1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/kmod.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/cache.h> 27 #include <linux/mutex.h> 28 #include <linux/of_device.h> 29 #include <linux/of_irq.h> 30 #include <linux/slab.h> 31 #include <linux/mod_devicetable.h> 32 #include <linux/spi/spi.h> 33 #include <linux/of_gpio.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/export.h> 36 #include <linux/sched/rt.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/ioport.h> 40 #include <linux/acpi.h> 41 42 static void spidev_release(struct device *dev) 43 { 44 struct spi_device *spi = to_spi_device(dev); 45 46 /* spi masters may cleanup for released devices */ 47 if (spi->master->cleanup) 48 spi->master->cleanup(spi); 49 50 spi_master_put(spi->master); 51 kfree(spi); 52 } 53 54 static ssize_t 55 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 56 { 57 const struct spi_device *spi = to_spi_device(dev); 58 59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 60 } 61 62 static struct device_attribute spi_dev_attrs[] = { 63 __ATTR_RO(modalias), 64 __ATTR_NULL, 65 }; 66 67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 68 * and the sysfs version makes coldplug work too. 69 */ 70 71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 72 const struct spi_device *sdev) 73 { 74 while (id->name[0]) { 75 if (!strcmp(sdev->modalias, id->name)) 76 return id; 77 id++; 78 } 79 return NULL; 80 } 81 82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 83 { 84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 85 86 return spi_match_id(sdrv->id_table, sdev); 87 } 88 EXPORT_SYMBOL_GPL(spi_get_device_id); 89 90 static int spi_match_device(struct device *dev, struct device_driver *drv) 91 { 92 const struct spi_device *spi = to_spi_device(dev); 93 const struct spi_driver *sdrv = to_spi_driver(drv); 94 95 /* Attempt an OF style match */ 96 if (of_driver_match_device(dev, drv)) 97 return 1; 98 99 /* Then try ACPI */ 100 if (acpi_driver_match_device(dev, drv)) 101 return 1; 102 103 if (sdrv->id_table) 104 return !!spi_match_id(sdrv->id_table, spi); 105 106 return strcmp(spi->modalias, drv->name) == 0; 107 } 108 109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 110 { 111 const struct spi_device *spi = to_spi_device(dev); 112 113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 114 return 0; 115 } 116 117 #ifdef CONFIG_PM_SLEEP 118 static int spi_legacy_suspend(struct device *dev, pm_message_t message) 119 { 120 int value = 0; 121 struct spi_driver *drv = to_spi_driver(dev->driver); 122 123 /* suspend will stop irqs and dma; no more i/o */ 124 if (drv) { 125 if (drv->suspend) 126 value = drv->suspend(to_spi_device(dev), message); 127 else 128 dev_dbg(dev, "... can't suspend\n"); 129 } 130 return value; 131 } 132 133 static int spi_legacy_resume(struct device *dev) 134 { 135 int value = 0; 136 struct spi_driver *drv = to_spi_driver(dev->driver); 137 138 /* resume may restart the i/o queue */ 139 if (drv) { 140 if (drv->resume) 141 value = drv->resume(to_spi_device(dev)); 142 else 143 dev_dbg(dev, "... can't resume\n"); 144 } 145 return value; 146 } 147 148 static int spi_pm_suspend(struct device *dev) 149 { 150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 151 152 if (pm) 153 return pm_generic_suspend(dev); 154 else 155 return spi_legacy_suspend(dev, PMSG_SUSPEND); 156 } 157 158 static int spi_pm_resume(struct device *dev) 159 { 160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 161 162 if (pm) 163 return pm_generic_resume(dev); 164 else 165 return spi_legacy_resume(dev); 166 } 167 168 static int spi_pm_freeze(struct device *dev) 169 { 170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 171 172 if (pm) 173 return pm_generic_freeze(dev); 174 else 175 return spi_legacy_suspend(dev, PMSG_FREEZE); 176 } 177 178 static int spi_pm_thaw(struct device *dev) 179 { 180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 181 182 if (pm) 183 return pm_generic_thaw(dev); 184 else 185 return spi_legacy_resume(dev); 186 } 187 188 static int spi_pm_poweroff(struct device *dev) 189 { 190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 191 192 if (pm) 193 return pm_generic_poweroff(dev); 194 else 195 return spi_legacy_suspend(dev, PMSG_HIBERNATE); 196 } 197 198 static int spi_pm_restore(struct device *dev) 199 { 200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 201 202 if (pm) 203 return pm_generic_restore(dev); 204 else 205 return spi_legacy_resume(dev); 206 } 207 #else 208 #define spi_pm_suspend NULL 209 #define spi_pm_resume NULL 210 #define spi_pm_freeze NULL 211 #define spi_pm_thaw NULL 212 #define spi_pm_poweroff NULL 213 #define spi_pm_restore NULL 214 #endif 215 216 static const struct dev_pm_ops spi_pm = { 217 .suspend = spi_pm_suspend, 218 .resume = spi_pm_resume, 219 .freeze = spi_pm_freeze, 220 .thaw = spi_pm_thaw, 221 .poweroff = spi_pm_poweroff, 222 .restore = spi_pm_restore, 223 SET_RUNTIME_PM_OPS( 224 pm_generic_runtime_suspend, 225 pm_generic_runtime_resume, 226 NULL 227 ) 228 }; 229 230 struct bus_type spi_bus_type = { 231 .name = "spi", 232 .dev_attrs = spi_dev_attrs, 233 .match = spi_match_device, 234 .uevent = spi_uevent, 235 .pm = &spi_pm, 236 }; 237 EXPORT_SYMBOL_GPL(spi_bus_type); 238 239 240 static int spi_drv_probe(struct device *dev) 241 { 242 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 243 244 return sdrv->probe(to_spi_device(dev)); 245 } 246 247 static int spi_drv_remove(struct device *dev) 248 { 249 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 250 251 return sdrv->remove(to_spi_device(dev)); 252 } 253 254 static void spi_drv_shutdown(struct device *dev) 255 { 256 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 257 258 sdrv->shutdown(to_spi_device(dev)); 259 } 260 261 /** 262 * spi_register_driver - register a SPI driver 263 * @sdrv: the driver to register 264 * Context: can sleep 265 */ 266 int spi_register_driver(struct spi_driver *sdrv) 267 { 268 sdrv->driver.bus = &spi_bus_type; 269 if (sdrv->probe) 270 sdrv->driver.probe = spi_drv_probe; 271 if (sdrv->remove) 272 sdrv->driver.remove = spi_drv_remove; 273 if (sdrv->shutdown) 274 sdrv->driver.shutdown = spi_drv_shutdown; 275 return driver_register(&sdrv->driver); 276 } 277 EXPORT_SYMBOL_GPL(spi_register_driver); 278 279 /*-------------------------------------------------------------------------*/ 280 281 /* SPI devices should normally not be created by SPI device drivers; that 282 * would make them board-specific. Similarly with SPI master drivers. 283 * Device registration normally goes into like arch/.../mach.../board-YYY.c 284 * with other readonly (flashable) information about mainboard devices. 