1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 static int spi_probe(struct device *dev) 378 { 379 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 380 struct spi_device *spi = to_spi_device(dev); 381 int ret; 382 383 ret = of_clk_set_defaults(dev->of_node, false); 384 if (ret) 385 return ret; 386 387 if (dev->of_node) { 388 spi->irq = of_irq_get(dev->of_node, 0); 389 if (spi->irq == -EPROBE_DEFER) 390 return -EPROBE_DEFER; 391 if (spi->irq < 0) 392 spi->irq = 0; 393 } 394 395 ret = dev_pm_domain_attach(dev, true); 396 if (ret) 397 return ret; 398 399 if (sdrv->probe) { 400 ret = sdrv->probe(spi); 401 if (ret) 402 dev_pm_domain_detach(dev, true); 403 } 404 405 return ret; 406 } 407 408 static int spi_remove(struct device *dev) 409 { 410 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 411 412 if (sdrv->remove) { 413 int ret; 414 415 ret = sdrv->remove(to_spi_device(dev)); 416 if (ret) 417 dev_warn(dev, 418 "Failed to unbind driver (%pe), ignoring\n", 419 ERR_PTR(ret)); 420 } 421 422 dev_pm_domain_detach(dev, true); 423 424 return 0; 425 } 426 427 static void spi_shutdown(struct device *dev) 428 { 429 if (dev->driver) { 430 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 431 432 if (sdrv->shutdown) 433 sdrv->shutdown(to_spi_device(dev)); 434 } 435 } 436 437 struct bus_type spi_bus_type = { 438 .name = "spi", 439 .dev_groups = spi_dev_groups, 440 .match = spi_match_device, 441 .uevent = spi_uevent, 442 .probe = spi_probe, 443 .remove = spi_remove, 444 .shutdown = spi_shutdown, 445 }; 446 EXPORT_SYMBOL_GPL(spi_bus_type); 447 448 /** 449 * __spi_register_driver - register a SPI driver 450 * @owner: owner module of the driver to register 451 * @sdrv: the driver to register 452 * Context: can sleep 453 * 454 * Return: zero on success, else a negative error code. 455 */ 456 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 457 { 458 sdrv->driver.owner = owner; 459 sdrv->driver.bus = &spi_bus_type; 460 return driver_register(&sdrv->driver); 461 } 462 EXPORT_SYMBOL_GPL(__spi_register_driver); 463 464 /*-------------------------------------------------------------------------*/ 465 466 /* SPI devices should normally not be created by SPI device drivers; that 467 * would make them board-specific. Similarly with SPI controller drivers. 468 * Device registration normally goes into like arch/.../mach.../board-YYY.c 469 * with other readonly (flashable) information about mainboard devices. 470 */ 471 472 struct boardinfo { 473 struct list_head list; 474 struct spi_board_info board_info; 475 }; 476 477 static LIST_HEAD(board_list); 478 static LIST_HEAD(spi_controller_list); 479 480 /* 481 * Used to protect add/del operation for board_info list and 482 * spi_controller list, and their matching process 483 * also used to protect object of type struct idr 484 */ 485 static DEFINE_MUTEX(board_lock); 486 487 /* 488 * Prevents addition of devices with same chip select and 489 * addition of devices below an unregistering controller. 490 */ 491 static DEFINE_MUTEX(spi_add_lock); 492 493 /** 494 * spi_alloc_device - Allocate a new SPI device 495 * @ctlr: Controller to which device is connected 496 * Context: can sleep 497 * 498 * Allows a driver to allocate and initialize a spi_device without 499 * registering it immediately. This allows a driver to directly 500 * fill the spi_device with device parameters before calling 501 * spi_add_device() on it. 502 * 503 * Caller is responsible to call spi_add_device() on the returned 504 * spi_device structure to add it to the SPI controller. If the caller 505 * needs to discard the spi_device without adding it, then it should 506 * call spi_dev_put() on it. 507 * 508 * Return: a pointer to the new device, or NULL. 509 */ 510 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 511 { 512 struct spi_device *spi; 513 514 if (!spi_controller_get(ctlr)) 515 return NULL; 516 517 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 518 if (!spi) { 519 spi_controller_put(ctlr); 520 return NULL; 521 } 522 523 spi->master = spi->controller = ctlr; 524 spi->dev.parent = &ctlr->dev; 525 spi->dev.bus = &spi_bus_type; 526 spi->dev.release = spidev_release; 527 spi->cs_gpio = -ENOENT; 528 spi->mode = ctlr->buswidth_override_bits; 529 530 spin_lock_init(&spi->statistics.lock); 531 532 device_initialize(&spi->dev); 533 return spi; 534 } 535 EXPORT_SYMBOL_GPL(spi_alloc_device); 536 537 static void spi_dev_set_name(struct spi_device *spi) 538 { 539 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 540 541 if (adev) { 542 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 543 return; 544 } 545 546 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 547 spi->chip_select); 548 } 549 550 static int spi_dev_check(struct device *dev, void *data) 551 { 552 struct spi_device *spi = to_spi_device(dev); 553 struct spi_device *new_spi = data; 554 555 if (spi->controller == new_spi->controller && 556 spi->chip_select == new_spi->chip_select) 557 return -EBUSY; 558 return 0; 559 } 560 561 /** 562 * spi_add_device - Add spi_device allocated with spi_alloc_device 563 * @spi: spi_device to register 564 * 565 * Companion function to spi_alloc_device. Devices allocated with 566 * spi_alloc_device can be added onto the spi bus with this function. 567 * 568 * Return: 0 on success; negative errno on failure 569 */ 570 int spi_add_device(struct spi_device *spi) 571 { 572 struct spi_controller *ctlr = spi->controller; 573 struct device *dev = ctlr->dev.parent; 574 int status; 575 576 /* Chipselects are numbered 0..max; validate. */ 577 if (spi->chip_select >= ctlr->num_chipselect) { 578 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 579 ctlr->num_chipselect); 580 return -EINVAL; 581 } 582 583 /* Set the bus ID string */ 584 spi_dev_set_name(spi); 585 586 /* We need to make sure there's no other device with this 587 * chipselect **BEFORE** we call setup(), else we'll trash 588 * its configuration. Lock against concurrent add() calls. 589 */ 590 mutex_lock(&spi_add_lock); 591 592 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 593 if (status) { 594 dev_err(dev, "chipselect %d already in use\n", 595 spi->chip_select); 596 goto done; 597 } 598 599 /* Controller may unregister concurrently */ 600 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 601 !device_is_registered(&ctlr->dev)) { 602 status = -ENODEV; 603 goto done; 604 } 605 606 /* Descriptors take precedence */ 607 if (ctlr->cs_gpiods) 608 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 609 else if (ctlr->cs_gpios) 610 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 611 612 /* Drivers may modify this initial i/o setup, but will 613 * normally rely on the device being setup. Devices 614 * using SPI_CS_HIGH can't coexist well otherwise... 615 */ 616 status = spi_setup(spi); 617 if (status < 0) { 618 dev_err(dev, "can't setup %s, status %d\n", 619 dev_name(&spi->dev), status); 620 goto done; 621 } 622 623 /* Device may be bound to an active driver when this returns */ 624 status = device_add(&spi->dev); 625 if (status < 0) 626 dev_err(dev, "can't add %s, status %d\n", 627 dev_name(&spi->dev), status); 628 else 629 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 630 631 done: 632 mutex_unlock(&spi_add_lock); 633 return status; 634 } 635 EXPORT_SYMBOL_GPL(spi_add_device); 636 637 /** 638 * spi_new_device - instantiate one new SPI device 639 * @ctlr: Controller to which device is connected 640 * @chip: Describes the SPI device 641 * Context: can sleep 642 * 643 * On typical mainboards, this is purely internal; and it's not needed 644 * after board init creates the hard-wired devices. Some development 645 * platforms may not be able to use spi_register_board_info though, and 646 * this is exported so that for example a USB or parport based adapter 647 * driver could add devices (which it would learn about out-of-band). 648 * 649 * Return: the new device, or NULL. 650 */ 651 struct spi_device *spi_new_device(struct spi_controller *ctlr, 652 struct spi_board_info *chip) 653 { 654 struct spi_device *proxy; 655 int status; 656 657 /* NOTE: caller did any chip->bus_num checks necessary. 658 * 659 * Also, unless we change the return value convention to use 660 * error-or-pointer (not NULL-or-pointer), troubleshootability 661 * suggests syslogged diagnostics are best here (ugh). 662 */ 663 664 proxy = spi_alloc_device(ctlr); 665 if (!proxy) 666 return NULL; 667 668 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 669 670 proxy->chip_select = chip->chip_select; 671 proxy->max_speed_hz = chip->max_speed_hz; 672 proxy->mode = chip->mode; 673 proxy->irq = chip->irq; 674 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 675 proxy->dev.platform_data = (void *) chip->platform_data; 676 proxy->controller_data = chip->controller_data; 677 proxy->controller_state = NULL; 678 679 if (chip->properties) { 680 status = device_add_properties(&proxy->dev, chip->properties); 681 if (status) { 682 dev_err(&ctlr->dev, 683 "failed to add properties to '%s': %d\n", 684 chip->modalias, status); 685 goto err_dev_put; 686 } 687 } 688 689 status = spi_add_device(proxy); 690 if (status < 0) 691 goto err_remove_props; 692 693 return proxy; 694 695 err_remove_props: 696 if (chip->properties) 697 device_remove_properties(&proxy->dev); 698 err_dev_put: 699 spi_dev_put(proxy); 700 return NULL; 701 } 702 EXPORT_SYMBOL_GPL(spi_new_device); 703 704 /** 705 * spi_unregister_device - unregister a single SPI device 706 * @spi: spi_device to unregister 707 * 708 * Start making the passed SPI device vanish. Normally this would be handled 709 * by spi_unregister_controller(). 710 */ 711 void spi_unregister_device(struct spi_device *spi) 712 { 713 if (!spi) 714 return; 715 716 if (spi->dev.of_node) { 717 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 718 of_node_put(spi->dev.of_node); 719 } 720 if (ACPI_COMPANION(&spi->dev)) 721 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 722 device_unregister(&spi->dev); 723 } 724 EXPORT_SYMBOL_GPL(spi_unregister_device); 725 726 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 727 struct spi_board_info *bi) 728 { 729 struct spi_device *dev; 730 731 if (ctlr->bus_num != bi->bus_num) 732 return; 733 734 dev = spi_new_device(ctlr, bi); 735 if (!dev) 736 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 737 bi->modalias); 738 } 739 740 /** 741 * spi_register_board_info - register SPI devices for a given board 742 * @info: array of chip descriptors 743 * @n: how many descriptors are provided 744 * Context: can sleep 745 * 746 * Board-specific early init code calls this (probably during arch_initcall) 747 * with segments of the SPI device table. Any device nodes are created later, 748 * after the relevant parent SPI controller (bus_num) is defined. We keep 749 * this table of devices forever, so that reloading a controller driver will 750 * not make Linux forget about these hard-wired devices. 751 * 752 * Other code can also call this, e.g. a particular add-on board might provide 753 * SPI devices through its expansion connector, so code initializing that board 754 * would naturally declare its SPI devices. 755 * 756 * The board info passed can safely be __initdata ... but be careful of 757 * any embedded pointers (platform_data, etc), they're copied as-is. 758 * Device properties are deep-copied though. 759 * 760 * Return: zero on success, else a negative error code. 761 */ 762 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 763 { 764 struct boardinfo *bi; 765 int i; 766 767 if (!n) 768 return 0; 769 770 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 771 if (!bi) 772 return -ENOMEM; 773 774 for (i = 0; i < n; i++, bi++, info++) { 775 struct spi_controller *ctlr; 776 777 memcpy(&bi->board_info, info, sizeof(*info)); 778 if (info->properties) { 779 bi->board_info.properties = 780 property_entries_dup(info->properties); 781 if (IS_ERR(bi->board_info.properties)) 782 return PTR_ERR(bi->board_info.properties); 783 } 784 785 mutex_lock(&board_lock); 786 list_add_tail(&bi->list, &board_list); 787 list_for_each_entry(ctlr, &spi_controller_list, list) 788 spi_match_controller_to_boardinfo(ctlr, 789 &bi->board_info); 790 mutex_unlock(&board_lock); 791 } 792 793 return 0; 794 } 795 796 /*-------------------------------------------------------------------------*/ 797 798 static void spi_set_cs(struct spi_device *spi, bool enable) 799 { 800 bool enable1 = enable; 801 802 /* 803 * Avoid calling into the driver (or doing delays) if the chip select 804 * isn't actually changing from the last time this was called. 805 */ 806 if ((spi->controller->last_cs_enable == enable) && 807 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 808 return; 809 810 spi->controller->last_cs_enable = enable; 811 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 812 813 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 814 !spi->controller->set_cs_timing) { 815 if (enable1) 816 spi_delay_exec(&spi->controller->cs_setup, NULL); 817 else 818 spi_delay_exec(&spi->controller->cs_hold, NULL); 819 } 820 821 if (spi->mode & SPI_CS_HIGH) 822 enable = !enable; 823 824 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 825 if (!