1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 40 #include "internals.h" 41 42 static DEFINE_IDR(spi_master_idr); 43 44 static void spidev_release(struct device *dev) 45 { 46 struct spi_device *spi = to_spi_device(dev); 47 48 /* spi controllers may cleanup for released devices */ 49 if (spi->controller->cleanup) 50 spi->controller->cleanup(spi); 51 52 spi_controller_put(spi->controller); 53 kfree(spi->driver_override); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 const char *end = memchr(buf, '\n', count); 77 const size_t len = end ? end - buf : count; 78 const char *driver_override, *old; 79 80 /* We need to keep extra room for a newline when displaying value */ 81 if (len >= (PAGE_SIZE - 1)) 82 return -EINVAL; 83 84 driver_override = kstrndup(buf, len, GFP_KERNEL); 85 if (!driver_override) 86 return -ENOMEM; 87 88 device_lock(dev); 89 old = spi->driver_override; 90 if (len) { 91 spi->driver_override = driver_override; 92 } else { 93 /* Emptry string, disable driver override */ 94 spi->driver_override = NULL; 95 kfree(driver_override); 96 } 97 device_unlock(dev); 98 kfree(old); 99 100 return count; 101 } 102 103 static ssize_t driver_override_show(struct device *dev, 104 struct device_attribute *a, char *buf) 105 { 106 const struct spi_device *spi = to_spi_device(dev); 107 ssize_t len; 108 109 device_lock(dev); 110 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 111 device_unlock(dev); 112 return len; 113 } 114 static DEVICE_ATTR_RW(driver_override); 115 116 #define SPI_STATISTICS_ATTRS(field, file) \ 117 static ssize_t spi_controller_##field##_show(struct device *dev, \ 118 struct device_attribute *attr, \ 119 char *buf) \ 120 { \ 121 struct spi_controller *ctlr = container_of(dev, \ 122 struct spi_controller, dev); \ 123 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 124 } \ 125 static struct device_attribute dev_attr_spi_controller_##field = { \ 126 .attr = { .name = file, .mode = 0444 }, \ 127 .show = spi_controller_##field##_show, \ 128 }; \ 129 static ssize_t spi_device_##field##_show(struct device *dev, \ 130 struct device_attribute *attr, \ 131 char *buf) \ 132 { \ 133 struct spi_device *spi = to_spi_device(dev); \ 134 return spi_statistics_##field##_show(&spi->statistics, buf); \ 135 } \ 136 static struct device_attribute dev_attr_spi_device_##field = { \ 137 .attr = { .name = file, .mode = 0444 }, \ 138 .show = spi_device_##field##_show, \ 139 } 140 141 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 142 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 143 char *buf) \ 144 { \ 145 unsigned long flags; \ 146 ssize_t len; \ 147 spin_lock_irqsave(&stat->lock, flags); \ 148 len = sprintf(buf, format_string, stat->field); \ 149 spin_unlock_irqrestore(&stat->lock, flags); \ 150 return len; \ 151 } \ 152 SPI_STATISTICS_ATTRS(name, file) 153 154 #define SPI_STATISTICS_SHOW(field, format_string) \ 155 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 156 field, format_string) 157 158 SPI_STATISTICS_SHOW(messages, "%lu"); 159 SPI_STATISTICS_SHOW(transfers, "%lu"); 160 SPI_STATISTICS_SHOW(errors, "%lu"); 161 SPI_STATISTICS_SHOW(timedout, "%lu"); 162 163 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 164 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 165 SPI_STATISTICS_SHOW(spi_async, "%lu"); 166 167 SPI_STATISTICS_SHOW(bytes, "%llu"); 168 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 169 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 170 171 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 172 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 173 "transfer_bytes_histo_" number, \ 174 transfer_bytes_histo[index], "%lu") 175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 192 193 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 194 195 static struct attribute *spi_dev_attrs[] = { 196 &dev_attr_modalias.attr, 197 &dev_attr_driver_override.attr, 198 NULL, 199 }; 200 201 static const struct attribute_group spi_dev_group = { 202 .attrs = spi_dev_attrs, 203 }; 204 205 static struct attribute *spi_device_statistics_attrs[] = { 206 &dev_attr_spi_device_messages.attr, 207 &dev_attr_spi_device_transfers.attr, 208 &dev_attr_spi_device_errors.attr, 209 &dev_attr_spi_device_timedout.attr, 210 &dev_attr_spi_device_spi_sync.attr, 211 &dev_attr_spi_device_spi_sync_immediate.attr, 212 &dev_attr_spi_device_spi_async.attr, 213 &dev_attr_spi_device_bytes.attr, 214 &dev_attr_spi_device_bytes_rx.attr, 215 &dev_attr_spi_device_bytes_tx.attr, 216 &dev_attr_spi_device_transfer_bytes_histo0.attr, 217 &dev_attr_spi_device_transfer_bytes_histo1.attr, 218 &dev_attr_spi_device_transfer_bytes_histo2.attr, 219 &dev_attr_spi_device_transfer_bytes_histo3.attr, 220 &dev_attr_spi_device_transfer_bytes_histo4.attr, 221 &dev_attr_spi_device_transfer_bytes_histo5.attr, 222 &dev_attr_spi_device_transfer_bytes_histo6.attr, 223 &dev_attr_spi_device_transfer_bytes_histo7.attr, 224 &dev_attr_spi_device_transfer_bytes_histo8.attr, 225 &dev_attr_spi_device_transfer_bytes_histo9.attr, 226 &dev_attr_spi_device_transfer_bytes_histo10.attr, 227 &dev_attr_spi_device_transfer_bytes_histo11.attr, 228 &dev_attr_spi_device_transfer_bytes_histo12.attr, 229 &dev_attr_spi_device_transfer_bytes_histo13.attr, 230 &dev_attr_spi_device_transfer_bytes_histo14.attr, 231 &dev_attr_spi_device_transfer_bytes_histo15.attr, 232 &dev_attr_spi_device_transfer_bytes_histo16.attr, 233 &dev_attr_spi_device_transfers_split_maxsize.attr, 234 NULL, 235 }; 236 237 static const struct attribute_group spi_device_statistics_group = { 238 .name = "statistics", 239 .attrs = spi_device_statistics_attrs, 240 }; 241 242 static const struct attribute_group *spi_dev_groups[] = { 243 &spi_dev_group, 244 &spi_device_statistics_group, 245 NULL, 246 }; 247 248 static struct attribute *spi_controller_statistics_attrs[] = { 249 &dev_attr_spi_controller_messages.attr, 250 &dev_attr_spi_controller_transfers.attr, 251 &dev_attr_spi_controller_errors.attr, 252 &dev_attr_spi_controller_timedout.attr, 253 &dev_attr_spi_controller_spi_sync.attr, 254 &dev_attr_spi_controller_spi_sync_immediate.attr, 255 &dev_attr_spi_controller_spi_async.attr, 256 &dev_attr_spi_controller_bytes.attr, 257 &dev_attr_spi_controller_bytes_rx.attr, 258 &dev_attr_spi_controller_bytes_tx.attr, 259 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 260 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 276 &dev_attr_spi_controller_transfers_split_maxsize.attr, 277 NULL, 278 }; 279 280 static const struct attribute_group spi_controller_statistics_group = { 281 .name = "statistics", 282 .attrs = spi_controller_statistics_attrs, 283 }; 284 285 static const struct attribute_group *spi_master_groups[] = { 286 &spi_controller_statistics_group, 287 NULL, 288 }; 289 290 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 291 struct spi_transfer *xfer, 292 struct spi_controller *ctlr) 293 { 294 unsigned long flags; 295 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 296 297 if (l2len < 0) 298 l2len = 0; 299 300 spin_lock_irqsave(&stats->lock, flags); 301 302 stats->transfers++; 303 stats->transfer_bytes_histo[l2len]++; 304 305 stats->bytes += xfer->len; 306 if ((xfer->tx_buf) && 307 (xfer->tx_buf != ctlr->dummy_tx)) 308 stats->bytes_tx += xfer->len; 309 if ((xfer->rx_buf) && 310 (xfer->rx_buf != ctlr->dummy_rx)) 311 stats->bytes_rx += xfer->len; 312 313 spin_unlock_irqrestore(&stats->lock, flags); 314 } 315 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 316 317 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 318 * and the sysfs version makes coldplug work too. 319 */ 320 321 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 322 const struct spi_device *sdev) 323 { 324 while (id->name[0]) { 325 if (!strcmp(sdev->modalias, id->name)) 326 return id; 327 id++; 328 } 329 return NULL; 330 } 331 332 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 333 { 334 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 335 336 return spi_match_id(sdrv->id_table, sdev); 337 } 338 EXPORT_SYMBOL_GPL(spi_get_device_id); 339 340 static int spi_match_device(struct device *dev, struct device_driver *drv) 341 { 342 const struct spi_device *spi = to_spi_device(dev); 343 const struct spi_driver *sdrv = to_spi_driver(drv); 344 345 /* Check override first, and if set, only use the named driver */ 346 if (spi->driver_override) 347 return strcmp(spi->driver_override, drv->name) == 0; 348 349 /* Attempt an OF style match */ 350 if (of_driver_match_device(dev, drv)) 351 return 1; 352 353 /* Then try ACPI */ 354 if (acpi_driver_match_device(dev, drv)) 355 return 1; 356 357 if (sdrv->id_table) 358 return !!spi_match_id(sdrv->id_table, spi); 359 360 return strcmp(spi->modalias, drv->name) == 0; 361 } 362 363 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 364 { 365 const struct spi_device *spi = to_spi_device(dev); 366 int rc; 367 368 rc = acpi_device_uevent_modalias(dev, env); 369 if (rc != -ENODEV) 370 return rc; 371 372 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 373 } 374 375 struct bus_type spi_bus_type = { 376 .name = "spi", 377 .dev_groups = spi_dev_groups, 378 .match = spi_match_device, 379 .uevent = spi_uevent, 380 }; 381 EXPORT_SYMBOL_GPL(spi_bus_type); 382 383 384 static int spi_drv_probe(struct device *dev) 385 { 386 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 387 struct spi_device *spi = to_spi_device(dev); 388 int ret; 389 390 ret = of_clk_set_defaults(dev->of_node, false); 391 if (ret) 392 return ret; 393 394 if (dev->of_node) { 395 spi->irq = of_irq_get(dev->of_node, 0); 396 if (spi->irq == -EPROBE_DEFER) 397 return -EPROBE_DEFER; 398 if (spi->irq < 0) 399 spi->irq = 0; 400 } 401 402 ret = dev_pm_domain_attach(dev, true); 403 if (ret) 404 return ret; 405 406 ret = sdrv->probe(spi); 407 if (ret) 408 dev_pm_domain_detach(dev, true); 409 410 return ret; 411 } 412 413 static int spi_drv_remove(struct device *dev) 414 { 415 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 416 int ret; 417 418 ret = sdrv->remove(to_spi_device(dev)); 419 dev_pm_domain_detach(dev, true); 420 421 return ret; 422 } 423 424 static void spi_drv_shutdown(struct device *dev) 425 { 426 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 427 428 sdrv->shutdown(to_spi_device(dev)); 429 } 430 431 /** 432 * __spi_register_driver - register a SPI driver 433 * @owner: owner module of the driver to register 434 * @sdrv: the driver to register 435 * Context: can sleep 436 * 437 * Return: zero on success, else a negative error code. 438 */ 439 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 440 { 441 sdrv->driver.owner = owner; 442 sdrv->driver.bus = &spi_bus_type; 443 if (sdrv->probe) 444 sdrv->driver.probe = spi_drv_probe; 445 if (sdrv->remove) 446 sdrv->driver.remove = spi_drv_remove; 447 if (sdrv->shutdown) 448 sdrv->driver.shutdown = spi_drv_shutdown; 449 return driver_register(&sdrv->driver); 450 } 451 EXPORT_SYMBOL_GPL(__spi_register_driver); 452 453 /*-------------------------------------------------------------------------*/ 454 455 /* SPI devices should normally not be created by SPI device drivers; that 456 * would make them board-specific. Similarly with SPI controller drivers. 457 * Device registration normally goes into like arch/.../mach.../board-YYY.c 458 * with other readonly (flashable) information about mainboard devices. 459 */ 460 461 struct boardinfo { 462 struct list_head list; 463 struct spi_board_info board_info; 464 }; 465 466 static LIST_HEAD(board_list); 467 static LIST_HEAD(spi_controller_list); 468 469 /* 470 * Used to protect add/del opertion for board_info list and 471 * spi_controller list, and their matching process 472 * also used to protect object of type struct idr 473 */ 474 static DEFINE_MUTEX(board_lock); 475 476 /** 477 * spi_alloc_device - Allocate a new SPI device 478 * @ctlr: Controller to which device is connected 479 * Context: can sleep 480 * 481 * Allows a driver to allocate and initialize a spi_device without 482 * registering it immediately. This allows a driver to directly 483 * fill the spi_device with device parameters before calling 484 * spi_add_device() on it. 485 * 486 * Caller is responsible to call spi_add_device() on the returned 487 * spi_device structure to add it to the SPI controller. If the caller 488 * needs to discard the spi_device without adding it, then it should 489 * call spi_dev_put() on it. 490 * 491 * Return: a pointer to the new device, or NULL. 492 */ 493 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 494 { 495 struct spi_device *spi; 496 497 if (!spi_controller_get(ctlr)) 498 return NULL; 499 500 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 501 if (!spi) { 502 spi_controller_put(ctlr); 503 return NULL; 504 } 505 506 spi->master = spi->controller = ctlr; 507 spi->dev.parent = &ctlr->dev; 508 spi->dev.bus = &spi_bus_type; 509 spi->dev.release = spidev_release; 510 spi->cs_gpio = -ENOENT; 511 512 spin_lock_init(&spi->statistics.lock); 513 514 device_initialize(&spi->dev); 515 return spi; 516 } 517 EXPORT_SYMBOL_GPL(spi_alloc_device); 518 519 static void spi_dev_set_name(struct spi_device *spi) 520 { 521 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 522 523 if (adev) { 524 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 525 return; 526 } 527 528 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 529 spi->chip_select); 530 } 531 532 static int spi_dev_check(struct device *dev, void *data) 533 { 534 struct spi_device *spi = to_spi_device(dev); 535 struct spi_device *new_spi = data; 536 537 if (spi->controller == new_spi->controller && 538 spi->chip_select == new_spi->chip_select) 539 return -EBUSY; 540 return 0; 541 } 542 543 /** 544 * spi_add_device - Add spi_device allocated with spi_alloc_device 545 * @spi: spi_device to register 546 * 547 * Companion function to spi_alloc_device. Devices allocated with 548 * spi_alloc_device can be added onto the spi bus with this function. 