285 */ 286 287 struct boardinfo { 288 struct list_head list; 289 struct spi_board_info board_info; 290 }; 291 292 static LIST_HEAD(board_list); 293 static LIST_HEAD(spi_master_list); 294 295 /* 296 * Used to protect add/del opertion for board_info list and 297 * spi_master list, and their matching process 298 */ 299 static DEFINE_MUTEX(board_lock); 300 301 /** 302 * spi_alloc_device - Allocate a new SPI device 303 * @master: Controller to which device is connected 304 * Context: can sleep 305 * 306 * Allows a driver to allocate and initialize a spi_device without 307 * registering it immediately. This allows a driver to directly 308 * fill the spi_device with device parameters before calling 309 * spi_add_device() on it. 310 * 311 * Caller is responsible to call spi_add_device() on the returned 312 * spi_device structure to add it to the SPI master. If the caller 313 * needs to discard the spi_device without adding it, then it should 314 * call spi_dev_put() on it. 315 * 316 * Returns a pointer to the new device, or NULL. 317 */ 318 struct spi_device *spi_alloc_device(struct spi_master *master) 319 { 320 struct spi_device *spi; 321 struct device *dev = master->dev.parent; 322 323 if (!spi_master_get(master)) 324 return NULL; 325 326 spi = kzalloc(sizeof *spi, GFP_KERNEL); 327 if (!spi) { 328 dev_err(dev, "cannot alloc spi_device\n"); 329 spi_master_put(master); 330 return NULL; 331 } 332 333 spi->master = master; 334 spi->dev.parent = &master->dev; 335 spi->dev.bus = &spi_bus_type; 336 spi->dev.release = spidev_release; 337 spi->cs_gpio = -ENOENT; 338 device_initialize(&spi->dev); 339 return spi; 340 } 341 EXPORT_SYMBOL_GPL(spi_alloc_device); 342 343 /** 344 * spi_add_device - Add spi_device allocated with spi_alloc_device 345 * @spi: spi_device to register 346 * 347 * Companion function to spi_alloc_device. Devices allocated with 348 * spi_alloc_device can be added onto the spi bus with this function. 349 * 350 * Returns 0 on success; negative errno on failure 351 */ 352 int spi_add_device(struct spi_device *spi) 353 { 354 static DEFINE_MUTEX(spi_add_lock); 355 struct spi_master *master = spi->master; 356 struct device *dev = master->dev.parent; 357 struct device *d; 358 int status; 359 360 /* Chipselects are numbered 0..max; validate. */ 361 if (spi->chip_select >= master->num_chipselect) { 362 dev_err(dev, "cs%d >= max %d\n", 363 spi->chip_select, 364 master->num_chipselect); 365 return -EINVAL; 366 } 367 368 /* Set the bus ID string */ 369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 370 spi->chip_select); 371 372 373 /* We need to make sure there's no other device with this 374 * chipselect **BEFORE** we call setup(), else we'll trash 375 * its configuration. Lock against concurrent add() calls. 376 */ 377 mutex_lock(&spi_add_lock); 378 379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev)); 380 if (d != NULL) { 381 dev_err(dev, "chipselect %d already in use\n", 382 spi->chip_select); 383 put_device(d); 384 status = -EBUSY; 385 goto done; 386 } 387 388 if (master->cs_gpios) 389 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 390 391 /* Drivers may modify this initial i/o setup, but will 392 * normally rely on the device being setup. Devices 393 * using SPI_CS_HIGH can't coexist well otherwise... 394 */ 395 status = spi_setup(spi); 396 if (status < 0) { 397 dev_err(dev, "can't setup %s, status %d\n", 398 dev_name(&spi->dev), status); 399 goto done; 400 } 401 402 /* Device may be bound to an active driver when this returns */ 403 status = device_add(&spi->dev); 404 if (status < 0) 405 dev_err(dev, "can't add %s, status %d\n", 406 dev_name(&spi->dev), status); 407 else 408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 409 410 done: 411 mutex_unlock(&spi_add_lock); 412 return status; 413 } 414 EXPORT_SYMBOL_GPL(spi_add_device); 415 416 /** 417 * spi_new_device - instantiate one new SPI device 418 * @master: Controller to which device is connected 419 * @chip: Describes the SPI device 420 * Context: can sleep 421 * 422 * On typical mainboards, this is purely internal; and it's not needed 423 * after board init creates the hard-wired devices. Some development 424 * platforms may not be able to use spi_register_board_info though, and 425 * this is exported so that for example a USB or parport based adapter 426 * driver could add devices (which it would learn about out-of-band). 427 * 428 * Returns the new device, or NULL. 429 */ 430 struct spi_device *spi_new_device(struct spi_master *master, 431 struct spi_board_info *chip) 432 { 433 struct spi_device *proxy; 434 int status; 435 436 /* NOTE: caller did any chip->bus_num checks necessary. 437 * 438 * Also, unless we change the return value convention to use 439 * error-or-pointer (not NULL-or-pointer), troubleshootability 440 * suggests syslogged diagnostics are best here (ugh). 441 */ 442 443 proxy = spi_alloc_device(master); 444 if (!proxy) 445 return NULL; 446 447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 448 449 proxy->chip_select = chip->chip_select; 450 proxy->max_speed_hz = chip->max_speed_hz; 451 proxy->mode = chip->mode; 452 proxy->irq = chip->irq; 453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 454 proxy->dev.platform_data = (void *) chip->platform_data; 455 proxy->controller_data = chip->controller_data; 456 proxy->controller_state = NULL; 457 458 status = spi_add_device(proxy); 459 if (status < 0) { 460 spi_dev_put(proxy); 461 return NULL; 462 } 463 464 return proxy; 465 } 466 EXPORT_SYMBOL_GPL(spi_new_device); 467 468 static void spi_match_master_to_boardinfo(struct spi_master *master, 469 struct spi_board_info *bi) 470 { 471 struct spi_device *dev; 472 473 if (master->bus_num != bi->bus_num) 474 return; 475 476 dev = spi_new_device(master, bi); 477 if (!dev) 478 dev_err(master->dev.parent, "can't create new device for %s\n", 479 bi->modalias); 480 } 481 482 /** 483 * spi_register_board_info - register SPI devices for a given board 484 * @info: array of chip descriptors 485 * @n: how many descriptors are provided 486 * Context: can sleep 487 * 488 * Board-specific early init code calls this (probably during arch_initcall) 489 * with segments of the SPI device table. Any device nodes are created later, 490 * after the relevant parent SPI controller (bus_num) is defined. We keep 491 * this table of devices forever, so that reloading a controller driver will 492 * not make Linux forget about these hard-wired devices. 493 * 494 * Other code can also call this, e.g. a particular add-on board might provide 495 * SPI devices through its expansion connector, so code initializing that board 496 * would naturally declare its SPI devices. 497 * 498 * The board info passed can safely be __initdata ... but be careful of 499 * any embedded pointers (platform_data, etc), they're copied as-is. 500 */ 501 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 502 { 503 struct boardinfo *bi; 504 int i; 505 506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 507 if (!bi) 508 return -ENOMEM; 509 510 for (i = 0; i < n; i++, bi++, info++) { 511 struct spi_master *master; 512 513 memcpy(&bi->board_info, info, sizeof(*info)); 514 mutex_lock(&board_lock); 515 list_add_tail(&bi->list, &board_list); 516 list_for_each_entry(master, &spi_master_list, list) 517 spi_match_master_to_boardinfo(master, &bi->board_info); 518 mutex_unlock(&board_lock); 519 } 520 521 return 0; 522 } 523 524 /*-------------------------------------------------------------------------*/ 525 526 /** 527 * spi_pump_messages - kthread work function which processes spi message queue 528 * @work: pointer to kthread work struct contained in the master struct 529 * 530 * This function checks if there is any spi message in the queue that 531 * needs processing and if so call out to the driver to initialize hardware 532 * and transfer each message. 