(spi->mode & SPI_NO_CS)) { 826 if (spi->cs_gpiod) 827 /* polarity handled by gpiolib */ 828 gpiod_set_value_cansleep(spi->cs_gpiod, 829 enable1); 830 else 831 /* 832 * invert the enable line, as active low is 833 * default for SPI. 834 */ 835 gpio_set_value_cansleep(spi->cs_gpio, !enable); 836 } 837 /* Some SPI masters need both GPIO CS & slave_select */ 838 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 839 spi->controller->set_cs) 840 spi->controller->set_cs(spi, !enable); 841 } else if (spi->controller->set_cs) { 842 spi->controller->set_cs(spi, !enable); 843 } 844 845 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 846 !spi->controller->set_cs_timing) { 847 if (!enable1) 848 spi_delay_exec(&spi->controller->cs_inactive, NULL); 849 } 850 } 851 852 #ifdef CONFIG_HAS_DMA 853 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 854 struct sg_table *sgt, void *buf, size_t len, 855 enum dma_data_direction dir) 856 { 857 const bool vmalloced_buf = is_vmalloc_addr(buf); 858 unsigned int max_seg_size = dma_get_max_seg_size(dev); 859 #ifdef CONFIG_HIGHMEM 860 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 861 (unsigned long)buf < (PKMAP_BASE + 862 (LAST_PKMAP * PAGE_SIZE))); 863 #else 864 const bool kmap_buf = false; 865 #endif 866 int desc_len; 867 int sgs; 868 struct page *vm_page; 869 struct scatterlist *sg; 870 void *sg_buf; 871 size_t min; 872 int i, ret; 873 874 if (vmalloced_buf || kmap_buf) { 875 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 876 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 877 } else if (virt_addr_valid(buf)) { 878 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 879 sgs = DIV_ROUND_UP(len, desc_len); 880 } else { 881 return -EINVAL; 882 } 883 884 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 885 if (ret != 0) 886 return ret; 887 888 sg = &sgt->sgl[0]; 889 for (i = 0; i < sgs; i++) { 890 891 if (vmalloced_buf || kmap_buf) { 892 /* 893 * Next scatterlist entry size is the minimum between 894 * the desc_len and the remaining buffer length that 895 * fits in a page. 896 */ 897 min = min_t(size_t, desc_len, 898 min_t(size_t, len, 899 PAGE_SIZE - offset_in_page(buf))); 900 if (vmalloced_buf) 901 vm_page = vmalloc_to_page(buf); 902 else 903 vm_page = kmap_to_page(buf); 904 if (!vm_page) { 905 sg_free_table(sgt); 906 return -ENOMEM; 907 } 908 sg_set_page(sg, vm_page, 909 min, offset_in_page(buf)); 910 } else { 911 min = min_t(size_t, len, desc_len); 912 sg_buf = buf; 913 sg_set_buf(sg, sg_buf, min); 914 } 915 916 buf += min; 917 len -= min; 918 sg = sg_next(sg); 919 } 920 921 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 922 if (!ret) 923 ret = -ENOMEM; 924 if (ret < 0) { 925 sg_free_table(sgt); 926 return ret; 927 } 928 929 sgt->nents = ret; 930 931 return 0; 932 } 933 934 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 935 struct sg_table *sgt, enum dma_data_direction dir) 936 { 937 if (sgt->orig_nents) { 938 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 939 sg_free_table(sgt); 940 } 941 } 942 943 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 944 { 945 struct device *tx_dev, *rx_dev; 946 struct spi_transfer *xfer; 947 int ret; 948 949 if (!ctlr->can_dma) 950 return 0; 951 952 if (ctlr->dma_tx) 953 tx_dev = ctlr->dma_tx->device->dev; 954 else 955 tx_dev = ctlr->dev.parent; 956 957 if (ctlr->dma_rx) 958 rx_dev = ctlr->dma_rx->device->dev; 959 else 960 rx_dev = ctlr->dev.parent; 961 962 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 963 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 964 continue; 965 966 if (xfer->tx_buf != NULL) { 967 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 968 (void *)xfer->tx_buf, xfer->len, 969 DMA_TO_DEVICE); 970 if (ret != 0) 971 return ret; 972 } 973 974 if (xfer->rx_buf != NULL) { 975 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 976 xfer->rx_buf, xfer->len, 977 DMA_FROM_DEVICE); 978 if (ret != 0) { 979 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 980 DMA_TO_DEVICE); 981 return ret; 982 } 983 } 984 } 985 986 ctlr->cur_msg_mapped = true; 987 988 return 0; 989 } 990 991 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 992 { 993 struct spi_transfer *xfer; 994 struct device *tx_dev, *rx_dev; 995 996 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 997 return 0; 998 999 if (ctlr->dma_tx) 1000 tx_dev = ctlr->dma_tx->device->dev; 1001 else 1002 tx_dev = ctlr->dev.parent; 1003 1004 if (ctlr->dma_rx) 1005 rx_dev = ctlr->dma_rx->device->dev; 1006 else 1007 rx_dev = ctlr->dev.parent; 1008 1009 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1010 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1011 continue; 1012 1013 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1014 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1015 } 1016 1017 ctlr->cur_msg_mapped = false; 1018 1019 return 0; 1020 } 1021 #else /* !CONFIG_HAS_DMA */ 1022 static inline int __spi_map_msg(struct spi_controller *ctlr, 1023 struct spi_message *msg) 1024 { 1025 return 0; 1026 } 1027 1028 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1029 struct spi_message *msg) 1030 { 1031 return 0; 1032 } 1033 #endif /* !CONFIG_HAS_DMA */ 1034 1035 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1036 struct spi_message *msg) 1037 { 1038 struct spi_transfer *xfer; 1039 1040 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1041 /* 1042 * Restore the original value of tx_buf or rx_buf if they are 1043 * NULL. 1044 */ 1045 if (xfer->tx_buf == ctlr->dummy_tx) 1046 xfer->tx_buf = NULL; 1047 if (xfer->rx_buf == ctlr->dummy_rx) 1048 xfer->rx_buf = NULL; 1049 } 1050 1051 return __spi_unmap_msg(ctlr, msg); 1052 } 1053 1054 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1055 { 1056 struct spi_transfer *xfer; 1057 void *tmp; 1058 unsigned int max_tx, max_rx; 1059 1060 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1061 && !(msg->spi->mode & SPI_3WIRE)) { 1062 max_tx = 0; 1063 max_rx = 0; 1064 1065 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1066 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1067 !xfer->tx_buf) 1068 max_tx = max(xfer->len, max_tx); 1069 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1070 !xfer->rx_buf) 1071 max_rx = max(xfer->len, max_rx); 1072 } 1073 1074 if (max_tx) { 1075 tmp = krealloc(ctlr->dummy_tx, max_tx, 1076 GFP_KERNEL | GFP_DMA); 1077 if (!tmp) 1078 return -ENOMEM; 1079 ctlr->dummy_tx = tmp; 1080 memset(tmp, 0, max_tx); 1081 } 1082 1083 if (max_rx) { 1084 tmp = krealloc(ctlr->dummy_rx, max_rx, 1085 GFP_KERNEL | GFP_DMA); 1086 if (!tmp) 1087 return -ENOMEM; 1088 ctlr->dummy_rx = tmp; 1089 } 1090 1091 if (max_tx || max_rx) { 1092 list_for_each_entry(xfer, &msg->transfers, 1093 transfer_list) { 1094 if (!xfer->len) 1095 continue; 1096 if (!xfer->tx_buf) 1097 xfer->tx_buf = ctlr->dummy_tx; 1098 if (!xfer->rx_buf) 1099 xfer->rx_buf = ctlr->dummy_rx; 1100 } 1101 } 1102 } 1103 1104 return __spi_map_msg(ctlr, msg); 1105 } 1106 1107 static int spi_transfer_wait(struct spi_controller *ctlr, 1108 struct spi_message *msg, 1109 struct spi_transfer *xfer) 1110 { 1111 struct spi_statistics *statm = &ctlr->statistics; 1112 struct spi_statistics *stats = &msg->spi->statistics; 1113 u32 speed_hz = xfer->speed_hz; 1114 unsigned long long ms; 1115 1116 if (spi_controller_is_slave(ctlr)) { 1117 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1118 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1119 return -EINTR; 1120 } 1121 } else { 1122 if (!speed_hz) 1123 speed_hz = 100000; 1124 1125 ms = 8LL * 1000LL * xfer->len; 1126 do_div(ms, speed_hz); 1127 ms += ms + 200; /* some tolerance */ 1128 1129 if (ms > UINT_MAX) 1130 ms = UINT_MAX; 1131 1132 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1133 msecs_to_jiffies(ms)); 1134 1135 if (ms == 0) { 1136 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1137 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1138 dev_err(&msg->spi->dev, 1139 "SPI transfer timed out\n"); 1140 return -ETIMEDOUT; 1141 } 1142 } 1143 1144 return 0; 1145 } 1146 1147 static void _spi_transfer_delay_ns(u32 ns) 1148 { 1149 if (!ns) 1150 return; 1151 if (ns <= 1000) { 1152 ndelay(ns); 1153 } else { 1154 u32 us = DIV_ROUND_UP(ns, 1000); 1155 1156 if (us <= 10) 1157 udelay(us); 1158 else 1159 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1160 } 1161 } 1162 1163 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1164 { 1165 u32 delay = _delay->value; 1166 u32 unit = _delay->unit; 1167 u32 hz; 1168 1169 if (!delay) 1170 return 0; 1171 1172 switch (unit) { 1173 case SPI_DELAY_UNIT_USECS: 1174 delay *= 1000; 1175 break; 1176 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1177 break; 1178 case SPI_DELAY_UNIT_SCK: 1179 /* clock cycles need to be obtained from spi_transfer */ 1180 if (!xfer) 1181 return -EINVAL; 1182 /* if there is no effective speed know, then approximate 1183 * by underestimating with half the requested hz 1184 */ 1185 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1186 if (!hz) 1187 return -EINVAL; 1188 delay *= DIV_ROUND_UP(1000000000, hz); 1189 break; 1190 default: 1191 return -EINVAL; 1192 } 1193 1194 return delay; 1195 } 1196 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1197 1198 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1199 { 1200 int delay; 1201 1202 might_sleep(); 1203 1204 if (!_delay) 1205 return -EINVAL; 1206 1207 delay = spi_delay_to_ns(_delay, xfer); 1208 if (delay < 0) 1209 return delay; 1210 1211 _spi_transfer_delay_ns(delay); 1212 1213 return 0; 1214 } 1215 EXPORT_SYMBOL_GPL(spi_delay_exec); 1216 1217 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1218 struct spi_transfer *xfer) 1219 { 1220 u32 delay = xfer->cs_change_delay.value; 1221 u32 unit = xfer->cs_change_delay.unit; 1222 int ret; 1223 1224 /* return early on "fast" mode - for everything but USECS */ 1225 if (!delay) { 1226 if (unit == SPI_DELAY_UNIT_USECS) 1227 _spi_transfer_delay_ns(10000); 1228 return; 1229 } 1230 1231 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1232 if (ret) { 1233 dev_err_once(&msg->spi->dev, 1234 "Use of unsupported delay unit %i, using default of 10us\n", 1235 unit); 1236 _spi_transfer_delay_ns(10000); 1237 } 1238 } 1239 1240 /* 1241 * spi_transfer_one_message - Default implementation of transfer_one_message() 1242 * 1243 * This is a standard implementation of transfer_one_message() for 1244 * drivers which implement a transfer_one() operation. It provides 1245 * standard handling of delays and chip select management. 1246 */ 1247 static int spi_transfer_one_message(struct spi_controller *ctlr, 1248 struct spi_message *msg) 1249 { 1250 struct spi_transfer *xfer; 1251 bool keep_cs = false; 1252 int ret = 0; 1253 struct spi_statistics *statm = &ctlr->statistics; 1254 struct spi_statistics *stats = &msg->spi->statistics; 1255 1256 spi_set_cs(msg->spi, true); 1257 1258 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1259 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1260 1261 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1262 trace_spi_transfer_start(msg, xfer); 1263 1264 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1265 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1266 1267 if (!ctlr->ptp_sts_supported) { 1268 xfer->ptp_sts_word_pre = 0; 1269 ptp_read_system_prets(xfer->ptp_sts); 1270 } 1271 1272 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1273 reinit_completion(&ctlr->xfer_completion); 1274 1275 fallback_pio: 1276 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1277 if (ret < 0) { 1278 if (ctlr->cur_msg_mapped && 1279 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1280 __spi_unmap_msg(ctlr, msg); 1281 ctlr->fallback = true; 1282 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1283 goto fallback_pio; 1284 } 1285 1286 SPI_STATISTICS_INCREMENT_FIELD(statm, 1287 errors); 1288 SPI_STATISTICS_INCREMENT_FIELD(stats, 1289 errors); 1290 dev_err(&msg->spi->dev, 1291 "SPI transfer failed: %d\n", ret); 1292 goto out; 1293 } 1294 1295 if (ret > 0) { 1296 ret = spi_transfer_wait(ctlr, msg, xfer); 1297 if (ret < 0) 1298 msg->status = ret; 1299 } 1300 } else { 1301 if (xfer->len) 1302 dev_err(&msg->spi->dev, 1303 "Bufferless transfer has length %u\n", 1304 xfer->len); 1305 } 1306 1307 if (!ctlr->ptp_sts_supported) { 1308 ptp_read_system_postts(xfer->ptp_sts); 1309 xfer->ptp_sts_word_post = xfer->len; 1310 } 1311 1312 trace_spi_transfer_stop(msg, xfer); 1313 1314 if (msg->status != -EINPROGRESS) 1315 goto out; 1316 1317 spi_transfer_delay_exec(xfer); 1318 1319 if (xfer->cs_change) { 1320 if (list_is_last(&xfer->transfer_list, 1321 &msg->transfers)) { 1322 keep_cs = true; 1323 } else { 1324 spi_set_cs(msg->spi, false); 1325 _spi_transfer_cs_change_delay(msg, xfer); 1326 spi_set_cs(msg->spi, true); 1327 } 1328 } 1329 1330 msg->actual_length += xfer->len; 1331 } 1332 1333 out: 1334 if (ret != 0 || !keep_cs) 1335 spi_set_cs(msg->spi, false); 1336 1337 if (msg->status == -EINPROGRESS) 1338 msg->status = ret; 1339 1340 if (msg->status && ctlr->handle_err) 1341 ctlr->handle_err(ctlr, msg); 1342 1343 spi_finalize_current_message(ctlr); 1344 1345 return ret; 1346 } 1347 1348 /** 1349 * spi_finalize_current_transfer - report completion of a transfer 1350 * @ctlr: the controller reporting completion 1351 * 1352 * Called by SPI drivers using the core transfer_one_message() 1353 * implementation to notify it that the current interrupt driven 1354 * transfer has finished and the next one may be scheduled. 1355 */ 1356 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1357 { 1358 complete(&ctlr->xfer_completion); 1359 } 1360 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1361 1362 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1363 { 1364 if (ctlr->auto_runtime_pm) { 1365 pm_runtime_mark_last_busy(ctlr->dev.parent); 1366 pm_runtime_put_autosuspend(ctlr->dev.parent); 1367 } 1368 } 1369 1370 /** 1371 * __spi_pump_messages - function which processes spi message queue 1372 * @ctlr: controller to process queue for 1373 * @in_kthread: true if we are in the context of the message pump thread 1374 * 1375 * This function checks if there is any spi message in the queue that 1376 * needs processing and if so call out to the driver to initialize hardware 1377 * and transfer each message. 1378 * 1379 * Note that it is called both from the kthread itself and also from 1380 * inside spi_sync(); the queue extraction handling at the top of the 1381 * function should deal with this safely. 