xref: /openbmc/linux/drivers/spi/spi.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 #define spi_pcpu_stats_totalize(ret, in, field)				\
121 do {									\
122 	int i;								\
123 	ret = 0;							\
124 	for_each_possible_cpu(i) {					\
125 		const struct spi_statistics *pcpu_stats;		\
126 		u64 inc;						\
127 		unsigned int start;					\
128 		pcpu_stats = per_cpu_ptr(in, i);			\
129 		do {							\
130 			start = u64_stats_fetch_begin(		\
131 					&pcpu_stats->syncp);		\
132 			inc = u64_stats_read(&pcpu_stats->field);	\
133 		} while (u64_stats_fetch_retry(			\
134 					&pcpu_stats->syncp, start));	\
135 		ret += inc;						\
136 	}								\
137 } while (0)
138 
139 #define SPI_STATISTICS_ATTRS(field, file)				\
140 static ssize_t spi_controller_##field##_show(struct device *dev,	\
141 					     struct device_attribute *attr, \
142 					     char *buf)			\
143 {									\
144 	struct spi_controller *ctlr = container_of(dev,			\
145 					 struct spi_controller, dev);	\
146 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
147 }									\
148 static struct device_attribute dev_attr_spi_controller_##field = {	\
149 	.attr = { .name = file, .mode = 0444 },				\
150 	.show = spi_controller_##field##_show,				\
151 };									\
152 static ssize_t spi_device_##field##_show(struct device *dev,		\
153 					 struct device_attribute *attr,	\
154 					char *buf)			\
155 {									\
156 	struct spi_device *spi = to_spi_device(dev);			\
157 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
158 }									\
159 static struct device_attribute dev_attr_spi_device_##field = {		\
160 	.attr = { .name = file, .mode = 0444 },				\
161 	.show = spi_device_##field##_show,				\
162 }
163 
164 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
166 					    char *buf)			\
167 {									\
168 	ssize_t len;							\
169 	u64 val;							\
170 	spi_pcpu_stats_totalize(val, stat, field);			\
171 	len = sysfs_emit(buf, "%llu\n", val);				\
172 	return len;							\
173 }									\
174 SPI_STATISTICS_ATTRS(name, file)
175 
176 #define SPI_STATISTICS_SHOW(field)					\
177 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
178 				 field)
179 
180 SPI_STATISTICS_SHOW(messages);
181 SPI_STATISTICS_SHOW(transfers);
182 SPI_STATISTICS_SHOW(errors);
183 SPI_STATISTICS_SHOW(timedout);
184 
185 SPI_STATISTICS_SHOW(spi_sync);
186 SPI_STATISTICS_SHOW(spi_sync_immediate);
187 SPI_STATISTICS_SHOW(spi_async);
188 
189 SPI_STATISTICS_SHOW(bytes);
190 SPI_STATISTICS_SHOW(bytes_rx);
191 SPI_STATISTICS_SHOW(bytes_tx);
192 
193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
194 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
195 				 "transfer_bytes_histo_" number,	\
196 				 transfer_bytes_histo[index])
197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
214 
215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
216 
217 static struct attribute *spi_dev_attrs[] = {
218 	&dev_attr_modalias.attr,
219 	&dev_attr_driver_override.attr,
220 	NULL,
221 };
222 
223 static const struct attribute_group spi_dev_group = {
224 	.attrs  = spi_dev_attrs,
225 };
226 
227 static struct attribute *spi_device_statistics_attrs[] = {
228 	&dev_attr_spi_device_messages.attr,
229 	&dev_attr_spi_device_transfers.attr,
230 	&dev_attr_spi_device_errors.attr,
231 	&dev_attr_spi_device_timedout.attr,
232 	&dev_attr_spi_device_spi_sync.attr,
233 	&dev_attr_spi_device_spi_sync_immediate.attr,
234 	&dev_attr_spi_device_spi_async.attr,
235 	&dev_attr_spi_device_bytes.attr,
236 	&dev_attr_spi_device_bytes_rx.attr,
237 	&dev_attr_spi_device_bytes_tx.attr,
238 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
255 	&dev_attr_spi_device_transfers_split_maxsize.attr,
256 	NULL,
257 };
258 
259 static const struct attribute_group spi_device_statistics_group = {
260 	.name  = "statistics",
261 	.attrs  = spi_device_statistics_attrs,
262 };
263 
264 static const struct attribute_group *spi_dev_groups[] = {
265 	&spi_dev_group,
266 	&spi_device_statistics_group,
267 	NULL,
268 };
269 
270 static struct attribute *spi_controller_statistics_attrs[] = {
271 	&dev_attr_spi_controller_messages.attr,
272 	&dev_attr_spi_controller_transfers.attr,
273 	&dev_attr_spi_controller_errors.attr,
274 	&dev_attr_spi_controller_timedout.attr,
275 	&dev_attr_spi_controller_spi_sync.attr,
276 	&dev_attr_spi_controller_spi_sync_immediate.attr,
277 	&dev_attr_spi_controller_spi_async.attr,
278 	&dev_attr_spi_controller_bytes.attr,
279 	&dev_attr_spi_controller_bytes_rx.attr,
280 	&dev_attr_spi_controller_bytes_tx.attr,
281 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
298 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
299 	NULL,
300 };
301 
302 static const struct attribute_group spi_controller_statistics_group = {
303 	.name  = "statistics",
304 	.attrs  = spi_controller_statistics_attrs,
305 };
306 
307 static const struct attribute_group *spi_master_groups[] = {
308 	&spi_controller_statistics_group,
309 	NULL,
310 };
311 
312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
313 					      struct spi_transfer *xfer,
314 					      struct spi_controller *ctlr)
315 {
316 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
317 	struct spi_statistics *stats;
318 
319 	if (l2len < 0)
320 		l2len = 0;
321 
322 	get_cpu();
323 	stats = this_cpu_ptr(pcpu_stats);
324 	u64_stats_update_begin(&stats->syncp);
325 
326 	u64_stats_inc(&stats->transfers);
327 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
328 
329 	u64_stats_add(&stats->bytes, xfer->len);
330 	if ((xfer->tx_buf) &&
331 	    (xfer->tx_buf != ctlr->dummy_tx))
332 		u64_stats_add(&stats->bytes_tx, xfer->len);
333 	if ((xfer->rx_buf) &&
334 	    (xfer->rx_buf != ctlr->dummy_rx))
335 		u64_stats_add(&stats->bytes_rx, xfer->len);
336 
337 	u64_stats_update_end(&stats->syncp);
338 	put_cpu();
339 }
340 
341 /*
342  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343  * and the sysfs version makes coldplug work too.
344  */
345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347 	while (id->name[0]) {
348 		if (!strcmp(name, id->name))
349 			return id;
350 		id++;
351 	}
352 	return NULL;
353 }
354 
355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358 
359 	return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362 
363 const void *spi_get_device_match_data(const struct spi_device *sdev)
364 {
365 	const void *match;
366 
367 	match = device_get_match_data(&sdev->dev);
368 	if (match)
369 		return match;
370 
371 	return (const void *)spi_get_device_id(sdev)->driver_data;
372 }
373 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
374 
375 static int spi_match_device(struct device *dev, struct device_driver *drv)
376 {
377 	const struct spi_device	*spi = to_spi_device(dev);
378 	const struct spi_driver	*sdrv = to_spi_driver(drv);
379 
380 	/* Check override first, and if set, only use the named driver */
381 	if (spi->driver_override)
382 		return strcmp(spi->driver_override, drv->name) == 0;
383 
384 	/* Attempt an OF style match */
385 	if (of_driver_match_device(dev, drv))
386 		return 1;
387 
388 	/* Then try ACPI */
389 	if (acpi_driver_match_device(dev, drv))
390 		return 1;
391 
392 	if (sdrv->id_table)
393 		return !!spi_match_id(sdrv->id_table, spi->modalias);
394 
395 	return strcmp(spi->modalias, drv->name) == 0;
396 }
397 
398 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
399 {
400 	const struct spi_device		*spi = to_spi_device(dev);
401 	int rc;
402 
403 	rc = acpi_device_uevent_modalias(dev, env);
404 	if (rc != -ENODEV)
405 		return rc;
406 
407 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
408 }
409 
410 static int spi_probe(struct device *dev)
411 {
412 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
413 	struct spi_device		*spi = to_spi_device(dev);
414 	int ret;
415 
416 	ret = of_clk_set_defaults(dev->of_node, false);
417 	if (ret)
418 		return ret;
419 
420 	if (dev->of_node) {
421 		spi->irq = of_irq_get(dev->of_node, 0);
422 		if (spi->irq == -EPROBE_DEFER)
423 			return -EPROBE_DEFER;
424 		if (spi->irq < 0)
425 			spi->irq = 0;
426 	}
427 
428 	ret = dev_pm_domain_attach(dev, true);
429 	if (ret)
430 		return ret;
431 
432 	if (sdrv->probe) {
433 		ret = sdrv->probe(spi);
434 		if (ret)
435 			dev_pm_domain_detach(dev, true);
436 	}
437 
438 	return ret;
439 }
440 
441 static void spi_remove(struct device *dev)
442 {
443 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
444 
445 	if (sdrv->remove)
446 		sdrv->remove(to_spi_device(dev));
447 
448 	dev_pm_domain_detach(dev, true);
449 }
450 
451 static void spi_shutdown(struct device *dev)
452 {
453 	if (dev->driver) {
454 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
455 
456 		if (sdrv->shutdown)
457 			sdrv->shutdown(to_spi_device(dev));
458 	}
459 }
460 
461 struct bus_type spi_bus_type = {
462 	.name		= "spi",
463 	.dev_groups	= spi_dev_groups,
464 	.match		= spi_match_device,
465 	.uevent		= spi_uevent,
466 	.probe		= spi_probe,
467 	.remove		= spi_remove,
468 	.shutdown	= spi_shutdown,
469 };
470 EXPORT_SYMBOL_GPL(spi_bus_type);
471 
472 /**
473  * __spi_register_driver - register a SPI driver
474  * @owner: owner module of the driver to register
475  * @sdrv: the driver to register
476  * Context: can sleep
477  *
478  * Return: zero on success, else a negative error code.
479  */
480 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
481 {
482 	sdrv->driver.owner = owner;
483 	sdrv->driver.bus = &spi_bus_type;
484 
485 	/*
486 	 * For Really Good Reasons we use spi: modaliases not of:
487 	 * modaliases for DT so module autoloading won't work if we
488 	 * don't have a spi_device_id as well as a compatible string.
489 	 */
490 	if (sdrv->driver.of_match_table) {
491 		const struct of_device_id *of_id;
492 
493 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
494 		     of_id++) {
495 			const char *of_name;
496 
497 			/* Strip off any vendor prefix */
498 			of_name = strnchr(of_id->compatible,
499 					  sizeof(of_id->compatible), ',');
500 			if (of_name)
501 				of_name++;
502 			else
503 				of_name = of_id->compatible;
504 
505 			if (sdrv->id_table) {
506 				const struct spi_device_id *spi_id;
507 
508 				spi_id = spi_match_id(sdrv->id_table, of_name);
509 				if (spi_id)
510 					continue;
511 			} else {
512 				if (strcmp(sdrv->driver.name, of_name) == 0)
513 					continue;
514 			}
515 
516 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
517 				sdrv->driver.name, of_id->compatible);
518 		}
519 	}
520 
521 	return driver_register(&sdrv->driver);
522 }
523 EXPORT_SYMBOL_GPL(__spi_register_driver);
524 
525 /*-------------------------------------------------------------------------*/
526 
527 /*
528  * SPI devices should normally not be created by SPI device drivers; that
529  * would make them board-specific.  Similarly with SPI controller drivers.
530  * Device registration normally goes into like arch/.../mach.../board-YYY.c
531  * with other readonly (flashable) information about mainboard devices.
532  */
533 
534 struct boardinfo {
535 	struct list_head	list;
536 	struct spi_board_info	board_info;
537 };
538 
539 static LIST_HEAD(board_list);
540 static LIST_HEAD(spi_controller_list);
541 
542 /*
543  * Used to protect add/del operation for board_info list and
544  * spi_controller list, and their matching process also used
545  * to protect object of type struct idr.
546  */
547 static DEFINE_MUTEX(board_lock);
548 
549 /**
550  * spi_alloc_device - Allocate a new SPI device
551  * @ctlr: Controller to which device is connected
552  * Context: can sleep
553  *
554  * Allows a driver to allocate and initialize a spi_device without
555  * registering it immediately.  This allows a driver to directly
556  * fill the spi_device with device parameters before calling
557  * spi_add_device() on it.
558  *
559  * Caller is responsible to call spi_add_device() on the returned
560  * spi_device structure to add it to the SPI controller.  If the caller
561  * needs to discard the spi_device without adding it, then it should
562  * call spi_dev_put() on it.
563  *
564  * Return: a pointer to the new device, or NULL.
565  */
566 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
567 {
568 	struct spi_device	*spi;
569 
570 	if (!spi_controller_get(ctlr))
571 		return NULL;
572 
573 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
574 	if (!spi) {
575 		spi_controller_put(ctlr);
576 		return NULL;
577 	}
578 
579 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
580 	if (!spi->pcpu_statistics) {
581 		kfree(spi);
582 		spi_controller_put(ctlr);
583 		return NULL;
584 	}
585 
586 	spi->master = spi->controller = ctlr;
587 	spi->dev.parent = &ctlr->dev;
588 	spi->dev.bus = &spi_bus_type;
589 	spi->dev.release = spidev_release;
590 	spi->mode = ctlr->buswidth_override_bits;
591 
592 	device_initialize(&spi->dev);
593 	return spi;
594 }
595 EXPORT_SYMBOL_GPL(spi_alloc_device);
596 
597 static void spi_dev_set_name(struct spi_device *spi)
598 {
599 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
600 
601 	if (adev) {
602 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
603 		return;
604 	}
605 
606 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
607 		     spi->chip_select);
608 }
609 
610 static int spi_dev_check(struct device *dev, void *data)
611 {
612 	struct spi_device *spi = to_spi_device(dev);
613 	struct spi_device *new_spi = data;
614 
615 	if (spi->controller == new_spi->controller &&
616 	    spi->chip_select == new_spi->chip_select)
617 		return -EBUSY;
618 	return 0;
619 }
620 
621 static void spi_cleanup(struct spi_device *spi)
622 {
623 	if (spi->controller->cleanup)
624 		spi->controller->cleanup(spi);
625 }
626 
627 static int __spi_add_device(struct spi_device *spi)
628 {
629 	struct spi_controller *ctlr = spi->controller;
630 	struct device *dev = ctlr->dev.parent;
631 	int status;
632 
633 	/*
634 	 * We need to make sure there's no other device with this
635 	 * chipselect **BEFORE** we call setup(), else we'll trash
636 	 * its configuration.
637 	 */
638 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
639 	if (status) {
640 		dev_err(dev, "chipselect %d already in use\n",
641 				spi->chip_select);
642 		return status;
643 	}
644 
645 	/* Controller may unregister concurrently */
646 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
647 	    !device_is_registered(&ctlr->dev)) {
648 		return -ENODEV;
649 	}
650 
651 	if (ctlr->cs_gpiods)
652 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
653 
654 	/*
655 	 * Drivers may modify this initial i/o setup, but will
656 	 * normally rely on the device being setup.  Devices
657 	 * using SPI_CS_HIGH can't coexist well otherwise...
658 	 */
659 	status = spi_setup(spi);
660 	if (status < 0) {
661 		dev_err(dev, "can't setup %s, status %d\n",
662 				dev_name(&spi->dev), status);
663 		return status;
664 	}
665 
666 	/* Device may be bound to an active driver when this returns */
667 	status = device_add(&spi->dev);
668 	if (status < 0) {
669 		dev_err(dev, "can't add %s, status %d\n",
670 				dev_name(&spi->dev), status);
671 		spi_cleanup(spi);
672 	} else {
673 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
674 	}
675 
676 	return status;
677 }
678 
679 /**
680  * spi_add_device - Add spi_device allocated with spi_alloc_device
681  * @spi: spi_device to register
682  *
683  * Companion function to spi_alloc_device.  Devices allocated with
684  * spi_alloc_device can be added onto the spi bus with this function.
685  *
686  * Return: 0 on success; negative errno on failure
687  */
688 int spi_add_device(struct spi_device *spi)
689 {
690 	struct spi_controller *ctlr = spi->controller;
691 	struct device *dev = ctlr->dev.parent;
692 	int status;
693 
694 	/* Chipselects are numbered 0..max; validate. */
695 	if (spi->chip_select >= ctlr->num_chipselect) {
696 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
697 			ctlr->num_chipselect);
698 		return -EINVAL;
699 	}
700 
701 	/* Set the bus ID string */
702 	spi_dev_set_name(spi);
703 
704 	mutex_lock(&ctlr->add_lock);
705 	status = __spi_add_device(spi);
706 	mutex_unlock(&ctlr->add_lock);
707 	return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710 
711 static int spi_add_device_locked(struct spi_device *spi)
712 {
713 	struct spi_controller *ctlr = spi->controller;
714 	struct device *dev = ctlr->dev.parent;
715 
716 	/* Chipselects are numbered 0..max; validate. */
717 	if (spi->chip_select >= ctlr->num_chipselect) {
718 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
719 			ctlr->num_chipselect);
720 		return -EINVAL;
721 	}
722 
723 	/* Set the bus ID string */
724 	spi_dev_set_name(spi);
725 
726 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
727 	return __spi_add_device(spi);
728 }
729 
730 /**
731  * spi_new_device - instantiate one new SPI device
732  * @ctlr: Controller to which device is connected
733  * @chip: Describes the SPI device
734  * Context: can sleep
735  *
736  * On typical mainboards, this is purely internal; and it's not needed
737  * after board init creates the hard-wired devices.  Some development
738  * platforms may not be able to use spi_register_board_info though, and
739  * this is exported so that for example a USB or parport based adapter
740  * driver could add devices (which it would learn about out-of-band).