533 * 534 */ 535 static void spi_pump_messages(struct kthread_work *work) 536 { 537 struct spi_master *master = 538 container_of(work, struct spi_master, pump_messages); 539 unsigned long flags; 540 bool was_busy = false; 541 int ret; 542 543 /* Lock queue and check for queue work */ 544 spin_lock_irqsave(&master->queue_lock, flags); 545 if (list_empty(&master->queue) || !master->running) { 546 if (!master->busy) { 547 spin_unlock_irqrestore(&master->queue_lock, flags); 548 return; 549 } 550 master->busy = false; 551 spin_unlock_irqrestore(&master->queue_lock, flags); 552 if (master->unprepare_transfer_hardware && 553 master->unprepare_transfer_hardware(master)) 554 dev_err(&master->dev, 555 "failed to unprepare transfer hardware\n"); 556 if (master->auto_runtime_pm) { 557 pm_runtime_mark_last_busy(master->dev.parent); 558 pm_runtime_put_autosuspend(master->dev.parent); 559 } 560 return; 561 } 562 563 /* Make sure we are not already running a message */ 564 if (master->cur_msg) { 565 spin_unlock_irqrestore(&master->queue_lock, flags); 566 return; 567 } 568 /* Extract head of queue */ 569 master->cur_msg = 570 list_entry(master->queue.next, struct spi_message, queue); 571 572 list_del_init(&master->cur_msg->queue); 573 if (master->busy) 574 was_busy = true; 575 else 576 master->busy = true; 577 spin_unlock_irqrestore(&master->queue_lock, flags); 578 579 if (!was_busy && master->auto_runtime_pm) { 580 ret = pm_runtime_get_sync(master->dev.parent); 581 if (ret < 0) { 582 dev_err(&master->dev, "Failed to power device: %d\n", 583 ret); 584 return; 585 } 586 } 587 588 if (!was_busy && master->prepare_transfer_hardware) { 589 ret = master->prepare_transfer_hardware(master); 590 if (ret) { 591 dev_err(&master->dev, 592 "failed to prepare transfer hardware\n"); 593 594 if (master->auto_runtime_pm) 595 pm_runtime_put(master->dev.parent); 596 return; 597 } 598 } 599 600 ret = master->transfer_one_message(master, master->cur_msg); 601 if (ret) { 602 dev_err(&master->dev, 603 "failed to transfer one message from queue\n"); 604 return; 605 } 606 } 607 608 static int spi_init_queue(struct spi_master *master) 609 { 610 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 611 612 INIT_LIST_HEAD(&master->queue); 613 spin_lock_init(&master->queue_lock); 614 615 master->running = false; 616 master->busy = false; 617 618 init_kthread_worker(&master->kworker); 619 master->kworker_task = kthread_run(kthread_worker_fn, 620 &master->kworker, "%s", 621 dev_name(&master->dev)); 622 if (IS_ERR(master->kworker_task)) { 623 dev_err(&master->dev, "failed to create message pump task\n"); 624 return -ENOMEM; 625 } 626 init_kthread_work(&master->pump_messages, spi_pump_messages); 627 628 /* 629 * Master config will indicate if this controller should run the 630 * message pump with high (realtime) priority to reduce the transfer 631 * latency on the bus by minimising the delay between a transfer 632 * request and the scheduling of the message pump thread. Without this 633 * setting the message pump thread will remain at default priority. 634 */ 635 if (master->rt) { 636 dev_info(&master->dev, 637 "will run message pump with realtime priority\n"); 638 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 639 } 640 641 return 0; 642 } 643 644 /** 645 * spi_get_next_queued_message() - called by driver to check for queued 646 * messages 647 * @master: the master to check for queued messages 648 * 649 * If there are more messages in the queue, the next message is returned from 650 * this call. 651 */ 652 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 653 { 654 struct spi_message *next; 655 unsigned long flags; 656 657 /* get a pointer to the next message, if any */ 658 spin_lock_irqsave(&master->queue_lock, flags); 659 if (list_empty(&master->queue)) 660 next = NULL; 661 else 662 next = list_entry(master->queue.next, 663 struct spi_message, queue); 664 spin_unlock_irqrestore(&master->queue_lock, flags); 665 666 return next; 667 } 668 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 669 670 /** 671 * spi_finalize_current_message() - the current message is complete 672 * @master: the master to return the message to 673 * 674 * Called by the driver to notify the core that the message in the front of the 675 * queue is complete and can be removed from the queue. 676 */ 677 void spi_finalize_current_message(struct spi_master *master) 678 { 679 struct spi_message *mesg; 680 unsigned long flags; 681 682 spin_lock_irqsave(&master->queue_lock, flags); 683 mesg = master->cur_msg; 684 master->cur_msg = NULL; 685 686 queue_kthread_work(&master->kworker, &master->pump_messages); 687 spin_unlock_irqrestore(&master->queue_lock, flags); 688 689 mesg->state = NULL; 690 if (mesg->complete) 691 mesg->complete(mesg->context); 692 } 693 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 694 695 static int spi_start_queue(struct spi_master *master) 696 { 697 unsigned long flags; 698 699 spin_lock_irqsave(&master->queue_lock, flags); 700 701 if (master->running || master->busy) { 702 spin_unlock_irqrestore(&master->queue_lock, flags); 703 return -EBUSY; 704 } 705 706 master->running = true; 707 master->cur_msg = NULL; 708 spin_unlock_irqrestore(&master->queue_lock, flags); 709 710 queue_kthread_work(&master->kworker, &master->pump_messages); 711 712 return 0; 713 } 714 715 static int spi_stop_queue(struct spi_master *master) 716 { 717 unsigned long flags; 718 unsigned limit = 500; 719 int ret = 0; 720 721 spin_lock_irqsave(&master->queue_lock, flags); 722 723 /* 724 * This is a bit lame, but is optimized for the common execution path. 725 * A wait_queue on the master->busy could be used, but then the common 726 * execution path (pump_messages) would be required to call wake_up or 727 * friends on every SPI message. Do this instead. 728 */ 729 while ((!list_empty(&master->queue) || master->busy) && limit--) { 730 spin_unlock_irqrestore(&master->queue_lock, flags); 731 msleep(10); 732 spin_lock_irqsave(&master->queue_lock, flags); 733 } 734 735 if (!list_empty(&master->queue) || master->busy) 736 ret = -EBUSY; 737 else 738 master->running = false; 739 740 spin_unlock_irqrestore(&master->queue_lock, flags); 741 742 if (ret) { 743 dev_warn(&master->dev, 744 "could not stop message queue\n"); 745 return ret; 746 } 747 return ret; 748 } 749 750 static int spi_destroy_queue(struct spi_master *master) 751 { 752 int ret; 753 754 ret = spi_stop_queue(master); 755 756 /* 757 * flush_kthread_worker will block until all work is done. 758 * If the reason that stop_queue timed out is that the work will never 759 * finish, then it does no good to call flush/stop thread, so 760 * return anyway. 