xref: /openbmc/linux/drivers/spi/spi.c (revision d9679d00)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	spi_controller_put(spi->controller);
51 	kfree(spi->driver_override);
52 	kfree(spi);
53 }
54 
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 	const struct spi_device	*spi = to_spi_device(dev);
59 	int len;
60 
61 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 	if (len != -ENODEV)
63 		return len;
64 
65 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68 
69 static ssize_t driver_override_store(struct device *dev,
70 				     struct device_attribute *a,
71 				     const char *buf, size_t count)
72 {
73 	struct spi_device *spi = to_spi_device(dev);
74 	const char *end = memchr(buf, '\n', count);
75 	const size_t len = end ? end - buf : count;
76 	const char *driver_override, *old;
77 
78 	/* We need to keep extra room for a newline when displaying value */
79 	if (len >= (PAGE_SIZE - 1))
80 		return -EINVAL;
81 
82 	driver_override = kstrndup(buf, len, GFP_KERNEL);
83 	if (!driver_override)
84 		return -ENOMEM;
85 
86 	device_lock(dev);
87 	old = spi->driver_override;
88 	if (len) {
89 		spi->driver_override = driver_override;
90 	} else {
91 		/* Empty string, disable driver override */
92 		spi->driver_override = NULL;
93 		kfree(driver_override);
94 	}
95 	device_unlock(dev);
96 	kfree(old);
97 
98 	return count;
99 }
100 
101 static ssize_t driver_override_show(struct device *dev,
102 				    struct device_attribute *a, char *buf)
103 {
104 	const struct spi_device *spi = to_spi_device(dev);
105 	ssize_t len;
106 
107 	device_lock(dev);
108 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 	device_unlock(dev);
110 	return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113 
114 #define SPI_STATISTICS_ATTRS(field, file)				\
115 static ssize_t spi_controller_##field##_show(struct device *dev,	\
116 					     struct device_attribute *attr, \
117 					     char *buf)			\
118 {									\
119 	struct spi_controller *ctlr = container_of(dev,			\
120 					 struct spi_controller, dev);	\
121 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
122 }									\
123 static struct device_attribute dev_attr_spi_controller_##field = {	\
124 	.attr = { .name = file, .mode = 0444 },				\
125 	.show = spi_controller_##field##_show,				\
126 };									\
127 static ssize_t spi_device_##field##_show(struct device *dev,		\
128 					 struct device_attribute *attr,	\
129 					char *buf)			\
130 {									\
131 	struct spi_device *spi = to_spi_device(dev);			\
132 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
133 }									\
134 static struct device_attribute dev_attr_spi_device_##field = {		\
135 	.attr = { .name = file, .mode = 0444 },				\
136 	.show = spi_device_##field##_show,				\
137 }
138 
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 					    char *buf)			\
142 {									\
143 	unsigned long flags;						\
144 	ssize_t len;							\
145 	spin_lock_irqsave(&stat->lock, flags);				\
146 	len = sprintf(buf, format_string, stat->field);			\
147 	spin_unlock_irqrestore(&stat->lock, flags);			\
148 	return len;							\
149 }									\
150 SPI_STATISTICS_ATTRS(name, file)
151 
152 #define SPI_STATISTICS_SHOW(field, format_string)			\
153 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
154 				 field, format_string)
155 
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160 
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164 
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168 
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
170 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
171 				 "transfer_bytes_histo_" number,	\
172 				 transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190 
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192 
193 static struct attribute *spi_dev_attrs[] = {
194 	&dev_attr_modalias.attr,
195 	&dev_attr_driver_override.attr,
196 	NULL,
197 };
198 
199 static const struct attribute_group spi_dev_group = {
200 	.attrs  = spi_dev_attrs,
201 };
202 
203 static struct attribute *spi_device_statistics_attrs[] = {
204 	&dev_attr_spi_device_messages.attr,
205 	&dev_attr_spi_device_transfers.attr,
206 	&dev_attr_spi_device_errors.attr,
207 	&dev_attr_spi_device_timedout.attr,
208 	&dev_attr_spi_device_spi_sync.attr,
209 	&dev_attr_spi_device_spi_sync_immediate.attr,
210 	&dev_attr_spi_device_spi_async.attr,
211 	&dev_attr_spi_device_bytes.attr,
212 	&dev_attr_spi_device_bytes_rx.attr,
213 	&dev_attr_spi_device_bytes_tx.attr,
214 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
231 	&dev_attr_spi_device_transfers_split_maxsize.attr,
232 	NULL,
233 };
234 
235 static const struct attribute_group spi_device_statistics_group = {
236 	.name  = "statistics",
237 	.attrs  = spi_device_statistics_attrs,
238 };
239 
240 static const struct attribute_group *spi_dev_groups[] = {
241 	&spi_dev_group,
242 	&spi_device_statistics_group,
243 	NULL,
244 };
245 
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 	&dev_attr_spi_controller_messages.attr,
248 	&dev_attr_spi_controller_transfers.attr,
249 	&dev_attr_spi_controller_errors.attr,
250 	&dev_attr_spi_controller_timedout.attr,
251 	&dev_attr_spi_controller_spi_sync.attr,
252 	&dev_attr_spi_controller_spi_sync_immediate.attr,
253 	&dev_attr_spi_controller_spi_async.attr,
254 	&dev_attr_spi_controller_bytes.attr,
255 	&dev_attr_spi_controller_bytes_rx.attr,
256 	&dev_attr_spi_controller_bytes_tx.attr,
257 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
275 	NULL,
276 };
277 
278 static const struct attribute_group spi_controller_statistics_group = {
279 	.name  = "statistics",
280 	.attrs  = spi_controller_statistics_attrs,
281 };
282 
283 static const struct attribute_group *spi_master_groups[] = {
284 	&spi_controller_statistics_group,
285 	NULL,
286 };
287 
288 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 					      struct spi_transfer *xfer,
290 					      struct spi_controller *ctlr)
291 {
292 	unsigned long flags;
293 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294 
295 	if (l2len < 0)
296 		l2len = 0;
297 
298 	spin_lock_irqsave(&stats->lock, flags);
299 
300 	stats->transfers++;
301 	stats->transfer_bytes_histo[l2len]++;
302 
303 	stats->bytes += xfer->len;
304 	if ((xfer->tx_buf) &&
305 	    (xfer->tx_buf != ctlr->dummy_tx))
306 		stats->bytes_tx += xfer->len;
307 	if ((xfer->rx_buf) &&
308 	    (xfer->rx_buf != ctlr->dummy_rx))
309 		stats->bytes_rx += xfer->len;
310 
311 	spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 
314 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
315  * and the sysfs version makes coldplug work too.
316  */
317 
318 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
319 						const struct spi_device *sdev)
320 {
321 	while (id->name[0]) {
322 		if (!strcmp(sdev->modalias, id->name))
323 			return id;
324 		id++;
325 	}
326 	return NULL;
327 }
328 
329 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
330 {
331 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
332 
333 	return spi_match_id(sdrv->id_table, sdev);
334 }
335 EXPORT_SYMBOL_GPL(spi_get_device_id);
336 
337 static int spi_match_device(struct device *dev, struct device_driver *drv)
338 {
339 	const struct spi_device	*spi = to_spi_device(dev);
340 	const struct spi_driver	*sdrv = to_spi_driver(drv);
341 
342 	/* Check override first, and if set, only use the named driver */
343 	if (spi->driver_override)
344 		return strcmp(spi->driver_override, drv->name) == 0;
345 
346 	/* Attempt an OF style match */
347 	if (of_driver_match_device(dev, drv))
348 		return 1;
349 
350 	/* Then try ACPI */
351 	if (acpi_driver_match_device(dev, drv))
352 		return 1;
353 
354 	if (sdrv->id_table)
355 		return !!spi_match_id(sdrv->id_table, spi);
356 
357 	return strcmp(spi->modalias, drv->name) == 0;
358 }
359 
360 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
361 {
362 	const struct spi_device		*spi = to_spi_device(dev);
363 	int rc;
364 
365 	rc = acpi_device_uevent_modalias(dev, env);
366 	if (rc != -ENODEV)
367 		return rc;
368 
369 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
370 }
371 
372 static int spi_probe(struct device *dev)
373 {
374 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
375 	struct spi_device		*spi = to_spi_device(dev);
376 	int ret;
377 
378 	ret = of_clk_set_defaults(dev->of_node, false);
379 	if (ret)
380 		return ret;
381 
382 	if (dev->of_node) {
383 		spi->irq = of_irq_get(dev->of_node, 0);
384 		if (spi->irq == -EPROBE_DEFER)
385 			return -EPROBE_DEFER;
386 		if (spi->irq < 0)
387 			spi->irq = 0;
388 	}
389 
390 	ret = dev_pm_domain_attach(dev, true);
391 	if (ret)
392 		return ret;
393 
394 	if (sdrv->probe) {
395 		ret = sdrv->probe(spi);
396 		if (ret)
397 			dev_pm_domain_detach(dev, true);
398 	}
399 
400 	return ret;
401 }
402 
403 static void spi_remove(struct device *dev)
404 {
405 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
406 
407 	if (sdrv->remove) {
408 		int ret;
409 
410 		ret = sdrv->remove(to_spi_device(dev));
411 		if (ret)
412 			dev_warn(dev,
413 				 "Failed to unbind driver (%pe), ignoring\n",
414 				 ERR_PTR(ret));
415 	}
416 
417 	dev_pm_domain_detach(dev, true);
418 }
419 
420 static void spi_shutdown(struct device *dev)
421 {
422 	if (dev->driver) {
423 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
424 
425 		if (sdrv->shutdown)
426 			sdrv->shutdown(to_spi_device(dev));
427 	}
428 }
429 
430 struct bus_type spi_bus_type = {
431 	.name		= "spi",
432 	.dev_groups	= spi_dev_groups,
433 	.match		= spi_match_device,
434 	.uevent		= spi_uevent,
435 	.probe		= spi_probe,
436 	.remove		= spi_remove,
437 	.shutdown	= spi_shutdown,
438 };
439 EXPORT_SYMBOL_GPL(spi_bus_type);
440 
441 /**
442  * __spi_register_driver - register a SPI driver
443  * @owner: owner module of the driver to register
444  * @sdrv: the driver to register
445  * Context: can sleep
446  *
447  * Return: zero on success, else a negative error code.
448  */
449 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
450 {
451 	sdrv->driver.owner = owner;
452 	sdrv->driver.bus = &spi_bus_type;
453 
454 	/*
455 	 * For Really Good Reasons we use spi: modaliases not of:
456 	 * modaliases for DT so module autoloading won't work if we
457 	 * don't have a spi_device_id as well as a compatible string.
458 	 */
459 	if (sdrv->driver.of_match_table) {
460 		const struct of_device_id *of_id;
461 
462 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
463 		     of_id++) {
464 			const char *of_name;
465 
466 			/* Strip off any vendor prefix */
467 			of_name = strnchr(of_id->compatible,
468 					  sizeof(of_id->compatible), ',');
469 			if (of_name)
470 				of_name++;
471 			else
472 				of_name = of_id->compatible;
473 
474 			if (sdrv->id_table) {
475 				const struct spi_device_id *spi_id;
476 
477 				for (spi_id = sdrv->id_table; spi_id->name[0];
478 				     spi_id++)
479 					if (strcmp(spi_id->name, of_name) == 0)
480 						break;
481 
482 				if (spi_id->name[0])
483 					continue;
484 			} else {
485 				if (strcmp(sdrv->driver.name, of_name) == 0)
486 					continue;
487 			}
488 
489 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
490 				sdrv->driver.name, of_id->compatible);
491 		}
492 	}
493 
494 	return driver_register(&sdrv->driver);
495 }
496 EXPORT_SYMBOL_GPL(__spi_register_driver);
497 
498 /*-------------------------------------------------------------------------*/
499 
500 /* SPI devices should normally not be created by SPI device drivers; that
501  * would make them board-specific.  Similarly with SPI controller drivers.
502  * Device registration normally goes into like arch/.../mach.../board-YYY.c
503  * with other readonly (flashable) information about mainboard devices.
