xref: /openbmc/linux/drivers/spi/spi.c (revision e1f7c9ee)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/mutex.h>
30 #include <linux/of_device.h>
31 #include <linux/of_irq.h>
32 #include <linux/clk/clk-conf.h>
33 #include <linux/slab.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/spi/spi.h>
36 #include <linux/of_gpio.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pm_domain.h>
39 #include <linux/export.h>
40 #include <linux/sched/rt.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/ioport.h>
44 #include <linux/acpi.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/spi.h>
48 
49 static void spidev_release(struct device *dev)
50 {
51 	struct spi_device	*spi = to_spi_device(dev);
52 
53 	/* spi masters may cleanup for released devices */
54 	if (spi->master->cleanup)
55 		spi->master->cleanup(spi);
56 
57 	spi_master_put(spi->master);
58 	kfree(spi);
59 }
60 
61 static ssize_t
62 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
63 {
64 	const struct spi_device	*spi = to_spi_device(dev);
65 	int len;
66 
67 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
68 	if (len != -ENODEV)
69 		return len;
70 
71 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
72 }
73 static DEVICE_ATTR_RO(modalias);
74 
75 static struct attribute *spi_dev_attrs[] = {
76 	&dev_attr_modalias.attr,
77 	NULL,
78 };
79 ATTRIBUTE_GROUPS(spi_dev);
80 
81 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
82  * and the sysfs version makes coldplug work too.
83  */
84 
85 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
86 						const struct spi_device *sdev)
87 {
88 	while (id->name[0]) {
89 		if (!strcmp(sdev->modalias, id->name))
90 			return id;
91 		id++;
92 	}
93 	return NULL;
94 }
95 
96 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
97 {
98 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
99 
100 	return spi_match_id(sdrv->id_table, sdev);
101 }
102 EXPORT_SYMBOL_GPL(spi_get_device_id);
103 
104 static int spi_match_device(struct device *dev, struct device_driver *drv)
105 {
106 	const struct spi_device	*spi = to_spi_device(dev);
107 	const struct spi_driver	*sdrv = to_spi_driver(drv);
108 
109 	/* Attempt an OF style match */
110 	if (of_driver_match_device(dev, drv))
111 		return 1;
112 
113 	/* Then try ACPI */
114 	if (acpi_driver_match_device(dev, drv))
115 		return 1;
116 
117 	if (sdrv->id_table)
118 		return !!spi_match_id(sdrv->id_table, spi);
119 
120 	return strcmp(spi->modalias, drv->name) == 0;
121 }
122 
123 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
124 {
125 	const struct spi_device		*spi = to_spi_device(dev);
126 	int rc;
127 
128 	rc = acpi_device_uevent_modalias(dev, env);
129 	if (rc != -ENODEV)
130 		return rc;
131 
132 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
133 	return 0;
134 }
135 
136 #ifdef CONFIG_PM_SLEEP
137 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
138 {
139 	int			value = 0;
140 	struct spi_driver	*drv = to_spi_driver(dev->driver);
141 
142 	/* suspend will stop irqs and dma; no more i/o */
143 	if (drv) {
144 		if (drv->suspend)
145 			value = drv->suspend(to_spi_device(dev), message);
146 		else
147 			dev_dbg(dev, "... can't suspend\n");
148 	}
149 	return value;
150 }
151 
152 static int spi_legacy_resume(struct device *dev)
153 {
154 	int			value = 0;
155 	struct spi_driver	*drv = to_spi_driver(dev->driver);
156 
157 	/* resume may restart the i/o queue */
158 	if (drv) {
159 		if (drv->resume)
160 			value = drv->resume(to_spi_device(dev));
161 		else
162 			dev_dbg(dev, "... can't resume\n");
163 	}
164 	return value;
165 }
166 
167 static int spi_pm_suspend(struct device *dev)
168 {
169 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
170 
171 	if (pm)
172 		return pm_generic_suspend(dev);
173 	else
174 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
175 }
176 
177 static int spi_pm_resume(struct device *dev)
178 {
179 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
180 
181 	if (pm)
182 		return pm_generic_resume(dev);
183 	else
184 		return spi_legacy_resume(dev);
185 }
186 
187 static int spi_pm_freeze(struct device *dev)
188 {
189 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
190 
191 	if (pm)
192 		return pm_generic_freeze(dev);
193 	else
194 		return spi_legacy_suspend(dev, PMSG_FREEZE);
195 }
196 
197 static int spi_pm_thaw(struct device *dev)
198 {
199 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
200 
201 	if (pm)
202 		return pm_generic_thaw(dev);
203 	else
204 		return spi_legacy_resume(dev);
205 }
206 
207 static int spi_pm_poweroff(struct device *dev)
208 {
209 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
210 
211 	if (pm)
212 		return pm_generic_poweroff(dev);
213 	else
214 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
215 }
216 
217 static int spi_pm_restore(struct device *dev)
218 {
219 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
220 
221 	if (pm)
222 		return pm_generic_restore(dev);
223 	else
224 		return spi_legacy_resume(dev);
225 }
226 #else
227 #define spi_pm_suspend	NULL
228 #define spi_pm_resume	NULL
229 #define spi_pm_freeze	NULL
230 #define spi_pm_thaw	NULL
231 #define spi_pm_poweroff	NULL
232 #define spi_pm_restore	NULL
233 #endif
234 
235 static const struct dev_pm_ops spi_pm = {
236 	.suspend = spi_pm_suspend,
237 	.resume = spi_pm_resume,
238 	.freeze = spi_pm_freeze,
239 	.thaw = spi_pm_thaw,
240 	.poweroff = spi_pm_poweroff,
241 	.restore = spi_pm_restore,
242 	SET_RUNTIME_PM_OPS(
243 		pm_generic_runtime_suspend,
244 		pm_generic_runtime_resume,
245 		NULL
246 	)
247 };
248 
249 struct bus_type spi_bus_type = {
250 	.name		= "spi",
251 	.dev_groups	= spi_dev_groups,
252 	.match		= spi_match_device,
253 	.uevent		= spi_uevent,
254 	.pm		= &spi_pm,
255 };
256 EXPORT_SYMBOL_GPL(spi_bus_type);
257 
258 
259 static int spi_drv_probe(struct device *dev)
260 {
261 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
262 	int ret;
263 
264 	ret = of_clk_set_defaults(dev->of_node, false);
265 	if (ret)
266 		return ret;
267 
268 	ret = dev_pm_domain_attach(dev, true);
269 	if (ret != -EPROBE_DEFER) {
270 		ret = sdrv->probe(to_spi_device(dev));
271 		if (ret)
272 			dev_pm_domain_detach(dev, true);
273 	}
274 
275 	return ret;
276 }
277 
278 static int spi_drv_remove(struct device *dev)
279 {
280 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
281 	int ret;
282 
283 	ret = sdrv->remove(to_spi_device(dev));
284 	dev_pm_domain_detach(dev, true);
285 
286 	return ret;
287 }
288 
289 static void spi_drv_shutdown(struct device *dev)
290 {
291 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
292 
293 	sdrv->shutdown(to_spi_device(dev));
294 }
295 
296 /**
297  * spi_register_driver - register a SPI driver
298  * @sdrv: the driver to register
299  * Context: can sleep
300  */
301 int spi_register_driver(struct spi_driver *sdrv)
302 {
303 	sdrv->driver.bus = &spi_bus_type;
304 	if (sdrv->probe)
305 		sdrv->driver.probe = spi_drv_probe;
306 	if (sdrv->remove)
307 		sdrv->driver.remove = spi_drv_remove;
308 	if (sdrv->shutdown)
309 		sdrv->driver.shutdown = spi_drv_shutdown;
310 	return driver_register(&sdrv->driver);
311 }
312 EXPORT_SYMBOL_GPL(spi_register_driver);
313 
314 /*-------------------------------------------------------------------------*/
315 
316 /* SPI devices should normally not be created by SPI device drivers; that
317  * would make them board-specific.  Similarly with SPI master drivers.
318  * Device registration normally goes into like arch/.../mach.../board-YYY.c
319  * with other readonly (flashable) information about mainboard devices.
320  */
321 
322 struct boardinfo {
323 	struct list_head	list;
324 	struct spi_board_info	board_info;
325 };
326 
327 static LIST_HEAD(board_list);
328 static LIST_HEAD(spi_master_list);
329 
330 /*
331  * Used to protect add/del opertion for board_info list and
332  * spi_master list, and their matching process
333  */
334 static DEFINE_MUTEX(board_lock);
335 
336 /**
337  * spi_alloc_device - Allocate a new SPI device
338  * @master: Controller to which device is connected
339  * Context: can sleep
340  *
341  * Allows a driver to allocate and initialize a spi_device without
342  * registering it immediately.  This allows a driver to directly
343  * fill the spi_device with device parameters before calling
344  * spi_add_device() on it.
345  *
346  * Caller is responsible to call spi_add_device() on the returned
347  * spi_device structure to add it to the SPI master.  If the caller
348  * needs to discard the spi_device without adding it, then it should
349  * call spi_dev_put() on it.
350  *
351  * Returns a pointer to the new device, or NULL.