549 * 550 * Return: 0 on success; negative errno on failure 551 */ 552 int spi_add_device(struct spi_device *spi) 553 { 554 static DEFINE_MUTEX(spi_add_lock); 555 struct spi_controller *ctlr = spi->controller; 556 struct device *dev = ctlr->dev.parent; 557 int status; 558 559 /* Chipselects are numbered 0..max; validate. */ 560 if (spi->chip_select >= ctlr->num_chipselect) { 561 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 562 ctlr->num_chipselect); 563 return -EINVAL; 564 } 565 566 /* Set the bus ID string */ 567 spi_dev_set_name(spi); 568 569 /* We need to make sure there's no other device with this 570 * chipselect **BEFORE** we call setup(), else we'll trash 571 * its configuration. Lock against concurrent add() calls. 572 */ 573 mutex_lock(&spi_add_lock); 574 575 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 576 if (status) { 577 dev_err(dev, "chipselect %d already in use\n", 578 spi->chip_select); 579 goto done; 580 } 581 582 /* Descriptors take precedence */ 583 if (ctlr->cs_gpiods) 584 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 585 else if (ctlr->cs_gpios) 586 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 587 588 /* Drivers may modify this initial i/o setup, but will 589 * normally rely on the device being setup. Devices 590 * using SPI_CS_HIGH can't coexist well otherwise... 591 */ 592 status = spi_setup(spi); 593 if (status < 0) { 594 dev_err(dev, "can't setup %s, status %d\n", 595 dev_name(&spi->dev), status); 596 goto done; 597 } 598 599 /* Device may be bound to an active driver when this returns */ 600 status = device_add(&spi->dev); 601 if (status < 0) 602 dev_err(dev, "can't add %s, status %d\n", 603 dev_name(&spi->dev), status); 604 else 605 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 606 607 done: 608 mutex_unlock(&spi_add_lock); 609 return status; 610 } 611 EXPORT_SYMBOL_GPL(spi_add_device); 612 613 /** 614 * spi_new_device - instantiate one new SPI device 615 * @ctlr: Controller to which device is connected 616 * @chip: Describes the SPI device 617 * Context: can sleep 618 * 619 * On typical mainboards, this is purely internal; and it's not needed 620 * after board init creates the hard-wired devices. Some development 621 * platforms may not be able to use spi_register_board_info though, and 622 * this is exported so that for example a USB or parport based adapter 623 * driver could add devices (which it would learn about out-of-band). 624 * 625 * Return: the new device, or NULL. 626 */ 627 struct spi_device *spi_new_device(struct spi_controller *ctlr, 628 struct spi_board_info *chip) 629 { 630 struct spi_device *proxy; 631 int status; 632 633 /* NOTE: caller did any chip->bus_num checks necessary. 634 * 635 * Also, unless we change the return value convention to use 636 * error-or-pointer (not NULL-or-pointer), troubleshootability 637 * suggests syslogged diagnostics are best here (ugh). 638 */ 639 640 proxy = spi_alloc_device(ctlr); 641 if (!proxy) 642 return NULL; 643 644 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 645 646 proxy->chip_select = chip->chip_select; 647 proxy->max_speed_hz = chip->max_speed_hz; 648 proxy->mode = chip->mode; 649 proxy->irq = chip->irq; 650 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 651 proxy->dev.platform_data = (void *) chip->platform_data; 652 proxy->controller_data = chip->controller_data; 653 proxy->controller_state = NULL; 654 655 if (chip->properties) { 656 status = device_add_properties(&proxy->dev, chip->properties); 657 if (status) { 658 dev_err(&ctlr->dev, 659 "failed to add properties to '%s': %d\n", 660 chip->modalias, status); 661 goto err_dev_put; 662 } 663 } 664 665 status = spi_add_device(proxy); 666 if (status < 0) 667 goto err_remove_props; 668 669 return proxy; 670 671 err_remove_props: 672 if (chip->properties) 673 device_remove_properties(&proxy->dev); 674 err_dev_put: 675 spi_dev_put(proxy); 676 return NULL; 677 } 678 EXPORT_SYMBOL_GPL(spi_new_device); 679 680 /** 681 * spi_unregister_device - unregister a single SPI device 682 * @spi: spi_device to unregister 683 * 684 * Start making the passed SPI device vanish. Normally this would be handled 685 * by spi_unregister_controller(). 686 */ 687 void spi_unregister_device(struct spi_device *spi) 688 { 689 if (!spi) 690 return; 691 692 if (spi->dev.of_node) { 693 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 694 of_node_put(spi->dev.of_node); 695 } 696 if (ACPI_COMPANION(&spi->dev)) 697 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 698 device_unregister(&spi->dev); 699 } 700 EXPORT_SYMBOL_GPL(spi_unregister_device); 701 702 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 703 struct spi_board_info *bi) 704 { 705 struct spi_device *dev; 706 707 if (ctlr->bus_num != bi->bus_num) 708 return; 709 710 dev = spi_new_device(ctlr, bi); 711 if (!dev) 712 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 713 bi->modalias); 714 } 715 716 /** 717 * spi_register_board_info - register SPI devices for a given board 718 * @info: array of chip descriptors 719 * @n: how many descriptors are provided 720 * Context: can sleep 721 * 722 * Board-specific early init code calls this (probably during arch_initcall) 723 * with segments of the SPI device table. Any device nodes are created later, 724 * after the relevant parent SPI controller (bus_num) is defined. We keep 725 * this table of devices forever, so that reloading a controller driver will 726 * not make Linux forget about these hard-wired devices. 727 * 728 * Other code can also call this, e.g. a particular add-on board might provide 729 * SPI devices through its expansion connector, so code initializing that board 730 * would naturally declare its SPI devices. 731 * 732 * The board info passed can safely be __initdata ... but be careful of 733 * any embedded pointers (platform_data, etc), they're copied as-is. 734 * Device properties are deep-copied though. 735 * 736 * Return: zero on success, else a negative error code. 737 */ 738 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 739 { 740 struct boardinfo *bi; 741 int i; 742 743 if (!n) 744 return 0; 745 746 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 747 if (!bi) 748 return -ENOMEM; 749 750 for (i = 0; i < n; i++, bi++, info++) { 751 struct spi_controller *ctlr; 752 753 memcpy(&bi->board_info, info, sizeof(*info)); 754 if (info->properties) { 755 bi->board_info.properties = 756 property_entries_dup(info->properties); 757 if (IS_ERR(bi->board_info.properties)) 758 return PTR_ERR(bi->board_info.properties); 759 } 760 761 mutex_lock(&board_lock); 762 list_add_tail(&bi->list, &board_list); 763 list_for_each_entry(ctlr, &spi_controller_list, list) 764 spi_match_controller_to_boardinfo(ctlr, 765 &bi->board_info); 766 mutex_unlock(&board_lock); 767 } 768 769 return 0; 770 } 771 772 /*-------------------------------------------------------------------------*/ 773 774 static void spi_set_cs(struct spi_device *spi, bool enable) 775 { 776 if (spi->mode & SPI_CS_HIGH) 777 enable = !enable; 778 779 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 780 /* 781 * Honour the SPI_NO_CS flag and invert the enable line, as 782 * active low is default for SPI. Execution paths that handle 783 * polarity inversion in gpiolib (such as device tree) will 784 * enforce active high using the SPI_CS_HIGH resulting in a 785 * double inversion through the code above. 786 */ 787 if (!(spi->mode & SPI_NO_CS)) { 788 if (spi->cs_gpiod) 789 gpiod_set_value_cansleep(spi->cs_gpiod, 790 !enable); 791 else 792 gpio_set_value_cansleep(spi->cs_gpio, !enable); 793 } 794 /* Some SPI masters need both GPIO CS & slave_select */ 795 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 796 spi->controller->set_cs) 797 spi->controller->set_cs(spi, !enable); 798 } else if (spi->controller->set_cs) { 799 spi->controller->set_cs(spi, !enable); 800 } 801 } 802 803 #ifdef CONFIG_HAS_DMA 804 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 805 struct sg_table *sgt, void *buf, size_t len, 806 enum dma_data_direction dir) 807 { 808 const bool vmalloced_buf = is_vmalloc_addr(buf); 809 unsigned int max_seg_size = dma_get_max_seg_size(dev); 810 #ifdef CONFIG_HIGHMEM 811 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 812 (unsigned long)buf < (PKMAP_BASE + 813 (LAST_PKMAP * PAGE_SIZE))); 814 #else 815 const bool kmap_buf = false; 816 #endif 817 int desc_len; 818 int sgs; 819 struct page *vm_page; 820 struct scatterlist *sg; 821 void *sg_buf; 822 size_t min; 823 int i, ret; 824 825 if (vmalloced_buf || kmap_buf) { 826 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 827 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 828 } else if (virt_addr_valid(buf)) { 829 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 830 sgs = DIV_ROUND_UP(len, desc_len); 831 } else { 832 return -EINVAL; 833 } 834 835 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 836 if (ret != 0) 837 return ret; 838 839 sg = &sgt->sgl[0]; 840 for (i = 0; i < sgs; i++) { 841 842 if (vmalloced_buf || kmap_buf) { 843 /* 844 * Next scatterlist entry size is the minimum between 845 * the desc_len and the remaining buffer length that 846 * fits in a page. 847 */ 848 min = min_t(size_t, desc_len, 849 min_t(size_t, len, 850 PAGE_SIZE - offset_in_page(buf))); 851 if (vmalloced_buf) 852 vm_page = vmalloc_to_page(buf); 853 else 854 vm_page = kmap_to_page(buf); 855 if (!vm_page) { 856 sg_free_table(sgt); 857 return -ENOMEM; 858 } 859 sg_set_page(sg, vm_page, 860 min, offset_in_page(buf)); 861 } else { 862 min = min_t(size_t, len, desc_len); 863 sg_buf = buf; 864 sg_set_buf(sg, sg_buf, min); 865 } 866 867 buf += min; 868 len -= min; 869 sg = sg_next(sg); 870 } 871 872 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 873 if (!ret) 874 ret = -ENOMEM; 875 if (ret < 0) { 876 sg_free_table(sgt); 877 return ret; 878 } 879 880 sgt->nents = ret; 881 882 return 0; 883 } 884 885 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 886 struct sg_table *sgt, enum dma_data_direction dir) 887 { 888 if (sgt->orig_nents) { 889 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 890 sg_free_table(sgt); 891 } 892 } 893 894 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 895 { 896 struct device *tx_dev, *rx_dev; 897 struct spi_transfer *xfer; 898 int ret; 899 900 if (!ctlr->can_dma) 901 return 0; 902 903 if (ctlr->dma_tx) 904 tx_dev = ctlr->dma_tx->device->dev; 905 else 906 tx_dev = ctlr->dev.parent; 907 908 if (ctlr->dma_rx) 909 rx_dev = ctlr->dma_rx->device->dev; 910 else 911 rx_dev = ctlr->dev.parent; 912 913 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 914 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 915 continue; 916 917 if (xfer->tx_buf != NULL) { 918 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 919 (void *)xfer->tx_buf, xfer->len, 920 DMA_TO_DEVICE); 921 if (ret != 0) 922 return ret; 923 } 924 925 if (xfer->rx_buf != NULL) { 926 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 927 xfer->rx_buf, xfer->len, 928 DMA_FROM_DEVICE); 929 if (ret != 0) { 930 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 931 DMA_TO_DEVICE); 932 return ret; 933 } 934 } 935 } 936 937 ctlr->cur_msg_mapped = true; 938 939 return 0; 940 } 941 942 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 943 { 944 struct spi_transfer *xfer; 945 struct device *tx_dev, *rx_dev; 946 947 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 948 return 0; 949 950 if (ctlr->dma_tx) 951 tx_dev = ctlr->dma_tx->device->dev; 952 else 953 tx_dev = ctlr->dev.parent; 954 955 if (ctlr->dma_rx) 956 rx_dev = ctlr->dma_rx->device->dev; 957 else 958 rx_dev = ctlr->dev.parent; 959 960 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 961 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 962 continue; 963 964 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 965 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 966 } 967 968 return 0; 969 } 970 #else /* !CONFIG_HAS_DMA */ 971 static inline int __spi_map_msg(struct spi_controller *ctlr, 972 struct spi_message *msg) 973 { 974 return 0; 975 } 976 977 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 978 struct spi_message *msg) 979 { 980 return 0; 981 } 982 #endif /* !CONFIG_HAS_DMA */ 983 984 static inline int spi_unmap_msg(struct spi_controller *ctlr, 985 struct spi_message *msg) 986 { 987 struct spi_transfer *xfer; 988 989 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 990 /* 991 * Restore the original value of tx_buf or rx_buf if they are 992 * NULL. 993 */ 994 if (xfer->tx_buf == ctlr->dummy_tx) 995 xfer->tx_buf = NULL; 996 if (xfer->rx_buf == ctlr->dummy_rx) 997 xfer->rx_buf = NULL; 998 } 999 1000 return __spi_unmap_msg(ctlr, msg); 1001 } 1002 1003 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1004 { 1005 struct spi_transfer *xfer; 1006 void *tmp; 1007 unsigned int max_tx, max_rx; 1008 1009 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { 1010 max_tx = 0; 1011 max_rx = 0; 1012 1013 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1014 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1015 !xfer->tx_buf) 1016 max_tx = max(xfer->len, max_tx); 1017 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1018 !xfer->rx_buf) 1019 max_rx = max(xfer->len, max_rx); 1020 } 1021 1022 if (max_tx) { 1023 tmp = krealloc(ctlr->dummy_tx, max_tx, 1024 GFP_KERNEL | GFP_DMA); 1025 if (!tmp) 1026 return -ENOMEM; 1027 ctlr->dummy_tx = tmp; 1028 memset(tmp, 0, max_tx); 1029 } 1030 1031 if (max_rx) { 1032 tmp = krealloc(ctlr->dummy_rx, max_rx, 1033 GFP_KERNEL | GFP_DMA); 1034 if (!tmp) 1035 return -ENOMEM; 1036 ctlr->dummy_rx = tmp; 1037 } 1038 1039 if (max_tx || max_rx) { 1040 list_for_each_entry(xfer, &msg->transfers, 1041 transfer_list) { 1042 if (!xfer->tx_buf) 1043 xfer->tx_buf = ctlr->dummy_tx; 1044 if (!xfer->rx_buf) 1045 xfer->rx_buf = ctlr->dummy_rx; 1046 } 1047 } 1048 } 1049 1050 return __spi_map_msg(ctlr, msg); 1051 } 1052 1053 static int spi_transfer_wait(struct spi_controller *ctlr, 1054 struct spi_message *msg, 1055 struct spi_transfer *xfer) 1056 { 1057 struct spi_statistics *statm = &ctlr->statistics; 1058 struct spi_statistics *stats = &msg->spi->statistics; 1059 unsigned long long ms = 1; 1060 1061 if (spi_controller_is_slave(ctlr)) { 1062 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1063 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1064 return -EINTR; 1065 } 1066 } else { 1067 ms = 8LL * 1000LL * xfer->len; 1068 do_div(ms, xfer->speed_hz); 1069 ms += ms + 200; /* some tolerance */ 1070 1071 if (ms > UINT_MAX) 1072 ms = UINT_MAX; 1073 1074 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1075 msecs_to_jiffies(ms)); 1076 1077 if (ms == 0) { 1078 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1079 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1080 dev_err(&msg->spi->dev, 1081 "SPI transfer timed out\n"); 1082 return -ETIMEDOUT; 1083 } 1084 } 1085 1086 return 0; 1087 } 1088 1089 /* 1090 * spi_transfer_one_message - Default implementation of transfer_one_message() 1091 * 1092 * This is a standard implementation of transfer_one_message() for 1093 * drivers which implement a transfer_one() operation. It provides 1094 * standard handling of delays and chip select management. 