741  *
742  * Return: the new device, or NULL.
743  */
744 struct spi_device *spi_new_device(struct spi_controller *ctlr,
745 				  struct spi_board_info *chip)
746 {
747 	struct spi_device	*proxy;
748 	int			status;
749 
750 	/*
751 	 * NOTE:  caller did any chip->bus_num checks necessary.
752 	 *
753 	 * Also, unless we change the return value convention to use
754 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
755 	 * suggests syslogged diagnostics are best here (ugh).
756 	 */
757 
758 	proxy = spi_alloc_device(ctlr);
759 	if (!proxy)
760 		return NULL;
761 
762 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
763 
764 	proxy->chip_select = chip->chip_select;
765 	proxy->max_speed_hz = chip->max_speed_hz;
766 	proxy->mode = chip->mode;
767 	proxy->irq = chip->irq;
768 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
769 	proxy->dev.platform_data = (void *) chip->platform_data;
770 	proxy->controller_data = chip->controller_data;
771 	proxy->controller_state = NULL;
772 
773 	if (chip->swnode) {
774 		status = device_add_software_node(&proxy->dev, chip->swnode);
775 		if (status) {
776 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
777 				chip->modalias, status);
778 			goto err_dev_put;
779 		}
780 	}
781 
782 	status = spi_add_device(proxy);
783 	if (status < 0)
784 		goto err_dev_put;
785 
786 	return proxy;
787 
788 err_dev_put:
789 	device_remove_software_node(&proxy->dev);
790 	spi_dev_put(proxy);
791 	return NULL;
792 }
793 EXPORT_SYMBOL_GPL(spi_new_device);
794 
795 /**
796  * spi_unregister_device - unregister a single SPI device
797  * @spi: spi_device to unregister
798  *
799  * Start making the passed SPI device vanish. Normally this would be handled
800  * by spi_unregister_controller().
801  */
802 void spi_unregister_device(struct spi_device *spi)
803 {
804 	if (!spi)
805 		return;
806 
807 	if (spi->dev.of_node) {
808 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
809 		of_node_put(spi->dev.of_node);
810 	}
811 	if (ACPI_COMPANION(&spi->dev))
812 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
813 	device_remove_software_node(&spi->dev);
814 	device_del(&spi->dev);
815 	spi_cleanup(spi);
816 	put_device(&spi->dev);
817 }
818 EXPORT_SYMBOL_GPL(spi_unregister_device);
819 
820 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
821 					      struct spi_board_info *bi)
822 {
823 	struct spi_device *dev;
824 
825 	if (ctlr->bus_num != bi->bus_num)
826 		return;
827 
828 	dev = spi_new_device(ctlr, bi);
829 	if (!dev)
830 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
831 			bi->modalias);
832 }
833 
834 /**
835  * spi_register_board_info - register SPI devices for a given board
836  * @info: array of chip descriptors
837  * @n: how many descriptors are provided
838  * Context: can sleep
839  *
840  * Board-specific early init code calls this (probably during arch_initcall)
841  * with segments of the SPI device table.  Any device nodes are created later,
842  * after the relevant parent SPI controller (bus_num) is defined.  We keep
843  * this table of devices forever, so that reloading a controller driver will
844  * not make Linux forget about these hard-wired devices.
845  *
846  * Other code can also call this, e.g. a particular add-on board might provide
847  * SPI devices through its expansion connector, so code initializing that board
848  * would naturally declare its SPI devices.
849  *
850  * The board info passed can safely be __initdata ... but be careful of
851  * any embedded pointers (platform_data, etc), they're copied as-is.
852  *
853  * Return: zero on success, else a negative error code.
854  */
855 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
856 {
857 	struct boardinfo *bi;
858 	int i;
859 
860 	if (!n)
861 		return 0;
862 
863 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
864 	if (!bi)
865 		return -ENOMEM;
866 
867 	for (i = 0; i < n; i++, bi++, info++) {
868 		struct spi_controller *ctlr;
869 
870 		memcpy(&bi->board_info, info, sizeof(*info));
871 
872 		mutex_lock(&board_lock);
873 		list_add_tail(&bi->list, &board_list);
874 		list_for_each_entry(ctlr, &spi_controller_list, list)
875 			spi_match_controller_to_boardinfo(ctlr,
876 							  &bi->board_info);
877 		mutex_unlock(&board_lock);
878 	}
879 
880 	return 0;
881 }
882 
883 /*-------------------------------------------------------------------------*/
884 
885 /* Core methods for SPI resource management */
886 
887 /**
888  * spi_res_alloc - allocate a spi resource that is life-cycle managed
889  *                 during the processing of a spi_message while using
890  *                 spi_transfer_one
891  * @spi:     the spi device for which we allocate memory
892  * @release: the release code to execute for this resource
893  * @size:    size to alloc and return
894  * @gfp:     GFP allocation flags
895  *
896  * Return: the pointer to the allocated data
897  *
898  * This may get enhanced in the future to allocate from a memory pool
899  * of the @spi_device or @spi_controller to avoid repeated allocations.
900  */
901 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
902 			   size_t size, gfp_t gfp)
903 {
904 	struct spi_res *sres;
905 
906 	sres = kzalloc(sizeof(*sres) + size, gfp);
907 	if (!sres)
908 		return NULL;
909 
910 	INIT_LIST_HEAD(&sres->entry);
911 	sres->release = release;
912 
913 	return sres->data;
914 }
915 
916 /**
917  * spi_res_free - free an spi resource
918  * @res: pointer to the custom data of a resource
919  */
920 static void spi_res_free(void *res)
921 {
922 	struct spi_res *sres = container_of(res, struct spi_res, data);
923 
924 	if (!res)
925 		return;
926 
927 	WARN_ON(!list_empty(&sres->entry));
928 	kfree(sres);
929 }
930 
931 /**
932  * spi_res_add - add a spi_res to the spi_message
933  * @message: the spi message
934  * @res:     the spi_resource
935  */
936 static void spi_res_add(struct spi_message *message, void *res)
937 {
938 	struct spi_res *sres = container_of(res, struct spi_res, data);
939 
940 	WARN_ON(!list_empty(&sres->entry));
941 	list_add_tail(&sres->entry, &message->resources);
942 }
943 
944 /**
945  * spi_res_release - release all spi resources for this message
946  * @ctlr:  the @spi_controller
947  * @message: the @spi_message
948  */
949 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
950 {
951 	struct spi_res *res, *tmp;
952 
953 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
954 		if (res->release)
955 			res->release(ctlr, message, res->data);
956 
957 		list_del(&res->entry);
958 
959 		kfree(res);
960 	}
961 }
962 
963 /*-------------------------------------------------------------------------*/
964 
965 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
966 {
967 	bool activate = enable;
968 
969 	/*
970 	 * Avoid calling into the driver (or doing delays) if the chip select
971 	 * isn't actually changing from the last time this was called.
972 	 */
973 	if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
974 				(!enable && spi->controller->last_cs != spi->chip_select)) &&
975 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
976 		return;
977 
978 	trace_spi_set_cs(spi, activate);
979 
980 	spi->controller->last_cs = enable ? spi->chip_select : -1;
981 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
982 
983 	if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
984 		spi_delay_exec(&spi->cs_hold, NULL);
985 	}
986 
987 	if (spi->mode & SPI_CS_HIGH)
988 		enable = !enable;
989 
990 	if (spi->cs_gpiod) {
991 		if (!(spi->mode & SPI_NO_CS)) {
992 			/*
993 			 * Historically ACPI has no means of the GPIO polarity and
994 			 * thus the SPISerialBus() resource defines it on the per-chip
995 			 * basis. In order to avoid a chain of negations, the GPIO
996 			 * polarity is considered being Active High. Even for the cases
997 			 * when _DSD() is involved (in the updated versions of ACPI)
998 			 * the GPIO CS polarity must be defined Active High to avoid
999 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1000 			 * into account.
1001 			 */
1002 			if (has_acpi_companion(&spi->dev))
1003 				gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
1004 			else
1005 				/* Polarity handled by GPIO library */
1006 				gpiod_set_value_cansleep(spi->cs_gpiod, activate);
1007 		}
1008 		/* Some SPI masters need both GPIO CS & slave_select */
1009 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1010 		    spi->controller->set_cs)
1011 			spi->controller->set_cs(spi, !enable);
1012 	} else if (spi->controller->set_cs) {
1013 		spi->controller->set_cs(spi, !enable);
1014 	}
1015 
1016 	if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
1017 		if (activate)
1018 			spi_delay_exec(&spi->cs_setup, NULL);
1019 		else
1020 			spi_delay_exec(&spi->cs_inactive, NULL);
1021 	}
1022 }
1023 
1024 #ifdef CONFIG_HAS_DMA
1025 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1026 			     struct sg_table *sgt, void *buf, size_t len,
1027 			     enum dma_data_direction dir, unsigned long attrs)
1028 {
1029 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1030 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1031 #ifdef CONFIG_HIGHMEM
1032 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1033 				(unsigned long)buf < (PKMAP_BASE +
1034 					(LAST_PKMAP * PAGE_SIZE)));
1035 #else
1036 	const bool kmap_buf = false;
1037 #endif
1038 	int desc_len;
1039 	int sgs;
1040 	struct page *vm_page;
1041 	struct scatterlist *sg;
1042 	void *sg_buf;
1043 	size_t min;
1044 	int i, ret;
1045 
1046 	if (vmalloced_buf || kmap_buf) {
1047 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1048 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1049 	} else if (virt_addr_valid(buf)) {
1050 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1051 		sgs = DIV_ROUND_UP(len, desc_len);
1052 	} else {
1053 		return -EINVAL;
1054 	}
1055 
1056 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1057 	if (ret != 0)
1058 		return ret;
1059 
1060 	sg = &sgt->sgl[0];
1061 	for (i = 0; i < sgs; i++) {
1062 
1063 		if (vmalloced_buf || kmap_buf) {
1064 			/*
1065 			 * Next scatterlist entry size is the minimum between
1066 			 * the desc_len and the remaining buffer length that
1067 			 * fits in a page.
1068 			 */
1069 			min = min_t(size_t, desc_len,
1070 				    min_t(size_t, len,
1071 					  PAGE_SIZE - offset_in_page(buf)));
1072 			if (vmalloced_buf)
1073 				vm_page = vmalloc_to_page(buf);
1074 			else
1075 				vm_page = kmap_to_page(buf);
1076 			if (!vm_page) {
1077 				sg_free_table(sgt);
1078 				return -ENOMEM;
1079 			}
1080 			sg_set_page(sg, vm_page,
1081 				    min, offset_in_page(buf));
1082 		} else {
1083 			min = min_t(size_t, len, desc_len);
1084 			sg_buf = buf;
1085 			sg_set_buf(sg, sg_buf, min);
1086 		}
1087 
1088 		buf += min;
1089 		len -= min;
1090 		sg = sg_next(sg);
1091 	}
1092 
1093 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1094 	if (ret < 0) {
1095 		sg_free_table(sgt);
1096 		return ret;
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1103 		struct sg_table *sgt, void *buf, size_t len,
1104 		enum dma_data_direction dir)
1105 {
1106 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1107 }
1108 
1109 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1110 				struct device *dev, struct sg_table *sgt,
1111 				enum dma_data_direction dir,
1112 				unsigned long attrs)
1113 {
1114 	if (sgt->orig_nents) {
1115 		dma_unmap_sgtable(dev, sgt, dir, attrs);
1116 		sg_free_table(sgt);
1117 		sgt->orig_nents = 0;
1118 		sgt->nents = 0;
1119 	}
1120 }
1121 
1122 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1123 		   struct sg_table *sgt, enum dma_data_direction dir)
1124 {
1125 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1126 }
1127 
1128 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1129 {
1130 	struct device *tx_dev, *rx_dev;
1131 	struct spi_transfer *xfer;
1132 	int ret;
1133 
1134 	if (!ctlr->can_dma)
1135 		return 0;
1136 
1137 	if (ctlr->dma_tx)
1138 		tx_dev = ctlr->dma_tx->device->dev;
1139 	else if (ctlr->dma_map_dev)
1140 		tx_dev = ctlr->dma_map_dev;
1141 	else
1142 		tx_dev = ctlr->dev.parent;
1143 
1144 	if (ctlr->dma_rx)
1145 		rx_dev = ctlr->dma_rx->device->dev;
1146 	else if (ctlr->dma_map_dev)
1147 		rx_dev = ctlr->dma_map_dev;
1148 	else
1149 		rx_dev = ctlr->dev.parent;
1150 
1151 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1152 		/* The sync is done before each transfer. */
1153 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1154 
1155 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1156 			continue;
1157 
1158 		if (xfer->tx_buf != NULL) {
1159 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1160 						(void *)xfer->tx_buf,
1161 						xfer->len, DMA_TO_DEVICE,
1162 						attrs);
1163 			if (ret != 0)
1164 				return ret;
1165 		}
1166 
1167 		if (xfer->rx_buf != NULL) {
1168 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1169 						xfer->rx_buf, xfer->len,
1170 						DMA_FROM_DEVICE, attrs);
1171 			if (ret != 0) {
1172 				spi_unmap_buf_attrs(ctlr, tx_dev,
1173 						&xfer->tx_sg, DMA_TO_DEVICE,
1174 						attrs);
1175 
1176 				return ret;
1177 			}
1178 		}
1179 	}
1180 
1181 	ctlr->cur_rx_dma_dev = rx_dev;
1182 	ctlr->cur_tx_dma_dev = tx_dev;
1183 	ctlr->cur_msg_mapped = true;
1184 
1185 	return 0;
1186 }
1187 
1188 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1189 {
1190 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1191 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1192 	struct spi_transfer *xfer;
1193 
1194 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1195 		return 0;
1196 
1197 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1198 		/* The sync has already been done after each transfer. */
1199 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1200 
1201 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1202 			continue;
1203 
1204 		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1205 				    DMA_FROM_DEVICE, attrs);
1206 		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1207 				    DMA_TO_DEVICE, attrs);
1208 	}
1209 
1210 	ctlr->cur_msg_mapped = false;
1211 
1212 	return 0;
1213 }
1214 
1215 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1216 				    struct spi_transfer *xfer)
1217 {
1218 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1219 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1220 
1221 	if (!ctlr->cur_msg_mapped)
1222 		return;
1223 
1224 	if (xfer->tx_sg.orig_nents)
1225 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1226 	if (xfer->rx_sg.orig_nents)
1227 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1228 }
1229 
1230 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1231 				 struct spi_transfer *xfer)
1232 {
1233 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1234 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1235 
1236 	if (!ctlr->cur_msg_mapped)
1237 		return;
1238 
1239 	if (xfer->rx_sg.orig_nents)
1240 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1241 	if (xfer->tx_sg.orig_nents)
1242 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1243 }
1244 #else /* !CONFIG_HAS_DMA */
1245 static inline int __spi_map_msg(struct spi_controller *ctlr,
1246 				struct spi_message *msg)
1247 {
1248 	return 0;
1249 }
1250 
1251 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1252 				  struct spi_message *msg)
1253 {
1254 	return 0;
1255 }
1256 
1257 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1258 				    struct spi_transfer *xfer)
1259 {
1260 }
1261 
1262 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1263 				 struct spi_transfer *xfer)
1264 {
1265 }
1266 #endif /* !CONFIG_HAS_DMA */
1267 
1268 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1269 				struct spi_message *msg)
1270 {
1271 	struct spi_transfer *xfer;
1272 
1273 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1274 		/*
1275 		 * Restore the original value of tx_buf or rx_buf if they are
1276 		 * NULL.