352  */
353 struct spi_device *spi_alloc_device(struct spi_master *master)
354 {
355 	struct spi_device	*spi;
356 
357 	if (!spi_master_get(master))
358 		return NULL;
359 
360 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
361 	if (!spi) {
362 		spi_master_put(master);
363 		return NULL;
364 	}
365 
366 	spi->master = master;
367 	spi->dev.parent = &master->dev;
368 	spi->dev.bus = &spi_bus_type;
369 	spi->dev.release = spidev_release;
370 	spi->cs_gpio = -ENOENT;
371 	device_initialize(&spi->dev);
372 	return spi;
373 }
374 EXPORT_SYMBOL_GPL(spi_alloc_device);
375 
376 static void spi_dev_set_name(struct spi_device *spi)
377 {
378 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
379 
380 	if (adev) {
381 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
382 		return;
383 	}
384 
385 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
386 		     spi->chip_select);
387 }
388 
389 static int spi_dev_check(struct device *dev, void *data)
390 {
391 	struct spi_device *spi = to_spi_device(dev);
392 	struct spi_device *new_spi = data;
393 
394 	if (spi->master == new_spi->master &&
395 	    spi->chip_select == new_spi->chip_select)
396 		return -EBUSY;
397 	return 0;
398 }
399 
400 /**
401  * spi_add_device - Add spi_device allocated with spi_alloc_device
402  * @spi: spi_device to register
403  *
404  * Companion function to spi_alloc_device.  Devices allocated with
405  * spi_alloc_device can be added onto the spi bus with this function.
406  *
407  * Returns 0 on success; negative errno on failure
408  */
409 int spi_add_device(struct spi_device *spi)
410 {
411 	static DEFINE_MUTEX(spi_add_lock);
412 	struct spi_master *master = spi->master;
413 	struct device *dev = master->dev.parent;
414 	int status;
415 
416 	/* Chipselects are numbered 0..max; validate. */
417 	if (spi->chip_select >= master->num_chipselect) {
418 		dev_err(dev, "cs%d >= max %d\n",
419 			spi->chip_select,
420 			master->num_chipselect);
421 		return -EINVAL;
422 	}
423 
424 	/* Set the bus ID string */
425 	spi_dev_set_name(spi);
426 
427 	/* We need to make sure there's no other device with this
428 	 * chipselect **BEFORE** we call setup(), else we'll trash
429 	 * its configuration.  Lock against concurrent add() calls.
430 	 */
431 	mutex_lock(&spi_add_lock);
432 
433 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
434 	if (status) {
435 		dev_err(dev, "chipselect %d already in use\n",
436 				spi->chip_select);
437 		goto done;
438 	}
439 
440 	if (master->cs_gpios)
441 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
442 
443 	/* Drivers may modify this initial i/o setup, but will
444 	 * normally rely on the device being setup.  Devices
445 	 * using SPI_CS_HIGH can't coexist well otherwise...
446 	 */
447 	status = spi_setup(spi);
448 	if (status < 0) {
449 		dev_err(dev, "can't setup %s, status %d\n",
450 				dev_name(&spi->dev), status);
451 		goto done;
452 	}
453 
454 	/* Device may be bound to an active driver when this returns */
455 	status = device_add(&spi->dev);
456 	if (status < 0)
457 		dev_err(dev, "can't add %s, status %d\n",
458 				dev_name(&spi->dev), status);
459 	else
460 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
461 
462 done:
463 	mutex_unlock(&spi_add_lock);
464 	return status;
465 }
466 EXPORT_SYMBOL_GPL(spi_add_device);
467 
468 /**
469  * spi_new_device - instantiate one new SPI device
470  * @master: Controller to which device is connected
471  * @chip: Describes the SPI device
472  * Context: can sleep
473  *
474  * On typical mainboards, this is purely internal; and it's not needed
475  * after board init creates the hard-wired devices.  Some development
476  * platforms may not be able to use spi_register_board_info though, and
477  * this is exported so that for example a USB or parport based adapter
478  * driver could add devices (which it would learn about out-of-band).
479  *
480  * Returns the new device, or NULL.
481  */
482 struct spi_device *spi_new_device(struct spi_master *master,
483 				  struct spi_board_info *chip)
484 {
485 	struct spi_device	*proxy;
486 	int			status;
487 
488 	/* NOTE:  caller did any chip->bus_num checks necessary.
489 	 *
490 	 * Also, unless we change the return value convention to use
491 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
492 	 * suggests syslogged diagnostics are best here (ugh).
493 	 */
494 
495 	proxy = spi_alloc_device(master);
496 	if (!proxy)
497 		return NULL;
498 
499 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
500 
501 	proxy->chip_select = chip->chip_select;
502 	proxy->max_speed_hz = chip->max_speed_hz;
503 	proxy->mode = chip->mode;
504 	proxy->irq = chip->irq;
505 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
506 	proxy->dev.platform_data = (void *) chip->platform_data;
507 	proxy->controller_data = chip->controller_data;
508 	proxy->controller_state = NULL;
509 
510 	status = spi_add_device(proxy);
511 	if (status < 0) {
512 		spi_dev_put(proxy);
513 		return NULL;
514 	}
515 
516 	return proxy;
517 }
518 EXPORT_SYMBOL_GPL(spi_new_device);
519 
520 static void spi_match_master_to_boardinfo(struct spi_master *master,
521 				struct spi_board_info *bi)
522 {
523 	struct spi_device *dev;
524 
525 	if (master->bus_num != bi->bus_num)
526 		return;
527 
528 	dev = spi_new_device(master, bi);
529 	if (!dev)
530 		dev_err(master->dev.parent, "can't create new device for %s\n",
531 			bi->modalias);
532 }
533 
534 /**
535  * spi_register_board_info - register SPI devices for a given board
536  * @info: array of chip descriptors
537  * @n: how many descriptors are provided
538  * Context: can sleep
539  *
540  * Board-specific early init code calls this (probably during arch_initcall)
541  * with segments of the SPI device table.  Any device nodes are created later,
542  * after the relevant parent SPI controller (bus_num) is defined.  We keep
543  * this table of devices forever, so that reloading a controller driver will
544  * not make Linux forget about these hard-wired devices.
545  *
546  * Other code can also call this, e.g. a particular add-on board might provide
547  * SPI devices through its expansion connector, so code initializing that board
548  * would naturally declare its SPI devices.
549  *
550  * The board info passed can safely be __initdata ... but be careful of
551  * any embedded pointers (platform_data, etc), they're copied as-is.
552  */
553 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
554 {
555 	struct boardinfo *bi;
556 	int i;
557 
558 	if (!n)
559 		return -EINVAL;
560 
561 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
562 	if (!bi)
563 		return -ENOMEM;
564 
565 	for (i = 0; i < n; i++, bi++, info++) {
566 		struct spi_master *master;
567 
568 		memcpy(&bi->board_info, info, sizeof(*info));
569 		mutex_lock(&board_lock);
570 		list_add_tail(&bi->list, &board_list);
571 		list_for_each_entry(master, &spi_master_list, list)
572 			spi_match_master_to_boardinfo(master, &bi->board_info);
573 		mutex_unlock(&board_lock);
574 	}
575 
576 	return 0;
577 }
578 
579 /*-------------------------------------------------------------------------*/
580 
581 static void spi_set_cs(struct spi_device *spi, bool enable)
582 {
583 	if (spi->mode & SPI_CS_HIGH)
584 		enable = !enable;
585 
586 	if (spi->cs_gpio >= 0)
587 		gpio_set_value(spi->cs_gpio, !enable);
588 	else if (spi->master->set_cs)
589 		spi->master->set_cs(spi, !enable);
590 }
591 
592 #ifdef CONFIG_HAS_DMA
593 static int spi_map_buf(struct spi_master *master, struct device *dev,
594 		       struct sg_table *sgt, void *buf, size_t len,
595 		       enum dma_data_direction dir)