1382 */ 1383 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1384 { 1385 struct spi_transfer *xfer; 1386 struct spi_message *msg; 1387 bool was_busy = false; 1388 unsigned long flags; 1389 int ret; 1390 1391 /* Lock queue */ 1392 spin_lock_irqsave(&ctlr->queue_lock, flags); 1393 1394 /* Make sure we are not already running a message */ 1395 if (ctlr->cur_msg) { 1396 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1397 return; 1398 } 1399 1400 /* If another context is idling the device then defer */ 1401 if (ctlr->idling) { 1402 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1403 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1404 return; 1405 } 1406 1407 /* Check if the queue is idle */ 1408 if (list_empty(&ctlr->queue) || !ctlr->running) { 1409 if (!ctlr->busy) { 1410 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1411 return; 1412 } 1413 1414 /* Defer any non-atomic teardown to the thread */ 1415 if (!in_kthread) { 1416 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1417 !ctlr->unprepare_transfer_hardware) { 1418 spi_idle_runtime_pm(ctlr); 1419 ctlr->busy = false; 1420 trace_spi_controller_idle(ctlr); 1421 } else { 1422 kthread_queue_work(ctlr->kworker, 1423 &ctlr->pump_messages); 1424 } 1425 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1426 return; 1427 } 1428 1429 ctlr->busy = false; 1430 ctlr->idling = true; 1431 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1432 1433 kfree(ctlr->dummy_rx); 1434 ctlr->dummy_rx = NULL; 1435 kfree(ctlr->dummy_tx); 1436 ctlr->dummy_tx = NULL; 1437 if (ctlr->unprepare_transfer_hardware && 1438 ctlr->unprepare_transfer_hardware(ctlr)) 1439 dev_err(&ctlr->dev, 1440 "failed to unprepare transfer hardware\n"); 1441 spi_idle_runtime_pm(ctlr); 1442 trace_spi_controller_idle(ctlr); 1443 1444 spin_lock_irqsave(&ctlr->queue_lock, flags); 1445 ctlr->idling = false; 1446 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1447 return; 1448 } 1449 1450 /* Extract head of queue */ 1451 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1452 ctlr->cur_msg = msg; 1453 1454 list_del_init(&msg->queue); 1455 if (ctlr->busy) 1456 was_busy = true; 1457 else 1458 ctlr->busy = true; 1459 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1460 1461 mutex_lock(&ctlr->io_mutex); 1462 1463 if (!was_busy && ctlr->auto_runtime_pm) { 1464 ret = pm_runtime_get_sync(ctlr->dev.parent); 1465 if (ret < 0) { 1466 pm_runtime_put_noidle(ctlr->dev.parent); 1467 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1468 ret); 1469 mutex_unlock(&ctlr->io_mutex); 1470 return; 1471 } 1472 } 1473 1474 if (!was_busy) 1475 trace_spi_controller_busy(ctlr); 1476 1477 if (!was_busy && ctlr->prepare_transfer_hardware) { 1478 ret = ctlr->prepare_transfer_hardware(ctlr); 1479 if (ret) { 1480 dev_err(&ctlr->dev, 1481 "failed to prepare transfer hardware: %d\n", 1482 ret); 1483 1484 if (ctlr->auto_runtime_pm) 1485 pm_runtime_put(ctlr->dev.parent); 1486 1487 msg->status = ret; 1488 spi_finalize_current_message(ctlr); 1489 1490 mutex_unlock(&ctlr->io_mutex); 1491 return; 1492 } 1493 } 1494 1495 trace_spi_message_start(msg); 1496 1497 if (ctlr->prepare_message) { 1498 ret = ctlr->prepare_message(ctlr, msg); 1499 if (ret) { 1500 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1501 ret); 1502 msg->status = ret; 1503 spi_finalize_current_message(ctlr); 1504 goto out; 1505 } 1506 ctlr->cur_msg_prepared = true; 1507 } 1508 1509 ret = spi_map_msg(ctlr, msg); 1510 if (ret) { 1511 msg->status = ret; 1512 spi_finalize_current_message(ctlr); 1513 goto out; 1514 } 1515 1516 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1517 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1518 xfer->ptp_sts_word_pre = 0; 1519 ptp_read_system_prets(xfer->ptp_sts); 1520 } 1521 } 1522 1523 ret = ctlr->transfer_one_message(ctlr, msg); 1524 if (ret) { 1525 dev_err(&ctlr->dev, 1526 "failed to transfer one message from queue\n"); 1527 goto out; 1528 } 1529 1530 out: 1531 mutex_unlock(&ctlr->io_mutex); 1532 1533 /* Prod the scheduler in case transfer_one() was busy waiting */ 1534 if (!ret) 1535 cond_resched(); 1536 } 1537 1538 /** 1539 * spi_pump_messages - kthread work function which processes spi message queue 1540 * @work: pointer to kthread work struct contained in the controller struct 1541 */ 1542 static void spi_pump_messages(struct kthread_work *work) 1543 { 1544 struct spi_controller *ctlr = 1545 container_of(work, struct spi_controller, pump_messages); 1546 1547 __spi_pump_messages(ctlr, true); 1548 } 1549 1550 /** 1551 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1552 * TX timestamp for the requested byte from the SPI 1553 * transfer. The frequency with which this function 1554 * must be called (once per word, once for the whole 1555 * transfer, once per batch of words etc) is arbitrary 1556 * as long as the @tx buffer offset is greater than or 1557 * equal to the requested byte at the time of the 1558 * call. The timestamp is only taken once, at the 1559 * first such call. It is assumed that the driver 1560 * advances its @tx buffer pointer monotonically. 1561 * @ctlr: Pointer to the spi_controller structure of the driver 1562 * @xfer: Pointer to the transfer being timestamped 1563 * @progress: How many words (not bytes) have been transferred so far 1564 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1565 * transfer, for less jitter in time measurement. Only compatible 1566 * with PIO drivers. If true, must follow up with 1567 * spi_take_timestamp_post or otherwise system will crash. 1568 * WARNING: for fully predictable results, the CPU frequency must 1569 * also be under control (governor). 1570 */ 1571 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1572 struct spi_transfer *xfer, 1573 size_t progress, bool irqs_off) 1574 { 1575 if (!xfer->ptp_sts) 1576 return; 1577 1578 if (xfer->timestamped) 1579 return; 1580 1581 if (progress > xfer->ptp_sts_word_pre) 1582 return; 1583 1584 /* Capture the resolution of the timestamp */ 1585 xfer->ptp_sts_word_pre = progress; 1586 1587 if (irqs_off) { 1588 local_irq_save(ctlr->irq_flags); 1589 preempt_disable(); 1590 } 1591 1592 ptp_read_system_prets(xfer->ptp_sts); 1593 } 1594 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1595 1596 /** 1597 * spi_take_timestamp_post - helper for drivers to collect the end of the 1598 * TX timestamp for the requested byte from the SPI 1599 * transfer. Can be called with an arbitrary 1600 * frequency: only the first call where @tx exceeds 1601 * or is equal to the requested word will be 1602 * timestamped. 1603 * @ctlr: Pointer to the spi_controller structure of the driver 1604 * @xfer: Pointer to the transfer being timestamped 1605 * @progress: How many words (not bytes) have been transferred so far 1606 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1607 */ 1608 void spi_take_timestamp_post(struct spi_controller *ctlr, 1609 struct spi_transfer *xfer, 1610 size_t progress, bool irqs_off) 1611 { 1612 if (!xfer->ptp_sts) 1613 return; 1614 1615 if (xfer->timestamped) 1616 return; 1617 1618 if (progress < xfer->ptp_sts_word_post) 1619 return; 1620 1621 ptp_read_system_postts(xfer->ptp_sts); 1622 1623 if (irqs_off) { 1624 local_irq_restore(ctlr->irq_flags); 1625 preempt_enable(); 1626 } 1627 1628 /* Capture the resolution of the timestamp */ 1629 xfer->ptp_sts_word_post = progress; 1630 1631 xfer->timestamped = true; 1632 } 1633 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1634 1635 /** 1636 * spi_set_thread_rt - set the controller to pump at realtime priority 1637 * @ctlr: controller to boost priority of 1638 * 1639 * This can be called because the controller requested realtime priority 1640 * (by setting the ->rt value before calling spi_register_controller()) or 1641 * because a device on the bus said that its transfers needed realtime 1642 * priority. 1643 * 1644 * NOTE: at the moment if any device on a bus says it needs realtime then 1645 * the thread will be at realtime priority for all transfers on that 1646 * controller. If this eventually becomes a problem we may see if we can 1647 * find a way to boost the priority only temporarily during relevant 1648 * transfers. 1649 */ 1650 static void spi_set_thread_rt(struct spi_controller *ctlr) 1651 { 1652 dev_info(&ctlr->dev, 1653 "will run message pump with realtime priority\n"); 1654 sched_set_fifo(ctlr->kworker->task); 1655 } 1656 1657 static int spi_init_queue(struct spi_controller *ctlr) 1658 { 1659 ctlr->running = false; 1660 ctlr->busy = false; 1661 1662 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1663 if (IS_ERR(ctlr->kworker)) { 1664 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1665 return PTR_ERR(ctlr->kworker); 1666 } 1667 1668 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1669 1670 /* 1671 * Controller config will indicate if this controller should run the 1672 * message pump with high (realtime) priority to reduce the transfer 1673 * latency on the bus by minimising the delay between a transfer 1674 * request and the scheduling of the message pump thread. Without this 1675 * setting the message pump thread will remain at default priority. 1676 */ 1677 if (ctlr->rt) 1678 spi_set_thread_rt(ctlr); 1679 1680 return 0; 1681 } 1682 1683 /** 1684 * spi_get_next_queued_message() - called by driver to check for queued 1685 * messages 1686 * @ctlr: the controller to check for queued messages 1687 * 1688 * If there are more messages in the queue, the next message is returned from 1689 * this call. 1690 * 1691 * Return: the next message in the queue, else NULL if the queue is empty. 1692 */ 1693 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1694 { 1695 struct spi_message *next; 1696 unsigned long flags; 1697 1698 /* get a pointer to the next message, if any */ 1699 spin_lock_irqsave(&ctlr->queue_lock, flags); 1700 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1701 queue); 1702 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1703 1704 return next; 1705 } 1706 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1707 1708 /** 1709 * spi_finalize_current_message() - the current message is complete 1710 * @ctlr: the controller to return the message to 1711 * 1712 * Called by the driver to notify the core that the message in the front of the 1713 * queue is complete and can be removed from the queue. 1714 */ 1715 void spi_finalize_current_message(struct spi_controller *ctlr) 1716 { 1717 struct spi_transfer *xfer; 1718 struct spi_message *mesg; 1719 unsigned long flags; 1720 int ret; 1721 1722 spin_lock_irqsave(&ctlr->queue_lock, flags); 1723 mesg = ctlr->cur_msg; 1724 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1725 1726 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1727 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1728 ptp_read_system_postts(xfer->ptp_sts); 1729 xfer->ptp_sts_word_post = xfer->len; 1730 } 1731 } 1732 1733 if (unlikely(ctlr->ptp_sts_supported)) 1734 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1735 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1736 1737 spi_unmap_msg(ctlr, mesg); 1738 1739 /* In the prepare_messages callback the spi bus has the opportunity to 1740 * split a transfer to smaller chunks. 1741 * Release splited transfers here since spi_map_msg is done on the 1742 * splited transfers. 1743 */ 1744 spi_res_release(ctlr, mesg); 1745 1746 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1747 ret = ctlr->unprepare_message(ctlr, mesg); 1748 if (ret) { 1749 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1750 ret); 1751 } 1752 } 1753 1754 spin_lock_irqsave(&ctlr->queue_lock, flags); 1755 ctlr->cur_msg = NULL; 1756 ctlr->cur_msg_prepared = false; 1757 ctlr->fallback = false; 1758 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1759 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1760 1761 trace_spi_message_done(mesg); 1762 1763 mesg->state = NULL; 1764 if (mesg->complete) 1765 mesg->complete(mesg->context); 1766 } 1767 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1768 1769 static int spi_start_queue(struct spi_controller *ctlr) 1770 { 1771 unsigned long flags; 1772 1773 spin_lock_irqsave(&ctlr->queue_lock, flags); 1774 1775 if (ctlr->running || ctlr->busy) { 1776 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1777 return -EBUSY; 1778 } 1779 1780 ctlr->running = true; 1781 ctlr->cur_msg = NULL; 1782 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1783 1784 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1785 1786 return 0; 1787 } 1788 1789 static int spi_stop_queue(struct spi_controller *ctlr) 1790 { 1791 unsigned long flags; 1792 unsigned limit = 500; 1793 int ret = 0; 1794 1795 spin_lock_irqsave(&ctlr->queue_lock, flags); 1796 1797 /* 1798 * This is a bit lame, but is optimized for the common execution path. 1799 * A wait_queue on the ctlr->busy could be used, but then the common 1800 * execution path (pump_messages) would be required to call wake_up or 1801 * friends on every SPI message. Do this instead. 1802 */ 1803 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1804 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1805 usleep_range(10000, 11000); 1806 spin_lock_irqsave(&ctlr->queue_lock, flags); 1807 } 1808 1809 if (!list_empty(&ctlr->queue) || ctlr->busy) 1810 ret = -EBUSY; 1811 else 1812 ctlr->running = false; 1813 1814 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1815 1816 if (ret) { 1817 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1818 return ret; 1819 } 1820 return ret; 1821 } 1822 1823 static int spi_destroy_queue(struct spi_controller *ctlr) 1824 { 1825 int ret; 1826 1827 ret = spi_stop_queue(ctlr); 1828 1829 /* 1830 * kthread_flush_worker will block until all work is done. 1831 * If the reason that stop_queue timed out is that the work will never 1832 * finish, then it does no good to call flush/stop thread, so 1833 * return anyway. 1834 */ 1835 if (ret) { 1836 dev_err(&ctlr->dev, "problem destroying queue\n"); 1837 return ret; 1838 } 1839 1840 kthread_destroy_worker(ctlr->kworker); 1841 1842 return 0; 1843 } 1844 1845 static int __spi_queued_transfer(struct spi_device *spi, 1846 struct spi_message *msg, 1847 bool need_pump) 1848 { 1849 struct spi_controller *ctlr = spi->controller; 1850 unsigned long flags; 1851 1852 spin_lock_irqsave(&ctlr->queue_lock, flags); 1853 1854 if (!ctlr->running) { 1855 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1856 return -ESHUTDOWN; 1857 } 1858 msg->actual_length = 0; 1859 msg->status = -EINPROGRESS; 1860 1861 list_add_tail(&msg->queue, &ctlr->queue); 1862 if (!ctlr->busy && need_pump) 1863 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1864 1865 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1866 return 0; 1867 } 1868 1869 /** 1870 * spi_queued_transfer - transfer function for queued transfers 1871 * @spi: spi device which is requesting transfer 1872 * @msg: spi message which is to handled is queued to driver queue 1873 * 1874 * Return: zero on success, else a negative error code. 1875 */ 1876 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1877 { 1878 return __spi_queued_transfer(spi, msg, true); 1879 } 1880 1881 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1882 { 1883 int ret; 1884 1885 ctlr->transfer = spi_queued_transfer; 1886 if (!ctlr->transfer_one_message) 1887 ctlr->transfer_one_message = spi_transfer_one_message; 1888 1889 /* Initialize and start queue */ 1890 ret = spi_init_queue(ctlr); 1891 if (ret) { 1892 dev_err(&ctlr->dev, "problem initializing queue\n"); 1893 goto err_init_queue; 1894 } 1895 ctlr->queued = true; 1896 ret = spi_start_queue(ctlr); 1897 if (ret) { 1898 dev_err(&ctlr->dev, "problem starting queue\n"); 1899 goto err_start_queue; 1900 } 1901 1902 return 0; 1903 1904 err_start_queue: 1905 spi_destroy_queue(ctlr); 1906 err_init_queue: 1907 return ret; 1908 } 1909 1910 /** 1911 * spi_flush_queue - Send all pending messages in the queue from the callers' 1912 * context 1913 * @ctlr: controller to process queue for 1914 * 1915 * This should be used when one wants to ensure all pending messages have been 1916 * sent before doing something. Is used by the spi-mem code to make sure SPI 1917 * memory operations do not preempt regular SPI transfers that have been queued 1918 * before the spi-mem operation. 