1277 		 */
1278 		if (xfer->tx_buf == ctlr->dummy_tx)
1279 			xfer->tx_buf = NULL;
1280 		if (xfer->rx_buf == ctlr->dummy_rx)
1281 			xfer->rx_buf = NULL;
1282 	}
1283 
1284 	return __spi_unmap_msg(ctlr, msg);
1285 }
1286 
1287 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1288 {
1289 	struct spi_transfer *xfer;
1290 	void *tmp;
1291 	unsigned int max_tx, max_rx;
1292 
1293 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1294 		&& !(msg->spi->mode & SPI_3WIRE)) {
1295 		max_tx = 0;
1296 		max_rx = 0;
1297 
1298 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1299 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1300 			    !xfer->tx_buf)
1301 				max_tx = max(xfer->len, max_tx);
1302 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1303 			    !xfer->rx_buf)
1304 				max_rx = max(xfer->len, max_rx);
1305 		}
1306 
1307 		if (max_tx) {
1308 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1309 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1310 			if (!tmp)
1311 				return -ENOMEM;
1312 			ctlr->dummy_tx = tmp;
1313 		}
1314 
1315 		if (max_rx) {
1316 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1317 				       GFP_KERNEL | GFP_DMA);
1318 			if (!tmp)
1319 				return -ENOMEM;
1320 			ctlr->dummy_rx = tmp;
1321 		}
1322 
1323 		if (max_tx || max_rx) {
1324 			list_for_each_entry(xfer, &msg->transfers,
1325 					    transfer_list) {
1326 				if (!xfer->len)
1327 					continue;
1328 				if (!xfer->tx_buf)
1329 					xfer->tx_buf = ctlr->dummy_tx;
1330 				if (!xfer->rx_buf)
1331 					xfer->rx_buf = ctlr->dummy_rx;
1332 			}
1333 		}
1334 	}
1335 
1336 	return __spi_map_msg(ctlr, msg);
1337 }
1338 
1339 static int spi_transfer_wait(struct spi_controller *ctlr,
1340 			     struct spi_message *msg,
1341 			     struct spi_transfer *xfer)
1342 {
1343 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1344 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1345 	u32 speed_hz = xfer->speed_hz;
1346 	unsigned long long ms;
1347 
1348 	if (spi_controller_is_slave(ctlr)) {
1349 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1350 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1351 			return -EINTR;
1352 		}
1353 	} else {
1354 		if (!speed_hz)
1355 			speed_hz = 100000;
1356 
1357 		/*
1358 		 * For each byte we wait for 8 cycles of the SPI clock.
1359 		 * Since speed is defined in Hz and we want milliseconds,
1360 		 * use respective multiplier, but before the division,
1361 		 * otherwise we may get 0 for short transfers.
1362 		 */
1363 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1364 		do_div(ms, speed_hz);
1365 
1366 		/*
1367 		 * Increase it twice and add 200 ms tolerance, use
1368 		 * predefined maximum in case of overflow.
1369 		 */
1370 		ms += ms + 200;
1371 		if (ms > UINT_MAX)
1372 			ms = UINT_MAX;
1373 
1374 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1375 						 msecs_to_jiffies(ms));
1376 
1377 		if (ms == 0) {
1378 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1379 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1380 			dev_err(&msg->spi->dev,
1381 				"SPI transfer timed out\n");
1382 			return -ETIMEDOUT;
1383 		}
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static void _spi_transfer_delay_ns(u32 ns)
1390 {
1391 	if (!ns)
1392 		return;
1393 	if (ns <= NSEC_PER_USEC) {
1394 		ndelay(ns);
1395 	} else {
1396 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1397 
1398 		if (us <= 10)
1399 			udelay(us);
1400 		else
1401 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1402 	}
1403 }
1404 
1405 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1406 {
1407 	u32 delay = _delay->value;
1408 	u32 unit = _delay->unit;
1409 	u32 hz;
1410 
1411 	if (!delay)
1412 		return 0;
1413 
1414 	switch (unit) {
1415 	case SPI_DELAY_UNIT_USECS:
1416 		delay *= NSEC_PER_USEC;
1417 		break;
1418 	case SPI_DELAY_UNIT_NSECS:
1419 		/* Nothing to do here */
1420 		break;
1421 	case SPI_DELAY_UNIT_SCK:
1422 		/* Clock cycles need to be obtained from spi_transfer */
1423 		if (!xfer)
1424 			return -EINVAL;
1425 		/*
1426 		 * If there is unknown effective speed, approximate it
1427 		 * by underestimating with half of the requested hz.
1428 		 */
1429 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1430 		if (!hz)
1431 			return -EINVAL;
1432 
1433 		/* Convert delay to nanoseconds */
1434 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1435 		break;
1436 	default:
1437 		return -EINVAL;
1438 	}
1439 
1440 	return delay;
1441 }
1442 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1443 
1444 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1445 {
1446 	int delay;
1447 
1448 	might_sleep();
1449 
1450 	if (!_delay)
1451 		return -EINVAL;
1452 
1453 	delay = spi_delay_to_ns(_delay, xfer);
1454 	if (delay < 0)
1455 		return delay;
1456 
1457 	_spi_transfer_delay_ns(delay);
1458 
1459 	return 0;
1460 }
1461 EXPORT_SYMBOL_GPL(spi_delay_exec);
1462 
1463 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1464 					  struct spi_transfer *xfer)
1465 {
1466 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1467 	u32 delay = xfer->cs_change_delay.value;
1468 	u32 unit = xfer->cs_change_delay.unit;
1469 	int ret;
1470 
1471 	/* Return early on "fast" mode - for everything but USECS */
1472 	if (!delay) {
1473 		if (unit == SPI_DELAY_UNIT_USECS)
1474 			_spi_transfer_delay_ns(default_delay_ns);
1475 		return;
1476 	}
1477 
1478 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1479 	if (ret) {
1480 		dev_err_once(&msg->spi->dev,
1481 			     "Use of unsupported delay unit %i, using default of %luus\n",
1482 			     unit, default_delay_ns / NSEC_PER_USEC);
1483 		_spi_transfer_delay_ns(default_delay_ns);
1484 	}
1485 }
1486 
1487 /*
1488  * spi_transfer_one_message - Default implementation of transfer_one_message()
1489  *
1490  * This is a standard implementation of transfer_one_message() for
1491  * drivers which implement a transfer_one() operation.  It provides
1492  * standard handling of delays and chip select management.
1493  */
1494 static int spi_transfer_one_message(struct spi_controller *ctlr,
1495 				    struct spi_message *msg)
1496 {
1497 	struct spi_transfer *xfer;
1498 	bool keep_cs = false;
1499 	int ret = 0;
1500 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1501 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1502 
1503 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1504 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1505 
1506 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1507 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1508 
1509 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1510 		trace_spi_transfer_start(msg, xfer);
1511 
1512 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1513 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1514 
1515 		if (!ctlr->ptp_sts_supported) {
1516 			xfer->ptp_sts_word_pre = 0;
1517 			ptp_read_system_prets(xfer->ptp_sts);
1518 		}
1519 
1520 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1521 			reinit_completion(&ctlr->xfer_completion);
1522 
1523 fallback_pio:
1524 			spi_dma_sync_for_device(ctlr, xfer);
1525 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1526 			if (ret < 0) {
1527 				spi_dma_sync_for_cpu(ctlr, xfer);
1528 
1529 				if (ctlr->cur_msg_mapped &&
1530 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1531 					__spi_unmap_msg(ctlr, msg);
1532 					ctlr->fallback = true;
1533 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1534 					goto fallback_pio;
1535 				}
1536 
1537 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1538 							       errors);
1539 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1540 							       errors);
1541 				dev_err(&msg->spi->dev,
1542 					"SPI transfer failed: %d\n", ret);
1543 				goto out;
1544 			}
1545 
1546 			if (ret > 0) {
1547 				ret = spi_transfer_wait(ctlr, msg, xfer);
1548 				if (ret < 0)
1549 					msg->status = ret;
1550 			}
1551 
1552 			spi_dma_sync_for_cpu(ctlr, xfer);
1553 		} else {
1554 			if (xfer->len)
1555 				dev_err(&msg->spi->dev,
1556 					"Bufferless transfer has length %u\n",
1557 					xfer->len);
1558 		}
1559 
1560 		if (!ctlr->ptp_sts_supported) {
1561 			ptp_read_system_postts(xfer->ptp_sts);
1562 			xfer->ptp_sts_word_post = xfer->len;
1563 		}
1564 
1565 		trace_spi_transfer_stop(msg, xfer);
1566 
1567 		if (msg->status != -EINPROGRESS)
1568 			goto out;
1569 
1570 		spi_transfer_delay_exec(xfer);
1571 
1572 		if (xfer->cs_change) {
1573 			if (list_is_last(&xfer->transfer_list,
1574 					 &msg->transfers)) {
1575 				keep_cs = true;
1576 			} else {
1577 				if (!xfer->cs_off)
1578 					spi_set_cs(msg->spi, false, false);
1579 				_spi_transfer_cs_change_delay(msg, xfer);
1580 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1581 					spi_set_cs(msg->spi, true, false);
1582 			}
1583 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1584 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1585 			spi_set_cs(msg->spi, xfer->cs_off, false);
1586 		}
1587 
1588 		msg->actual_length += xfer->len;
1589 	}
1590 
1591 out:
1592 	if (ret != 0 || !keep_cs)
1593 		spi_set_cs(msg->spi, false, false);
1594 
1595 	if (msg->status == -EINPROGRESS)
1596 		msg->status = ret;
1597 
1598 	if (msg->status && ctlr->handle_err)
1599 		ctlr->handle_err(ctlr, msg);
1600 
1601 	spi_finalize_current_message(ctlr);
1602 
1603 	return ret;
1604 }
1605 
1606 /**
1607  * spi_finalize_current_transfer - report completion of a transfer
1608  * @ctlr: the controller reporting completion
1609  *
1610  * Called by SPI drivers using the core transfer_one_message()
1611  * implementation to notify it that the current interrupt driven
1612  * transfer has finished and the next one may be scheduled.
1613  */
1614 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1615 {
1616 	complete(&ctlr->xfer_completion);
1617 }
1618 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1619 
1620 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1621 {
1622 	if (ctlr->auto_runtime_pm) {
1623 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1624 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1625 	}
1626 }
1627 
1628 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1629 		struct spi_message *msg, bool was_busy)
1630 {
1631 	struct spi_transfer *xfer;
1632 	int ret;
1633 
1634 	if (!was_busy && ctlr->auto_runtime_pm) {
1635 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1636 		if (ret < 0) {
1637 			pm_runtime_put_noidle(ctlr->dev.parent);
1638 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1639 				ret);
1640 			return ret;
1641 		}
1642 	}
1643 
1644 	if (!was_busy)
1645 		trace_spi_controller_busy(ctlr);
1646 
1647 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1648 		ret = ctlr->prepare_transfer_hardware(ctlr);
1649 		if (ret) {
1650 			dev_err(&ctlr->dev,
1651 				"failed to prepare transfer hardware: %d\n",
1652 				ret);
1653 
1654 			if (ctlr->auto_runtime_pm)
1655 				pm_runtime_put(ctlr->dev.parent);
1656 
1657 			msg->status = ret;
1658 			spi_finalize_current_message(ctlr);
1659 
1660 			return ret;
1661 		}
1662 	}
1663 
1664 	trace_spi_message_start(msg);
1665 
1666 	ret = spi_split_transfers_maxsize(ctlr, msg,
1667 					  spi_max_transfer_size(msg->spi),
1668 					  GFP_KERNEL | GFP_DMA);
1669 	if (ret) {
1670 		msg->status = ret;
1671 		spi_finalize_current_message(ctlr);
1672 		return ret;
1673 	}
1674 
1675 	if (ctlr->prepare_message) {
1676 		ret = ctlr->prepare_message(ctlr, msg);
1677 		if (ret) {
1678 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1679 				ret);
1680 			msg->status = ret;
1681 			spi_finalize_current_message(ctlr);
1682 			return ret;
1683 		}
1684 		msg->prepared = true;
1685 	}
1686 
1687 	ret = spi_map_msg(ctlr, msg);
1688 	if (ret) {
1689 		msg->status = ret;
1690 		spi_finalize_current_message(ctlr);
1691 		return ret;
1692 	}
1693 
1694 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1695 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1696 			xfer->ptp_sts_word_pre = 0;
1697 			ptp_read_system_prets(xfer->ptp_sts);
1698 		}
1699 	}
1700 
1701 	/*
1702 	 * Drivers implementation of transfer_one_message() must arrange for
1703 	 * spi_finalize_current_message() to get called. Most drivers will do
1704 	 * this in the calling context, but some don't. For those cases, a
1705 	 * completion is used to guarantee that this function does not return
1706 	 * until spi_finalize_current_message() is done accessing
1707 	 * ctlr->cur_msg.
1708 	 * Use of the following two flags enable to opportunistically skip the
1709 	 * use of the completion since its use involves expensive spin locks.
1710 	 * In case of a race with the context that calls
1711 	 * spi_finalize_current_message() the completion will always be used,
1712 	 * due to strict ordering of these flags using barriers.
1713 	 */
1714 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1715 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1716 	reinit_completion(&ctlr->cur_msg_completion);
1717 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1718 
1719 	ret = ctlr->transfer_one_message(ctlr, msg);
1720 	if (ret) {
1721 		dev_err(&ctlr->dev,
1722 			"failed to transfer one message from queue\n");
1723 		return ret;
1724 	}
1725 
1726 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1727 	smp_mb(); /* See spi_finalize_current_message()... */
1728 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1729 		wait_for_completion(&ctlr->cur_msg_completion);
1730 
1731 	return 0;
1732 }
1733 
1734 /**
1735  * __spi_pump_messages - function which processes spi message queue
1736  * @ctlr: controller to process queue for
1737  * @in_kthread: true if we are in the context of the message pump thread
1738  *
1739  * This function checks if there is any spi message in the queue that
1740  * needs processing and if so call out to the driver to initialize hardware
1741  * and transfer each message.
1742  *
1743  * Note that it is called both from the kthread itself and also from
1744  * inside spi_sync(); the queue extraction handling at the top of the
1745  * function should deal with this safely.
1746  */
1747 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1748 {
1749 	struct spi_message *msg;
1750 	bool was_busy = false;
1751 	unsigned long flags;
1752 	int ret;
1753 
1754 	/* Take the IO mutex */
1755 	mutex_lock(&ctlr->io_mutex);
1756 
1757 	/* Lock queue */
1758 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1759 
1760 	/* Make sure we are not already running a message */
1761 	if (ctlr->cur_msg)
1762 		goto out_unlock;
1763 
1764 	/* Check if the queue is idle */
1765 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1766 		if (!ctlr->busy)
1767 			goto out_unlock;
1768 
1769 		/* Defer any non-atomic teardown to the thread */
1770 		if (!in_kthread) {
1771 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1772 			    !ctlr->unprepare_transfer_hardware) {
1773 				spi_idle_runtime_pm(ctlr);
1774 				ctlr->busy = false;
1775 				ctlr->queue_empty = true;
1776 				trace_spi_controller_idle(ctlr);
1777 			} else {
1778 				kthread_queue_work(ctlr->kworker,
1779 						   &ctlr->pump_messages);
1780 			}
1781 			goto out_unlock;
1782 		}
1783 
1784 		ctlr->busy = false;
1785 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1786 
1787 		kfree(ctlr->dummy_rx);
1788 		ctlr->dummy_rx = NULL;
1789 		kfree(ctlr->dummy_tx);
1790 		ctlr->dummy_tx = NULL;
1791 		if (ctlr->unprepare_transfer_hardware &&
1792 		    ctlr->unprepare_transfer_hardware(ctlr))
1793 			dev_err(&ctlr->dev,
1794 				"failed to unprepare transfer hardware\n");
1795 		spi_idle_runtime_pm(ctlr);
1796 		trace_spi_controller_idle(ctlr);
1797 
1798 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1799 		ctlr->queue_empty = true;
1800 		goto out_unlock;
1801 	}
1802 
1803 	/* Extract head of queue */
1804 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1805 	ctlr->cur_msg = msg;
1806 
1807 	list_del_init(&msg->queue);
1808 	if (ctlr->busy)
1809 		was_busy = true;
1810 	else
1811 		ctlr->busy = true;
1812 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1813 
1814 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1815 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1816 
1817 	ctlr->cur_msg = NULL;
1818 	ctlr->fallback = false;
1819 
1820 	mutex_unlock(&ctlr->io_mutex);
1821 
1822 	/* Prod the scheduler in case transfer_one() was busy waiting */
1823 	if (!ret)
1824 		cond_resched();
1825 	return;
1826 
1827 out_unlock:
1828 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1829 	mutex_unlock(&ctlr->io_mutex);
1830 }
1831 
1832 /**
1833  * spi_pump_messages - kthread work function which processes spi message queue
1834  * @work: pointer to kthread work struct contained in the controller struct
1835  */
1836 static void spi_pump_messages(struct kthread_work *work)
1837 {
1838 	struct spi_controller *ctlr =
1839 		container_of(work, struct spi_controller, pump_messages);
1840 
1841 	__spi_pump_messages(ctlr, true);
1842 }
1843 
1844 /**
1845  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1846  * @ctlr: Pointer to the spi_controller structure of the driver
1847  * @xfer: Pointer to the transfer being timestamped
1848  * @progress: How many words (not bytes) have been transferred so far
1849  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1850  *	      transfer, for less jitter in time measurement. Only compatible
1851  *	      with PIO drivers. If true, must follow up with
1852  *	      spi_take_timestamp_post or otherwise system will crash.
1853  *	      WARNING: for fully predictable results, the CPU frequency must
1854  *	      also be under control (governor).
1855  *
1856  * This is a helper for drivers to collect the beginning of the TX timestamp
1857  * for the requested byte from the SPI transfer. The frequency with which this
1858  * function must be called (once per word, once for the whole transfer, once
1859  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1860  * greater than or equal to the requested byte at the time of the call. The
1861  * timestamp is only taken once, at the first such call. It is assumed that
1862  * the driver advances its @tx buffer pointer monotonically.