504  */
505 
506 struct boardinfo {
507 	struct list_head	list;
508 	struct spi_board_info	board_info;
509 };
510 
511 static LIST_HEAD(board_list);
512 static LIST_HEAD(spi_controller_list);
513 
514 /*
515  * Used to protect add/del operation for board_info list and
516  * spi_controller list, and their matching process
517  * also used to protect object of type struct idr
518  */
519 static DEFINE_MUTEX(board_lock);
520 
521 /**
522  * spi_alloc_device - Allocate a new SPI device
523  * @ctlr: Controller to which device is connected
524  * Context: can sleep
525  *
526  * Allows a driver to allocate and initialize a spi_device without
527  * registering it immediately.  This allows a driver to directly
528  * fill the spi_device with device parameters before calling
529  * spi_add_device() on it.
530  *
531  * Caller is responsible to call spi_add_device() on the returned
532  * spi_device structure to add it to the SPI controller.  If the caller
533  * needs to discard the spi_device without adding it, then it should
534  * call spi_dev_put() on it.
535  *
536  * Return: a pointer to the new device, or NULL.
537  */
538 static struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
539 {
540 	struct spi_device	*spi;
541 
542 	if (!spi_controller_get(ctlr))
543 		return NULL;
544 
545 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
546 	if (!spi) {
547 		spi_controller_put(ctlr);
548 		return NULL;
549 	}
550 
551 	spi->master = spi->controller = ctlr;
552 	spi->dev.parent = &ctlr->dev;
553 	spi->dev.bus = &spi_bus_type;
554 	spi->dev.release = spidev_release;
555 	spi->cs_gpio = -ENOENT;
556 	spi->mode = ctlr->buswidth_override_bits;
557 
558 	spin_lock_init(&spi->statistics.lock);
559 
560 	device_initialize(&spi->dev);
561 	return spi;
562 }
563 
564 static void spi_dev_set_name(struct spi_device *spi)
565 {
566 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
567 
568 	if (adev) {
569 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
570 		return;
571 	}
572 
573 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
574 		     spi->chip_select);
575 }
576 
577 static int spi_dev_check(struct device *dev, void *data)
578 {
579 	struct spi_device *spi = to_spi_device(dev);
580 	struct spi_device *new_spi = data;
581 
582 	if (spi->controller == new_spi->controller &&
583 	    spi->chip_select == new_spi->chip_select)
584 		return -EBUSY;
585 	return 0;
586 }
587 
588 static void spi_cleanup(struct spi_device *spi)
589 {
590 	if (spi->controller->cleanup)
591 		spi->controller->cleanup(spi);
592 }
593 
594 static int __spi_add_device(struct spi_device *spi)
595 {
596 	struct spi_controller *ctlr = spi->controller;
597 	struct device *dev = ctlr->dev.parent;
598 	int status;
599 
600 	/*
601 	 * We need to make sure there's no other device with this
602 	 * chipselect **BEFORE** we call setup(), else we'll trash
603 	 * its configuration.
604 	 */
605 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
606 	if (status) {
607 		dev_err(dev, "chipselect %d already in use\n",
608 				spi->chip_select);
609 		return status;
610 	}
611 
612 	/* Controller may unregister concurrently */
613 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
614 	    !device_is_registered(&ctlr->dev)) {
615 		return -ENODEV;
616 	}
617 
618 	/* Descriptors take precedence */
619 	if (ctlr->cs_gpiods)
620 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
621 	else if (ctlr->cs_gpios)
622 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
623 
624 	/* Drivers may modify this initial i/o setup, but will
625 	 * normally rely on the device being setup.  Devices
626 	 * using SPI_CS_HIGH can't coexist well otherwise...
627 	 */
628 	status = spi_setup(spi);
629 	if (status < 0) {
630 		dev_err(dev, "can't setup %s, status %d\n",
631 				dev_name(&spi->dev), status);
632 		return status;
633 	}
634 
635 	/* Device may be bound to an active driver when this returns */
636 	status = device_add(&spi->dev);
637 	if (status < 0) {
638 		dev_err(dev, "can't add %s, status %d\n",
639 				dev_name(&spi->dev), status);
640 		spi_cleanup(spi);
641 	} else {
642 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
643 	}
644 
645 	return status;
646 }
647 
648 /**
649  * spi_add_device - Add spi_device allocated with spi_alloc_device
650  * @spi: spi_device to register
651  *
652  * Companion function to spi_alloc_device.  Devices allocated with
653  * spi_alloc_device can be added onto the spi bus with this function.
654  *
655  * Return: 0 on success; negative errno on failure
656  */
657 static int spi_add_device(struct spi_device *spi)
658 {
659 	struct spi_controller *ctlr = spi->controller;
660 	struct device *dev = ctlr->dev.parent;
661 	int status;
662 
663 	/* Chipselects are numbered 0..max; validate. */
664 	if (spi->chip_select >= ctlr->num_chipselect) {
665 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
666 			ctlr->num_chipselect);
667 		return -EINVAL;
668 	}
669 
670 	/* Set the bus ID string */
671 	spi_dev_set_name(spi);
672 
673 	mutex_lock(&ctlr->add_lock);
674 	status = __spi_add_device(spi);
675 	mutex_unlock(&ctlr->add_lock);
676 	return status;
677 }
678 
679 static int spi_add_device_locked(struct spi_device *spi)
680 {
681 	struct spi_controller *ctlr = spi->controller;
682 	struct device *dev = ctlr->dev.parent;
683 
684 	/* Chipselects are numbered 0..max; validate. */
685 	if (spi->chip_select >= ctlr->num_chipselect) {
686 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
687 			ctlr->num_chipselect);
688 		return -EINVAL;
689 	}
690 
691 	/* Set the bus ID string */
692 	spi_dev_set_name(spi);
693 
694 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
695 	return __spi_add_device(spi);
696 }
697 
698 /**
699  * spi_new_device - instantiate one new SPI device
700  * @ctlr: Controller to which device is connected
701  * @chip: Describes the SPI device
702  * Context: can sleep
703  *
704  * On typical mainboards, this is purely internal; and it's not needed
705  * after board init creates the hard-wired devices.  Some development
706  * platforms may not be able to use spi_register_board_info though, and
707  * this is exported so that for example a USB or parport based adapter
708  * driver could add devices (which it would learn about out-of-band).
709  *
710  * Return: the new device, or NULL.
711  */
712 struct spi_device *spi_new_device(struct spi_controller *ctlr,
713 				  struct spi_board_info *chip)
714 {
715 	struct spi_device	*proxy;
716 	int			status;
717 
718 	/* NOTE:  caller did any chip->bus_num checks necessary.
719 	 *
720 	 * Also, unless we change the return value convention to use
721 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
722 	 * suggests syslogged diagnostics are best here (ugh).
723 	 */
724 
725 	proxy = spi_alloc_device(ctlr);
726 	if (!proxy)
727 		return NULL;
728 
729 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
730 
731 	proxy->chip_select = chip->chip_select;
732 	proxy->max_speed_hz = chip->max_speed_hz;
733 	proxy->mode = chip->mode;
734 	proxy->irq = chip->irq;
735 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
736 	proxy->dev.platform_data = (void *) chip->platform_data;
737 	proxy->controller_data = chip->controller_data;
738 	proxy->controller_state = NULL;
739 
740 	if (chip->swnode) {
741 		status = device_add_software_node(&proxy->dev, chip->swnode);
742 		if (status) {
743 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
744 				chip->modalias, status);
745 			goto err_dev_put;
746 		}
747 	}
748 
749 	status = spi_add_device(proxy);
750 	if (status < 0)
751 		goto err_dev_put;
752 
753 	return proxy;
754 
755 err_dev_put:
756 	device_remove_software_node(&proxy->dev);
757 	spi_dev_put(proxy);
758 	return NULL;
759 }
760 EXPORT_SYMBOL_GPL(spi_new_device);
761 
762 /**
763  * spi_unregister_device - unregister a single SPI device
764  * @spi: spi_device to unregister
765  *
766  * Start making the passed SPI device vanish. Normally this would be handled
767  * by spi_unregister_controller().
768  */
769 void spi_unregister_device(struct spi_device *spi)
770 {
771 	if (!spi)
772 		return;
773 
774 	if (spi->dev.of_node) {
775 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
776 		of_node_put(spi->dev.of_node);
777 	}
778 	if (ACPI_COMPANION(&spi->dev))
779 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
780 	device_remove_software_node(&spi->dev);
781 	device_del(&spi->dev);
782 	spi_cleanup(spi);
783 	put_device(&spi->dev);
784 }
785 EXPORT_SYMBOL_GPL(spi_unregister_device);
786 
787 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
788 					      struct spi_board_info *bi)
789 {
790 	struct spi_device *dev;
791 
792 	if (ctlr->bus_num != bi->bus_num)
793 		return;
794 
795 	dev = spi_new_device(ctlr, bi);
796 	if (!dev)
797 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
798 			bi->modalias);
799 }
800 
801 /**
802  * spi_register_board_info - register SPI devices for a given board
803  * @info: array of chip descriptors
804  * @n: how many descriptors are provided
805  * Context: can sleep
806  *
807  * Board-specific early init code calls this (probably during arch_initcall)
808  * with segments of the SPI device table.  Any device nodes are created later,
809  * after the relevant parent SPI controller (bus_num) is defined.  We keep
810  * this table of devices forever, so that reloading a controller driver will
811  * not make Linux forget about these hard-wired devices.
812  *
813  * Other code can also call this, e.g. a particular add-on board might provide
814  * SPI devices through its expansion connector, so code initializing that board
815  * would naturally declare its SPI devices.
816  *
817  * The board info passed can safely be __initdata ... but be careful of
818  * any embedded pointers (platform_data, etc), they're copied as-is.
819  *
820  * Return: zero on success, else a negative error code.
821  */
822 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
823 {
824 	struct boardinfo *bi;
825 	int i;
826 
827 	if (!n)
828 		return 0;
829 
830 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
831 	if (!bi)
832 		return -ENOMEM;
833 
834 	for (i = 0; i < n; i++, bi++, info++) {
835 		struct spi_controller *ctlr;
836 
837 		memcpy(&bi->board_info, info, sizeof(*info));
838 
839 		mutex_lock(&board_lock);
840 		list_add_tail(&bi->list, &board_list);
841 		list_for_each_entry(ctlr, &spi_controller_list, list)
842 			spi_match_controller_to_boardinfo(ctlr,
843 							  &bi->board_info);
844 		mutex_unlock(&board_lock);
845 	}
846 
847 	return 0;
848 }
849 
850 /*-------------------------------------------------------------------------*/
851 
852 /* Core methods for SPI resource management */
853 
854 /**
855  * spi_res_alloc - allocate a spi resource that is life-cycle managed
856  *                 during the processing of a spi_message while using
857  *                 spi_transfer_one
858  * @spi:     the spi device for which we allocate memory
859  * @release: the release code to execute for this resource
860  * @size:    size to alloc and return
861  * @gfp:     GFP allocation flags
862  *
863  * Return: the pointer to the allocated data
864  *
865  * This may get enhanced in the future to allocate from a memory pool
866  * of the @spi_device or @spi_controller to avoid repeated allocations.