596 {
597 	const bool vmalloced_buf = is_vmalloc_addr(buf);
598 	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
599 	const int sgs = DIV_ROUND_UP(len, desc_len);
600 	struct page *vm_page;
601 	void *sg_buf;
602 	size_t min;
603 	int i, ret;
604 
605 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
606 	if (ret != 0)
607 		return ret;
608 
609 	for (i = 0; i < sgs; i++) {
610 		min = min_t(size_t, len, desc_len);
611 
612 		if (vmalloced_buf) {
613 			vm_page = vmalloc_to_page(buf);
614 			if (!vm_page) {
615 				sg_free_table(sgt);
616 				return -ENOMEM;
617 			}
618 			sg_buf = page_address(vm_page) +
619 				((size_t)buf & ~PAGE_MASK);
620 		} else {
621 			sg_buf = buf;
622 		}
623 
624 		sg_set_buf(&sgt->sgl[i], sg_buf, min);
625 
626 		buf += min;
627 		len -= min;
628 	}
629 
630 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
631 	if (!ret)
632 		ret = -ENOMEM;
633 	if (ret < 0) {
634 		sg_free_table(sgt);
635 		return ret;
636 	}
637 
638 	sgt->nents = ret;
639 
640 	return 0;
641 }
642 
643 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
644 			  struct sg_table *sgt, enum dma_data_direction dir)
645 {
646 	if (sgt->orig_nents) {
647 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
648 		sg_free_table(sgt);
649 	}
650 }
651 
652 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
653 {
654 	struct device *tx_dev, *rx_dev;
655 	struct spi_transfer *xfer;
656 	int ret;
657 
658 	if (!master->can_dma)
659 		return 0;
660 
661 	tx_dev = master->dma_tx->device->dev;
662 	rx_dev = master->dma_rx->device->dev;
663 
664 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
665 		if (!master->can_dma(master, msg->spi, xfer))
666 			continue;
667 
668 		if (xfer->tx_buf != NULL) {
669 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
670 					  (void *)xfer->tx_buf, xfer->len,
671 					  DMA_TO_DEVICE);
672 			if (ret != 0)
673 				return ret;
674 		}
675 
676 		if (xfer->rx_buf != NULL) {
677 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
678 					  xfer->rx_buf, xfer->len,
679 					  DMA_FROM_DEVICE);
680 			if (ret != 0) {
681 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
682 					      DMA_TO_DEVICE);
683 				return ret;
684 			}
685 		}
686 	}
687 
688 	master->cur_msg_mapped = true;
689 
690 	return 0;
691 }
692 
693 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
694 {
695 	struct spi_transfer *xfer;
696 	struct device *tx_dev, *rx_dev;
697 
698 	if (!master->cur_msg_mapped || !master->can_dma)
699 		return 0;
700 
701 	tx_dev = master->dma_tx->device->dev;
702 	rx_dev = master->dma_rx->device->dev;
703 
704 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
705 		if (!master->can_dma(master, msg->spi, xfer))
706 			continue;
707 
708 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
709 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
710 	}
711 
712 	return 0;
713 }
714 #else /* !CONFIG_HAS_DMA */
715 static inline int __spi_map_msg(struct spi_master *master,
716 				struct spi_message *msg)
717 {
718 	return 0;
719 }
720 
721 static inline int spi_unmap_msg(struct spi_master *master,
722 				struct spi_message *msg)
723 {
724 	return 0;
725 }
726 #endif /* !CONFIG_HAS_DMA */
727 
728 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
729 {
730 	struct spi_transfer *xfer;
731 	void *tmp;
732 	unsigned int max_tx, max_rx;
733 
734 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
735 		max_tx = 0;
736 		max_rx = 0;
737 
738 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
739 			if ((master->flags & SPI_MASTER_MUST_TX) &&
740 			    !xfer->tx_buf)
741 				max_tx = max(xfer->len, max_tx);
742 			if ((master->flags & SPI_MASTER_MUST_RX) &&
743 			    !xfer->rx_buf)
744 				max_rx = max(xfer->len, max_rx);
745 		}
746 
747 		if (max_tx) {
748 			tmp = krealloc(master->dummy_tx, max_tx,
749 				       GFP_KERNEL | GFP_DMA);
750 			if (!tmp)
751 				return -ENOMEM;
752 			master->dummy_tx = tmp;
753 			memset(tmp, 0, max_tx);
754 		}
755 
756 		if (max_rx) {
757 			tmp = krealloc(master->dummy_rx, max_rx,
758 				       GFP_KERNEL | GFP_DMA);
759 			if (!tmp)
760 				return -ENOMEM;
761 			master->dummy_rx = tmp;
762 		}
763 
764 		if (max_tx || max_rx) {
765 			list_for_each_entry(xfer, &msg->transfers,
766 					    transfer_list) {
767 				if (!xfer->tx_buf)
768 					xfer->tx_buf = master->dummy_tx;
769 				if (!xfer->rx_buf)
770 					xfer->rx_buf = master->dummy_rx;
771 			}
772 		}
773 	}
774 
775 	return __spi_map_msg(master, msg);
776 }
777 
778 /*
779  * spi_transfer_one_message - Default implementation of transfer_one_message()
780  *
781  * This is a standard implementation of transfer_one_message() for
782  * drivers which impelment a transfer_one() operation.  It provides
783  * standard handling of delays and chip select management.
784  */
785 static int spi_transfer_one_message(struct spi_master *master,
786 				    struct spi_message *msg)
787 {
788 	struct spi_transfer *xfer;
789 	bool keep_cs = false;
790 	int ret = 0;
791 	int ms = 1;
792 
793 	spi_set_cs(msg->spi, true);
794 
795 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
796 		trace_spi_transfer_start(msg, xfer);
797 
798 		if (xfer->tx_buf || xfer->rx_buf) {
799 			reinit_completion(&master->xfer_completion);
800 
801 			ret = master->transfer_one(master, msg->spi, xfer);
802 			if (ret < 0) {
803 				dev_err(&msg->spi->dev,
804 					"SPI transfer failed: %d\n", ret);
805 				goto out;
806 			}
807 
808 			if (ret > 0) {
809 				ret = 0;
810 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
811 				ms += ms + 100; /* some tolerance */
812 
813 				ms = wait_for_completion_timeout(&master->xfer_completion,
814 								 msecs_to_jiffies(ms));
815 			}
816 
817 			if (ms == 0) {
818 				dev_err(&msg->spi->dev,
819 					"SPI transfer timed out\n");
820 				msg->status = -ETIMEDOUT;
821 			}
822 		} else {
823 			if (xfer->len)
824 				dev_err(&msg->spi->dev,
825 					"Bufferless transfer has length %u\n",
826 					xfer->len);
827 		}
828 
829 		trace_spi_transfer_stop(msg, xfer);
830 
831 		if (msg->status != -EINPROGRESS)
832 			goto out;
833 
834 		if (xfer->delay_usecs)
835 			udelay(xfer->delay_usecs);
836 
837 		if (xfer->cs_change) {
838 			if (list_is_last(&xfer->transfer_list,
839 					 &msg->transfers)) {
840 				keep_cs = true;
841 			} else {
842 				spi_set_cs(msg->spi, false);
843 				udelay(10);
844 				spi_set_cs(msg->spi, true);
845 			}
846 		}
847 
848 		msg->actual_length += xfer->len;
849 	}
850 
851 out:
852 	if (ret != 0 || !keep_cs)
853 		spi_set_cs(msg->spi, false);
854 
855 	if (msg->status == -EINPROGRESS)
856 		msg->status = ret;
857 
858 	spi_finalize_current_message(master);
859 
860 	return ret;
861 }
862 
863 /**
864  * spi_finalize_current_transfer - report completion of a transfer
865  * @master: the master reporting completion
866  *
867  * Called by SPI drivers using the core transfer_one_message()
868  * implementation to notify it that the current interrupt driven
869  * transfer has finished and the next one may be scheduled.
870  */
871 void spi_finalize_current_transfer(struct spi_master *master)
872 {
873 	complete(&master->xfer_completion);
874 }
875 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
876 
877 /**
878  * spi_pump_messages - kthread work function which processes spi message queue
879  * @work: pointer to kthread work struct contained in the master struct
880  *
881  * This function checks if there is any spi message in the queue that
882  * needs processing and if so call out to the driver to initialize hardware
883  * and transfer each message.
