xref: /openbmc/linux/drivers/spi/spi.c (revision de6e9190)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	spi_controller_put(spi->controller);
51 	kfree(spi->driver_override);
52 	kfree(spi);
53 }
54 
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 	const struct spi_device	*spi = to_spi_device(dev);
59 	int len;
60 
61 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 	if (len != -ENODEV)
63 		return len;
64 
65 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68 
69 static ssize_t driver_override_store(struct device *dev,
70 				     struct device_attribute *a,
71 				     const char *buf, size_t count)
72 {
73 	struct spi_device *spi = to_spi_device(dev);
74 	const char *end = memchr(buf, '\n', count);
75 	const size_t len = end ? end - buf : count;
76 	const char *driver_override, *old;
77 
78 	/* We need to keep extra room for a newline when displaying value */
79 	if (len >= (PAGE_SIZE - 1))
80 		return -EINVAL;
81 
82 	driver_override = kstrndup(buf, len, GFP_KERNEL);
83 	if (!driver_override)
84 		return -ENOMEM;
85 
86 	device_lock(dev);
87 	old = spi->driver_override;
88 	if (len) {
89 		spi->driver_override = driver_override;
90 	} else {
91 		/* Empty string, disable driver override */
92 		spi->driver_override = NULL;
93 		kfree(driver_override);
94 	}
95 	device_unlock(dev);
96 	kfree(old);
97 
98 	return count;
99 }
100 
101 static ssize_t driver_override_show(struct device *dev,
102 				    struct device_attribute *a, char *buf)
103 {
104 	const struct spi_device *spi = to_spi_device(dev);
105 	ssize_t len;
106 
107 	device_lock(dev);
108 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 	device_unlock(dev);
110 	return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113 
114 #define SPI_STATISTICS_ATTRS(field, file)				\
115 static ssize_t spi_controller_##field##_show(struct device *dev,	\
116 					     struct device_attribute *attr, \
117 					     char *buf)			\
118 {									\
119 	struct spi_controller *ctlr = container_of(dev,			\
120 					 struct spi_controller, dev);	\
121 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
122 }									\
123 static struct device_attribute dev_attr_spi_controller_##field = {	\
124 	.attr = { .name = file, .mode = 0444 },				\
125 	.show = spi_controller_##field##_show,				\
126 };									\
127 static ssize_t spi_device_##field##_show(struct device *dev,		\
128 					 struct device_attribute *attr,	\
129 					char *buf)			\
130 {									\
131 	struct spi_device *spi = to_spi_device(dev);			\
132 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
133 }									\
134 static struct device_attribute dev_attr_spi_device_##field = {		\
135 	.attr = { .name = file, .mode = 0444 },				\
136 	.show = spi_device_##field##_show,				\
137 }
138 
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 					    char *buf)			\
142 {									\
143 	unsigned long flags;						\
144 	ssize_t len;							\
145 	spin_lock_irqsave(&stat->lock, flags);				\
146 	len = sprintf(buf, format_string, stat->field);			\
147 	spin_unlock_irqrestore(&stat->lock, flags);			\
148 	return len;							\
149 }									\
150 SPI_STATISTICS_ATTRS(name, file)
151 
152 #define SPI_STATISTICS_SHOW(field, format_string)			\
153 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
154 				 field, format_string)
155 
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160 
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164 
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168 
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
170 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
171 				 "transfer_bytes_histo_" number,	\
172 				 transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190 
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192 
193 static struct attribute *spi_dev_attrs[] = {
194 	&dev_attr_modalias.attr,
195 	&dev_attr_driver_override.attr,
196 	NULL,
197 };
198 
199 static const struct attribute_group spi_dev_group = {
200 	.attrs  = spi_dev_attrs,
201 };
202 
203 static struct attribute *spi_device_statistics_attrs[] = {
204 	&dev_attr_spi_device_messages.attr,
205 	&dev_attr_spi_device_transfers.attr,
206 	&dev_attr_spi_device_errors.attr,
207 	&dev_attr_spi_device_timedout.attr,
208 	&dev_attr_spi_device_spi_sync.attr,
209 	&dev_attr_spi_device_spi_sync_immediate.attr,
210 	&dev_attr_spi_device_spi_async.attr,
211 	&dev_attr_spi_device_bytes.attr,
212 	&dev_attr_spi_device_bytes_rx.attr,
213 	&dev_attr_spi_device_bytes_tx.attr,
214 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
231 	&dev_attr_spi_device_transfers_split_maxsize.attr,
232 	NULL,
233 };
234 
235 static const struct attribute_group spi_device_statistics_group = {
236 	.name  = "statistics",
237 	.attrs  = spi_device_statistics_attrs,
238 };
239 
240 static const struct attribute_group *spi_dev_groups[] = {
241 	&spi_dev_group,
242 	&spi_device_statistics_group,
243 	NULL,
244 };
245 
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 	&dev_attr_spi_controller_messages.attr,
248 	&dev_attr_spi_controller_transfers.attr,
249 	&dev_attr_spi_controller_errors.attr,
250 	&dev_attr_spi_controller_timedout.attr,
251 	&dev_attr_spi_controller_spi_sync.attr,
252 	&dev_attr_spi_controller_spi_sync_immediate.attr,
253 	&dev_attr_spi_controller_spi_async.attr,
254 	&dev_attr_spi_controller_bytes.attr,
255 	&dev_attr_spi_controller_bytes_rx.attr,
256 	&dev_attr_spi_controller_bytes_tx.attr,
257 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
275 	NULL,
276 };
277 
278 static const struct attribute_group spi_controller_statistics_group = {
279 	.name  = "statistics",
280 	.attrs  = spi_controller_statistics_attrs,
281 };
282 
283 static const struct attribute_group *spi_master_groups[] = {
284 	&spi_controller_statistics_group,
285 	NULL,
286 };
287 
288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 				       struct spi_transfer *xfer,
290 				       struct spi_controller *ctlr)
291 {
292 	unsigned long flags;
293 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294 
295 	if (l2len < 0)
296 		l2len = 0;
297 
298 	spin_lock_irqsave(&stats->lock, flags);
299 
300 	stats->transfers++;
301 	stats->transfer_bytes_histo[l2len]++;
302 
303 	stats->bytes += xfer->len;
304 	if ((xfer->tx_buf) &&
305 	    (xfer->tx_buf != ctlr->dummy_tx))
306 		stats->bytes_tx += xfer->len;
307 	if ((xfer->rx_buf) &&
308 	    (xfer->rx_buf != ctlr->dummy_rx))
309 		stats->bytes_rx += xfer->len;
310 
311 	spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314 
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316  * and the sysfs version makes coldplug work too.
317  */
318 
319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320 						const struct spi_device *sdev)
321 {
322 	while (id->name[0]) {
323 		if (!strcmp(sdev->modalias, id->name))
324 			return id;
325 		id++;
326 	}
327 	return NULL;
328 }
329 
330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333 
334 	return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337 
338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340 	const struct spi_device	*spi = to_spi_device(dev);
341 	const struct spi_driver	*sdrv = to_spi_driver(drv);
342 
343 	/* Check override first, and if set, only use the named driver */
344 	if (spi->driver_override)
345 		return strcmp(spi->driver_override, drv->name) == 0;
346 
347 	/* Attempt an OF style match */
348 	if (of_driver_match_device(dev, drv))
349 		return 1;
350 
351 	/* Then try ACPI */
352 	if (acpi_driver_match_device(dev, drv))
353 		return 1;
354 
355 	if (sdrv->id_table)
356 		return !!spi_match_id(sdrv->id_table, spi);
357 
358 	return strcmp(spi->modalias, drv->name) == 0;
359 }
360 
361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363 	const struct spi_device		*spi = to_spi_device(dev);
364 	int rc;
365 
366 	rc = acpi_device_uevent_modalias(dev, env);
367 	if (rc != -ENODEV)
368 		return rc;
369 
370 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
371 }
372 
373 static int spi_probe(struct device *dev)
374 {
375 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
376 	struct spi_device		*spi = to_spi_device(dev);
377 	int ret;
378 
379 	ret = of_clk_set_defaults(dev->of_node, false);
380 	if (ret)
381 		return ret;
382 
383 	if (dev->of_node) {
384 		spi->irq = of_irq_get(dev->of_node, 0);
385 		if (spi->irq == -EPROBE_DEFER)
386 			return -EPROBE_DEFER;
387 		if (spi->irq < 0)
388 			spi->irq = 0;
389 	}
390 
391 	ret = dev_pm_domain_attach(dev, true);
392 	if (ret)
393 		return ret;
394 
395 	if (sdrv->probe) {
396 		ret = sdrv->probe(spi);
397 		if (ret)
398 			dev_pm_domain_detach(dev, true);
399 	}
400 
401 	return ret;
402 }
403 
404 static void spi_remove(struct device *dev)
405 {
406 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
407 
408 	if (sdrv->remove) {
409 		int ret;
410 
411 		ret = sdrv->remove(to_spi_device(dev));
412 		if (ret)
413 			dev_warn(dev,
414 				 "Failed to unbind driver (%pe), ignoring\n",
415 				 ERR_PTR(ret));
416 	}
417 
418 	dev_pm_domain_detach(dev, true);
419 }
420 
421 static void spi_shutdown(struct device *dev)
422 {
423 	if (dev->driver) {
424 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
425 
426 		if (sdrv->shutdown)
427 			sdrv->shutdown(to_spi_device(dev));
428 	}
429 }
430 
431 struct bus_type spi_bus_type = {
432 	.name		= "spi",
433 	.dev_groups	= spi_dev_groups,
434 	.match		= spi_match_device,
435 	.uevent		= spi_uevent,
436 	.probe		= spi_probe,
437 	.remove		= spi_remove,
438 	.shutdown	= spi_shutdown,
439 };
440 EXPORT_SYMBOL_GPL(spi_bus_type);
441 
442 /**
443  * __spi_register_driver - register a SPI driver
444  * @owner: owner module of the driver to register
445  * @sdrv: the driver to register
446  * Context: can sleep
447  *
448  * Return: zero on success, else a negative error code.
449  */
450 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
451 {
452 	sdrv->driver.owner = owner;
453 	sdrv->driver.bus = &spi_bus_type;
454 	return driver_register(&sdrv->driver);
455 }
456 EXPORT_SYMBOL_GPL(__spi_register_driver);
457 
458 /*-------------------------------------------------------------------------*/
459 
460 /* SPI devices should normally not be created by SPI device drivers; that
461  * would make them board-specific.  Similarly with SPI controller drivers.
462  * Device registration normally goes into like arch/.../mach.../board-YYY.c
463  * with other readonly (flashable) information about mainboard devices.
464  */
465 
466 struct boardinfo {
467 	struct list_head	list;
468 	struct spi_board_info	board_info;
469 };
470 
471 static LIST_HEAD(board_list);
472 static LIST_HEAD(spi_controller_list);
473 
474 /*
475  * Used to protect add/del operation for board_info list and
476  * spi_controller list, and their matching process
477  * also used to protect object of type struct idr
478  */
479 static DEFINE_MUTEX(board_lock);
480 
481 /**
482  * spi_alloc_device - Allocate a new SPI device
483  * @ctlr: Controller to which device is connected
484  * Context: can sleep
485  *
486  * Allows a driver to allocate and initialize a spi_device without
487  * registering it immediately.  This allows a driver to directly
488  * fill the spi_device with device parameters before calling
489  * spi_add_device() on it.
490  *
491  * Caller is responsible to call spi_add_device() on the returned
492  * spi_device structure to add it to the SPI controller.  If the caller
493  * needs to discard the spi_device without adding it, then it should
494  * call spi_dev_put() on it.
495  *
496  * Return: a pointer to the new device, or NULL.
497  */
498 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
499 {
500 	struct spi_device	*spi;
501 
502 	if (!spi_controller_get(ctlr))
503 		return NULL;
504 
505 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
506 	if (!spi) {
507 		spi_controller_put(ctlr);
508 		return NULL;
509 	}
510 
511 	spi->master = spi->controller = ctlr;
512 	spi->dev.parent = &ctlr->dev;
513 	spi->dev.bus = &spi_bus_type;
514 	spi->dev.release = spidev_release;
515 	spi->cs_gpio = -ENOENT;
516 	spi->mode = ctlr->buswidth_override_bits;
517 
518 	spin_lock_init(&spi->statistics.lock);
519 
520 	device_initialize(&spi->dev);
521 	return spi;
522 }
523 EXPORT_SYMBOL_GPL(spi_alloc_device);
524 
525 static void spi_dev_set_name(struct spi_device *spi)
526 {
527 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
528 
529 	if (adev) {
530 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
531 		return;
532 	}
533 
534 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
535 		     spi->chip_select);
536 }
537 
538 static int spi_dev_check(struct device *dev, void *data)
539 {
540 	struct spi_device *spi = to_spi_device(dev);
541 	struct spi_device *new_spi = data;
542 
543 	if (spi->controller == new_spi->controller &&
544 	    spi->chip_select == new_spi->chip_select)
545 		return -EBUSY;
546 	return 0;
547 }
548 
549 static void spi_cleanup(struct spi_device *spi)
550 {
551 	if (spi->controller->cleanup)
552 		spi->controller->cleanup(spi);
553 }
554 
555 static int __spi_add_device(struct spi_device *spi)
556 {
557 	struct spi_controller *ctlr = spi->controller;
558 	struct device *dev = ctlr->dev.parent;
559 	int status;
560 
561 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
562 	if (status) {
563 		dev_err(dev, "chipselect %d already in use\n",
564 				spi->chip_select);
565 		return status;
566 	}
567 
568 	/* Controller may unregister concurrently */
569 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
570 	    !device_is_registered(&ctlr->dev)) {
571 		return -ENODEV;
572 	}
573 
574 	/* Descriptors take precedence */
575 	if (ctlr->cs_gpiods)
576 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
577 	else if (ctlr->cs_gpios)
578 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
579 
580 	/* Drivers may modify this initial i/o setup, but will
581 	 * normally rely on the device being setup.  Devices
582 	 * using SPI_CS_HIGH can't coexist well otherwise...
583 	 */
584 	status = spi_setup(spi);
585 	if (status < 0) {
586 		dev_err(dev, "can't setup %s, status %d\n",
587 				dev_name(&spi->dev), status);
588 		return status;
589 	}
590 
591 	/* Device may be bound to an active driver when this returns */
592 	status = device_add(&spi->dev);
593 	if (status < 0) {
594 		dev_err(dev, "can't add %s, status %d\n",
595 				dev_name(&spi->dev), status);
596 		spi_cleanup(spi);
597 	} else {
598 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
599 	}
600 
601 	return status;
602 }
603 
604 /**
605  * spi_add_device - Add spi_device allocated with spi_alloc_device
606  * @spi: spi_device to register
607  *
608  * Companion function to spi_alloc_device.  Devices allocated with
609  * spi_alloc_device can be added onto the spi bus with this function.
610  *
611  * Return: 0 on success; negative errno on failure
612  */
613 int spi_add_device(struct spi_device *spi)
614 {
615 	struct spi_controller *ctlr = spi->controller;
616 	struct device *dev = ctlr->dev.parent;
617 	int status;
618 
619 	/* Chipselects are numbered 0..max; validate. */
620 	if (spi->chip_select >= ctlr->num_chipselect) {
621 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
622 			ctlr->num_chipselect);
623 		return -EINVAL;
624 	}
625 
626 	/* Set the bus ID string */
627 	spi_dev_set_name(spi);
628 
629 	/* We need to make sure there's no other device with this
630 	 * chipselect **BEFORE** we call setup(), else we'll trash
631 	 * its configuration.  Lock against concurrent add() calls.