1095 */ 1096 static int spi_transfer_one_message(struct spi_controller *ctlr, 1097 struct spi_message *msg) 1098 { 1099 struct spi_transfer *xfer; 1100 bool keep_cs = false; 1101 int ret = 0; 1102 struct spi_statistics *statm = &ctlr->statistics; 1103 struct spi_statistics *stats = &msg->spi->statistics; 1104 1105 spi_set_cs(msg->spi, true); 1106 1107 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1108 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1109 1110 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1111 trace_spi_transfer_start(msg, xfer); 1112 1113 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1114 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1115 1116 if (xfer->tx_buf || xfer->rx_buf) { 1117 reinit_completion(&ctlr->xfer_completion); 1118 1119 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1120 if (ret < 0) { 1121 SPI_STATISTICS_INCREMENT_FIELD(statm, 1122 errors); 1123 SPI_STATISTICS_INCREMENT_FIELD(stats, 1124 errors); 1125 dev_err(&msg->spi->dev, 1126 "SPI transfer failed: %d\n", ret); 1127 goto out; 1128 } 1129 1130 if (ret > 0) { 1131 ret = spi_transfer_wait(ctlr, msg, xfer); 1132 if (ret < 0) 1133 msg->status = ret; 1134 } 1135 } else { 1136 if (xfer->len) 1137 dev_err(&msg->spi->dev, 1138 "Bufferless transfer has length %u\n", 1139 xfer->len); 1140 } 1141 1142 trace_spi_transfer_stop(msg, xfer); 1143 1144 if (msg->status != -EINPROGRESS) 1145 goto out; 1146 1147 if (xfer->delay_usecs) { 1148 u16 us = xfer->delay_usecs; 1149 1150 if (us <= 10) 1151 udelay(us); 1152 else 1153 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1154 } 1155 1156 if (xfer->cs_change) { 1157 if (list_is_last(&xfer->transfer_list, 1158 &msg->transfers)) { 1159 keep_cs = true; 1160 } else { 1161 spi_set_cs(msg->spi, false); 1162 udelay(10); 1163 spi_set_cs(msg->spi, true); 1164 } 1165 } 1166 1167 msg->actual_length += xfer->len; 1168 } 1169 1170 out: 1171 if (ret != 0 || !keep_cs) 1172 spi_set_cs(msg->spi, false); 1173 1174 if (msg->status == -EINPROGRESS) 1175 msg->status = ret; 1176 1177 if (msg->status && ctlr->handle_err) 1178 ctlr->handle_err(ctlr, msg); 1179 1180 spi_res_release(ctlr, msg); 1181 1182 spi_finalize_current_message(ctlr); 1183 1184 return ret; 1185 } 1186 1187 /** 1188 * spi_finalize_current_transfer - report completion of a transfer 1189 * @ctlr: the controller reporting completion 1190 * 1191 * Called by SPI drivers using the core transfer_one_message() 1192 * implementation to notify it that the current interrupt driven 1193 * transfer has finished and the next one may be scheduled. 1194 */ 1195 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1196 { 1197 complete(&ctlr->xfer_completion); 1198 } 1199 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1200 1201 /** 1202 * __spi_pump_messages - function which processes spi message queue 1203 * @ctlr: controller to process queue for 1204 * @in_kthread: true if we are in the context of the message pump thread 1205 * 1206 * This function checks if there is any spi message in the queue that 1207 * needs processing and if so call out to the driver to initialize hardware 1208 * and transfer each message. 1209 * 1210 * Note that it is called both from the kthread itself and also from 1211 * inside spi_sync(); the queue extraction handling at the top of the 1212 * function should deal with this safely. 1213 */ 1214 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1215 { 1216 unsigned long flags; 1217 bool was_busy = false; 1218 int ret; 1219 1220 /* Lock queue */ 1221 spin_lock_irqsave(&ctlr->queue_lock, flags); 1222 1223 /* Make sure we are not already running a message */ 1224 if (ctlr->cur_msg) { 1225 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1226 return; 1227 } 1228 1229 /* If another context is idling the device then defer */ 1230 if (ctlr->idling) { 1231 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1232 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1233 return; 1234 } 1235 1236 /* Check if the queue is idle */ 1237 if (list_empty(&ctlr->queue) || !ctlr->running) { 1238 if (!ctlr->busy) { 1239 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1240 return; 1241 } 1242 1243 /* Only do teardown in the thread */ 1244 if (!in_kthread) { 1245 kthread_queue_work(&ctlr->kworker, 1246 &ctlr->pump_messages); 1247 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1248 return; 1249 } 1250 1251 ctlr->busy = false; 1252 ctlr->idling = true; 1253 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1254 1255 kfree(ctlr->dummy_rx); 1256 ctlr->dummy_rx = NULL; 1257 kfree(ctlr->dummy_tx); 1258 ctlr->dummy_tx = NULL; 1259 if (ctlr->unprepare_transfer_hardware && 1260 ctlr->unprepare_transfer_hardware(ctlr)) 1261 dev_err(&ctlr->dev, 1262 "failed to unprepare transfer hardware\n"); 1263 if (ctlr->auto_runtime_pm) { 1264 pm_runtime_mark_last_busy(ctlr->dev.parent); 1265 pm_runtime_put_autosuspend(ctlr->dev.parent); 1266 } 1267 trace_spi_controller_idle(ctlr); 1268 1269 spin_lock_irqsave(&ctlr->queue_lock, flags); 1270 ctlr->idling = false; 1271 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1272 return; 1273 } 1274 1275 /* Extract head of queue */ 1276 ctlr->cur_msg = 1277 list_first_entry(&ctlr->queue, struct spi_message, queue); 1278 1279 list_del_init(&ctlr->cur_msg->queue); 1280 if (ctlr->busy) 1281 was_busy = true; 1282 else 1283 ctlr->busy = true; 1284 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1285 1286 mutex_lock(&ctlr->io_mutex); 1287 1288 if (!was_busy && ctlr->auto_runtime_pm) { 1289 ret = pm_runtime_get_sync(ctlr->dev.parent); 1290 if (ret < 0) { 1291 pm_runtime_put_noidle(ctlr->dev.parent); 1292 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1293 ret); 1294 mutex_unlock(&ctlr->io_mutex); 1295 return; 1296 } 1297 } 1298 1299 if (!was_busy) 1300 trace_spi_controller_busy(ctlr); 1301 1302 if (!was_busy && ctlr->prepare_transfer_hardware) { 1303 ret = ctlr->prepare_transfer_hardware(ctlr); 1304 if (ret) { 1305 dev_err(&ctlr->dev, 1306 "failed to prepare transfer hardware\n"); 1307 1308 if (ctlr->auto_runtime_pm) 1309 pm_runtime_put(ctlr->dev.parent); 1310 mutex_unlock(&ctlr->io_mutex); 1311 return; 1312 } 1313 } 1314 1315 trace_spi_message_start(ctlr->cur_msg); 1316 1317 if (ctlr->prepare_message) { 1318 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg); 1319 if (ret) { 1320 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1321 ret); 1322 ctlr->cur_msg->status = ret; 1323 spi_finalize_current_message(ctlr); 1324 goto out; 1325 } 1326 ctlr->cur_msg_prepared = true; 1327 } 1328 1329 ret = spi_map_msg(ctlr, ctlr->cur_msg); 1330 if (ret) { 1331 ctlr->cur_msg->status = ret; 1332 spi_finalize_current_message(ctlr); 1333 goto out; 1334 } 1335 1336 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg); 1337 if (ret) { 1338 dev_err(&ctlr->dev, 1339 "failed to transfer one message from queue\n"); 1340 goto out; 1341 } 1342 1343 out: 1344 mutex_unlock(&ctlr->io_mutex); 1345 1346 /* Prod the scheduler in case transfer_one() was busy waiting */ 1347 if (!ret) 1348 cond_resched(); 1349 } 1350 1351 /** 1352 * spi_pump_messages - kthread work function which processes spi message queue 1353 * @work: pointer to kthread work struct contained in the controller struct 1354 */ 1355 static void spi_pump_messages(struct kthread_work *work) 1356 { 1357 struct spi_controller *ctlr = 1358 container_of(work, struct spi_controller, pump_messages); 1359 1360 __spi_pump_messages(ctlr, true); 1361 } 1362 1363 static int spi_init_queue(struct spi_controller *ctlr) 1364 { 1365 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1366 1367 ctlr->running = false; 1368 ctlr->busy = false; 1369 1370 kthread_init_worker(&ctlr->kworker); 1371 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, 1372 "%s", dev_name(&ctlr->dev)); 1373 if (IS_ERR(ctlr->kworker_task)) { 1374 dev_err(&ctlr->dev, "failed to create message pump task\n"); 1375 return PTR_ERR(ctlr->kworker_task); 1376 } 1377 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1378 1379 /* 1380 * Controller config will indicate if this controller should run the 1381 * message pump with high (realtime) priority to reduce the transfer 1382 * latency on the bus by minimising the delay between a transfer 1383 * request and the scheduling of the message pump thread. Without this 1384 * setting the message pump thread will remain at default priority. 1385 */ 1386 if (ctlr->rt) { 1387 dev_info(&ctlr->dev, 1388 "will run message pump with realtime priority\n"); 1389 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); 1390 } 1391 1392 return 0; 1393 } 1394 1395 /** 1396 * spi_get_next_queued_message() - called by driver to check for queued 1397 * messages 1398 * @ctlr: the controller to check for queued messages 1399 * 1400 * If there are more messages in the queue, the next message is returned from 1401 * this call. 1402 * 1403 * Return: the next message in the queue, else NULL if the queue is empty. 1404 */ 1405 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1406 { 1407 struct spi_message *next; 1408 unsigned long flags; 1409 1410 /* get a pointer to the next message, if any */ 1411 spin_lock_irqsave(&ctlr->queue_lock, flags); 1412 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1413 queue); 1414 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1415 1416 return next; 1417 } 1418 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1419 1420 /** 1421 * spi_finalize_current_message() - the current message is complete 1422 * @ctlr: the controller to return the message to 1423 * 1424 * Called by the driver to notify the core that the message in the front of the 1425 * queue is complete and can be removed from the queue. 1426 */ 1427 void spi_finalize_current_message(struct spi_controller *ctlr) 1428 { 1429 struct spi_message *mesg; 1430 unsigned long flags; 1431 int ret; 1432 1433 spin_lock_irqsave(&ctlr->queue_lock, flags); 1434 mesg = ctlr->cur_msg; 1435 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1436 1437 spi_unmap_msg(ctlr, mesg); 1438 1439 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1440 ret = ctlr->unprepare_message(ctlr, mesg); 1441 if (ret) { 1442 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1443 ret); 1444 } 1445 } 1446 1447 spin_lock_irqsave(&ctlr->queue_lock, flags); 1448 ctlr->cur_msg = NULL; 1449 ctlr->cur_msg_prepared = false; 1450 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1451 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1452 1453 trace_spi_message_done(mesg); 1454 1455 mesg->state = NULL; 1456 if (mesg->complete) 1457 mesg->complete(mesg->context); 1458 } 1459 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1460 1461 static int spi_start_queue(struct spi_controller *ctlr) 1462 { 1463 unsigned long flags; 1464 1465 spin_lock_irqsave(&ctlr->queue_lock, flags); 1466 1467 if (ctlr->running || ctlr->busy) { 1468 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1469 return -EBUSY; 1470 } 1471 1472 ctlr->running = true; 1473 ctlr->cur_msg = NULL; 1474 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1475 1476 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1477 1478 return 0; 1479 } 1480 1481 static int spi_stop_queue(struct spi_controller *ctlr) 1482 { 1483 unsigned long flags; 1484 unsigned limit = 500; 1485 int ret = 0; 1486 1487 spin_lock_irqsave(&ctlr->queue_lock, flags); 1488 1489 /* 1490 * This is a bit lame, but is optimized for the common execution path. 1491 * A wait_queue on the ctlr->busy could be used, but then the common 1492 * execution path (pump_messages) would be required to call wake_up or 1493 * friends on every SPI message. Do this instead. 