867  */
868 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
869 			   size_t size, gfp_t gfp)
870 {
871 	struct spi_res *sres;
872 
873 	sres = kzalloc(sizeof(*sres) + size, gfp);
874 	if (!sres)
875 		return NULL;
876 
877 	INIT_LIST_HEAD(&sres->entry);
878 	sres->release = release;
879 
880 	return sres->data;
881 }
882 
883 /**
884  * spi_res_free - free an spi resource
885  * @res: pointer to the custom data of a resource
886  *
887  */
888 static void spi_res_free(void *res)
889 {
890 	struct spi_res *sres = container_of(res, struct spi_res, data);
891 
892 	if (!res)
893 		return;
894 
895 	WARN_ON(!list_empty(&sres->entry));
896 	kfree(sres);
897 }
898 
899 /**
900  * spi_res_add - add a spi_res to the spi_message
901  * @message: the spi message
902  * @res:     the spi_resource
903  */
904 static void spi_res_add(struct spi_message *message, void *res)
905 {
906 	struct spi_res *sres = container_of(res, struct spi_res, data);
907 
908 	WARN_ON(!list_empty(&sres->entry));
909 	list_add_tail(&sres->entry, &message->resources);
910 }
911 
912 /**
913  * spi_res_release - release all spi resources for this message
914  * @ctlr:  the @spi_controller
915  * @message: the @spi_message
916  */
917 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
918 {
919 	struct spi_res *res, *tmp;
920 
921 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
922 		if (res->release)
923 			res->release(ctlr, message, res->data);
924 
925 		list_del(&res->entry);
926 
927 		kfree(res);
928 	}
929 }
930 
931 /*-------------------------------------------------------------------------*/
932 
933 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
934 {
935 	bool activate = enable;
936 
937 	/*
938 	 * Avoid calling into the driver (or doing delays) if the chip select
939 	 * isn't actually changing from the last time this was called.
940 	 */
941 	if (!force && (spi->controller->last_cs_enable == enable) &&
942 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
943 		return;
944 
945 	trace_spi_set_cs(spi, activate);
946 
947 	spi->controller->last_cs_enable = enable;
948 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
949 
950 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
951 	    !spi->controller->set_cs_timing) {
952 		if (activate)
953 			spi_delay_exec(&spi->cs_setup, NULL);
954 		else
955 			spi_delay_exec(&spi->cs_hold, NULL);
956 	}
957 
958 	if (spi->mode & SPI_CS_HIGH)
959 		enable = !enable;
960 
961 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
962 		if (!(spi->mode & SPI_NO_CS)) {
963 			if (spi->cs_gpiod) {
964 				/*
965 				 * Historically ACPI has no means of the GPIO polarity and
966 				 * thus the SPISerialBus() resource defines it on the per-chip
967 				 * basis. In order to avoid a chain of negations, the GPIO
968 				 * polarity is considered being Active High. Even for the cases
969 				 * when _DSD() is involved (in the updated versions of ACPI)
970 				 * the GPIO CS polarity must be defined Active High to avoid
971 				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
972 				 * into account.
973 				 */
974 				if (has_acpi_companion(&spi->dev))
975 					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
976 				else
977 					/* Polarity handled by GPIO library */
978 					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
979 			} else {
980 				/*
981 				 * invert the enable line, as active low is
982 				 * default for SPI.
983 				 */
984 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
985 			}
986 		}
987 		/* Some SPI masters need both GPIO CS & slave_select */
988 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
989 		    spi->controller->set_cs)
990 			spi->controller->set_cs(spi, !enable);
991 	} else if (spi->controller->set_cs) {
992 		spi->controller->set_cs(spi, !enable);
993 	}
994 
995 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
996 	    !spi->controller->set_cs_timing) {
997 		if (!activate)
998 			spi_delay_exec(&spi->cs_inactive, NULL);
999 	}
1000 }
1001 
1002 #ifdef CONFIG_HAS_DMA
1003 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1004 		struct sg_table *sgt, void *buf, size_t len,
1005 		enum dma_data_direction dir)
1006 {
1007 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1008 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1009 #ifdef CONFIG_HIGHMEM
1010 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1011 				(unsigned long)buf < (PKMAP_BASE +
1012 					(LAST_PKMAP * PAGE_SIZE)));
1013 #else
1014 	const bool kmap_buf = false;
1015 #endif
1016 	int desc_len;
1017 	int sgs;
1018 	struct page *vm_page;
1019 	struct scatterlist *sg;
1020 	void *sg_buf;
1021 	size_t min;
1022 	int i, ret;
1023 
1024 	if (vmalloced_buf || kmap_buf) {
1025 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
1026 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1027 	} else if (virt_addr_valid(buf)) {
1028 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
1029 		sgs = DIV_ROUND_UP(len, desc_len);
1030 	} else {
1031 		return -EINVAL;
1032 	}
1033 
1034 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1035 	if (ret != 0)
1036 		return ret;
1037 
1038 	sg = &sgt->sgl[0];
1039 	for (i = 0; i < sgs; i++) {
1040 
1041 		if (vmalloced_buf || kmap_buf) {
1042 			/*
1043 			 * Next scatterlist entry size is the minimum between
1044 			 * the desc_len and the remaining buffer length that
1045 			 * fits in a page.
1046 			 */
1047 			min = min_t(size_t, desc_len,
1048 				    min_t(size_t, len,
1049 					  PAGE_SIZE - offset_in_page(buf)));
1050 			if (vmalloced_buf)
1051 				vm_page = vmalloc_to_page(buf);
1052 			else
1053 				vm_page = kmap_to_page(buf);
1054 			if (!vm_page) {
1055 				sg_free_table(sgt);
1056 				return -ENOMEM;
1057 			}
1058 			sg_set_page(sg, vm_page,
1059 				    min, offset_in_page(buf));
1060 		} else {
1061 			min = min_t(size_t, len, desc_len);
1062 			sg_buf = buf;
1063 			sg_set_buf(sg, sg_buf, min);
1064 		}
1065 
1066 		buf += min;
1067 		len -= min;
1068 		sg = sg_next(sg);
1069 	}
1070 
1071 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1072 	if (!ret)
1073 		ret = -ENOMEM;
1074 	if (ret < 0) {
1075 		sg_free_table(sgt);
1076 		return ret;
1077 	}
1078 
1079 	sgt->nents = ret;
1080 
1081 	return 0;
1082 }
1083 
1084 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1085 		   struct sg_table *sgt, enum dma_data_direction dir)
1086 {
1087 	if (sgt->orig_nents) {
1088 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1089 		sg_free_table(sgt);
1090 	}
1091 }
1092 
1093 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1094 {
1095 	struct device *tx_dev, *rx_dev;
1096 	struct spi_transfer *xfer;
1097 	int ret;
1098 
1099 	if (!ctlr->can_dma)
1100 		return 0;
1101 
1102 	if (ctlr->dma_tx)
1103 		tx_dev = ctlr->dma_tx->device->dev;
1104 	else if (ctlr->dma_map_dev)
1105 		tx_dev = ctlr->dma_map_dev;
1106 	else
1107 		tx_dev = ctlr->dev.parent;
1108 
1109 	if (ctlr->dma_rx)
1110 		rx_dev = ctlr->dma_rx->device->dev;
1111 	else if (ctlr->dma_map_dev)
1112 		rx_dev = ctlr->dma_map_dev;
1113 	else
1114 		rx_dev = ctlr->dev.parent;
1115 
1116 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1117 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1118 			continue;
1119 
1120 		if (xfer->tx_buf != NULL) {
1121 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1122 					  (void *)xfer->tx_buf, xfer->len,
1123 					  DMA_TO_DEVICE);
1124 			if (ret != 0)
1125 				return ret;
1126 		}
1127 
1128 		if (xfer->rx_buf != NULL) {
1129 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1130 					  xfer->rx_buf, xfer->len,
1131 					  DMA_FROM_DEVICE);
1132 			if (ret != 0) {
1133 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1134 					      DMA_TO_DEVICE);
1135 				return ret;
1136 			}
1137 		}
1138 	}
1139 
1140 	ctlr->cur_msg_mapped = true;
1141 
1142 	return 0;
1143 }
1144 
1145 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1146 {
1147 	struct spi_transfer *xfer;
1148 	struct device *tx_dev, *rx_dev;
1149 
1150 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1151 		return 0;
1152 
1153 	if (ctlr->dma_tx)
1154 		tx_dev = ctlr->dma_tx->device->dev;
1155 	else
1156 		tx_dev = ctlr->dev.parent;
1157 
1158 	if (ctlr->dma_rx)
1159 		rx_dev = ctlr->dma_rx->device->dev;
1160 	else
1161 		rx_dev = ctlr->dev.parent;
1162 
1163 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1164 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1165 			continue;
1166 
1167 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1168 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1169 	}
1170 
1171 	ctlr->cur_msg_mapped = false;
1172 
1173 	return 0;
1174 }
1175 #else /* !CONFIG_HAS_DMA */
1176 static inline int __spi_map_msg(struct spi_controller *ctlr,
1177 				struct spi_message *msg)
1178 {
1179 	return 0;
1180 }
1181 
1182 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1183 				  struct spi_message *msg)
1184 {
1185 	return 0;
1186 }
1187 #endif /* !CONFIG_HAS_DMA */
1188 
1189 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1190 				struct spi_message *msg)
1191 {
1192 	struct spi_transfer *xfer;
1193 
1194 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1195 		/*
1196 		 * Restore the original value of tx_buf or rx_buf if they are
1197 		 * NULL.
1198 		 */
1199 		if (xfer->tx_buf == ctlr->dummy_tx)
1200 			xfer->tx_buf = NULL;
1201 		if (xfer->rx_buf == ctlr->dummy_rx)
1202 			xfer->rx_buf = NULL;
1203 	}
1204 
1205 	return __spi_unmap_msg(ctlr, msg);
1206 }
1207 
1208 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1209 {
1210 	struct spi_transfer *xfer;
1211 	void *tmp;
1212 	unsigned int max_tx, max_rx;
1213 
1214 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1215 		&& !(msg->spi->mode & SPI_3WIRE)) {
1216 		max_tx = 0;
1217 		max_rx = 0;
1218 
1219 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1220 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1221 			    !xfer->tx_buf)
1222 				max_tx = max(xfer->len, max_tx);
1223 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1224 			    !xfer->rx_buf)
1225 				max_rx = max(xfer->len, max_rx);
1226 		}
1227 
1228 		if (max_tx) {
1229 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1230 				       GFP_KERNEL | GFP_DMA);
1231 			if (!tmp)
1232 				return -ENOMEM;
1233 			ctlr->dummy_tx = tmp;
1234 			memset(tmp, 0, max_tx);
1235 		}
1236 
1237 		if (max_rx) {
1238 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1239 				       GFP_KERNEL | GFP_DMA);
1240 			if (!tmp)
1241 				return -ENOMEM;
1242 			ctlr->dummy_rx = tmp;
1243 		}
1244 
1245 		if (max_tx || max_rx) {
1246 			list_for_each_entry(xfer, &msg->transfers,
1247 					    transfer_list) {
1248 				if (!xfer->len)
1249 					continue;
1250 				if (!xfer->tx_buf)
1251 					xfer->tx_buf = ctlr->dummy_tx;
1252 				if (!xfer->rx_buf)
1253 					xfer->rx_buf = ctlr->dummy_rx;
1254 			}
1255 		}
1256 	}
1257 
1258 	return __spi_map_msg(ctlr, msg);
1259 }
1260 
1261 static int spi_transfer_wait(struct spi_controller *ctlr,
1262 			     struct spi_message *msg,
1263 			     struct spi_transfer *xfer)
1264 {
1265 	struct spi_statistics *statm = &ctlr->statistics;
1266 	struct spi_statistics *stats = &msg->spi->statistics;
1267 	u32 speed_hz = xfer->speed_hz;
1268 	unsigned long long ms;
1269 
1270 	if (spi_controller_is_slave(ctlr)) {
1271 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1272 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1273 			return -EINTR;
1274 		}
1275 	} else {
1276 		if (!speed_hz)
1277 			speed_hz = 100000;
1278 
1279 		/*
1280 		 * For each byte we wait for 8 cycles of the SPI clock.
1281 		 * Since speed is defined in Hz and we want milliseconds,
1282 		 * use respective multiplier, but before the division,
1283 		 * otherwise we may get 0 for short transfers.
1284 		 */
1285 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1286 		do_div(ms, speed_hz);
1287 
1288 		/*
1289 		 * Increase it twice and add 200 ms tolerance, use
1290 		 * predefined maximum in case of overflow.