632 	 */
633 	mutex_lock(&ctlr->add_lock);
634 	status = __spi_add_device(spi);
635 	mutex_unlock(&ctlr->add_lock);
636 	return status;
637 }
638 EXPORT_SYMBOL_GPL(spi_add_device);
639 
640 static int spi_add_device_locked(struct spi_device *spi)
641 {
642 	struct spi_controller *ctlr = spi->controller;
643 	struct device *dev = ctlr->dev.parent;
644 
645 	/* Chipselects are numbered 0..max; validate. */
646 	if (spi->chip_select >= ctlr->num_chipselect) {
647 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
648 			ctlr->num_chipselect);
649 		return -EINVAL;
650 	}
651 
652 	/* Set the bus ID string */
653 	spi_dev_set_name(spi);
654 
655 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
656 	return __spi_add_device(spi);
657 }
658 
659 /**
660  * spi_new_device - instantiate one new SPI device
661  * @ctlr: Controller to which device is connected
662  * @chip: Describes the SPI device
663  * Context: can sleep
664  *
665  * On typical mainboards, this is purely internal; and it's not needed
666  * after board init creates the hard-wired devices.  Some development
667  * platforms may not be able to use spi_register_board_info though, and
668  * this is exported so that for example a USB or parport based adapter
669  * driver could add devices (which it would learn about out-of-band).
670  *
671  * Return: the new device, or NULL.
672  */
673 struct spi_device *spi_new_device(struct spi_controller *ctlr,
674 				  struct spi_board_info *chip)
675 {
676 	struct spi_device	*proxy;
677 	int			status;
678 
679 	/* NOTE:  caller did any chip->bus_num checks necessary.
680 	 *
681 	 * Also, unless we change the return value convention to use
682 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
683 	 * suggests syslogged diagnostics are best here (ugh).
684 	 */
685 
686 	proxy = spi_alloc_device(ctlr);
687 	if (!proxy)
688 		return NULL;
689 
690 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
691 
692 	proxy->chip_select = chip->chip_select;
693 	proxy->max_speed_hz = chip->max_speed_hz;
694 	proxy->mode = chip->mode;
695 	proxy->irq = chip->irq;
696 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
697 	proxy->dev.platform_data = (void *) chip->platform_data;
698 	proxy->controller_data = chip->controller_data;
699 	proxy->controller_state = NULL;
700 
701 	if (chip->swnode) {
702 		status = device_add_software_node(&proxy->dev, chip->swnode);
703 		if (status) {
704 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
705 				chip->modalias, status);
706 			goto err_dev_put;
707 		}
708 	}
709 
710 	status = spi_add_device(proxy);
711 	if (status < 0)
712 		goto err_dev_put;
713 
714 	return proxy;
715 
716 err_dev_put:
717 	device_remove_software_node(&proxy->dev);
718 	spi_dev_put(proxy);
719 	return NULL;
720 }
721 EXPORT_SYMBOL_GPL(spi_new_device);
722 
723 /**
724  * spi_unregister_device - unregister a single SPI device
725  * @spi: spi_device to unregister
726  *
727  * Start making the passed SPI device vanish. Normally this would be handled
728  * by spi_unregister_controller().
729  */
730 void spi_unregister_device(struct spi_device *spi)
731 {
732 	if (!spi)
733 		return;
734 
735 	if (spi->dev.of_node) {
736 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
737 		of_node_put(spi->dev.of_node);
738 	}
739 	if (ACPI_COMPANION(&spi->dev))
740 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
741 	device_remove_software_node(&spi->dev);
742 	device_del(&spi->dev);
743 	spi_cleanup(spi);
744 	put_device(&spi->dev);
745 }
746 EXPORT_SYMBOL_GPL(spi_unregister_device);
747 
748 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
749 					      struct spi_board_info *bi)
750 {
751 	struct spi_device *dev;
752 
753 	if (ctlr->bus_num != bi->bus_num)
754 		return;
755 
756 	dev = spi_new_device(ctlr, bi);
757 	if (!dev)
758 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
759 			bi->modalias);
760 }
761 
762 /**
763  * spi_register_board_info - register SPI devices for a given board
764  * @info: array of chip descriptors
765  * @n: how many descriptors are provided
766  * Context: can sleep
767  *
768  * Board-specific early init code calls this (probably during arch_initcall)
769  * with segments of the SPI device table.  Any device nodes are created later,
770  * after the relevant parent SPI controller (bus_num) is defined.  We keep
771  * this table of devices forever, so that reloading a controller driver will
772  * not make Linux forget about these hard-wired devices.
773  *
774  * Other code can also call this, e.g. a particular add-on board might provide
775  * SPI devices through its expansion connector, so code initializing that board
776  * would naturally declare its SPI devices.
777  *
778  * The board info passed can safely be __initdata ... but be careful of
779  * any embedded pointers (platform_data, etc), they're copied as-is.
780  *
781  * Return: zero on success, else a negative error code.
782  */
783 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
784 {
785 	struct boardinfo *bi;
786 	int i;
787 
788 	if (!n)
789 		return 0;
790 
791 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
792 	if (!bi)
793 		return -ENOMEM;
794 
795 	for (i = 0; i < n; i++, bi++, info++) {
796 		struct spi_controller *ctlr;
797 
798 		memcpy(&bi->board_info, info, sizeof(*info));
799 
800 		mutex_lock(&board_lock);
801 		list_add_tail(&bi->list, &board_list);
802 		list_for_each_entry(ctlr, &spi_controller_list, list)
803 			spi_match_controller_to_boardinfo(ctlr,
804 							  &bi->board_info);
805 		mutex_unlock(&board_lock);
806 	}
807 
808 	return 0;
809 }
810 
811 /*-------------------------------------------------------------------------*/
812 
813 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
814 {
815 	bool activate = enable;
816 
817 	/*
818 	 * Avoid calling into the driver (or doing delays) if the chip select
819 	 * isn't actually changing from the last time this was called.
820 	 */
821 	if (!force && (spi->controller->last_cs_enable == enable) &&
822 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
823 		return;
824 
825 	trace_spi_set_cs(spi, activate);
826 
827 	spi->controller->last_cs_enable = enable;
828 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
829 
830 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
831 	    !spi->controller->set_cs_timing) {
832 		if (activate)
833 			spi_delay_exec(&spi->cs_setup, NULL);
834 		else
835 			spi_delay_exec(&spi->cs_hold, NULL);
836 	}
837 
838 	if (spi->mode & SPI_CS_HIGH)
839 		enable = !enable;
840 
841 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
842 		if (!(spi->mode & SPI_NO_CS)) {
843 			if (spi->cs_gpiod) {
844 				/*
845 				 * Historically ACPI has no means of the GPIO polarity and
846 				 * thus the SPISerialBus() resource defines it on the per-chip
847 				 * basis. In order to avoid a chain of negations, the GPIO
848 				 * polarity is considered being Active High. Even for the cases
849 				 * when _DSD() is involved (in the updated versions of ACPI)
850 				 * the GPIO CS polarity must be defined Active High to avoid
851 				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
852 				 * into account.
853 				 */
854 				if (has_acpi_companion(&spi->dev))
855 					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
856 				else
857 					/* Polarity handled by GPIO library */
858 					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
859 			} else {
860 				/*
861 				 * invert the enable line, as active low is
862 				 * default for SPI.
863 				 */
864 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
865 			}
866 		}
867 		/* Some SPI masters need both GPIO CS & slave_select */
868 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
869 		    spi->controller->set_cs)
870 			spi->controller->set_cs(spi, !enable);
871 	} else if (spi->controller->set_cs) {
872 		spi->controller->set_cs(spi, !enable);
873 	}
874 
875 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
876 	    !spi->controller->set_cs_timing) {
877 		if (!activate)
878 			spi_delay_exec(&spi->cs_inactive, NULL);
879 	}
880 }
881 
882 #ifdef CONFIG_HAS_DMA
883 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
884 		struct sg_table *sgt, void *buf, size_t len,
885 		enum dma_data_direction dir)
886 {
887 	const bool vmalloced_buf = is_vmalloc_addr(buf);
888 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
889 #ifdef CONFIG_HIGHMEM
890 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
891 				(unsigned long)buf < (PKMAP_BASE +
892 					(LAST_PKMAP * PAGE_SIZE)));
893 #else
894 	const bool kmap_buf = false;
895 #endif
896 	int desc_len;
897 	int sgs;
898 	struct page *vm_page;
899 	struct scatterlist *sg;
900 	void *sg_buf;
901 	size_t min;
902 	int i, ret;
903 
904 	if (vmalloced_buf || kmap_buf) {
905 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
906 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
907 	} else if (virt_addr_valid(buf)) {
908 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
909 		sgs = DIV_ROUND_UP(len, desc_len);
910 	} else {
911 		return -EINVAL;
912 	}
913 
914 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
915 	if (ret != 0)
916 		return ret;
917 
918 	sg = &sgt->sgl[0];
919 	for (i = 0; i < sgs; i++) {
920 
921 		if (vmalloced_buf || kmap_buf) {
922 			/*
923 			 * Next scatterlist entry size is the minimum between
924 			 * the desc_len and the remaining buffer length that
925 			 * fits in a page.
926 			 */
927 			min = min_t(size_t, desc_len,
928 				    min_t(size_t, len,
929 					  PAGE_SIZE - offset_in_page(buf)));
930 			if (vmalloced_buf)
931 				vm_page = vmalloc_to_page(buf);
932 			else
933 				vm_page = kmap_to_page(buf);
934 			if (!vm_page) {
935 				sg_free_table(sgt);
936 				return -ENOMEM;
937 			}
938 			sg_set_page(sg, vm_page,
939 				    min, offset_in_page(buf));
940 		} else {
941 			min = min_t(size_t, len, desc_len);
942 			sg_buf = buf;
943 			sg_set_buf(sg, sg_buf, min);
944 		}
945 
946 		buf += min;
947 		len -= min;
948 		sg = sg_next(sg);
949 	}
950 
951 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
952 	if (!ret)
953 		ret = -ENOMEM;
954 	if (ret < 0) {
955 		sg_free_table(sgt);
956 		return ret;
957 	}
958 
959 	sgt->nents = ret;
960 
961 	return 0;
962 }
963 
964 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
965 		   struct sg_table *sgt, enum dma_data_direction dir)
966 {
967 	if (sgt->orig_nents) {
968 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
969 		sg_free_table(sgt);
970 	}
971 }
972 
973 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
974 {
975 	struct device *tx_dev, *rx_dev;
976 	struct spi_transfer *xfer;
977 	int ret;
978 
979 	if (!ctlr->can_dma)
980 		return 0;
981 
982 	if (ctlr->dma_tx)
983 		tx_dev = ctlr->dma_tx->device->dev;
984 	else if (ctlr->dma_map_dev)
985 		tx_dev = ctlr->dma_map_dev;
986 	else
987 		tx_dev = ctlr->dev.parent;
988 
989 	if (ctlr->dma_rx)
990 		rx_dev = ctlr->dma_rx->device->dev;
991 	else if (ctlr->dma_map_dev)
992 		rx_dev = ctlr->dma_map_dev;
993 	else
994 		rx_dev = ctlr->dev.parent;
995 
996 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
997 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
998 			continue;
999 
1000 		if (xfer->tx_buf != NULL) {
1001 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1002 					  (void *)xfer->tx_buf, xfer->len,
1003 					  DMA_TO_DEVICE);
1004 			if (ret != 0)
1005 				return ret;
1006 		}
1007 
1008 		if (xfer->rx_buf != NULL) {
1009 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1010 					  xfer->rx_buf, xfer->len,
1011 					  DMA_FROM_DEVICE);
1012 			if (ret != 0) {
1013 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1014 					      DMA_TO_DEVICE);
1015 				return ret;
1016 			}
1017 		}
1018 	}
1019 
1020 	ctlr->cur_msg_mapped = true;
1021 
1022 	return 0;
1023 }
1024 
1025 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1026 {
1027 	struct spi_transfer *xfer;
1028 	struct device *tx_dev, *rx_dev;
1029 
1030 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1031 		return 0;
1032 
1033 	if (ctlr->dma_tx)
1034 		tx_dev = ctlr->dma_tx->device->dev;
1035 	else
1036 		tx_dev = ctlr->dev.parent;
1037 
1038 	if (ctlr->dma_rx)
1039 		rx_dev = ctlr->dma_rx->device->dev;
1040 	else
1041 		rx_dev = ctlr->dev.parent;
1042 
1043 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1044 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1045 			continue;
1046 
1047 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1048 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1049 	}
1050 
1051 	ctlr->cur_msg_mapped = false;
1052 
1053 	return 0;
1054 }
1055 #else /* !CONFIG_HAS_DMA */
1056 static inline int __spi_map_msg(struct spi_controller *ctlr,
1057 				struct spi_message *msg)
1058 {
1059 	return 0;
1060 }
1061 
1062 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1063 				  struct spi_message *msg)
1064 {
1065 	return 0;
1066 }
1067 #endif /* !CONFIG_HAS_DMA */
1068 
1069 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1070 				struct spi_message *msg)
1071 {
1072 	struct spi_transfer *xfer;
1073 
1074 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1075 		/*
1076 		 * Restore the original value of tx_buf or rx_buf if they are
1077 		 * NULL.
1078 		 */
1079 		if (xfer->tx_buf == ctlr->dummy_tx)
1080 			xfer->tx_buf = NULL;
1081 		if (xfer->rx_buf == ctlr->dummy_rx)
1082 			xfer->rx_buf = NULL;
1083 	}
1084 
1085 	return __spi_unmap_msg(ctlr, msg);
1086 }
1087 
1088 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1089 {
1090 	struct spi_transfer *xfer;
1091 	void *tmp;
1092 	unsigned int max_tx, max_rx;
1093 
1094 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1095 		&& !(msg->spi->mode & SPI_3WIRE)) {
1096 		max_tx = 0;
1097 		max_rx = 0;
1098 
1099 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1100 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1101 			    !xfer->tx_buf)
1102 				max_tx = max(xfer->len, max_tx);
1103 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1104 			    !xfer->rx_buf)
1105 				max_rx = max(xfer->len, max_rx);
1106 		}
1107 
1108 		if (max_tx) {
1109 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1110 				       GFP_KERNEL | GFP_DMA);
1111 			if (!tmp)
1112 				return -ENOMEM;
1113 			ctlr->dummy_tx = tmp;
1114 			memset(tmp, 0, max_tx);
1115 		}
1116 
1117 		if (max_rx) {
1118 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1119 				       GFP_KERNEL | GFP_DMA);
1120 			if (!tmp)
1121 				return -ENOMEM;
1122 			ctlr->dummy_rx = tmp;
1123 		}
1124 
1125 		if (max_tx || max_rx) {
1126 			list_for_each_entry(xfer, &msg->transfers,
1127 					    transfer_list) {
1128 				if (!xfer->len)
1129 					continue;
1130 				if (!xfer->tx_buf)
1131 					xfer->tx_buf = ctlr->dummy_tx;
1132 				if (!xfer->rx_buf)
1133 					xfer->rx_buf = ctlr->dummy_rx;
1134 			}
1135 		}
1136 	}
1137 
1138 	return __spi_map_msg(ctlr, msg);
1139 }
1140 
1141 static int spi_transfer_wait(struct spi_controller *ctlr,
1142 			     struct spi_message *msg,
1143 			     struct spi_transfer *xfer)
1144 {
1145 	struct spi_statistics *statm = &ctlr->statistics;
1146 	struct spi_statistics *stats = &msg->spi->statistics;
1147 	u32 speed_hz = xfer->speed_hz;
1148 	unsigned long long ms;
1149 
1150 	if (spi_controller_is_slave(ctlr)) {
1151 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1152 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1153 			return -EINTR;
1154 		}
1155 	} else {
1156 		if (!speed_hz)
1157 			speed_hz = 100000;
1158 
1159 		/*
1160 		 * For each byte we wait for 8 cycles of the SPI clock.
1161 		 * Since speed is defined in Hz and we want milliseconds,
1162 		 * use respective multiplier, but before the division,
1163 		 * otherwise we may get 0 for short transfers.
1164 		 */
1165 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1166 		do_div(ms, speed_hz);
1167 
1168 		/*
1169 		 * Increase it twice and add 200 ms tolerance, use
1170 		 * predefined maximum in case of overflow.