1494 */ 1495 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1496 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1497 usleep_range(10000, 11000); 1498 spin_lock_irqsave(&ctlr->queue_lock, flags); 1499 } 1500 1501 if (!list_empty(&ctlr->queue) || ctlr->busy) 1502 ret = -EBUSY; 1503 else 1504 ctlr->running = false; 1505 1506 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1507 1508 if (ret) { 1509 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1510 return ret; 1511 } 1512 return ret; 1513 } 1514 1515 static int spi_destroy_queue(struct spi_controller *ctlr) 1516 { 1517 int ret; 1518 1519 ret = spi_stop_queue(ctlr); 1520 1521 /* 1522 * kthread_flush_worker will block until all work is done. 1523 * If the reason that stop_queue timed out is that the work will never 1524 * finish, then it does no good to call flush/stop thread, so 1525 * return anyway. 1526 */ 1527 if (ret) { 1528 dev_err(&ctlr->dev, "problem destroying queue\n"); 1529 return ret; 1530 } 1531 1532 kthread_flush_worker(&ctlr->kworker); 1533 kthread_stop(ctlr->kworker_task); 1534 1535 return 0; 1536 } 1537 1538 static int __spi_queued_transfer(struct spi_device *spi, 1539 struct spi_message *msg, 1540 bool need_pump) 1541 { 1542 struct spi_controller *ctlr = spi->controller; 1543 unsigned long flags; 1544 1545 spin_lock_irqsave(&ctlr->queue_lock, flags); 1546 1547 if (!ctlr->running) { 1548 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1549 return -ESHUTDOWN; 1550 } 1551 msg->actual_length = 0; 1552 msg->status = -EINPROGRESS; 1553 1554 list_add_tail(&msg->queue, &ctlr->queue); 1555 if (!ctlr->busy && need_pump) 1556 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1557 1558 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1559 return 0; 1560 } 1561 1562 /** 1563 * spi_queued_transfer - transfer function for queued transfers 1564 * @spi: spi device which is requesting transfer 1565 * @msg: spi message which is to handled is queued to driver queue 1566 * 1567 * Return: zero on success, else a negative error code. 1568 */ 1569 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1570 { 1571 return __spi_queued_transfer(spi, msg, true); 1572 } 1573 1574 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1575 { 1576 int ret; 1577 1578 ctlr->transfer = spi_queued_transfer; 1579 if (!ctlr->transfer_one_message) 1580 ctlr->transfer_one_message = spi_transfer_one_message; 1581 1582 /* Initialize and start queue */ 1583 ret = spi_init_queue(ctlr); 1584 if (ret) { 1585 dev_err(&ctlr->dev, "problem initializing queue\n"); 1586 goto err_init_queue; 1587 } 1588 ctlr->queued = true; 1589 ret = spi_start_queue(ctlr); 1590 if (ret) { 1591 dev_err(&ctlr->dev, "problem starting queue\n"); 1592 goto err_start_queue; 1593 } 1594 1595 return 0; 1596 1597 err_start_queue: 1598 spi_destroy_queue(ctlr); 1599 err_init_queue: 1600 return ret; 1601 } 1602 1603 /** 1604 * spi_flush_queue - Send all pending messages in the queue from the callers' 1605 * context 1606 * @ctlr: controller to process queue for 1607 * 1608 * This should be used when one wants to ensure all pending messages have been 1609 * sent before doing something. Is used by the spi-mem code to make sure SPI 1610 * memory operations do not preempt regular SPI transfers that have been queued 1611 * before the spi-mem operation. 1612 */ 1613 void spi_flush_queue(struct spi_controller *ctlr) 1614 { 1615 if (ctlr->transfer == spi_queued_transfer) 1616 __spi_pump_messages(ctlr, false); 1617 } 1618 1619 /*-------------------------------------------------------------------------*/ 1620 1621 #if defined(CONFIG_OF) 1622 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1623 struct device_node *nc) 1624 { 1625 u32 value; 1626 int rc; 1627 1628 /* Mode (clock phase/polarity/etc.) */ 1629 if (of_property_read_bool(nc, "spi-cpha")) 1630 spi->mode |= SPI_CPHA; 1631 if (of_property_read_bool(nc, "spi-cpol")) 1632 spi->mode |= SPI_CPOL; 1633 if (of_property_read_bool(nc, "spi-3wire")) 1634 spi->mode |= SPI_3WIRE; 1635 if (of_property_read_bool(nc, "spi-lsb-first")) 1636 spi->mode |= SPI_LSB_FIRST; 1637 1638 /* 1639 * For descriptors associated with the device, polarity inversion is 1640 * handled in the gpiolib, so all chip selects are "active high" in 1641 * the logical sense, the gpiolib will invert the line if need be. 1642 */ 1643 if (ctlr->use_gpio_descriptors) 1644 spi->mode |= SPI_CS_HIGH; 1645 else if (of_property_read_bool(nc, "spi-cs-high")) 1646 spi->mode |= SPI_CS_HIGH; 1647 1648 /* Device DUAL/QUAD mode */ 1649 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1650 switch (value) { 1651 case 1: 1652 break; 1653 case 2: 1654 spi->mode |= SPI_TX_DUAL; 1655 break; 1656 case 4: 1657 spi->mode |= SPI_TX_QUAD; 1658 break; 1659 case 8: 1660 spi->mode |= SPI_TX_OCTAL; 1661 break; 1662 default: 1663 dev_warn(&ctlr->dev, 1664 "spi-tx-bus-width %d not supported\n", 1665 value); 1666 break; 1667 } 1668 } 1669 1670 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1671 switch (value) { 1672 case 1: 1673 break; 1674 case 2: 1675 spi->mode |= SPI_RX_DUAL; 1676 break; 1677 case 4: 1678 spi->mode |= SPI_RX_QUAD; 1679 break; 1680 case 8: 1681 spi->mode |= SPI_RX_OCTAL; 1682 break; 1683 default: 1684 dev_warn(&ctlr->dev, 1685 "spi-rx-bus-width %d not supported\n", 1686 value); 1687 break; 1688 } 1689 } 1690 1691 if (spi_controller_is_slave(ctlr)) { 1692 if (!of_node_name_eq(nc, "slave")) { 1693 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1694 nc); 1695 return -EINVAL; 1696 } 1697 return 0; 1698 } 1699 1700 /* Device address */ 1701 rc = of_property_read_u32(nc, "reg", &value); 1702 if (rc) { 1703 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1704 nc, rc); 1705 return rc; 1706 } 1707 spi->chip_select = value; 1708 1709 /* Device speed */ 1710 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1711 if (rc) { 1712 dev_err(&ctlr->dev, 1713 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); 1714 return rc; 1715 } 1716 spi->max_speed_hz = value; 1717 1718 return 0; 1719 } 1720 1721 static struct spi_device * 1722 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1723 { 1724 struct spi_device *spi; 1725 int rc; 1726 1727 /* Alloc an spi_device */ 1728 spi = spi_alloc_device(ctlr); 1729 if (!spi) { 1730 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 1731 rc = -ENOMEM; 1732 goto err_out; 1733 } 1734 1735 /* Select device driver */ 1736 rc = of_modalias_node(nc, spi->modalias, 1737 sizeof(spi->modalias)); 1738 if (rc < 0) { 1739 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 1740 goto err_out; 1741 } 1742 1743 rc = of_spi_parse_dt(ctlr, spi, nc); 1744 if (rc) 1745 goto err_out; 1746 1747 /* Store a pointer to the node in the device structure */ 1748 of_node_get(nc); 1749 spi->dev.of_node = nc; 1750 1751 /* Register the new device */ 1752 rc = spi_add_device(spi); 1753 if (rc) { 1754 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 1755 goto err_of_node_put; 1756 } 1757 1758 return spi; 1759 1760 err_of_node_put: 1761 of_node_put(nc); 1762 err_out: 1763 spi_dev_put(spi); 1764 return ERR_PTR(rc); 1765 } 1766 1767 /** 1768 * of_register_spi_devices() - Register child devices onto the SPI bus 1769 * @ctlr: Pointer to spi_controller device 1770 * 1771 * Registers an spi_device for each child node of controller node which 1772 * represents a valid SPI slave. 1773 */ 1774 static void of_register_spi_devices(struct spi_controller *ctlr) 1775 { 1776 struct spi_device *spi; 1777 struct device_node *nc; 1778 1779 if (!ctlr->dev.of_node) 1780 return; 1781 1782 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 1783 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 1784 continue; 1785 spi = of_register_spi_device(ctlr, nc); 1786 if (IS_ERR(spi)) { 1787 dev_warn(&ctlr->dev, 1788 "Failed to create SPI device for %pOF\n", nc); 1789 of_node_clear_flag(nc, OF_POPULATED); 1790 } 1791 } 1792 } 1793 #else 1794 static void of_register_spi_devices(struct spi_controller *ctlr) { } 1795 #endif 1796 1797 #ifdef CONFIG_ACPI 1798 static void acpi_spi_parse_apple_properties(struct spi_device *spi) 1799 { 1800 struct acpi_device *dev = ACPI_COMPANION(&spi->dev); 1801 const union acpi_object *obj; 1802 1803 if (!x86_apple_machine) 1804 return; 1805 1806 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 1807 && obj->buffer.length >= 4) 1808 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 1809 1810 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 1811 && obj->buffer.length == 8) 1812 spi->bits_per_word = *(u64 *)obj->buffer.pointer; 1813 1814 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 1815 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 1816 spi->mode |= SPI_LSB_FIRST; 1817 1818 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 1819 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1820 spi->mode |= SPI_CPOL; 1821 1822 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 1823 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1824 spi->mode |= SPI_CPHA; 1825 } 1826 1827 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1828 { 1829 struct spi_device *spi = data; 1830 struct spi_controller *ctlr = spi->controller; 1831 1832 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1833 struct acpi_resource_spi_serialbus *sb; 1834 1835 sb = &ares->data.spi_serial_bus; 1836 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1837 /* 1838 * ACPI DeviceSelection numbering is handled by the 1839 * host controller driver in Windows and can vary 1840 * from driver to driver. In Linux we always expect 1841 * 0 .. max - 1 so we need to ask the driver to 1842 * translate between the two schemes. 1843 */ 1844 if (ctlr->fw_translate_cs) { 1845 int cs = ctlr->fw_translate_cs(ctlr, 1846 sb->device_selection); 1847 if (cs < 0) 1848 return cs; 1849 spi->chip_select = cs; 1850 } else { 1851 spi->chip_select = sb->device_selection; 1852 } 1853 1854 spi->max_speed_hz = sb->connection_speed; 1855 1856 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1857 spi->mode |= SPI_CPHA; 1858 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1859 spi->mode |= SPI_CPOL; 1860 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1861 spi->mode |= SPI_CS_HIGH; 1862 } 1863 } else if (spi->irq < 0) { 1864 struct resource r; 1865 1866 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1867 spi->irq = r.start; 1868 } 1869 1870 /* Always tell the ACPI core to skip this resource */ 1871 return 1; 1872 } 1873 1874 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 1875 struct acpi_device *adev) 1876 { 1877 struct list_head resource_list; 1878 struct spi_device *spi; 1879 int ret; 1880 1881 if (acpi_bus_get_status(adev) || !adev->status.present || 1882 acpi_device_enumerated(adev)) 1883 return AE_OK; 1884 1885 spi = spi_alloc_device(ctlr); 1886 if (!spi) { 1887 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 1888 dev_name(&adev->dev)); 1889 return AE_NO_MEMORY; 1890 } 1891 1892 ACPI_COMPANION_SET(&spi->dev, adev); 1893 spi->irq = -1; 1894 1895 INIT_LIST_HEAD(&resource_list); 1896 ret = acpi_dev_get_resources(adev, &resource_list, 1897 acpi_spi_add_resource, spi); 1898 acpi_dev_free_resource_list(&resource_list); 1899 1900 acpi_spi_parse_apple_properties(spi); 1901 1902 if (ret < 0 || !spi->max_speed_hz) { 1903 spi_dev_put(spi); 1904 return AE_OK; 1905 } 1906 1907 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 1908 sizeof(spi->modalias)); 1909 1910 if (spi->irq < 0) 1911 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 1912 1913 acpi_device_set_enumerated(adev); 1914 1915 adev->power.flags.ignore_parent = true; 1916 if (spi_add_device(spi)) { 1917 adev->power.flags.ignore_parent = false; 1918 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 1919 dev_name(&adev->dev)); 1920 spi_dev_put(spi); 1921 } 1922 1923 return AE_OK; 1924 } 1925 1926 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1927 void *data, void **return_value) 1928 { 1929 struct spi_controller *ctlr = data; 1930 struct acpi_device *adev; 1931 1932 if (acpi_bus_get_device(handle, &adev)) 1933 return AE_OK; 1934 1935 return acpi_register_spi_device(ctlr, adev); 1936 } 1937 1938 static void acpi_register_spi_devices(struct spi_controller *ctlr) 1939 { 1940 acpi_status status; 1941 acpi_handle handle; 1942 1943 handle = ACPI_HANDLE(ctlr->dev.parent); 1944 if (!handle) 1945 return; 1946 1947 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1948 acpi_spi_add_device, NULL, ctlr, NULL); 1949 if (ACPI_FAILURE(status)) 1950 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 1951 } 1952 #else 1953 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 1954 #endif /* CONFIG_ACPI */ 1955 1956 static void spi_controller_release(struct device *dev) 1957 { 1958 struct spi_controller *ctlr; 1959 1960 ctlr = container_of(dev, struct spi_controller, dev); 1961 kfree(ctlr); 1962 } 1963 1964 static struct class spi_master_class = { 1965 .name = "spi_master", 1966 .owner = THIS_MODULE, 1967 .dev_release = spi_controller_release, 1968 .dev_groups = spi_master_groups, 1969 }; 1970 1971 #ifdef CONFIG_SPI_SLAVE 1972 /** 1973 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 1974 * controller 1975 * @spi: device used for the current transfer 1976 */ 1977 int spi_slave_abort(struct spi_device *spi) 1978 { 1979 struct spi_controller *ctlr = spi->controller; 1980 1981 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 1982 return ctlr->slave_abort(ctlr); 1983 1984 return -ENOTSUPP; 1985 } 1986 EXPORT_SYMBOL_GPL(spi_slave_abort); 1987 1988 static int match_true(struct device *dev, void *data) 1989 { 1990 return 1; 1991 } 1992 1993 static ssize_t spi_slave_show(struct device *dev, 1994 struct device_attribute *attr, char *buf) 1995 { 1996 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 1997 dev); 1998 struct device *child; 1999 2000 child = device_find_child(&ctlr->dev, NULL, match_true); 2001 