761 */ 762 if (ret) { 763 dev_err(&master->dev, "problem destroying queue\n"); 764 return ret; 765 } 766 767 flush_kthread_worker(&master->kworker); 768 kthread_stop(master->kworker_task); 769 770 return 0; 771 } 772 773 /** 774 * spi_queued_transfer - transfer function for queued transfers 775 * @spi: spi device which is requesting transfer 776 * @msg: spi message which is to handled is queued to driver queue 777 */ 778 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 779 { 780 struct spi_master *master = spi->master; 781 unsigned long flags; 782 783 spin_lock_irqsave(&master->queue_lock, flags); 784 785 if (!master->running) { 786 spin_unlock_irqrestore(&master->queue_lock, flags); 787 return -ESHUTDOWN; 788 } 789 msg->actual_length = 0; 790 msg->status = -EINPROGRESS; 791 792 list_add_tail(&msg->queue, &master->queue); 793 if (!master->busy) 794 queue_kthread_work(&master->kworker, &master->pump_messages); 795 796 spin_unlock_irqrestore(&master->queue_lock, flags); 797 return 0; 798 } 799 800 static int spi_master_initialize_queue(struct spi_master *master) 801 { 802 int ret; 803 804 master->queued = true; 805 master->transfer = spi_queued_transfer; 806 807 /* Initialize and start queue */ 808 ret = spi_init_queue(master); 809 if (ret) { 810 dev_err(&master->dev, "problem initializing queue\n"); 811 goto err_init_queue; 812 } 813 ret = spi_start_queue(master); 814 if (ret) { 815 dev_err(&master->dev, "problem starting queue\n"); 816 goto err_start_queue; 817 } 818 819 return 0; 820 821 err_start_queue: 822 err_init_queue: 823 spi_destroy_queue(master); 824 return ret; 825 } 826 827 /*-------------------------------------------------------------------------*/ 828 829 #if defined(CONFIG_OF) 830 /** 831 * of_register_spi_devices() - Register child devices onto the SPI bus 832 * @master: Pointer to spi_master device 833 * 834 * Registers an spi_device for each child node of master node which has a 'reg' 835 * property. 836 */ 837 static void of_register_spi_devices(struct spi_master *master) 838 { 839 struct spi_device *spi; 840 struct device_node *nc; 841 const __be32 *prop; 842 char modalias[SPI_NAME_SIZE + 4]; 843 int rc; 844 int len; 845 846 if (!master->dev.of_node) 847 return; 848 849 for_each_available_child_of_node(master->dev.of_node, nc) { 850 /* Alloc an spi_device */ 851 spi = spi_alloc_device(master); 852 if (!spi) { 853 dev_err(&master->dev, "spi_device alloc error for %s\n", 854 nc->full_name); 855 spi_dev_put(spi); 856 continue; 857 } 858 859 /* Select device driver */ 860 if (of_modalias_node(nc, spi->modalias, 861 sizeof(spi->modalias)) < 0) { 862 dev_err(&master->dev, "cannot find modalias for %s\n", 863 nc->full_name); 864 spi_dev_put(spi); 865 continue; 866 } 867 868 /* Device address */ 869 prop = of_get_property(nc, "reg", &len); 870 if (!prop || len < sizeof(*prop)) { 871 dev_err(&master->dev, "%s has no 'reg' property\n", 872 nc->full_name); 873 spi_dev_put(spi); 874 continue; 875 } 876 spi->chip_select = be32_to_cpup(prop); 877 878 /* Mode (clock phase/polarity/etc.) */ 879 if (of_find_property(nc, "spi-cpha", NULL)) 880 spi->mode |= SPI_CPHA; 881 if (of_find_property(nc, "spi-cpol", NULL)) 882 spi->mode |= SPI_CPOL; 883 if (of_find_property(nc, "spi-cs-high", NULL)) 884 spi->mode |= SPI_CS_HIGH; 885 if (of_find_property(nc, "spi-3wire", NULL)) 886 spi->mode |= SPI_3WIRE; 887 888 /* Device DUAL/QUAD mode */ 889 prop = of_get_property(nc, "spi-tx-bus-width", &len); 890 if (prop && len == sizeof(*prop)) { 891 switch (be32_to_cpup(prop)) { 892 case SPI_NBITS_SINGLE: 893 break; 894 case SPI_NBITS_DUAL: 895 spi->mode |= SPI_TX_DUAL; 896 break; 897 case SPI_NBITS_QUAD: 898 spi->mode |= SPI_TX_QUAD; 899 break; 900 default: 901 dev_err(&master->dev, 902 "spi-tx-bus-width %d not supported\n", 903 be32_to_cpup(prop)); 904 spi_dev_put(spi); 905 continue; 906 } 907 } 908 909 prop = of_get_property(nc, "spi-rx-bus-width", &len); 910 if (prop && len == sizeof(*prop)) { 911 switch (be32_to_cpup(prop)) { 912 case SPI_NBITS_SINGLE: 913 break; 914 case SPI_NBITS_DUAL: 915 spi->mode |= SPI_RX_DUAL; 916 break; 917 case SPI_NBITS_QUAD: 918 spi->mode |= SPI_RX_QUAD; 919 break; 920 default: 921 dev_err(&master->dev, 922 "spi-rx-bus-width %d not supported\n", 923 be32_to_cpup(prop)); 924 spi_dev_put(spi); 925 continue; 926 } 927 } 928 929 /* Device speed */ 930 prop = of_get_property(nc, "spi-max-frequency", &len); 931 if (!prop || len < sizeof(*prop)) { 932 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n", 933 nc->full_name); 934 spi_dev_put(spi); 935 continue; 936 } 937 spi->max_speed_hz = be32_to_cpup(prop); 938 939 /* IRQ */ 940 spi->irq = irq_of_parse_and_map(nc, 0); 941 942 /* Store a pointer to the node in the device structure */ 943 of_node_get(nc); 944 spi->dev.of_node = nc; 945 946 /* Register the new device */ 947 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX, 948 spi->modalias); 949 request_module(modalias); 950 rc = spi_add_device(spi); 951 if (rc) { 952 dev_err(&master->dev, "spi_device register error %s\n", 953 nc->full_name); 954 spi_dev_put(spi); 955 } 956 957 } 958 } 959 #else 960 static void of_register_spi_devices(struct spi_master *master) { } 961 #endif 962 963 #ifdef CONFIG_ACPI 964 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 965 { 966 struct spi_device *spi = data; 967 968 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 969 struct acpi_resource_spi_serialbus *sb; 970 971 sb = &ares->data.spi_serial_bus; 972 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 973 spi->chip_select = sb->device_selection; 974 spi->max_speed_hz = sb->connection_speed; 975 976 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 977 spi->mode |= SPI_CPHA; 978 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 979 spi->mode |= SPI_CPOL; 980 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 981 spi->mode |= SPI_CS_HIGH; 982 } 983 } else if (spi->irq < 0) { 984 struct resource r; 985 986 if (acpi_dev_resource_interrupt(ares, 0, &r)) 987 spi->irq = r.start; 988 } 989 990 /* Always tell the ACPI core to skip this resource */ 991 return 1; 992 } 993 994 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 995 void *data, void **return_value) 996 { 997 struct spi_master *master = data; 998 struct list_head resource_list; 999 struct acpi_device *adev; 1000 struct spi_device *spi; 1001 int ret; 1002 1003 if (acpi_bus_get_device(handle, &adev)) 1004 return AE_OK; 1005 if (acpi_bus_get_status(adev) || !adev->status.present) 1006 return AE_OK; 1007 1008 spi = spi_alloc_device(master); 1009 if (!spi) { 1010 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 1011 dev_name(&adev->dev)); 1012 return AE_NO_MEMORY; 1013 } 1014 1015 ACPI_HANDLE_SET(&spi->dev, handle); 1016 spi->irq = -1; 1017 1018 INIT_LIST_HEAD(&resource_list); 1019 ret = acpi_dev_get_resources(adev, &resource_list, 1020 acpi_spi_add_resource, spi); 1021 acpi_dev_free_resource_list(&resource_list); 1022 1023 if (ret < 0 || !spi->max_speed_hz) { 1024 spi_dev_put(spi); 1025 return AE_OK; 1026 } 1027 1028 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias)); 1029 if (spi_add_device(spi)) { 1030 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 