1171 		 */
1172 		ms += ms + 200;
1173 		if (ms > UINT_MAX)
1174 			ms = UINT_MAX;
1175 
1176 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1177 						 msecs_to_jiffies(ms));
1178 
1179 		if (ms == 0) {
1180 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1181 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1182 			dev_err(&msg->spi->dev,
1183 				"SPI transfer timed out\n");
1184 			return -ETIMEDOUT;
1185 		}
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static void _spi_transfer_delay_ns(u32 ns)
1192 {
1193 	if (!ns)
1194 		return;
1195 	if (ns <= NSEC_PER_USEC) {
1196 		ndelay(ns);
1197 	} else {
1198 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1199 
1200 		if (us <= 10)
1201 			udelay(us);
1202 		else
1203 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1204 	}
1205 }
1206 
1207 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1208 {
1209 	u32 delay = _delay->value;
1210 	u32 unit = _delay->unit;
1211 	u32 hz;
1212 
1213 	if (!delay)
1214 		return 0;
1215 
1216 	switch (unit) {
1217 	case SPI_DELAY_UNIT_USECS:
1218 		delay *= NSEC_PER_USEC;
1219 		break;
1220 	case SPI_DELAY_UNIT_NSECS:
1221 		/* Nothing to do here */
1222 		break;
1223 	case SPI_DELAY_UNIT_SCK:
1224 		/* clock cycles need to be obtained from spi_transfer */
1225 		if (!xfer)
1226 			return -EINVAL;
1227 		/*
1228 		 * If there is unknown effective speed, approximate it
1229 		 * by underestimating with half of the requested hz.
1230 		 */
1231 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1232 		if (!hz)
1233 			return -EINVAL;
1234 
1235 		/* Convert delay to nanoseconds */
1236 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1237 		break;
1238 	default:
1239 		return -EINVAL;
1240 	}
1241 
1242 	return delay;
1243 }
1244 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1245 
1246 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1247 {
1248 	int delay;
1249 
1250 	might_sleep();
1251 
1252 	if (!_delay)
1253 		return -EINVAL;
1254 
1255 	delay = spi_delay_to_ns(_delay, xfer);
1256 	if (delay < 0)
1257 		return delay;
1258 
1259 	_spi_transfer_delay_ns(delay);
1260 
1261 	return 0;
1262 }
1263 EXPORT_SYMBOL_GPL(spi_delay_exec);
1264 
1265 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1266 					  struct spi_transfer *xfer)
1267 {
1268 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1269 	u32 delay = xfer->cs_change_delay.value;
1270 	u32 unit = xfer->cs_change_delay.unit;
1271 	int ret;
1272 
1273 	/* return early on "fast" mode - for everything but USECS */
1274 	if (!delay) {
1275 		if (unit == SPI_DELAY_UNIT_USECS)
1276 			_spi_transfer_delay_ns(default_delay_ns);
1277 		return;
1278 	}
1279 
1280 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1281 	if (ret) {
1282 		dev_err_once(&msg->spi->dev,
1283 			     "Use of unsupported delay unit %i, using default of %luus\n",
1284 			     unit, default_delay_ns / NSEC_PER_USEC);
1285 		_spi_transfer_delay_ns(default_delay_ns);
1286 	}
1287 }
1288 
1289 /*
1290  * spi_transfer_one_message - Default implementation of transfer_one_message()
1291  *
1292  * This is a standard implementation of transfer_one_message() for
1293  * drivers which implement a transfer_one() operation.  It provides
1294  * standard handling of delays and chip select management.
1295  */
1296 static int spi_transfer_one_message(struct spi_controller *ctlr,
1297 				    struct spi_message *msg)
1298 {
1299 	struct spi_transfer *xfer;
1300 	bool keep_cs = false;
1301 	int ret = 0;
1302 	struct spi_statistics *statm = &ctlr->statistics;
1303 	struct spi_statistics *stats = &msg->spi->statistics;
1304 
1305 	spi_set_cs(msg->spi, true, false);
1306 
1307 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1308 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1309 
1310 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1311 		trace_spi_transfer_start(msg, xfer);
1312 
1313 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1314 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1315 
1316 		if (!ctlr->ptp_sts_supported) {
1317 			xfer->ptp_sts_word_pre = 0;
1318 			ptp_read_system_prets(xfer->ptp_sts);
1319 		}
1320 
1321 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1322 			reinit_completion(&ctlr->xfer_completion);
1323 
1324 fallback_pio:
1325 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1326 			if (ret < 0) {
1327 				if (ctlr->cur_msg_mapped &&
1328 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1329 					__spi_unmap_msg(ctlr, msg);
1330 					ctlr->fallback = true;
1331 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1332 					goto fallback_pio;
1333 				}
1334 
1335 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1336 							       errors);
1337 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1338 							       errors);
1339 				dev_err(&msg->spi->dev,
1340 					"SPI transfer failed: %d\n", ret);
1341 				goto out;
1342 			}
1343 
1344 			if (ret > 0) {
1345 				ret = spi_transfer_wait(ctlr, msg, xfer);
1346 				if (ret < 0)
1347 					msg->status = ret;
1348 			}
1349 		} else {
1350 			if (xfer->len)
1351 				dev_err(&msg->spi->dev,
1352 					"Bufferless transfer has length %u\n",
1353 					xfer->len);
1354 		}
1355 
1356 		if (!ctlr->ptp_sts_supported) {
1357 			ptp_read_system_postts(xfer->ptp_sts);
1358 			xfer->ptp_sts_word_post = xfer->len;
1359 		}
1360 
1361 		trace_spi_transfer_stop(msg, xfer);
1362 
1363 		if (msg->status != -EINPROGRESS)
1364 			goto out;
1365 
1366 		spi_transfer_delay_exec(xfer);
1367 
1368 		if (xfer->cs_change) {
1369 			if (list_is_last(&xfer->transfer_list,
1370 					 &msg->transfers)) {
1371 				keep_cs = true;
1372 			} else {
1373 				spi_set_cs(msg->spi, false, false);
1374 				_spi_transfer_cs_change_delay(msg, xfer);
1375 				spi_set_cs(msg->spi, true, false);
1376 			}
1377 		}
1378 
1379 		msg->actual_length += xfer->len;
1380 	}
1381 
1382 out:
1383 	if (ret != 0 || !keep_cs)
1384 		spi_set_cs(msg->spi, false, false);
1385 
1386 	if (msg->status == -EINPROGRESS)
1387 		msg->status = ret;
1388 
1389 	if (msg->status && ctlr->handle_err)
1390 		ctlr->handle_err(ctlr, msg);
1391 
1392 	spi_finalize_current_message(ctlr);
1393 
1394 	return ret;
1395 }
1396 
1397 /**
1398  * spi_finalize_current_transfer - report completion of a transfer
1399  * @ctlr: the controller reporting completion
1400  *
1401  * Called by SPI drivers using the core transfer_one_message()
1402  * implementation to notify it that the current interrupt driven
1403  * transfer has finished and the next one may be scheduled.
1404  */
1405 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1406 {
1407 	complete(&ctlr->xfer_completion);
1408 }
1409 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1410 
1411 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1412 {
1413 	if (ctlr->auto_runtime_pm) {
1414 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1415 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1416 	}
1417 }
1418 
1419 /**
1420  * __spi_pump_messages - function which processes spi message queue
1421  * @ctlr: controller to process queue for
1422  * @in_kthread: true if we are in the context of the message pump thread
1423  *
1424  * This function checks if there is any spi message in the queue that
1425  * needs processing and if so call out to the driver to initialize hardware
1426  * and transfer each message.
1427  *
1428  * Note that it is called both from the kthread itself and also from
1429  * inside spi_sync(); the queue extraction handling at the top of the
1430  * function should deal with this safely.
1431  */
1432 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1433 {
1434 	struct spi_transfer *xfer;
1435 	struct spi_message *msg;
1436 	bool was_busy = false;
1437 	unsigned long flags;
1438 	int ret;
1439 
1440 	/* Lock queue */
1441 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1442 
1443 	/* Make sure we are not already running a message */
1444 	if (ctlr->cur_msg) {
1445 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1446 		return;
1447 	}
1448 
1449 	/* If another context is idling the device then defer */
1450 	if (ctlr->idling) {
1451 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1452 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1453 		return;
1454 	}
1455 
1456 	/* Check if the queue is idle */
1457 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1458 		if (!ctlr->busy) {
1459 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1460 			return;
1461 		}
1462 
1463 		/* Defer any non-atomic teardown to the thread */
1464 		if (!in_kthread) {
1465 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1466 			    !ctlr->unprepare_transfer_hardware) {
1467 				spi_idle_runtime_pm(ctlr);
1468 				ctlr->busy = false;
1469 				trace_spi_controller_idle(ctlr);
1470 			} else {
1471 				kthread_queue_work(ctlr->kworker,
1472 						   &ctlr->pump_messages);
1473 			}
1474 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1475 			return;
1476 		}
1477 
1478 		ctlr->busy = false;
1479 		ctlr->idling = true;
1480 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1481 
1482 		kfree(ctlr->dummy_rx);
1483 		ctlr->dummy_rx = NULL;
1484 		kfree(ctlr->dummy_tx);
1485 		ctlr->dummy_tx = NULL;
1486 		if (ctlr->unprepare_transfer_hardware &&
1487 		    ctlr->unprepare_transfer_hardware(ctlr))
1488 			dev_err(&ctlr->dev,
1489 				"failed to unprepare transfer hardware\n");
1490 		spi_idle_runtime_pm(ctlr);
1491 		trace_spi_controller_idle(ctlr);
1492 
1493 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1494 		ctlr->idling = false;
1495 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1496 		return;
1497 	}
1498 
1499 	/* Extract head of queue */
1500 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1501 	ctlr->cur_msg = msg;
1502 
1503 	list_del_init(&msg->queue);
1504 	if (ctlr->busy)
1505 		was_busy = true;
1506 	else
1507 		ctlr->busy = true;
1508 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1509 
1510 	mutex_lock(&ctlr->io_mutex);
1511 
1512 	if (!was_busy && ctlr->auto_runtime_pm) {
1513 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1514 		if (ret < 0) {
1515 			pm_runtime_put_noidle(ctlr->dev.parent);
1516 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1517 				ret);
1518 			mutex_unlock(&ctlr->io_mutex);
1519 			return;
1520 		}
1521 	}
1522 
1523 	if (!was_busy)
1524 		trace_spi_controller_busy(ctlr);
1525 
1526 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1527 		ret = ctlr->prepare_transfer_hardware(ctlr);
1528 		if (ret) {
1529 			dev_err(&ctlr->dev,
1530 				"failed to prepare transfer hardware: %d\n",
1531 				ret);
1532 
1533 			if (ctlr->auto_runtime_pm)
1534 				pm_runtime_put(ctlr->dev.parent);
1535 
1536 			msg->status = ret;
1537 			spi_finalize_current_message(ctlr);
1538 
1539 			mutex_unlock(&ctlr->io_mutex);
1540 			return;
1541 		}
1542 	}
1543 
1544 	trace_spi_message_start(msg);
1545 
1546 	if (ctlr->prepare_message) {
1547 		ret = ctlr->prepare_message(ctlr, msg);
1548 		if (ret) {
1549 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1550 				ret);
1551 			msg->status = ret;
1552 			spi_finalize_current_message(ctlr);
1553 			goto out;
1554 		}
1555 		ctlr->cur_msg_prepared = true;
1556 	}
1557 
1558 	ret = spi_map_msg(ctlr, msg);
1559 	if (ret) {
1560 		msg->status = ret;
1561 		spi_finalize_current_message(ctlr);
1562 		goto out;
1563 	}
1564 
1565 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1566 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1567 			xfer->ptp_sts_word_pre = 0;
1568 			ptp_read_system_prets(xfer->ptp_sts);
1569 		}
1570 	}
1571 
1572 	ret = ctlr->transfer_one_message(ctlr, msg);
1573 	if (ret) {
1574 		dev_err(&ctlr->dev,
1575 			"failed to transfer one message from queue\n");
1576 		goto out;
1577 	}
1578 
1579 out:
1580 	mutex_unlock(&ctlr->io_mutex);
1581 
1582 	/* Prod the scheduler in case transfer_one() was busy waiting */
1583 	if (!ret)
1584 		cond_resched();
1585 }
1586 
1587 /**
1588  * spi_pump_messages - kthread work function which processes spi message queue
1589  * @work: pointer to kthread work struct contained in the controller struct
1590  */
1591 static void spi_pump_messages(struct kthread_work *work)
1592 {
1593 	struct spi_controller *ctlr =
1594 		container_of(work, struct spi_controller, pump_messages);
1595 
1596 	__spi_pump_messages(ctlr, true);
1597 }
1598 
1599 /**
1600  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1601  *			    TX timestamp for the requested byte from the SPI
1602  *			    transfer. The frequency with which this function
1603  *			    must be called (once per word, once for the whole
1604  *			    transfer, once per batch of words etc) is arbitrary
1605  *			    as long as the @tx buffer offset is greater than or
1606  *			    equal to the requested byte at the time of the
1607  *			    call. The timestamp is only taken once, at the
1608  *			    first such call. It is assumed that the driver
1609  *			    advances its @tx buffer pointer monotonically.
1610  * @ctlr: Pointer to the spi_controller structure of the driver
1611  * @xfer: Pointer to the transfer being timestamped
1612  * @progress: How many words (not bytes) have been transferred so far
1613  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1614  *	      transfer, for less jitter in time measurement. Only compatible
1615  *	      with PIO drivers. If true, must follow up with
1616  *	      spi_take_timestamp_post or otherwise system will crash.
1617  *	      WARNING: for fully predictable results, the CPU frequency must
1618  *	      also be under control (governor).
1619  */
1620 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1621 			    struct spi_transfer *xfer,
1622 			    size_t progress, bool irqs_off)
1623 {
1624 	if (!xfer->ptp_sts)
1625 		return;
1626 
1627 	if (xfer->timestamped)
1628 		return;
1629 
1630 	if (progress > xfer->ptp_sts_word_pre)
1631 		return;
1632 
1633 	/* Capture the resolution of the timestamp */
1634 	xfer->ptp_sts_word_pre = progress;
1635 
1636 	if (irqs_off) {
1637 		local_irq_save(ctlr->irq_flags);
1638 		preempt_disable();
1639 	}
1640 
1641 	ptp_read_system_prets(xfer->ptp_sts);
1642 }
1643 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1644 
1645 /**
1646  * spi_take_timestamp_post - helper for drivers to collect the end of the
1647  *			     TX timestamp for the requested byte from the SPI
1648  *			     transfer. Can be called with an arbitrary
1649  *			     frequency: only the first call where @tx exceeds
1650  *			     or is equal to the requested word will be
1651  *			     timestamped.
1652  * @ctlr: Pointer to the spi_controller structure of the driver
1653  * @xfer: Pointer to the transfer being timestamped
1654  * @progress: How many words (not bytes) have been transferred so far
1655  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1656  */
1657 void spi_take_timestamp_post(struct spi_controller *ctlr,
1658 			     struct spi_transfer *xfer,
1659 			     size_t progress, bool irqs_off)
1660 {
1661 	if (!xfer->ptp_sts)
1662 		return;
1663 
1664 	if (xfer->timestamped)
1665 		return;
1666 
1667 	if (progress < xfer->ptp_sts_word_post)
1668 		return;
1669 
1670 	ptp_read_system_postts(xfer->ptp_sts);
1671 
1672 	if (irqs_off) {
1673 		local_irq_restore(ctlr->irq_flags);
1674 		preempt_enable();
1675 	}
1676 
1677 	/* Capture the resolution of the timestamp */
1678 	xfer->ptp_sts_word_post = progress;
1679 
1680 	xfer->timestamped = true;
1681 }
1682 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1683 
1684 /**
1685  * spi_set_thread_rt - set the controller to pump at realtime priority
1686  * @ctlr: controller to boost priority of
1687  *
1688  * This can be called because the controller requested realtime priority
1689  * (by setting the ->rt value before calling spi_register_controller()) or
1690  * because a device on the bus said that its transfers needed realtime
1691  * priority.
1692  *
1693  * NOTE: at the moment if any device on a bus says it needs realtime then
1694  * the thread will be at realtime priority for all transfers on that
1695  * controller.  If this eventually becomes a problem we may see if we can
1696  * find a way to boost the priority only temporarily during relevant
1697  * transfers.