return sprintf(buf, "%s\n", 2002 child ? to_spi_device(child)->modalias : NULL); 2003 } 2004 2005 static ssize_t spi_slave_store(struct device *dev, 2006 struct device_attribute *attr, const char *buf, 2007 size_t count) 2008 { 2009 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2010 dev); 2011 struct spi_device *spi; 2012 struct device *child; 2013 char name[32]; 2014 int rc; 2015 2016 rc = sscanf(buf, "%31s", name); 2017 if (rc != 1 || !name[0]) 2018 return -EINVAL; 2019 2020 child = device_find_child(&ctlr->dev, NULL, match_true); 2021 if (child) { 2022 /* Remove registered slave */ 2023 device_unregister(child); 2024 put_device(child); 2025 } 2026 2027 if (strcmp(name, "(null)")) { 2028 /* Register new slave */ 2029 spi = spi_alloc_device(ctlr); 2030 if (!spi) 2031 return -ENOMEM; 2032 2033 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2034 2035 rc = spi_add_device(spi); 2036 if (rc) { 2037 spi_dev_put(spi); 2038 return rc; 2039 } 2040 } 2041 2042 return count; 2043 } 2044 2045 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store); 2046 2047 static struct attribute *spi_slave_attrs[] = { 2048 &dev_attr_slave.attr, 2049 NULL, 2050 }; 2051 2052 static const struct attribute_group spi_slave_group = { 2053 .attrs = spi_slave_attrs, 2054 }; 2055 2056 static const struct attribute_group *spi_slave_groups[] = { 2057 &spi_controller_statistics_group, 2058 &spi_slave_group, 2059 NULL, 2060 }; 2061 2062 static struct class spi_slave_class = { 2063 .name = "spi_slave", 2064 .owner = THIS_MODULE, 2065 .dev_release = spi_controller_release, 2066 .dev_groups = spi_slave_groups, 2067 }; 2068 #else 2069 extern struct class spi_slave_class; /* dummy */ 2070 #endif 2071 2072 /** 2073 * __spi_alloc_controller - allocate an SPI master or slave controller 2074 * @dev: the controller, possibly using the platform_bus 2075 * @size: how much zeroed driver-private data to allocate; the pointer to this 2076 * memory is in the driver_data field of the returned device, 2077 * accessible with spi_controller_get_devdata(). 2078 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2079 * slave (true) controller 2080 * Context: can sleep 2081 * 2082 * This call is used only by SPI controller drivers, which are the 2083 * only ones directly touching chip registers. It's how they allocate 2084 * an spi_controller structure, prior to calling spi_register_controller(). 2085 * 2086 * This must be called from context that can sleep. 2087 * 2088 * The caller is responsible for assigning the bus number and initializing the 2089 * controller's methods before calling spi_register_controller(); and (after 2090 * errors adding the device) calling spi_controller_put() to prevent a memory 2091 * leak. 2092 * 2093 * Return: the SPI controller structure on success, else NULL. 2094 */ 2095 struct spi_controller *__spi_alloc_controller(struct device *dev, 2096 unsigned int size, bool slave) 2097 { 2098 struct spi_controller *ctlr; 2099 2100 if (!dev) 2101 return NULL; 2102 2103 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL); 2104 if (!ctlr) 2105 return NULL; 2106 2107 device_initialize(&ctlr->dev); 2108 ctlr->bus_num = -1; 2109 ctlr->num_chipselect = 1; 2110 ctlr->slave = slave; 2111 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2112 ctlr->dev.class = &spi_slave_class; 2113 else 2114 ctlr->dev.class = &spi_master_class; 2115 ctlr->dev.parent = dev; 2116 pm_suspend_ignore_children(&ctlr->dev, true); 2117 spi_controller_set_devdata(ctlr, &ctlr[1]); 2118 2119 return ctlr; 2120 } 2121 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2122 2123 #ifdef CONFIG_OF 2124 static int of_spi_register_master(struct spi_controller *ctlr) 2125 { 2126 int nb, i, *cs; 2127 struct device_node *np = ctlr->dev.of_node; 2128 2129 if (!np) 2130 return 0; 2131 2132 nb = of_gpio_named_count(np, "cs-gpios"); 2133 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2134 2135 /* Return error only for an incorrectly formed cs-gpios property */ 2136 if (nb == 0 || nb == -ENOENT) 2137 return 0; 2138 else if (nb < 0) 2139 return nb; 2140 2141 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2142 GFP_KERNEL); 2143 ctlr->cs_gpios = cs; 2144 2145 if (!ctlr->cs_gpios) 2146 return -ENOMEM; 2147 2148 for (i = 0; i < ctlr->num_chipselect; i++) 2149 cs[i] = -ENOENT; 2150 2151 for (i = 0; i < nb; i++) 2152 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2153 2154 return 0; 2155 } 2156 #else 2157 static int of_spi_register_master(struct spi_controller *ctlr) 2158 { 2159 return 0; 2160 } 2161 #endif 2162 2163 /** 2164 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2165 * @ctlr: The SPI master to grab GPIO descriptors for 2166 */ 2167 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2168 { 2169 int nb, i; 2170 struct gpio_desc **cs; 2171 struct device *dev = &ctlr->dev; 2172 2173 nb = gpiod_count(dev, "cs"); 2174 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2175 2176 /* No GPIOs at all is fine, else return the error */ 2177 if (nb == 0 || nb == -ENOENT) 2178 return 0; 2179 else if (nb < 0) 2180 return nb; 2181 2182 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2183 GFP_KERNEL); 2184 if (!cs) 2185 return -ENOMEM; 2186 ctlr->cs_gpiods = cs; 2187 2188 for (i = 0; i < nb; i++) { 2189 /* 2190 * Most chipselects are active low, the inverted 2191 * semantics are handled by special quirks in gpiolib, 2192 * so initializing them GPIOD_OUT_LOW here means 2193 * "unasserted", in most cases this will drive the physical 2194 * line high. 2195 */ 2196 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2197 GPIOD_OUT_LOW); 2198 2199 if (cs[i]) { 2200 /* 2201 * If we find a CS GPIO, name it after the device and 2202 * chip select line. 2203 */ 2204 char *gpioname; 2205 2206 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2207 dev_name(dev), i); 2208 if (!gpioname) 2209 return -ENOMEM; 2210 gpiod_set_consumer_name(cs[i], gpioname); 2211 } 2212 } 2213 2214 return 0; 2215 } 2216 2217 static int spi_controller_check_ops(struct spi_controller *ctlr) 2218 { 2219 /* 2220 * The controller may implement only the high-level SPI-memory like 2221 * operations if it does not support regular SPI transfers, and this is 2222 * valid use case. 2223 * If ->mem_ops is NULL, we request that at least one of the 2224 * ->transfer_xxx() method be implemented. 2225 */ 2226 if (ctlr->mem_ops) { 2227 if (!ctlr->mem_ops->exec_op) 2228 return -EINVAL; 2229 } else if (!ctlr->transfer && !ctlr->transfer_one && 2230 !ctlr->transfer_one_message) { 2231 return -EINVAL; 2232 } 2233 2234 return 0; 2235 } 2236 2237 /** 2238 * spi_register_controller - register SPI master or slave controller 2239 * @ctlr: initialized master, originally from spi_alloc_master() or 2240 * spi_alloc_slave() 2241 * Context: can sleep 2242 * 2243 * SPI controllers connect to their drivers using some non-SPI bus, 2244 * such as the platform bus. The final stage of probe() in that code 2245 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2246 * 2247 * SPI controllers use board specific (often SOC specific) bus numbers, 2248 * and board-specific addressing for SPI devices combines those numbers 2249 * with chip select numbers. Since SPI does not directly support dynamic 2250 * device identification, boards need configuration tables telling which 2251 * chip is at which address. 2252 * 2253 * This must be called from context that can sleep. It returns zero on 2254 * success, else a negative error code (dropping the controller's refcount). 2255 * After a successful return, the caller is responsible for calling 2256 * spi_unregister_controller(). 2257 * 2258 * Return: zero on success, else a negative error code. 2259 */ 2260 int spi_register_controller(struct spi_controller *ctlr) 2261 { 2262 struct device *dev = ctlr->dev.parent; 2263 struct boardinfo *bi; 2264 int status = -ENODEV; 2265 int id, first_dynamic; 2266 2267 if (!dev) 2268 return -ENODEV; 2269 2270 /* 2271 * Make sure all necessary hooks are implemented before registering 2272 * the SPI controller. 2273 */ 2274 status = spi_controller_check_ops(ctlr); 2275 if (status) 2276 return status; 2277 2278 if (!spi_controller_is_slave(ctlr)) { 2279 if (ctlr->use_gpio_descriptors) { 2280 status = spi_get_gpio_descs(ctlr); 2281 if (status) 2282 return status; 2283 /* 2284 * A controller using GPIO descriptors always 2285 * supports SPI_CS_HIGH if need be. 2286 */ 2287 ctlr->mode_bits |= SPI_CS_HIGH; 2288 } else { 2289 /* Legacy code path for GPIOs from DT */ 2290 status = of_spi_register_master(ctlr); 2291 if (status) 2292 return status; 2293 } 2294 } 2295 2296 /* even if it's just one always-selected device, there must 2297 * be at least one chipselect 2298 */ 2299 if (ctlr->num_chipselect == 0) 2300 return -EINVAL; 2301 if (ctlr->bus_num >= 0) { 2302 /* devices with a fixed bus num must check-in with the num */ 2303 mutex_lock(&board_lock); 2304 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2305 ctlr->bus_num + 1, GFP_KERNEL); 2306 mutex_unlock(&board_lock); 2307 if (WARN(id < 0, "couldn't get idr")) 2308 return id == -ENOSPC ? -EBUSY : id; 2309 ctlr->bus_num = id; 2310 } else if (ctlr->dev.of_node) { 2311 /* allocate dynamic bus number using Linux idr */ 2312 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2313 if (id >= 0) { 2314 ctlr->bus_num = id; 2315 mutex_lock(&board_lock); 2316 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2317 ctlr->bus_num + 1, GFP_KERNEL); 2318 mutex_unlock(&board_lock); 2319 if (WARN(id < 0, "couldn't get idr")) 2320 return id == -ENOSPC ? -EBUSY : id; 2321 } 2322 } 2323 if (ctlr->bus_num < 0) { 2324 first_dynamic = of_alias_get_highest_id("spi"); 2325 if (first_dynamic < 0) 2326 first_dynamic = 0; 2327 else 2328 first_dynamic++; 2329 2330 mutex_lock(&board_lock); 2331 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2332 0, GFP_KERNEL); 2333 mutex_unlock(&board_lock); 2334 if (WARN(id < 0, "couldn't get idr")) 2335 return id; 2336 ctlr->bus_num = id; 2337 } 2338 INIT_LIST_HEAD(&ctlr->queue); 2339 spin_lock_init(&ctlr->queue_lock); 2340 spin_lock_init(&ctlr->bus_lock_spinlock); 2341 mutex_init(&ctlr->bus_lock_mutex); 2342 mutex_init(&ctlr->io_mutex); 2343 ctlr->bus_lock_flag = 0; 2344 init_completion(&ctlr->xfer_completion); 2345 if (!ctlr->max_dma_len) 2346 ctlr->max_dma_len = INT_MAX; 2347 2348 /* register the device, then userspace will see it. 2349 * registration fails if the bus ID is in use. 2350 */ 2351 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2352 status = device_add(&ctlr->dev); 2353 if (status < 0) { 2354 /* free bus id */ 2355 mutex_lock(&board_lock); 2356 idr_remove(&spi_master_idr, ctlr->bus_num); 2357 mutex_unlock(&board_lock); 2358 goto done; 2359 } 2360 dev_dbg(dev, "registered %s %s\n", 2361 spi_controller_is_slave(ctlr) ? "slave" : "master", 2362 dev_name(&ctlr->dev)); 2363 2364 /* 2365 * If we're using a queued driver, start the queue. Note that we don't 2366 * need the queueing logic if the driver is only supporting high-level 2367 * memory operations. 2368 */ 2369 if (ctlr->transfer) { 2370 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2371 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2372 status = spi_controller_initialize_queue(ctlr); 2373 if (status) { 2374 device_del(&ctlr->dev); 2375 /* free bus id */ 2376 mutex_lock(&board_lock); 2377 idr_remove(&spi_master_idr, ctlr->bus_num); 2378 mutex_unlock(&board_lock); 2379 goto done; 2380 } 2381 } 2382 /* add statistics */ 2383 spin_lock_init(&ctlr->statistics.lock); 2384 2385 mutex_lock(&board_lock); 2386 list_add_tail(&ctlr->list, &spi_controller_list); 2387 list_for_each_entry(bi, &board_list, list) 2388 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2389 mutex_unlock(&board_lock); 2390 2391 /* Register devices from the device tree and ACPI */ 2392 of_register_spi_devices(ctlr); 2393 acpi_register_spi_devices(ctlr); 2394 done: 2395 return status; 2396 } 2397 EXPORT_SYMBOL_GPL(spi_register_controller); 2398 2399 static void devm_spi_unregister(struct device *dev, void *res) 2400 { 2401 spi_unregister_controller(*(struct spi_controller **)res); 2402 } 2403 2404 /** 2405 * devm_spi_register_controller - register managed SPI master or slave 2406 * controller 2407 * @dev: device managing SPI controller 2408 * @ctlr: initialized controller, originally from spi_alloc_master() or 2409 * spi_alloc_slave() 2410 * Context: can sleep 2411 * 2412 * Register a SPI device as with spi_register_controller() which will 2413 * automatically be unregistered and freed. 2414 * 2415 * Return: zero on success, else a negative error code. 2416 */ 2417 int devm_spi_register_controller(struct device *dev, 2418 struct spi_controller *ctlr) 2419 { 2420 struct spi_controller **ptr; 2421 int ret; 2422 2423 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2424 if (!ptr) 2425 return -ENOMEM; 2426 2427 ret = spi_register_controller(ctlr); 2428 if (!ret) { 2429 *ptr = ctlr; 2430 devres_add(dev, ptr); 2431 } else { 2432 devres_free(ptr); 2433 } 2434 2435 return ret; 2436 } 2437 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2438 2439 static int __unregister(struct device *dev, void *null) 2440 { 2441 spi_unregister_device(to_spi_device(dev)); 2442 return 0; 2443 } 2444 2445 /** 2446 * spi_unregister_controller - unregister SPI master or slave controller 2447 * @ctlr: the controller being unregistered 2448 * Context: can sleep 2449 * 2450 * This call is used only by SPI controller drivers, which are the 2451 * only ones directly touching chip registers. 2452 * 2453 * This must be called from context that can sleep. 2454 * 2455 * Note that this function also drops a reference to the controller. 