1031 dev_name(&adev->dev)); 1032 spi_dev_put(spi); 1033 } 1034 1035 return AE_OK; 1036 } 1037 1038 static void acpi_register_spi_devices(struct spi_master *master) 1039 { 1040 acpi_status status; 1041 acpi_handle handle; 1042 1043 handle = ACPI_HANDLE(master->dev.parent); 1044 if (!handle) 1045 return; 1046 1047 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1048 acpi_spi_add_device, NULL, 1049 master, NULL); 1050 if (ACPI_FAILURE(status)) 1051 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 1052 } 1053 #else 1054 static inline void acpi_register_spi_devices(struct spi_master *master) {} 1055 #endif /* CONFIG_ACPI */ 1056 1057 static void spi_master_release(struct device *dev) 1058 { 1059 struct spi_master *master; 1060 1061 master = container_of(dev, struct spi_master, dev); 1062 kfree(master); 1063 } 1064 1065 static struct class spi_master_class = { 1066 .name = "spi_master", 1067 .owner = THIS_MODULE, 1068 .dev_release = spi_master_release, 1069 }; 1070 1071 1072 1073 /** 1074 * spi_alloc_master - allocate SPI master controller 1075 * @dev: the controller, possibly using the platform_bus 1076 * @size: how much zeroed driver-private data to allocate; the pointer to this 1077 * memory is in the driver_data field of the returned device, 1078 * accessible with spi_master_get_devdata(). 1079 * Context: can sleep 1080 * 1081 * This call is used only by SPI master controller drivers, which are the 1082 * only ones directly touching chip registers. It's how they allocate 1083 * an spi_master structure, prior to calling spi_register_master(). 1084 * 1085 * This must be called from context that can sleep. It returns the SPI 1086 * master structure on success, else NULL. 1087 * 1088 * The caller is responsible for assigning the bus number and initializing 1089 * the master's methods before calling spi_register_master(); and (after errors 1090 * adding the device) calling spi_master_put() and kfree() to prevent a memory 1091 * leak. 1092 */ 1093 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1094 { 1095 struct spi_master *master; 1096 1097 if (!dev) 1098 return NULL; 1099 1100 master = kzalloc(size + sizeof *master, GFP_KERNEL); 1101 if (!master) 1102 return NULL; 1103 1104 device_initialize(&master->dev); 1105 master->bus_num = -1; 1106 master->num_chipselect = 1; 1107 master->dev.class = &spi_master_class; 1108 master->dev.parent = get_device(dev); 1109 spi_master_set_devdata(master, &master[1]); 1110 1111 return master; 1112 } 1113 EXPORT_SYMBOL_GPL(spi_alloc_master); 1114 1115 #ifdef CONFIG_OF 1116 static int of_spi_register_master(struct spi_master *master) 1117 { 1118 int nb, i, *cs; 1119 struct device_node *np = master->dev.of_node; 1120 1121 if (!np) 1122 return 0; 1123 1124 nb = of_gpio_named_count(np, "cs-gpios"); 1125 master->num_chipselect = max(nb, (int)master->num_chipselect); 1126 1127 /* Return error only for an incorrectly formed cs-gpios property */ 1128 if (nb == 0 || nb == -ENOENT) 1129 return 0; 1130 else if (nb < 0) 1131 return nb; 1132 1133 cs = devm_kzalloc(&master->dev, 1134 sizeof(int) * master->num_chipselect, 1135 GFP_KERNEL); 1136 master->cs_gpios = cs; 1137 1138 if (!master->cs_gpios) 1139 return -ENOMEM; 1140 1141 for (i = 0; i < master->num_chipselect; i++) 1142 cs[i] = -ENOENT; 1143 1144 for (i = 0; i < nb; i++) 1145 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1146 1147 return 0; 1148 } 1149 #else 1150 static int of_spi_register_master(struct spi_master *master) 1151 { 1152 return 0; 1153 } 1154 #endif 1155 1156 /** 1157 * spi_register_master - register SPI master controller 1158 * @master: initialized master, originally from spi_alloc_master() 1159 * Context: can sleep 1160 * 1161 * SPI master controllers connect to their drivers using some non-SPI bus, 1162 * such as the platform bus. The final stage of probe() in that code 1163 * includes calling spi_register_master() to hook up to this SPI bus glue. 1164 * 1165 * SPI controllers use board specific (often SOC specific) bus numbers, 1166 * and board-specific addressing for SPI devices combines those numbers 1167 * with chip select numbers. Since SPI does not directly support dynamic 1168 * device identification, boards need configuration tables telling which 1169 * chip is at which address. 1170 * 1171 * This must be called from context that can sleep. It returns zero on 1172 * success, else a negative error code (dropping the master's refcount). 1173 * After a successful return, the caller is responsible for calling 1174 * spi_unregister_master(). 1175 */ 1176 int spi_register_master(struct spi_master *master) 1177 { 1178 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1179 struct device *dev = master->dev.parent; 1180 struct boardinfo *bi; 1181 int status = -ENODEV; 1182 int dynamic = 0; 1183 1184 if (!dev) 1185 return -ENODEV; 1186 1187 status = of_spi_register_master(master); 1188 if (status) 1189 return status; 1190 1191 /* even if it's just one always-selected device, there must 1192 * be at least one chipselect 1193 */ 1194 if (master->num_chipselect == 0) 1195 return -EINVAL; 1196 1197 if ((master->bus_num < 0) && master->dev.of_node) 1198 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1199 1200 /* convention: dynamically assigned bus IDs count down from the max */ 1201 if (master->bus_num < 0) { 1202 /* FIXME switch to an IDR based scheme, something like 1203 * I2C now uses, so we can't run out of "dynamic" IDs 1204 */ 1205 master->bus_num = atomic_dec_return(&dyn_bus_id); 1206 dynamic = 1; 1207 } 1208 1209 spin_lock_init(&master->bus_lock_spinlock); 1210 mutex_init(&master->bus_lock_mutex); 1211 master->bus_lock_flag = 0; 1212 1213 /* register the device, then userspace will see it. 1214 * registration fails if the bus ID is in use. 1215 */ 1216 dev_set_name(&master->dev, "spi%u", master->bus_num); 1217 status = device_add(&master->dev); 1218 if (status < 0) 1219 goto done; 1220 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1221 dynamic ? " (dynamic)" : ""); 1222 1223 /* If we're using a queued driver, start the queue */ 1224 if (master->transfer) 1225 dev_info(dev, "master is unqueued, this is deprecated\n"); 1226 else { 1227 status = spi_master_initialize_queue(master); 1228 if (status) { 1229 device_del(&master->dev); 1230 goto done; 1231 } 1232 } 1233 1234 mutex_lock(&board_lock); 1235 list_add_tail(&master->list, &spi_master_list); 1236 list_for_each_entry(bi, &board_list, list) 1237 spi_match_master_to_boardinfo(master, &bi->board_info); 1238 mutex_unlock(&board_lock); 1239 1240 /* Register devices from the device tree and ACPI */ 1241 of_register_spi_devices(master); 1242 acpi_register_spi_devices(master); 1243 done: 1244 return status; 1245 } 1246 EXPORT_SYMBOL_GPL(spi_register_master); 1247 1248 static int __unregister(struct device *dev, void *null) 1249 { 1250 spi_unregister_device(to_spi_device(dev)); 1251 return 0; 1252 } 1253 1254 /** 1255 * spi_unregister_master - unregister SPI master controller 1256 * @master: the master being unregistered 1257 * Context: can sleep 1258 * 1259 * This call is used only by SPI master controller drivers, which are the 1260 * only ones directly touching chip registers. 