1919 */ 1920 void spi_flush_queue(struct spi_controller *ctlr) 1921 { 1922 if (ctlr->transfer == spi_queued_transfer) 1923 __spi_pump_messages(ctlr, false); 1924 } 1925 1926 /*-------------------------------------------------------------------------*/ 1927 1928 #if defined(CONFIG_OF) 1929 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1930 struct device_node *nc) 1931 { 1932 u32 value; 1933 int rc; 1934 1935 /* Mode (clock phase/polarity/etc.) */ 1936 if (of_property_read_bool(nc, "spi-cpha")) 1937 spi->mode |= SPI_CPHA; 1938 if (of_property_read_bool(nc, "spi-cpol")) 1939 spi->mode |= SPI_CPOL; 1940 if (of_property_read_bool(nc, "spi-3wire")) 1941 spi->mode |= SPI_3WIRE; 1942 if (of_property_read_bool(nc, "spi-lsb-first")) 1943 spi->mode |= SPI_LSB_FIRST; 1944 if (of_property_read_bool(nc, "spi-cs-high")) 1945 spi->mode |= SPI_CS_HIGH; 1946 1947 /* Device DUAL/QUAD mode */ 1948 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1949 switch (value) { 1950 case 0: 1951 spi->mode |= SPI_NO_TX; 1952 break; 1953 case 1: 1954 break; 1955 case 2: 1956 spi->mode |= SPI_TX_DUAL; 1957 break; 1958 case 4: 1959 spi->mode |= SPI_TX_QUAD; 1960 break; 1961 case 8: 1962 spi->mode |= SPI_TX_OCTAL; 1963 break; 1964 default: 1965 dev_warn(&ctlr->dev, 1966 "spi-tx-bus-width %d not supported\n", 1967 value); 1968 break; 1969 } 1970 } 1971 1972 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1973 switch (value) { 1974 case 0: 1975 spi->mode |= SPI_NO_RX; 1976 break; 1977 case 1: 1978 break; 1979 case 2: 1980 spi->mode |= SPI_RX_DUAL; 1981 break; 1982 case 4: 1983 spi->mode |= SPI_RX_QUAD; 1984 break; 1985 case 8: 1986 spi->mode |= SPI_RX_OCTAL; 1987 break; 1988 default: 1989 dev_warn(&ctlr->dev, 1990 "spi-rx-bus-width %d not supported\n", 1991 value); 1992 break; 1993 } 1994 } 1995 1996 if (spi_controller_is_slave(ctlr)) { 1997 if (!of_node_name_eq(nc, "slave")) { 1998 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1999 nc); 2000 return -EINVAL; 2001 } 2002 return 0; 2003 } 2004 2005 /* Device address */ 2006 rc = of_property_read_u32(nc, "reg", &value); 2007 if (rc) { 2008 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2009 nc, rc); 2010 return rc; 2011 } 2012 spi->chip_select = value; 2013 2014 /* Device speed */ 2015 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2016 spi->max_speed_hz = value; 2017 2018 return 0; 2019 } 2020 2021 static struct spi_device * 2022 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2023 { 2024 struct spi_device *spi; 2025 int rc; 2026 2027 /* Alloc an spi_device */ 2028 spi = spi_alloc_device(ctlr); 2029 if (!spi) { 2030 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2031 rc = -ENOMEM; 2032 goto err_out; 2033 } 2034 2035 /* Select device driver */ 2036 rc = of_modalias_node(nc, spi->modalias, 2037 sizeof(spi->modalias)); 2038 if (rc < 0) { 2039 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2040 goto err_out; 2041 } 2042 2043 rc = of_spi_parse_dt(ctlr, spi, nc); 2044 if (rc) 2045 goto err_out; 2046 2047 /* Store a pointer to the node in the device structure */ 2048 of_node_get(nc); 2049 spi->dev.of_node = nc; 2050 2051 /* Register the new device */ 2052 rc = spi_add_device(spi); 2053 if (rc) { 2054 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2055 goto err_of_node_put; 2056 } 2057 2058 return spi; 2059 2060 err_of_node_put: 2061 of_node_put(nc); 2062 err_out: 2063 spi_dev_put(spi); 2064 return ERR_PTR(rc); 2065 } 2066 2067 /** 2068 * of_register_spi_devices() - Register child devices onto the SPI bus 2069 * @ctlr: Pointer to spi_controller device 2070 * 2071 * Registers an spi_device for each child node of controller node which 2072 * represents a valid SPI slave. 2073 */ 2074 static void of_register_spi_devices(struct spi_controller *ctlr) 2075 { 2076 struct spi_device *spi; 2077 struct device_node *nc; 2078 2079 if (!ctlr->dev.of_node) 2080 return; 2081 2082 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2083 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2084 continue; 2085 spi = of_register_spi_device(ctlr, nc); 2086 if (IS_ERR(spi)) { 2087 dev_warn(&ctlr->dev, 2088 "Failed to create SPI device for %pOF\n", nc); 2089 of_node_clear_flag(nc, OF_POPULATED); 2090 } 2091 } 2092 } 2093 #else 2094 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2095 #endif 2096 2097 #ifdef CONFIG_ACPI 2098 struct acpi_spi_lookup { 2099 struct spi_controller *ctlr; 2100 u32 max_speed_hz; 2101 u32 mode; 2102 int irq; 2103 u8 bits_per_word; 2104 u8 chip_select; 2105 }; 2106 2107 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2108 struct acpi_spi_lookup *lookup) 2109 { 2110 const union acpi_object *obj; 2111 2112 if (!x86_apple_machine) 2113 return; 2114 2115 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2116 && obj->buffer.length >= 4) 2117 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2118 2119 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2120 && obj->buffer.length == 8) 2121 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2122 2123 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2124 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2125 lookup->mode |= SPI_LSB_FIRST; 2126 2127 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2128 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2129 lookup->mode |= SPI_CPOL; 2130 2131 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2132 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2133 lookup->mode |= SPI_CPHA; 2134 } 2135 2136 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2137 { 2138 struct acpi_spi_lookup *lookup = data; 2139 struct spi_controller *ctlr = lookup->ctlr; 2140 2141 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2142 struct acpi_resource_spi_serialbus *sb; 2143 acpi_handle parent_handle; 2144 acpi_status status; 2145 2146 sb = &ares->data.spi_serial_bus; 2147 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2148 2149 status = acpi_get_handle(NULL, 2150 sb->resource_source.string_ptr, 2151 &parent_handle); 2152 2153 if (ACPI_FAILURE(status) || 2154 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2155 return -ENODEV; 2156 2157 /* 2158 * ACPI DeviceSelection numbering is handled by the 2159 * host controller driver in Windows and can vary 2160 * from driver to driver. In Linux we always expect 2161 * 0 .. max - 1 so we need to ask the driver to 2162 * translate between the two schemes. 2163 */ 2164 if (ctlr->fw_translate_cs) { 2165 int cs = ctlr->fw_translate_cs(ctlr, 2166 sb->device_selection); 2167 if (cs < 0) 2168 return cs; 2169 lookup->chip_select = cs; 2170 } else { 2171 lookup->chip_select = sb->device_selection; 2172 } 2173 2174 lookup->max_speed_hz = sb->connection_speed; 2175 lookup->bits_per_word = sb->data_bit_length; 2176 2177 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2178 lookup->mode |= SPI_CPHA; 2179 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2180 lookup->mode |= SPI_CPOL; 2181 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2182 lookup->mode |= SPI_CS_HIGH; 2183 } 2184 } else if (lookup->irq < 0) { 2185 struct resource r; 2186 2187 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2188 lookup->irq = r.start; 2189 } 2190 2191 /* Always tell the ACPI core to skip this resource */ 2192 return 1; 2193 } 2194 2195 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2196 struct acpi_device *adev) 2197 { 2198 acpi_handle parent_handle = NULL; 2199 struct list_head resource_list; 2200 struct acpi_spi_lookup lookup = {}; 2201 struct spi_device *spi; 2202 int ret; 2203 2204 if (acpi_bus_get_status(adev) || !adev->status.present || 2205 acpi_device_enumerated(adev)) 2206 return AE_OK; 2207 2208 lookup.ctlr = ctlr; 2209 lookup.irq = -1; 2210 2211 INIT_LIST_HEAD(&resource_list); 2212 ret = acpi_dev_get_resources(adev, &resource_list, 2213 acpi_spi_add_resource, &lookup); 2214 acpi_dev_free_resource_list(&resource_list); 2215 2216 if (ret < 0) 2217 /* found SPI in _CRS but it points to another controller */ 2218 return AE_OK; 2219 2220 if (!lookup.max_speed_hz && 2221 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2222 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2223 /* Apple does not use _CRS but nested devices for SPI slaves */ 2224 acpi_spi_parse_apple_properties(adev, &lookup); 2225 } 2226 2227 if (!lookup.max_speed_hz) 2228 return AE_OK; 2229 2230 spi = spi_alloc_device(ctlr); 2231 if (!spi) { 2232 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2233 dev_name(&adev->dev)); 2234 return AE_NO_MEMORY; 2235 } 2236 2237 2238 ACPI_COMPANION_SET(&spi->dev, adev); 2239 spi->max_speed_hz = lookup.max_speed_hz; 2240 spi->mode |= lookup.mode; 2241 spi->irq = lookup.irq; 2242 spi->bits_per_word = lookup.bits_per_word; 2243 spi->chip_select = lookup.chip_select; 2244 2245 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2246 sizeof(spi->modalias)); 2247 2248 if (spi->irq < 0) 2249 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2250 2251 acpi_device_set_enumerated(adev); 2252 2253 adev->power.flags.ignore_parent = true; 2254 if (spi_add_device(spi)) { 2255 adev->power.flags.ignore_parent = false; 2256 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2257 dev_name(&adev->dev)); 2258 spi_dev_put(spi); 2259 } 2260 2261 return AE_OK; 2262 } 2263 2264 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2265 void *data, void **return_value) 2266 { 2267 struct spi_controller *ctlr = data; 2268 struct acpi_device *adev; 2269 2270 if (acpi_bus_get_device(handle, &adev)) 2271 return AE_OK; 2272 2273 return acpi_register_spi_device(ctlr, adev); 2274 } 2275 2276 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2277 2278 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2279 { 2280 acpi_status status; 2281 acpi_handle handle; 2282 2283 handle = ACPI_HANDLE(ctlr->dev.parent); 2284 if (!handle) 2285 return; 2286 2287 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2288 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2289 acpi_spi_add_device, NULL, ctlr, NULL); 2290 if (ACPI_FAILURE(status)) 2291 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2292 } 2293 #else 2294 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2295 #endif /* CONFIG_ACPI */ 2296 2297 static void spi_controller_release(struct device *dev) 2298 { 2299 struct spi_controller *ctlr; 2300 2301 ctlr = container_of(dev, struct spi_controller, dev); 2302 kfree(ctlr); 2303 } 2304 2305 static struct class spi_master_class = { 2306 .name = "spi_master", 2307 .owner = THIS_MODULE, 2308 .dev_release = spi_controller_release, 2309 .dev_groups = spi_master_groups, 2310 }; 2311 2312 #ifdef CONFIG_SPI_SLAVE 2313 /** 2314 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2315 * controller 2316 * @spi: device used for the current transfer 2317 */ 2318 int spi_slave_abort(struct spi_device *spi) 2319 { 2320 struct spi_controller *ctlr = spi->controller; 2321 2322 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2323 return ctlr->slave_abort(ctlr); 2324 2325 return -ENOTSUPP; 2326 } 2327 EXPORT_SYMBOL_GPL(spi_slave_abort); 2328 2329 static int match_true(struct device *dev, void *data) 2330 { 2331 return 1; 2332 } 2333 2334 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2335 char *buf) 2336 { 2337 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2338 dev); 2339 struct device *child; 2340 2341 child = device_find_child(&ctlr->dev, NULL, match_true); 2342 return sprintf(buf, "%s\n", 2343 child ? to_spi_device(child)->modalias : NULL); 2344 } 2345 2346 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2347 const char *buf, size_t count) 2348 { 2349 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2350 dev); 2351 struct spi_device *spi; 2352 struct device *child; 2353 char name[32]; 2354 int rc; 2355 2356 rc = sscanf(buf, "%31s", name); 2357 if (rc != 1 || !name[0]) 2358 return -EINVAL; 2359 2360 child = device_find_child(&ctlr->dev, NULL, match_true); 2361 if (child) { 2362 /* Remove registered slave */ 2363 device_unregister(child); 2364 put_device(child); 2365 } 2366 2367 if (strcmp(name, "(null)")) { 2368 /* Register new slave */ 2369 spi = spi_alloc_device(ctlr); 2370 if (!spi) 2371 return -ENOMEM; 2372 2373 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2374 2375 rc = spi_add_device(spi); 2376 if (rc) { 2377 spi_dev_put(spi); 2378 return rc; 2379 } 2380 } 2381 2382 return count; 2383 } 2384 2385 static DEVICE_ATTR_RW(slave); 2386 2387 static struct attribute *spi_slave_attrs[] = { 2388 &dev_attr_slave.attr, 2389 NULL, 2390 }; 2391 2392 static const struct attribute_group spi_slave_group = { 2393 .attrs = spi_slave_attrs, 2394 }; 2395 2396 static const struct attribute_group *spi_slave_groups[] = { 2397 &spi_controller_statistics_group, 2398 &spi_slave_group, 2399 NULL, 2400 }; 2401 2402 static struct class spi_slave_class = { 2403 .name = "spi_slave", 2404 .owner = THIS_MODULE, 2405 .dev_release = spi_controller_release, 2406 .dev_groups = spi_slave_groups, 2407 }; 2408 #else 2409 extern struct class spi_slave_class; /* dummy */ 2410 #endif 2411 2412 /** 2413 * __spi_alloc_controller - allocate an SPI master or slave controller 2414 * @dev: the controller, possibly using the platform_bus 2415 * @size: how much zeroed driver-private data to allocate; the pointer to this 2416 * memory is in the driver_data field of the returned device, accessible 2417 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2418 * drivers granting DMA access to portions of their private data need to 2419 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2420 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2421 * slave (true) controller 2422 * Context: can sleep 2423 * 2424 * This call is used only by SPI controller drivers, which are the 2425 * only ones directly touching chip registers. It's how they allocate 2426 * an spi_controller structure, prior to calling spi_register_controller(). 2427 * 2428 * This must be called from context that can sleep. 