884  *
885  */
886 static void spi_pump_messages(struct kthread_work *work)
887 {
888 	struct spi_master *master =
889 		container_of(work, struct spi_master, pump_messages);
890 	unsigned long flags;
891 	bool was_busy = false;
892 	int ret;
893 
894 	/* Lock queue and check for queue work */
895 	spin_lock_irqsave(&master->queue_lock, flags);
896 	if (list_empty(&master->queue) || !master->running) {
897 		if (!master->busy) {
898 			spin_unlock_irqrestore(&master->queue_lock, flags);
899 			return;
900 		}
901 		master->busy = false;
902 		spin_unlock_irqrestore(&master->queue_lock, flags);
903 		kfree(master->dummy_rx);
904 		master->dummy_rx = NULL;
905 		kfree(master->dummy_tx);
906 		master->dummy_tx = NULL;
907 		if (master->unprepare_transfer_hardware &&
908 		    master->unprepare_transfer_hardware(master))
909 			dev_err(&master->dev,
910 				"failed to unprepare transfer hardware\n");
911 		if (master->auto_runtime_pm) {
912 			pm_runtime_mark_last_busy(master->dev.parent);
913 			pm_runtime_put_autosuspend(master->dev.parent);
914 		}
915 		trace_spi_master_idle(master);
916 		return;
917 	}
918 
919 	/* Make sure we are not already running a message */
920 	if (master->cur_msg) {
921 		spin_unlock_irqrestore(&master->queue_lock, flags);
922 		return;
923 	}
924 	/* Extract head of queue */
925 	master->cur_msg =
926 		list_first_entry(&master->queue, struct spi_message, queue);
927 
928 	list_del_init(&master->cur_msg->queue);
929 	if (master->busy)
930 		was_busy = true;
931 	else
932 		master->busy = true;
933 	spin_unlock_irqrestore(&master->queue_lock, flags);
934 
935 	if (!was_busy && master->auto_runtime_pm) {
936 		ret = pm_runtime_get_sync(master->dev.parent);
937 		if (ret < 0) {
938 			dev_err(&master->dev, "Failed to power device: %d\n",
939 				ret);
940 			return;
941 		}
942 	}
943 
944 	if (!was_busy)
945 		trace_spi_master_busy(master);
946 
947 	if (!was_busy && master->prepare_transfer_hardware) {
948 		ret = master->prepare_transfer_hardware(master);
949 		if (ret) {
950 			dev_err(&master->dev,
951 				"failed to prepare transfer hardware\n");
952 
953 			if (master->auto_runtime_pm)
954 				pm_runtime_put(master->dev.parent);
955 			return;
956 		}
957 	}
958 
959 	trace_spi_message_start(master->cur_msg);
960 
961 	if (master->prepare_message) {
962 		ret = master->prepare_message(master, master->cur_msg);
963 		if (ret) {
964 			dev_err(&master->dev,
965 				"failed to prepare message: %d\n", ret);
966 			master->cur_msg->status = ret;
967 			spi_finalize_current_message(master);
968 			return;
969 		}
970 		master->cur_msg_prepared = true;
971 	}
972 
973 	ret = spi_map_msg(master, master->cur_msg);
974 	if (ret) {
975 		master->cur_msg->status = ret;
976 		spi_finalize_current_message(master);
977 		return;
978 	}
979 
980 	ret = master->transfer_one_message(master, master->cur_msg);
981 	if (ret) {
982 		dev_err(&master->dev,
983 			"failed to transfer one message from queue\n");
984 		return;
985 	}
986 }
987 
988 static int spi_init_queue(struct spi_master *master)
989 {
990 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
991 
992 	INIT_LIST_HEAD(&master->queue);
993 	spin_lock_init(&master->queue_lock);
994 
995 	master->running = false;
996 	master->busy = false;
997 
998 	init_kthread_worker(&master->kworker);
999 	master->kworker_task = kthread_run(kthread_worker_fn,
1000 					   &master->kworker, "%s",
1001 					   dev_name(&master->dev));
1002 	if (IS_ERR(master->kworker_task)) {
1003 		dev_err(&master->dev, "failed to create message pump task\n");
1004 		return -ENOMEM;
1005 	}
1006 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1007 
1008 	/*
1009 	 * Master config will indicate if this controller should run the
1010 	 * message pump with high (realtime) priority to reduce the transfer
1011 	 * latency on the bus by minimising the delay between a transfer
1012 	 * request and the scheduling of the message pump thread. Without this
1013 	 * setting the message pump thread will remain at default priority.
1014 	 */
1015 	if (master->rt) {
1016 		dev_info(&master->dev,
1017 			"will run message pump with realtime priority\n");
1018 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 /**
1025  * spi_get_next_queued_message() - called by driver to check for queued
1026  * messages
1027  * @master: the master to check for queued messages
1028  *
1029  * If there are more messages in the queue, the next message is returned from
1030  * this call.
1031  */
1032 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1033 {
1034 	struct spi_message *next;
1035 	unsigned long flags;
1036 
1037 	/* get a pointer to the next message, if any */
1038 	spin_lock_irqsave(&master->queue_lock, flags);
1039 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1040 					queue);
1041 	spin_unlock_irqrestore(&master->queue_lock, flags);
1042 
1043 	return next;
1044 }
1045 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1046 
1047 /**
1048  * spi_finalize_current_message() - the current message is complete
1049  * @master: the master to return the message to
1050  *
1051  * Called by the driver to notify the core that the message in the front of the
1052  * queue is complete and can be removed from the queue.
1053  */
1054 void spi_finalize_current_message(struct spi_master *master)
1055 {
1056 	struct spi_message *mesg;
1057 	unsigned long flags;
1058 	int ret;
1059 
1060 	spin_lock_irqsave(&master->queue_lock, flags);
1061 	mesg = master->cur_msg;
1062 	master->cur_msg = NULL;
1063 
1064 	queue_kthread_work(&master->kworker, &master->pump_messages);
1065 	spin_unlock_irqrestore(&master->queue_lock, flags);
1066 
1067 	spi_unmap_msg(master, mesg);
1068 
1069 	if (master->cur_msg_prepared && master->unprepare_message) {
1070 		ret = master->unprepare_message(master, mesg);
1071 		if (ret) {
1072 			dev_err(&master->dev,
1073 				"failed to unprepare message: %d\n", ret);
1074 		}
1075 	}
1076 	master->cur_msg_prepared = false;
1077 
1078 	mesg->state = NULL;
1079 	if (mesg->complete)
1080 		mesg->complete(mesg->context);
1081 
1082 	trace_spi_message_done(mesg);
1083 }
1084 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1085 
1086 static int spi_start_queue(struct spi_master *master)
1087 {
1088 	unsigned long flags;
1089 
1090 	spin_lock_irqsave(&master->queue_lock, flags);
1091 
1092 	if (master->running || master->busy) {
1093 		spin_unlock_irqrestore(&master->queue_lock, flags);
1094 		return -EBUSY;
1095 	}
1096 
1097 	master->running = true;
1098 	master->cur_msg = NULL;
1099 	spin_unlock_irqrestore(&master->queue_lock, flags);
1100 
1101 	queue_kthread_work(&master->kworker, &master->pump_messages);
1102 
1103 	return 0;
1104 }
1105 
1106 static int spi_stop_queue(struct spi_master *master)
1107 {
1108 	unsigned long flags;
1109 	unsigned limit = 500;
1110 	int ret = 0;
1111 
1112 	spin_lock_irqsave(&master->queue_lock, flags);
1113 
1114 	/*
1115 	 * This is a bit lame, but is optimized for the common execution path.
1116 	 * A wait_queue on the master->busy could be used, but then the common
1117 	 * execution path (pump_messages) would be required to call wake_up or
1118 	 * friends on every SPI message. Do this instead.
1119 	 */
1120 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1121 		spin_unlock_irqrestore(&master->queue_lock, flags);
1122 		usleep_range(10000, 11000);
1123 		spin_lock_irqsave(&master->queue_lock, flags);
1124 	}
1125 
1126 	if (!list_empty(&master->queue) || master->busy)
1127 		ret = -EBUSY;
1128 	else
1129 		master->running = false;
1130 
1131 	spin_unlock_irqrestore(&master->queue_lock, flags);
1132 
1133 	if (ret) {
1134 		dev_warn(&master->dev,
1135 			 "could not stop message queue\n");
1136 		return ret;
1137 	}
1138 	return ret;
1139 }
1140 
1141 static int spi_destroy_queue(struct spi_master *master)
1142 {
1143 	int ret;
1144 
1145 	ret = spi_stop_queue(master);
1146 
1147 	/*
1148 	 * flush_kthread_worker will block until all work is done.
1149 	 * If the reason that stop_queue timed out is that the work will never
1150 	 * finish, then it does no good to call flush/stop thread, so
1151 	 * return anyway.
1152 	 */
1153 	if (ret) {
1154 		dev_err(&master->dev, "problem destroying queue\n");
1155 		return ret;
1156 	}
1157 
1158 	flush_kthread_worker(&master->kworker);
1159 	kthread_stop(master->kworker_task);
1160 
1161 	return 0;
1162 }
1163 
1164 /**
1165  * spi_queued_transfer - transfer function for queued transfers
1166  * @spi: spi device which is requesting transfer
1167  * @msg: spi message which is to handled is queued to driver queue
1168  */
1169 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1170 {
1171 	struct spi_master *master = spi->master;
1172 	unsigned long flags;
1173 
1174 	spin_lock_irqsave(&master->queue_lock, flags);
1175 
1176 	if (!master->running) {
1177 		spin_unlock_irqrestore(&master->queue_lock, flags);
1178 		return -ESHUTDOWN;
1179 	}
1180 	msg->actual_length = 0;
1181 	msg->status = -EINPROGRESS;
1182 
1183 	list_add_tail(&msg->queue, &master->queue);
1184 	if (!master->busy)
1185 		queue_kthread_work(&master->kworker, &master->pump_messages);
1186 
1187 	spin_unlock_irqrestore(&master->queue_lock, flags);
1188 	return 0;
1189 }
1190 
1191 static int spi_master_initialize_queue(struct spi_master *master)
1192 {
1193 	int ret;
1194 
1195 	master->transfer = spi_queued_transfer;
1196 	if (!master->transfer_one_message)
1197 		master->transfer_one_message = spi_transfer_one_message;
1198 
1199 	/* Initialize and start queue */
1200 	ret = spi_init_queue(master);
1201 	if (ret) {
1202 		dev_err(&master->dev, "problem initializing queue\n");
1203 		goto err_init_queue;
1204 	}
1205 	master->queued = true;
1206 	ret = spi_start_queue(master);
1207 	if (ret) {
1208 		dev_err(&master->dev, "problem starting queue\n");
1209 		goto err_start_queue;
1210 	}
1211 
1212 	return 0;
1213 
1214 err_start_queue:
1215 	spi_destroy_queue(master);
1216 err_init_queue:
1217 	return ret;
1218 }
1219 
1220 /*-------------------------------------------------------------------------*/
1221 
1222 #if defined(CONFIG_OF)
1223 /**
1224  * of_register_spi_devices() - Register child devices onto the SPI bus
1225  * @master:	Pointer to spi_master device
1226  *
1227  * Registers an spi_device for each child node of master node which has a 'reg'
1228  * property.