1261 * 1262 * This must be called from context that can sleep. 1263 */ 1264 void spi_unregister_master(struct spi_master *master) 1265 { 1266 int dummy; 1267 1268 if (master->queued) { 1269 if (spi_destroy_queue(master)) 1270 dev_err(&master->dev, "queue remove failed\n"); 1271 } 1272 1273 mutex_lock(&board_lock); 1274 list_del(&master->list); 1275 mutex_unlock(&board_lock); 1276 1277 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1278 device_unregister(&master->dev); 1279 } 1280 EXPORT_SYMBOL_GPL(spi_unregister_master); 1281 1282 int spi_master_suspend(struct spi_master *master) 1283 { 1284 int ret; 1285 1286 /* Basically no-ops for non-queued masters */ 1287 if (!master->queued) 1288 return 0; 1289 1290 ret = spi_stop_queue(master); 1291 if (ret) 1292 dev_err(&master->dev, "queue stop failed\n"); 1293 1294 return ret; 1295 } 1296 EXPORT_SYMBOL_GPL(spi_master_suspend); 1297 1298 int spi_master_resume(struct spi_master *master) 1299 { 1300 int ret; 1301 1302 if (!master->queued) 1303 return 0; 1304 1305 ret = spi_start_queue(master); 1306 if (ret) 1307 dev_err(&master->dev, "queue restart failed\n"); 1308 1309 return ret; 1310 } 1311 EXPORT_SYMBOL_GPL(spi_master_resume); 1312 1313 static int __spi_master_match(struct device *dev, const void *data) 1314 { 1315 struct spi_master *m; 1316 const u16 *bus_num = data; 1317 1318 m = container_of(dev, struct spi_master, dev); 1319 return m->bus_num == *bus_num; 1320 } 1321 1322 /** 1323 * spi_busnum_to_master - look up master associated with bus_num 1324 * @bus_num: the master's bus number 1325 * Context: can sleep 1326 * 1327 * This call may be used with devices that are registered after 1328 * arch init time. It returns a refcounted pointer to the relevant 1329 * spi_master (which the caller must release), or NULL if there is 1330 * no such master registered. 1331 */ 1332 struct spi_master *spi_busnum_to_master(u16 bus_num) 1333 { 1334 struct device *dev; 1335 struct spi_master *master = NULL; 1336 1337 dev = class_find_device(&spi_master_class, NULL, &bus_num, 1338 __spi_master_match); 1339 if (dev) 1340 master = container_of(dev, struct spi_master, dev); 1341 /* reference got in class_find_device */ 1342 return master; 1343 } 1344 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 1345 1346 1347 /*-------------------------------------------------------------------------*/ 1348 1349 /* Core methods for SPI master protocol drivers. Some of the 1350 * other core methods are currently defined as inline functions. 1351 */ 1352 1353 /** 1354 * spi_setup - setup SPI mode and clock rate 1355 * @spi: the device whose settings are being modified 1356 * Context: can sleep, and no requests are queued to the device 1357 * 1358 * SPI protocol drivers may need to update the transfer mode if the 1359 * device doesn't work with its default. They may likewise need 1360 * to update clock rates or word sizes from initial values. This function 1361 * changes those settings, and must be called from a context that can sleep. 1362 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 1363 * effect the next time the device is selected and data is transferred to 1364 * or from it. When this function returns, the spi device is deselected. 1365 * 1366 * Note that this call will fail if the protocol driver specifies an option 1367 * that the underlying controller or its driver does not support. For 1368 * example, not all hardware supports wire transfers using nine bit words, 1369 * LSB-first wire encoding, or active-high chipselects. 1370 */ 1371 int spi_setup(struct spi_device *spi) 1372 { 1373 unsigned bad_bits; 1374 int status = 0; 1375 1376 /* check mode to prevent that DUAL and QUAD set at the same time 1377 */ 1378 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 1379 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 1380 dev_err(&spi->dev, 1381 "setup: can not select dual and quad at the same time\n"); 1382 return -EINVAL; 1383 } 1384 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 1385 */ 1386 if ((spi->mode & SPI_3WIRE) && (spi->mode & 1387 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 1388 return -EINVAL; 1389 /* help drivers fail *cleanly* when they need options 1390 * that aren't supported with their current master 1391 */ 1392 bad_bits = spi->mode & ~spi->master->mode_bits; 1393 if (bad_bits) { 1394 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 1395 bad_bits); 1396 return -EINVAL; 1397 } 1398 1399 if (!spi->bits_per_word) 1400 spi->bits_per_word = 8; 1401 1402 if (spi->master->setup) 1403 status = spi->master->setup(spi); 1404 1405 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s" 1406 "%u bits/w, %u Hz max --> %d\n", 1407 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 1408 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 1409 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 1410 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 1411 (spi->mode & SPI_LOOP) ? "loopback, " : "", 1412 spi->bits_per_word, spi->max_speed_hz, 1413 status); 1414 1415 return status; 1416 } 1417 EXPORT_SYMBOL_GPL(spi_setup); 1418 1419 static int __spi_async(struct spi_device *spi, struct spi_message *message) 1420 { 1421 struct spi_master *master = spi->master; 1422 struct spi_transfer *xfer; 1423 1424 if (list_empty(&message->transfers)) 1425 return -EINVAL; 1426 if (!message->complete) 1427 return -EINVAL; 1428 1429 /* Half-duplex links include original MicroWire, and ones with 1430 * only one data pin like SPI_3WIRE (switches direction) or where 1431 * either MOSI or MISO is missing. They can also be caused by 1432 * software limitations. 1433 */ 1434 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 1435 || (spi->mode & SPI_3WIRE)) { 1436 unsigned flags = master->flags; 1437 1438 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1439 if (xfer->rx_buf && xfer->tx_buf) 1440 return -EINVAL; 1441 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 1442 return -EINVAL; 1443 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 1444 return -EINVAL; 1445 } 1446 } 1447 1448 /** 1449 * Set transfer bits_per_word and max speed as spi device default if 1450 * it is not set for this transfer. 1451 * Set transfer tx_nbits and rx_nbits as single transfer default 1452 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 1453 */ 1454 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1455 message->frame_length += xfer->len; 1456 if (!xfer->bits_per_word) 1457 xfer->bits_per_word = spi->bits_per_word; 1458 if (!xfer->speed_hz) { 1459 xfer->speed_hz = spi->max_speed_hz; 1460 if (master->max_speed_hz && 1461 xfer->speed_hz > master->max_speed_hz) 1462 xfer->speed_hz = master->max_speed_hz; 1463 } 1464 1465 if (master->bits_per_word_mask) { 1466 /* Only 32 bits fit in the mask */ 1467 if (xfer->bits_per_word > 32) 1468 return -EINVAL; 1469 if (!