2456 */ 2457 void spi_unregister_controller(struct spi_controller *ctlr) 2458 { 2459 struct spi_controller *found; 2460 int id = ctlr->bus_num; 2461 int dummy; 2462 2463 /* First make sure that this controller was ever added */ 2464 mutex_lock(&board_lock); 2465 found = idr_find(&spi_master_idr, id); 2466 mutex_unlock(&board_lock); 2467 if (ctlr->queued) { 2468 if (spi_destroy_queue(ctlr)) 2469 dev_err(&ctlr->dev, "queue remove failed\n"); 2470 } 2471 mutex_lock(&board_lock); 2472 list_del(&ctlr->list); 2473 mutex_unlock(&board_lock); 2474 2475 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister); 2476 device_unregister(&ctlr->dev); 2477 /* free bus id */ 2478 mutex_lock(&board_lock); 2479 if (found == ctlr) 2480 idr_remove(&spi_master_idr, id); 2481 mutex_unlock(&board_lock); 2482 } 2483 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2484 2485 int spi_controller_suspend(struct spi_controller *ctlr) 2486 { 2487 int ret; 2488 2489 /* Basically no-ops for non-queued controllers */ 2490 if (!ctlr->queued) 2491 return 0; 2492 2493 ret = spi_stop_queue(ctlr); 2494 if (ret) 2495 dev_err(&ctlr->dev, "queue stop failed\n"); 2496 2497 return ret; 2498 } 2499 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2500 2501 int spi_controller_resume(struct spi_controller *ctlr) 2502 { 2503 int ret; 2504 2505 if (!ctlr->queued) 2506 return 0; 2507 2508 ret = spi_start_queue(ctlr); 2509 if (ret) 2510 dev_err(&ctlr->dev, "queue restart failed\n"); 2511 2512 return ret; 2513 } 2514 EXPORT_SYMBOL_GPL(spi_controller_resume); 2515 2516 static int __spi_controller_match(struct device *dev, const void *data) 2517 { 2518 struct spi_controller *ctlr; 2519 const u16 *bus_num = data; 2520 2521 ctlr = container_of(dev, struct spi_controller, dev); 2522 return ctlr->bus_num == *bus_num; 2523 } 2524 2525 /** 2526 * spi_busnum_to_master - look up master associated with bus_num 2527 * @bus_num: the master's bus number 2528 * Context: can sleep 2529 * 2530 * This call may be used with devices that are registered after 2531 * arch init time. It returns a refcounted pointer to the relevant 2532 * spi_controller (which the caller must release), or NULL if there is 2533 * no such master registered. 2534 * 2535 * Return: the SPI master structure on success, else NULL. 2536 */ 2537 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2538 { 2539 struct device *dev; 2540 struct spi_controller *ctlr = NULL; 2541 2542 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2543 __spi_controller_match); 2544 if (dev) 2545 ctlr = container_of(dev, struct spi_controller, dev); 2546 /* reference got in class_find_device */ 2547 return ctlr; 2548 } 2549 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2550 2551 /*-------------------------------------------------------------------------*/ 2552 2553 /* Core methods for SPI resource management */ 2554 2555 /** 2556 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2557 * during the processing of a spi_message while using 2558 * spi_transfer_one 2559 * @spi: the spi device for which we allocate memory 2560 * @release: the release code to execute for this resource 2561 * @size: size to alloc and return 2562 * @gfp: GFP allocation flags 2563 * 2564 * Return: the pointer to the allocated data 2565 * 2566 * This may get enhanced in the future to allocate from a memory pool 2567 * of the @spi_device or @spi_controller to avoid repeated allocations. 2568 */ 2569 void *spi_res_alloc(struct spi_device *spi, 2570 spi_res_release_t release, 2571 size_t size, gfp_t gfp) 2572 { 2573 struct spi_res *sres; 2574 2575 sres = kzalloc(sizeof(*sres) + size, gfp); 2576 if (!sres) 2577 return NULL; 2578 2579 INIT_LIST_HEAD(&sres->entry); 2580 sres->release = release; 2581 2582 return sres->data; 2583 } 2584 EXPORT_SYMBOL_GPL(spi_res_alloc); 2585 2586 /** 2587 * spi_res_free - free an spi resource 2588 * @res: pointer to the custom data of a resource 2589 * 2590 */ 2591 void spi_res_free(void *res) 2592 { 2593 struct spi_res *sres = container_of(res, struct spi_res, data); 2594 2595 if (!res) 2596 return; 2597 2598 WARN_ON(!list_empty(&sres->entry)); 2599 kfree(sres); 2600 } 2601 EXPORT_SYMBOL_GPL(spi_res_free); 2602 2603 /** 2604 * spi_res_add - add a spi_res to the spi_message 2605 * @message: the spi message 2606 * @res: the spi_resource 2607 */ 2608 void spi_res_add(struct spi_message *message, void *res) 2609 { 2610 struct spi_res *sres = container_of(res, struct spi_res, data); 2611 2612 WARN_ON(!list_empty(&sres->entry)); 2613 list_add_tail(&sres->entry, &message->resources); 2614 } 2615 EXPORT_SYMBOL_GPL(spi_res_add); 2616 2617 /** 2618 * spi_res_release - release all spi resources for this message 2619 * @ctlr: the @spi_controller 2620 * @message: the @spi_message 2621 */ 2622 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2623 { 2624 struct spi_res *res; 2625 2626 while (!list_empty(&message->resources)) { 2627 res = list_last_entry(&message->resources, 2628 struct spi_res, entry); 2629 2630 if (res->release) 2631 res->release(ctlr, message, res->data); 2632 2633 list_del(&res->entry); 2634 2635 kfree(res); 2636 } 2637 } 2638 EXPORT_SYMBOL_GPL(spi_res_release); 2639 2640 /*-------------------------------------------------------------------------*/ 2641 2642 /* Core methods for spi_message alterations */ 2643 2644 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2645 struct spi_message *msg, 2646 void *res) 2647 { 2648 struct spi_replaced_transfers *rxfer = res; 2649 size_t i; 2650 2651 /* call extra callback if requested */ 2652 if (rxfer->release) 2653 rxfer->release(ctlr, msg, res); 2654 2655 /* insert replaced transfers back into the message */ 2656 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2657 2658 /* remove the formerly inserted entries */ 2659 for (i = 0; i < rxfer->inserted; i++) 2660 list_del(&rxfer->inserted_transfers[i].transfer_list); 2661 } 2662 2663 /** 2664 * spi_replace_transfers - replace transfers with several transfers 2665 * and register change with spi_message.resources 2666 * @msg: the spi_message we work upon 2667 * @xfer_first: the first spi_transfer we want to replace 2668 * @remove: number of transfers to remove 2669 * @insert: the number of transfers we want to insert instead 2670 * @release: extra release code necessary in some circumstances 2671 * @extradatasize: extra data to allocate (with alignment guarantees 2672 * of struct @spi_transfer) 2673 * @gfp: gfp flags 2674 * 2675 * Returns: pointer to @spi_replaced_transfers, 2676 * PTR_ERR(...) in case of errors. 2677 */ 2678 struct spi_replaced_transfers *spi_replace_transfers( 2679 struct spi_message *msg, 2680 struct spi_transfer *xfer_first, 2681 size_t remove, 2682 size_t insert, 2683 spi_replaced_release_t release, 2684 size_t extradatasize, 2685 gfp_t gfp) 2686 { 2687 struct spi_replaced_transfers *rxfer; 2688 struct spi_transfer *xfer; 2689 size_t i; 2690 2691 /* allocate the structure using spi_res */ 2692 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2693 insert * sizeof(struct spi_transfer) 2694 + sizeof(struct spi_replaced_transfers) 2695 + extradatasize, 2696 gfp); 2697 if (!rxfer) 2698 return ERR_PTR(-ENOMEM); 2699 2700 /* the release code to invoke before running the generic release */ 2701 rxfer->release = release; 2702 2703 /* assign extradata */ 2704 if (extradatasize) 2705 rxfer->extradata = 2706 &rxfer->inserted_transfers[insert]; 2707 2708 /* init the replaced_transfers list */ 2709 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2710 2711 /* assign the list_entry after which we should reinsert 2712 * the @replaced_transfers - it may be spi_message.messages! 2713 */ 2714 rxfer->replaced_after = xfer_first->transfer_list.prev; 2715 2716 /* remove the requested number of transfers */ 2717 for (i = 0; i < remove; i++) { 2718 /* if the entry after replaced_after it is msg->transfers 2719 * then we have been requested to remove more transfers 2720 * than are in the list 2721 */ 2722 if (rxfer->replaced_after->next == &msg->transfers) { 2723 dev_err(&msg->spi->dev, 2724 "requested to remove more spi_transfers than are available\n"); 2725 /* insert replaced transfers back into the message */ 2726 list_splice(&rxfer->replaced_transfers, 2727 rxfer->replaced_after); 2728 2729 /* free the spi_replace_transfer structure */ 2730 spi_res_free(rxfer); 2731 2732 /* and return with an error */ 2733 return ERR_PTR(-EINVAL); 2734 } 2735 2736 /* remove the entry after replaced_after from list of 2737 * transfers and add it to list of replaced_transfers 2738 */ 2739 list_move_tail(rxfer->replaced_after->next, 2740 &rxfer->replaced_transfers); 2741 } 2742 2743 /* create copy of the given xfer with identical settings 2744 * based on the first transfer to get removed 2745 */ 2746 for (i = 0; i < insert; i++) { 2747 /* we need to run in reverse order */ 2748 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 2749 2750 /* copy all spi_transfer data */ 2751 memcpy(xfer, xfer_first, sizeof(*xfer)); 2752 2753 /* add to list */ 2754 list_add(&xfer->transfer_list, rxfer->replaced_after); 2755 2756 /* clear cs_change and delay_usecs for all but the last */ 2757 if (i) { 2758 xfer->cs_change = false; 2759 xfer->delay_usecs = 0; 2760 } 2761 } 2762 2763 /* set up inserted */ 2764 rxfer->inserted = insert; 2765 2766 /* and register it with spi_res/spi_message */ 2767 spi_res_add(msg, rxfer); 2768 2769 return rxfer; 2770 } 2771 EXPORT_SYMBOL_GPL(spi_replace_transfers); 2772 2773 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 2774 struct spi_message *msg, 2775 struct spi_transfer **xferp, 2776 size_t maxsize, 2777 gfp_t gfp) 2778 { 2779 struct spi_transfer *xfer = *xferp, *xfers; 2780 struct spi_replaced_transfers *srt; 2781 size_t offset; 2782 size_t count, i; 2783 2784 /* warn once about this fact that we are splitting a transfer */ 2785 dev_warn_once(&msg->spi->dev, 2786 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n", 2787 xfer->len, maxsize); 2788 2789 /* calculate how many we have to replace */ 2790 count = DIV_ROUND_UP(xfer->len, maxsize); 2791 2792 /* create replacement */ 2793 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 2794 if (IS_ERR(srt)) 2795 return PTR_ERR(srt); 2796 xfers = srt->inserted_transfers; 2797 2798 /* now handle each of those newly inserted spi_transfers 2799 * note that the replacements spi_transfers all are preset 2800 * to the same values as *xferp, so tx_buf, rx_buf and len 2801 * are all identical (as well as most others) 2802 * so we just have to fix up len and the pointers. 2803 * 2804 * this also includes support for the depreciated 2805 * spi_message.is_dma_mapped interface 2806 */ 2807 2808 /* the first transfer just needs the length modified, so we 2809 * run it outside the loop 2810 */ 2811 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 2812 2813 /* all the others need rx_buf/tx_buf also set */ 2814 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 2815 /* update rx_buf, tx_buf and dma */ 2816 if (xfers[i].rx_buf) 2817 xfers[i].rx_buf += offset; 2818 if (xfers[i].rx_dma) 2819 xfers[i].rx_dma += offset; 2820 if (xfers[i].tx_buf) 2821 xfers[i].tx_buf += offset; 2822 if (xfers[i].tx_dma) 2823 xfers[i].tx_dma += offset; 2824 2825 /* update length */ 2826 xfers[i].len = min(maxsize, xfers[i].len - offset); 2827 } 2828 2829 /* we set up xferp to the last entry we have inserted, 2830 * so that we skip those already split transfers 2831 */ 2832 *xferp = &xfers[count - 1]; 2833 2834 /* increment statistics counters */ 2835 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 2836 transfers_split_maxsize); 2837 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 2838 transfers_split_maxsize); 2839 2840 return 0; 2841 } 2842 2843 /** 2844 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 2845 * when an individual transfer exceeds a 2846 * certain size 2847 * @ctlr: the @spi_controller for this transfer 2848 * @msg: the @spi_message to transform 2849 * @maxsize: the maximum when to apply this 2850 * @gfp: GFP allocation flags 2851 * 2852 * Return: status of transformation 2853 */ 2854 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 2855 struct spi_message *msg, 2856 size_t maxsize, 2857 gfp_t gfp) 2858 { 2859 struct spi_transfer *xfer; 2860 int ret; 2861 2862 /* iterate over the transfer_list, 2863 * but note that xfer is advanced to the last transfer inserted 2864 * to avoid checking sizes again unnecessarily (also xfer does 2865 * potentiall belong to a different list by the time the 2866 * replacement has happened 2867 */ 2868 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 2869 if (xfer->len > maxsize) { 2870 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 2871 maxsize, gfp); 2872 if (ret) 2873 return ret; 2874 } 2875 } 2876 2877 return 0; 2878 } 2879 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 2880 2881 /*-------------------------------------------------------------------------*/ 2882 2883 /* Core methods for SPI controller protocol drivers. Some of the 2884 * other core methods are currently defined as inline functions. 2885 */ 2886 2887 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 2888 u8 bits_per_word) 2889 { 2890 if (ctlr->bits_per_word_mask) { 2891 /* Only 32 bits fit in the mask */ 2892 if (bits_per_word > 32) 2893 return -EINVAL; 2894 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 2895 return -EINVAL; 2896 } 2897 2898 return 0; 2899 } 2900 2901 /** 2902 * spi_setup - setup SPI mode and clock rate 2903 * @spi: the device whose settings are being modified 2904 * Context: can sleep, and no requests are queued to the device 2905 * 2906 * SPI protocol drivers may need to update the transfer mode if the 2907 * device doesn't work with its default. They may likewise need 2908 * to update clock rates or word sizes from initial values. This function 2909 * changes those settings, and must be called from a context that can sleep. 