1863  */
1864 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1865 			    struct spi_transfer *xfer,
1866 			    size_t progress, bool irqs_off)
1867 {
1868 	if (!xfer->ptp_sts)
1869 		return;
1870 
1871 	if (xfer->timestamped)
1872 		return;
1873 
1874 	if (progress > xfer->ptp_sts_word_pre)
1875 		return;
1876 
1877 	/* Capture the resolution of the timestamp */
1878 	xfer->ptp_sts_word_pre = progress;
1879 
1880 	if (irqs_off) {
1881 		local_irq_save(ctlr->irq_flags);
1882 		preempt_disable();
1883 	}
1884 
1885 	ptp_read_system_prets(xfer->ptp_sts);
1886 }
1887 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1888 
1889 /**
1890  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1891  * @ctlr: Pointer to the spi_controller structure of the driver
1892  * @xfer: Pointer to the transfer being timestamped
1893  * @progress: How many words (not bytes) have been transferred so far
1894  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1895  *
1896  * This is a helper for drivers to collect the end of the TX timestamp for
1897  * the requested byte from the SPI transfer. Can be called with an arbitrary
1898  * frequency: only the first call where @tx exceeds or is equal to the
1899  * requested word will be timestamped.
1900  */
1901 void spi_take_timestamp_post(struct spi_controller *ctlr,
1902 			     struct spi_transfer *xfer,
1903 			     size_t progress, bool irqs_off)
1904 {
1905 	if (!xfer->ptp_sts)
1906 		return;
1907 
1908 	if (xfer->timestamped)
1909 		return;
1910 
1911 	if (progress < xfer->ptp_sts_word_post)
1912 		return;
1913 
1914 	ptp_read_system_postts(xfer->ptp_sts);
1915 
1916 	if (irqs_off) {
1917 		local_irq_restore(ctlr->irq_flags);
1918 		preempt_enable();
1919 	}
1920 
1921 	/* Capture the resolution of the timestamp */
1922 	xfer->ptp_sts_word_post = progress;
1923 
1924 	xfer->timestamped = true;
1925 }
1926 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1927 
1928 /**
1929  * spi_set_thread_rt - set the controller to pump at realtime priority
1930  * @ctlr: controller to boost priority of
1931  *
1932  * This can be called because the controller requested realtime priority
1933  * (by setting the ->rt value before calling spi_register_controller()) or
1934  * because a device on the bus said that its transfers needed realtime
1935  * priority.
1936  *
1937  * NOTE: at the moment if any device on a bus says it needs realtime then
1938  * the thread will be at realtime priority for all transfers on that
1939  * controller.  If this eventually becomes a problem we may see if we can
1940  * find a way to boost the priority only temporarily during relevant
1941  * transfers.
1942  */
1943 static void spi_set_thread_rt(struct spi_controller *ctlr)
1944 {
1945 	dev_info(&ctlr->dev,
1946 		"will run message pump with realtime priority\n");
1947 	sched_set_fifo(ctlr->kworker->task);
1948 }
1949 
1950 static int spi_init_queue(struct spi_controller *ctlr)
1951 {
1952 	ctlr->running = false;
1953 	ctlr->busy = false;
1954 	ctlr->queue_empty = true;
1955 
1956 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1957 	if (IS_ERR(ctlr->kworker)) {
1958 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1959 		return PTR_ERR(ctlr->kworker);
1960 	}
1961 
1962 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1963 
1964 	/*
1965 	 * Controller config will indicate if this controller should run the
1966 	 * message pump with high (realtime) priority to reduce the transfer
1967 	 * latency on the bus by minimising the delay between a transfer
1968 	 * request and the scheduling of the message pump thread. Without this
1969 	 * setting the message pump thread will remain at default priority.
1970 	 */
1971 	if (ctlr->rt)
1972 		spi_set_thread_rt(ctlr);
1973 
1974 	return 0;
1975 }
1976 
1977 /**
1978  * spi_get_next_queued_message() - called by driver to check for queued
1979  * messages
1980  * @ctlr: the controller to check for queued messages
1981  *
1982  * If there are more messages in the queue, the next message is returned from
1983  * this call.
1984  *
1985  * Return: the next message in the queue, else NULL if the queue is empty.
1986  */
1987 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1988 {
1989 	struct spi_message *next;
1990 	unsigned long flags;
1991 
1992 	/* Get a pointer to the next message, if any */
1993 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1994 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1995 					queue);
1996 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1997 
1998 	return next;
1999 }
2000 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2001 
2002 /**
2003  * spi_finalize_current_message() - the current message is complete
2004  * @ctlr: the controller to return the message to
2005  *
2006  * Called by the driver to notify the core that the message in the front of the
2007  * queue is complete and can be removed from the queue.
2008  */
2009 void spi_finalize_current_message(struct spi_controller *ctlr)
2010 {
2011 	struct spi_transfer *xfer;
2012 	struct spi_message *mesg;
2013 	int ret;
2014 
2015 	mesg = ctlr->cur_msg;
2016 
2017 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2018 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2019 			ptp_read_system_postts(xfer->ptp_sts);
2020 			xfer->ptp_sts_word_post = xfer->len;
2021 		}
2022 	}
2023 
2024 	if (unlikely(ctlr->ptp_sts_supported))
2025 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2026 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2027 
2028 	spi_unmap_msg(ctlr, mesg);
2029 
2030 	/*
2031 	 * In the prepare_messages callback the SPI bus has the opportunity
2032 	 * to split a transfer to smaller chunks.
2033 	 *
2034 	 * Release the split transfers here since spi_map_msg() is done on
2035 	 * the split transfers.
2036 	 */
2037 	spi_res_release(ctlr, mesg);
2038 
2039 	if (mesg->prepared && ctlr->unprepare_message) {
2040 		ret = ctlr->unprepare_message(ctlr, mesg);
2041 		if (ret) {
2042 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2043 				ret);
2044 		}
2045 	}
2046 
2047 	mesg->prepared = false;
2048 
2049 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2050 	smp_mb(); /* See __spi_pump_transfer_message()... */
2051 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2052 		complete(&ctlr->cur_msg_completion);
2053 
2054 	trace_spi_message_done(mesg);
2055 
2056 	mesg->state = NULL;
2057 	if (mesg->complete)
2058 		mesg->complete(mesg->context);
2059 }
2060 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2061 
2062 static int spi_start_queue(struct spi_controller *ctlr)
2063 {
2064 	unsigned long flags;
2065 
2066 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2067 
2068 	if (ctlr->running || ctlr->busy) {
2069 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2070 		return -EBUSY;
2071 	}
2072 
2073 	ctlr->running = true;
2074 	ctlr->cur_msg = NULL;
2075 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2076 
2077 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2078 
2079 	return 0;
2080 }
2081 
2082 static int spi_stop_queue(struct spi_controller *ctlr)
2083 {
2084 	unsigned long flags;
2085 	unsigned limit = 500;
2086 	int ret = 0;
2087 
2088 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2089 
2090 	/*
2091 	 * This is a bit lame, but is optimized for the common execution path.
2092 	 * A wait_queue on the ctlr->busy could be used, but then the common
2093 	 * execution path (pump_messages) would be required to call wake_up or
2094 	 * friends on every SPI message. Do this instead.
2095 	 */
2096 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2097 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2098 		usleep_range(10000, 11000);
2099 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2100 	}
2101 
2102 	if (!list_empty(&ctlr->queue) || ctlr->busy)
2103 		ret = -EBUSY;
2104 	else
2105 		ctlr->running = false;
2106 
2107 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2108 
2109 	if (ret) {
2110 		dev_warn(&ctlr->dev, "could not stop message queue\n");
2111 		return ret;
2112 	}
2113 	return ret;
2114 }
2115 
2116 static int spi_destroy_queue(struct spi_controller *ctlr)
2117 {
2118 	int ret;
2119 
2120 	ret = spi_stop_queue(ctlr);
2121 
2122 	/*
2123 	 * kthread_flush_worker will block until all work is done.
2124 	 * If the reason that stop_queue timed out is that the work will never
2125 	 * finish, then it does no good to call flush/stop thread, so
2126 	 * return anyway.
2127 	 */
2128 	if (ret) {
2129 		dev_err(&ctlr->dev, "problem destroying queue\n");
2130 		return ret;
2131 	}
2132 
2133 	kthread_destroy_worker(ctlr->kworker);
2134 
2135 	return 0;
2136 }
2137 
2138 static int __spi_queued_transfer(struct spi_device *spi,
2139 				 struct spi_message *msg,
2140 				 bool need_pump)
2141 {
2142 	struct spi_controller *ctlr = spi->controller;
2143 	unsigned long flags;
2144 
2145 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2146 
2147 	if (!ctlr->running) {
2148 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2149 		return -ESHUTDOWN;
2150 	}
2151 	msg->actual_length = 0;
2152 	msg->status = -EINPROGRESS;
2153 
2154 	list_add_tail(&msg->queue, &ctlr->queue);
2155 	ctlr->queue_empty = false;
2156 	if (!ctlr->busy && need_pump)
2157 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2158 
2159 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2160 	return 0;
2161 }
2162 
2163 /**
2164  * spi_queued_transfer - transfer function for queued transfers
2165  * @spi: spi device which is requesting transfer
2166  * @msg: spi message which is to handled is queued to driver queue
2167  *
2168  * Return: zero on success, else a negative error code.
2169  */
2170 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2171 {
2172 	return __spi_queued_transfer(spi, msg, true);
2173 }
2174 
2175 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2176 {
2177 	int ret;
2178 
2179 	ctlr->transfer = spi_queued_transfer;
2180 	if (!ctlr->transfer_one_message)
2181 		ctlr->transfer_one_message = spi_transfer_one_message;
2182 
2183 	/* Initialize and start queue */
2184 	ret = spi_init_queue(ctlr);
2185 	if (ret) {
2186 		dev_err(&ctlr->dev, "problem initializing queue\n");
2187 		goto err_init_queue;
2188 	}
2189 	ctlr->queued = true;
2190 	ret = spi_start_queue(ctlr);
2191 	if (ret) {
2192 		dev_err(&ctlr->dev, "problem starting queue\n");
2193 		goto err_start_queue;
2194 	}
2195 
2196 	return 0;
2197 
2198 err_start_queue:
2199 	spi_destroy_queue(ctlr);
2200 err_init_queue:
2201 	return ret;
2202 }
2203 
2204 /**
2205  * spi_flush_queue - Send all pending messages in the queue from the callers'
2206  *		     context
2207  * @ctlr: controller to process queue for
2208  *
2209  * This should be used when one wants to ensure all pending messages have been
2210  * sent before doing something. Is used by the spi-mem code to make sure SPI
2211  * memory operations do not preempt regular SPI transfers that have been queued
2212  * before the spi-mem operation.
2213  */
2214 void spi_flush_queue(struct spi_controller *ctlr)
2215 {
2216 	if (ctlr->transfer == spi_queued_transfer)
2217 		__spi_pump_messages(ctlr, false);
2218 }
2219 
2220 /*-------------------------------------------------------------------------*/
2221 
2222 #if defined(CONFIG_OF)
2223 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2224 				     struct spi_delay *delay, const char *prop)
2225 {
2226 	u32 value;
2227 
2228 	if (!of_property_read_u32(nc, prop, &value)) {
2229 		if (value > U16_MAX) {
2230 			delay->value = DIV_ROUND_UP(value, 1000);
2231 			delay->unit = SPI_DELAY_UNIT_USECS;
2232 		} else {
2233 			delay->value = value;
2234 			delay->unit = SPI_DELAY_UNIT_NSECS;
2235 		}
2236 	}
2237 }
2238 
2239 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2240 			   struct device_node *nc)
2241 {
2242 	u32 value;
2243 	int rc;
2244 
2245 	/* Mode (clock phase/polarity/etc.) */
2246 	if (of_property_read_bool(nc, "spi-cpha"))
2247 		spi->mode |= SPI_CPHA;
2248 	if (of_property_read_bool(nc, "spi-cpol"))
2249 		spi->mode |= SPI_CPOL;
2250 	if (of_property_read_bool(nc, "spi-3wire"))
2251 		spi->mode |= SPI_3WIRE;
2252 	if (of_property_read_bool(nc, "spi-lsb-first"))
2253 		spi->mode |= SPI_LSB_FIRST;
2254 	if (of_property_read_bool(nc, "spi-cs-high"))
2255 		spi->mode |= SPI_CS_HIGH;
2256 
2257 	/* Device DUAL/QUAD mode */
2258 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2259 		switch (value) {
2260 		case 0:
2261 			spi->mode |= SPI_NO_TX;
2262 			break;
2263 		case 1:
2264 			break;
2265 		case 2:
2266 			spi->mode |= SPI_TX_DUAL;
2267 			break;
2268 		case 4:
2269 			spi->mode |= SPI_TX_QUAD;
2270 			break;
2271 		case 8:
2272 			spi->mode |= SPI_TX_OCTAL;
2273 			break;
2274 		default:
2275 			dev_warn(&ctlr->dev,
2276 				"spi-tx-bus-width %d not supported\n",
2277 				value);
2278 			break;
2279 		}
2280 	}
2281 
2282 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2283 		switch (value) {
2284 		case 0:
2285 			spi->mode |= SPI_NO_RX;
2286 			break;
2287 		case 1:
2288 			break;
2289 		case 2:
2290 			spi->mode |= SPI_RX_DUAL;
2291 			break;
2292 		case 4:
2293 			spi->mode |= SPI_RX_QUAD;
2294 			break;
2295 		case 8:
2296 			spi->mode |= SPI_RX_OCTAL;
2297 			break;
2298 		default:
2299 			dev_warn(&ctlr->dev,
2300 				"spi-rx-bus-width %d not supported\n",
2301 				value);
2302 			break;
2303 		}
2304 	}
2305 
2306 	if (spi_controller_is_slave(ctlr)) {
2307 		if (!of_node_name_eq(nc, "slave")) {
2308 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2309 				nc);
2310 			return -EINVAL;
2311 		}
2312 		return 0;
2313 	}
2314 
2315 	/* Device address */
2316 	rc = of_property_read_u32(nc, "reg", &value);
2317 	if (rc) {
2318 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2319 			nc, rc);
2320 		return rc;
2321 	}
2322 	spi->chip_select = value;
2323 
2324 	/* Device speed */
2325 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2326 		spi->max_speed_hz = value;
2327 
2328 	/* Device CS delays */
2329 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2330 
2331 	return 0;
2332 }
2333 
2334 static struct spi_device *
2335 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2336 {
2337 	struct spi_device *spi;
2338 	int rc;
2339 
2340 	/* Alloc an spi_device */
2341 	spi = spi_alloc_device(ctlr);
2342 	if (!spi) {
2343 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2344 		rc = -ENOMEM;
2345 		goto err_out;
2346 	}
2347 
2348 	/* Select device driver */
2349 	rc = of_modalias_node(nc, spi->modalias,
2350 				sizeof(spi->modalias));
2351 	if (rc < 0) {
2352 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2353 		goto err_out;
2354 	}
2355 
2356 	rc = of_spi_parse_dt(ctlr, spi, nc);
2357 	if (rc)
2358 		goto err_out;
2359 
2360 	/* Store a pointer to the node in the device structure */
2361 	of_node_get(nc);
2362 	spi->dev.of_node = nc;
2363 	spi->dev.fwnode = of_fwnode_handle(nc);
2364 
2365 	/* Register the new device */
2366 	rc = spi_add_device(spi);
2367 	if (rc) {
2368 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2369 		goto err_of_node_put;
2370 	}
2371 
2372 	return spi;
2373 
2374 err_of_node_put:
2375 	of_node_put(nc);
2376 err_out:
2377 	spi_dev_put(spi);
2378 	return ERR_PTR(rc);
2379 }
2380 
2381 /**
2382  * of_register_spi_devices() - Register child devices onto the SPI bus
2383  * @ctlr:	Pointer to spi_controller device
2384  *
2385  * Registers an spi_device for each child node of controller node which
2386  * represents a valid SPI slave.
2387  */
2388 static void of_register_spi_devices(struct spi_controller *ctlr)
2389 {
2390 	struct spi_device *spi;
2391 	struct device_node *nc;
2392 
2393 	if (!ctlr->dev.of_node)
2394 		return;
2395 
2396 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2397 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2398 			continue;
2399 		spi = of_register_spi_device(ctlr, nc);
2400 		if (IS_ERR(spi)) {
2401 			dev_warn(&ctlr->dev,
2402 				 "Failed to create SPI device for %pOF\n", nc);
2403 			of_node_clear_flag(nc, OF_POPULATED);
2404 		}
2405 	}
2406 }
2407 #else
2408 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2409 #endif
2410 
2411 /**
2412  * spi_new_ancillary_device() - Register ancillary SPI device
2413  * @spi:         Pointer to the main SPI device registering the ancillary device
2414  * @chip_select: Chip Select of the ancillary device
2415  *
2416  * Register an ancillary SPI device; for example some chips have a chip-select
2417  * for normal device usage and another one for setup/firmware upload.
2418  *
2419  * This may only be called from main SPI device's probe routine.