(master->bits_per_word_mask & 1470 BIT(xfer->bits_per_word - 1))) 1471 return -EINVAL; 1472 } 1473 1474 if (xfer->speed_hz && master->min_speed_hz && 1475 xfer->speed_hz < master->min_speed_hz) 1476 return -EINVAL; 1477 if (xfer->speed_hz && master->max_speed_hz && 1478 xfer->speed_hz > master->max_speed_hz) 1479 return -EINVAL; 1480 1481 if (xfer->tx_buf && !xfer->tx_nbits) 1482 xfer->tx_nbits = SPI_NBITS_SINGLE; 1483 if (xfer->rx_buf && !xfer->rx_nbits) 1484 xfer->rx_nbits = SPI_NBITS_SINGLE; 1485 /* check transfer tx/rx_nbits: 1486 * 1. keep the value is not out of single, dual and quad 1487 * 2. keep tx/rx_nbits is contained by mode in spi_device 1488 * 3. if SPI_3WIRE, tx/rx_nbits should be in single 1489 */ 1490 if (xfer->tx_buf) { 1491 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 1492 xfer->tx_nbits != SPI_NBITS_DUAL && 1493 xfer->tx_nbits != SPI_NBITS_QUAD) 1494 return -EINVAL; 1495 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 1496 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 1497 return -EINVAL; 1498 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 1499 !(spi->mode & SPI_TX_QUAD)) 1500 return -EINVAL; 1501 if ((spi->mode & SPI_3WIRE) && 1502 (xfer->tx_nbits != SPI_NBITS_SINGLE)) 1503 return -EINVAL; 1504 } 1505 /* check transfer rx_nbits */ 1506 if (xfer->rx_buf) { 1507 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 1508 xfer->rx_nbits != SPI_NBITS_DUAL && 1509 xfer->rx_nbits != SPI_NBITS_QUAD) 1510 return -EINVAL; 1511 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 1512 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 1513 return -EINVAL; 1514 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 1515 !(spi->mode & SPI_RX_QUAD)) 1516 return -EINVAL; 1517 if ((spi->mode & SPI_3WIRE) && 1518 (xfer->rx_nbits != SPI_NBITS_SINGLE)) 1519 return -EINVAL; 1520 } 1521 } 1522 1523 message->spi = spi; 1524 message->status = -EINPROGRESS; 1525 return master->transfer(spi, message); 1526 } 1527 1528 /** 1529 * spi_async - asynchronous SPI transfer 1530 * @spi: device with which data will be exchanged 1531 * @message: describes the data transfers, including completion callback 1532 * Context: any (irqs may be blocked, etc) 1533 * 1534 * This call may be used in_irq and other contexts which can't sleep, 1535 * as well as from task contexts which can sleep. 1536 * 1537 * The completion callback is invoked in a context which can't sleep. 1538 * Before that invocation, the value of message->status is undefined. 1539 * When the callback is issued, message->status holds either zero (to 1540 * indicate complete success) or a negative error code. After that 1541 * callback returns, the driver which issued the transfer request may 1542 * deallocate the associated memory; it's no longer in use by any SPI 1543 * core or controller driver code. 1544 * 1545 * Note that although all messages to a spi_device are handled in 1546 * FIFO order, messages may go to different devices in other orders. 1547 * Some device might be higher priority, or have various "hard" access 1548 * time requirements, for example. 1549 * 1550 * On detection of any fault during the transfer, processing of 1551 * the entire message is aborted, and the device is deselected. 1552 * Until returning from the associated message completion callback, 1553 * no other spi_message queued to that device will be processed. 1554 * (This rule applies equally to all the synchronous transfer calls, 1555 * which are wrappers around this core asynchronous primitive.) 1556 */ 1557 int spi_async(struct spi_device *spi, struct spi_message *message) 1558 { 1559 struct spi_master *master = spi->master; 1560 int ret; 1561 unsigned long flags; 1562 1563 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1564 1565 if (master->bus_lock_flag) 1566 ret = -EBUSY; 1567 else 1568 ret = __spi_async(spi, message); 1569 1570 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1571 1572 return ret; 1573 } 1574 EXPORT_SYMBOL_GPL(spi_async); 1575 1576 /** 1577 * spi_async_locked - version of spi_async with exclusive bus usage 1578 * @spi: device with which data will be exchanged 1579 * @message: describes the data transfers, including completion callback 1580 * Context: any (irqs may be blocked, etc) 1581 * 1582 * This call may be used in_irq and other contexts which can't sleep, 1583 * as well as from task contexts which can sleep. 1584 * 1585 * The completion callback is invoked in a context which can't sleep. 1586 * Before that invocation, the value of message->status is undefined. 1587 * When the callback is issued, message->status holds either zero (to 1588 * indicate complete success) or a negative error code. After that 1589 * callback returns, the driver which issued the transfer request may 1590 * deallocate the associated memory; it's no longer in use by any SPI 1591 * core or controller driver code. 1592 * 1593 * Note that although all messages to a spi_device are handled in 1594 * FIFO order, messages may go to different devices in other orders. 1595 * Some device might be higher priority, or have various "hard" access 1596 * time requirements, for example. 1597 * 1598 * On detection of any fault during the transfer, processing of 1599 * the entire message is aborted, and the device is deselected. 1600 * Until returning from the associated message completion callback, 1601 * no other spi_message queued to that device will be processed. 1602 * (This rule applies equally to all the synchronous transfer calls, 1603 * which are wrappers around this core asynchronous primitive.) 1604 */ 1605 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 1606 { 1607 struct spi_master *master = spi->master; 1608 int ret; 1609 unsigned long flags; 1610 1611 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1612 1613 ret = __spi_async(spi, message); 1614 1615 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1616 1617 return ret; 1618 1619 } 1620 EXPORT_SYMBOL_GPL(spi_async_locked); 1621 1622 1623 /*-------------------------------------------------------------------------*/ 1624 1625 /* Utility methods for SPI master protocol drivers, layered on 1626 * top of the core. Some other utility methods are defined as 1627 * inline functions. 1628 */ 1629 1630 static void spi_complete(void *arg) 1631 { 1632 complete(arg); 1633 } 1634 1635 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 1636 int bus_locked) 1637 { 1638 DECLARE_COMPLETION_ONSTACK(done); 1639 int status; 1640 struct spi_master *master = spi->master; 1641 1642 message->complete = spi_complete; 1643 message->context = &done; 1644 1645 if (!bus_locked) 1646 mutex_lock(&master->bus_lock_mutex); 1647 1648 status = spi_async_locked(spi, message); 1649 1650 if (!bus_locked) 1651 mutex_unlock(&master->bus_lock_mutex); 1652 1653 if (status == 0) { 1654 wait_for_completion(&done); 1655 status = message->status; 1656 } 1657 message->context = NULL; 1658 return status; 1659 } 1660 1661 /** 1662 * spi_sync - blocking/synchronous SPI data transfers 1663 * @spi: device with which data will be exchanged 1664 * @message: describes the data transfers 1665 * Context: can sleep 1666 * 1667 * This call may only be used from a context that may sleep. The sleep 1668 * is non-interruptible, and has no timeout. Low-overhead controller 1669 * drivers may DMA directly into and out of the message buffers. 