1229  */
1230 static void of_register_spi_devices(struct spi_master *master)
1231 {
1232 	struct spi_device *spi;
1233 	struct device_node *nc;
1234 	int rc;
1235 	u32 value;
1236 
1237 	if (!master->dev.of_node)
1238 		return;
1239 
1240 	for_each_available_child_of_node(master->dev.of_node, nc) {
1241 		/* Alloc an spi_device */
1242 		spi = spi_alloc_device(master);
1243 		if (!spi) {
1244 			dev_err(&master->dev, "spi_device alloc error for %s\n",
1245 				nc->full_name);
1246 			spi_dev_put(spi);
1247 			continue;
1248 		}
1249 
1250 		/* Select device driver */
1251 		if (of_modalias_node(nc, spi->modalias,
1252 				     sizeof(spi->modalias)) < 0) {
1253 			dev_err(&master->dev, "cannot find modalias for %s\n",
1254 				nc->full_name);
1255 			spi_dev_put(spi);
1256 			continue;
1257 		}
1258 
1259 		/* Device address */
1260 		rc = of_property_read_u32(nc, "reg", &value);
1261 		if (rc) {
1262 			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1263 				nc->full_name, rc);
1264 			spi_dev_put(spi);
1265 			continue;
1266 		}
1267 		spi->chip_select = value;
1268 
1269 		/* Mode (clock phase/polarity/etc.) */
1270 		if (of_find_property(nc, "spi-cpha", NULL))
1271 			spi->mode |= SPI_CPHA;
1272 		if (of_find_property(nc, "spi-cpol", NULL))
1273 			spi->mode |= SPI_CPOL;
1274 		if (of_find_property(nc, "spi-cs-high", NULL))
1275 			spi->mode |= SPI_CS_HIGH;
1276 		if (of_find_property(nc, "spi-3wire", NULL))
1277 			spi->mode |= SPI_3WIRE;
1278 		if (of_find_property(nc, "spi-lsb-first", NULL))
1279 			spi->mode |= SPI_LSB_FIRST;
1280 
1281 		/* Device DUAL/QUAD mode */
1282 		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1283 			switch (value) {
1284 			case 1:
1285 				break;
1286 			case 2:
1287 				spi->mode |= SPI_TX_DUAL;
1288 				break;
1289 			case 4:
1290 				spi->mode |= SPI_TX_QUAD;
1291 				break;
1292 			default:
1293 				dev_warn(&master->dev,
1294 					 "spi-tx-bus-width %d not supported\n",
1295 					 value);
1296 				break;
1297 			}
1298 		}
1299 
1300 		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1301 			switch (value) {
1302 			case 1:
1303 				break;
1304 			case 2:
1305 				spi->mode |= SPI_RX_DUAL;
1306 				break;
1307 			case 4:
1308 				spi->mode |= SPI_RX_QUAD;
1309 				break;
1310 			default:
1311 				dev_warn(&master->dev,
1312 					 "spi-rx-bus-width %d not supported\n",
1313 					 value);
1314 				break;
1315 			}
1316 		}
1317 
1318 		/* Device speed */
1319 		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1320 		if (rc) {
1321 			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1322 				nc->full_name, rc);
1323 			spi_dev_put(spi);
1324 			continue;
1325 		}
1326 		spi->max_speed_hz = value;
1327 
1328 		/* IRQ */
1329 		spi->irq = irq_of_parse_and_map(nc, 0);
1330 
1331 		/* Store a pointer to the node in the device structure */
1332 		of_node_get(nc);
1333 		spi->dev.of_node = nc;
1334 
1335 		/* Register the new device */
1336 		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1337 		rc = spi_add_device(spi);
1338 		if (rc) {
1339 			dev_err(&master->dev, "spi_device register error %s\n",
1340 				nc->full_name);
1341 			spi_dev_put(spi);
1342 		}
1343 
1344 	}
1345 }
1346 #else
1347 static void of_register_spi_devices(struct spi_master *master) { }
1348 #endif
1349 
1350 #ifdef CONFIG_ACPI
1351 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1352 {
1353 	struct spi_device *spi = data;
1354 
1355 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1356 		struct acpi_resource_spi_serialbus *sb;
1357 
1358 		sb = &ares->data.spi_serial_bus;
1359 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1360 			spi->chip_select = sb->device_selection;
1361 			spi->max_speed_hz = sb->connection_speed;
1362 
1363 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1364 				spi->mode |= SPI_CPHA;
1365 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1366 				spi->mode |= SPI_CPOL;
1367 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1368 				spi->mode |= SPI_CS_HIGH;
1369 		}
1370 	} else if (spi->irq < 0) {
1371 		struct resource r;
1372 
1373 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1374 			spi->irq = r.start;
1375 	}
1376 
1377 	/* Always tell the ACPI core to skip this resource */
1378 	return 1;
1379 }
1380 
1381 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1382 				       void *data, void **return_value)
1383 {
1384 	struct spi_master *master = data;
1385 	struct list_head resource_list;
1386 	struct acpi_device *adev;
1387 	struct spi_device *spi;
1388 	int ret;
1389 
1390 	if (acpi_bus_get_device(handle, &adev))
1391 		return AE_OK;
1392 	if (acpi_bus_get_status(adev) || !adev->status.present)
1393 		return AE_OK;
1394 
1395 	spi = spi_alloc_device(master);
1396 	if (!spi) {
1397 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1398 			dev_name(&adev->dev));
1399 		return AE_NO_MEMORY;
1400 	}
1401 
1402 	ACPI_COMPANION_SET(&spi->dev, adev);
1403 	spi->irq = -1;
1404 
1405 	INIT_LIST_HEAD(&resource_list);
1406 	ret = acpi_dev_get_resources(adev, &resource_list,
1407 				     acpi_spi_add_resource, spi);
1408 	acpi_dev_free_resource_list(&resource_list);
1409 
1410 	if (ret < 0 || !spi->max_speed_hz) {
1411 		spi_dev_put(spi);
1412 		return AE_OK;
1413 	}
1414 
1415 	adev->power.flags.ignore_parent = true;
1416 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1417 	if (spi_add_device(spi)) {
1418 		adev->power.flags.ignore_parent = false;
1419 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1420 			dev_name(&adev->dev));
1421 		spi_dev_put(spi);
1422 	}
1423 
1424 	return AE_OK;
1425 }
1426 
1427 static void acpi_register_spi_devices(struct spi_master *master)
1428 {
1429 	acpi_status status;
1430 	acpi_handle handle;
1431 
1432 	handle = ACPI_HANDLE(master->dev.parent);
1433 	if (!handle)
1434 		return;
1435 
1436 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1437 				     acpi_spi_add_device, NULL,
1438 				     master, NULL);
1439 	if (ACPI_FAILURE(status))
1440 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1441 }
1442 #else
1443 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1444 #endif /* CONFIG_ACPI */
1445 
1446 static void spi_master_release(struct device *dev)
1447 {
1448 	struct spi_master *master;
1449 
1450 	master = container_of(dev, struct spi_master, dev);
1451 	kfree(master);
1452 }
1453 
1454 static struct class spi_master_class = {
1455 	.name		= "spi_master",
1456 	.owner		= THIS_MODULE,
1457 	.dev_release	= spi_master_release,
1458 };
1459 
1460 
1461 
1462 /**
1463  * spi_alloc_master - allocate SPI master controller
1464  * @dev: the controller, possibly using the platform_bus
1465  * @size: how much zeroed driver-private data to allocate; the pointer to this
1466  *	memory is in the driver_data field of the returned device,
1467  *	accessible with spi_master_get_devdata().
1468  * Context: can sleep
1469  *
1470  * This call is used only by SPI master controller drivers, which are the
1471  * only ones directly touching chip registers.  It's how they allocate
1472  * an spi_master structure, prior to calling spi_register_master().
1473  *
1474  * This must be called from context that can sleep.  It returns the SPI
1475  * master structure on success, else NULL.
1476  *
1477  * The caller is responsible for assigning the bus number and initializing
1478  * the master's methods before calling spi_register_master(); and (after errors
1479  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1480  * leak.