2420  *
2421  * Return: 0 on success; negative errno on failure
2422  */
2423 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2424 					     u8 chip_select)
2425 {
2426 	struct spi_device *ancillary;
2427 	int rc = 0;
2428 
2429 	/* Alloc an spi_device */
2430 	ancillary = spi_alloc_device(spi->controller);
2431 	if (!ancillary) {
2432 		rc = -ENOMEM;
2433 		goto err_out;
2434 	}
2435 
2436 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2437 
2438 	/* Use provided chip-select for ancillary device */
2439 	ancillary->chip_select = chip_select;
2440 
2441 	/* Take over SPI mode/speed from SPI main device */
2442 	ancillary->max_speed_hz = spi->max_speed_hz;
2443 	ancillary->mode = spi->mode;
2444 
2445 	/* Register the new device */
2446 	rc = spi_add_device_locked(ancillary);
2447 	if (rc) {
2448 		dev_err(&spi->dev, "failed to register ancillary device\n");
2449 		goto err_out;
2450 	}
2451 
2452 	return ancillary;
2453 
2454 err_out:
2455 	spi_dev_put(ancillary);
2456 	return ERR_PTR(rc);
2457 }
2458 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2459 
2460 #ifdef CONFIG_ACPI
2461 struct acpi_spi_lookup {
2462 	struct spi_controller 	*ctlr;
2463 	u32			max_speed_hz;
2464 	u32			mode;
2465 	int			irq;
2466 	u8			bits_per_word;
2467 	u8			chip_select;
2468 	int			n;
2469 	int			index;
2470 };
2471 
2472 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2473 {
2474 	struct acpi_resource_spi_serialbus *sb;
2475 	int *count = data;
2476 
2477 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2478 		return 1;
2479 
2480 	sb = &ares->data.spi_serial_bus;
2481 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2482 		return 1;
2483 
2484 	*count = *count + 1;
2485 
2486 	return 1;
2487 }
2488 
2489 /**
2490  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2491  * @adev:	ACPI device
2492  *
2493  * Returns the number of SpiSerialBus resources in the ACPI-device's
2494  * resource-list; or a negative error code.
2495  */
2496 int acpi_spi_count_resources(struct acpi_device *adev)
2497 {
2498 	LIST_HEAD(r);
2499 	int count = 0;
2500 	int ret;
2501 
2502 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2503 	if (ret < 0)
2504 		return ret;
2505 
2506 	acpi_dev_free_resource_list(&r);
2507 
2508 	return count;
2509 }
2510 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2511 
2512 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2513 					    struct acpi_spi_lookup *lookup)
2514 {
2515 	const union acpi_object *obj;
2516 
2517 	if (!x86_apple_machine)
2518 		return;
2519 
2520 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2521 	    && obj->buffer.length >= 4)
2522 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2523 
2524 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2525 	    && obj->buffer.length == 8)
2526 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2527 
2528 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2529 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2530 		lookup->mode |= SPI_LSB_FIRST;
2531 
2532 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2533 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2534 		lookup->mode |= SPI_CPOL;
2535 
2536 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2537 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2538 		lookup->mode |= SPI_CPHA;
2539 }
2540 
2541 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2542 
2543 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2544 {
2545 	struct acpi_spi_lookup *lookup = data;
2546 	struct spi_controller *ctlr = lookup->ctlr;
2547 
2548 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2549 		struct acpi_resource_spi_serialbus *sb;
2550 		acpi_handle parent_handle;
2551 		acpi_status status;
2552 
2553 		sb = &ares->data.spi_serial_bus;
2554 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2555 
2556 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2557 				return 1;
2558 
2559 			status = acpi_get_handle(NULL,
2560 						 sb->resource_source.string_ptr,
2561 						 &parent_handle);
2562 
2563 			if (ACPI_FAILURE(status))
2564 				return -ENODEV;
2565 
2566 			if (ctlr) {
2567 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2568 					return -ENODEV;
2569 			} else {
2570 				struct acpi_device *adev;
2571 
2572 				adev = acpi_fetch_acpi_dev(parent_handle);
2573 				if (!adev)
2574 					return -ENODEV;
2575 
2576 				ctlr = acpi_spi_find_controller_by_adev(adev);
2577 				if (!ctlr)
2578 					return -EPROBE_DEFER;
2579 
2580 				lookup->ctlr = ctlr;
2581 			}
2582 
2583 			/*
2584 			 * ACPI DeviceSelection numbering is handled by the
2585 			 * host controller driver in Windows and can vary
2586 			 * from driver to driver. In Linux we always expect
2587 			 * 0 .. max - 1 so we need to ask the driver to
2588 			 * translate between the two schemes.
2589 			 */
2590 			if (ctlr->fw_translate_cs) {
2591 				int cs = ctlr->fw_translate_cs(ctlr,
2592 						sb->device_selection);
2593 				if (cs < 0)
2594 					return cs;
2595 				lookup->chip_select = cs;
2596 			} else {
2597 				lookup->chip_select = sb->device_selection;
2598 			}
2599 
2600 			lookup->max_speed_hz = sb->connection_speed;
2601 			lookup->bits_per_word = sb->data_bit_length;
2602 
2603 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2604 				lookup->mode |= SPI_CPHA;
2605 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2606 				lookup->mode |= SPI_CPOL;
2607 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2608 				lookup->mode |= SPI_CS_HIGH;
2609 		}
2610 	} else if (lookup->irq < 0) {
2611 		struct resource r;
2612 
2613 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2614 			lookup->irq = r.start;
2615 	}
2616 
2617 	/* Always tell the ACPI core to skip this resource */
2618 	return 1;
2619 }
2620 
2621 /**
2622  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2623  * @ctlr: controller to which the spi device belongs
2624  * @adev: ACPI Device for the spi device
2625  * @index: Index of the spi resource inside the ACPI Node
2626  *
2627  * This should be used to allocate a new spi device from and ACPI Node.
2628  * The caller is responsible for calling spi_add_device to register the spi device.
2629  *
2630  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2631  * using the resource.
2632  * If index is set to -1, index is not used.
2633  * Note: If index is -1, ctlr must be set.
2634  *
2635  * Return: a pointer to the new device, or ERR_PTR on error.
2636  */
2637 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2638 					 struct acpi_device *adev,
2639 					 int index)
2640 {
2641 	acpi_handle parent_handle = NULL;
2642 	struct list_head resource_list;
2643 	struct acpi_spi_lookup lookup = {};
2644 	struct spi_device *spi;
2645 	int ret;
2646 
2647 	if (!ctlr && index == -1)
2648 		return ERR_PTR(-EINVAL);
2649 
2650 	lookup.ctlr		= ctlr;
2651 	lookup.irq		= -1;
2652 	lookup.index		= index;
2653 	lookup.n		= 0;
2654 
2655 	INIT_LIST_HEAD(&resource_list);
2656 	ret = acpi_dev_get_resources(adev, &resource_list,
2657 				     acpi_spi_add_resource, &lookup);
2658 	acpi_dev_free_resource_list(&resource_list);
2659 
2660 	if (ret < 0)
2661 		/* Found SPI in _CRS but it points to another controller */
2662 		return ERR_PTR(ret);
2663 
2664 	if (!lookup.max_speed_hz &&
2665 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2666 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2667 		/* Apple does not use _CRS but nested devices for SPI slaves */
2668 		acpi_spi_parse_apple_properties(adev, &lookup);
2669 	}
2670 
2671 	if (!lookup.max_speed_hz)
2672 		return ERR_PTR(-ENODEV);
2673 
2674 	spi = spi_alloc_device(lookup.ctlr);
2675 	if (!spi) {
2676 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2677 			dev_name(&adev->dev));
2678 		return ERR_PTR(-ENOMEM);
2679 	}
2680 
2681 	ACPI_COMPANION_SET(&spi->dev, adev);
2682 	spi->max_speed_hz	= lookup.max_speed_hz;
2683 	spi->mode		|= lookup.mode;
2684 	spi->irq		= lookup.irq;
2685 	spi->bits_per_word	= lookup.bits_per_word;
2686 	spi->chip_select	= lookup.chip_select;
2687 
2688 	return spi;
2689 }
2690 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2691 
2692 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2693 					    struct acpi_device *adev)
2694 {
2695 	struct spi_device *spi;
2696 
2697 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2698 	    acpi_device_enumerated(adev))
2699 		return AE_OK;
2700 
2701 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2702 	if (IS_ERR(spi)) {
2703 		if (PTR_ERR(spi) == -ENOMEM)
2704 			return AE_NO_MEMORY;
2705 		else
2706 			return AE_OK;
2707 	}
2708 
2709 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2710 			  sizeof(spi->modalias));
2711 
2712 	if (spi->irq < 0)
2713 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2714 
2715 	acpi_device_set_enumerated(adev);
2716 
2717 	adev->power.flags.ignore_parent = true;
2718 	if (spi_add_device(spi)) {
2719 		adev->power.flags.ignore_parent = false;
2720 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2721 			dev_name(&adev->dev));
2722 		spi_dev_put(spi);
2723 	}
2724 
2725 	return AE_OK;
2726 }
2727 
2728 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2729 				       void *data, void **return_value)
2730 {
2731 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2732 	struct spi_controller *ctlr = data;
2733 
2734 	if (!adev)
2735 		return AE_OK;
2736 
2737 	return acpi_register_spi_device(ctlr, adev);
2738 }
2739 
2740 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2741 
2742 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2743 {
2744 	acpi_status status;
2745 	acpi_handle handle;
2746 
2747 	handle = ACPI_HANDLE(ctlr->dev.parent);
2748 	if (!handle)
2749 		return;
2750 
2751 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2752 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2753 				     acpi_spi_add_device, NULL, ctlr, NULL);
2754 	if (ACPI_FAILURE(status))
2755 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2756 }
2757 #else
2758 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2759 #endif /* CONFIG_ACPI */
2760 
2761 static void spi_controller_release(struct device *dev)
2762 {
2763 	struct spi_controller *ctlr;
2764 
2765 	ctlr = container_of(dev, struct spi_controller, dev);
2766 	kfree(ctlr);
2767 }
2768 
2769 static struct class spi_master_class = {
2770 	.name		= "spi_master",
2771 	.owner		= THIS_MODULE,
2772 	.dev_release	= spi_controller_release,
2773 	.dev_groups	= spi_master_groups,
2774 };
2775 
2776 #ifdef CONFIG_SPI_SLAVE
2777 /**
2778  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2779  *		     controller
2780  * @spi: device used for the current transfer
2781  */
2782 int spi_slave_abort(struct spi_device *spi)
2783 {
2784 	struct spi_controller *ctlr = spi->controller;
2785 
2786 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2787 		return ctlr->slave_abort(ctlr);
2788 
2789 	return -ENOTSUPP;
2790 }
2791 EXPORT_SYMBOL_GPL(spi_slave_abort);
2792 
2793 int spi_target_abort(struct spi_device *spi)
2794 {
2795 	struct spi_controller *ctlr = spi->controller;
2796 
2797 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2798 		return ctlr->target_abort(ctlr);
2799 
2800 	return -ENOTSUPP;
2801 }
2802 EXPORT_SYMBOL_GPL(spi_target_abort);
2803 
2804 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2805 			  char *buf)
2806 {
2807 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2808 						   dev);
2809 	struct device *child;
2810 
2811 	child = device_find_any_child(&ctlr->dev);
2812 	return sprintf(buf, "%s\n",
2813 		       child ? to_spi_device(child)->modalias : NULL);
2814 }
2815 
2816 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2817 			   const char *buf, size_t count)
2818 {
2819 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2820 						   dev);
2821 	struct spi_device *spi;
2822 	struct device *child;
2823 	char name[32];
2824 	int rc;
2825 
2826 	rc = sscanf(buf, "%31s", name);
2827 	if (rc != 1 || !name[0])
2828 		return -EINVAL;
2829 
2830 	child = device_find_any_child(&ctlr->dev);
2831 	if (child) {
2832 		/* Remove registered slave */
2833 		device_unregister(child);
2834 		put_device(child);
2835 	}
2836 
2837 	if (strcmp(name, "(null)")) {
2838 		/* Register new slave */
2839 		spi = spi_alloc_device(ctlr);
2840 		if (!spi)
2841 			return -ENOMEM;
2842 
2843 		strscpy(spi->modalias, name, sizeof(spi->modalias));
2844 
2845 		rc = spi_add_device(spi);
2846 		if (rc) {
2847 			spi_dev_put(spi);
2848 			return rc;
2849 		}
2850 	}
2851 
2852 	return count;
2853 }
2854 
2855 static DEVICE_ATTR_RW(slave);
2856 
2857 static struct attribute *spi_slave_attrs[] = {
2858 	&dev_attr_slave.attr,
2859 	NULL,
2860 };
2861 
2862 static const struct attribute_group spi_slave_group = {
2863 	.attrs = spi_slave_attrs,
2864 };
2865 
2866 static const struct attribute_group *spi_slave_groups[] = {
2867 	&spi_controller_statistics_group,
2868 	&spi_slave_group,
2869 	NULL,
2870 };
2871 
2872 static struct class spi_slave_class = {
2873 	.name		= "spi_slave",
2874 	.owner		= THIS_MODULE,
2875 	.dev_release	= spi_controller_release,
2876 	.dev_groups	= spi_slave_groups,
2877 };
2878 #else
2879 extern struct class spi_slave_class;	/* dummy */
2880 #endif
2881 
2882 /**
2883  * __spi_alloc_controller - allocate an SPI master or slave controller
2884  * @dev: the controller, possibly using the platform_bus
2885  * @size: how much zeroed driver-private data to allocate; the pointer to this
2886  *	memory is in the driver_data field of the returned device, accessible
2887  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2888  *	drivers granting DMA access to portions of their private data need to
2889  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2890  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2891  *	slave (true) controller
2892  * Context: can sleep
2893  *
2894  * This call is used only by SPI controller drivers, which are the
2895  * only ones directly touching chip registers.  It's how they allocate
2896  * an spi_controller structure, prior to calling spi_register_controller().
2897  *
2898  * This must be called from context that can sleep.
2899  *
2900  * The caller is responsible for assigning the bus number and initializing the
2901  * controller's methods before calling spi_register_controller(); and (after
2902  * errors adding the device) calling spi_controller_put() to prevent a memory
2903  * leak.
2904  *
2905  * Return: the SPI controller structure on success, else NULL.
2906  */
2907 struct spi_controller *__spi_alloc_controller(struct device *dev,
2908 					      unsigned int size, bool slave)
2909 {
2910 	struct spi_controller	*ctlr;
2911 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2912 
2913 	if (!dev)
2914 		return NULL;
2915 
2916 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2917 	if (!ctlr)
2918 		return NULL;
2919 
2920 	device_initialize(&ctlr->dev);
2921 	INIT_LIST_HEAD(&ctlr->queue);
2922 	spin_lock_init(&ctlr->queue_lock);
2923 	spin_lock_init(&ctlr->bus_lock_spinlock);
2924 	mutex_init(&ctlr->bus_lock_mutex);
2925 	mutex_init(&ctlr->io_mutex);
2926 	mutex_init(&ctlr->add_lock);
2927 	ctlr->bus_num = -1;
2928 	ctlr->num_chipselect = 1;
2929 	ctlr->slave = slave;
2930 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2931 		ctlr->dev.class = &spi_slave_class;
2932 	else
2933 		ctlr->dev.class = &spi_master_class;
2934 	ctlr->dev.parent = dev;
2935 	pm_suspend_ignore_children(&ctlr->dev, true);
2936 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2937 
2938 	return ctlr;
2939 }
2940 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2941 
2942 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2943 {
2944 	spi_controller_put(*(struct spi_controller **)ctlr);
2945 }
2946 
2947 /**
2948  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2949  * @dev: physical device of SPI controller
2950  * @size: how much zeroed driver-private data to allocate
2951  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2952  * Context: can sleep
2953  *
2954  * Allocate an SPI controller and automatically release a reference on it
2955  * when @dev is unbound from its driver.  Drivers are thus relieved from
2956  * having to call spi_controller_put().
2957  *
2958  * The arguments to this function are identical to __spi_alloc_controller().
2959  *
2960  * Return: the SPI controller structure on success, else NULL.
2961  */
2962 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2963 						   unsigned int size,
2964 						   bool slave)
2965 {
2966 	struct spi_controller **ptr, *ctlr;
2967 
2968 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2969 			   GFP_KERNEL);
2970 	if (!ptr)
2971 		return NULL;
2972 
2973 	ctlr = __spi_alloc_controller(dev, size, slave);
2974 	if (ctlr) {
2975 		ctlr->devm_allocated = true;
2976 		*ptr = ctlr;
2977 		devres_add(dev, ptr);
2978 	} else {
2979 		devres_free(ptr);
2980 	}
2981 
2982 	return ctlr;
2983 }
2984 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2985 
2986 /**
2987  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2988  * @ctlr: The SPI master to grab GPIO descriptors for
2989  */
2990 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2991 {
2992 	int nb, i;
2993 	struct gpio_desc **cs;
2994 	struct device *dev = &ctlr->dev;
2995 	unsigned long native_cs_mask = 0;
2996 	unsigned int num_cs_gpios = 0;
2997 
2998 	nb = gpiod_count(dev, "cs");
2999 	if (nb < 0) {
3000 		/* No GPIOs at all is fine, else return the error */
3001 		if (nb == -ENOENT)
3002 			return 0;
3003 		return nb;
3004 	}
3005 
3006 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3007 
3008 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3009 			  GFP_KERNEL);
3010 	if (!cs)
3011 		return -ENOMEM;
3012 	ctlr->cs_gpiods = cs;
3013 
3014 	for (i = 0; i < nb; i++) {
3015 		/*
3016 		 * Most chipselects are active low, the inverted
3017 		 * semantics are handled by special quirks in gpiolib,
3018 		 * so initializing them GPIOD_OUT_LOW here means
3019 		 * "unasserted", in most cases this will drive the physical
3020 		 * line high.