1670 * 1671 * Note that the SPI device's chip select is active during the message, 1672 * and then is normally disabled between messages. Drivers for some 1673 * frequently-used devices may want to minimize costs of selecting a chip, 1674 * by leaving it selected in anticipation that the next message will go 1675 * to the same chip. (That may increase power usage.) 1676 * 1677 * Also, the caller is guaranteeing that the memory associated with the 1678 * message will not be freed before this call returns. 1679 * 1680 * It returns zero on success, else a negative error code. 1681 */ 1682 int spi_sync(struct spi_device *spi, struct spi_message *message) 1683 { 1684 return __spi_sync(spi, message, 0); 1685 } 1686 EXPORT_SYMBOL_GPL(spi_sync); 1687 1688 /** 1689 * spi_sync_locked - version of spi_sync with exclusive bus usage 1690 * @spi: device with which data will be exchanged 1691 * @message: describes the data transfers 1692 * Context: can sleep 1693 * 1694 * This call may only be used from a context that may sleep. The sleep 1695 * is non-interruptible, and has no timeout. Low-overhead controller 1696 * drivers may DMA directly into and out of the message buffers. 1697 * 1698 * This call should be used by drivers that require exclusive access to the 1699 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 1700 * be released by a spi_bus_unlock call when the exclusive access is over. 1701 * 1702 * It returns zero on success, else a negative error code. 1703 */ 1704 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 1705 { 1706 return __spi_sync(spi, message, 1); 1707 } 1708 EXPORT_SYMBOL_GPL(spi_sync_locked); 1709 1710 /** 1711 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 1712 * @master: SPI bus master that should be locked for exclusive bus access 1713 * Context: can sleep 1714 * 1715 * This call may only be used from a context that may sleep. The sleep 1716 * is non-interruptible, and has no timeout. 1717 * 1718 * This call should be used by drivers that require exclusive access to the 1719 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 1720 * exclusive access is over. Data transfer must be done by spi_sync_locked 1721 * and spi_async_locked calls when the SPI bus lock is held. 1722 * 1723 * It returns zero on success, else a negative error code. 1724 */ 1725 int spi_bus_lock(struct spi_master *master) 1726 { 1727 unsigned long flags; 1728 1729 mutex_lock(&master->bus_lock_mutex); 1730 1731 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1732 master->bus_lock_flag = 1; 1733 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1734 1735 /* mutex remains locked until spi_bus_unlock is called */ 1736 1737 return 0; 1738 } 1739 EXPORT_SYMBOL_GPL(spi_bus_lock); 1740 1741 /** 1742 * spi_bus_unlock - release the lock for exclusive SPI bus usage 1743 * @master: SPI bus master that was locked for exclusive bus access 1744 * Context: can sleep 1745 * 1746 * This call may only be used from a context that may sleep. The sleep 1747 * is non-interruptible, and has no timeout. 1748 * 1749 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 1750 * call. 1751 * 1752 * It returns zero on success, else a negative error code. 1753 */ 1754 int spi_bus_unlock(struct spi_master *master) 1755 { 1756 master->bus_lock_flag = 0; 1757 1758 mutex_unlock(&master->bus_lock_mutex); 1759 1760 return 0; 1761 } 1762 EXPORT_SYMBOL_GPL(spi_bus_unlock); 1763 1764 /* portable code must never pass more than 32 bytes */ 1765 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 1766 1767 static u8 *buf; 1768 1769 /** 1770 * spi_write_then_read - SPI synchronous write followed by read 1771 * @spi: device with which data will be exchanged 1772 * @txbuf: data to be written (need not be dma-safe) 1773 * @n_tx: size of txbuf, in bytes 1774 * @rxbuf: buffer into which data will be read (need not be dma-safe) 1775 * @n_rx: size of rxbuf, in bytes 1776 * Context: can sleep 1777 * 1778 * This performs a half duplex MicroWire style transaction with the 1779 * device, sending txbuf and then reading rxbuf. The return value 1780 * is zero for success, else a negative errno status code. 1781 * This call may only be used from a context that may sleep. 1782 * 1783 * Parameters to this routine are always copied using a small buffer; 1784 * portable code should never use this for more than 32 bytes. 1785 * Performance-sensitive or bulk transfer code should instead use 1786 * spi_{async,sync}() calls with dma-safe buffers. 1787 */ 1788 int spi_write_then_read(struct spi_device *spi, 1789 const void *txbuf, unsigned n_tx, 1790 void *rxbuf, unsigned n_rx) 1791 { 1792 static DEFINE_MUTEX(lock); 1793 1794 int status; 1795 struct spi_message message; 1796 struct spi_transfer x[2]; 1797 u8 *local_buf; 1798 1799 /* Use preallocated DMA-safe buffer if we can. We can't avoid 1800 * copying here, (as a pure convenience thing), but we can 1801 * keep heap costs out of the hot path unless someone else is 1802 * using the pre-allocated buffer or the transfer is too large. 1803 */ 1804 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 1805 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 1806 GFP_KERNEL | GFP_DMA); 1807 if (!local_buf) 1808 return -ENOMEM; 1809 } else { 1810 local_buf = buf; 1811 } 1812 1813 spi_message_init(&message); 1814 memset(x, 0, sizeof x); 1815 if (n_tx) { 1816 x[0].len = n_tx; 1817 spi_message_add_tail(&x[0], &message); 1818 } 1819 if (n_rx) { 1820 x[1].len = n_rx; 1821 spi_message_add_tail(&x[1], &message); 1822 } 1823 1824 memcpy(local_buf, txbuf, n_tx); 1825 x[0].tx_buf = local_buf; 1826 x[1].rx_buf = local_buf + n_tx; 1827 1828 /* do the i/o */ 1829 status = spi_sync(spi, &message); 1830 if (status == 0) 1831 memcpy(rxbuf, x[1].rx_buf, n_rx); 1832 1833 if (x[0].tx_buf == buf) 1834 mutex_unlock(&lock); 1835 else 1836 kfree(local_buf); 1837 1838 return status; 1839 } 1840 EXPORT_SYMBOL_GPL(spi_write_then_read); 1841 1842 /*-------------------------------------------------------------------------*/ 1843 1844 static int __init spi_init(void) 1845 { 1846 int status; 1847 1848 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 1849 if (!buf) { 1850 status = -ENOMEM; 1851 goto err0; 1852 } 1853 1854 status = bus_register(&spi_bus_type); 1855 if (status < 0) 1856 goto err1; 1857 1858 status = class_register(&spi_master_class); 1859 if (status < 0) 1860 goto err2; 1861 return 0; 1862 1863 err2: 1864 bus_unregister(&spi_bus_type); 1865 err1: 1866 kfree(buf); 1867 buf = NULL; 1868 err0: 1869 return status; 1870 } 1871 1872 /* board_info is normally registered in arch_initcall(), 1873 * but even essential drivers wait till later 1874 * 1875 * REVISIT only boardinfo really needs static linking. the rest (device and 1876 * driver registration) _could_ be dynamically linked (modular) ... costs 1877 * include needing to have boardinfo data structures be much more public. 1878 */ 1879 postcore_initcall(spi_init); 1880 1881