1481  */
1482 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1483 {
1484 	struct spi_master	*master;
1485 
1486 	if (!dev)
1487 		return NULL;
1488 
1489 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1490 	if (!master)
1491 		return NULL;
1492 
1493 	device_initialize(&master->dev);
1494 	master->bus_num = -1;
1495 	master->num_chipselect = 1;
1496 	master->dev.class = &spi_master_class;
1497 	master->dev.parent = get_device(dev);
1498 	spi_master_set_devdata(master, &master[1]);
1499 
1500 	return master;
1501 }
1502 EXPORT_SYMBOL_GPL(spi_alloc_master);
1503 
1504 #ifdef CONFIG_OF
1505 static int of_spi_register_master(struct spi_master *master)
1506 {
1507 	int nb, i, *cs;
1508 	struct device_node *np = master->dev.of_node;
1509 
1510 	if (!np)
1511 		return 0;
1512 
1513 	nb = of_gpio_named_count(np, "cs-gpios");
1514 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1515 
1516 	/* Return error only for an incorrectly formed cs-gpios property */
1517 	if (nb == 0 || nb == -ENOENT)
1518 		return 0;
1519 	else if (nb < 0)
1520 		return nb;
1521 
1522 	cs = devm_kzalloc(&master->dev,
1523 			  sizeof(int) * master->num_chipselect,
1524 			  GFP_KERNEL);
1525 	master->cs_gpios = cs;
1526 
1527 	if (!master->cs_gpios)
1528 		return -ENOMEM;
1529 
1530 	for (i = 0; i < master->num_chipselect; i++)
1531 		cs[i] = -ENOENT;
1532 
1533 	for (i = 0; i < nb; i++)
1534 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1535 
1536 	return 0;
1537 }
1538 #else
1539 static int of_spi_register_master(struct spi_master *master)
1540 {
1541 	return 0;
1542 }
1543 #endif
1544 
1545 /**
1546  * spi_register_master - register SPI master controller
1547  * @master: initialized master, originally from spi_alloc_master()
1548  * Context: can sleep
1549  *
1550  * SPI master controllers connect to their drivers using some non-SPI bus,
1551  * such as the platform bus.  The final stage of probe() in that code
1552  * includes calling spi_register_master() to hook up to this SPI bus glue.
1553  *
1554  * SPI controllers use board specific (often SOC specific) bus numbers,
1555  * and board-specific addressing for SPI devices combines those numbers
1556  * with chip select numbers.  Since SPI does not directly support dynamic
1557  * device identification, boards need configuration tables telling which
1558  * chip is at which address.
1559  *
1560  * This must be called from context that can sleep.  It returns zero on
1561  * success, else a negative error code (dropping the master's refcount).
1562  * After a successful return, the caller is responsible for calling
1563  * spi_unregister_master().
1564  */
1565 int spi_register_master(struct spi_master *master)
1566 {
1567 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1568 	struct device		*dev = master->dev.parent;
1569 	struct boardinfo	*bi;
1570 	int			status = -ENODEV;
1571 	int			dynamic = 0;
1572 
1573 	if (!dev)
1574 		return -ENODEV;
1575 
1576 	status = of_spi_register_master(master);
1577 	if (status)
1578 		return status;
1579 
1580 	/* even if it's just one always-selected device, there must
1581 	 * be at least one chipselect
1582 	 */
1583 	if (master->num_chipselect == 0)
1584 		return -EINVAL;
1585 
1586 	if ((master->bus_num < 0) && master->dev.of_node)
1587 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1588 
1589 	/* convention:  dynamically assigned bus IDs count down from the max */
1590 	if (master->bus_num < 0) {
1591 		/* FIXME switch to an IDR based scheme, something like
1592 		 * I2C now uses, so we can't run out of "dynamic" IDs
1593 		 */
1594 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1595 		dynamic = 1;
1596 	}
1597 
1598 	spin_lock_init(&master->bus_lock_spinlock);
1599 	mutex_init(&master->bus_lock_mutex);
1600 	master->bus_lock_flag = 0;
1601 	init_completion(&master->xfer_completion);
1602 	if (!master->max_dma_len)
1603 		master->max_dma_len = INT_MAX;
1604 
1605 	/* register the device, then userspace will see it.
1606 	 * registration fails if the bus ID is in use.
1607 	 */
1608 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1609 	status = device_add(&master->dev);
1610 	if (status < 0)
1611 		goto done;
1612 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1613 			dynamic ? " (dynamic)" : "");
1614 
1615 	/* If we're using a queued driver, start the queue */
1616 	if (master->transfer)
1617 		dev_info(dev, "master is unqueued, this is deprecated\n");
1618 	else {
1619 		status = spi_master_initialize_queue(master);
1620 		if (status) {
1621 			device_del(&master->dev);
1622 			goto done;
1623 		}
1624 	}
1625 
1626 	mutex_lock(&board_lock);
1627 	list_add_tail(&master->list, &spi_master_list);
1628 	list_for_each_entry(bi, &board_list, list)
1629 		spi_match_master_to_boardinfo(master, &bi->board_info);
1630 	mutex_unlock(&board_lock);
1631 
1632 	/* Register devices from the device tree and ACPI */
1633 	of_register_spi_devices(master);
1634 	acpi_register_spi_devices(master);
1635 done:
1636 	return status;
1637 }
1638 EXPORT_SYMBOL_GPL(spi_register_master);
1639 
1640 static void devm_spi_unregister(struct device *dev, void *res)
1641 {
1642 	spi_unregister_master(*(struct spi_master **)res);
1643 }
1644 
1645 /**
1646  * dev_spi_register_master - register managed SPI master controller
1647  * @dev:    device managing SPI master
1648  * @master: initialized master, originally from spi_alloc_master()
1649  * Context: can sleep
1650  *
1651  * Register a SPI device as with spi_register_master() which will
1652  * automatically be unregister
1653  */
1654 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1655 {
1656 	struct spi_master **ptr;
1657 	int ret;
1658 
1659 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1660 	if (!ptr)
1661 		return -ENOMEM;
1662 
1663 	ret = spi_register_master(master);
1664 	if (!ret) {
1665 		*ptr = master;
1666 		devres_add(dev, ptr);
1667 	} else {
1668 		devres_free(ptr);
1669 	}
1670 
1671 	return ret;
1672 }
1673 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1674 
1675 static int __unregister(struct device *dev, void *null)
1676 {
1677 	spi_unregister_device(to_spi_device(dev));
1678 	return 0;
1679 }
1680 
1681 /**
1682  * spi_unregister_master - unregister SPI master controller
1683  * @master: the master being unregistered
1684  * Context: can sleep
1685  *
1686  * This call is used only by SPI master controller drivers, which are the
1687  * only ones directly touching chip registers.
1688  *
1689  * This must be called from context that can sleep.
1690  */
1691 void spi_unregister_master(struct spi_master *master)
1692 {
1693 	int dummy;
1694 
1695 	if (master->queued) {
1696 		if (spi_destroy_queue(master))
1697 			dev_err(&master->dev, "queue remove failed\n");
1698 	}
1699 
1700 	mutex_lock(&board_lock);
1701 	list_del(&master->list);
1702 	mutex_unlock(&board_lock);
1703 
1704 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1705 	device_unregister(&master->dev);
1706 }
1707 EXPORT_SYMBOL_GPL(spi_unregister_master);
1708 
1709 int spi_master_suspend(struct spi_master *master)
1710 {
1711 	int ret;
1712 
1713 	/* Basically no-ops for non-queued masters */
1714 	if (!master->queued)
1715 		return 0;
1716 
1717 	ret = spi_stop_queue(master);
1718 	if (ret)
1719 		dev_err(&master->dev, "queue stop failed\n");
1720 
1721 	return ret;
1722 }
1723 EXPORT_SYMBOL_GPL(spi_master_suspend);
1724 
1725 int spi_master_resume(struct spi_master *master)
1726 {
1727 	int ret;
1728 
1729 	if (!master->queued)
1730 		return 0;
1731 
1732 	ret = spi_start_queue(master);
1733 	if (ret)
1734 		dev_err(&master->dev, "queue restart failed\n");
1735 
1736 	return ret;
1737 }
1738 EXPORT_SYMBOL_GPL(spi_master_resume);
1739 
1740 static int __spi_master_match(struct device *dev, const void *data)
1741 {
1742 	struct spi_master *m;
1743 	const u16 *bus_num = data;
1744 
1745 	m = container_of(dev, struct spi_master, dev);
1746 	return m->bus_num == *bus_num;
1747 }
1748 
1749 /**
1750  * spi_busnum_to_master - look up master associated with bus_num
1751  * @bus_num: the master's bus number
1752  * Context: can sleep
1753  *
1754  * This call may be used with devices that are registered after
1755  * arch init time.  It returns a refcounted pointer to the relevant
1756  * spi_master (which the caller must release), or NULL if there is
1757  * no such master registered.
1758  */
1759 struct spi_master *spi_busnum_to_master(u16 bus_num)
1760 {
1761 	struct device		*dev;
1762 	struct spi_master	*master = NULL;
1763 
1764 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1765 				__spi_master_match);
1766 	if (dev)
1767 		master = container_of(dev, struct spi_master, dev);
1768 	/* reference got in class_find_device */
1769 	return master;
1770 }
1771 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1772 
1773 
1774 /*-------------------------------------------------------------------------*/
1775 
1776 /* Core methods for SPI master protocol drivers.  Some of the
1777  * other core methods are currently defined as inline functions.
1778  */
1779 
1780 /**
1781  * spi_setup - setup SPI mode and clock rate
1782  * @spi: the device whose settings are being modified
1783  * Context: can sleep, and no requests are queued to the device
1784  *
1785  * SPI protocol drivers may need to update the transfer mode if the
1786  * device doesn't work with its default.  They may likewise need
1787  * to update clock rates or word sizes from initial values.  This function
1788  * changes those settings, and must be called from a context that can sleep.
1789  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1790  * effect the next time the device is selected and data is transferred to
1791  * or from it.  When this function returns, the spi device is deselected.
1792  *
1793  * Note that this call will fail if the protocol driver specifies an option
1794  * that the underlying controller or its driver does not support.  For
1795  * example, not all hardware supports wire transfers using nine bit words,
1796  * LSB-first wire encoding, or active-high chipselects.