3021 		 */
3022 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3023 						      GPIOD_OUT_LOW);
3024 		if (IS_ERR(cs[i]))
3025 			return PTR_ERR(cs[i]);
3026 
3027 		if (cs[i]) {
3028 			/*
3029 			 * If we find a CS GPIO, name it after the device and
3030 			 * chip select line.
3031 			 */
3032 			char *gpioname;
3033 
3034 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3035 						  dev_name(dev), i);
3036 			if (!gpioname)
3037 				return -ENOMEM;
3038 			gpiod_set_consumer_name(cs[i], gpioname);
3039 			num_cs_gpios++;
3040 			continue;
3041 		}
3042 
3043 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3044 			dev_err(dev, "Invalid native chip select %d\n", i);
3045 			return -EINVAL;
3046 		}
3047 		native_cs_mask |= BIT(i);
3048 	}
3049 
3050 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3051 
3052 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3053 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3054 		dev_err(dev, "No unused native chip select available\n");
3055 		return -EINVAL;
3056 	}
3057 
3058 	return 0;
3059 }
3060 
3061 static int spi_controller_check_ops(struct spi_controller *ctlr)
3062 {
3063 	/*
3064 	 * The controller may implement only the high-level SPI-memory like
3065 	 * operations if it does not support regular SPI transfers, and this is
3066 	 * valid use case.
3067 	 * If ->mem_ops is NULL, we request that at least one of the
3068 	 * ->transfer_xxx() method be implemented.
3069 	 */
3070 	if (ctlr->mem_ops) {
3071 		if (!ctlr->mem_ops->exec_op)
3072 			return -EINVAL;
3073 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
3074 		   !ctlr->transfer_one_message) {
3075 		return -EINVAL;
3076 	}
3077 
3078 	return 0;
3079 }
3080 
3081 /**
3082  * spi_register_controller - register SPI master or slave controller
3083  * @ctlr: initialized master, originally from spi_alloc_master() or
3084  *	spi_alloc_slave()
3085  * Context: can sleep
3086  *
3087  * SPI controllers connect to their drivers using some non-SPI bus,
3088  * such as the platform bus.  The final stage of probe() in that code
3089  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3090  *
3091  * SPI controllers use board specific (often SOC specific) bus numbers,
3092  * and board-specific addressing for SPI devices combines those numbers
3093  * with chip select numbers.  Since SPI does not directly support dynamic
3094  * device identification, boards need configuration tables telling which
3095  * chip is at which address.
3096  *
3097  * This must be called from context that can sleep.  It returns zero on
3098  * success, else a negative error code (dropping the controller's refcount).
3099  * After a successful return, the caller is responsible for calling
3100  * spi_unregister_controller().
3101  *
3102  * Return: zero on success, else a negative error code.
3103  */
3104 int spi_register_controller(struct spi_controller *ctlr)
3105 {
3106 	struct device		*dev = ctlr->dev.parent;
3107 	struct boardinfo	*bi;
3108 	int			status;
3109 	int			id, first_dynamic;
3110 
3111 	if (!dev)
3112 		return -ENODEV;
3113 
3114 	/*
3115 	 * Make sure all necessary hooks are implemented before registering
3116 	 * the SPI controller.
3117 	 */
3118 	status = spi_controller_check_ops(ctlr);
3119 	if (status)
3120 		return status;
3121 
3122 	if (ctlr->bus_num >= 0) {
3123 		/* Devices with a fixed bus num must check-in with the num */
3124 		mutex_lock(&board_lock);
3125 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3126 			ctlr->bus_num + 1, GFP_KERNEL);
3127 		mutex_unlock(&board_lock);
3128 		if (WARN(id < 0, "couldn't get idr"))
3129 			return id == -ENOSPC ? -EBUSY : id;
3130 		ctlr->bus_num = id;
3131 	} else if (ctlr->dev.of_node) {
3132 		/* Allocate dynamic bus number using Linux idr */
3133 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
3134 		if (id >= 0) {
3135 			ctlr->bus_num = id;
3136 			mutex_lock(&board_lock);
3137 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3138 				       ctlr->bus_num + 1, GFP_KERNEL);
3139 			mutex_unlock(&board_lock);
3140 			if (WARN(id < 0, "couldn't get idr"))
3141 				return id == -ENOSPC ? -EBUSY : id;
3142 		}
3143 	}
3144 	if (ctlr->bus_num < 0) {
3145 		first_dynamic = of_alias_get_highest_id("spi");
3146 		if (first_dynamic < 0)
3147 			first_dynamic = 0;
3148 		else
3149 			first_dynamic++;
3150 
3151 		mutex_lock(&board_lock);
3152 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3153 			       0, GFP_KERNEL);
3154 		mutex_unlock(&board_lock);
3155 		if (WARN(id < 0, "couldn't get idr"))
3156 			return id;
3157 		ctlr->bus_num = id;
3158 	}
3159 	ctlr->bus_lock_flag = 0;
3160 	init_completion(&ctlr->xfer_completion);
3161 	init_completion(&ctlr->cur_msg_completion);
3162 	if (!ctlr->max_dma_len)
3163 		ctlr->max_dma_len = INT_MAX;
3164 
3165 	/*
3166 	 * Register the device, then userspace will see it.
3167 	 * Registration fails if the bus ID is in use.
3168 	 */
3169 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3170 
3171 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3172 		status = spi_get_gpio_descs(ctlr);
3173 		if (status)
3174 			goto free_bus_id;
3175 		/*
3176 		 * A controller using GPIO descriptors always
3177 		 * supports SPI_CS_HIGH if need be.
3178 		 */
3179 		ctlr->mode_bits |= SPI_CS_HIGH;
3180 	}
3181 
3182 	/*
3183 	 * Even if it's just one always-selected device, there must
3184 	 * be at least one chipselect.
3185 	 */
3186 	if (!ctlr->num_chipselect) {
3187 		status = -EINVAL;
3188 		goto free_bus_id;
3189 	}
3190 
3191 	/* Setting last_cs to -1 means no chip selected */
3192 	ctlr->last_cs = -1;
3193 
3194 	status = device_add(&ctlr->dev);
3195 	if (status < 0)
3196 		goto free_bus_id;
3197 	dev_dbg(dev, "registered %s %s\n",
3198 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3199 			dev_name(&ctlr->dev));
3200 
3201 	/*
3202 	 * If we're using a queued driver, start the queue. Note that we don't
3203 	 * need the queueing logic if the driver is only supporting high-level
3204 	 * memory operations.
3205 	 */
3206 	if (ctlr->transfer) {
3207 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3208 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3209 		status = spi_controller_initialize_queue(ctlr);
3210 		if (status) {
3211 			device_del(&ctlr->dev);
3212 			goto free_bus_id;
3213 		}
3214 	}
3215 	/* Add statistics */
3216 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3217 	if (!ctlr->pcpu_statistics) {
3218 		dev_err(dev, "Error allocating per-cpu statistics\n");
3219 		status = -ENOMEM;
3220 		goto destroy_queue;
3221 	}
3222 
3223 	mutex_lock(&board_lock);
3224 	list_add_tail(&ctlr->list, &spi_controller_list);
3225 	list_for_each_entry(bi, &board_list, list)
3226 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3227 	mutex_unlock(&board_lock);
3228 
3229 	/* Register devices from the device tree and ACPI */
3230 	of_register_spi_devices(ctlr);
3231 	acpi_register_spi_devices(ctlr);
3232 	return status;
3233 
3234 destroy_queue:
3235 	spi_destroy_queue(ctlr);
3236 free_bus_id:
3237 	mutex_lock(&board_lock);
3238 	idr_remove(&spi_master_idr, ctlr->bus_num);
3239 	mutex_unlock(&board_lock);
3240 	return status;
3241 }
3242 EXPORT_SYMBOL_GPL(spi_register_controller);
3243 
3244 static void devm_spi_unregister(struct device *dev, void *res)
3245 {
3246 	spi_unregister_controller(*(struct spi_controller **)res);
3247 }
3248 
3249 /**
3250  * devm_spi_register_controller - register managed SPI master or slave
3251  *	controller
3252  * @dev:    device managing SPI controller
3253  * @ctlr: initialized controller, originally from spi_alloc_master() or
3254  *	spi_alloc_slave()
3255  * Context: can sleep
3256  *
3257  * Register a SPI device as with spi_register_controller() which will
3258  * automatically be unregistered and freed.
3259  *
3260  * Return: zero on success, else a negative error code.
3261  */
3262 int devm_spi_register_controller(struct device *dev,
3263 				 struct spi_controller *ctlr)
3264 {
3265 	struct spi_controller **ptr;
3266 	int ret;
3267 
3268 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3269 	if (!ptr)
3270 		return -ENOMEM;
3271 
3272 	ret = spi_register_controller(ctlr);
3273 	if (!ret) {
3274 		*ptr = ctlr;
3275 		devres_add(dev, ptr);
3276 	} else {
3277 		devres_free(ptr);
3278 	}
3279 
3280 	return ret;
3281 }
3282 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3283 
3284 static int __unregister(struct device *dev, void *null)
3285 {
3286 	spi_unregister_device(to_spi_device(dev));
3287 	return 0;
3288 }
3289 
3290 /**
3291  * spi_unregister_controller - unregister SPI master or slave controller
3292  * @ctlr: the controller being unregistered
3293  * Context: can sleep
3294  *
3295  * This call is used only by SPI controller drivers, which are the
3296  * only ones directly touching chip registers.
3297  *
3298  * This must be called from context that can sleep.
3299  *
3300  * Note that this function also drops a reference to the controller.
3301  */
3302 void spi_unregister_controller(struct spi_controller *ctlr)
3303 {
3304 	struct spi_controller *found;
3305 	int id = ctlr->bus_num;
3306 
3307 	/* Prevent addition of new devices, unregister existing ones */
3308 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3309 		mutex_lock(&ctlr->add_lock);
3310 
3311 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3312 
3313 	/* First make sure that this controller was ever added */
3314 	mutex_lock(&board_lock);
3315 	found = idr_find(&spi_master_idr, id);
3316 	mutex_unlock(&board_lock);
3317 	if (ctlr->queued) {
3318 		if (spi_destroy_queue(ctlr))
3319 			dev_err(&ctlr->dev, "queue remove failed\n");
3320 	}
3321 	mutex_lock(&board_lock);
3322 	list_del(&ctlr->list);
3323 	mutex_unlock(&board_lock);
3324 
3325 	device_del(&ctlr->dev);
3326 
3327 	/* Free bus id */
3328 	mutex_lock(&board_lock);
3329 	if (found == ctlr)
3330 		idr_remove(&spi_master_idr, id);
3331 	mutex_unlock(&board_lock);
3332 
3333 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3334 		mutex_unlock(&ctlr->add_lock);
3335 
3336 	/* Release the last reference on the controller if its driver
3337 	 * has not yet been converted to devm_spi_alloc_master/slave().
3338 	 */
3339 	if (!ctlr->devm_allocated)
3340 		put_device(&ctlr->dev);
3341 }
3342 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3343 
3344 int spi_controller_suspend(struct spi_controller *ctlr)
3345 {
3346 	int ret;
3347 
3348 	/* Basically no-ops for non-queued controllers */
3349 	if (!ctlr->queued)
3350 		return 0;
3351 
3352 	ret = spi_stop_queue(ctlr);
3353 	if (ret)
3354 		dev_err(&ctlr->dev, "queue stop failed\n");
3355 
3356 	return ret;
3357 }
3358 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3359 
3360 int spi_controller_resume(struct spi_controller *ctlr)
3361 {
3362 	int ret;
3363 
3364 	if (!ctlr->queued)
3365 		return 0;
3366 
3367 	ret = spi_start_queue(ctlr);
3368 	if (ret)
3369 		dev_err(&ctlr->dev, "queue restart failed\n");
3370 
3371 	return ret;
3372 }
3373 EXPORT_SYMBOL_GPL(spi_controller_resume);
3374 
3375 /*-------------------------------------------------------------------------*/
3376 
3377 /* Core methods for spi_message alterations */
3378 
3379 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3380 					    struct spi_message *msg,
3381 					    void *res)
3382 {
3383 	struct spi_replaced_transfers *rxfer = res;
3384 	size_t i;
3385 
3386 	/* Call extra callback if requested */
3387 	if (rxfer->release)
3388 		rxfer->release(ctlr, msg, res);
3389 
3390 	/* Insert replaced transfers back into the message */
3391 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3392 
3393 	/* Remove the formerly inserted entries */
3394 	for (i = 0; i < rxfer->inserted; i++)
3395 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3396 }
3397 
3398 /**
3399  * spi_replace_transfers - replace transfers with several transfers
3400  *                         and register change with spi_message.resources
3401  * @msg:           the spi_message we work upon
3402  * @xfer_first:    the first spi_transfer we want to replace
3403  * @remove:        number of transfers to remove
3404  * @insert:        the number of transfers we want to insert instead
3405  * @release:       extra release code necessary in some circumstances
3406  * @extradatasize: extra data to allocate (with alignment guarantees
3407  *                 of struct @spi_transfer)
3408  * @gfp:           gfp flags
3409  *
3410  * Returns: pointer to @spi_replaced_transfers,
3411  *          PTR_ERR(...) in case of errors.
3412  */
3413 static struct spi_replaced_transfers *spi_replace_transfers(
3414 	struct spi_message *msg,
3415 	struct spi_transfer *xfer_first,
3416 	size_t remove,
3417 	size_t insert,
3418 	spi_replaced_release_t release,
3419 	size_t extradatasize,
3420 	gfp_t gfp)
3421 {
3422 	struct spi_replaced_transfers *rxfer;
3423 	struct spi_transfer *xfer;
3424 	size_t i;
3425 
3426 	/* Allocate the structure using spi_res */
3427 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3428 			      struct_size(rxfer, inserted_transfers, insert)
3429 			      + extradatasize,
3430 			      gfp);
3431 	if (!rxfer)
3432 		return ERR_PTR(-ENOMEM);
3433 
3434 	/* The release code to invoke before running the generic release */
3435 	rxfer->release = release;
3436 
3437 	/* Assign extradata */
3438 	if (extradatasize)
3439 		rxfer->extradata =
3440 			&rxfer->inserted_transfers[insert];
3441 
3442 	/* Init the replaced_transfers list */
3443 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3444 
3445 	/*
3446 	 * Assign the list_entry after which we should reinsert
3447 	 * the @replaced_transfers - it may be spi_message.messages!
3448 	 */
3449 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3450 
3451 	/* Remove the requested number of transfers */
3452 	for (i = 0; i < remove; i++) {
3453 		/*
3454 		 * If the entry after replaced_after it is msg->transfers
3455 		 * then we have been requested to remove more transfers
3456 		 * than are in the list.
3457 		 */
3458 		if (rxfer->replaced_after->next == &msg->transfers) {
3459 			dev_err(&msg->spi->dev,
3460 				"requested to remove more spi_transfers than are available\n");
3461 			/* Insert replaced transfers back into the message */
3462 			list_splice(&rxfer->replaced_transfers,
3463 				    rxfer->replaced_after);
3464 
3465 			/* Free the spi_replace_transfer structure... */
3466 			spi_res_free(rxfer);
3467 
3468 			/* ...and return with an error */
3469 			return ERR_PTR(-EINVAL);
3470 		}
3471 
3472 		/*
3473 		 * Remove the entry after replaced_after from list of
3474 		 * transfers and add it to list of replaced_transfers.
3475 		 */
3476 		list_move_tail(rxfer->replaced_after->next,
3477 			       &rxfer->replaced_transfers);
3478 	}
3479 
3480 	/*
3481 	 * Create copy of the given xfer with identical settings
3482 	 * based on the first transfer to get removed.