1291 		 */
1292 		ms += ms + 200;
1293 		if (ms > UINT_MAX)
1294 			ms = UINT_MAX;
1295 
1296 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1297 						 msecs_to_jiffies(ms));
1298 
1299 		if (ms == 0) {
1300 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1301 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1302 			dev_err(&msg->spi->dev,
1303 				"SPI transfer timed out\n");
1304 			return -ETIMEDOUT;
1305 		}
1306 	}
1307 
1308 	return 0;
1309 }
1310 
1311 static void _spi_transfer_delay_ns(u32 ns)
1312 {
1313 	if (!ns)
1314 		return;
1315 	if (ns <= NSEC_PER_USEC) {
1316 		ndelay(ns);
1317 	} else {
1318 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1319 
1320 		if (us <= 10)
1321 			udelay(us);
1322 		else
1323 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1324 	}
1325 }
1326 
1327 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1328 {
1329 	u32 delay = _delay->value;
1330 	u32 unit = _delay->unit;
1331 	u32 hz;
1332 
1333 	if (!delay)
1334 		return 0;
1335 
1336 	switch (unit) {
1337 	case SPI_DELAY_UNIT_USECS:
1338 		delay *= NSEC_PER_USEC;
1339 		break;
1340 	case SPI_DELAY_UNIT_NSECS:
1341 		/* Nothing to do here */
1342 		break;
1343 	case SPI_DELAY_UNIT_SCK:
1344 		/* clock cycles need to be obtained from spi_transfer */
1345 		if (!xfer)
1346 			return -EINVAL;
1347 		/*
1348 		 * If there is unknown effective speed, approximate it
1349 		 * by underestimating with half of the requested hz.
1350 		 */
1351 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1352 		if (!hz)
1353 			return -EINVAL;
1354 
1355 		/* Convert delay to nanoseconds */
1356 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1357 		break;
1358 	default:
1359 		return -EINVAL;
1360 	}
1361 
1362 	return delay;
1363 }
1364 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1365 
1366 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1367 {
1368 	int delay;
1369 
1370 	might_sleep();
1371 
1372 	if (!_delay)
1373 		return -EINVAL;
1374 
1375 	delay = spi_delay_to_ns(_delay, xfer);
1376 	if (delay < 0)
1377 		return delay;
1378 
1379 	_spi_transfer_delay_ns(delay);
1380 
1381 	return 0;
1382 }
1383 EXPORT_SYMBOL_GPL(spi_delay_exec);
1384 
1385 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1386 					  struct spi_transfer *xfer)
1387 {
1388 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1389 	u32 delay = xfer->cs_change_delay.value;
1390 	u32 unit = xfer->cs_change_delay.unit;
1391 	int ret;
1392 
1393 	/* return early on "fast" mode - for everything but USECS */
1394 	if (!delay) {
1395 		if (unit == SPI_DELAY_UNIT_USECS)
1396 			_spi_transfer_delay_ns(default_delay_ns);
1397 		return;
1398 	}
1399 
1400 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1401 	if (ret) {
1402 		dev_err_once(&msg->spi->dev,
1403 			     "Use of unsupported delay unit %i, using default of %luus\n",
1404 			     unit, default_delay_ns / NSEC_PER_USEC);
1405 		_spi_transfer_delay_ns(default_delay_ns);
1406 	}
1407 }
1408 
1409 /*
1410  * spi_transfer_one_message - Default implementation of transfer_one_message()
1411  *
1412  * This is a standard implementation of transfer_one_message() for
1413  * drivers which implement a transfer_one() operation.  It provides
1414  * standard handling of delays and chip select management.
1415  */
1416 static int spi_transfer_one_message(struct spi_controller *ctlr,
1417 				    struct spi_message *msg)
1418 {
1419 	struct spi_transfer *xfer;
1420 	bool keep_cs = false;
1421 	int ret = 0;
1422 	struct spi_statistics *statm = &ctlr->statistics;
1423 	struct spi_statistics *stats = &msg->spi->statistics;
1424 
1425 	spi_set_cs(msg->spi, true, false);
1426 
1427 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1428 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1429 
1430 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1431 		trace_spi_transfer_start(msg, xfer);
1432 
1433 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1434 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1435 
1436 		if (!ctlr->ptp_sts_supported) {
1437 			xfer->ptp_sts_word_pre = 0;
1438 			ptp_read_system_prets(xfer->ptp_sts);
1439 		}
1440 
1441 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1442 			reinit_completion(&ctlr->xfer_completion);
1443 
1444 fallback_pio:
1445 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1446 			if (ret < 0) {
1447 				if (ctlr->cur_msg_mapped &&
1448 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1449 					__spi_unmap_msg(ctlr, msg);
1450 					ctlr->fallback = true;
1451 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1452 					goto fallback_pio;
1453 				}
1454 
1455 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1456 							       errors);
1457 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1458 							       errors);
1459 				dev_err(&msg->spi->dev,
1460 					"SPI transfer failed: %d\n", ret);
1461 				goto out;
1462 			}
1463 
1464 			if (ret > 0) {
1465 				ret = spi_transfer_wait(ctlr, msg, xfer);
1466 				if (ret < 0)
1467 					msg->status = ret;
1468 			}
1469 		} else {
1470 			if (xfer->len)
1471 				dev_err(&msg->spi->dev,
1472 					"Bufferless transfer has length %u\n",
1473 					xfer->len);
1474 		}
1475 
1476 		if (!ctlr->ptp_sts_supported) {
1477 			ptp_read_system_postts(xfer->ptp_sts);
1478 			xfer->ptp_sts_word_post = xfer->len;
1479 		}
1480 
1481 		trace_spi_transfer_stop(msg, xfer);
1482 
1483 		if (msg->status != -EINPROGRESS)
1484 			goto out;
1485 
1486 		spi_transfer_delay_exec(xfer);
1487 
1488 		if (xfer->cs_change) {
1489 			if (list_is_last(&xfer->transfer_list,
1490 					 &msg->transfers)) {
1491 				keep_cs = true;
1492 			} else {
1493 				spi_set_cs(msg->spi, false, false);
1494 				_spi_transfer_cs_change_delay(msg, xfer);
1495 				spi_set_cs(msg->spi, true, false);
1496 			}
1497 		}
1498 
1499 		msg->actual_length += xfer->len;
1500 	}
1501 
1502 out:
1503 	if (ret != 0 || !keep_cs)
1504 		spi_set_cs(msg->spi, false, false);
1505 
1506 	if (msg->status == -EINPROGRESS)
1507 		msg->status = ret;
1508 
1509 	if (msg->status && ctlr->handle_err)
1510 		ctlr->handle_err(ctlr, msg);
1511 
1512 	spi_finalize_current_message(ctlr);
1513 
1514 	return ret;
1515 }
1516 
1517 /**
1518  * spi_finalize_current_transfer - report completion of a transfer
1519  * @ctlr: the controller reporting completion
1520  *
1521  * Called by SPI drivers using the core transfer_one_message()
1522  * implementation to notify it that the current interrupt driven
1523  * transfer has finished and the next one may be scheduled.
1524  */
1525 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1526 {
1527 	complete(&ctlr->xfer_completion);
1528 }
1529 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1530 
1531 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1532 {
1533 	if (ctlr->auto_runtime_pm) {
1534 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1535 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1536 	}
1537 }
1538 
1539 /**
1540  * __spi_pump_messages - function which processes spi message queue
1541  * @ctlr: controller to process queue for
1542  * @in_kthread: true if we are in the context of the message pump thread
1543  *
1544  * This function checks if there is any spi message in the queue that
1545  * needs processing and if so call out to the driver to initialize hardware
1546  * and transfer each message.
1547  *
1548  * Note that it is called both from the kthread itself and also from
1549  * inside spi_sync(); the queue extraction handling at the top of the
1550  * function should deal with this safely.
1551  */
1552 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1553 {
1554 	struct spi_transfer *xfer;
1555 	struct spi_message *msg;
1556 	bool was_busy = false;
1557 	unsigned long flags;
1558 	int ret;
1559 
1560 	/* Lock queue */
1561 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1562 
1563 	/* Make sure we are not already running a message */
1564 	if (ctlr->cur_msg) {
1565 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1566 		return;
1567 	}
1568 
1569 	/* If another context is idling the device then defer */
1570 	if (ctlr->idling) {
1571 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1572 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1573 		return;
1574 	}
1575 
1576 	/* Check if the queue is idle */
1577 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1578 		if (!ctlr->busy) {
1579 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1580 			return;
1581 		}
1582 
1583 		/* Defer any non-atomic teardown to the thread */
1584 		if (!in_kthread) {
1585 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1586 			    !ctlr->unprepare_transfer_hardware) {
1587 				spi_idle_runtime_pm(ctlr);
1588 				ctlr->busy = false;
1589 				trace_spi_controller_idle(ctlr);
1590 			} else {
1591 				kthread_queue_work(ctlr->kworker,
1592 						   &ctlr->pump_messages);
1593 			}
1594 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1595 			return;
1596 		}
1597 
1598 		ctlr->busy = false;
1599 		ctlr->idling = true;
1600 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1601 
1602 		kfree(ctlr->dummy_rx);
1603 		ctlr->dummy_rx = NULL;
1604 		kfree(ctlr->dummy_tx);
1605 		ctlr->dummy_tx = NULL;
1606 		if (ctlr->unprepare_transfer_hardware &&
1607 		    ctlr->unprepare_transfer_hardware(ctlr))
1608 			dev_err(&ctlr->dev,
1609 				"failed to unprepare transfer hardware\n");
1610 		spi_idle_runtime_pm(ctlr);
1611 		trace_spi_controller_idle(ctlr);
1612 
1613 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1614 		ctlr->idling = false;
1615 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1616 		return;
1617 	}
1618 
1619 	/* Extract head of queue */
1620 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1621 	ctlr->cur_msg = msg;
1622 
1623 	list_del_init(&msg->queue);
1624 	if (ctlr->busy)
1625 		was_busy = true;
1626 	else
1627 		ctlr->busy = true;
1628 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1629 
1630 	mutex_lock(&ctlr->io_mutex);
1631 
1632 	if (!was_busy && ctlr->auto_runtime_pm) {
1633 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1634 		if (ret < 0) {
1635 			pm_runtime_put_noidle(ctlr->dev.parent);
1636 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1637 				ret);
1638 			mutex_unlock(&ctlr->io_mutex);
1639 			return;
1640 		}
1641 	}
1642 
1643 	if (!was_busy)
1644 		trace_spi_controller_busy(ctlr);
1645 
1646 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1647 		ret = ctlr->prepare_transfer_hardware(ctlr);
1648 		if (ret) {
1649 			dev_err(&ctlr->dev,
1650 				"failed to prepare transfer hardware: %d\n",
1651 				ret);
1652 
1653 			if (ctlr->auto_runtime_pm)
1654 				pm_runtime_put(ctlr->dev.parent);
1655 
1656 			msg->status = ret;
1657 			spi_finalize_current_message(ctlr);
1658 
1659 			mutex_unlock(&ctlr->io_mutex);
1660 			return;
1661 		}
1662 	}
1663 
1664 	trace_spi_message_start(msg);
1665 
1666 	if (ctlr->prepare_message) {
1667 		ret = ctlr->prepare_message(ctlr, msg);
1668 		if (ret) {
1669 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1670 				ret);
1671 			msg->status = ret;
1672 			spi_finalize_current_message(ctlr);
1673 			goto out;
1674 		}
1675 		ctlr->cur_msg_prepared = true;
1676 	}
1677 
1678 	ret = spi_map_msg(ctlr, msg);
1679 	if (ret) {
1680 		msg->status = ret;
1681 		spi_finalize_current_message(ctlr);
1682 		goto out;
1683 	}
1684 
1685 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1686 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1687 			xfer->ptp_sts_word_pre = 0;
1688 			ptp_read_system_prets(xfer->ptp_sts);
1689 		}
1690 	}
1691 
1692 	ret = ctlr->transfer_one_message(ctlr, msg);
1693 	if (ret) {
1694 		dev_err(&ctlr->dev,
1695 			"failed to transfer one message from queue\n");
1696 		goto out;
1697 	}
1698 
1699 out:
1700 	mutex_unlock(&ctlr->io_mutex);
1701 
1702 	/* Prod the scheduler in case transfer_one() was busy waiting */
1703 	if (!ret)
1704 		cond_resched();
1705 }
1706 
1707 /**
1708  * spi_pump_messages - kthread work function which processes spi message queue
1709  * @work: pointer to kthread work struct contained in the controller struct
1710  */
1711 static void spi_pump_messages(struct kthread_work *work)
1712 {
1713 	struct spi_controller *ctlr =
1714 		container_of(work, struct spi_controller, pump_messages);
1715 
1716 	__spi_pump_messages(ctlr, true);
1717 }
1718 
1719 /**
1720  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1721  *			    TX timestamp for the requested byte from the SPI
1722  *			    transfer. The frequency with which this function
1723  *			    must be called (once per word, once for the whole
1724  *			    transfer, once per batch of words etc) is arbitrary
1725  *			    as long as the @tx buffer offset is greater than or
1726  *			    equal to the requested byte at the time of the
1727  *			    call. The timestamp is only taken once, at the
1728  *			    first such call. It is assumed that the driver
1729  *			    advances its @tx buffer pointer monotonically.