1797  */
1798 int spi_setup(struct spi_device *spi)
1799 {
1800 	unsigned	bad_bits, ugly_bits;
1801 	int		status = 0;
1802 
1803 	/* check mode to prevent that DUAL and QUAD set at the same time
1804 	 */
1805 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1806 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1807 		dev_err(&spi->dev,
1808 		"setup: can not select dual and quad at the same time\n");
1809 		return -EINVAL;
1810 	}
1811 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1812 	 */
1813 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1814 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1815 		return -EINVAL;
1816 	/* help drivers fail *cleanly* when they need options
1817 	 * that aren't supported with their current master
1818 	 */
1819 	bad_bits = spi->mode & ~spi->master->mode_bits;
1820 	ugly_bits = bad_bits &
1821 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1822 	if (ugly_bits) {
1823 		dev_warn(&spi->dev,
1824 			 "setup: ignoring unsupported mode bits %x\n",
1825 			 ugly_bits);
1826 		spi->mode &= ~ugly_bits;
1827 		bad_bits &= ~ugly_bits;
1828 	}
1829 	if (bad_bits) {
1830 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1831 			bad_bits);
1832 		return -EINVAL;
1833 	}
1834 
1835 	if (!spi->bits_per_word)
1836 		spi->bits_per_word = 8;
1837 
1838 	if (!spi->max_speed_hz)
1839 		spi->max_speed_hz = spi->master->max_speed_hz;
1840 
1841 	if (spi->master->setup)
1842 		status = spi->master->setup(spi);
1843 
1844 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1845 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1846 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1847 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1848 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1849 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1850 			spi->bits_per_word, spi->max_speed_hz,
1851 			status);
1852 
1853 	return status;
1854 }
1855 EXPORT_SYMBOL_GPL(spi_setup);
1856 
1857 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1858 {
1859 	struct spi_master *master = spi->master;
1860 	struct spi_transfer *xfer;
1861 	int w_size;
1862 
1863 	if (list_empty(&message->transfers))
1864 		return -EINVAL;
1865 
1866 	/* Half-duplex links include original MicroWire, and ones with
1867 	 * only one data pin like SPI_3WIRE (switches direction) or where
1868 	 * either MOSI or MISO is missing.  They can also be caused by
1869 	 * software limitations.
1870 	 */
1871 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1872 			|| (spi->mode & SPI_3WIRE)) {
1873 		unsigned flags = master->flags;
1874 
1875 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1876 			if (xfer->rx_buf && xfer->tx_buf)
1877 				return -EINVAL;
1878 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1879 				return -EINVAL;
1880 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1881 				return -EINVAL;
1882 		}
1883 	}
1884 
1885 	/**
1886 	 * Set transfer bits_per_word and max speed as spi device default if
1887 	 * it is not set for this transfer.
1888 	 * Set transfer tx_nbits and rx_nbits as single transfer default
1889 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1890 	 */
1891 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1892 		message->frame_length += xfer->len;
1893 		if (!xfer->bits_per_word)
1894 			xfer->bits_per_word = spi->bits_per_word;
1895 
1896 		if (!xfer->speed_hz)
1897 			xfer->speed_hz = spi->max_speed_hz;
1898 
1899 		if (master->max_speed_hz &&
1900 		    xfer->speed_hz > master->max_speed_hz)
1901 			xfer->speed_hz = master->max_speed_hz;
1902 
1903 		if (master->bits_per_word_mask) {
1904 			/* Only 32 bits fit in the mask */
1905 			if (xfer->bits_per_word > 32)
1906 				return -EINVAL;
1907 			if (!(master->bits_per_word_mask &
1908 					BIT(xfer->bits_per_word - 1)))
1909 				return -EINVAL;
1910 		}
1911 
1912 		/*
1913 		 * SPI transfer length should be multiple of SPI word size
1914 		 * where SPI word size should be power-of-two multiple
1915 		 */
1916 		if (xfer->bits_per_word <= 8)
1917 			w_size = 1;
1918 		else if (xfer->bits_per_word <= 16)
1919 			w_size = 2;
1920 		else
1921 			w_size = 4;
1922 
1923 		/* No partial transfers accepted */
1924 		if (xfer->len % w_size)
1925 			return -EINVAL;
1926 
1927 		if (xfer->speed_hz && master->min_speed_hz &&
1928 		    xfer->speed_hz < master->min_speed_hz)
1929 			return -EINVAL;
1930 
1931 		if (xfer->tx_buf && !xfer->tx_nbits)
1932 			xfer->tx_nbits = SPI_NBITS_SINGLE;
1933 		if (xfer->rx_buf && !xfer->rx_nbits)
1934 			xfer->rx_nbits = SPI_NBITS_SINGLE;
1935 		/* check transfer tx/rx_nbits:
1936 		 * 1. check the value matches one of single, dual and quad
1937 		 * 2. check tx/rx_nbits match the mode in spi_device
1938 		 */
1939 		if (xfer->tx_buf) {
1940 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1941 				xfer->tx_nbits != SPI_NBITS_DUAL &&
1942 				xfer->tx_nbits != SPI_NBITS_QUAD)
1943 				return -EINVAL;
1944 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1945 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1946 				return -EINVAL;
1947 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1948 				!(spi->mode & SPI_TX_QUAD))
1949 				return -EINVAL;
1950 		}
1951 		/* check transfer rx_nbits */
1952 		if (xfer->rx_buf) {
1953 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1954 				xfer->rx_nbits != SPI_NBITS_DUAL &&
1955 				xfer->rx_nbits != SPI_NBITS_QUAD)
1956 				return -EINVAL;
1957 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1958 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1959 				return -EINVAL;
1960 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1961 				!(spi->mode & SPI_RX_QUAD))
1962 				return -EINVAL;
1963 		}
1964 	}
1965 
1966 	message->status = -EINPROGRESS;
1967 
1968 	return 0;
1969 }
1970 
1971 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1972 {
1973 	struct spi_master *master = spi->master;
1974 
1975 	message->spi = spi;
1976 
1977 	trace_spi_message_submit(message);
1978 
1979 	return master->transfer(spi, message);
1980 }
1981 
1982 /**
1983  * spi_async - asynchronous SPI transfer
1984  * @spi: device with which data will be exchanged
1985  * @message: describes the data transfers, including completion callback
1986  * Context: any (irqs may be blocked, etc)
1987  *
1988  * This call may be used in_irq and other contexts which can't sleep,
1989  * as well as from task contexts which can sleep.
1990  *
1991  * The completion callback is invoked in a context which can't sleep.
1992  * Before that invocation, the value of message->status is undefined.
1993  * When the callback is issued, message->status holds either zero (to
1994  * indicate complete success) or a negative error code.  After that
1995  * callback returns, the driver which issued the transfer request may
1996  * deallocate the associated memory; it's no longer in use by any SPI
1997  * core or controller driver code.
1998  *
1999  * Note that although all messages to a spi_device are handled in
2000  * FIFO order, messages may go to different devices in other orders.
2001  * Some device might be higher priority, or have various "hard" access
2002  * time requirements, for example.
2003  *
2004  * On detection of any fault during the transfer, processing of
2005  * the entire message is aborted, and the device is deselected.
2006  * Until returning from the associated message completion callback,
2007  * no other spi_message queued to that device will be processed.
2008  * (This rule applies equally to all the synchronous transfer calls,
2009  * which are wrappers around this core asynchronous primitive.)
2010  */
2011 int spi_async(struct spi_device *spi, struct spi_message *message)
2012 {
2013 	struct spi_master *master = spi->master;
2014 	int ret;
2015 	unsigned long flags;
2016 
2017 	ret = __spi_validate(spi, message);
2018 	if (ret != 0)
2019 		return ret;
2020 
2021 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2022 
2023 	if (master->bus_lock_flag)
2024 		ret = -EBUSY;
2025 	else
2026 		ret = __spi_async(spi, message);
2027 
2028 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2029 
2030 	return ret;
2031 }
2032 EXPORT_SYMBOL_GPL(spi_async);
2033 
2034 /**
2035  * spi_async_locked - version of spi_async with exclusive bus usage
2036  * @spi: device with which data will be exchanged
2037  * @message: describes the data transfers, including completion callback
2038  * Context: any (irqs may be blocked, etc)
2039  *
2040  * This call may be used in_irq and other contexts which can't sleep,
2041  * as well as from task contexts which can sleep.
2042  *
2043  * The completion callback is invoked in a context which can't sleep.
2044  * Before that invocation, the value of message->status is undefined.
2045  * When the callback is issued, message->status holds either zero (to
2046  * indicate complete success) or a negative error code.  After that
2047  * callback returns, the driver which issued the transfer request may
2048  * deallocate the associated memory; it's no longer in use by any SPI
2049  * core or controller driver code.
2050  *
2051  * Note that although all messages to a spi_device are handled in
2052  * FIFO order, messages may go to different devices in other orders.
2053  * Some device might be higher priority, or have various "hard" access
2054  * time requirements, for example.
2055  *
2056  * On detection of any fault during the transfer, processing of
2057  * the entire message is aborted, and the device is deselected.