3483 	 */
3484 	for (i = 0; i < insert; i++) {
3485 		/* We need to run in reverse order */
3486 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3487 
3488 		/* Copy all spi_transfer data */
3489 		memcpy(xfer, xfer_first, sizeof(*xfer));
3490 
3491 		/* Add to list */
3492 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3493 
3494 		/* Clear cs_change and delay for all but the last */
3495 		if (i) {
3496 			xfer->cs_change = false;
3497 			xfer->delay.value = 0;
3498 		}
3499 	}
3500 
3501 	/* Set up inserted... */
3502 	rxfer->inserted = insert;
3503 
3504 	/* ...and register it with spi_res/spi_message */
3505 	spi_res_add(msg, rxfer);
3506 
3507 	return rxfer;
3508 }
3509 
3510 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3511 					struct spi_message *msg,
3512 					struct spi_transfer **xferp,
3513 					size_t maxsize,
3514 					gfp_t gfp)
3515 {
3516 	struct spi_transfer *xfer = *xferp, *xfers;
3517 	struct spi_replaced_transfers *srt;
3518 	size_t offset;
3519 	size_t count, i;
3520 
3521 	/* Calculate how many we have to replace */
3522 	count = DIV_ROUND_UP(xfer->len, maxsize);
3523 
3524 	/* Create replacement */
3525 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3526 	if (IS_ERR(srt))
3527 		return PTR_ERR(srt);
3528 	xfers = srt->inserted_transfers;
3529 
3530 	/*
3531 	 * Now handle each of those newly inserted spi_transfers.
3532 	 * Note that the replacements spi_transfers all are preset
3533 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3534 	 * are all identical (as well as most others)
3535 	 * so we just have to fix up len and the pointers.
3536 	 *
3537 	 * This also includes support for the depreciated
3538 	 * spi_message.is_dma_mapped interface.
3539 	 */
3540 
3541 	/*
3542 	 * The first transfer just needs the length modified, so we
3543 	 * run it outside the loop.
3544 	 */
3545 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3546 
3547 	/* All the others need rx_buf/tx_buf also set */
3548 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3549 		/* Update rx_buf, tx_buf and dma */
3550 		if (xfers[i].rx_buf)
3551 			xfers[i].rx_buf += offset;
3552 		if (xfers[i].rx_dma)
3553 			xfers[i].rx_dma += offset;
3554 		if (xfers[i].tx_buf)
3555 			xfers[i].tx_buf += offset;
3556 		if (xfers[i].tx_dma)
3557 			xfers[i].tx_dma += offset;
3558 
3559 		/* Update length */
3560 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3561 	}
3562 
3563 	/*
3564 	 * We set up xferp to the last entry we have inserted,
3565 	 * so that we skip those already split transfers.
3566 	 */
3567 	*xferp = &xfers[count - 1];
3568 
3569 	/* Increment statistics counters */
3570 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3571 				       transfers_split_maxsize);
3572 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3573 				       transfers_split_maxsize);
3574 
3575 	return 0;
3576 }
3577 
3578 /**
3579  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3580  *                               when an individual transfer exceeds a
3581  *                               certain size
3582  * @ctlr:    the @spi_controller for this transfer
3583  * @msg:   the @spi_message to transform
3584  * @maxsize:  the maximum when to apply this
3585  * @gfp: GFP allocation flags
3586  *
3587  * Return: status of transformation
3588  */
3589 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3590 				struct spi_message *msg,
3591 				size_t maxsize,
3592 				gfp_t gfp)
3593 {
3594 	struct spi_transfer *xfer;
3595 	int ret;
3596 
3597 	/*
3598 	 * Iterate over the transfer_list,
3599 	 * but note that xfer is advanced to the last transfer inserted
3600 	 * to avoid checking sizes again unnecessarily (also xfer does
3601 	 * potentially belong to a different list by the time the
3602 	 * replacement has happened).
3603 	 */
3604 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3605 		if (xfer->len > maxsize) {
3606 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3607 							   maxsize, gfp);
3608 			if (ret)
3609 				return ret;
3610 		}
3611 	}
3612 
3613 	return 0;
3614 }
3615 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3616 
3617 /*-------------------------------------------------------------------------*/
3618 
3619 /* Core methods for SPI controller protocol drivers.  Some of the
3620  * other core methods are currently defined as inline functions.
3621  */
3622 
3623 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3624 					u8 bits_per_word)
3625 {
3626 	if (ctlr->bits_per_word_mask) {
3627 		/* Only 32 bits fit in the mask */
3628 		if (bits_per_word > 32)
3629 			return -EINVAL;
3630 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3631 			return -EINVAL;
3632 	}
3633 
3634 	return 0;
3635 }
3636 
3637 /**
3638  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3639  * @spi: the device that requires specific CS timing configuration
3640  *
3641  * Return: zero on success, else a negative error code.
3642  */
3643 static int spi_set_cs_timing(struct spi_device *spi)
3644 {
3645 	struct device *parent = spi->controller->dev.parent;
3646 	int status = 0;
3647 
3648 	if (spi->controller->set_cs_timing && !spi->cs_gpiod) {
3649 		if (spi->controller->auto_runtime_pm) {
3650 			status = pm_runtime_get_sync(parent);
3651 			if (status < 0) {
3652 				pm_runtime_put_noidle(parent);
3653 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3654 					status);
3655 				return status;
3656 			}
3657 
3658 			status = spi->controller->set_cs_timing(spi);
3659 			pm_runtime_mark_last_busy(parent);
3660 			pm_runtime_put_autosuspend(parent);
3661 		} else {
3662 			status = spi->controller->set_cs_timing(spi);
3663 		}
3664 	}
3665 	return status;
3666 }
3667 
3668 /**
3669  * spi_setup - setup SPI mode and clock rate
3670  * @spi: the device whose settings are being modified
3671  * Context: can sleep, and no requests are queued to the device
3672  *
3673  * SPI protocol drivers may need to update the transfer mode if the
3674  * device doesn't work with its default.  They may likewise need
3675  * to update clock rates or word sizes from initial values.  This function
3676  * changes those settings, and must be called from a context that can sleep.
3677  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3678  * effect the next time the device is selected and data is transferred to
3679  * or from it.  When this function returns, the spi device is deselected.
3680  *
3681  * Note that this call will fail if the protocol driver specifies an option
3682  * that the underlying controller or its driver does not support.  For
3683  * example, not all hardware supports wire transfers using nine bit words,
3684  * LSB-first wire encoding, or active-high chipselects.
3685  *
3686  * Return: zero on success, else a negative error code.
3687  */
3688 int spi_setup(struct spi_device *spi)
3689 {
3690 	unsigned	bad_bits, ugly_bits;
3691 	int		status = 0;
3692 
3693 	/*
3694 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3695 	 * are set at the same time.
3696 	 */
3697 	if ((hweight_long(spi->mode &
3698 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3699 	    (hweight_long(spi->mode &
3700 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3701 		dev_err(&spi->dev,
3702 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3703 		return -EINVAL;
3704 	}
3705 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3706 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3707 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3708 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3709 		return -EINVAL;
3710 	/*
3711 	 * Help drivers fail *cleanly* when they need options
3712 	 * that aren't supported with their current controller.
3713 	 * SPI_CS_WORD has a fallback software implementation,
3714 	 * so it is ignored here.
3715 	 */
3716 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3717 				 SPI_NO_TX | SPI_NO_RX);
3718 	ugly_bits = bad_bits &
3719 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3720 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3721 	if (ugly_bits) {
3722 		dev_warn(&spi->dev,
3723 			 "setup: ignoring unsupported mode bits %x\n",
3724 			 ugly_bits);
3725 		spi->mode &= ~ugly_bits;
3726 		bad_bits &= ~ugly_bits;
3727 	}
3728 	if (bad_bits) {
3729 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3730 			bad_bits);
3731 		return -EINVAL;
3732 	}
3733 
3734 	if (!spi->bits_per_word) {
3735 		spi->bits_per_word = 8;
3736 	} else {
3737 		/*
3738 		 * Some controllers may not support the default 8 bits-per-word
3739 		 * so only perform the check when this is explicitly provided.
3740 		 */
3741 		status = __spi_validate_bits_per_word(spi->controller,
3742 						      spi->bits_per_word);
3743 		if (status)
3744 			return status;
3745 	}
3746 
3747 	if (spi->controller->max_speed_hz &&
3748 	    (!spi->max_speed_hz ||
3749 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3750 		spi->max_speed_hz = spi->controller->max_speed_hz;
3751 
3752 	mutex_lock(&spi->controller->io_mutex);
3753 
3754 	if (spi->controller->setup) {
3755 		status = spi->controller->setup(spi);
3756 		if (status) {
3757 			mutex_unlock(&spi->controller->io_mutex);
3758 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3759 				status);
3760 			return status;
3761 		}
3762 	}
3763 
3764 	status = spi_set_cs_timing(spi);
3765 	if (status) {
3766 		mutex_unlock(&spi->controller->io_mutex);
3767 		return status;
3768 	}
3769 
3770 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3771 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3772 		if (status < 0) {
3773 			mutex_unlock(&spi->controller->io_mutex);
3774 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3775 				status);
3776 			return status;
3777 		}
3778 
3779 		/*
3780 		 * We do not want to return positive value from pm_runtime_get,
3781 		 * there are many instances of devices calling spi_setup() and
3782 		 * checking for a non-zero return value instead of a negative
3783 		 * return value.
3784 		 */
3785 		status = 0;
3786 
3787 		spi_set_cs(spi, false, true);
3788 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3789 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3790 	} else {
3791 		spi_set_cs(spi, false, true);
3792 	}
3793 
3794 	mutex_unlock(&spi->controller->io_mutex);
3795 
3796 	if (spi->rt && !spi->controller->rt) {
3797 		spi->controller->rt = true;
3798 		spi_set_thread_rt(spi->controller);
3799 	}
3800 
3801 	trace_spi_setup(spi, status);
3802 
3803 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3804 			spi->mode & SPI_MODE_X_MASK,
3805 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3806 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3807 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3808 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3809 			spi->bits_per_word, spi->max_speed_hz,
3810 			status);
3811 
3812 	return status;
3813 }
3814 EXPORT_SYMBOL_GPL(spi_setup);
3815 
3816 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3817 				       struct spi_device *spi)
3818 {
3819 	int delay1, delay2;
3820 
3821 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3822 	if (delay1 < 0)
3823 		return delay1;
3824 
3825 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3826 	if (delay2 < 0)
3827 		return delay2;
3828 
3829 	if (delay1 < delay2)
3830 		memcpy(&xfer->word_delay, &spi->word_delay,
3831 		       sizeof(xfer->word_delay));
3832 
3833 	return 0;
3834 }
3835 
3836 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3837 {
3838 	struct spi_controller *ctlr = spi->controller;
3839 	struct spi_transfer *xfer;
3840 	int w_size;
3841 
3842 	if (list_empty(&message->transfers))
3843 		return -EINVAL;
3844 
3845 	/*
3846 	 * If an SPI controller does not support toggling the CS line on each
3847 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3848 	 * for the CS line, we can emulate the CS-per-word hardware function by
3849 	 * splitting transfers into one-word transfers and ensuring that
3850 	 * cs_change is set for each transfer.
3851 	 */
3852 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3853 					  spi->cs_gpiod)) {
3854 		size_t maxsize;
3855 		int ret;
3856 
3857 		maxsize = (spi->bits_per_word + 7) / 8;
3858 
3859 		/* spi_split_transfers_maxsize() requires message->spi */
3860 		message->spi = spi;
3861 
3862 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3863 						  GFP_KERNEL);
3864 		if (ret)
3865 			return ret;
3866 
3867 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3868 			/* Don't change cs_change on the last entry in the list */
3869 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3870 				break;
3871 			xfer->cs_change = 1;
3872 		}
3873 	}
3874 
3875 	/*
3876 	 * Half-duplex links include original MicroWire, and ones with
3877 	 * only one data pin like SPI_3WIRE (switches direction) or where
3878 	 * either MOSI or MISO is missing.  They can also be caused by
3879 	 * software limitations.
3880 	 */
3881 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3882 	    (spi->mode & SPI_3WIRE)) {
3883 		unsigned flags = ctlr->flags;
3884 
3885 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3886 			if (xfer->rx_buf && xfer->tx_buf)
3887 				return -EINVAL;
3888 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3889 				return -EINVAL;
3890 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3891 				return -EINVAL;
3892 		}
3893 	}
3894 
3895 	/*
3896 	 * Set transfer bits_per_word and max speed as spi device default if
3897 	 * it is not set for this transfer.
3898 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3899 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3900 	 * Ensure transfer word_delay is at least as long as that required by
3901 	 * device itself.
3902 	 */
3903 	message->frame_length = 0;
3904 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3905 		xfer->effective_speed_hz = 0;
3906 		message->frame_length += xfer->len;
3907 		if (!xfer->bits_per_word)
3908 			xfer->bits_per_word = spi->bits_per_word;
3909 
3910 		if (!xfer->speed_hz)
3911 			xfer->speed_hz = spi->max_speed_hz;
3912 
3913 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3914 			xfer->speed_hz = ctlr->max_speed_hz;
3915 
3916 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3917 			return -EINVAL;
3918 
3919 		/*
3920 		 * SPI transfer length should be multiple of SPI word size
3921 		 * where SPI word size should be power-of-two multiple.
3922 		 */
3923 		if (xfer->bits_per_word <= 8)
3924 			w_size = 1;
3925 		else if (xfer->bits_per_word <= 16)
3926 			w_size = 2;
3927 		else
3928 			w_size = 4;
3929 
3930 		/* No partial transfers accepted */
3931 		if (xfer->len % w_size)
3932 			return -EINVAL;
3933 
3934 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3935 		    xfer->speed_hz < ctlr->min_speed_hz)
3936 			return -EINVAL;
3937 
3938 		if (xfer->tx_buf && !xfer->tx_nbits)
3939 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3940 		if (xfer->rx_buf && !xfer->rx_nbits)
3941 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3942 		/*
3943 		 * Check transfer tx/rx_nbits:
3944 		 * 1. check the value matches one of single, dual and quad
3945 		 * 2. check tx/rx_nbits match the mode in spi_device
3946 		 */
3947 		if (xfer->tx_buf) {
3948 			if (spi->mode & SPI_NO_TX)
3949 				return -EINVAL;
3950 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3951 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3952 				xfer->tx_nbits != SPI_NBITS_QUAD)
3953 				return -EINVAL;
3954 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3955 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3956 				return -EINVAL;
3957 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3958 				!(spi->mode & SPI_TX_QUAD))
3959 				return -EINVAL;
3960 		}
3961 		/* Check transfer rx_nbits */
3962 		if (xfer->rx_buf) {
3963 			if (spi->mode & SPI_NO_RX)
3964 				return -EINVAL;
3965 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3966 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3967 				xfer->rx_nbits != SPI_NBITS_QUAD)
3968 				return -EINVAL;
3969 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3970 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3971 				return -EINVAL;
3972 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3973 				!(spi->mode & SPI_RX_QUAD))
3974 				return -EINVAL;
3975 		}
3976 
3977 		if (_spi_xfer_word_delay_update(xfer, spi))
3978 			return -EINVAL;
3979 	}
3980 
3981 	message->status = -EINPROGRESS;
3982 
3983 	return 0;
3984 }
3985 
3986 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3987 {
3988 	struct spi_controller *ctlr = spi->controller;
3989 	struct spi_transfer *xfer;
3990 
3991 	/*
3992 	 * Some controllers do not support doing regular SPI transfers. Return
3993 	 * ENOTSUPP when this is the case.
3994 	 */
3995 	if (!ctlr->transfer)
3996 		return -ENOTSUPP;
3997 
3998 	message->spi = spi;
3999 
4000 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4001 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4002 
4003 	trace_spi_message_submit(message);
4004 
4005 	if (!ctlr->ptp_sts_supported) {
4006 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4007 			xfer->ptp_sts_word_pre = 0;
4008 			ptp_read_system_prets(xfer->ptp_sts);
4009 		}
4010 	}
4011 
4012 	return ctlr->transfer(spi, message);
4013 }
4014 
4015 /**
4016  * spi_async - asynchronous SPI transfer
4017  * @spi: device with which data will be exchanged
4018  * @message: describes the data transfers, including completion callback
4019  * Context: any (irqs may be blocked, etc)
4020  *
4021  * This call may be used in_irq and other contexts which can't sleep,
4022  * as well as from task contexts which can sleep.
4023  *
4024  * The completion callback is invoked in a context which can't sleep.
4025  * Before that invocation, the value of message->status is undefined.
4026  * When the callback is issued, message->status holds either zero (to
4027  * indicate complete success) or a negative error code.  After that
4028  * callback returns, the driver which issued the transfer request may
4029  * deallocate the associated memory; it's no longer in use by any SPI
4030  * core or controller driver code.
4031  *
4032  * Note that although all messages to a spi_device are handled in
4033  * FIFO order, messages may go to different devices in other orders.
4034  * Some device might be higher priority, or have various "hard" access
4035  * time requirements, for example.
4036  *
4037  * On detection of any fault during the transfer, processing of
4038  * the entire message is aborted, and the device is deselected.
4039  * Until returning from the associated message completion callback,
4040  * no other spi_message queued to that device will be processed.
4041  * (This rule applies equally to all the synchronous transfer calls,
4042  * which are wrappers around this core asynchronous primitive.)
4043  *
4044  * Return: zero on success, else a negative error code.