1698  */
1699 static void spi_set_thread_rt(struct spi_controller *ctlr)
1700 {
1701 	dev_info(&ctlr->dev,
1702 		"will run message pump with realtime priority\n");
1703 	sched_set_fifo(ctlr->kworker->task);
1704 }
1705 
1706 static int spi_init_queue(struct spi_controller *ctlr)
1707 {
1708 	ctlr->running = false;
1709 	ctlr->busy = false;
1710 
1711 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1712 	if (IS_ERR(ctlr->kworker)) {
1713 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1714 		return PTR_ERR(ctlr->kworker);
1715 	}
1716 
1717 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1718 
1719 	/*
1720 	 * Controller config will indicate if this controller should run the
1721 	 * message pump with high (realtime) priority to reduce the transfer
1722 	 * latency on the bus by minimising the delay between a transfer
1723 	 * request and the scheduling of the message pump thread. Without this
1724 	 * setting the message pump thread will remain at default priority.
1725 	 */
1726 	if (ctlr->rt)
1727 		spi_set_thread_rt(ctlr);
1728 
1729 	return 0;
1730 }
1731 
1732 /**
1733  * spi_get_next_queued_message() - called by driver to check for queued
1734  * messages
1735  * @ctlr: the controller to check for queued messages
1736  *
1737  * If there are more messages in the queue, the next message is returned from
1738  * this call.
1739  *
1740  * Return: the next message in the queue, else NULL if the queue is empty.
1741  */
1742 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1743 {
1744 	struct spi_message *next;
1745 	unsigned long flags;
1746 
1747 	/* get a pointer to the next message, if any */
1748 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1749 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1750 					queue);
1751 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1752 
1753 	return next;
1754 }
1755 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1756 
1757 /**
1758  * spi_finalize_current_message() - the current message is complete
1759  * @ctlr: the controller to return the message to
1760  *
1761  * Called by the driver to notify the core that the message in the front of the
1762  * queue is complete and can be removed from the queue.
1763  */
1764 void spi_finalize_current_message(struct spi_controller *ctlr)
1765 {
1766 	struct spi_transfer *xfer;
1767 	struct spi_message *mesg;
1768 	unsigned long flags;
1769 	int ret;
1770 
1771 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1772 	mesg = ctlr->cur_msg;
1773 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1774 
1775 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1776 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1777 			ptp_read_system_postts(xfer->ptp_sts);
1778 			xfer->ptp_sts_word_post = xfer->len;
1779 		}
1780 	}
1781 
1782 	if (unlikely(ctlr->ptp_sts_supported))
1783 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1784 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1785 
1786 	spi_unmap_msg(ctlr, mesg);
1787 
1788 	/* In the prepare_messages callback the spi bus has the opportunity to
1789 	 * split a transfer to smaller chunks.
1790 	 * Release splited transfers here since spi_map_msg is done on the
1791 	 * splited transfers.
1792 	 */
1793 	spi_res_release(ctlr, mesg);
1794 
1795 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1796 		ret = ctlr->unprepare_message(ctlr, mesg);
1797 		if (ret) {
1798 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1799 				ret);
1800 		}
1801 	}
1802 
1803 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1804 	ctlr->cur_msg = NULL;
1805 	ctlr->cur_msg_prepared = false;
1806 	ctlr->fallback = false;
1807 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1808 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1809 
1810 	trace_spi_message_done(mesg);
1811 
1812 	mesg->state = NULL;
1813 	if (mesg->complete)
1814 		mesg->complete(mesg->context);
1815 }
1816 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1817 
1818 static int spi_start_queue(struct spi_controller *ctlr)
1819 {
1820 	unsigned long flags;
1821 
1822 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1823 
1824 	if (ctlr->running || ctlr->busy) {
1825 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1826 		return -EBUSY;
1827 	}
1828 
1829 	ctlr->running = true;
1830 	ctlr->cur_msg = NULL;
1831 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1832 
1833 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1834 
1835 	return 0;
1836 }
1837 
1838 static int spi_stop_queue(struct spi_controller *ctlr)
1839 {
1840 	unsigned long flags;
1841 	unsigned limit = 500;
1842 	int ret = 0;
1843 
1844 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1845 
1846 	/*
1847 	 * This is a bit lame, but is optimized for the common execution path.
1848 	 * A wait_queue on the ctlr->busy could be used, but then the common
1849 	 * execution path (pump_messages) would be required to call wake_up or
1850 	 * friends on every SPI message. Do this instead.
1851 	 */
1852 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1853 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1854 		usleep_range(10000, 11000);
1855 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1856 	}
1857 
1858 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1859 		ret = -EBUSY;
1860 	else
1861 		ctlr->running = false;
1862 
1863 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1864 
1865 	if (ret) {
1866 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1867 		return ret;
1868 	}
1869 	return ret;
1870 }
1871 
1872 static int spi_destroy_queue(struct spi_controller *ctlr)
1873 {
1874 	int ret;
1875 
1876 	ret = spi_stop_queue(ctlr);
1877 
1878 	/*
1879 	 * kthread_flush_worker will block until all work is done.
1880 	 * If the reason that stop_queue timed out is that the work will never
1881 	 * finish, then it does no good to call flush/stop thread, so
1882 	 * return anyway.
1883 	 */
1884 	if (ret) {
1885 		dev_err(&ctlr->dev, "problem destroying queue\n");
1886 		return ret;
1887 	}
1888 
1889 	kthread_destroy_worker(ctlr->kworker);
1890 
1891 	return 0;
1892 }
1893 
1894 static int __spi_queued_transfer(struct spi_device *spi,
1895 				 struct spi_message *msg,
1896 				 bool need_pump)
1897 {
1898 	struct spi_controller *ctlr = spi->controller;
1899 	unsigned long flags;
1900 
1901 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1902 
1903 	if (!ctlr->running) {
1904 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1905 		return -ESHUTDOWN;
1906 	}
1907 	msg->actual_length = 0;
1908 	msg->status = -EINPROGRESS;
1909 
1910 	list_add_tail(&msg->queue, &ctlr->queue);
1911 	if (!ctlr->busy && need_pump)
1912 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1913 
1914 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1915 	return 0;
1916 }
1917 
1918 /**
1919  * spi_queued_transfer - transfer function for queued transfers
1920  * @spi: spi device which is requesting transfer
1921  * @msg: spi message which is to handled is queued to driver queue
1922  *
1923  * Return: zero on success, else a negative error code.
1924  */
1925 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1926 {
1927 	return __spi_queued_transfer(spi, msg, true);
1928 }
1929 
1930 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1931 {
1932 	int ret;
1933 
1934 	ctlr->transfer = spi_queued_transfer;
1935 	if (!ctlr->transfer_one_message)
1936 		ctlr->transfer_one_message = spi_transfer_one_message;
1937 
1938 	/* Initialize and start queue */
1939 	ret = spi_init_queue(ctlr);
1940 	if (ret) {
1941 		dev_err(&ctlr->dev, "problem initializing queue\n");
1942 		goto err_init_queue;
1943 	}
1944 	ctlr->queued = true;
1945 	ret = spi_start_queue(ctlr);
1946 	if (ret) {
1947 		dev_err(&ctlr->dev, "problem starting queue\n");
1948 		goto err_start_queue;
1949 	}
1950 
1951 	return 0;
1952 
1953 err_start_queue:
1954 	spi_destroy_queue(ctlr);
1955 err_init_queue:
1956 	return ret;
1957 }
1958 
1959 /**
1960  * spi_flush_queue - Send all pending messages in the queue from the callers'
1961  *		     context
1962  * @ctlr: controller to process queue for
1963  *
1964  * This should be used when one wants to ensure all pending messages have been
1965  * sent before doing something. Is used by the spi-mem code to make sure SPI
1966  * memory operations do not preempt regular SPI transfers that have been queued
1967  * before the spi-mem operation.
1968  */
1969 void spi_flush_queue(struct spi_controller *ctlr)
1970 {
1971 	if (ctlr->transfer == spi_queued_transfer)
1972 		__spi_pump_messages(ctlr, false);
1973 }
1974 
1975 /*-------------------------------------------------------------------------*/
1976 
1977 #if defined(CONFIG_OF)
1978 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1979 			   struct device_node *nc)
1980 {
1981 	u32 value;
1982 	int rc;
1983 
1984 	/* Mode (clock phase/polarity/etc.) */
1985 	if (of_property_read_bool(nc, "spi-cpha"))
1986 		spi->mode |= SPI_CPHA;
1987 	if (of_property_read_bool(nc, "spi-cpol"))
1988 		spi->mode |= SPI_CPOL;
1989 	if (of_property_read_bool(nc, "spi-3wire"))
1990 		spi->mode |= SPI_3WIRE;
1991 	if (of_property_read_bool(nc, "spi-lsb-first"))
1992 		spi->mode |= SPI_LSB_FIRST;
1993 	if (of_property_read_bool(nc, "spi-cs-high"))
1994 		spi->mode |= SPI_CS_HIGH;
1995 
1996 	/* Device DUAL/QUAD mode */
1997 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1998 		switch (value) {
1999 		case 0:
2000 			spi->mode |= SPI_NO_TX;
2001 			break;
2002 		case 1:
2003 			break;
2004 		case 2:
2005 			spi->mode |= SPI_TX_DUAL;
2006 			break;
2007 		case 4:
2008 			spi->mode |= SPI_TX_QUAD;
2009 			break;
2010 		case 8:
2011 			spi->mode |= SPI_TX_OCTAL;
2012 			break;
2013 		default:
2014 			dev_warn(&ctlr->dev,
2015 				"spi-tx-bus-width %d not supported\n",
2016 				value);
2017 			break;
2018 		}
2019 	}
2020 
2021 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2022 		switch (value) {
2023 		case 0:
2024 			spi->mode |= SPI_NO_RX;
2025 			break;
2026 		case 1:
2027 			break;
2028 		case 2:
2029 			spi->mode |= SPI_RX_DUAL;
2030 			break;
2031 		case 4:
2032 			spi->mode |= SPI_RX_QUAD;
2033 			break;
2034 		case 8:
2035 			spi->mode |= SPI_RX_OCTAL;
2036 			break;
2037 		default:
2038 			dev_warn(&ctlr->dev,
2039 				"spi-rx-bus-width %d not supported\n",
2040 				value);
2041 			break;
2042 		}
2043 	}
2044 
2045 	if (spi_controller_is_slave(ctlr)) {
2046 		if (!of_node_name_eq(nc, "slave")) {
2047 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2048 				nc);
2049 			return -EINVAL;
2050 		}
2051 		return 0;
2052 	}
2053 
2054 	/* Device address */
2055 	rc = of_property_read_u32(nc, "reg", &value);
2056 	if (rc) {
2057 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2058 			nc, rc);
2059 		return rc;
2060 	}
2061 	spi->chip_select = value;
2062 
2063 	/* Device speed */
2064 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2065 		spi->max_speed_hz = value;
2066 
2067 	return 0;
2068 }
2069 
2070 static struct spi_device *
2071 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2072 {
2073 	struct spi_device *spi;
2074 	int rc;
2075 
2076 	/* Alloc an spi_device */
2077 	spi = spi_alloc_device(ctlr);
2078 	if (!spi) {
2079 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2080 		rc = -ENOMEM;
2081 		goto err_out;
2082 	}
2083 
2084 	/* Select device driver */
2085 	rc = of_modalias_node(nc, spi->modalias,
2086 				sizeof(spi->modalias));
2087 	if (rc < 0) {
2088 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2089 		goto err_out;
2090 	}
2091 
2092 	rc = of_spi_parse_dt(ctlr, spi, nc);
2093 	if (rc)
2094 		goto err_out;
2095 
2096 	/* Store a pointer to the node in the device structure */
2097 	of_node_get(nc);
2098 	spi->dev.of_node = nc;
2099 	spi->dev.fwnode = of_fwnode_handle(nc);
2100 
2101 	/* Register the new device */
2102 	rc = spi_add_device(spi);
2103 	if (rc) {
2104 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2105 		goto err_of_node_put;
2106 	}
2107 
2108 	return spi;
2109 
2110 err_of_node_put:
2111 	of_node_put(nc);
2112 err_out:
2113 	spi_dev_put(spi);
2114 	return ERR_PTR(rc);
2115 }
2116 
2117 /**
2118  * of_register_spi_devices() - Register child devices onto the SPI bus
2119  * @ctlr:	Pointer to spi_controller device
2120  *
2121  * Registers an spi_device for each child node of controller node which
2122  * represents a valid SPI slave.
2123  */
2124 static void of_register_spi_devices(struct spi_controller *ctlr)
2125 {
2126 	struct spi_device *spi;
2127 	struct device_node *nc;
2128 
2129 	if (!ctlr->dev.of_node)
2130 		return;
2131 
2132 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2133 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2134 			continue;
2135 		spi = of_register_spi_device(ctlr, nc);
2136 		if (IS_ERR(spi)) {
2137 			dev_warn(&ctlr->dev,
2138 				 "Failed to create SPI device for %pOF\n", nc);
2139 			of_node_clear_flag(nc, OF_POPULATED);
2140 		}
2141 	}
2142 }
2143 #else
2144 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2145 #endif
2146 
2147 /**
2148  * spi_new_ancillary_device() - Register ancillary SPI device
2149  * @spi:         Pointer to the main SPI device registering the ancillary device
2150  * @chip_select: Chip Select of the ancillary device
2151  *
2152  * Register an ancillary SPI device; for example some chips have a chip-select
2153  * for normal device usage and another one for setup/firmware upload.
2154  *
2155  * This may only be called from main SPI device's probe routine.
2156  *
2157  * Return: 0 on success; negative errno on failure
2158  */
2159 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2160 					     u8 chip_select)
2161 {
2162 	struct spi_device *ancillary;
2163 	int rc = 0;
2164 
2165 	/* Alloc an spi_device */
2166 	ancillary = spi_alloc_device(spi->controller);
2167 	if (!ancillary) {
2168 		rc = -ENOMEM;
2169 		goto err_out;
2170 	}
2171 
2172 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2173 
2174 	/* Use provided chip-select for ancillary device */
2175 	ancillary->chip_select = chip_select;
2176 
2177 	/* Take over SPI mode/speed from SPI main device */
2178 	ancillary->max_speed_hz = spi->max_speed_hz;
2179 	ancillary->mode = spi->mode;
2180 
2181 	/* Register the new device */
2182 	rc = spi_add_device_locked(ancillary);
2183 	if (rc) {
2184 		dev_err(&spi->dev, "failed to register ancillary device\n");
2185 		goto err_out;
2186 	}
2187 
2188 	return ancillary;
2189 
2190 err_out:
2191 	spi_dev_put(ancillary);
2192 	return ERR_PTR(rc);
2193 }
2194 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2195 
2196 #ifdef CONFIG_ACPI
2197 struct acpi_spi_lookup {
2198 	struct spi_controller 	*ctlr;
2199 	u32			max_speed_hz;
2200 	u32			mode;
2201 	int			irq;
2202 	u8			bits_per_word;
2203 	u8			chip_select;
2204 };
2205 
2206 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2207 					    struct acpi_spi_lookup *lookup)
2208 {
2209 	const union acpi_object *obj;
2210 
2211 	if (!x86_apple_machine)
2212 		return;
2213 
2214 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2215 	    && obj->buffer.length >= 4)
2216 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2217 
2218 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2219 	    && obj->buffer.length == 8)
2220 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2221 
2222 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2223 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2224 		lookup->mode |= SPI_LSB_FIRST;
2225 
2226 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2227 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2228 		lookup->mode |= SPI_CPOL;
2229 
2230 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2231 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2232 		lookup->mode |= SPI_CPHA;
2233 }
2234 
2235 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2236 {
2237 	struct acpi_spi_lookup *lookup = data;
2238 	struct spi_controller *ctlr = lookup->ctlr;
2239 
2240 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2241 		struct acpi_resource_spi_serialbus *sb;
2242 		acpi_handle parent_handle;
2243 		acpi_status status;
2244 
2245 		sb = &ares->data.spi_serial_bus;
2246 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2247 
2248 			status = acpi_get_handle(NULL,
2249 						 sb->resource_source.string_ptr,
2250 						 &parent_handle);
2251 
2252 			if (ACPI_FAILURE(status) ||
2253 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2254 				return -ENODEV;
2255 
2256 			/*
2257 			 * ACPI DeviceSelection numbering is handled by the
2258 			 * host controller driver in Windows and can vary
2259 			 * from driver to driver. In Linux we always expect
2260 			 * 0 .. max - 1 so we need to ask the driver to
2261 			 * translate between the two schemes.