1730  * @ctlr: Pointer to the spi_controller structure of the driver
1731  * @xfer: Pointer to the transfer being timestamped
1732  * @progress: How many words (not bytes) have been transferred so far
1733  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1734  *	      transfer, for less jitter in time measurement. Only compatible
1735  *	      with PIO drivers. If true, must follow up with
1736  *	      spi_take_timestamp_post or otherwise system will crash.
1737  *	      WARNING: for fully predictable results, the CPU frequency must
1738  *	      also be under control (governor).
1739  */
1740 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1741 			    struct spi_transfer *xfer,
1742 			    size_t progress, bool irqs_off)
1743 {
1744 	if (!xfer->ptp_sts)
1745 		return;
1746 
1747 	if (xfer->timestamped)
1748 		return;
1749 
1750 	if (progress > xfer->ptp_sts_word_pre)
1751 		return;
1752 
1753 	/* Capture the resolution of the timestamp */
1754 	xfer->ptp_sts_word_pre = progress;
1755 
1756 	if (irqs_off) {
1757 		local_irq_save(ctlr->irq_flags);
1758 		preempt_disable();
1759 	}
1760 
1761 	ptp_read_system_prets(xfer->ptp_sts);
1762 }
1763 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1764 
1765 /**
1766  * spi_take_timestamp_post - helper for drivers to collect the end of the
1767  *			     TX timestamp for the requested byte from the SPI
1768  *			     transfer. Can be called with an arbitrary
1769  *			     frequency: only the first call where @tx exceeds
1770  *			     or is equal to the requested word will be
1771  *			     timestamped.
1772  * @ctlr: Pointer to the spi_controller structure of the driver
1773  * @xfer: Pointer to the transfer being timestamped
1774  * @progress: How many words (not bytes) have been transferred so far
1775  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1776  */
1777 void spi_take_timestamp_post(struct spi_controller *ctlr,
1778 			     struct spi_transfer *xfer,
1779 			     size_t progress, bool irqs_off)
1780 {
1781 	if (!xfer->ptp_sts)
1782 		return;
1783 
1784 	if (xfer->timestamped)
1785 		return;
1786 
1787 	if (progress < xfer->ptp_sts_word_post)
1788 		return;
1789 
1790 	ptp_read_system_postts(xfer->ptp_sts);
1791 
1792 	if (irqs_off) {
1793 		local_irq_restore(ctlr->irq_flags);
1794 		preempt_enable();
1795 	}
1796 
1797 	/* Capture the resolution of the timestamp */
1798 	xfer->ptp_sts_word_post = progress;
1799 
1800 	xfer->timestamped = true;
1801 }
1802 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1803 
1804 /**
1805  * spi_set_thread_rt - set the controller to pump at realtime priority
1806  * @ctlr: controller to boost priority of
1807  *
1808  * This can be called because the controller requested realtime priority
1809  * (by setting the ->rt value before calling spi_register_controller()) or
1810  * because a device on the bus said that its transfers needed realtime
1811  * priority.
1812  *
1813  * NOTE: at the moment if any device on a bus says it needs realtime then
1814  * the thread will be at realtime priority for all transfers on that
1815  * controller.  If this eventually becomes a problem we may see if we can
1816  * find a way to boost the priority only temporarily during relevant
1817  * transfers.
1818  */
1819 static void spi_set_thread_rt(struct spi_controller *ctlr)
1820 {
1821 	dev_info(&ctlr->dev,
1822 		"will run message pump with realtime priority\n");
1823 	sched_set_fifo(ctlr->kworker->task);
1824 }
1825 
1826 static int spi_init_queue(struct spi_controller *ctlr)
1827 {
1828 	ctlr->running = false;
1829 	ctlr->busy = false;
1830 
1831 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1832 	if (IS_ERR(ctlr->kworker)) {
1833 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1834 		return PTR_ERR(ctlr->kworker);
1835 	}
1836 
1837 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1838 
1839 	/*
1840 	 * Controller config will indicate if this controller should run the
1841 	 * message pump with high (realtime) priority to reduce the transfer
1842 	 * latency on the bus by minimising the delay between a transfer
1843 	 * request and the scheduling of the message pump thread. Without this
1844 	 * setting the message pump thread will remain at default priority.
1845 	 */
1846 	if (ctlr->rt)
1847 		spi_set_thread_rt(ctlr);
1848 
1849 	return 0;
1850 }
1851 
1852 /**
1853  * spi_get_next_queued_message() - called by driver to check for queued
1854  * messages
1855  * @ctlr: the controller to check for queued messages
1856  *
1857  * If there are more messages in the queue, the next message is returned from
1858  * this call.
1859  *
1860  * Return: the next message in the queue, else NULL if the queue is empty.
1861  */
1862 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1863 {
1864 	struct spi_message *next;
1865 	unsigned long flags;
1866 
1867 	/* get a pointer to the next message, if any */
1868 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1869 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1870 					queue);
1871 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1872 
1873 	return next;
1874 }
1875 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1876 
1877 /**
1878  * spi_finalize_current_message() - the current message is complete
1879  * @ctlr: the controller to return the message to
1880  *
1881  * Called by the driver to notify the core that the message in the front of the
1882  * queue is complete and can be removed from the queue.
1883  */
1884 void spi_finalize_current_message(struct spi_controller *ctlr)
1885 {
1886 	struct spi_transfer *xfer;
1887 	struct spi_message *mesg;
1888 	unsigned long flags;
1889 	int ret;
1890 
1891 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1892 	mesg = ctlr->cur_msg;
1893 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1894 
1895 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1896 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1897 			ptp_read_system_postts(xfer->ptp_sts);
1898 			xfer->ptp_sts_word_post = xfer->len;
1899 		}
1900 	}
1901 
1902 	if (unlikely(ctlr->ptp_sts_supported))
1903 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1904 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1905 
1906 	spi_unmap_msg(ctlr, mesg);
1907 
1908 	/* In the prepare_messages callback the spi bus has the opportunity to
1909 	 * split a transfer to smaller chunks.
1910 	 * Release splited transfers here since spi_map_msg is done on the
1911 	 * splited transfers.
1912 	 */
1913 	spi_res_release(ctlr, mesg);
1914 
1915 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1916 		ret = ctlr->unprepare_message(ctlr, mesg);
1917 		if (ret) {
1918 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1919 				ret);
1920 		}
1921 	}
1922 
1923 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1924 	ctlr->cur_msg = NULL;
1925 	ctlr->cur_msg_prepared = false;
1926 	ctlr->fallback = false;
1927 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1928 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1929 
1930 	trace_spi_message_done(mesg);
1931 
1932 	mesg->state = NULL;
1933 	if (mesg->complete)
1934 		mesg->complete(mesg->context);
1935 }
1936 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1937 
1938 static int spi_start_queue(struct spi_controller *ctlr)
1939 {
1940 	unsigned long flags;
1941 
1942 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1943 
1944 	if (ctlr->running || ctlr->busy) {
1945 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1946 		return -EBUSY;
1947 	}
1948 
1949 	ctlr->running = true;
1950 	ctlr->cur_msg = NULL;
1951 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1952 
1953 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1954 
1955 	return 0;
1956 }
1957 
1958 static int spi_stop_queue(struct spi_controller *ctlr)
1959 {
1960 	unsigned long flags;
1961 	unsigned limit = 500;
1962 	int ret = 0;
1963 
1964 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1965 
1966 	/*
1967 	 * This is a bit lame, but is optimized for the common execution path.
1968 	 * A wait_queue on the ctlr->busy could be used, but then the common
1969 	 * execution path (pump_messages) would be required to call wake_up or
1970 	 * friends on every SPI message. Do this instead.
1971 	 */
1972 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1973 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1974 		usleep_range(10000, 11000);
1975 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1976 	}
1977 
1978 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1979 		ret = -EBUSY;
1980 	else
1981 		ctlr->running = false;
1982 
1983 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1984 
1985 	if (ret) {
1986 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1987 		return ret;
1988 	}
1989 	return ret;
1990 }
1991 
1992 static int spi_destroy_queue(struct spi_controller *ctlr)
1993 {
1994 	int ret;
1995 
1996 	ret = spi_stop_queue(ctlr);
1997 
1998 	/*
1999 	 * kthread_flush_worker will block until all work is done.
2000 	 * If the reason that stop_queue timed out is that the work will never
2001 	 * finish, then it does no good to call flush/stop thread, so
2002 	 * return anyway.
2003 	 */
2004 	if (ret) {
2005 		dev_err(&ctlr->dev, "problem destroying queue\n");
2006 		return ret;
2007 	}
2008 
2009 	kthread_destroy_worker(ctlr->kworker);
2010 
2011 	return 0;
2012 }
2013 
2014 static int __spi_queued_transfer(struct spi_device *spi,
2015 				 struct spi_message *msg,
2016 				 bool need_pump)
2017 {
2018 	struct spi_controller *ctlr = spi->controller;
2019 	unsigned long flags;
2020 
2021 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2022 
2023 	if (!ctlr->running) {
2024 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2025 		return -ESHUTDOWN;
2026 	}
2027 	msg->actual_length = 0;
2028 	msg->status = -EINPROGRESS;
2029 
2030 	list_add_tail(&msg->queue, &ctlr->queue);
2031 	if (!ctlr->busy && need_pump)
2032 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2033 
2034 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2035 	return 0;
2036 }
2037 
2038 /**
2039  * spi_queued_transfer - transfer function for queued transfers
2040  * @spi: spi device which is requesting transfer
2041  * @msg: spi message which is to handled is queued to driver queue
2042  *
2043  * Return: zero on success, else a negative error code.
2044  */
2045 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2046 {
2047 	return __spi_queued_transfer(spi, msg, true);
2048 }
2049 
2050 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2051 {
2052 	int ret;
2053 
2054 	ctlr->transfer = spi_queued_transfer;
2055 	if (!ctlr->transfer_one_message)
2056 		ctlr->transfer_one_message = spi_transfer_one_message;
2057 
2058 	/* Initialize and start queue */
2059 	ret = spi_init_queue(ctlr);
2060 	if (ret) {
2061 		dev_err(&ctlr->dev, "problem initializing queue\n");
2062 		goto err_init_queue;
2063 	}
2064 	ctlr->queued = true;
2065 	ret = spi_start_queue(ctlr);
2066 	if (ret) {
2067 		dev_err(&ctlr->dev, "problem starting queue\n");
2068 		goto err_start_queue;
2069 	}
2070 
2071 	return 0;
2072 
2073 err_start_queue:
2074 	spi_destroy_queue(ctlr);
2075 err_init_queue:
2076 	return ret;
2077 }
2078 
2079 /**
2080  * spi_flush_queue - Send all pending messages in the queue from the callers'
2081  *		     context
2082  * @ctlr: controller to process queue for
2083  *
2084  * This should be used when one wants to ensure all pending messages have been
2085  * sent before doing something. Is used by the spi-mem code to make sure SPI
2086  * memory operations do not preempt regular SPI transfers that have been queued
2087  * before the spi-mem operation.