2429 * 2430 * The caller is responsible for assigning the bus number and initializing the 2431 * controller's methods before calling spi_register_controller(); and (after 2432 * errors adding the device) calling spi_controller_put() to prevent a memory 2433 * leak. 2434 * 2435 * Return: the SPI controller structure on success, else NULL. 2436 */ 2437 struct spi_controller *__spi_alloc_controller(struct device *dev, 2438 unsigned int size, bool slave) 2439 { 2440 struct spi_controller *ctlr; 2441 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2442 2443 if (!dev) 2444 return NULL; 2445 2446 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2447 if (!ctlr) 2448 return NULL; 2449 2450 device_initialize(&ctlr->dev); 2451 ctlr->bus_num = -1; 2452 ctlr->num_chipselect = 1; 2453 ctlr->slave = slave; 2454 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2455 ctlr->dev.class = &spi_slave_class; 2456 else 2457 ctlr->dev.class = &spi_master_class; 2458 ctlr->dev.parent = dev; 2459 pm_suspend_ignore_children(&ctlr->dev, true); 2460 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2461 2462 return ctlr; 2463 } 2464 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2465 2466 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2467 { 2468 spi_controller_put(*(struct spi_controller **)ctlr); 2469 } 2470 2471 /** 2472 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2473 * @dev: physical device of SPI controller 2474 * @size: how much zeroed driver-private data to allocate 2475 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2476 * Context: can sleep 2477 * 2478 * Allocate an SPI controller and automatically release a reference on it 2479 * when @dev is unbound from its driver. Drivers are thus relieved from 2480 * having to call spi_controller_put(). 2481 * 2482 * The arguments to this function are identical to __spi_alloc_controller(). 2483 * 2484 * Return: the SPI controller structure on success, else NULL. 2485 */ 2486 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2487 unsigned int size, 2488 bool slave) 2489 { 2490 struct spi_controller **ptr, *ctlr; 2491 2492 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2493 GFP_KERNEL); 2494 if (!ptr) 2495 return NULL; 2496 2497 ctlr = __spi_alloc_controller(dev, size, slave); 2498 if (ctlr) { 2499 *ptr = ctlr; 2500 devres_add(dev, ptr); 2501 } else { 2502 devres_free(ptr); 2503 } 2504 2505 return ctlr; 2506 } 2507 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2508 2509 #ifdef CONFIG_OF 2510 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2511 { 2512 int nb, i, *cs; 2513 struct device_node *np = ctlr->dev.of_node; 2514 2515 if (!np) 2516 return 0; 2517 2518 nb = of_gpio_named_count(np, "cs-gpios"); 2519 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2520 2521 /* Return error only for an incorrectly formed cs-gpios property */ 2522 if (nb == 0 || nb == -ENOENT) 2523 return 0; 2524 else if (nb < 0) 2525 return nb; 2526 2527 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2528 GFP_KERNEL); 2529 ctlr->cs_gpios = cs; 2530 2531 if (!ctlr->cs_gpios) 2532 return -ENOMEM; 2533 2534 for (i = 0; i < ctlr->num_chipselect; i++) 2535 cs[i] = -ENOENT; 2536 2537 for (i = 0; i < nb; i++) 2538 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2539 2540 return 0; 2541 } 2542 #else 2543 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2544 { 2545 return 0; 2546 } 2547 #endif 2548 2549 /** 2550 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2551 * @ctlr: The SPI master to grab GPIO descriptors for 2552 */ 2553 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2554 { 2555 int nb, i; 2556 struct gpio_desc **cs; 2557 struct device *dev = &ctlr->dev; 2558 unsigned long native_cs_mask = 0; 2559 unsigned int num_cs_gpios = 0; 2560 2561 nb = gpiod_count(dev, "cs"); 2562 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2563 2564 /* No GPIOs at all is fine, else return the error */ 2565 if (nb == 0 || nb == -ENOENT) 2566 return 0; 2567 else if (nb < 0) 2568 return nb; 2569 2570 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2571 GFP_KERNEL); 2572 if (!cs) 2573 return -ENOMEM; 2574 ctlr->cs_gpiods = cs; 2575 2576 for (i = 0; i < nb; i++) { 2577 /* 2578 * Most chipselects are active low, the inverted 2579 * semantics are handled by special quirks in gpiolib, 2580 * so initializing them GPIOD_OUT_LOW here means 2581 * "unasserted", in most cases this will drive the physical 2582 * line high. 2583 */ 2584 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2585 GPIOD_OUT_LOW); 2586 if (IS_ERR(cs[i])) 2587 return PTR_ERR(cs[i]); 2588 2589 if (cs[i]) { 2590 /* 2591 * If we find a CS GPIO, name it after the device and 2592 * chip select line. 2593 */ 2594 char *gpioname; 2595 2596 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2597 dev_name(dev), i); 2598 if (!gpioname) 2599 return -ENOMEM; 2600 gpiod_set_consumer_name(cs[i], gpioname); 2601 num_cs_gpios++; 2602 continue; 2603 } 2604 2605 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2606 dev_err(dev, "Invalid native chip select %d\n", i); 2607 return -EINVAL; 2608 } 2609 native_cs_mask |= BIT(i); 2610 } 2611 2612 ctlr->unused_native_cs = ffz(native_cs_mask); 2613 if (num_cs_gpios && ctlr->max_native_cs && 2614 ctlr->unused_native_cs >= ctlr->max_native_cs) { 2615 dev_err(dev, "No unused native chip select available\n"); 2616 return -EINVAL; 2617 } 2618 2619 return 0; 2620 } 2621 2622 static int spi_controller_check_ops(struct spi_controller *ctlr) 2623 { 2624 /* 2625 * The controller may implement only the high-level SPI-memory like 2626 * operations if it does not support regular SPI transfers, and this is 2627 * valid use case. 2628 * If ->mem_ops is NULL, we request that at least one of the 2629 * ->transfer_xxx() method be implemented. 2630 */ 2631 if (ctlr->mem_ops) { 2632 if (!ctlr->mem_ops->exec_op) 2633 return -EINVAL; 2634 } else if (!ctlr->transfer && !ctlr->transfer_one && 2635 !ctlr->transfer_one_message) { 2636 return -EINVAL; 2637 } 2638 2639 return 0; 2640 } 2641 2642 /** 2643 * spi_register_controller - register SPI master or slave controller 2644 * @ctlr: initialized master, originally from spi_alloc_master() or 2645 * spi_alloc_slave() 2646 * Context: can sleep 2647 * 2648 * SPI controllers connect to their drivers using some non-SPI bus, 2649 * such as the platform bus. The final stage of probe() in that code 2650 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2651 * 2652 * SPI controllers use board specific (often SOC specific) bus numbers, 2653 * and board-specific addressing for SPI devices combines those numbers 2654 * with chip select numbers. Since SPI does not directly support dynamic 2655 * device identification, boards need configuration tables telling which 2656 * chip is at which address. 2657 * 2658 * This must be called from context that can sleep. It returns zero on 2659 * success, else a negative error code (dropping the controller's refcount). 2660 * After a successful return, the caller is responsible for calling 2661 * spi_unregister_controller(). 2662 * 2663 * Return: zero on success, else a negative error code. 2664 */ 2665 int spi_register_controller(struct spi_controller *ctlr) 2666 { 2667 struct device *dev = ctlr->dev.parent; 2668 struct boardinfo *bi; 2669 int status; 2670 int id, first_dynamic; 2671 2672 if (!dev) 2673 return -ENODEV; 2674 2675 /* 2676 * Make sure all necessary hooks are implemented before registering 2677 * the SPI controller. 2678 */ 2679 status = spi_controller_check_ops(ctlr); 2680 if (status) 2681 return status; 2682 2683 if (ctlr->bus_num >= 0) { 2684 /* devices with a fixed bus num must check-in with the num */ 2685 mutex_lock(&board_lock); 2686 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2687 ctlr->bus_num + 1, GFP_KERNEL); 2688 mutex_unlock(&board_lock); 2689 if (WARN(id < 0, "couldn't get idr")) 2690 return id == -ENOSPC ? -EBUSY : id; 2691 ctlr->bus_num = id; 2692 } else if (ctlr->dev.of_node) { 2693 /* allocate dynamic bus number using Linux idr */ 2694 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2695 if (id >= 0) { 2696 ctlr->bus_num = id; 2697 mutex_lock(&board_lock); 2698 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2699 ctlr->bus_num + 1, GFP_KERNEL); 2700 mutex_unlock(&board_lock); 2701 if (WARN(id < 0, "couldn't get idr")) 2702 return id == -ENOSPC ? -EBUSY : id; 2703 } 2704 } 2705 if (ctlr->bus_num < 0) { 2706 first_dynamic = of_alias_get_highest_id("spi"); 2707 if (first_dynamic < 0) 2708 first_dynamic = 0; 2709 else 2710 first_dynamic++; 2711 2712 mutex_lock(&board_lock); 2713 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2714 0, GFP_KERNEL); 2715 mutex_unlock(&board_lock); 2716 if (WARN(id < 0, "couldn't get idr")) 2717 return id; 2718 ctlr->bus_num = id; 2719 } 2720 INIT_LIST_HEAD(&ctlr->queue); 2721 spin_lock_init(&ctlr->queue_lock); 2722 spin_lock_init(&ctlr->bus_lock_spinlock); 2723 mutex_init(&ctlr->bus_lock_mutex); 2724 mutex_init(&ctlr->io_mutex); 2725 ctlr->bus_lock_flag = 0; 2726 init_completion(&ctlr->xfer_completion); 2727 if (!ctlr->max_dma_len) 2728 ctlr->max_dma_len = INT_MAX; 2729 2730 /* register the device, then userspace will see it. 2731 * registration fails if the bus ID is in use. 2732 */ 2733 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2734 2735 if (!spi_controller_is_slave(ctlr)) { 2736 if (ctlr->use_gpio_descriptors) { 2737 status = spi_get_gpio_descs(ctlr); 2738 if (status) 2739 goto free_bus_id; 2740 /* 2741 * A controller using GPIO descriptors always 2742 * supports SPI_CS_HIGH if need be. 2743 */ 2744 ctlr->mode_bits |= SPI_CS_HIGH; 2745 } else { 2746 /* Legacy code path for GPIOs from DT */ 2747 status = of_spi_get_gpio_numbers(ctlr); 2748 if (status) 2749 goto free_bus_id; 2750 } 2751 } 2752 2753 /* 2754 * Even if it's just one always-selected device, there must 2755 * be at least one chipselect. 2756 */ 2757 if (!ctlr->num_chipselect) { 2758 status = -EINVAL; 2759 goto free_bus_id; 2760 } 2761 2762 status = device_add(&ctlr->dev); 2763 if (status < 0) 2764 goto free_bus_id; 2765 dev_dbg(dev, "registered %s %s\n", 2766 spi_controller_is_slave(ctlr) ? "slave" : "master", 2767 dev_name(&ctlr->dev)); 2768 2769 /* 2770 * If we're using a queued driver, start the queue. Note that we don't 2771 * need the queueing logic if the driver is only supporting high-level 2772 * memory operations. 2773 */ 2774 if (ctlr->transfer) { 2775 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2776 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2777 status = spi_controller_initialize_queue(ctlr); 2778 if (status) { 2779 device_del(&ctlr->dev); 2780 goto free_bus_id; 2781 } 2782 } 2783 /* add statistics */ 2784 spin_lock_init(&ctlr->statistics.lock); 2785 2786 mutex_lock(&board_lock); 2787 list_add_tail(&ctlr->list, &spi_controller_list); 2788 list_for_each_entry(bi, &board_list, list) 2789 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2790 mutex_unlock(&board_lock); 2791 2792 /* Register devices from the device tree and ACPI */ 2793 of_register_spi_devices(ctlr); 2794 acpi_register_spi_devices(ctlr); 2795 return status; 2796 2797 free_bus_id: 2798 mutex_lock(&board_lock); 2799 idr_remove(&spi_master_idr, ctlr->bus_num); 2800 mutex_unlock(&board_lock); 2801 return status; 2802 } 2803 EXPORT_SYMBOL_GPL(spi_register_controller); 2804 2805 static void devm_spi_unregister(struct device *dev, void *res) 2806 { 2807 spi_unregister_controller(*(struct spi_controller **)res); 2808 } 2809 2810 /** 2811 * devm_spi_register_controller - register managed SPI master or slave 2812 * controller 2813 * @dev: device managing SPI controller 2814 * @ctlr: initialized controller, originally from spi_alloc_master() or 2815 * spi_alloc_slave() 2816 * Context: can sleep 2817 * 2818 * Register a SPI device as with spi_register_controller() which will 2819 * automatically be unregistered and freed. 2820 * 2821 * Return: zero on success, else a negative error code. 2822 */ 2823 int devm_spi_register_controller(struct device *dev, 2824 struct spi_controller *ctlr) 2825 { 2826 struct spi_controller **ptr; 2827 int ret; 2828 2829 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2830 if (!ptr) 2831 return -ENOMEM; 2832 2833 ret = spi_register_controller(ctlr); 2834 if (!ret) { 2835 *ptr = ctlr; 2836 devres_add(dev, ptr); 2837 } else { 2838 devres_free(ptr); 2839 } 2840 2841 return ret; 2842 } 2843 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2844 2845 static int devm_spi_match_controller(struct device *dev, void *res, void *ctlr) 2846 { 2847 return *(struct spi_controller **)res == ctlr; 2848 } 2849 2850 static int __unregister(struct device *dev, void *null) 2851 { 2852 spi_unregister_device(to_spi_device(dev)); 2853 return 0; 2854 } 2855 2856 /** 2857 * spi_unregister_controller - unregister SPI master or slave controller 2858 * @ctlr: the controller being unregistered 2859 * Context: can sleep 2860 * 2861 * This call is used only by SPI controller drivers, which are the 2862 * only ones directly touching chip registers. 2863 * 2864 * This must be called from context that can sleep. 2865 * 2866 * Note that this function also drops a reference to the controller. 2867 */ 2868 void spi_unregister_controller(struct spi_controller *ctlr) 2869 { 2870 struct spi_controller *found; 2871 int id = ctlr->bus_num; 2872 2873 /* Prevent addition of new devices, unregister existing ones */ 2874 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2875 mutex_lock(&spi_add_lock); 2876 2877 device_for_each_child(&ctlr->dev, NULL, __unregister); 2878 2879 /* First make sure that this controller was ever added */ 2880 mutex_lock(&board_lock); 2881 found = idr_find(&spi_master_idr, id); 2882 mutex_unlock(&board_lock); 2883 if (ctlr->queued) { 2884 if (spi_destroy_queue(ctlr)) 2885 dev_err(&ctlr->dev, "queue remove failed\n"); 2886 } 2887 mutex_lock(&board_lock); 2888 list_del(&ctlr->list); 2889 mutex_unlock(&board_lock); 2890 2891 device_del(&ctlr->dev); 2892 2893 /* Release the last reference on the controller if its driver 2894 * has not yet been converted to devm_spi_alloc_master/slave(). 