2262 			 */
2263 			if (ctlr->fw_translate_cs) {
2264 				int cs = ctlr->fw_translate_cs(ctlr,
2265 						sb->device_selection);
2266 				if (cs < 0)
2267 					return cs;
2268 				lookup->chip_select = cs;
2269 			} else {
2270 				lookup->chip_select = sb->device_selection;
2271 			}
2272 
2273 			lookup->max_speed_hz = sb->connection_speed;
2274 			lookup->bits_per_word = sb->data_bit_length;
2275 
2276 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2277 				lookup->mode |= SPI_CPHA;
2278 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2279 				lookup->mode |= SPI_CPOL;
2280 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2281 				lookup->mode |= SPI_CS_HIGH;
2282 		}
2283 	} else if (lookup->irq < 0) {
2284 		struct resource r;
2285 
2286 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2287 			lookup->irq = r.start;
2288 	}
2289 
2290 	/* Always tell the ACPI core to skip this resource */
2291 	return 1;
2292 }
2293 
2294 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2295 					    struct acpi_device *adev)
2296 {
2297 	acpi_handle parent_handle = NULL;
2298 	struct list_head resource_list;
2299 	struct acpi_spi_lookup lookup = {};
2300 	struct spi_device *spi;
2301 	int ret;
2302 
2303 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2304 	    acpi_device_enumerated(adev))
2305 		return AE_OK;
2306 
2307 	lookup.ctlr		= ctlr;
2308 	lookup.irq		= -1;
2309 
2310 	INIT_LIST_HEAD(&resource_list);
2311 	ret = acpi_dev_get_resources(adev, &resource_list,
2312 				     acpi_spi_add_resource, &lookup);
2313 	acpi_dev_free_resource_list(&resource_list);
2314 
2315 	if (ret < 0)
2316 		/* found SPI in _CRS but it points to another controller */
2317 		return AE_OK;
2318 
2319 	if (!lookup.max_speed_hz &&
2320 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2321 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2322 		/* Apple does not use _CRS but nested devices for SPI slaves */
2323 		acpi_spi_parse_apple_properties(adev, &lookup);
2324 	}
2325 
2326 	if (!lookup.max_speed_hz)
2327 		return AE_OK;
2328 
2329 	spi = spi_alloc_device(ctlr);
2330 	if (!spi) {
2331 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2332 			dev_name(&adev->dev));
2333 		return AE_NO_MEMORY;
2334 	}
2335 
2336 
2337 	ACPI_COMPANION_SET(&spi->dev, adev);
2338 	spi->max_speed_hz	= lookup.max_speed_hz;
2339 	spi->mode		|= lookup.mode;
2340 	spi->irq		= lookup.irq;
2341 	spi->bits_per_word	= lookup.bits_per_word;
2342 	spi->chip_select	= lookup.chip_select;
2343 
2344 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2345 			  sizeof(spi->modalias));
2346 
2347 	if (spi->irq < 0)
2348 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2349 
2350 	acpi_device_set_enumerated(adev);
2351 
2352 	adev->power.flags.ignore_parent = true;
2353 	if (spi_add_device(spi)) {
2354 		adev->power.flags.ignore_parent = false;
2355 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2356 			dev_name(&adev->dev));
2357 		spi_dev_put(spi);
2358 	}
2359 
2360 	return AE_OK;
2361 }
2362 
2363 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2364 				       void *data, void **return_value)
2365 {
2366 	struct spi_controller *ctlr = data;
2367 	struct acpi_device *adev;
2368 
2369 	if (acpi_bus_get_device(handle, &adev))
2370 		return AE_OK;
2371 
2372 	return acpi_register_spi_device(ctlr, adev);
2373 }
2374 
2375 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2376 
2377 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2378 {
2379 	acpi_status status;
2380 	acpi_handle handle;
2381 
2382 	handle = ACPI_HANDLE(ctlr->dev.parent);
2383 	if (!handle)
2384 		return;
2385 
2386 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2387 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2388 				     acpi_spi_add_device, NULL, ctlr, NULL);
2389 	if (ACPI_FAILURE(status))
2390 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2391 }
2392 #else
2393 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2394 #endif /* CONFIG_ACPI */
2395 
2396 static void spi_controller_release(struct device *dev)
2397 {
2398 	struct spi_controller *ctlr;
2399 
2400 	ctlr = container_of(dev, struct spi_controller, dev);
2401 	kfree(ctlr);
2402 }
2403 
2404 static struct class spi_master_class = {
2405 	.name		= "spi_master",
2406 	.owner		= THIS_MODULE,
2407 	.dev_release	= spi_controller_release,
2408 	.dev_groups	= spi_master_groups,
2409 };
2410 
2411 #ifdef CONFIG_SPI_SLAVE
2412 /**
2413  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2414  *		     controller
2415  * @spi: device used for the current transfer
2416  */
2417 int spi_slave_abort(struct spi_device *spi)
2418 {
2419 	struct spi_controller *ctlr = spi->controller;
2420 
2421 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2422 		return ctlr->slave_abort(ctlr);
2423 
2424 	return -ENOTSUPP;
2425 }
2426 EXPORT_SYMBOL_GPL(spi_slave_abort);
2427 
2428 static int match_true(struct device *dev, void *data)
2429 {
2430 	return 1;
2431 }
2432 
2433 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2434 			  char *buf)
2435 {
2436 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2437 						   dev);
2438 	struct device *child;
2439 
2440 	child = device_find_child(&ctlr->dev, NULL, match_true);
2441 	return sprintf(buf, "%s\n",
2442 		       child ? to_spi_device(child)->modalias : NULL);
2443 }
2444 
2445 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2446 			   const char *buf, size_t count)
2447 {
2448 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2449 						   dev);
2450 	struct spi_device *spi;
2451 	struct device *child;
2452 	char name[32];
2453 	int rc;
2454 
2455 	rc = sscanf(buf, "%31s", name);
2456 	if (rc != 1 || !name[0])
2457 		return -EINVAL;
2458 
2459 	child = device_find_child(&ctlr->dev, NULL, match_true);
2460 	if (child) {
2461 		/* Remove registered slave */
2462 		device_unregister(child);
2463 		put_device(child);
2464 	}
2465 
2466 	if (strcmp(name, "(null)")) {
2467 		/* Register new slave */
2468 		spi = spi_alloc_device(ctlr);
2469 		if (!spi)
2470 			return -ENOMEM;
2471 
2472 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2473 
2474 		rc = spi_add_device(spi);
2475 		if (rc) {
2476 			spi_dev_put(spi);
2477 			return rc;
2478 		}
2479 	}
2480 
2481 	return count;
2482 }
2483 
2484 static DEVICE_ATTR_RW(slave);
2485 
2486 static struct attribute *spi_slave_attrs[] = {
2487 	&dev_attr_slave.attr,
2488 	NULL,
2489 };
2490 
2491 static const struct attribute_group spi_slave_group = {
2492 	.attrs = spi_slave_attrs,
2493 };
2494 
2495 static const struct attribute_group *spi_slave_groups[] = {
2496 	&spi_controller_statistics_group,
2497 	&spi_slave_group,
2498 	NULL,
2499 };
2500 
2501 static struct class spi_slave_class = {
2502 	.name		= "spi_slave",
2503 	.owner		= THIS_MODULE,
2504 	.dev_release	= spi_controller_release,
2505 	.dev_groups	= spi_slave_groups,
2506 };
2507 #else
2508 extern struct class spi_slave_class;	/* dummy */
2509 #endif
2510 
2511 /**
2512  * __spi_alloc_controller - allocate an SPI master or slave controller
2513  * @dev: the controller, possibly using the platform_bus
2514  * @size: how much zeroed driver-private data to allocate; the pointer to this
2515  *	memory is in the driver_data field of the returned device, accessible
2516  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2517  *	drivers granting DMA access to portions of their private data need to
2518  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2519  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2520  *	slave (true) controller
2521  * Context: can sleep
2522  *
2523  * This call is used only by SPI controller drivers, which are the
2524  * only ones directly touching chip registers.  It's how they allocate
2525  * an spi_controller structure, prior to calling spi_register_controller().
2526  *
2527  * This must be called from context that can sleep.
2528  *
2529  * The caller is responsible for assigning the bus number and initializing the
2530  * controller's methods before calling spi_register_controller(); and (after
2531  * errors adding the device) calling spi_controller_put() to prevent a memory
2532  * leak.
2533  *
2534  * Return: the SPI controller structure on success, else NULL.
2535  */
2536 struct spi_controller *__spi_alloc_controller(struct device *dev,
2537 					      unsigned int size, bool slave)
2538 {
2539 	struct spi_controller	*ctlr;
2540 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2541 
2542 	if (!dev)
2543 		return NULL;
2544 
2545 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2546 	if (!ctlr)
2547 		return NULL;
2548 
2549 	device_initialize(&ctlr->dev);
2550 	INIT_LIST_HEAD(&ctlr->queue);
2551 	spin_lock_init(&ctlr->queue_lock);
2552 	spin_lock_init(&ctlr->bus_lock_spinlock);
2553 	mutex_init(&ctlr->bus_lock_mutex);
2554 	mutex_init(&ctlr->io_mutex);
2555 	mutex_init(&ctlr->add_lock);
2556 	ctlr->bus_num = -1;
2557 	ctlr->num_chipselect = 1;
2558 	ctlr->slave = slave;
2559 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2560 		ctlr->dev.class = &spi_slave_class;
2561 	else
2562 		ctlr->dev.class = &spi_master_class;
2563 	ctlr->dev.parent = dev;
2564 	pm_suspend_ignore_children(&ctlr->dev, true);
2565 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2566 
2567 	return ctlr;
2568 }
2569 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2570 
2571 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2572 {
2573 	spi_controller_put(*(struct spi_controller **)ctlr);
2574 }
2575 
2576 /**
2577  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2578  * @dev: physical device of SPI controller
2579  * @size: how much zeroed driver-private data to allocate
2580  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2581  * Context: can sleep
2582  *
2583  * Allocate an SPI controller and automatically release a reference on it
2584  * when @dev is unbound from its driver.  Drivers are thus relieved from
2585  * having to call spi_controller_put().
2586  *
2587  * The arguments to this function are identical to __spi_alloc_controller().
2588  *
2589  * Return: the SPI controller structure on success, else NULL.
2590  */
2591 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2592 						   unsigned int size,
2593 						   bool slave)
2594 {
2595 	struct spi_controller **ptr, *ctlr;
2596 
2597 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2598 			   GFP_KERNEL);
2599 	if (!ptr)
2600 		return NULL;
2601 
2602 	ctlr = __spi_alloc_controller(dev, size, slave);
2603 	if (ctlr) {
2604 		ctlr->devm_allocated = true;
2605 		*ptr = ctlr;
2606 		devres_add(dev, ptr);
2607 	} else {
2608 		devres_free(ptr);
2609 	}
2610 
2611 	return ctlr;
2612 }
2613 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2614 
2615 #ifdef CONFIG_OF
2616 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2617 {
2618 	int nb, i, *cs;
2619 	struct device_node *np = ctlr->dev.of_node;
2620 
2621 	if (!np)
2622 		return 0;
2623 
2624 	nb = of_gpio_named_count(np, "cs-gpios");
2625 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2626 
2627 	/* Return error only for an incorrectly formed cs-gpios property */
2628 	if (nb == 0 || nb == -ENOENT)
2629 		return 0;
2630 	else if (nb < 0)
2631 		return nb;
2632 
2633 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2634 			  GFP_KERNEL);
2635 	ctlr->cs_gpios = cs;
2636 
2637 	if (!ctlr->cs_gpios)
2638 		return -ENOMEM;
2639 
2640 	for (i = 0; i < ctlr->num_chipselect; i++)
2641 		cs[i] = -ENOENT;
2642 
2643 	for (i = 0; i < nb; i++)
2644 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2645 
2646 	return 0;
2647 }
2648 #else
2649 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2650 {
2651 	return 0;
2652 }
2653 #endif
2654 
2655 /**
2656  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2657  * @ctlr: The SPI master to grab GPIO descriptors for
2658  */
2659 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2660 {
2661 	int nb, i;
2662 	struct gpio_desc **cs;
2663 	struct device *dev = &ctlr->dev;
2664 	unsigned long native_cs_mask = 0;
2665 	unsigned int num_cs_gpios = 0;
2666 
2667 	nb = gpiod_count(dev, "cs");
2668 	if (nb < 0) {
2669 		/* No GPIOs at all is fine, else return the error */
2670 		if (nb == -ENOENT)
2671 			return 0;
2672 		return nb;
2673 	}
2674 
2675 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2676 
2677 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2678 			  GFP_KERNEL);
2679 	if (!cs)
2680 		return -ENOMEM;
2681 	ctlr->cs_gpiods = cs;
2682 
2683 	for (i = 0; i < nb; i++) {
2684 		/*
2685 		 * Most chipselects are active low, the inverted
2686 		 * semantics are handled by special quirks in gpiolib,
2687 		 * so initializing them GPIOD_OUT_LOW here means
2688 		 * "unasserted", in most cases this will drive the physical
2689 		 * line high.
2690 		 */
2691 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2692 						      GPIOD_OUT_LOW);
2693 		if (IS_ERR(cs[i]))
2694 			return PTR_ERR(cs[i]);
2695 
2696 		if (cs[i]) {
2697 			/*
2698 			 * If we find a CS GPIO, name it after the device and
2699 			 * chip select line.
2700 			 */
2701 			char *gpioname;
2702 
2703 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2704 						  dev_name(dev), i);
2705 			if (!gpioname)
2706 				return -ENOMEM;
2707 			gpiod_set_consumer_name(cs[i], gpioname);
2708 			num_cs_gpios++;
2709 			continue;
2710 		}
2711 
2712 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2713 			dev_err(dev, "Invalid native chip select %d\n", i);
2714 			return -EINVAL;
2715 		}
2716 		native_cs_mask |= BIT(i);
2717 	}
2718 
2719 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2720 
2721 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2722 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2723 		dev_err(dev, "No unused native chip select available\n");
2724 		return -EINVAL;
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 static int spi_controller_check_ops(struct spi_controller *ctlr)
2731 {
2732 	/*
2733 	 * The controller may implement only the high-level SPI-memory like
2734 	 * operations if it does not support regular SPI transfers, and this is
2735 	 * valid use case.
2736 	 * If ->mem_ops is NULL, we request that at least one of the
2737 	 * ->transfer_xxx() method be implemented.
2738 	 */
2739 	if (ctlr->mem_ops) {
2740 		if (!ctlr->mem_ops->exec_op)
2741 			return -EINVAL;
2742 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2743 		   !ctlr->transfer_one_message) {
2744 		return -EINVAL;
2745 	}
2746 
2747 	return 0;
2748 }
2749 
2750 /**
2751  * spi_register_controller - register SPI master or slave controller
2752  * @ctlr: initialized master, originally from spi_alloc_master() or
2753  *	spi_alloc_slave()
2754  * Context: can sleep
2755  *
2756  * SPI controllers connect to their drivers using some non-SPI bus,
2757  * such as the platform bus.  The final stage of probe() in that code
2758  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2759  *
2760  * SPI controllers use board specific (often SOC specific) bus numbers,
2761  * and board-specific addressing for SPI devices combines those numbers
2762  * with chip select numbers.  Since SPI does not directly support dynamic
2763  * device identification, boards need configuration tables telling which
2764  * chip is at which address.
2765  *
2766  * This must be called from context that can sleep.  It returns zero on
2767  * success, else a negative error code (dropping the controller's refcount).
2768  * After a successful return, the caller is responsible for calling
2769  * spi_unregister_controller().
2770  *
2771  * Return: zero on success, else a negative error code.
2772  */
2773 int spi_register_controller(struct spi_controller *ctlr)
2774 {
2775 	struct device		*dev = ctlr->dev.parent;
2776 	struct boardinfo	*bi;
2777 	int			status;
2778 	int			id, first_dynamic;
2779 
2780 	if (!dev)
2781 		return -ENODEV;
2782 
2783 	/*
2784 	 * Make sure all necessary hooks are implemented before registering
2785 	 * the SPI controller.