2058  * Until returning from the associated message completion callback,
2059  * no other spi_message queued to that device will be processed.
2060  * (This rule applies equally to all the synchronous transfer calls,
2061  * which are wrappers around this core asynchronous primitive.)
2062  */
2063 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2064 {
2065 	struct spi_master *master = spi->master;
2066 	int ret;
2067 	unsigned long flags;
2068 
2069 	ret = __spi_validate(spi, message);
2070 	if (ret != 0)
2071 		return ret;
2072 
2073 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2074 
2075 	ret = __spi_async(spi, message);
2076 
2077 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2078 
2079 	return ret;
2080 
2081 }
2082 EXPORT_SYMBOL_GPL(spi_async_locked);
2083 
2084 
2085 /*-------------------------------------------------------------------------*/
2086 
2087 /* Utility methods for SPI master protocol drivers, layered on
2088  * top of the core.  Some other utility methods are defined as
2089  * inline functions.
2090  */
2091 
2092 static void spi_complete(void *arg)
2093 {
2094 	complete(arg);
2095 }
2096 
2097 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2098 		      int bus_locked)
2099 {
2100 	DECLARE_COMPLETION_ONSTACK(done);
2101 	int status;
2102 	struct spi_master *master = spi->master;
2103 
2104 	message->complete = spi_complete;
2105 	message->context = &done;
2106 
2107 	if (!bus_locked)
2108 		mutex_lock(&master->bus_lock_mutex);
2109 
2110 	status = spi_async_locked(spi, message);
2111 
2112 	if (!bus_locked)
2113 		mutex_unlock(&master->bus_lock_mutex);
2114 
2115 	if (status == 0) {
2116 		wait_for_completion(&done);
2117 		status = message->status;
2118 	}
2119 	message->context = NULL;
2120 	return status;
2121 }
2122 
2123 /**
2124  * spi_sync - blocking/synchronous SPI data transfers
2125  * @spi: device with which data will be exchanged
2126  * @message: describes the data transfers
2127  * Context: can sleep
2128  *
2129  * This call may only be used from a context that may sleep.  The sleep
2130  * is non-interruptible, and has no timeout.  Low-overhead controller
2131  * drivers may DMA directly into and out of the message buffers.
2132  *
2133  * Note that the SPI device's chip select is active during the message,
2134  * and then is normally disabled between messages.  Drivers for some
2135  * frequently-used devices may want to minimize costs of selecting a chip,
2136  * by leaving it selected in anticipation that the next message will go
2137  * to the same chip.  (That may increase power usage.)
2138  *
2139  * Also, the caller is guaranteeing that the memory associated with the
2140  * message will not be freed before this call returns.
2141  *
2142  * It returns zero on success, else a negative error code.
2143  */
2144 int spi_sync(struct spi_device *spi, struct spi_message *message)
2145 {
2146 	return __spi_sync(spi, message, 0);
2147 }
2148 EXPORT_SYMBOL_GPL(spi_sync);
2149 
2150 /**
2151  * spi_sync_locked - version of spi_sync with exclusive bus usage
2152  * @spi: device with which data will be exchanged
2153  * @message: describes the data transfers
2154  * Context: can sleep
2155  *
2156  * This call may only be used from a context that may sleep.  The sleep
2157  * is non-interruptible, and has no timeout.  Low-overhead controller
2158  * drivers may DMA directly into and out of the message buffers.
2159  *
2160  * This call should be used by drivers that require exclusive access to the
2161  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2162  * be released by a spi_bus_unlock call when the exclusive access is over.
2163  *
2164  * It returns zero on success, else a negative error code.
2165  */
2166 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2167 {
2168 	return __spi_sync(spi, message, 1);
2169 }
2170 EXPORT_SYMBOL_GPL(spi_sync_locked);
2171 
2172 /**
2173  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2174  * @master: SPI bus master that should be locked for exclusive bus access
2175  * Context: can sleep
2176  *
2177  * This call may only be used from a context that may sleep.  The sleep
2178  * is non-interruptible, and has no timeout.
2179  *
2180  * This call should be used by drivers that require exclusive access to the
2181  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2182  * exclusive access is over. Data transfer must be done by spi_sync_locked
2183  * and spi_async_locked calls when the SPI bus lock is held.
2184  *
2185  * It returns zero on success, else a negative error code.
2186  */
2187 int spi_bus_lock(struct spi_master *master)
2188 {
2189 	unsigned long flags;
2190 
2191 	mutex_lock(&master->bus_lock_mutex);
2192 
2193 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2194 	master->bus_lock_flag = 1;
2195 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2196 
2197 	/* mutex remains locked until spi_bus_unlock is called */
2198 
2199 	return 0;
2200 }
2201 EXPORT_SYMBOL_GPL(spi_bus_lock);
2202 
2203 /**
2204  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2205  * @master: SPI bus master that was locked for exclusive bus access
2206  * Context: can sleep
2207  *
2208  * This call may only be used from a context that may sleep.  The sleep
2209  * is non-interruptible, and has no timeout.
2210  *
2211  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2212  * call.
2213  *
2214  * It returns zero on success, else a negative error code.
2215  */
2216 int spi_bus_unlock(struct spi_master *master)
2217 {
2218 	master->bus_lock_flag = 0;
2219 
2220 	mutex_unlock(&master->bus_lock_mutex);
2221 
2222 	return 0;
2223 }
2224 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2225 
2226 /* portable code must never pass more than 32 bytes */
2227 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2228 
2229 static u8	*buf;
2230 
2231 /**
2232  * spi_write_then_read - SPI synchronous write followed by read
2233  * @spi: device with which data will be exchanged
2234  * @txbuf: data to be written (need not be dma-safe)
2235  * @n_tx: size of txbuf, in bytes
2236  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2237  * @n_rx: size of rxbuf, in bytes
2238  * Context: can sleep
2239  *
2240  * This performs a half duplex MicroWire style transaction with the
2241  * device, sending txbuf and then reading rxbuf.  The return value
2242  * is zero for success, else a negative errno status code.
2243  * This call may only be used from a context that may sleep.
2244  *
2245  * Parameters to this routine are always copied using a small buffer;
2246  * portable code should never use this for more than 32 bytes.
2247  * Performance-sensitive or bulk transfer code should instead use
2248  * spi_{async,sync}() calls with dma-safe buffers.
2249  */
2250 int spi_write_then_read(struct spi_device *spi,
2251 		const void *txbuf, unsigned n_tx,
2252 		void *rxbuf, unsigned n_rx)
2253 {
2254 	static DEFINE_MUTEX(lock);
2255 
2256 	int			status;
2257 	struct spi_message	message;
2258 	struct spi_transfer	x[2];
2259 	u8			*local_buf;
2260 
2261 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2262 	 * copying here, (as a pure convenience thing), but we can
2263 	 * keep heap costs out of the hot path unless someone else is
2264 	 * using the pre-allocated buffer or the transfer is too large.
2265 	 */
2266 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2267 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2268 				    GFP_KERNEL | GFP_DMA);
2269 		if (!local_buf)
2270 			return -ENOMEM;
2271 	} else {
2272 		local_buf = buf;
2273 	}
2274 
2275 	spi_message_init(&message);
2276 	memset(x, 0, sizeof(x));
2277 	if (n_tx) {
2278 		x[0].len = n_tx;
2279 		spi_message_add_tail(&x[0], &message);
2280 	}
2281 	if (n_rx) {
2282 		x[1].len = n_rx;
2283 		spi_message_add_tail(&x[1], &message);
2284 	}
2285 
2286 	memcpy(local_buf, txbuf, n_tx);
2287 	x[0].tx_buf = local_buf;
2288 	x[1].rx_buf = local_buf + n_tx;
2289 
2290 	/* do the i/o */
2291 	status = spi_sync(spi, &message);
2292 	if (status == 0)
2293 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2294 
2295 	if (x[0].tx_buf == buf)
2296 		mutex_unlock(&lock);
2297 	else
2298 		kfree(local_buf);
2299 
2300 	return status;
2301 }
2302 EXPORT_SYMBOL_GPL(spi_write_then_read);
2303 
2304 /*-------------------------------------------------------------------------*/
2305 
2306 static int __init spi_init(void)
2307 {
2308 	int	status;
2309 
2310 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2311 	if (!buf) {
2312 		status = -ENOMEM;
2313 		goto err0;
2314 	}
2315 
2316 	status = bus_register(&spi_bus_type);
2317 	if (status < 0)
2318 		goto err1;
2319 
2320 	status = class_register(&spi_master_class);
2321 	if (status < 0)
2322 		goto err2;
2323 	return 0;
2324 
2325 err2:
2326 	bus_unregister(&spi_bus_type);
2327 err1:
2328 	kfree(buf);
2329 	buf = NULL;
2330 err0:
2331 	return status;
2332 }
2333 
2334 /* board_info is normally registered in arch_initcall(),
2335  * but even essential drivers wait till later
2336  *
2337  * REVISIT only boardinfo really needs static linking. the rest (device and
2338  * driver registration) _could_ be dynamically linked (modular) ... costs
2339  * include needing to have boardinfo data structures be much more public.
2340  */
2341 postcore_initcall(spi_init);
2342 
2343