2895 */ 2896 if (!devres_find(ctlr->dev.parent, devm_spi_release_controller, 2897 devm_spi_match_controller, ctlr)) 2898 put_device(&ctlr->dev); 2899 2900 /* free bus id */ 2901 mutex_lock(&board_lock); 2902 if (found == ctlr) 2903 idr_remove(&spi_master_idr, id); 2904 mutex_unlock(&board_lock); 2905 2906 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2907 mutex_unlock(&spi_add_lock); 2908 } 2909 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2910 2911 int spi_controller_suspend(struct spi_controller *ctlr) 2912 { 2913 int ret; 2914 2915 /* Basically no-ops for non-queued controllers */ 2916 if (!ctlr->queued) 2917 return 0; 2918 2919 ret = spi_stop_queue(ctlr); 2920 if (ret) 2921 dev_err(&ctlr->dev, "queue stop failed\n"); 2922 2923 return ret; 2924 } 2925 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2926 2927 int spi_controller_resume(struct spi_controller *ctlr) 2928 { 2929 int ret; 2930 2931 if (!ctlr->queued) 2932 return 0; 2933 2934 ret = spi_start_queue(ctlr); 2935 if (ret) 2936 dev_err(&ctlr->dev, "queue restart failed\n"); 2937 2938 return ret; 2939 } 2940 EXPORT_SYMBOL_GPL(spi_controller_resume); 2941 2942 static int __spi_controller_match(struct device *dev, const void *data) 2943 { 2944 struct spi_controller *ctlr; 2945 const u16 *bus_num = data; 2946 2947 ctlr = container_of(dev, struct spi_controller, dev); 2948 return ctlr->bus_num == *bus_num; 2949 } 2950 2951 /** 2952 * spi_busnum_to_master - look up master associated with bus_num 2953 * @bus_num: the master's bus number 2954 * Context: can sleep 2955 * 2956 * This call may be used with devices that are registered after 2957 * arch init time. It returns a refcounted pointer to the relevant 2958 * spi_controller (which the caller must release), or NULL if there is 2959 * no such master registered. 2960 * 2961 * Return: the SPI master structure on success, else NULL. 2962 */ 2963 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2964 { 2965 struct device *dev; 2966 struct spi_controller *ctlr = NULL; 2967 2968 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2969 __spi_controller_match); 2970 if (dev) 2971 ctlr = container_of(dev, struct spi_controller, dev); 2972 /* reference got in class_find_device */ 2973 return ctlr; 2974 } 2975 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2976 2977 /*-------------------------------------------------------------------------*/ 2978 2979 /* Core methods for SPI resource management */ 2980 2981 /** 2982 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2983 * during the processing of a spi_message while using 2984 * spi_transfer_one 2985 * @spi: the spi device for which we allocate memory 2986 * @release: the release code to execute for this resource 2987 * @size: size to alloc and return 2988 * @gfp: GFP allocation flags 2989 * 2990 * Return: the pointer to the allocated data 2991 * 2992 * This may get enhanced in the future to allocate from a memory pool 2993 * of the @spi_device or @spi_controller to avoid repeated allocations. 2994 */ 2995 void *spi_res_alloc(struct spi_device *spi, 2996 spi_res_release_t release, 2997 size_t size, gfp_t gfp) 2998 { 2999 struct spi_res *sres; 3000 3001 sres = kzalloc(sizeof(*sres) + size, gfp); 3002 if (!sres) 3003 return NULL; 3004 3005 INIT_LIST_HEAD(&sres->entry); 3006 sres->release = release; 3007 3008 return sres->data; 3009 } 3010 EXPORT_SYMBOL_GPL(spi_res_alloc); 3011 3012 /** 3013 * spi_res_free - free an spi resource 3014 * @res: pointer to the custom data of a resource 3015 * 3016 */ 3017 void spi_res_free(void *res) 3018 { 3019 struct spi_res *sres = container_of(res, struct spi_res, data); 3020 3021 if (!res) 3022 return; 3023 3024 WARN_ON(!list_empty(&sres->entry)); 3025 kfree(sres); 3026 } 3027 EXPORT_SYMBOL_GPL(spi_res_free); 3028 3029 /** 3030 * spi_res_add - add a spi_res to the spi_message 3031 * @message: the spi message 3032 * @res: the spi_resource 3033 */ 3034 void spi_res_add(struct spi_message *message, void *res) 3035 { 3036 struct spi_res *sres = container_of(res, struct spi_res, data); 3037 3038 WARN_ON(!list_empty(&sres->entry)); 3039 list_add_tail(&sres->entry, &message->resources); 3040 } 3041 EXPORT_SYMBOL_GPL(spi_res_add); 3042 3043 /** 3044 * spi_res_release - release all spi resources for this message 3045 * @ctlr: the @spi_controller 3046 * @message: the @spi_message 3047 */ 3048 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 3049 { 3050 struct spi_res *res, *tmp; 3051 3052 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 3053 if (res->release) 3054 res->release(ctlr, message, res->data); 3055 3056 list_del(&res->entry); 3057 3058 kfree(res); 3059 } 3060 } 3061 EXPORT_SYMBOL_GPL(spi_res_release); 3062 3063 /*-------------------------------------------------------------------------*/ 3064 3065 /* Core methods for spi_message alterations */ 3066 3067 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3068 struct spi_message *msg, 3069 void *res) 3070 { 3071 struct spi_replaced_transfers *rxfer = res; 3072 size_t i; 3073 3074 /* call extra callback if requested */ 3075 if (rxfer->release) 3076 rxfer->release(ctlr, msg, res); 3077 3078 /* insert replaced transfers back into the message */ 3079 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3080 3081 /* remove the formerly inserted entries */ 3082 for (i = 0; i < rxfer->inserted; i++) 3083 list_del(&rxfer->inserted_transfers[i].transfer_list); 3084 } 3085 3086 /** 3087 * spi_replace_transfers - replace transfers with several transfers 3088 * and register change with spi_message.resources 3089 * @msg: the spi_message we work upon 3090 * @xfer_first: the first spi_transfer we want to replace 3091 * @remove: number of transfers to remove 3092 * @insert: the number of transfers we want to insert instead 3093 * @release: extra release code necessary in some circumstances 3094 * @extradatasize: extra data to allocate (with alignment guarantees 3095 * of struct @spi_transfer) 3096 * @gfp: gfp flags 3097 * 3098 * Returns: pointer to @spi_replaced_transfers, 3099 * PTR_ERR(...) in case of errors. 3100 */ 3101 struct spi_replaced_transfers *spi_replace_transfers( 3102 struct spi_message *msg, 3103 struct spi_transfer *xfer_first, 3104 size_t remove, 3105 size_t insert, 3106 spi_replaced_release_t release, 3107 size_t extradatasize, 3108 gfp_t gfp) 3109 { 3110 struct spi_replaced_transfers *rxfer; 3111 struct spi_transfer *xfer; 3112 size_t i; 3113 3114 /* allocate the structure using spi_res */ 3115 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3116 struct_size(rxfer, inserted_transfers, insert) 3117 + extradatasize, 3118 gfp); 3119 if (!rxfer) 3120 return ERR_PTR(-ENOMEM); 3121 3122 /* the release code to invoke before running the generic release */ 3123 rxfer->release = release; 3124 3125 /* assign extradata */ 3126 if (extradatasize) 3127 rxfer->extradata = 3128 &rxfer->inserted_transfers[insert]; 3129 3130 /* init the replaced_transfers list */ 3131 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3132 3133 /* assign the list_entry after which we should reinsert 3134 * the @replaced_transfers - it may be spi_message.messages! 3135 */ 3136 rxfer->replaced_after = xfer_first->transfer_list.prev; 3137 3138 /* remove the requested number of transfers */ 3139 for (i = 0; i < remove; i++) { 3140 /* if the entry after replaced_after it is msg->transfers 3141 * then we have been requested to remove more transfers 3142 * than are in the list 3143 */ 3144 if (rxfer->replaced_after->next == &msg->transfers) { 3145 dev_err(&msg->spi->dev, 3146 "requested to remove more spi_transfers than are available\n"); 3147 /* insert replaced transfers back into the message */ 3148 list_splice(&rxfer->replaced_transfers, 3149 rxfer->replaced_after); 3150 3151 /* free the spi_replace_transfer structure */ 3152 spi_res_free(rxfer); 3153 3154 /* and return with an error */ 3155 return ERR_PTR(-EINVAL); 3156 } 3157 3158 /* remove the entry after replaced_after from list of 3159 * transfers and add it to list of replaced_transfers 3160 */ 3161 list_move_tail(rxfer->replaced_after->next, 3162 &rxfer->replaced_transfers); 3163 } 3164 3165 /* create copy of the given xfer with identical settings 3166 * based on the first transfer to get removed 3167 */ 3168 for (i = 0; i < insert; i++) { 3169 /* we need to run in reverse order */ 3170 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3171 3172 /* copy all spi_transfer data */ 3173 memcpy(xfer, xfer_first, sizeof(*xfer)); 3174 3175 /* add to list */ 3176 list_add(&xfer->transfer_list, rxfer->replaced_after); 3177 3178 /* clear cs_change and delay for all but the last */ 3179 if (i) { 3180 xfer->cs_change = false; 3181 xfer->delay_usecs = 0; 3182 xfer->delay.value = 0; 3183 } 3184 } 3185 3186 /* set up inserted */ 3187 rxfer->inserted = insert; 3188 3189 /* and register it with spi_res/spi_message */ 3190 spi_res_add(msg, rxfer); 3191 3192 return rxfer; 3193 } 3194 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3195 3196 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3197 struct spi_message *msg, 3198 struct spi_transfer **xferp, 3199 size_t maxsize, 3200 gfp_t gfp) 3201 { 3202 struct spi_transfer *xfer = *xferp, *xfers; 3203 struct spi_replaced_transfers *srt; 3204 size_t offset; 3205 size_t count, i; 3206 3207 /* calculate how many we have to replace */ 3208 count = DIV_ROUND_UP(xfer->len, maxsize); 3209 3210 /* create replacement */ 3211 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3212 if (IS_ERR(srt)) 3213 return PTR_ERR(srt); 3214 xfers = srt->inserted_transfers; 3215 3216 /* now handle each of those newly inserted spi_transfers 3217 * note that the replacements spi_transfers all are preset 3218 * to the same values as *xferp, so tx_buf, rx_buf and len 3219 * are all identical (as well as most others) 3220 * so we just have to fix up len and the pointers. 3221 * 3222 * this also includes support for the depreciated 3223 * spi_message.is_dma_mapped interface 3224 */ 3225 3226 /* the first transfer just needs the length modified, so we 3227 * run it outside the loop 3228 */ 3229 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3230 3231 /* all the others need rx_buf/tx_buf also set */ 3232 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3233 /* update rx_buf, tx_buf and dma */ 3234 if (xfers[i].rx_buf) 3235 xfers[i].rx_buf += offset; 3236 if (xfers[i].rx_dma) 3237 xfers[i].rx_dma += offset; 3238 if (xfers[i].tx_buf) 3239 xfers[i].tx_buf += offset; 3240 if (xfers[i].tx_dma) 3241 xfers[i].tx_dma += offset; 3242 3243 /* update length */ 3244 xfers[i].len = min(maxsize, xfers[i].len - offset); 3245 } 3246 3247 /* we set up xferp to the last entry we have inserted, 3248 * so that we skip those already split transfers 3249 */ 3250 *xferp = &xfers[count - 1]; 3251 3252 /* increment statistics counters */ 3253 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3254 transfers_split_maxsize); 3255 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3256 transfers_split_maxsize); 3257 3258 return 0; 3259 } 3260 3261 /** 3262 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3263 * when an individual transfer exceeds a 3264 * certain size 3265 * @ctlr: the @spi_controller for this transfer 3266 * @msg: the @spi_message to transform 3267 * @maxsize: the maximum when to apply this 3268 * @gfp: GFP allocation flags 3269 * 3270 * Return: status of transformation 3271 */ 3272 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3273 struct spi_message *msg, 3274 size_t maxsize, 3275 gfp_t gfp) 3276 { 3277 struct spi_transfer *xfer; 3278 int ret; 3279 3280 /* iterate over the transfer_list, 3281 * but note that xfer is advanced to the last transfer inserted 3282 * to avoid checking sizes again unnecessarily (also xfer does 3283 * potentiall belong to a different list by the time the 3284 * replacement has happened 3285 */ 3286 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3287 if (xfer->len > maxsize) { 3288 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3289 maxsize, gfp); 3290 if (ret) 3291 return ret; 3292 } 3293 } 3294 3295 return 0; 3296 } 3297 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3298 3299 /*-------------------------------------------------------------------------*/ 3300 3301 /* Core methods for SPI controller protocol drivers. Some of the 3302 * other core methods are currently defined as inline functions. 3303 */ 3304 3305 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3306 u8 bits_per_word) 3307 { 3308 if (ctlr->bits_per_word_mask) { 3309 /* Only 32 bits fit in the mask */ 3310 if (bits_per_word > 32) 3311 return -EINVAL; 3312 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3313 return -EINVAL; 3314 } 3315 3316 return 0; 3317 } 3318 3319 /** 3320 * spi_setup - setup SPI mode and clock rate 3321 * @spi: the device whose settings are being modified 3322 * Context: can sleep, and no requests are queued to the device 3323 * 3324 * SPI protocol drivers may need to update the transfer mode if the 3325 * device doesn't work with its default. They may likewise need 3326 * to update clock rates or word sizes from initial values. This function 3327 * changes those settings, and must be called from a context that can sleep. 3328 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3329 * effect the next time the device is selected and data is transferred to 3330 * or from it. When this function returns, the spi device is deselected. 3331 * 3332 * Note that this call will fail if the protocol driver specifies an option 3333 * that the underlying controller or its driver does not support. For 3334 * example, not all hardware supports wire transfers using nine bit words, 3335 * LSB-first wire encoding, or active-high chipselects. 