2088  */
2089 void spi_flush_queue(struct spi_controller *ctlr)
2090 {
2091 	if (ctlr->transfer == spi_queued_transfer)
2092 		__spi_pump_messages(ctlr, false);
2093 }
2094 
2095 /*-------------------------------------------------------------------------*/
2096 
2097 #if defined(CONFIG_OF)
2098 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2099 			   struct device_node *nc)
2100 {
2101 	u32 value;
2102 	int rc;
2103 
2104 	/* Mode (clock phase/polarity/etc.) */
2105 	if (of_property_read_bool(nc, "spi-cpha"))
2106 		spi->mode |= SPI_CPHA;
2107 	if (of_property_read_bool(nc, "spi-cpol"))
2108 		spi->mode |= SPI_CPOL;
2109 	if (of_property_read_bool(nc, "spi-3wire"))
2110 		spi->mode |= SPI_3WIRE;
2111 	if (of_property_read_bool(nc, "spi-lsb-first"))
2112 		spi->mode |= SPI_LSB_FIRST;
2113 	if (of_property_read_bool(nc, "spi-cs-high"))
2114 		spi->mode |= SPI_CS_HIGH;
2115 
2116 	/* Device DUAL/QUAD mode */
2117 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2118 		switch (value) {
2119 		case 0:
2120 			spi->mode |= SPI_NO_TX;
2121 			break;
2122 		case 1:
2123 			break;
2124 		case 2:
2125 			spi->mode |= SPI_TX_DUAL;
2126 			break;
2127 		case 4:
2128 			spi->mode |= SPI_TX_QUAD;
2129 			break;
2130 		case 8:
2131 			spi->mode |= SPI_TX_OCTAL;
2132 			break;
2133 		default:
2134 			dev_warn(&ctlr->dev,
2135 				"spi-tx-bus-width %d not supported\n",
2136 				value);
2137 			break;
2138 		}
2139 	}
2140 
2141 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2142 		switch (value) {
2143 		case 0:
2144 			spi->mode |= SPI_NO_RX;
2145 			break;
2146 		case 1:
2147 			break;
2148 		case 2:
2149 			spi->mode |= SPI_RX_DUAL;
2150 			break;
2151 		case 4:
2152 			spi->mode |= SPI_RX_QUAD;
2153 			break;
2154 		case 8:
2155 			spi->mode |= SPI_RX_OCTAL;
2156 			break;
2157 		default:
2158 			dev_warn(&ctlr->dev,
2159 				"spi-rx-bus-width %d not supported\n",
2160 				value);
2161 			break;
2162 		}
2163 	}
2164 
2165 	if (spi_controller_is_slave(ctlr)) {
2166 		if (!of_node_name_eq(nc, "slave")) {
2167 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2168 				nc);
2169 			return -EINVAL;
2170 		}
2171 		return 0;
2172 	}
2173 
2174 	/* Device address */
2175 	rc = of_property_read_u32(nc, "reg", &value);
2176 	if (rc) {
2177 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2178 			nc, rc);
2179 		return rc;
2180 	}
2181 	spi->chip_select = value;
2182 
2183 	/* Device speed */
2184 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2185 		spi->max_speed_hz = value;
2186 
2187 	return 0;
2188 }
2189 
2190 static struct spi_device *
2191 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2192 {
2193 	struct spi_device *spi;
2194 	int rc;
2195 
2196 	/* Alloc an spi_device */
2197 	spi = spi_alloc_device(ctlr);
2198 	if (!spi) {
2199 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2200 		rc = -ENOMEM;
2201 		goto err_out;
2202 	}
2203 
2204 	/* Select device driver */
2205 	rc = of_modalias_node(nc, spi->modalias,
2206 				sizeof(spi->modalias));
2207 	if (rc < 0) {
2208 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2209 		goto err_out;
2210 	}
2211 
2212 	rc = of_spi_parse_dt(ctlr, spi, nc);
2213 	if (rc)
2214 		goto err_out;
2215 
2216 	/* Store a pointer to the node in the device structure */
2217 	of_node_get(nc);
2218 	spi->dev.of_node = nc;
2219 	spi->dev.fwnode = of_fwnode_handle(nc);
2220 
2221 	/* Register the new device */
2222 	rc = spi_add_device(spi);
2223 	if (rc) {
2224 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2225 		goto err_of_node_put;
2226 	}
2227 
2228 	return spi;
2229 
2230 err_of_node_put:
2231 	of_node_put(nc);
2232 err_out:
2233 	spi_dev_put(spi);
2234 	return ERR_PTR(rc);
2235 }
2236 
2237 /**
2238  * of_register_spi_devices() - Register child devices onto the SPI bus
2239  * @ctlr:	Pointer to spi_controller device
2240  *
2241  * Registers an spi_device for each child node of controller node which
2242  * represents a valid SPI slave.
2243  */
2244 static void of_register_spi_devices(struct spi_controller *ctlr)
2245 {
2246 	struct spi_device *spi;
2247 	struct device_node *nc;
2248 
2249 	if (!ctlr->dev.of_node)
2250 		return;
2251 
2252 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2253 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2254 			continue;
2255 		spi = of_register_spi_device(ctlr, nc);
2256 		if (IS_ERR(spi)) {
2257 			dev_warn(&ctlr->dev,
2258 				 "Failed to create SPI device for %pOF\n", nc);
2259 			of_node_clear_flag(nc, OF_POPULATED);
2260 		}
2261 	}
2262 }
2263 #else
2264 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2265 #endif
2266 
2267 /**
2268  * spi_new_ancillary_device() - Register ancillary SPI device
2269  * @spi:         Pointer to the main SPI device registering the ancillary device
2270  * @chip_select: Chip Select of the ancillary device
2271  *
2272  * Register an ancillary SPI device; for example some chips have a chip-select
2273  * for normal device usage and another one for setup/firmware upload.
2274  *
2275  * This may only be called from main SPI device's probe routine.
2276  *
2277  * Return: 0 on success; negative errno on failure
2278  */
2279 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2280 					     u8 chip_select)
2281 {
2282 	struct spi_device *ancillary;
2283 	int rc = 0;
2284 
2285 	/* Alloc an spi_device */
2286 	ancillary = spi_alloc_device(spi->controller);
2287 	if (!ancillary) {
2288 		rc = -ENOMEM;
2289 		goto err_out;
2290 	}
2291 
2292 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2293 
2294 	/* Use provided chip-select for ancillary device */
2295 	ancillary->chip_select = chip_select;
2296 
2297 	/* Take over SPI mode/speed from SPI main device */
2298 	ancillary->max_speed_hz = spi->max_speed_hz;
2299 	ancillary->mode = spi->mode;
2300 
2301 	/* Register the new device */
2302 	rc = spi_add_device_locked(ancillary);
2303 	if (rc) {
2304 		dev_err(&spi->dev, "failed to register ancillary device\n");
2305 		goto err_out;
2306 	}
2307 
2308 	return ancillary;
2309 
2310 err_out:
2311 	spi_dev_put(ancillary);
2312 	return ERR_PTR(rc);
2313 }
2314 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2315 
2316 #ifdef CONFIG_ACPI
2317 struct acpi_spi_lookup {
2318 	struct spi_controller 	*ctlr;
2319 	u32			max_speed_hz;
2320 	u32			mode;
2321 	int			irq;
2322 	u8			bits_per_word;
2323 	u8			chip_select;
2324 };
2325 
2326 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2327 					    struct acpi_spi_lookup *lookup)
2328 {
2329 	const union acpi_object *obj;
2330 
2331 	if (!x86_apple_machine)
2332 		return;
2333 
2334 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2335 	    && obj->buffer.length >= 4)
2336 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2337 
2338 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2339 	    && obj->buffer.length == 8)
2340 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2341 
2342 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2343 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2344 		lookup->mode |= SPI_LSB_FIRST;
2345 
2346 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2347 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2348 		lookup->mode |= SPI_CPOL;
2349 
2350 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2351 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2352 		lookup->mode |= SPI_CPHA;
2353 }
2354 
2355 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2356 {
2357 	struct acpi_spi_lookup *lookup = data;
2358 	struct spi_controller *ctlr = lookup->ctlr;
2359 
2360 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2361 		struct acpi_resource_spi_serialbus *sb;
2362 		acpi_handle parent_handle;
2363 		acpi_status status;
2364 
2365 		sb = &ares->data.spi_serial_bus;
2366 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2367 
2368 			status = acpi_get_handle(NULL,
2369 						 sb->resource_source.string_ptr,
2370 						 &parent_handle);
2371 
2372 			if (ACPI_FAILURE(status) ||
2373 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2374 				return -ENODEV;
2375 
2376 			/*
2377 			 * ACPI DeviceSelection numbering is handled by the
2378 			 * host controller driver in Windows and can vary
2379 			 * from driver to driver. In Linux we always expect
2380 			 * 0 .. max - 1 so we need to ask the driver to
2381 			 * translate between the two schemes.