4045  */
4046 int spi_async(struct spi_device *spi, struct spi_message *message)
4047 {
4048 	struct spi_controller *ctlr = spi->controller;
4049 	int ret;
4050 	unsigned long flags;
4051 
4052 	ret = __spi_validate(spi, message);
4053 	if (ret != 0)
4054 		return ret;
4055 
4056 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4057 
4058 	if (ctlr->bus_lock_flag)
4059 		ret = -EBUSY;
4060 	else
4061 		ret = __spi_async(spi, message);
4062 
4063 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4064 
4065 	return ret;
4066 }
4067 EXPORT_SYMBOL_GPL(spi_async);
4068 
4069 /**
4070  * spi_async_locked - version of spi_async with exclusive bus usage
4071  * @spi: device with which data will be exchanged
4072  * @message: describes the data transfers, including completion callback
4073  * Context: any (irqs may be blocked, etc)
4074  *
4075  * This call may be used in_irq and other contexts which can't sleep,
4076  * as well as from task contexts which can sleep.
4077  *
4078  * The completion callback is invoked in a context which can't sleep.
4079  * Before that invocation, the value of message->status is undefined.
4080  * When the callback is issued, message->status holds either zero (to
4081  * indicate complete success) or a negative error code.  After that
4082  * callback returns, the driver which issued the transfer request may
4083  * deallocate the associated memory; it's no longer in use by any SPI
4084  * core or controller driver code.
4085  *
4086  * Note that although all messages to a spi_device are handled in
4087  * FIFO order, messages may go to different devices in other orders.
4088  * Some device might be higher priority, or have various "hard" access
4089  * time requirements, for example.
4090  *
4091  * On detection of any fault during the transfer, processing of
4092  * the entire message is aborted, and the device is deselected.
4093  * Until returning from the associated message completion callback,
4094  * no other spi_message queued to that device will be processed.
4095  * (This rule applies equally to all the synchronous transfer calls,
4096  * which are wrappers around this core asynchronous primitive.)
4097  *
4098  * Return: zero on success, else a negative error code.
4099  */
4100 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4101 {
4102 	struct spi_controller *ctlr = spi->controller;
4103 	int ret;
4104 	unsigned long flags;
4105 
4106 	ret = __spi_validate(spi, message);
4107 	if (ret != 0)
4108 		return ret;
4109 
4110 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4111 
4112 	ret = __spi_async(spi, message);
4113 
4114 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4115 
4116 	return ret;
4117 
4118 }
4119 
4120 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4121 {
4122 	bool was_busy;
4123 	int ret;
4124 
4125 	mutex_lock(&ctlr->io_mutex);
4126 
4127 	was_busy = ctlr->busy;
4128 
4129 	ctlr->cur_msg = msg;
4130 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4131 	if (ret)
4132 		goto out;
4133 
4134 	ctlr->cur_msg = NULL;
4135 	ctlr->fallback = false;
4136 
4137 	if (!was_busy) {
4138 		kfree(ctlr->dummy_rx);
4139 		ctlr->dummy_rx = NULL;
4140 		kfree(ctlr->dummy_tx);
4141 		ctlr->dummy_tx = NULL;
4142 		if (ctlr->unprepare_transfer_hardware &&
4143 		    ctlr->unprepare_transfer_hardware(ctlr))
4144 			dev_err(&ctlr->dev,
4145 				"failed to unprepare transfer hardware\n");
4146 		spi_idle_runtime_pm(ctlr);
4147 	}
4148 
4149 out:
4150 	mutex_unlock(&ctlr->io_mutex);
4151 }
4152 
4153 /*-------------------------------------------------------------------------*/
4154 
4155 /*
4156  * Utility methods for SPI protocol drivers, layered on
4157  * top of the core.  Some other utility methods are defined as
4158  * inline functions.
4159  */
4160 
4161 static void spi_complete(void *arg)
4162 {
4163 	complete(arg);
4164 }
4165 
4166 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4167 {
4168 	DECLARE_COMPLETION_ONSTACK(done);
4169 	int status;
4170 	struct spi_controller *ctlr = spi->controller;
4171 
4172 	status = __spi_validate(spi, message);
4173 	if (status != 0)
4174 		return status;
4175 
4176 	message->spi = spi;
4177 
4178 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4179 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4180 
4181 	/*
4182 	 * Checking queue_empty here only guarantees async/sync message
4183 	 * ordering when coming from the same context. It does not need to
4184 	 * guard against reentrancy from a different context. The io_mutex
4185 	 * will catch those cases.
4186 	 */
4187 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4188 		message->actual_length = 0;
4189 		message->status = -EINPROGRESS;
4190 
4191 		trace_spi_message_submit(message);
4192 
4193 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4194 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4195 
4196 		__spi_transfer_message_noqueue(ctlr, message);
4197 
4198 		return message->status;
4199 	}
4200 
4201 	/*
4202 	 * There are messages in the async queue that could have originated
4203 	 * from the same context, so we need to preserve ordering.
4204 	 * Therefor we send the message to the async queue and wait until they
4205 	 * are completed.
4206 	 */
4207 	message->complete = spi_complete;
4208 	message->context = &done;
4209 	status = spi_async_locked(spi, message);
4210 	if (status == 0) {
4211 		wait_for_completion(&done);
4212 		status = message->status;
4213 	}
4214 	message->context = NULL;
4215 
4216 	return status;
4217 }
4218 
4219 /**
4220  * spi_sync - blocking/synchronous SPI data transfers
4221  * @spi: device with which data will be exchanged
4222  * @message: describes the data transfers
4223  * Context: can sleep
4224  *
4225  * This call may only be used from a context that may sleep.  The sleep
4226  * is non-interruptible, and has no timeout.  Low-overhead controller
4227  * drivers may DMA directly into and out of the message buffers.
4228  *
4229  * Note that the SPI device's chip select is active during the message,
4230  * and then is normally disabled between messages.  Drivers for some
4231  * frequently-used devices may want to minimize costs of selecting a chip,
4232  * by leaving it selected in anticipation that the next message will go
4233  * to the same chip.  (That may increase power usage.)
4234  *
4235  * Also, the caller is guaranteeing that the memory associated with the
4236  * message will not be freed before this call returns.
4237  *
4238  * Return: zero on success, else a negative error code.
4239  */
4240 int spi_sync(struct spi_device *spi, struct spi_message *message)
4241 {
4242 	int ret;
4243 
4244 	mutex_lock(&spi->controller->bus_lock_mutex);
4245 	ret = __spi_sync(spi, message);
4246 	mutex_unlock(&spi->controller->bus_lock_mutex);
4247 
4248 	return ret;
4249 }
4250 EXPORT_SYMBOL_GPL(spi_sync);
4251 
4252 /**
4253  * spi_sync_locked - version of spi_sync with exclusive bus usage
4254  * @spi: device with which data will be exchanged
4255  * @message: describes the data transfers
4256  * Context: can sleep
4257  *
4258  * This call may only be used from a context that may sleep.  The sleep
4259  * is non-interruptible, and has no timeout.  Low-overhead controller
4260  * drivers may DMA directly into and out of the message buffers.
4261  *
4262  * This call should be used by drivers that require exclusive access to the
4263  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4264  * be released by a spi_bus_unlock call when the exclusive access is over.
4265  *
4266  * Return: zero on success, else a negative error code.
4267  */
4268 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4269 {
4270 	return __spi_sync(spi, message);
4271 }
4272 EXPORT_SYMBOL_GPL(spi_sync_locked);
4273 
4274 /**
4275  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4276  * @ctlr: SPI bus master that should be locked for exclusive bus access
4277  * Context: can sleep
4278  *
4279  * This call may only be used from a context that may sleep.  The sleep
4280  * is non-interruptible, and has no timeout.
4281  *
4282  * This call should be used by drivers that require exclusive access to the
4283  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4284  * exclusive access is over. Data transfer must be done by spi_sync_locked
4285  * and spi_async_locked calls when the SPI bus lock is held.
4286  *
4287  * Return: always zero.
4288  */
4289 int spi_bus_lock(struct spi_controller *ctlr)
4290 {
4291 	unsigned long flags;
4292 
4293 	mutex_lock(&ctlr->bus_lock_mutex);
4294 
4295 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4296 	ctlr->bus_lock_flag = 1;
4297 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4298 
4299 	/* Mutex remains locked until spi_bus_unlock() is called */
4300 
4301 	return 0;
4302 }
4303 EXPORT_SYMBOL_GPL(spi_bus_lock);
4304 
4305 /**
4306  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4307  * @ctlr: SPI bus master that was locked for exclusive bus access
4308  * Context: can sleep
4309  *
4310  * This call may only be used from a context that may sleep.  The sleep
4311  * is non-interruptible, and has no timeout.
4312  *
4313  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4314  * call.
4315  *
4316  * Return: always zero.
4317  */
4318 int spi_bus_unlock(struct spi_controller *ctlr)
4319 {
4320 	ctlr->bus_lock_flag = 0;
4321 
4322 	mutex_unlock(&ctlr->bus_lock_mutex);
4323 
4324 	return 0;
4325 }
4326 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4327 
4328 /* Portable code must never pass more than 32 bytes */
4329 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4330 
4331 static u8	*buf;
4332 
4333 /**
4334  * spi_write_then_read - SPI synchronous write followed by read
4335  * @spi: device with which data will be exchanged
4336  * @txbuf: data to be written (need not be dma-safe)
4337  * @n_tx: size of txbuf, in bytes
4338  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4339  * @n_rx: size of rxbuf, in bytes
4340  * Context: can sleep
4341  *
4342  * This performs a half duplex MicroWire style transaction with the
4343  * device, sending txbuf and then reading rxbuf.  The return value
4344  * is zero for success, else a negative errno status code.
4345  * This call may only be used from a context that may sleep.
4346  *
4347  * Parameters to this routine are always copied using a small buffer.
4348  * Performance-sensitive or bulk transfer code should instead use
4349  * spi_{async,sync}() calls with dma-safe buffers.
4350  *
4351  * Return: zero on success, else a negative error code.
4352  */
4353 int spi_write_then_read(struct spi_device *spi,
4354 		const void *txbuf, unsigned n_tx,
4355 		void *rxbuf, unsigned n_rx)
4356 {
4357 	static DEFINE_MUTEX(lock);
4358 
4359 	int			status;
4360 	struct spi_message	message;
4361 	struct spi_transfer	x[2];
4362 	u8			*local_buf;
4363 
4364 	/*
4365 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4366 	 * copying here, (as a pure convenience thing), but we can
4367 	 * keep heap costs out of the hot path unless someone else is
4368 	 * using the pre-allocated buffer or the transfer is too large.
4369 	 */
4370 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4371 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4372 				    GFP_KERNEL | GFP_DMA);
4373 		if (!local_buf)
4374 			return -ENOMEM;
4375 	} else {
4376 		local_buf = buf;
4377 	}
4378 
4379 	spi_message_init(&message);
4380 	memset(x, 0, sizeof(x));
4381 	if (n_tx) {
4382 		x[0].len = n_tx;
4383 		spi_message_add_tail(&x[0], &message);
4384 	}
4385 	if (n_rx) {
4386 		x[1].len = n_rx;
4387 		spi_message_add_tail(&x[1], &message);
4388 	}
4389 
4390 	memcpy(local_buf, txbuf, n_tx);
4391 	x[0].tx_buf = local_buf;
4392 	x[1].rx_buf = local_buf + n_tx;
4393 
4394 	/* Do the i/o */
4395 	status = spi_sync(spi, &message);
4396 	if (status == 0)
4397 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4398 
4399 	if (x[0].tx_buf == buf)
4400 		mutex_unlock(&lock);
4401 	else
4402 		kfree(local_buf);
4403 
4404 	return status;
4405 }
4406 EXPORT_SYMBOL_GPL(spi_write_then_read);
4407 
4408 /*-------------------------------------------------------------------------*/
4409 
4410 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4411 /* Must call put_device() when done with returned spi_device device */
4412 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4413 {
4414 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4415 
4416 	return dev ? to_spi_device(dev) : NULL;
4417 }
4418 
4419 /* The spi controllers are not using spi_bus, so we find it with another way */
4420 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4421 {
4422 	struct device *dev;
4423 
4424 	dev = class_find_device_by_of_node(&spi_master_class, node);
4425 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4426 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4427 	if (!dev)
4428 		return NULL;
4429 
4430 	/* Reference got in class_find_device */
4431 	return container_of(dev, struct spi_controller, dev);
4432 }
4433 
4434 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4435 			 void *arg)
4436 {
4437 	struct of_reconfig_data *rd = arg;
4438 	struct spi_controller *ctlr;
4439 	struct spi_device *spi;
4440 
4441 	switch (of_reconfig_get_state_change(action, arg)) {
4442 	case OF_RECONFIG_CHANGE_ADD:
4443 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4444 		if (ctlr == NULL)
4445 			return NOTIFY_OK;	/* Not for us */
4446 
4447 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4448 			put_device(&ctlr->dev);
4449 			return NOTIFY_OK;
4450 		}
4451 
4452 		spi = of_register_spi_device(ctlr, rd->dn);
4453 		put_device(&ctlr->dev);
4454 
4455 		if (IS_ERR(spi)) {
4456 			pr_err("%s: failed to create for '%pOF'\n",
4457 					__func__, rd->dn);
4458 			of_node_clear_flag(rd->dn, OF_POPULATED);
4459 			return notifier_from_errno(PTR_ERR(spi));
4460 		}
4461 		break;
4462 
4463 	case OF_RECONFIG_CHANGE_REMOVE:
4464 		/* Already depopulated? */
4465 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4466 			return NOTIFY_OK;
4467 
4468 		/* Find our device by node */
4469 		spi = of_find_spi_device_by_node(rd->dn);
4470 		if (spi == NULL)
4471 			return NOTIFY_OK;	/* No? not meant for us */
4472 
4473 		/* Unregister takes one ref away */
4474 		spi_unregister_device(spi);
4475 
4476 		/* And put the reference of the find */
4477 		put_device(&spi->dev);
4478 		break;
4479 	}
4480 
4481 	return NOTIFY_OK;
4482 }
4483 
4484 static struct notifier_block spi_of_notifier = {
4485 	.notifier_call = of_spi_notify,
4486 };
4487 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4488 extern struct notifier_block spi_of_notifier;
4489 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4490 
4491 #if IS_ENABLED(CONFIG_ACPI)
4492 static int spi_acpi_controller_match(struct device *dev, const void *data)
4493 {
4494 	return ACPI_COMPANION(dev->parent) == data;
4495 }
4496 
4497 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4498 {
4499 	struct device *dev;
4500 
4501 	dev = class_find_device(&spi_master_class, NULL, adev,
4502 				spi_acpi_controller_match);
4503 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4504 		dev = class_find_device(&spi_slave_class, NULL, adev,
4505 					spi_acpi_controller_match);
4506 	if (!dev)
4507 		return NULL;
4508 
4509 	return container_of(dev, struct spi_controller, dev);
4510 }
4511 
4512 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4513 {
4514 	struct device *dev;
4515 
4516 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4517 	return to_spi_device(dev);
4518 }
4519 
4520 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4521 			   void *arg)
4522 {
4523 	struct acpi_device *adev = arg;
4524 	struct spi_controller *ctlr;
4525 	struct spi_device *spi;
4526 
4527 	switch (value) {
4528 	case ACPI_RECONFIG_DEVICE_ADD:
4529 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4530 		if (!ctlr)
4531 			break;
4532 
4533 		acpi_register_spi_device(ctlr, adev);
4534 		put_device(&ctlr->dev);
4535 		break;
4536 	case ACPI_RECONFIG_DEVICE_REMOVE:
4537 		if (!acpi_device_enumerated(adev))
4538 			break;
4539 
4540 		spi = acpi_spi_find_device_by_adev(adev);
4541 		if (!spi)
4542 			break;
4543 
4544 		spi_unregister_device(spi);
4545 		put_device(&spi->dev);
4546 		break;
4547 	}
4548 
4549 	return NOTIFY_OK;
4550 }
4551 
4552 static struct notifier_block spi_acpi_notifier = {
4553 	.notifier_call = acpi_spi_notify,
4554 };
4555 #else
4556 extern struct notifier_block spi_acpi_notifier;
4557 #endif
4558 
4559 static int __init spi_init(void)
4560 {
4561 	int	status;
4562 
4563 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4564 	if (!buf) {
4565 		status = -ENOMEM;
4566 		goto err0;
4567 	}
4568 
4569 	status = bus_register(&spi_bus_type);
4570 	if (status < 0)
4571 		goto err1;
4572 
4573 	status = class_register(&spi_master_class);
4574 	if (status < 0)
4575 		goto err2;
4576 
4577 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4578 		status = class_register(&spi_slave_class);
4579 		if (status < 0)
4580 			goto err3;
4581 	}
4582 
4583 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4584 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4585 	if (IS_ENABLED(CONFIG_ACPI))
4586 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4587 
4588 	return 0;
4589 
4590 err3:
4591 	class_unregister(&spi_master_class);
4592 err2:
4593 	bus_unregister(&spi_bus_type);
4594 err1:
4595 	kfree(buf);
4596 	buf = NULL;
4597 err0:
4598 	return status;
4599 }
4600 
4601 /*
4602  * A board_info is normally registered in arch_initcall(),
4603  * but even essential drivers wait till later.
4604  *
4605  * REVISIT only boardinfo really needs static linking. The rest (device and
4606  * driver registration) _could_ be dynamically linked (modular) ... Costs
4607  * include needing to have boardinfo data structures be much more public.
4608  */
4609 postcore_initcall(spi_init);
4610