2910 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 2911 * effect the next time the device is selected and data is transferred to 2912 * or from it. When this function returns, the spi device is deselected. 2913 * 2914 * Note that this call will fail if the protocol driver specifies an option 2915 * that the underlying controller or its driver does not support. For 2916 * example, not all hardware supports wire transfers using nine bit words, 2917 * LSB-first wire encoding, or active-high chipselects. 2918 * 2919 * Return: zero on success, else a negative error code. 2920 */ 2921 int spi_setup(struct spi_device *spi) 2922 { 2923 unsigned bad_bits, ugly_bits; 2924 int status; 2925 2926 /* check mode to prevent that DUAL and QUAD set at the same time 2927 */ 2928 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 2929 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 2930 dev_err(&spi->dev, 2931 "setup: can not select dual and quad at the same time\n"); 2932 return -EINVAL; 2933 } 2934 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 2935 */ 2936 if ((spi->mode & SPI_3WIRE) && (spi->mode & 2937 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 2938 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 2939 return -EINVAL; 2940 /* help drivers fail *cleanly* when they need options 2941 * that aren't supported with their current controller 2942 * SPI_CS_WORD has a fallback software implementation, 2943 * so it is ignored here. 2944 */ 2945 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 2946 ugly_bits = bad_bits & 2947 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 2948 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 2949 if (ugly_bits) { 2950 dev_warn(&spi->dev, 2951 "setup: ignoring unsupported mode bits %x\n", 2952 ugly_bits); 2953 spi->mode &= ~ugly_bits; 2954 bad_bits &= ~ugly_bits; 2955 } 2956 if (bad_bits) { 2957 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 2958 bad_bits); 2959 return -EINVAL; 2960 } 2961 2962 if (!spi->bits_per_word) 2963 spi->bits_per_word = 8; 2964 2965 status = __spi_validate_bits_per_word(spi->controller, 2966 spi->bits_per_word); 2967 if (status) 2968 return status; 2969 2970 if (!spi->max_speed_hz) 2971 spi->max_speed_hz = spi->controller->max_speed_hz; 2972 2973 if (spi->controller->setup) 2974 status = spi->controller->setup(spi); 2975 2976 spi_set_cs(spi, false); 2977 2978 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 2979 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 2980 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 2981 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 2982 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 2983 (spi->mode & SPI_LOOP) ? "loopback, " : "", 2984 spi->bits_per_word, spi->max_speed_hz, 2985 status); 2986 2987 return status; 2988 } 2989 EXPORT_SYMBOL_GPL(spi_setup); 2990 2991 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 2992 { 2993 struct spi_controller *ctlr = spi->controller; 2994 struct spi_transfer *xfer; 2995 int w_size; 2996 2997 if (list_empty(&message->transfers)) 2998 return -EINVAL; 2999 3000 /* If an SPI controller does not support toggling the CS line on each 3001 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3002 * for the CS line, we can emulate the CS-per-word hardware function by 3003 * splitting transfers into one-word transfers and ensuring that 3004 * cs_change is set for each transfer. 3005 */ 3006 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3007 spi->cs_gpiod || 3008 gpio_is_valid(spi->cs_gpio))) { 3009 size_t maxsize; 3010 int ret; 3011 3012 maxsize = (spi->bits_per_word + 7) / 8; 3013 3014 /* spi_split_transfers_maxsize() requires message->spi */ 3015 message->spi = spi; 3016 3017 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3018 GFP_KERNEL); 3019 if (ret) 3020 return ret; 3021 3022 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3023 /* don't change cs_change on the last entry in the list */ 3024 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3025 break; 3026 xfer->cs_change = 1; 3027 } 3028 } 3029 3030 /* Half-duplex links include original MicroWire, and ones with 3031 * only one data pin like SPI_3WIRE (switches direction) or where 3032 * either MOSI or MISO is missing. They can also be caused by 3033 * software limitations. 3034 */ 3035 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3036 (spi->mode & SPI_3WIRE)) { 3037 unsigned flags = ctlr->flags; 3038 3039 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3040 if (xfer->rx_buf && xfer->tx_buf) 3041 return -EINVAL; 3042 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3043 return -EINVAL; 3044 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3045 return -EINVAL; 3046 } 3047 } 3048 3049 /** 3050 * Set transfer bits_per_word and max speed as spi device default if 3051 * it is not set for this transfer. 3052 * Set transfer tx_nbits and rx_nbits as single transfer default 3053 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3054 * Ensure transfer word_delay is at least as long as that required by 3055 * device itself. 3056 */ 3057 message->frame_length = 0; 3058 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3059 message->frame_length += xfer->len; 3060 if (!xfer->bits_per_word) 3061 xfer->bits_per_word = spi->bits_per_word; 3062 3063 if (!xfer->speed_hz) 3064 xfer->speed_hz = spi->max_speed_hz; 3065 if (!xfer->speed_hz) 3066 xfer->speed_hz = ctlr->max_speed_hz; 3067 3068 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3069 xfer->speed_hz = ctlr->max_speed_hz; 3070 3071 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3072 return -EINVAL; 3073 3074 /* 3075 * SPI transfer length should be multiple of SPI word size 3076 * where SPI word size should be power-of-two multiple 3077 */ 3078 if (xfer->bits_per_word <= 8) 3079 w_size = 1; 3080 else if (xfer->bits_per_word <= 16) 3081 w_size = 2; 3082 else 3083 w_size = 4; 3084 3085 /* No partial transfers accepted */ 3086 if (xfer->len % w_size) 3087 return -EINVAL; 3088 3089 if (xfer->speed_hz && ctlr->min_speed_hz && 3090 xfer->speed_hz < ctlr->min_speed_hz) 3091 return -EINVAL; 3092 3093 if (xfer->tx_buf && !xfer->tx_nbits) 3094 xfer->tx_nbits = SPI_NBITS_SINGLE; 3095 if (xfer->rx_buf && !xfer->rx_nbits) 3096 xfer->rx_nbits = SPI_NBITS_SINGLE; 3097 /* check transfer tx/rx_nbits: 3098 * 1. check the value matches one of single, dual and quad 3099 * 2. check tx/rx_nbits match the mode in spi_device 3100 */ 3101 if (xfer->tx_buf) { 3102 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3103 xfer->tx_nbits != SPI_NBITS_DUAL && 3104 xfer->tx_nbits != SPI_NBITS_QUAD) 3105 return -EINVAL; 3106 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3107 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3108 return -EINVAL; 3109 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3110 !(spi->mode & SPI_TX_QUAD)) 3111 return -EINVAL; 3112 } 3113 /* check transfer rx_nbits */ 3114 if (xfer->rx_buf) { 3115 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3116 xfer->rx_nbits != SPI_NBITS_DUAL && 3117 xfer->rx_nbits != SPI_NBITS_QUAD) 3118 return -EINVAL; 3119 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3120 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3121 return -EINVAL; 3122 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3123 !(spi->mode & SPI_RX_QUAD)) 3124 return -EINVAL; 3125 } 3126 3127 if (xfer->word_delay_usecs < spi->word_delay_usecs) 3128 xfer->word_delay_usecs = spi->word_delay_usecs; 3129 } 3130 3131 message->status = -EINPROGRESS; 3132 3133 return 0; 3134 } 3135 3136 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3137 { 3138 struct spi_controller *ctlr = spi->controller; 3139 3140 /* 3141 * Some controllers do not support doing regular SPI transfers. Return 3142 * ENOTSUPP when this is the case. 3143 */ 3144 if (!ctlr->transfer) 3145 return -ENOTSUPP; 3146 3147 message->spi = spi; 3148 3149 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3150 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3151 3152 trace_spi_message_submit(message); 3153 3154 return ctlr->transfer(spi, message); 3155 } 3156 3157 /** 3158 * spi_async - asynchronous SPI transfer 3159 * @spi: device with which data will be exchanged 3160 * @message: describes the data transfers, including completion callback 3161 * Context: any (irqs may be blocked, etc) 3162 * 3163 * This call may be used in_irq and other contexts which can't sleep, 3164 * as well as from task contexts which can sleep. 3165 * 3166 * The completion callback is invoked in a context which can't sleep. 3167 * Before that invocation, the value of message->status is undefined. 3168 * When the callback is issued, message->status holds either zero (to 3169 * indicate complete success) or a negative error code. After that 3170 * callback returns, the driver which issued the transfer request may 3171 * deallocate the associated memory; it's no longer in use by any SPI 3172 * core or controller driver code. 3173 * 3174 * Note that although all messages to a spi_device are handled in 3175 * FIFO order, messages may go to different devices in other orders. 3176 * Some device might be higher priority, or have various "hard" access 3177 * time requirements, for example. 3178 * 3179 * On detection of any fault during the transfer, processing of 3180 * the entire message is aborted, and the device is deselected. 3181 * Until returning from the associated message completion callback, 3182 * no other spi_message queued to that device will be processed. 3183 * (This rule applies equally to all the synchronous transfer calls, 3184 * which are wrappers around this core asynchronous primitive.) 3185 * 3186 * Return: zero on success, else a negative error code. 3187 */ 3188 int spi_async(struct spi_device *spi, struct spi_message *message) 3189 { 3190 struct spi_controller *ctlr = spi->controller; 3191 int ret; 3192 unsigned long flags; 3193 3194 ret = __spi_validate(spi, message); 3195 if (ret != 0) 3196 return ret; 3197 3198 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3199 3200 if (ctlr->bus_lock_flag) 3201 ret = -EBUSY; 3202 else 3203 ret = __spi_async(spi, message); 3204 3205 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3206 3207 return ret; 3208 } 3209 EXPORT_SYMBOL_GPL(spi_async); 3210 3211 /** 3212 * spi_async_locked - version of spi_async with exclusive bus usage 3213 * @spi: device with which data will be exchanged 3214 * @message: describes the data transfers, including completion callback 3215 * Context: any (irqs may be blocked, etc) 3216 * 3217 * This call may be used in_irq and other contexts which can't sleep, 3218 * as well as from task contexts which can sleep. 3219 * 3220 * The completion callback is invoked in a context which can't sleep. 3221 * Before that invocation, the value of message->status is undefined. 3222 * When the callback is issued, message->status holds either zero (to 3223 * indicate complete success) or a negative error code. After that 3224 * callback returns, the driver which issued the transfer request may 3225 * deallocate the associated memory; it's no longer in use by any SPI 3226 * core or controller driver code. 3227 * 3228 * Note that although all messages to a spi_device are handled in 3229 * FIFO order, messages may go to different devices in other orders. 3230 * Some device might be higher priority, or have various "hard" access 3231 * time requirements, for example. 3232 * 3233 * On detection of any fault during the transfer, processing of 3234 * the entire message is aborted, and the device is deselected. 3235 * Until returning from the associated message completion callback, 3236 * no other spi_message queued to that device will be processed. 3237 * (This rule applies equally to all the synchronous transfer calls, 3238 * which are wrappers around this core asynchronous primitive.) 3239 * 3240 * Return: zero on success, else a negative error code. 3241 */ 3242 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3243 { 3244 struct spi_controller *ctlr = spi->controller; 3245 int ret; 3246 unsigned long flags; 3247 3248 ret = __spi_validate(spi, message); 3249 if (ret != 0) 3250 return ret; 3251 3252 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3253 3254 ret = __spi_async(spi, message); 3255 3256 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3257 3258 return ret; 3259 3260 } 3261 EXPORT_SYMBOL_GPL(spi_async_locked); 3262 3263 /*-------------------------------------------------------------------------*/ 3264 3265 /* Utility methods for SPI protocol drivers, layered on 3266 * top of the core. Some other utility methods are defined as 3267 * inline functions. 3268 */ 3269 3270 static void spi_complete(void *arg) 3271 { 3272 complete(arg); 3273 } 3274 3275 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3276 { 3277 DECLARE_COMPLETION_ONSTACK(done); 3278 int status; 3279 struct spi_controller *ctlr = spi->controller; 3280 unsigned long flags; 3281 3282 status = __spi_validate(spi, message); 3283 if (status != 0) 3284 return status; 3285 3286 message->complete = spi_complete; 3287 message->context = &done; 3288 message->spi = spi; 3289 3290 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3291 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3292 3293 /* If we're not using the legacy transfer method then we will 3294 * try to transfer in the calling context so special case. 3295 * This code would be less tricky if we could remove the 3296 * support for driver implemented message queues. 