2382 			 */
2383 			if (ctlr->fw_translate_cs) {
2384 				int cs = ctlr->fw_translate_cs(ctlr,
2385 						sb->device_selection);
2386 				if (cs < 0)
2387 					return cs;
2388 				lookup->chip_select = cs;
2389 			} else {
2390 				lookup->chip_select = sb->device_selection;
2391 			}
2392 
2393 			lookup->max_speed_hz = sb->connection_speed;
2394 			lookup->bits_per_word = sb->data_bit_length;
2395 
2396 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2397 				lookup->mode |= SPI_CPHA;
2398 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2399 				lookup->mode |= SPI_CPOL;
2400 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2401 				lookup->mode |= SPI_CS_HIGH;
2402 		}
2403 	} else if (lookup->irq < 0) {
2404 		struct resource r;
2405 
2406 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2407 			lookup->irq = r.start;
2408 	}
2409 
2410 	/* Always tell the ACPI core to skip this resource */
2411 	return 1;
2412 }
2413 
2414 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2415 					    struct acpi_device *adev)
2416 {
2417 	acpi_handle parent_handle = NULL;
2418 	struct list_head resource_list;
2419 	struct acpi_spi_lookup lookup = {};
2420 	struct spi_device *spi;
2421 	int ret;
2422 
2423 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2424 	    acpi_device_enumerated(adev))
2425 		return AE_OK;
2426 
2427 	lookup.ctlr		= ctlr;
2428 	lookup.irq		= -1;
2429 
2430 	INIT_LIST_HEAD(&resource_list);
2431 	ret = acpi_dev_get_resources(adev, &resource_list,
2432 				     acpi_spi_add_resource, &lookup);
2433 	acpi_dev_free_resource_list(&resource_list);
2434 
2435 	if (ret < 0)
2436 		/* found SPI in _CRS but it points to another controller */
2437 		return AE_OK;
2438 
2439 	if (!lookup.max_speed_hz &&
2440 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2441 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2442 		/* Apple does not use _CRS but nested devices for SPI slaves */
2443 		acpi_spi_parse_apple_properties(adev, &lookup);
2444 	}
2445 
2446 	if (!lookup.max_speed_hz)
2447 		return AE_OK;
2448 
2449 	spi = spi_alloc_device(ctlr);
2450 	if (!spi) {
2451 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2452 			dev_name(&adev->dev));
2453 		return AE_NO_MEMORY;
2454 	}
2455 
2456 
2457 	ACPI_COMPANION_SET(&spi->dev, adev);
2458 	spi->max_speed_hz	= lookup.max_speed_hz;
2459 	spi->mode		|= lookup.mode;
2460 	spi->irq		= lookup.irq;
2461 	spi->bits_per_word	= lookup.bits_per_word;
2462 	spi->chip_select	= lookup.chip_select;
2463 
2464 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2465 			  sizeof(spi->modalias));
2466 
2467 	if (spi->irq < 0)
2468 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2469 
2470 	acpi_device_set_enumerated(adev);
2471 
2472 	adev->power.flags.ignore_parent = true;
2473 	if (spi_add_device(spi)) {
2474 		adev->power.flags.ignore_parent = false;
2475 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2476 			dev_name(&adev->dev));
2477 		spi_dev_put(spi);
2478 	}
2479 
2480 	return AE_OK;
2481 }
2482 
2483 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2484 				       void *data, void **return_value)
2485 {
2486 	struct spi_controller *ctlr = data;
2487 	struct acpi_device *adev;
2488 
2489 	if (acpi_bus_get_device(handle, &adev))
2490 		return AE_OK;
2491 
2492 	return acpi_register_spi_device(ctlr, adev);
2493 }
2494 
2495 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2496 
2497 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2498 {
2499 	acpi_status status;
2500 	acpi_handle handle;
2501 
2502 	handle = ACPI_HANDLE(ctlr->dev.parent);
2503 	if (!handle)
2504 		return;
2505 
2506 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2507 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2508 				     acpi_spi_add_device, NULL, ctlr, NULL);
2509 	if (ACPI_FAILURE(status))
2510 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2511 }
2512 #else
2513 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2514 #endif /* CONFIG_ACPI */
2515 
2516 static void spi_controller_release(struct device *dev)
2517 {
2518 	struct spi_controller *ctlr;
2519 
2520 	ctlr = container_of(dev, struct spi_controller, dev);
2521 	kfree(ctlr);
2522 }
2523 
2524 static struct class spi_master_class = {
2525 	.name		= "spi_master",
2526 	.owner		= THIS_MODULE,
2527 	.dev_release	= spi_controller_release,
2528 	.dev_groups	= spi_master_groups,
2529 };
2530 
2531 #ifdef CONFIG_SPI_SLAVE
2532 /**
2533  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2534  *		     controller
2535  * @spi: device used for the current transfer
2536  */
2537 int spi_slave_abort(struct spi_device *spi)
2538 {
2539 	struct spi_controller *ctlr = spi->controller;
2540 
2541 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2542 		return ctlr->slave_abort(ctlr);
2543 
2544 	return -ENOTSUPP;
2545 }
2546 EXPORT_SYMBOL_GPL(spi_slave_abort);
2547 
2548 static int match_true(struct device *dev, void *data)
2549 {
2550 	return 1;
2551 }
2552 
2553 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2554 			  char *buf)
2555 {
2556 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2557 						   dev);
2558 	struct device *child;
2559 
2560 	child = device_find_child(&ctlr->dev, NULL, match_true);
2561 	return sprintf(buf, "%s\n",
2562 		       child ? to_spi_device(child)->modalias : NULL);
2563 }
2564 
2565 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2566 			   const char *buf, size_t count)
2567 {
2568 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2569 						   dev);
2570 	struct spi_device *spi;
2571 	struct device *child;
2572 	char name[32];
2573 	int rc;
2574 
2575 	rc = sscanf(buf, "%31s", name);
2576 	if (rc != 1 || !name[0])
2577 		return -EINVAL;
2578 
2579 	child = device_find_child(&ctlr->dev, NULL, match_true);
2580 	if (child) {
2581 		/* Remove registered slave */
2582 		device_unregister(child);
2583 		put_device(child);
2584 	}
2585 
2586 	if (strcmp(name, "(null)")) {
2587 		/* Register new slave */
2588 		spi = spi_alloc_device(ctlr);
2589 		if (!spi)
2590 			return -ENOMEM;
2591 
2592 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2593 
2594 		rc = spi_add_device(spi);
2595 		if (rc) {
2596 			spi_dev_put(spi);
2597 			return rc;
2598 		}
2599 	}
2600 
2601 	return count;
2602 }
2603 
2604 static DEVICE_ATTR_RW(slave);
2605 
2606 static struct attribute *spi_slave_attrs[] = {
2607 	&dev_attr_slave.attr,
2608 	NULL,
2609 };
2610 
2611 static const struct attribute_group spi_slave_group = {
2612 	.attrs = spi_slave_attrs,
2613 };
2614 
2615 static const struct attribute_group *spi_slave_groups[] = {
2616 	&spi_controller_statistics_group,
2617 	&spi_slave_group,
2618 	NULL,
2619 };
2620 
2621 static struct class spi_slave_class = {
2622 	.name		= "spi_slave",
2623 	.owner		= THIS_MODULE,
2624 	.dev_release	= spi_controller_release,
2625 	.dev_groups	= spi_slave_groups,
2626 };
2627 #else
2628 extern struct class spi_slave_class;	/* dummy */
2629 #endif
2630 
2631 /**
2632  * __spi_alloc_controller - allocate an SPI master or slave controller
2633  * @dev: the controller, possibly using the platform_bus
2634  * @size: how much zeroed driver-private data to allocate; the pointer to this
2635  *	memory is in the driver_data field of the returned device, accessible
2636  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2637  *	drivers granting DMA access to portions of their private data need to
2638  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2639  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2640  *	slave (true) controller
2641  * Context: can sleep
2642  *
2643  * This call is used only by SPI controller drivers, which are the
2644  * only ones directly touching chip registers.  It's how they allocate
2645  * an spi_controller structure, prior to calling spi_register_controller().
2646  *
2647  * This must be called from context that can sleep.
2648  *
2649  * The caller is responsible for assigning the bus number and initializing the
2650  * controller's methods before calling spi_register_controller(); and (after
2651  * errors adding the device) calling spi_controller_put() to prevent a memory
2652  * leak.
2653  *
2654  * Return: the SPI controller structure on success, else NULL.
2655  */
2656 struct spi_controller *__spi_alloc_controller(struct device *dev,
2657 					      unsigned int size, bool slave)
2658 {
2659 	struct spi_controller	*ctlr;
2660 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2661 
2662 	if (!dev)
2663 		return NULL;
2664 
2665 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2666 	if (!ctlr)
2667 		return NULL;
2668 
2669 	device_initialize(&ctlr->dev);
2670 	INIT_LIST_HEAD(&ctlr->queue);
2671 	spin_lock_init(&ctlr->queue_lock);
2672 	spin_lock_init(&ctlr->bus_lock_spinlock);
2673 	mutex_init(&ctlr->bus_lock_mutex);
2674 	mutex_init(&ctlr->io_mutex);
2675 	mutex_init(&ctlr->add_lock);
2676 	ctlr->bus_num = -1;
2677 	ctlr->num_chipselect = 1;
2678 	ctlr->slave = slave;
2679 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2680 		ctlr->dev.class = &spi_slave_class;
2681 	else
2682 		ctlr->dev.class = &spi_master_class;
2683 	ctlr->dev.parent = dev;
2684 	pm_suspend_ignore_children(&ctlr->dev, true);
2685 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2686 
2687 	return ctlr;
2688 }
2689 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2690 
2691 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2692 {
2693 	spi_controller_put(*(struct spi_controller **)ctlr);
2694 }
2695 
2696 /**
2697  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2698  * @dev: physical device of SPI controller
2699  * @size: how much zeroed driver-private data to allocate
2700  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2701  * Context: can sleep
2702  *
2703  * Allocate an SPI controller and automatically release a reference on it
2704  * when @dev is unbound from its driver.  Drivers are thus relieved from
2705  * having to call spi_controller_put().
2706  *
2707  * The arguments to this function are identical to __spi_alloc_controller().
2708  *
2709  * Return: the SPI controller structure on success, else NULL.
2710  */
2711 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2712 						   unsigned int size,
2713 						   bool slave)
2714 {
2715 	struct spi_controller **ptr, *ctlr;
2716 
2717 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2718 			   GFP_KERNEL);
2719 	if (!ptr)
2720 		return NULL;
2721 
2722 	ctlr = __spi_alloc_controller(dev, size, slave);
2723 	if (ctlr) {
2724 		ctlr->devm_allocated = true;
2725 		*ptr = ctlr;
2726 		devres_add(dev, ptr);
2727 	} else {
2728 		devres_free(ptr);
2729 	}
2730 
2731 	return ctlr;
2732 }
2733 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2734 
2735 #ifdef CONFIG_OF
2736 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2737 {
2738 	int nb, i, *cs;
2739 	struct device_node *np = ctlr->dev.of_node;
2740 
2741 	if (!np)
2742 		return 0;
2743 
2744 	nb = of_gpio_named_count(np, "cs-gpios");
2745 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2746 
2747 	/* Return error only for an incorrectly formed cs-gpios property */
2748 	if (nb == 0 || nb == -ENOENT)
2749 		return 0;
2750 	else if (nb < 0)
2751 		return nb;
2752 
2753 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2754 			  GFP_KERNEL);
2755 	ctlr->cs_gpios = cs;
2756 
2757 	if (!ctlr->cs_gpios)
2758 		return -ENOMEM;
2759 
2760 	for (i = 0; i < ctlr->num_chipselect; i++)
2761 		cs[i] = -ENOENT;
2762 
2763 	for (i = 0; i < nb; i++)
2764 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2765 
2766 	return 0;
2767 }
2768 #else
2769 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2770 {
2771 	return 0;
2772 }
2773 #endif
2774 
2775 /**
2776  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2777  * @ctlr: The SPI master to grab GPIO descriptors for
2778  */
2779 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2780 {
2781 	int nb, i;
2782 	struct gpio_desc **cs;
2783 	struct device *dev = &ctlr->dev;
2784 	unsigned long native_cs_mask = 0;
2785 	unsigned int num_cs_gpios = 0;
2786 
2787 	nb = gpiod_count(dev, "cs");
2788 	if (nb < 0) {
2789 		/* No GPIOs at all is fine, else return the error */
2790 		if (nb == -ENOENT)
2791 			return 0;
2792 		return nb;
2793 	}
2794 
2795 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2796 
2797 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2798 			  GFP_KERNEL);
2799 	if (!cs)
2800 		return -ENOMEM;
2801 	ctlr->cs_gpiods = cs;
2802 
2803 	for (i = 0; i < nb; i++) {
2804 		/*
2805 		 * Most chipselects are active low, the inverted
2806 		 * semantics are handled by special quirks in gpiolib,
2807 		 * so initializing them GPIOD_OUT_LOW here means
2808 		 * "unasserted", in most cases this will drive the physical
2809 		 * line high.
2810 		 */
2811 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2812 						      GPIOD_OUT_LOW);
2813 		if (IS_ERR(cs[i]))
2814 			return PTR_ERR(cs[i]);
2815 
2816 		if (cs[i]) {
2817 			/*
2818 			 * If we find a CS GPIO, name it after the device and
2819 			 * chip select line.
2820 			 */
2821 			char *gpioname;
2822 
2823 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2824 						  dev_name(dev), i);
2825 			if (!gpioname)
2826 				return -ENOMEM;
2827 			gpiod_set_consumer_name(cs[i], gpioname);
2828 			num_cs_gpios++;
2829 			continue;
2830 		}
2831 
2832 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2833 			dev_err(dev, "Invalid native chip select %d\n", i);
2834 			return -EINVAL;
2835 		}
2836 		native_cs_mask |= BIT(i);
2837 	}
2838 
2839 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2840 
2841 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2842 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2843 		dev_err(dev, "No unused native chip select available\n");
2844 		return -EINVAL;
2845 	}
2846 
2847 	return 0;
2848 }
2849 
2850 static int spi_controller_check_ops(struct spi_controller *ctlr)
2851 {
2852 	/*
2853 	 * The controller may implement only the high-level SPI-memory like
2854 	 * operations if it does not support regular SPI transfers, and this is
2855 	 * valid use case.
2856 	 * If ->mem_ops is NULL, we request that at least one of the
2857 	 * ->transfer_xxx() method be implemented.
2858 	 */
2859 	if (ctlr->mem_ops) {
2860 		if (!ctlr->mem_ops->exec_op)
2861 			return -EINVAL;
2862 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2863 		   !ctlr->transfer_one_message) {
2864 		return -EINVAL;
2865 	}
2866 
2867 	return 0;
2868 }
2869 
2870 /**
2871  * spi_register_controller - register SPI master or slave controller
2872  * @ctlr: initialized master, originally from spi_alloc_master() or
2873  *	spi_alloc_slave()
2874  * Context: can sleep
2875  *
2876  * SPI controllers connect to their drivers using some non-SPI bus,
2877  * such as the platform bus.  The final stage of probe() in that code
2878  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2879  *
2880  * SPI controllers use board specific (often SOC specific) bus numbers,
2881  * and board-specific addressing for SPI devices combines those numbers
2882  * with chip select numbers.  Since SPI does not directly support dynamic
2883  * device identification, boards need configuration tables telling which
2884  * chip is at which address.