2786 	 */
2787 	status = spi_controller_check_ops(ctlr);
2788 	if (status)
2789 		return status;
2790 
2791 	if (ctlr->bus_num >= 0) {
2792 		/* devices with a fixed bus num must check-in with the num */
2793 		mutex_lock(&board_lock);
2794 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2795 			ctlr->bus_num + 1, GFP_KERNEL);
2796 		mutex_unlock(&board_lock);
2797 		if (WARN(id < 0, "couldn't get idr"))
2798 			return id == -ENOSPC ? -EBUSY : id;
2799 		ctlr->bus_num = id;
2800 	} else if (ctlr->dev.of_node) {
2801 		/* allocate dynamic bus number using Linux idr */
2802 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2803 		if (id >= 0) {
2804 			ctlr->bus_num = id;
2805 			mutex_lock(&board_lock);
2806 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2807 				       ctlr->bus_num + 1, GFP_KERNEL);
2808 			mutex_unlock(&board_lock);
2809 			if (WARN(id < 0, "couldn't get idr"))
2810 				return id == -ENOSPC ? -EBUSY : id;
2811 		}
2812 	}
2813 	if (ctlr->bus_num < 0) {
2814 		first_dynamic = of_alias_get_highest_id("spi");
2815 		if (first_dynamic < 0)
2816 			first_dynamic = 0;
2817 		else
2818 			first_dynamic++;
2819 
2820 		mutex_lock(&board_lock);
2821 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2822 			       0, GFP_KERNEL);
2823 		mutex_unlock(&board_lock);
2824 		if (WARN(id < 0, "couldn't get idr"))
2825 			return id;
2826 		ctlr->bus_num = id;
2827 	}
2828 	ctlr->bus_lock_flag = 0;
2829 	init_completion(&ctlr->xfer_completion);
2830 	if (!ctlr->max_dma_len)
2831 		ctlr->max_dma_len = INT_MAX;
2832 
2833 	/* register the device, then userspace will see it.
2834 	 * registration fails if the bus ID is in use.
2835 	 */
2836 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2837 
2838 	if (!spi_controller_is_slave(ctlr)) {
2839 		if (ctlr->use_gpio_descriptors) {
2840 			status = spi_get_gpio_descs(ctlr);
2841 			if (status)
2842 				goto free_bus_id;
2843 			/*
2844 			 * A controller using GPIO descriptors always
2845 			 * supports SPI_CS_HIGH if need be.
2846 			 */
2847 			ctlr->mode_bits |= SPI_CS_HIGH;
2848 		} else {
2849 			/* Legacy code path for GPIOs from DT */
2850 			status = of_spi_get_gpio_numbers(ctlr);
2851 			if (status)
2852 				goto free_bus_id;
2853 		}
2854 	}
2855 
2856 	/*
2857 	 * Even if it's just one always-selected device, there must
2858 	 * be at least one chipselect.
2859 	 */
2860 	if (!ctlr->num_chipselect) {
2861 		status = -EINVAL;
2862 		goto free_bus_id;
2863 	}
2864 
2865 	status = device_add(&ctlr->dev);
2866 	if (status < 0)
2867 		goto free_bus_id;
2868 	dev_dbg(dev, "registered %s %s\n",
2869 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2870 			dev_name(&ctlr->dev));
2871 
2872 	/*
2873 	 * If we're using a queued driver, start the queue. Note that we don't
2874 	 * need the queueing logic if the driver is only supporting high-level
2875 	 * memory operations.
2876 	 */
2877 	if (ctlr->transfer) {
2878 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2879 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2880 		status = spi_controller_initialize_queue(ctlr);
2881 		if (status) {
2882 			device_del(&ctlr->dev);
2883 			goto free_bus_id;
2884 		}
2885 	}
2886 	/* add statistics */
2887 	spin_lock_init(&ctlr->statistics.lock);
2888 
2889 	mutex_lock(&board_lock);
2890 	list_add_tail(&ctlr->list, &spi_controller_list);
2891 	list_for_each_entry(bi, &board_list, list)
2892 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2893 	mutex_unlock(&board_lock);
2894 
2895 	/* Register devices from the device tree and ACPI */
2896 	of_register_spi_devices(ctlr);
2897 	acpi_register_spi_devices(ctlr);
2898 	return status;
2899 
2900 free_bus_id:
2901 	mutex_lock(&board_lock);
2902 	idr_remove(&spi_master_idr, ctlr->bus_num);
2903 	mutex_unlock(&board_lock);
2904 	return status;
2905 }
2906 EXPORT_SYMBOL_GPL(spi_register_controller);
2907 
2908 static void devm_spi_unregister(void *ctlr)
2909 {
2910 	spi_unregister_controller(ctlr);
2911 }
2912 
2913 /**
2914  * devm_spi_register_controller - register managed SPI master or slave
2915  *	controller
2916  * @dev:    device managing SPI controller
2917  * @ctlr: initialized controller, originally from spi_alloc_master() or
2918  *	spi_alloc_slave()
2919  * Context: can sleep
2920  *
2921  * Register a SPI device as with spi_register_controller() which will
2922  * automatically be unregistered and freed.
2923  *
2924  * Return: zero on success, else a negative error code.
2925  */
2926 int devm_spi_register_controller(struct device *dev,
2927 				 struct spi_controller *ctlr)
2928 {
2929 	int ret;
2930 
2931 	ret = spi_register_controller(ctlr);
2932 	if (ret)
2933 		return ret;
2934 
2935 	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
2936 }
2937 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2938 
2939 static int __unregister(struct device *dev, void *null)
2940 {
2941 	spi_unregister_device(to_spi_device(dev));
2942 	return 0;
2943 }
2944 
2945 /**
2946  * spi_unregister_controller - unregister SPI master or slave controller
2947  * @ctlr: the controller being unregistered
2948  * Context: can sleep
2949  *
2950  * This call is used only by SPI controller drivers, which are the
2951  * only ones directly touching chip registers.
2952  *
2953  * This must be called from context that can sleep.
2954  *
2955  * Note that this function also drops a reference to the controller.
2956  */
2957 void spi_unregister_controller(struct spi_controller *ctlr)
2958 {
2959 	struct spi_controller *found;
2960 	int id = ctlr->bus_num;
2961 
2962 	/* Prevent addition of new devices, unregister existing ones */
2963 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2964 		mutex_lock(&ctlr->add_lock);
2965 
2966 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2967 
2968 	/* First make sure that this controller was ever added */
2969 	mutex_lock(&board_lock);
2970 	found = idr_find(&spi_master_idr, id);
2971 	mutex_unlock(&board_lock);
2972 	if (ctlr->queued) {
2973 		if (spi_destroy_queue(ctlr))
2974 			dev_err(&ctlr->dev, "queue remove failed\n");
2975 	}
2976 	mutex_lock(&board_lock);
2977 	list_del(&ctlr->list);
2978 	mutex_unlock(&board_lock);
2979 
2980 	device_del(&ctlr->dev);
2981 
2982 	/* Release the last reference on the controller if its driver
2983 	 * has not yet been converted to devm_spi_alloc_master/slave().
2984 	 */
2985 	if (!ctlr->devm_allocated)
2986 		put_device(&ctlr->dev);
2987 
2988 	/* free bus id */
2989 	mutex_lock(&board_lock);
2990 	if (found == ctlr)
2991 		idr_remove(&spi_master_idr, id);
2992 	mutex_unlock(&board_lock);
2993 
2994 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2995 		mutex_unlock(&ctlr->add_lock);
2996 }
2997 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2998 
2999 int spi_controller_suspend(struct spi_controller *ctlr)
3000 {
3001 	int ret;
3002 
3003 	/* Basically no-ops for non-queued controllers */
3004 	if (!ctlr->queued)
3005 		return 0;
3006 
3007 	ret = spi_stop_queue(ctlr);
3008 	if (ret)
3009 		dev_err(&ctlr->dev, "queue stop failed\n");
3010 
3011 	return ret;
3012 }
3013 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3014 
3015 int spi_controller_resume(struct spi_controller *ctlr)
3016 {
3017 	int ret;
3018 
3019 	if (!ctlr->queued)
3020 		return 0;
3021 
3022 	ret = spi_start_queue(ctlr);
3023 	if (ret)
3024 		dev_err(&ctlr->dev, "queue restart failed\n");
3025 
3026 	return ret;
3027 }
3028 EXPORT_SYMBOL_GPL(spi_controller_resume);
3029 
3030 static int __spi_controller_match(struct device *dev, const void *data)
3031 {
3032 	struct spi_controller *ctlr;
3033 	const u16 *bus_num = data;
3034 
3035 	ctlr = container_of(dev, struct spi_controller, dev);
3036 	return ctlr->bus_num == *bus_num;
3037 }
3038 
3039 /**
3040  * spi_busnum_to_master - look up master associated with bus_num
3041  * @bus_num: the master's bus number
3042  * Context: can sleep
3043  *
3044  * This call may be used with devices that are registered after
3045  * arch init time.  It returns a refcounted pointer to the relevant
3046  * spi_controller (which the caller must release), or NULL if there is
3047  * no such master registered.
3048  *
3049  * Return: the SPI master structure on success, else NULL.
3050  */
3051 struct spi_controller *spi_busnum_to_master(u16 bus_num)
3052 {
3053 	struct device		*dev;
3054 	struct spi_controller	*ctlr = NULL;
3055 
3056 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
3057 				__spi_controller_match);
3058 	if (dev)
3059 		ctlr = container_of(dev, struct spi_controller, dev);
3060 	/* reference got in class_find_device */
3061 	return ctlr;
3062 }
3063 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3064 
3065 /*-------------------------------------------------------------------------*/
3066 
3067 /* Core methods for SPI resource management */
3068 
3069 /**
3070  * spi_res_alloc - allocate a spi resource that is life-cycle managed
3071  *                 during the processing of a spi_message while using
3072  *                 spi_transfer_one
3073  * @spi:     the spi device for which we allocate memory
3074  * @release: the release code to execute for this resource
3075  * @size:    size to alloc and return
3076  * @gfp:     GFP allocation flags
3077  *
3078  * Return: the pointer to the allocated data
3079  *
3080  * This may get enhanced in the future to allocate from a memory pool
3081  * of the @spi_device or @spi_controller to avoid repeated allocations.
3082  */
3083 void *spi_res_alloc(struct spi_device *spi,
3084 		    spi_res_release_t release,
3085 		    size_t size, gfp_t gfp)
3086 {
3087 	struct spi_res *sres;
3088 
3089 	sres = kzalloc(sizeof(*sres) + size, gfp);
3090 	if (!sres)
3091 		return NULL;
3092 
3093 	INIT_LIST_HEAD(&sres->entry);
3094 	sres->release = release;
3095 
3096 	return sres->data;
3097 }
3098 EXPORT_SYMBOL_GPL(spi_res_alloc);
3099 
3100 /**
3101  * spi_res_free - free an spi resource
3102  * @res: pointer to the custom data of a resource
3103  *
3104  */
3105 void spi_res_free(void *res)
3106 {
3107 	struct spi_res *sres = container_of(res, struct spi_res, data);
3108 
3109 	if (!res)
3110 		return;
3111 
3112 	WARN_ON(!list_empty(&sres->entry));
3113 	kfree(sres);
3114 }
3115 EXPORT_SYMBOL_GPL(spi_res_free);
3116 
3117 /**
3118  * spi_res_add - add a spi_res to the spi_message
3119  * @message: the spi message
3120  * @res:     the spi_resource
3121  */
3122 void spi_res_add(struct spi_message *message, void *res)
3123 {
3124 	struct spi_res *sres = container_of(res, struct spi_res, data);
3125 
3126 	WARN_ON(!list_empty(&sres->entry));
3127 	list_add_tail(&sres->entry, &message->resources);
3128 }
3129 EXPORT_SYMBOL_GPL(spi_res_add);
3130 
3131 /**
3132  * spi_res_release - release all spi resources for this message
3133  * @ctlr:  the @spi_controller
3134  * @message: the @spi_message
3135  */
3136 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3137 {
3138 	struct spi_res *res, *tmp;
3139 
3140 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3141 		if (res->release)
3142 			res->release(ctlr, message, res->data);
3143 
3144 		list_del(&res->entry);
3145 
3146 		kfree(res);
3147 	}
3148 }
3149 EXPORT_SYMBOL_GPL(spi_res_release);
3150 
3151 /*-------------------------------------------------------------------------*/
3152 
3153 /* Core methods for spi_message alterations */
3154 
3155 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3156 					    struct spi_message *msg,
3157 					    void *res)
3158 {
3159 	struct spi_replaced_transfers *rxfer = res;
3160 	size_t i;
3161 
3162 	/* call extra callback if requested */
3163 	if (rxfer->release)
3164 		rxfer->release(ctlr, msg, res);
3165 
3166 	/* insert replaced transfers back into the message */
3167 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3168 
3169 	/* remove the formerly inserted entries */
3170 	for (i = 0; i < rxfer->inserted; i++)
3171 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3172 }
3173 
3174 /**
3175  * spi_replace_transfers - replace transfers with several transfers
3176  *                         and register change with spi_message.resources
3177  * @msg:           the spi_message we work upon
3178  * @xfer_first:    the first spi_transfer we want to replace
3179  * @remove:        number of transfers to remove
3180  * @insert:        the number of transfers we want to insert instead
3181  * @release:       extra release code necessary in some circumstances
3182  * @extradatasize: extra data to allocate (with alignment guarantees
3183  *                 of struct @spi_transfer)
3184  * @gfp:           gfp flags
3185  *
3186  * Returns: pointer to @spi_replaced_transfers,
3187  *          PTR_ERR(...) in case of errors.
3188  */
3189 struct spi_replaced_transfers *spi_replace_transfers(
3190 	struct spi_message *msg,
3191 	struct spi_transfer *xfer_first,
3192 	size_t remove,
3193 	size_t insert,
3194 	spi_replaced_release_t release,
3195 	size_t extradatasize,
3196 	gfp_t gfp)
3197 {
3198 	struct spi_replaced_transfers *rxfer;
3199 	struct spi_transfer *xfer;
3200 	size_t i;
3201 
3202 	/* allocate the structure using spi_res */
3203 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3204 			      struct_size(rxfer, inserted_transfers, insert)
3205 			      + extradatasize,
3206 			      gfp);
3207 	if (!rxfer)
3208 		return ERR_PTR(-ENOMEM);
3209 
3210 	/* the release code to invoke before running the generic release */
3211 	rxfer->release = release;
3212 
3213 	/* assign extradata */
3214 	if (extradatasize)
3215 		rxfer->extradata =
3216 			&rxfer->inserted_transfers[insert];
3217 
3218 	/* init the replaced_transfers list */
3219 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3220 
3221 	/* assign the list_entry after which we should reinsert
3222 	 * the @replaced_transfers - it may be spi_message.messages!
3223 	 */
3224 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3225 
3226 	/* remove the requested number of transfers */
3227 	for (i = 0; i < remove; i++) {
3228 		/* if the entry after replaced_after it is msg->transfers
3229 		 * then we have been requested to remove more transfers
3230 		 * than are in the list
3231 		 */
3232 		if (rxfer->replaced_after->next == &msg->transfers) {
3233 			dev_err(&msg->spi->dev,
3234 				"requested to remove more spi_transfers than are available\n");
3235 			/* insert replaced transfers back into the message */
3236 			list_splice(&rxfer->replaced_transfers,
3237 				    rxfer->replaced_after);
3238 
3239 			/* free the spi_replace_transfer structure */
3240 			spi_res_free(rxfer);
3241 
3242 			/* and return with an error */
3243 			return ERR_PTR(-EINVAL);
3244 		}
3245 
3246 		/* remove the entry after replaced_after from list of
3247 		 * transfers and add it to list of replaced_transfers
3248 		 */
3249 		list_move_tail(rxfer->replaced_after->next,
3250 			       &rxfer->replaced_transfers);
3251 	}
3252 
3253 	/* create copy of the given xfer with identical settings
3254 	 * based on the first transfer to get removed
3255 	 */
3256 	for (i = 0; i < insert; i++) {
3257 		/* we need to run in reverse order */
3258 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3259 
3260 		/* copy all spi_transfer data */
3261 		memcpy(xfer, xfer_first, sizeof(*xfer));
3262 
3263 		/* add to list */
3264 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3265 
3266 		/* clear cs_change and delay for all but the last */
3267 		if (i) {
3268 			xfer->cs_change = false;
3269 			xfer->delay.value = 0;
3270 		}
3271 	}
3272 
3273 	/* set up inserted */
3274 	rxfer->inserted = insert;
3275 
3276 	/* and register it with spi_res/spi_message */
3277 	spi_res_add(msg, rxfer);
3278 
3279 	return rxfer;
3280 }
3281 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3282 
3283 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3284 					struct spi_message *msg,
3285 					struct spi_transfer **xferp,
3286 					size_t maxsize,
3287 					gfp_t gfp)
3288 {
3289 	struct spi_transfer *xfer = *xferp, *xfers;
3290 	struct spi_replaced_transfers *srt;
3291 	size_t offset;
3292 	size_t count, i;
3293 
3294 	/* calculate how many we have to replace */
3295 	count = DIV_ROUND_UP(xfer->len, maxsize);
3296 
3297 	/* create replacement */
3298 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3299 	if (IS_ERR(srt))
3300 		return PTR_ERR(srt);
3301 	xfers = srt->inserted_transfers;
3302 
3303 	/* now handle each of those newly inserted spi_transfers
3304 	 * note that the replacements spi_transfers all are preset
3305 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3306 	 * are all identical (as well as most others)
3307 	 * so we just have to fix up len and the pointers.
