spi;
3390 
3391 	switch (value) {
3392 	case ACPI_RECONFIG_DEVICE_ADD:
3393 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3394 		if (!ctlr)
3395 			break;
3396 
3397 		acpi_register_spi_device(ctlr, adev);
3398 		put_device(&ctlr->dev);
3399 		break;
3400 	case ACPI_RECONFIG_DEVICE_REMOVE:
3401 		if (!acpi_device_enumerated(adev))
3402 			break;
3403 
3404 		spi = acpi_spi_find_device_by_adev(adev);
3405 		if (!spi)
3406 			break;
3407 
3408 		spi_unregister_device(spi);
3409 		put_device(&spi->dev);
3410 		break;
3411 	}
3412 
3413 	return NOTIFY_OK;
3414 }
3415 
3416 static struct notifier_block spi_acpi_notifier = {
3417 	.notifier_call = acpi_spi_notify,
3418 };
3419 #else
3420 extern struct notifier_block spi_acpi_notifier;
3421 #endif
3422 
3423 static int __init spi_init(void)
3424 {
3425 	int	status;
3426 
3427 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3428 	if (!buf) {
3429 		status = -ENOMEM;
3430 		goto err0;
3431 	}
3432 
3433 	status = bus_register(&spi_bus_type);
3434 	if (status < 0)
3435 		goto err1;
3436 
3437 	status = class_register(&spi_master_class);
3438 	if (status < 0)
3439 		goto err2;
3440 
3441 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3442 		status = class_register(&spi_slave_class);
3443 		if (status < 0)
3444 			goto err3;
3445 	}
3446 
3447 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3448 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3449 	if (IS_ENABLED(CONFIG_ACPI))
3450 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3451 
3452 	return 0;
3453 
3454 err3:
3455 	class_unregister(&spi_master_class);
3456 err2:
3457 	bus_unregister(&spi_bus_type);
3458 err1:
3459 	kfree(buf);
3460 	buf = NULL;
3461 err0:
3462 	return status;
3463 }
3464 
3465 /* board_info is normally registered in arch_initcall(),
3466  * but even essential drivers wait till later
3467  *
3468  * REVISIT only boardinfo really needs static linking. the rest (device and
3469  * driver registration) _could_ be dynamically linked (modular) ... costs
3470  * include needing to have boardinfo data structures be much more public.
3471  */
3472 postcore_initcall(spi_init);
3473 
3474