3297 */ 3298 if (ctlr->transfer == spi_queued_transfer) { 3299 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3300 3301 trace_spi_message_submit(message); 3302 3303 status = __spi_queued_transfer(spi, message, false); 3304 3305 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3306 } else { 3307 status = spi_async_locked(spi, message); 3308 } 3309 3310 if (status == 0) { 3311 /* Push out the messages in the calling context if we 3312 * can. 3313 */ 3314 if (ctlr->transfer == spi_queued_transfer) { 3315 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3316 spi_sync_immediate); 3317 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3318 spi_sync_immediate); 3319 __spi_pump_messages(ctlr, false); 3320 } 3321 3322 wait_for_completion(&done); 3323 status = message->status; 3324 } 3325 message->context = NULL; 3326 return status; 3327 } 3328 3329 /** 3330 * spi_sync - blocking/synchronous SPI data transfers 3331 * @spi: device with which data will be exchanged 3332 * @message: describes the data transfers 3333 * Context: can sleep 3334 * 3335 * This call may only be used from a context that may sleep. The sleep 3336 * is non-interruptible, and has no timeout. Low-overhead controller 3337 * drivers may DMA directly into and out of the message buffers. 3338 * 3339 * Note that the SPI device's chip select is active during the message, 3340 * and then is normally disabled between messages. Drivers for some 3341 * frequently-used devices may want to minimize costs of selecting a chip, 3342 * by leaving it selected in anticipation that the next message will go 3343 * to the same chip. (That may increase power usage.) 3344 * 3345 * Also, the caller is guaranteeing that the memory associated with the 3346 * message will not be freed before this call returns. 3347 * 3348 * Return: zero on success, else a negative error code. 3349 */ 3350 int spi_sync(struct spi_device *spi, struct spi_message *message) 3351 { 3352 int ret; 3353 3354 mutex_lock(&spi->controller->bus_lock_mutex); 3355 ret = __spi_sync(spi, message); 3356 mutex_unlock(&spi->controller->bus_lock_mutex); 3357 3358 return ret; 3359 } 3360 EXPORT_SYMBOL_GPL(spi_sync); 3361 3362 /** 3363 * spi_sync_locked - version of spi_sync with exclusive bus usage 3364 * @spi: device with which data will be exchanged 3365 * @message: describes the data transfers 3366 * Context: can sleep 3367 * 3368 * This call may only be used from a context that may sleep. The sleep 3369 * is non-interruptible, and has no timeout. Low-overhead controller 3370 * drivers may DMA directly into and out of the message buffers. 3371 * 3372 * This call should be used by drivers that require exclusive access to the 3373 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3374 * be released by a spi_bus_unlock call when the exclusive access is over. 3375 * 3376 * Return: zero on success, else a negative error code. 3377 */ 3378 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3379 { 3380 return __spi_sync(spi, message); 3381 } 3382 EXPORT_SYMBOL_GPL(spi_sync_locked); 3383 3384 /** 3385 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3386 * @ctlr: SPI bus master that should be locked for exclusive bus access 3387 * Context: can sleep 3388 * 3389 * This call may only be used from a context that may sleep. The sleep 3390 * is non-interruptible, and has no timeout. 3391 * 3392 * This call should be used by drivers that require exclusive access to the 3393 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3394 * exclusive access is over. Data transfer must be done by spi_sync_locked 3395 * and spi_async_locked calls when the SPI bus lock is held. 3396 * 3397 * Return: always zero. 3398 */ 3399 int spi_bus_lock(struct spi_controller *ctlr) 3400 { 3401 unsigned long flags; 3402 3403 mutex_lock(&ctlr->bus_lock_mutex); 3404 3405 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3406 ctlr->bus_lock_flag = 1; 3407 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3408 3409 /* mutex remains locked until spi_bus_unlock is called */ 3410 3411 return 0; 3412 } 3413 EXPORT_SYMBOL_GPL(spi_bus_lock); 3414 3415 /** 3416 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3417 * @ctlr: SPI bus master that was locked for exclusive bus access 3418 * Context: can sleep 3419 * 3420 * This call may only be used from a context that may sleep. The sleep 3421 * is non-interruptible, and has no timeout. 3422 * 3423 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3424 * call. 3425 * 3426 * Return: always zero. 3427 */ 3428 int spi_bus_unlock(struct spi_controller *ctlr) 3429 { 3430 ctlr->bus_lock_flag = 0; 3431 3432 mutex_unlock(&ctlr->bus_lock_mutex); 3433 3434 return 0; 3435 } 3436 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3437 3438 /* portable code must never pass more than 32 bytes */ 3439 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3440 3441 static u8 *buf; 3442 3443 /** 3444 * spi_write_then_read - SPI synchronous write followed by read 3445 * @spi: device with which data will be exchanged 3446 * @txbuf: data to be written (need not be dma-safe) 3447 * @n_tx: size of txbuf, in bytes 3448 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3449 * @n_rx: size of rxbuf, in bytes 3450 * Context: can sleep 3451 * 3452 * This performs a half duplex MicroWire style transaction with the 3453 * device, sending txbuf and then reading rxbuf. The return value 3454 * is zero for success, else a negative errno status code. 3455 * This call may only be used from a context that may sleep. 3456 * 3457 * Parameters to this routine are always copied using a small buffer; 3458 * portable code should never use this for more than 32 bytes. 3459 * Performance-sensitive or bulk transfer code should instead use 3460 * spi_{async,sync}() calls with dma-safe buffers. 3461 * 3462 * Return: zero on success, else a negative error code. 3463 */ 3464 int spi_write_then_read(struct spi_device *spi, 3465 const void *txbuf, unsigned n_tx, 3466 void *rxbuf, unsigned n_rx) 3467 { 3468 static DEFINE_MUTEX(lock); 3469 3470 int status; 3471 struct spi_message message; 3472 struct spi_transfer x[2]; 3473 u8 *local_buf; 3474 3475 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3476 * copying here, (as a pure convenience thing), but we can 3477 * keep heap costs out of the hot path unless someone else is 3478 * using the pre-allocated buffer or the transfer is too large. 3479 */ 3480 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3481 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3482 GFP_KERNEL | GFP_DMA); 3483 if (!local_buf) 3484 return -ENOMEM; 3485 } else { 3486 local_buf = buf; 3487 } 3488 3489 spi_message_init(&message); 3490 memset(x, 0, sizeof(x)); 3491 if (n_tx) { 3492 x[0].len = n_tx; 3493 spi_message_add_tail(&x[0], &message); 3494 } 3495 if (n_rx) { 3496 x[1].len = n_rx; 3497 spi_message_add_tail(&x[1], &message); 3498 } 3499 3500 memcpy(local_buf, txbuf, n_tx); 3501 x[0].tx_buf = local_buf; 3502 x[1].rx_buf = local_buf + n_tx; 3503 3504 /* do the i/o */ 3505 status = spi_sync(spi, &message); 3506 if (status == 0) 3507 memcpy(rxbuf, x[1].rx_buf, n_rx); 3508 3509 if (x[0].tx_buf == buf) 3510 mutex_unlock(&lock); 3511 else 3512 kfree(local_buf); 3513 3514 return status; 3515 } 3516 EXPORT_SYMBOL_GPL(spi_write_then_read); 3517 3518 /*-------------------------------------------------------------------------*/ 3519 3520 #if IS_ENABLED(CONFIG_OF) 3521 static int __spi_of_device_match(struct device *dev, void *data) 3522 { 3523 return dev->of_node == data; 3524 } 3525 3526 /* must call put_device() when done with returned spi_device device */ 3527 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3528 { 3529 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 3530 __spi_of_device_match); 3531 return dev ? to_spi_device(dev) : NULL; 3532 } 3533 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3534 #endif /* IS_ENABLED(CONFIG_OF) */ 3535 3536 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3537 static int __spi_of_controller_match(struct device *dev, const void *data) 3538 { 3539 return dev->of_node == data; 3540 } 3541 3542 /* the spi controllers are not using spi_bus, so we find it with another way */ 3543 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3544 { 3545 struct device *dev; 3546 3547 dev = class_find_device(&spi_master_class, NULL, node, 3548 __spi_of_controller_match); 3549 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3550 dev = class_find_device(&spi_slave_class, NULL, node, 3551 __spi_of_controller_match); 3552 if (!dev) 3553 return NULL; 3554 3555 /* reference got in class_find_device */ 3556 return container_of(dev, struct spi_controller, dev); 3557 } 3558 3559 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3560 void *arg) 3561 { 3562 struct of_reconfig_data *rd = arg; 3563 struct spi_controller *ctlr; 3564 struct spi_device *spi; 3565 3566 switch (of_reconfig_get_state_change(action, arg)) { 3567 case OF_RECONFIG_CHANGE_ADD: 3568 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3569 if (ctlr == NULL) 3570 return NOTIFY_OK; /* not for us */ 3571 3572 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3573 put_device(&ctlr->dev); 3574 return NOTIFY_OK; 3575 } 3576 3577 spi = of_register_spi_device(ctlr, rd->dn); 3578 put_device(&ctlr->dev); 3579 3580 if (IS_ERR(spi)) { 3581 pr_err("%s: failed to create for '%pOF'\n", 3582 __func__, rd->dn); 3583 of_node_clear_flag(rd->dn, OF_POPULATED); 3584 return notifier_from_errno(PTR_ERR(spi)); 3585 } 3586 break; 3587 3588 case OF_RECONFIG_CHANGE_REMOVE: 3589 /* already depopulated? */ 3590 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3591 return NOTIFY_OK; 3592 3593 /* find our device by node */ 3594 spi = of_find_spi_device_by_node(rd->dn); 3595 if (spi == NULL) 3596 return NOTIFY_OK; /* no? not meant for us */ 3597 3598 /* unregister takes one ref away */ 3599 spi_unregister_device(spi); 3600 3601 /* and put the reference of the find */ 3602 put_device(&spi->dev); 3603 break; 3604 } 3605 3606 return NOTIFY_OK; 3607 } 3608 3609 static struct notifier_block spi_of_notifier = { 3610 .notifier_call = of_spi_notify, 3611 }; 3612 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3613 extern struct notifier_block spi_of_notifier; 3614 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3615 3616 #if IS_ENABLED(CONFIG_ACPI) 3617 static int spi_acpi_controller_match(struct device *dev, const void *data) 3618 { 3619 return ACPI_COMPANION(dev->parent) == data; 3620 } 3621 3622 static int spi_acpi_device_match(struct device *dev, void *data) 3623 { 3624 return ACPI_COMPANION(dev) == data; 3625 } 3626 3627 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 3628 { 3629 struct device *dev; 3630 3631 dev = class_find_device(&spi_master_class, NULL, adev, 3632 spi_acpi_controller_match); 3633 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3634 dev = class_find_device(&spi_slave_class, NULL, adev, 3635 spi_acpi_controller_match); 3636 if (!dev) 3637 return NULL; 3638 3639 return container_of(dev, struct spi_controller, dev); 3640 } 3641 3642 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 3643 { 3644 struct device *dev; 3645 3646 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match); 3647 3648 return dev ? to_spi_device(dev) : NULL; 3649 } 3650 3651 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 3652 void *arg) 3653 { 3654 struct acpi_device *adev = arg; 3655 struct spi_controller *ctlr; 3656 struct spi_device *spi; 3657 3658 switch (value) { 3659 case ACPI_RECONFIG_DEVICE_ADD: 3660 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 3661 if (!ctlr) 3662 break; 3663 3664 acpi_register_spi_device(ctlr, adev); 3665 put_device(&ctlr->dev); 3666 break; 3667 case ACPI_RECONFIG_DEVICE_REMOVE: 3668 if (!acpi_device_enumerated(adev)) 3669 break; 3670 3671 spi = acpi_spi_find_device_by_adev(adev); 3672 if (!spi) 3673 break; 3674 3675 spi_unregister_device(spi); 3676 put_device(&spi->dev); 3677 break; 3678 } 3679 3680 return NOTIFY_OK; 3681 } 3682 3683 static struct notifier_block spi_acpi_notifier = { 3684 .notifier_call = acpi_spi_notify, 3685 }; 3686 #else 3687 extern struct notifier_block spi_acpi_notifier; 3688 #endif 3689 3690 static int __init spi_init(void) 3691 { 3692 int status; 3693 3694 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 3695 if (!buf) { 3696 status = -ENOMEM; 3697 goto err0; 3698 } 3699 3700 status = bus_register(&spi_bus_type); 3701 if (status < 0) 3702 goto err1; 3703 3704 status = class_register(&spi_master_class); 3705 if (status < 0) 3706 goto err2; 3707 3708 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 3709 status = class_register(&spi_slave_class); 3710 if (status < 0) 3711 goto err3; 3712 } 3713 3714 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 3715 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 3716 if (IS_ENABLED(CONFIG_ACPI)) 3717 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 3718 3719 return 0; 3720 3721 err3: 3722 class_unregister(&spi_master_class); 3723 err2: 3724 bus_unregister(&spi_bus_type); 3725 err1: 3726 kfree(buf); 3727 buf = NULL; 3728 err0: 3729 return status; 3730 } 3731 3732 /* board_info is normally registered in arch_initcall(), 3733 * but even essential drivers wait till later 3734 * 3735 * REVISIT only boardinfo really needs static linking. the rest (device and 3736 * driver registration) _could_ be dynamically linked (modular) ... costs 3737 * include needing to have boardinfo data structures be much more public. 3738 */ 3739 postcore_initcall(spi_init); 3740 3741