3336 * 3337 * Return: zero on success, else a negative error code. 3338 */ 3339 int spi_setup(struct spi_device *spi) 3340 { 3341 unsigned bad_bits, ugly_bits; 3342 int status; 3343 3344 /* 3345 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3346 * are set at the same time 3347 */ 3348 if ((hweight_long(spi->mode & 3349 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3350 (hweight_long(spi->mode & 3351 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3352 dev_err(&spi->dev, 3353 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3354 return -EINVAL; 3355 } 3356 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3357 */ 3358 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3359 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3360 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3361 return -EINVAL; 3362 /* help drivers fail *cleanly* when they need options 3363 * that aren't supported with their current controller 3364 * SPI_CS_WORD has a fallback software implementation, 3365 * so it is ignored here. 3366 */ 3367 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3368 SPI_NO_TX | SPI_NO_RX); 3369 /* nothing prevents from working with active-high CS in case if it 3370 * is driven by GPIO. 3371 */ 3372 if (gpio_is_valid(spi->cs_gpio)) 3373 bad_bits &= ~SPI_CS_HIGH; 3374 ugly_bits = bad_bits & 3375 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3376 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3377 if (ugly_bits) { 3378 dev_warn(&spi->dev, 3379 "setup: ignoring unsupported mode bits %x\n", 3380 ugly_bits); 3381 spi->mode &= ~ugly_bits; 3382 bad_bits &= ~ugly_bits; 3383 } 3384 if (bad_bits) { 3385 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3386 bad_bits); 3387 return -EINVAL; 3388 } 3389 3390 if (!spi->bits_per_word) 3391 spi->bits_per_word = 8; 3392 3393 status = __spi_validate_bits_per_word(spi->controller, 3394 spi->bits_per_word); 3395 if (status) 3396 return status; 3397 3398 if (spi->controller->max_speed_hz && 3399 (!spi->max_speed_hz || 3400 spi->max_speed_hz > spi->controller->max_speed_hz)) 3401 spi->max_speed_hz = spi->controller->max_speed_hz; 3402 3403 mutex_lock(&spi->controller->io_mutex); 3404 3405 if (spi->controller->setup) 3406 status = spi->controller->setup(spi); 3407 3408 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3409 status = pm_runtime_get_sync(spi->controller->dev.parent); 3410 if (status < 0) { 3411 mutex_unlock(&spi->controller->io_mutex); 3412 pm_runtime_put_noidle(spi->controller->dev.parent); 3413 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3414 status); 3415 return status; 3416 } 3417 3418 /* 3419 * We do not want to return positive value from pm_runtime_get, 3420 * there are many instances of devices calling spi_setup() and 3421 * checking for a non-zero return value instead of a negative 3422 * return value. 3423 */ 3424 status = 0; 3425 3426 spi_set_cs(spi, false); 3427 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3428 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3429 } else { 3430 spi_set_cs(spi, false); 3431 } 3432 3433 mutex_unlock(&spi->controller->io_mutex); 3434 3435 if (spi->rt && !spi->controller->rt) { 3436 spi->controller->rt = true; 3437 spi_set_thread_rt(spi->controller); 3438 } 3439 3440 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3441 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3442 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3443 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3444 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3445 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3446 spi->bits_per_word, spi->max_speed_hz, 3447 status); 3448 3449 return status; 3450 } 3451 EXPORT_SYMBOL_GPL(spi_setup); 3452 3453 /** 3454 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3455 * @spi: the device that requires specific CS timing configuration 3456 * @setup: CS setup time specified via @spi_delay 3457 * @hold: CS hold time specified via @spi_delay 3458 * @inactive: CS inactive delay between transfers specified via @spi_delay 3459 * 3460 * Return: zero on success, else a negative error code. 3461 */ 3462 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3463 struct spi_delay *hold, struct spi_delay *inactive) 3464 { 3465 struct device *parent = spi->controller->dev.parent; 3466 size_t len; 3467 int status; 3468 3469 if (spi->controller->set_cs_timing && 3470 !(spi->cs_gpiod || gpio_is_valid(spi->cs_gpio))) { 3471 if (spi->controller->auto_runtime_pm) { 3472 status = pm_runtime_get_sync(parent); 3473 if (status < 0) { 3474 pm_runtime_put_noidle(parent); 3475 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3476 status); 3477 return status; 3478 } 3479 3480 status = spi->controller->set_cs_timing(spi, setup, 3481 hold, inactive); 3482 pm_runtime_mark_last_busy(parent); 3483 pm_runtime_put_autosuspend(parent); 3484 return status; 3485 } else { 3486 return spi->controller->set_cs_timing(spi, setup, hold, 3487 inactive); 3488 } 3489 } 3490 3491 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3492 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3493 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3494 dev_err(&spi->dev, 3495 "Clock-cycle delays for CS not supported in SW mode\n"); 3496 return -ENOTSUPP; 3497 } 3498 3499 len = sizeof(struct spi_delay); 3500 3501 /* copy delays to controller */ 3502 if (setup) 3503 memcpy(&spi->controller->cs_setup, setup, len); 3504 else 3505 memset(&spi->controller->cs_setup, 0, len); 3506 3507 if (hold) 3508 memcpy(&spi->controller->cs_hold, hold, len); 3509 else 3510 memset(&spi->controller->cs_hold, 0, len); 3511 3512 if (inactive) 3513 memcpy(&spi->controller->cs_inactive, inactive, len); 3514 else 3515 memset(&spi->controller->cs_inactive, 0, len); 3516 3517 return 0; 3518 } 3519 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3520 3521 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3522 struct spi_device *spi) 3523 { 3524 int delay1, delay2; 3525 3526 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3527 if (delay1 < 0) 3528 return delay1; 3529 3530 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3531 if (delay2 < 0) 3532 return delay2; 3533 3534 if (delay1 < delay2) 3535 memcpy(&xfer->word_delay, &spi->word_delay, 3536 sizeof(xfer->word_delay)); 3537 3538 return 0; 3539 } 3540 3541 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3542 { 3543 struct spi_controller *ctlr = spi->controller; 3544 struct spi_transfer *xfer; 3545 int w_size; 3546 3547 if (list_empty(&message->transfers)) 3548 return -EINVAL; 3549 3550 /* If an SPI controller does not support toggling the CS line on each 3551 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3552 * for the CS line, we can emulate the CS-per-word hardware function by 3553 * splitting transfers into one-word transfers and ensuring that 3554 * cs_change is set for each transfer. 3555 */ 3556 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3557 spi->cs_gpiod || 3558 gpio_is_valid(spi->cs_gpio))) { 3559 size_t maxsize; 3560 int ret; 3561 3562 maxsize = (spi->bits_per_word + 7) / 8; 3563 3564 /* spi_split_transfers_maxsize() requires message->spi */ 3565 message->spi = spi; 3566 3567 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3568 GFP_KERNEL); 3569 if (ret) 3570 return ret; 3571 3572 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3573 /* don't change cs_change on the last entry in the list */ 3574 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3575 break; 3576 xfer->cs_change = 1; 3577 } 3578 } 3579 3580 /* Half-duplex links include original MicroWire, and ones with 3581 * only one data pin like SPI_3WIRE (switches direction) or where 3582 * either MOSI or MISO is missing. They can also be caused by 3583 * software limitations. 3584 */ 3585 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3586 (spi->mode & SPI_3WIRE)) { 3587 unsigned flags = ctlr->flags; 3588 3589 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3590 if (xfer->rx_buf && xfer->tx_buf) 3591 return -EINVAL; 3592 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3593 return -EINVAL; 3594 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3595 return -EINVAL; 3596 } 3597 } 3598 3599 /** 3600 * Set transfer bits_per_word and max speed as spi device default if 3601 * it is not set for this transfer. 3602 * Set transfer tx_nbits and rx_nbits as single transfer default 3603 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3604 * Ensure transfer word_delay is at least as long as that required by 3605 * device itself. 3606 */ 3607 message->frame_length = 0; 3608 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3609 xfer->effective_speed_hz = 0; 3610 message->frame_length += xfer->len; 3611 if (!xfer->bits_per_word) 3612 xfer->bits_per_word = spi->bits_per_word; 3613 3614 if (!xfer->speed_hz) 3615 xfer->speed_hz = spi->max_speed_hz; 3616 3617 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3618 xfer->speed_hz = ctlr->max_speed_hz; 3619 3620 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3621 return -EINVAL; 3622 3623 /* 3624 * SPI transfer length should be multiple of SPI word size 3625 * where SPI word size should be power-of-two multiple 3626 */ 3627 if (xfer->bits_per_word <= 8) 3628 w_size = 1; 3629 else if (xfer->bits_per_word <= 16) 3630 w_size = 2; 3631 else 3632 w_size = 4; 3633 3634 /* No partial transfers accepted */ 3635 if (xfer->len % w_size) 3636 return -EINVAL; 3637 3638 if (xfer->speed_hz && ctlr->min_speed_hz && 3639 xfer->speed_hz < ctlr->min_speed_hz) 3640 return -EINVAL; 3641 3642 if (xfer->tx_buf && !xfer->tx_nbits) 3643 xfer->tx_nbits = SPI_NBITS_SINGLE; 3644 if (xfer->rx_buf && !xfer->rx_nbits) 3645 xfer->rx_nbits = SPI_NBITS_SINGLE; 3646 /* check transfer tx/rx_nbits: 3647 * 1. check the value matches one of single, dual and quad 3648 * 2. check tx/rx_nbits match the mode in spi_device 3649 */ 3650 if (xfer->tx_buf) { 3651 if (spi->mode & SPI_NO_TX) 3652 return -EINVAL; 3653 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3654 xfer->tx_nbits != SPI_NBITS_DUAL && 3655 xfer->tx_nbits != SPI_NBITS_QUAD) 3656 return -EINVAL; 3657 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3658 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3659 return -EINVAL; 3660 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3661 !(spi->mode & SPI_TX_QUAD)) 3662 return -EINVAL; 3663 } 3664 /* check transfer rx_nbits */ 3665 if (xfer->rx_buf) { 3666 if (spi->mode & SPI_NO_RX) 3667 return -EINVAL; 3668 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3669 xfer->rx_nbits != SPI_NBITS_DUAL && 3670 xfer->rx_nbits != SPI_NBITS_QUAD) 3671 return -EINVAL; 3672 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3673 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3674 return -EINVAL; 3675 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3676 !(spi->mode & SPI_RX_QUAD)) 3677 return -EINVAL; 3678 } 3679 3680 if (_spi_xfer_word_delay_update(xfer, spi)) 3681 return -EINVAL; 3682 } 3683 3684 message->status = -EINPROGRESS; 3685 3686 return 0; 3687 } 3688 3689 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3690 { 3691 struct spi_controller *ctlr = spi->controller; 3692 struct spi_transfer *xfer; 3693 3694 /* 3695 * Some controllers do not support doing regular SPI transfers. Return 3696 * ENOTSUPP when this is the case. 3697 */ 3698 if (!ctlr->transfer) 3699 return -ENOTSUPP; 3700 3701 message->spi = spi; 3702 3703 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3704 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3705 3706 trace_spi_message_submit(message); 3707 3708 if (!ctlr->ptp_sts_supported) { 3709 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3710 xfer->ptp_sts_word_pre = 0; 3711 ptp_read_system_prets(xfer->ptp_sts); 3712 } 3713 } 3714 3715 return ctlr->transfer(spi, message); 3716 } 3717 3718 /** 3719 * spi_async - asynchronous SPI transfer 3720 * @spi: device with which data will be exchanged 3721 * @message: describes the data transfers, including completion callback 3722 * Context: any (irqs may be blocked, etc) 3723 * 3724 * This call may be used in_irq and other contexts which can't sleep, 3725 * as well as from task contexts which can sleep. 3726 * 3727 * The completion callback is invoked in a context which can't sleep. 3728 * Before that invocation, the value of message->status is undefined. 3729 * When the callback is issued, message->status holds either zero (to 3730 * indicate complete success) or a negative error code. After that 3731 * callback returns, the driver which issued the transfer request may 3732 * deallocate the associated memory; it's no longer in use by any SPI 3733 * core or controller driver code. 3734 * 3735 * Note that although all messages to a spi_device are handled in 3736 * FIFO order, messages may go to different devices in other orders. 3737 * Some device might be higher priority, or have various "hard" access 3738 * time requirements, for example. 3739 * 3740 * On detection of any fault during the transfer, processing of 3741 * the entire message is aborted, and the device is deselected. 3742 * Until returning from the associated message completion callback, 3743 * no other spi_message queued to that device will be processed. 3744 * (This rule applies equally to all the synchronous transfer calls, 3745 * which are wrappers around this core asynchronous primitive.) 3746 * 3747 * Return: zero on success, else a negative error code. 3748 */ 3749 int spi_async(struct spi_device *spi, struct spi_message *message) 3750 { 3751 struct spi_controller *ctlr = spi->controller; 3752 int ret; 3753 unsigned long flags; 3754 3755 ret = __spi_validate(spi, message); 3756 if (ret != 0) 3757 return ret; 3758 3759 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3760 3761 if (ctlr->bus_lock_flag) 3762 ret = -EBUSY; 3763 else 3764 ret = __spi_async(spi, message); 3765 3766 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3767 3768 return ret; 3769 } 3770 EXPORT_SYMBOL_GPL(spi_async); 3771 3772 /** 3773 * spi_async_locked - version of spi_async with exclusive bus usage 3774 * @spi: device with which data will be exchanged 3775 * @message: describes the data transfers, including completion callback 3776 * Context: any (irqs may be blocked, etc) 3777 * 3778 * This call may be used in_irq and other contexts which can't sleep, 3779 * as well as from task contexts which can sleep. 3780 * 3781 * The completion callback is invoked in a context which can't sleep. 3782 * Before that invocation, the value of message->status is undefined. 3783 * When the callback is issued, message->status holds either zero (to 3784 * indicate complete success) or a negative error code. After that 3785 * callback returns, the driver which issued the transfer request may 3786 * deallocate the associated memory; it's no longer in use by any SPI 3787 * core or controller driver code. 3788 * 3789 * Note that although all messages to a spi_device are handled in 3790 * FIFO order, messages may go to different devices in other orders. 3791 * Some device might be higher priority, or have various "hard" access 3792 * time requirements, for example. 3793 * 3794 * On detection of any fault during the transfer, processing of 3795 * the entire message is aborted, and the device is deselected. 3796 * Until returning from the associated message completion callback, 3797 * no other spi_message queued to that device will be processed. 3798 * (This rule applies equally to all the synchronous transfer calls, 3799 * which are wrappers around this core asynchronous primitive.) 