3308 	 *
3309 	 * this also includes support for the depreciated
3310 	 * spi_message.is_dma_mapped interface
3311 	 */
3312 
3313 	/* the first transfer just needs the length modified, so we
3314 	 * run it outside the loop
3315 	 */
3316 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3317 
3318 	/* all the others need rx_buf/tx_buf also set */
3319 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3320 		/* update rx_buf, tx_buf and dma */
3321 		if (xfers[i].rx_buf)
3322 			xfers[i].rx_buf += offset;
3323 		if (xfers[i].rx_dma)
3324 			xfers[i].rx_dma += offset;
3325 		if (xfers[i].tx_buf)
3326 			xfers[i].tx_buf += offset;
3327 		if (xfers[i].tx_dma)
3328 			xfers[i].tx_dma += offset;
3329 
3330 		/* update length */
3331 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3332 	}
3333 
3334 	/* we set up xferp to the last entry we have inserted,
3335 	 * so that we skip those already split transfers
3336 	 */
3337 	*xferp = &xfers[count - 1];
3338 
3339 	/* increment statistics counters */
3340 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3341 				       transfers_split_maxsize);
3342 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3343 				       transfers_split_maxsize);
3344 
3345 	return 0;
3346 }
3347 
3348 /**
3349  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3350  *                               when an individual transfer exceeds a
3351  *                               certain size
3352  * @ctlr:    the @spi_controller for this transfer
3353  * @msg:   the @spi_message to transform
3354  * @maxsize:  the maximum when to apply this
3355  * @gfp: GFP allocation flags
3356  *
3357  * Return: status of transformation
3358  */
3359 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3360 				struct spi_message *msg,
3361 				size_t maxsize,
3362 				gfp_t gfp)
3363 {
3364 	struct spi_transfer *xfer;
3365 	int ret;
3366 
3367 	/* iterate over the transfer_list,
3368 	 * but note that xfer is advanced to the last transfer inserted
3369 	 * to avoid checking sizes again unnecessarily (also xfer does
3370 	 * potentiall belong to a different list by the time the
3371 	 * replacement has happened
3372 	 */
3373 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3374 		if (xfer->len > maxsize) {
3375 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3376 							   maxsize, gfp);
3377 			if (ret)
3378 				return ret;
3379 		}
3380 	}
3381 
3382 	return 0;
3383 }
3384 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3385 
3386 /*-------------------------------------------------------------------------*/
3387 
3388 /* Core methods for SPI controller protocol drivers.  Some of the
3389  * other core methods are currently defined as inline functions.
3390  */
3391 
3392 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3393 					u8 bits_per_word)
3394 {
3395 	if (ctlr->bits_per_word_mask) {
3396 		/* Only 32 bits fit in the mask */
3397 		if (bits_per_word > 32)
3398 			return -EINVAL;
3399 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3400 			return -EINVAL;
3401 	}
3402 
3403 	return 0;
3404 }
3405 
3406 /**
3407  * spi_setup - setup SPI mode and clock rate
3408  * @spi: the device whose settings are being modified
3409  * Context: can sleep, and no requests are queued to the device
3410  *
3411  * SPI protocol drivers may need to update the transfer mode if the
3412  * device doesn't work with its default.  They may likewise need
3413  * to update clock rates or word sizes from initial values.  This function
3414  * changes those settings, and must be called from a context that can sleep.
3415  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3416  * effect the next time the device is selected and data is transferred to
3417  * or from it.  When this function returns, the spi device is deselected.
3418  *
3419  * Note that this call will fail if the protocol driver specifies an option
3420  * that the underlying controller or its driver does not support.  For
3421  * example, not all hardware supports wire transfers using nine bit words,
3422  * LSB-first wire encoding, or active-high chipselects.
3423  *
3424  * Return: zero on success, else a negative error code.
3425  */
3426 int spi_setup(struct spi_device *spi)
3427 {
3428 	unsigned	bad_bits, ugly_bits;
3429 	int		status;
3430 
3431 	/*
3432 	 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3433 	 * are set at the same time
3434 	 */
3435 	if ((hweight_long(spi->mode &
3436 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3437 	    (hweight_long(spi->mode &
3438 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3439 		dev_err(&spi->dev,
3440 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3441 		return -EINVAL;
3442 	}
3443 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3444 	 */
3445 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3446 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3447 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3448 		return -EINVAL;
3449 	/* help drivers fail *cleanly* when they need options
3450 	 * that aren't supported with their current controller
3451 	 * SPI_CS_WORD has a fallback software implementation,
3452 	 * so it is ignored here.
3453 	 */
3454 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3455 				 SPI_NO_TX | SPI_NO_RX);
3456 	/* nothing prevents from working with active-high CS in case if it
3457 	 * is driven by GPIO.
3458 	 */
3459 	if (gpio_is_valid(spi->cs_gpio))
3460 		bad_bits &= ~SPI_CS_HIGH;
3461 	ugly_bits = bad_bits &
3462 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3463 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3464 	if (ugly_bits) {
3465 		dev_warn(&spi->dev,
3466 			 "setup: ignoring unsupported mode bits %x\n",
3467 			 ugly_bits);
3468 		spi->mode &= ~ugly_bits;
3469 		bad_bits &= ~ugly_bits;
3470 	}
3471 	if (bad_bits) {
3472 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3473 			bad_bits);
3474 		return -EINVAL;
3475 	}
3476 
3477 	if (!spi->bits_per_word)
3478 		spi->bits_per_word = 8;
3479 
3480 	status = __spi_validate_bits_per_word(spi->controller,
3481 					      spi->bits_per_word);
3482 	if (status)
3483 		return status;
3484 
3485 	if (spi->controller->max_speed_hz &&
3486 	    (!spi->max_speed_hz ||
3487 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3488 		spi->max_speed_hz = spi->controller->max_speed_hz;
3489 
3490 	mutex_lock(&spi->controller->io_mutex);
3491 
3492 	if (spi->controller->setup) {
3493 		status = spi->controller->setup(spi);
3494 		if (status) {
3495 			mutex_unlock(&spi->controller->io_mutex);
3496 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3497 				status);
3498 			return status;
3499 		}
3500 	}
3501 
3502 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3503 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3504 		if (status < 0) {
3505 			mutex_unlock(&spi->controller->io_mutex);
3506 			pm_runtime_put_noidle(spi->controller->dev.parent);
3507 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3508 				status);
3509 			return status;
3510 		}
3511 
3512 		/*
3513 		 * We do not want to return positive value from pm_runtime_get,
3514 		 * there are many instances of devices calling spi_setup() and
3515 		 * checking for a non-zero return value instead of a negative
3516 		 * return value.
3517 		 */
3518 		status = 0;
3519 
3520 		spi_set_cs(spi, false, true);
3521 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3522 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3523 	} else {
3524 		spi_set_cs(spi, false, true);
3525 	}
3526 
3527 	mutex_unlock(&spi->controller->io_mutex);
3528 
3529 	if (spi->rt && !spi->controller->rt) {
3530 		spi->controller->rt = true;
3531 		spi_set_thread_rt(spi->controller);
3532 	}
3533 
3534 	trace_spi_setup(spi, status);
3535 
3536 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3537 			spi->mode & SPI_MODE_X_MASK,
3538 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3539 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3540 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3541 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3542 			spi->bits_per_word, spi->max_speed_hz,
3543 			status);
3544 
3545 	return status;
3546 }
3547 EXPORT_SYMBOL_GPL(spi_setup);
3548 
3549 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3550 				       struct spi_device *spi)
3551 {
3552 	int delay1, delay2;
3553 
3554 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3555 	if (delay1 < 0)
3556 		return delay1;
3557 
3558 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3559 	if (delay2 < 0)
3560 		return delay2;
3561 
3562 	if (delay1 < delay2)
3563 		memcpy(&xfer->word_delay, &spi->word_delay,
3564 		       sizeof(xfer->word_delay));
3565 
3566 	return 0;
3567 }
3568 
3569 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3570 {
3571 	struct spi_controller *ctlr = spi->controller;
3572 	struct spi_transfer *xfer;
3573 	int w_size;
3574 
3575 	if (list_empty(&message->transfers))
3576 		return -EINVAL;
3577 
3578 	/* If an SPI controller does not support toggling the CS line on each
3579 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3580 	 * for the CS line, we can emulate the CS-per-word hardware function by
3581 	 * splitting transfers into one-word transfers and ensuring that
3582 	 * cs_change is set for each transfer.
3583 	 */
3584 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3585 					  spi->cs_gpiod ||
3586 					  gpio_is_valid(spi->cs_gpio))) {
3587 		size_t maxsize;
3588 		int ret;
3589 
3590 		maxsize = (spi->bits_per_word + 7) / 8;
3591 
3592 		/* spi_split_transfers_maxsize() requires message->spi */
3593 		message->spi = spi;
3594 
3595 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3596 						  GFP_KERNEL);
3597 		if (ret)
3598 			return ret;
3599 
3600 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3601 			/* don't change cs_change on the last entry in the list */
3602 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3603 				break;
3604 			xfer->cs_change = 1;
3605 		}
3606 	}
3607 
3608 	/* Half-duplex links include original MicroWire, and ones with
3609 	 * only one data pin like SPI_3WIRE (switches direction) or where
3610 	 * either MOSI or MISO is missing.  They can also be caused by
3611 	 * software limitations.
3612 	 */
3613 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3614 	    (spi->mode & SPI_3WIRE)) {
3615 		unsigned flags = ctlr->flags;
3616 
3617 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3618 			if (xfer->rx_buf && xfer->tx_buf)
3619 				return -EINVAL;
3620 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3621 				return -EINVAL;
3622 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3623 				return -EINVAL;
3624 		}
3625 	}
3626 
3627 	/**
3628 	 * Set transfer bits_per_word and max speed as spi device default if
3629 	 * it is not set for this transfer.
3630 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3631 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3632 	 * Ensure transfer word_delay is at least as long as that required by
3633 	 * device itself.
3634 	 */
3635 	message->frame_length = 0;
3636 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3637 		xfer->effective_speed_hz = 0;
3638 		message->frame_length += xfer->len;
3639 		if (!xfer->bits_per_word)
3640 			xfer->bits_per_word = spi->bits_per_word;
3641 
3642 		if (!xfer->speed_hz)
3643 			xfer->speed_hz = spi->max_speed_hz;
3644 
3645 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3646 			xfer->speed_hz = ctlr->max_speed_hz;
3647 
3648 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3649 			return -EINVAL;
3650 
3651 		/*
3652 		 * SPI transfer length should be multiple of SPI word size
3653 		 * where SPI word size should be power-of-two multiple
3654 		 */
3655 		if (xfer->bits_per_word <= 8)
3656 			w_size = 1;
3657 		else if (xfer->bits_per_word <= 16)
3658 			w_size = 2;
3659 		else
3660 			w_size = 4;
3661 
3662 		/* No partial transfers accepted */
3663 		if (xfer->len % w_size)
3664 			return -EINVAL;
3665 
3666 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3667 		    xfer->speed_hz < ctlr->min_speed_hz)
3668 			return -EINVAL;
3669 
3670 		if (xfer->tx_buf && !xfer->tx_nbits)
3671 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3672 		if (xfer->rx_buf && !xfer->rx_nbits)
3673 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3674 		/* check transfer tx/rx_nbits:
3675 		 * 1. check the value matches one of single, dual and quad
3676 		 * 2. check tx/rx_nbits match the mode in spi_device
3677 		 */
3678 		if (xfer->tx_buf) {
3679 			if (spi->mode & SPI_NO_TX)
3680 				return -EINVAL;
3681 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3682 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3683 				xfer->tx_nbits != SPI_NBITS_QUAD)
3684 				return -EINVAL;
3685 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3686 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3687 				return -EINVAL;
3688 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3689 				!(spi->mode & SPI_TX_QUAD))
3690 				return -EINVAL;
3691 		}
3692 		/* check transfer rx_nbits */
3693 		if (xfer->rx_buf) {
3694 			if (spi->mode & SPI_NO_RX)
3695 				return -EINVAL;
3696 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3697 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3698 				xfer->rx_nbits != SPI_NBITS_QUAD)
3699 				return -EINVAL;
3700 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3701 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3702 				return -EINVAL;
3703 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3704 				!(spi->mode & SPI_RX_QUAD))
3705 				return -EINVAL;
3706 		}
3707 
3708 		if (_spi_xfer_word_delay_update(xfer, spi))
3709 			return -EINVAL;
3710 	}
3711 
3712 	message->status = -EINPROGRESS;
3713 
3714 	return 0;
3715 }
3716 
3717 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3718 {
3719 	struct spi_controller *ctlr = spi->controller;
3720 	struct spi_transfer *xfer;
3721 
3722 	/*
3723 	 * Some controllers do not support doing regular SPI transfers. Return
3724 	 * ENOTSUPP when this is the case.
3725 	 */
3726 	if (!ctlr->transfer)
3727 		return -ENOTSUPP;
3728 
3729 	message->spi = spi;
3730 
3731 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3732 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3733 
3734 	trace_spi_message_submit(message);
3735 
3736 	if (!ctlr->ptp_sts_supported) {
3737 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3738 			xfer->ptp_sts_word_pre = 0;
3739 			ptp_read_system_prets(xfer->ptp_sts);
3740 		}
3741 	}
3742 
3743 	return ctlr->transfer(spi, message);
3744 }
3745 
3746 /**
3747  * spi_async - asynchronous SPI transfer
3748  * @spi: device with which data will be exchanged
3749  * @message: describes the data transfers, including completion callback
3750  * Context: any (irqs may be blocked, etc)
3751  *
3752  * This call may be used in_irq and other contexts which can't sleep,
3753  * as well as from task contexts which can sleep.
3754  *
3755  * The completion callback is invoked in a context which can't sleep.
3756  * Before that invocation, the value of message->status is undefined.
3757  * When the callback is issued, message->status holds either zero (to
3758  * indicate complete success) or a negative error code.  After that
3759  * callback returns, the driver which issued the transfer request may
3760  * deallocate the associated memory; it's no longer in use by any SPI
3761  * core or controller driver code.
3762  *
3763  * Note that although all messages to a spi_device are handled in
3764  * FIFO order, messages may go to different devices in other orders.
3765  * Some device might be higher priority, or have various "hard" access
3766  * time requirements, for example.
3767  *
3768  * On detection of any fault during the transfer, processing of
3769  * the entire message is aborted, and the device is deselected.
3770  * Until returning from the associated message completion callback,
3771  * no other spi_message queued to that device will be processed.
3772  * (This rule applies equally to all the synchronous transfer calls,
3773  * which are wrappers around this core asynchronous primitive.)
3774  *
3775  * Return: zero on success, else a negative error code.