3800 * 3801 * Return: zero on success, else a negative error code. 3802 */ 3803 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3804 { 3805 struct spi_controller *ctlr = spi->controller; 3806 int ret; 3807 unsigned long flags; 3808 3809 ret = __spi_validate(spi, message); 3810 if (ret != 0) 3811 return ret; 3812 3813 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3814 3815 ret = __spi_async(spi, message); 3816 3817 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3818 3819 return ret; 3820 3821 } 3822 EXPORT_SYMBOL_GPL(spi_async_locked); 3823 3824 /*-------------------------------------------------------------------------*/ 3825 3826 /* Utility methods for SPI protocol drivers, layered on 3827 * top of the core. Some other utility methods are defined as 3828 * inline functions. 3829 */ 3830 3831 static void spi_complete(void *arg) 3832 { 3833 complete(arg); 3834 } 3835 3836 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3837 { 3838 DECLARE_COMPLETION_ONSTACK(done); 3839 int status; 3840 struct spi_controller *ctlr = spi->controller; 3841 unsigned long flags; 3842 3843 status = __spi_validate(spi, message); 3844 if (status != 0) 3845 return status; 3846 3847 message->complete = spi_complete; 3848 message->context = &done; 3849 message->spi = spi; 3850 3851 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3852 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3853 3854 /* If we're not using the legacy transfer method then we will 3855 * try to transfer in the calling context so special case. 3856 * This code would be less tricky if we could remove the 3857 * support for driver implemented message queues. 3858 */ 3859 if (ctlr->transfer == spi_queued_transfer) { 3860 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3861 3862 trace_spi_message_submit(message); 3863 3864 status = __spi_queued_transfer(spi, message, false); 3865 3866 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3867 } else { 3868 status = spi_async_locked(spi, message); 3869 } 3870 3871 if (status == 0) { 3872 /* Push out the messages in the calling context if we 3873 * can. 3874 */ 3875 if (ctlr->transfer == spi_queued_transfer) { 3876 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3877 spi_sync_immediate); 3878 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3879 spi_sync_immediate); 3880 __spi_pump_messages(ctlr, false); 3881 } 3882 3883 wait_for_completion(&done); 3884 status = message->status; 3885 } 3886 message->context = NULL; 3887 return status; 3888 } 3889 3890 /** 3891 * spi_sync - blocking/synchronous SPI data transfers 3892 * @spi: device with which data will be exchanged 3893 * @message: describes the data transfers 3894 * Context: can sleep 3895 * 3896 * This call may only be used from a context that may sleep. The sleep 3897 * is non-interruptible, and has no timeout. Low-overhead controller 3898 * drivers may DMA directly into and out of the message buffers. 3899 * 3900 * Note that the SPI device's chip select is active during the message, 3901 * and then is normally disabled between messages. Drivers for some 3902 * frequently-used devices may want to minimize costs of selecting a chip, 3903 * by leaving it selected in anticipation that the next message will go 3904 * to the same chip. (That may increase power usage.) 3905 * 3906 * Also, the caller is guaranteeing that the memory associated with the 3907 * message will not be freed before this call returns. 3908 * 3909 * Return: zero on success, else a negative error code. 3910 */ 3911 int spi_sync(struct spi_device *spi, struct spi_message *message) 3912 { 3913 int ret; 3914 3915 mutex_lock(&spi->controller->bus_lock_mutex); 3916 ret = __spi_sync(spi, message); 3917 mutex_unlock(&spi->controller->bus_lock_mutex); 3918 3919 return ret; 3920 } 3921 EXPORT_SYMBOL_GPL(spi_sync); 3922 3923 /** 3924 * spi_sync_locked - version of spi_sync with exclusive bus usage 3925 * @spi: device with which data will be exchanged 3926 * @message: describes the data transfers 3927 * Context: can sleep 3928 * 3929 * This call may only be used from a context that may sleep. The sleep 3930 * is non-interruptible, and has no timeout. Low-overhead controller 3931 * drivers may DMA directly into and out of the message buffers. 3932 * 3933 * This call should be used by drivers that require exclusive access to the 3934 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3935 * be released by a spi_bus_unlock call when the exclusive access is over. 3936 * 3937 * Return: zero on success, else a negative error code. 3938 */ 3939 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3940 { 3941 return __spi_sync(spi, message); 3942 } 3943 EXPORT_SYMBOL_GPL(spi_sync_locked); 3944 3945 /** 3946 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3947 * @ctlr: SPI bus master that should be locked for exclusive bus access 3948 * Context: can sleep 3949 * 3950 * This call may only be used from a context that may sleep. The sleep 3951 * is non-interruptible, and has no timeout. 3952 * 3953 * This call should be used by drivers that require exclusive access to the 3954 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3955 * exclusive access is over. Data transfer must be done by spi_sync_locked 3956 * and spi_async_locked calls when the SPI bus lock is held. 3957 * 3958 * Return: always zero. 3959 */ 3960 int spi_bus_lock(struct spi_controller *ctlr) 3961 { 3962 unsigned long flags; 3963 3964 mutex_lock(&ctlr->bus_lock_mutex); 3965 3966 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3967 ctlr->bus_lock_flag = 1; 3968 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3969 3970 /* mutex remains locked until spi_bus_unlock is called */ 3971 3972 return 0; 3973 } 3974 EXPORT_SYMBOL_GPL(spi_bus_lock); 3975 3976 /** 3977 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3978 * @ctlr: SPI bus master that was locked for exclusive bus access 3979 * Context: can sleep 3980 * 3981 * This call may only be used from a context that may sleep. The sleep 3982 * is non-interruptible, and has no timeout. 3983 * 3984 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3985 * call. 3986 * 3987 * Return: always zero. 3988 */ 3989 int spi_bus_unlock(struct spi_controller *ctlr) 3990 { 3991 ctlr->bus_lock_flag = 0; 3992 3993 mutex_unlock(&ctlr->bus_lock_mutex); 3994 3995 return 0; 3996 } 3997 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3998 3999 /* portable code must never pass more than 32 bytes */ 4000 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4001 4002 static u8 *buf; 4003 4004 /** 4005 * spi_write_then_read - SPI synchronous write followed by read 4006 * @spi: device with which data will be exchanged 4007 * @txbuf: data to be written (need not be dma-safe) 4008 * @n_tx: size of txbuf, in bytes 4009 * @rxbuf: buffer into which data will be read (need not be dma-safe) 4010 * @n_rx: size of rxbuf, in bytes 4011 * Context: can sleep 4012 * 4013 * This performs a half duplex MicroWire style transaction with the 4014 * device, sending txbuf and then reading rxbuf. The return value 4015 * is zero for success, else a negative errno status code. 4016 * This call may only be used from a context that may sleep. 4017 * 4018 * Parameters to this routine are always copied using a small buffer. 4019 * Performance-sensitive or bulk transfer code should instead use 4020 * spi_{async,sync}() calls with dma-safe buffers. 4021 * 4022 * Return: zero on success, else a negative error code. 4023 */ 4024 int spi_write_then_read(struct spi_device *spi, 4025 const void *txbuf, unsigned n_tx, 4026 void *rxbuf, unsigned n_rx) 4027 { 4028 static DEFINE_MUTEX(lock); 4029 4030 int status; 4031 struct spi_message message; 4032 struct spi_transfer x[2]; 4033 u8 *local_buf; 4034 4035 /* Use preallocated DMA-safe buffer if we can. We can't avoid 4036 * copying here, (as a pure convenience thing), but we can 4037 * keep heap costs out of the hot path unless someone else is 4038 * using the pre-allocated buffer or the transfer is too large. 4039 */ 4040 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4041 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4042 GFP_KERNEL | GFP_DMA); 4043 if (!local_buf) 4044 return -ENOMEM; 4045 } else { 4046 local_buf = buf; 4047 } 4048 4049 spi_message_init(&message); 4050 memset(x, 0, sizeof(x)); 4051 if (n_tx) { 4052 x[0].len = n_tx; 4053 spi_message_add_tail(&x[0], &message); 4054 } 4055 if (n_rx) { 4056 x[1].len = n_rx; 4057 spi_message_add_tail(&x[1], &message); 4058 } 4059 4060 memcpy(local_buf, txbuf, n_tx); 4061 x[0].tx_buf = local_buf; 4062 x[1].rx_buf = local_buf + n_tx; 4063 4064 /* do the i/o */ 4065 status = spi_sync(spi, &message); 4066 if (status == 0) 4067 memcpy(rxbuf, x[1].rx_buf, n_rx); 4068 4069 if (x[0].tx_buf == buf) 4070 mutex_unlock(&lock); 4071 else 4072 kfree(local_buf); 4073 4074 return status; 4075 } 4076 EXPORT_SYMBOL_GPL(spi_write_then_read); 4077 4078 /*-------------------------------------------------------------------------*/ 4079 4080 #if IS_ENABLED(CONFIG_OF) 4081 /* must call put_device() when done with returned spi_device device */ 4082 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4083 { 4084 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4085 4086 return dev ? to_spi_device(dev) : NULL; 4087 } 4088 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 4089 #endif /* IS_ENABLED(CONFIG_OF) */ 4090 4091 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4092 /* the spi controllers are not using spi_bus, so we find it with another way */ 4093 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4094 { 4095 struct device *dev; 4096 4097 dev = class_find_device_by_of_node(&spi_master_class, node); 4098 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4099 dev = class_find_device_by_of_node(&spi_slave_class, node); 4100 if (!dev) 4101 return NULL; 4102 4103 /* reference got in class_find_device */ 4104 return container_of(dev, struct spi_controller, dev); 4105 } 4106 4107 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4108 void *arg) 4109 { 4110 struct of_reconfig_data *rd = arg; 4111 struct spi_controller *ctlr; 4112 struct spi_device *spi; 4113 4114 switch (of_reconfig_get_state_change(action, arg)) { 4115 case OF_RECONFIG_CHANGE_ADD: 4116 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4117 if (ctlr == NULL) 4118 return NOTIFY_OK; /* not for us */ 4119 4120 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4121 put_device(&ctlr->dev); 4122 return NOTIFY_OK; 4123 } 4124 4125 spi = of_register_spi_device(ctlr, rd->dn); 4126 put_device(&ctlr->dev); 4127 4128 if (IS_ERR(spi)) { 4129 pr_err("%s: failed to create for '%pOF'\n", 4130 __func__, rd->dn); 4131 of_node_clear_flag(rd->dn, OF_POPULATED); 4132 return notifier_from_errno(PTR_ERR(spi)); 4133 } 4134 break; 4135 4136 case OF_RECONFIG_CHANGE_REMOVE: 4137 /* already depopulated? */ 4138 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4139 return NOTIFY_OK; 4140 4141 /* find our device by node */ 4142 spi = of_find_spi_device_by_node(rd->dn); 4143 if (spi == NULL) 4144 return NOTIFY_OK; /* no? not meant for us */ 4145 4146 /* unregister takes one ref away */ 4147 spi_unregister_device(spi); 4148 4149 /* and put the reference of the find */ 4150 put_device(&spi->dev); 4151 break; 4152 } 4153 4154 return NOTIFY_OK; 4155 } 4156 4157 static struct notifier_block spi_of_notifier = { 4158 .notifier_call = of_spi_notify, 4159 }; 4160 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4161 extern struct notifier_block spi_of_notifier; 4162 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4163 4164 #if IS_ENABLED(CONFIG_ACPI) 4165 static int spi_acpi_controller_match(struct device *dev, const void *data) 4166 { 4167 return ACPI_COMPANION(dev->parent) == data; 4168 } 4169 4170 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4171 { 4172 struct device *dev; 4173 4174 dev = class_find_device(&spi_master_class, NULL, adev, 4175 spi_acpi_controller_match); 4176 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4177 dev = class_find_device(&spi_slave_class, NULL, adev, 4178 spi_acpi_controller_match); 4179 if (!dev) 4180 return NULL; 4181 4182 return container_of(dev, struct spi_controller, dev); 4183 } 4184 4185 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4186 { 4187 struct device *dev; 4188 4189 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4190 return to_spi_device(dev); 4191 } 4192 4193 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4194 void *arg) 4195 { 4196 struct acpi_device *adev = arg; 4197 struct spi_controller *ctlr; 4198 struct spi_device *spi; 4199 4200 switch (value) { 4201 case ACPI_RECONFIG_DEVICE_ADD: 4202 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4203 if (!ctlr) 4204 break; 4205 4206 acpi_register_spi_device(ctlr, adev); 4207 put_device(&ctlr->dev); 4208 break; 4209 case ACPI_RECONFIG_DEVICE_REMOVE: 4210 if (!acpi_device_enumerated(adev)) 4211 break; 4212 4213 spi = acpi_spi_find_device_by_adev(adev); 4214 if (!spi) 4215 break; 4216 4217 spi_unregister_device(spi); 4218 put_device(&spi->dev); 4219 break; 4220 } 4221 4222 return NOTIFY_OK; 4223 } 4224 4225 static struct notifier_block spi_acpi_notifier = { 4226 .notifier_call = acpi_spi_notify, 4227 }; 4228 #else 4229 extern struct notifier_block spi_acpi_notifier; 4230 #endif 4231 4232 static int __init spi_init(void) 4233 { 4234 int status; 4235 4236 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4237 if (!buf) { 4238 status = -ENOMEM; 4239 goto err0; 4240 } 4241 4242 status = bus_register(&spi_bus_type); 4243 if (status < 0) 4244 goto err1; 4245 4246 status = class_register(&spi_master_class); 4247 if (status < 0) 4248 goto err2; 4249 4250 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4251 status = class_register(&spi_slave_class); 4252 if (status < 0) 4253 goto err3; 4254 } 4255 4256 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4257 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4258 if (IS_ENABLED(CONFIG_ACPI)) 4259 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4260 4261 return 0; 4262 4263 err3: 4264 class_unregister(&spi_master_class); 4265 err2: 4266 bus_unregister(&spi_bus_type); 4267 err1: 4268 kfree(buf); 4269 buf = NULL; 4270 err0: 4271 return status; 4272 } 4273 4274 /* board_info is normally registered in arch_initcall(), 4275 * but even essential drivers wait till later 4276 * 4277 * REVISIT only boardinfo really needs static linking. the rest (device and 4278 * driver registration) _could_ be dynamically linked (modular) ... costs 4279 * include needing to have boardinfo data structures be much more public. 4280 */ 4281 postcore_initcall(spi_init); 4282