3776  */
3777 int spi_async(struct spi_device *spi, struct spi_message *message)
3778 {
3779 	struct spi_controller *ctlr = spi->controller;
3780 	int ret;
3781 	unsigned long flags;
3782 
3783 	ret = __spi_validate(spi, message);
3784 	if (ret != 0)
3785 		return ret;
3786 
3787 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3788 
3789 	if (ctlr->bus_lock_flag)
3790 		ret = -EBUSY;
3791 	else
3792 		ret = __spi_async(spi, message);
3793 
3794 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3795 
3796 	return ret;
3797 }
3798 EXPORT_SYMBOL_GPL(spi_async);
3799 
3800 /**
3801  * spi_async_locked - version of spi_async with exclusive bus usage
3802  * @spi: device with which data will be exchanged
3803  * @message: describes the data transfers, including completion callback
3804  * Context: any (irqs may be blocked, etc)
3805  *
3806  * This call may be used in_irq and other contexts which can't sleep,
3807  * as well as from task contexts which can sleep.
3808  *
3809  * The completion callback is invoked in a context which can't sleep.
3810  * Before that invocation, the value of message->status is undefined.
3811  * When the callback is issued, message->status holds either zero (to
3812  * indicate complete success) or a negative error code.  After that
3813  * callback returns, the driver which issued the transfer request may
3814  * deallocate the associated memory; it's no longer in use by any SPI
3815  * core or controller driver code.
3816  *
3817  * Note that although all messages to a spi_device are handled in
3818  * FIFO order, messages may go to different devices in other orders.
3819  * Some device might be higher priority, or have various "hard" access
3820  * time requirements, for example.
3821  *
3822  * On detection of any fault during the transfer, processing of
3823  * the entire message is aborted, and the device is deselected.
3824  * Until returning from the associated message completion callback,
3825  * no other spi_message queued to that device will be processed.
3826  * (This rule applies equally to all the synchronous transfer calls,
3827  * which are wrappers around this core asynchronous primitive.)
3828  *
3829  * Return: zero on success, else a negative error code.
3830  */
3831 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3832 {
3833 	struct spi_controller *ctlr = spi->controller;
3834 	int ret;
3835 	unsigned long flags;
3836 
3837 	ret = __spi_validate(spi, message);
3838 	if (ret != 0)
3839 		return ret;
3840 
3841 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3842 
3843 	ret = __spi_async(spi, message);
3844 
3845 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3846 
3847 	return ret;
3848 
3849 }
3850 EXPORT_SYMBOL_GPL(spi_async_locked);
3851 
3852 /*-------------------------------------------------------------------------*/
3853 
3854 /* Utility methods for SPI protocol drivers, layered on
3855  * top of the core.  Some other utility methods are defined as
3856  * inline functions.
3857  */
3858 
3859 static void spi_complete(void *arg)
3860 {
3861 	complete(arg);
3862 }
3863 
3864 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3865 {
3866 	DECLARE_COMPLETION_ONSTACK(done);
3867 	int status;
3868 	struct spi_controller *ctlr = spi->controller;
3869 	unsigned long flags;
3870 
3871 	status = __spi_validate(spi, message);
3872 	if (status != 0)
3873 		return status;
3874 
3875 	message->complete = spi_complete;
3876 	message->context = &done;
3877 	message->spi = spi;
3878 
3879 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3880 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3881 
3882 	/* If we're not using the legacy transfer method then we will
3883 	 * try to transfer in the calling context so special case.
3884 	 * This code would be less tricky if we could remove the
3885 	 * support for driver implemented message queues.
3886 	 */
3887 	if (ctlr->transfer == spi_queued_transfer) {
3888 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3889 
3890 		trace_spi_message_submit(message);
3891 
3892 		status = __spi_queued_transfer(spi, message, false);
3893 
3894 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3895 	} else {
3896 		status = spi_async_locked(spi, message);
3897 	}
3898 
3899 	if (status == 0) {
3900 		/* Push out the messages in the calling context if we
3901 		 * can.
3902 		 */
3903 		if (ctlr->transfer == spi_queued_transfer) {
3904 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3905 						       spi_sync_immediate);
3906 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3907 						       spi_sync_immediate);
3908 			__spi_pump_messages(ctlr, false);
3909 		}
3910 
3911 		wait_for_completion(&done);
3912 		status = message->status;
3913 	}
3914 	message->context = NULL;
3915 	return status;
3916 }
3917 
3918 /**
3919  * spi_sync - blocking/synchronous SPI data transfers
3920  * @spi: device with which data will be exchanged
3921  * @message: describes the data transfers
3922  * Context: can sleep
3923  *
3924  * This call may only be used from a context that may sleep.  The sleep
3925  * is non-interruptible, and has no timeout.  Low-overhead controller
3926  * drivers may DMA directly into and out of the message buffers.
3927  *
3928  * Note that the SPI device's chip select is active during the message,
3929  * and then is normally disabled between messages.  Drivers for some
3930  * frequently-used devices may want to minimize costs of selecting a chip,
3931  * by leaving it selected in anticipation that the next message will go
3932  * to the same chip.  (That may increase power usage.)
3933  *
3934  * Also, the caller is guaranteeing that the memory associated with the
3935  * message will not be freed before this call returns.
3936  *
3937  * Return: zero on success, else a negative error code.
3938  */
3939 int spi_sync(struct spi_device *spi, struct spi_message *message)
3940 {
3941 	int ret;
3942 
3943 	mutex_lock(&spi->controller->bus_lock_mutex);
3944 	ret = __spi_sync(spi, message);
3945 	mutex_unlock(&spi->controller->bus_lock_mutex);
3946 
3947 	return ret;
3948 }
3949 EXPORT_SYMBOL_GPL(spi_sync);
3950 
3951 /**
3952  * spi_sync_locked - version of spi_sync with exclusive bus usage
3953  * @spi: device with which data will be exchanged
3954  * @message: describes the data transfers
3955  * Context: can sleep
3956  *
3957  * This call may only be used from a context that may sleep.  The sleep
3958  * is non-interruptible, and has no timeout.  Low-overhead controller
3959  * drivers may DMA directly into and out of the message buffers.
3960  *
3961  * This call should be used by drivers that require exclusive access to the
3962  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3963  * be released by a spi_bus_unlock call when the exclusive access is over.
3964  *
3965  * Return: zero on success, else a negative error code.
3966  */
3967 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3968 {
3969 	return __spi_sync(spi, message);
3970 }
3971 EXPORT_SYMBOL_GPL(spi_sync_locked);
3972 
3973 /**
3974  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3975  * @ctlr: SPI bus master that should be locked for exclusive bus access
3976  * Context: can sleep
3977  *
3978  * This call may only be used from a context that may sleep.  The sleep
3979  * is non-interruptible, and has no timeout.
3980  *
3981  * This call should be used by drivers that require exclusive access to the
3982  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3983  * exclusive access is over. Data transfer must be done by spi_sync_locked
3984  * and spi_async_locked calls when the SPI bus lock is held.
3985  *
3986  * Return: always zero.
3987  */
3988 int spi_bus_lock(struct spi_controller *ctlr)
3989 {
3990 	unsigned long flags;
3991 
3992 	mutex_lock(&ctlr->bus_lock_mutex);
3993 
3994 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3995 	ctlr->bus_lock_flag = 1;
3996 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3997 
3998 	/* mutex remains locked until spi_bus_unlock is called */
3999 
4000 	return 0;
4001 }
4002 EXPORT_SYMBOL_GPL(spi_bus_lock);
4003 
4004 /**
4005  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4006  * @ctlr: SPI bus master that was locked for exclusive bus access
4007  * Context: can sleep
4008  *
4009  * This call may only be used from a context that may sleep.  The sleep
4010  * is non-interruptible, and has no timeout.
4011  *
4012  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4013  * call.
4014  *
4015  * Return: always zero.
4016  */
4017 int spi_bus_unlock(struct spi_controller *ctlr)
4018 {
4019 	ctlr->bus_lock_flag = 0;
4020 
4021 	mutex_unlock(&ctlr->bus_lock_mutex);
4022 
4023 	return 0;
4024 }
4025 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4026 
4027 /* portable code must never pass more than 32 bytes */
4028 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4029 
4030 static u8	*buf;
4031 
4032 /**
4033  * spi_write_then_read - SPI synchronous write followed by read
4034  * @spi: device with which data will be exchanged
4035  * @txbuf: data to be written (need not be dma-safe)
4036  * @n_tx: size of txbuf, in bytes
4037  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4038  * @n_rx: size of rxbuf, in bytes
4039  * Context: can sleep
4040  *
4041  * This performs a half duplex MicroWire style transaction with the
4042  * device, sending txbuf and then reading rxbuf.  The return value
4043  * is zero for success, else a negative errno status code.
4044  * This call may only be used from a context that may sleep.
4045  *
4046  * Parameters to this routine are always copied using a small buffer.
4047  * Performance-sensitive or bulk transfer code should instead use
4048  * spi_{async,sync}() calls with dma-safe buffers.
4049  *
4050  * Return: zero on success, else a negative error code.
4051  */
4052 int spi_write_then_read(struct spi_device *spi,
4053 		const void *txbuf, unsigned n_tx,
4054 		void *rxbuf, unsigned n_rx)
4055 {
4056 	static DEFINE_MUTEX(lock);
4057 
4058 	int			status;
4059 	struct spi_message	message;
4060 	struct spi_transfer	x[2];
4061 	u8			*local_buf;
4062 
4063 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
4064 	 * copying here, (as a pure convenience thing), but we can
4065 	 * keep heap costs out of the hot path unless someone else is
4066 	 * using the pre-allocated buffer or the transfer is too large.
4067 	 */
4068 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4069 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4070 				    GFP_KERNEL | GFP_DMA);
4071 		if (!local_buf)
4072 			return -ENOMEM;
4073 	} else {
4074 		local_buf = buf;
4075 	}
4076 
4077 	spi_message_init(&message);
4078 	memset(x, 0, sizeof(x));
4079 	if (n_tx) {
4080 		x[0].len = n_tx;
4081 		spi_message_add_tail(&x[0], &message);
4082 	}
4083 	if (n_rx) {
4084 		x[1].len = n_rx;
4085 		spi_message_add_tail(&x[1], &message);
4086 	}
4087 
4088 	memcpy(local_buf, txbuf, n_tx);
4089 	x[0].tx_buf = local_buf;
4090 	x[1].rx_buf = local_buf + n_tx;
4091 
4092 	/* do the i/o */
4093 	status = spi_sync(spi, &message);
4094 	if (status == 0)
4095 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4096 
4097 	if (x[0].tx_buf == buf)
4098 		mutex_unlock(&lock);
4099 	else
4100 		kfree(local_buf);
4101 
4102 	return status;
4103 }
4104 EXPORT_SYMBOL_GPL(spi_write_then_read);
4105 
4106 /*-------------------------------------------------------------------------*/
4107 
4108 #if IS_ENABLED(CONFIG_OF)
4109 /* must call put_device() when done with returned spi_device device */
4110 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4111 {
4112 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4113 
4114 	return dev ? to_spi_device(dev) : NULL;
4115 }
4116 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4117 #endif /* IS_ENABLED(CONFIG_OF) */
4118 
4119 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4120 /* the spi controllers are not using spi_bus, so we find it with another way */
4121 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4122 {
4123 	struct device *dev;
4124 
4125 	dev = class_find_device_by_of_node(&spi_master_class, node);
4126 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4127 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4128 	if (!dev)
4129 		return NULL;
4130 
4131 	/* reference got in class_find_device */
4132 	return container_of(dev, struct spi_controller, dev);
4133 }
4134 
4135 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4136 			 void *arg)
4137 {
4138 	struct of_reconfig_data *rd = arg;
4139 	struct spi_controller *ctlr;
4140 	struct spi_device *spi;
4141 
4142 	switch (of_reconfig_get_state_change(action, arg)) {
4143 	case OF_RECONFIG_CHANGE_ADD:
4144 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4145 		if (ctlr == NULL)
4146 			return NOTIFY_OK;	/* not for us */
4147 
4148 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4149 			put_device(&ctlr->dev);
4150 			return NOTIFY_OK;
4151 		}
4152 
4153 		spi = of_register_spi_device(ctlr, rd->dn);
4154 		put_device(&ctlr->dev);
4155 
4156 		if (IS_ERR(spi)) {
4157 			pr_err("%s: failed to create for '%pOF'\n",
4158 					__func__, rd->dn);
4159 			of_node_clear_flag(rd->dn, OF_POPULATED);
4160 			return notifier_from_errno(PTR_ERR(spi));
4161 		}
4162 		break;
4163 
4164 	case OF_RECONFIG_CHANGE_REMOVE:
4165 		/* already depopulated? */
4166 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4167 			return NOTIFY_OK;
4168 
4169 		/* find our device by node */
4170 		spi = of_find_spi_device_by_node(rd->dn);
4171 		if (spi == NULL)
4172 			return NOTIFY_OK;	/* no? not meant for us */
4173 
4174 		/* unregister takes one ref away */
4175 		spi_unregister_device(spi);
4176 
4177 		/* and put the reference of the find */
4178 		put_device(&spi->dev);
4179 		break;
4180 	}
4181 
4182 	return NOTIFY_OK;
4183 }
4184 
4185 static struct notifier_block spi_of_notifier = {
4186 	.notifier_call = of_spi_notify,
4187 };
4188 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4189 extern struct notifier_block spi_of_notifier;
4190 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4191 
4192 #if IS_ENABLED(CONFIG_ACPI)
4193 static int spi_acpi_controller_match(struct device *dev, const void *data)
4194 {
4195 	return ACPI_COMPANION(dev->parent) == data;
4196 }
4197 
4198 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4199 {
4200 	struct device *dev;
4201 
4202 	dev = class_find_device(&spi_master_class, NULL, adev,
4203 				spi_acpi_controller_match);
4204 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4205 		dev = class_find_device(&spi_slave_class, NULL, adev,
4206 					spi_acpi_controller_match);
4207 	if (!dev)
4208 		return NULL;
4209 
4210 	return container_of(dev, struct spi_controller, dev);
4211 }
4212 
4213 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4214 {
4215 	struct device *dev;
4216 
4217 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4218 	return to_spi_device(dev);
4219 }
4220 
4221 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4222 			   void *arg)
4223 {
4224 	struct acpi_device *adev = arg;
4225 	struct spi_controller *ctlr;
4226 	struct spi_device *spi;
4227 
4228 	switch (value) {
4229 	case ACPI_RECONFIG_DEVICE_ADD:
4230 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4231 		if (!ctlr)
4232 			break;
4233 
4234 		acpi_register_spi_device(ctlr, adev);
4235 		put_device(&ctlr->dev);
4236 		break;
4237 	case ACPI_RECONFIG_DEVICE_REMOVE:
4238 		if (!acpi_device_enumerated(adev))
4239 			break;
4240 
4241 		spi = acpi_spi_find_device_by_adev(adev);
4242 		if (!spi)
4243 			break;
4244 
4245 		spi_unregister_device(spi);
4246 		put_device(&spi->dev);
4247 		break;
4248 	}
4249 
4250 	return NOTIFY_OK;
4251 }
4252 
4253 static struct notifier_block spi_acpi_notifier = {
4254 	.notifier_call = acpi_spi_notify,
4255 };
4256 #else
4257 extern struct notifier_block spi_acpi_notifier;
4258 #endif
4259 
4260 static int __init spi_init(void)
4261 {
4262 	int	status;
4263 
4264 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4265 	if (!buf) {
4266 		status = -ENOMEM;
4267 		goto err0;
4268 	}
4269 
4270 	status = bus_register(&spi_bus_type);
4271 	if (status < 0)
4272 		goto err1;
4273 
4274 	status = class_register(&spi_master_class);
4275 	if (status < 0)
4276 		goto err2;
4277 
4278 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4279 		status = class_register(&spi_slave_class);
4280 		if (status < 0)
4281 			goto err3;
4282 	}
4283 
4284 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4285 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4286 	if (IS_ENABLED(CONFIG_ACPI))
4287 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4288 
4289 	return 0;
4290 
4291 err3:
4292 	class_unregister(&spi_master_class);
4293 err2:
4294 	bus_unregister(&spi_bus_type);
4295 err1:
4296 	kfree(buf);
4297 	buf = NULL;
4298 err0:
4299 	return status;
4300 }
4301 
4302 /* board_info is normally registered in arch_initcall(),
4303  * but even essential drivers wait till later
4304  *
4305  * REVISIT only boardinfo really needs static linking. the rest (device and
4306  * driver registration) _could_ be dynamically linked (modular) ... costs
4307  * include needing to have boardinfo data structures be much more public.
4308  */
4309 postcore_initcall(spi_init);
4310