2885  *
2886  * This must be called from context that can sleep.  It returns zero on
2887  * success, else a negative error code (dropping the controller's refcount).
2888  * After a successful return, the caller is responsible for calling
2889  * spi_unregister_controller().
2890  *
2891  * Return: zero on success, else a negative error code.
2892  */
2893 int spi_register_controller(struct spi_controller *ctlr)
2894 {
2895 	struct device		*dev = ctlr->dev.parent;
2896 	struct boardinfo	*bi;
2897 	int			status;
2898 	int			id, first_dynamic;
2899 
2900 	if (!dev)
2901 		return -ENODEV;
2902 
2903 	/*
2904 	 * Make sure all necessary hooks are implemented before registering
2905 	 * the SPI controller.
2906 	 */
2907 	status = spi_controller_check_ops(ctlr);
2908 	if (status)
2909 		return status;
2910 
2911 	if (ctlr->bus_num >= 0) {
2912 		/* devices with a fixed bus num must check-in with the num */
2913 		mutex_lock(&board_lock);
2914 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2915 			ctlr->bus_num + 1, GFP_KERNEL);
2916 		mutex_unlock(&board_lock);
2917 		if (WARN(id < 0, "couldn't get idr"))
2918 			return id == -ENOSPC ? -EBUSY : id;
2919 		ctlr->bus_num = id;
2920 	} else if (ctlr->dev.of_node) {
2921 		/* allocate dynamic bus number using Linux idr */
2922 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2923 		if (id >= 0) {
2924 			ctlr->bus_num = id;
2925 			mutex_lock(&board_lock);
2926 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2927 				       ctlr->bus_num + 1, GFP_KERNEL);
2928 			mutex_unlock(&board_lock);
2929 			if (WARN(id < 0, "couldn't get idr"))
2930 				return id == -ENOSPC ? -EBUSY : id;
2931 		}
2932 	}
2933 	if (ctlr->bus_num < 0) {
2934 		first_dynamic = of_alias_get_highest_id("spi");
2935 		if (first_dynamic < 0)
2936 			first_dynamic = 0;
2937 		else
2938 			first_dynamic++;
2939 
2940 		mutex_lock(&board_lock);
2941 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2942 			       0, GFP_KERNEL);
2943 		mutex_unlock(&board_lock);
2944 		if (WARN(id < 0, "couldn't get idr"))
2945 			return id;
2946 		ctlr->bus_num = id;
2947 	}
2948 	ctlr->bus_lock_flag = 0;
2949 	init_completion(&ctlr->xfer_completion);
2950 	if (!ctlr->max_dma_len)
2951 		ctlr->max_dma_len = INT_MAX;
2952 
2953 	/* register the device, then userspace will see it.
2954 	 * registration fails if the bus ID is in use.
2955 	 */
2956 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2957 
2958 	if (!spi_controller_is_slave(ctlr)) {
2959 		if (ctlr->use_gpio_descriptors) {
2960 			status = spi_get_gpio_descs(ctlr);
2961 			if (status)
2962 				goto free_bus_id;
2963 			/*
2964 			 * A controller using GPIO descriptors always
2965 			 * supports SPI_CS_HIGH if need be.
2966 			 */
2967 			ctlr->mode_bits |= SPI_CS_HIGH;
2968 		} else {
2969 			/* Legacy code path for GPIOs from DT */
2970 			status = of_spi_get_gpio_numbers(ctlr);
2971 			if (status)
2972 				goto free_bus_id;
2973 		}
2974 	}
2975 
2976 	/*
2977 	 * Even if it's just one always-selected device, there must
2978 	 * be at least one chipselect.
2979 	 */
2980 	if (!ctlr->num_chipselect) {
2981 		status = -EINVAL;
2982 		goto free_bus_id;
2983 	}
2984 
2985 	status = device_add(&ctlr->dev);
2986 	if (status < 0)
2987 		goto free_bus_id;
2988 	dev_dbg(dev, "registered %s %s\n",
2989 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2990 			dev_name(&ctlr->dev));
2991 
2992 	/*
2993 	 * If we're using a queued driver, start the queue. Note that we don't
2994 	 * need the queueing logic if the driver is only supporting high-level
2995 	 * memory operations.
2996 	 */
2997 	if (ctlr->transfer) {
2998 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2999 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3000 		status = spi_controller_initialize_queue(ctlr);
3001 		if (status) {
3002 			device_del(&ctlr->dev);
3003 			goto free_bus_id;
3004 		}
3005 	}
3006 	/* add statistics */
3007 	spin_lock_init(&ctlr->statistics.lock);
3008 
3009 	mutex_lock(&board_lock);
3010 	list_add_tail(&ctlr->list, &spi_controller_list);
3011 	list_for_each_entry(bi, &board_list, list)
3012 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3013 	mutex_unlock(&board_lock);
3014 
3015 	/* Register devices from the device tree and ACPI */
3016 	of_register_spi_devices(ctlr);
3017 	acpi_register_spi_devices(ctlr);
3018 	return status;
3019 
3020 free_bus_id:
3021 	mutex_lock(&board_lock);
3022 	idr_remove(&spi_master_idr, ctlr->bus_num);
3023 	mutex_unlock(&board_lock);
3024 	return status;
3025 }
3026 EXPORT_SYMBOL_GPL(spi_register_controller);
3027 
3028 static void devm_spi_unregister(void *ctlr)
3029 {
3030 	spi_unregister_controller(ctlr);
3031 }
3032 
3033 /**
3034  * devm_spi_register_controller - register managed SPI master or slave
3035  *	controller
3036  * @dev:    device managing SPI controller
3037  * @ctlr: initialized controller, originally from spi_alloc_master() or
3038  *	spi_alloc_slave()
3039  * Context: can sleep
3040  *
3041  * Register a SPI device as with spi_register_controller() which will
3042  * automatically be unregistered and freed.
3043  *
3044  * Return: zero on success, else a negative error code.
3045  */
3046 int devm_spi_register_controller(struct device *dev,
3047 				 struct spi_controller *ctlr)
3048 {
3049 	int ret;
3050 
3051 	ret = spi_register_controller(ctlr);
3052 	if (ret)
3053 		return ret;
3054 
3055 	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
3056 }
3057 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3058 
3059 static int __unregister(struct device *dev, void *null)
3060 {
3061 	spi_unregister_device(to_spi_device(dev));
3062 	return 0;
3063 }
3064 
3065 /**
3066  * spi_unregister_controller - unregister SPI master or slave controller
3067  * @ctlr: the controller being unregistered
3068  * Context: can sleep
3069  *
3070  * This call is used only by SPI controller drivers, which are the
3071  * only ones directly touching chip registers.
3072  *
3073  * This must be called from context that can sleep.
3074  *
3075  * Note that this function also drops a reference to the controller.
3076  */
3077 void spi_unregister_controller(struct spi_controller *ctlr)
3078 {
3079 	struct spi_controller *found;
3080 	int id = ctlr->bus_num;
3081 
3082 	/* Prevent addition of new devices, unregister existing ones */
3083 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3084 		mutex_lock(&ctlr->add_lock);
3085 
3086 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3087 
3088 	/* First make sure that this controller was ever added */
3089 	mutex_lock(&board_lock);
3090 	found = idr_find(&spi_master_idr, id);
3091 	mutex_unlock(&board_lock);
3092 	if (ctlr->queued) {
3093 		if (spi_destroy_queue(ctlr))
3094 			dev_err(&ctlr->dev, "queue remove failed\n");
3095 	}
3096 	mutex_lock(&board_lock);
3097 	list_del(&ctlr->list);
3098 	mutex_unlock(&board_lock);
3099 
3100 	device_del(&ctlr->dev);
3101 
3102 	/* free bus id */
3103 	mutex_lock(&board_lock);
3104 	if (found == ctlr)
3105 		idr_remove(&spi_master_idr, id);
3106 	mutex_unlock(&board_lock);
3107 
3108 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3109 		mutex_unlock(&ctlr->add_lock);
3110 
3111 	/* Release the last reference on the controller if its driver
3112 	 * has not yet been converted to devm_spi_alloc_master/slave().
3113 	 */
3114 	if (!ctlr->devm_allocated)
3115 		put_device(&ctlr->dev);
3116 }
3117 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3118 
3119 int spi_controller_suspend(struct spi_controller *ctlr)
3120 {
3121 	int ret;
3122 
3123 	/* Basically no-ops for non-queued controllers */
3124 	if (!ctlr->queued)
3125 		return 0;
3126 
3127 	ret = spi_stop_queue(ctlr);
3128 	if (ret)
3129 		dev_err(&ctlr->dev, "queue stop failed\n");
3130 
3131 	return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3134 
3135 int spi_controller_resume(struct spi_controller *ctlr)
3136 {
3137 	int ret;
3138 
3139 	if (!ctlr->queued)
3140 		return 0;
3141 
3142 	ret = spi_start_queue(ctlr);
3143 	if (ret)
3144 		dev_err(&ctlr->dev, "queue restart failed\n");
3145 
3146 	return ret;
3147 }
3148 EXPORT_SYMBOL_GPL(spi_controller_resume);
3149 
3150 /*-------------------------------------------------------------------------*/
3151 
3152 /* Core methods for spi_message alterations */
3153 
3154 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3155 					    struct spi_message *msg,
3156 					    void *res)
3157 {
3158 	struct spi_replaced_transfers *rxfer = res;
3159 	size_t i;
3160 
3161 	/* call extra callback if requested */
3162 	if (rxfer->release)
3163 		rxfer->release(ctlr, msg, res);
3164 
3165 	/* insert replaced transfers back into the message */
3166 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3167 
3168 	/* remove the formerly inserted entries */
3169 	for (i = 0; i < rxfer->inserted; i++)
3170 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3171 }
3172 
3173 /**
3174  * spi_replace_transfers - replace transfers with several transfers
3175  *                         and register change with spi_message.resources
3176  * @msg:           the spi_message we work upon
3177  * @xfer_first:    the first spi_transfer we want to replace
3178  * @remove:        number of transfers to remove
3179  * @insert:        the number of transfers we want to insert instead
3180  * @release:       extra release code necessary in some circumstances
3181  * @extradatasize: extra data to allocate (with alignment guarantees
3182  *                 of struct @spi_transfer)
3183  * @gfp:           gfp flags
3184  *
3185  * Returns: pointer to @spi_replaced_transfers,
3186  *          PTR_ERR(...) in case of errors.
3187  */
3188 static struct spi_replaced_transfers *spi_replace_transfers(
3189 	struct spi_message *msg,
3190 	struct spi_transfer *xfer_first,
3191 	size_t remove,
3192 	size_t insert,
3193 	spi_replaced_release_t release,
3194 	size_t extradatasize,
3195 	gfp_t gfp)
3196 {
3197 	struct spi_replaced_transfers *rxfer;
3198 	struct spi_transfer *xfer;
3199 	size_t i;
3200 
3201 	/* allocate the structure using spi_res */
3202 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3203 			      struct_size(rxfer, inserted_transfers, insert)
3204 			      + extradatasize,
3205 			      gfp);
3206 	if (!rxfer)
3207 		return ERR_PTR(-ENOMEM);
3208 
3209 	/* the release code to invoke before running the generic release */
3210 	rxfer->release = release;
3211 
3212 	/* assign extradata */
3213 	if (extradatasize)
3214 		rxfer->extradata =
3215 			&rxfer->inserted_transfers[insert];
3216 
3217 	/* init the replaced_transfers list */
3218 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3219 
3220 	/* assign the list_entry after which we should reinsert
3221 	 * the @replaced_transfers - it may be spi_message.messages!
3222 	 */
3223 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3224 
3225 	/* remove the requested number of transfers */
3226 	for (i = 0; i < remove; i++) {
3227 		/* if the entry after replaced_after it is msg->transfers
3228 		 * then we have been requested to remove more transfers
3229 		 * than are in the list
3230 		 */
3231 		if (rxfer->replaced_after->next == &msg->transfers) {
3232 			dev_err(&msg->spi->dev,
3233 				"requested to remove more spi_transfers than are available\n");
3234 			/* insert replaced transfers back into the message */
3235 			list_splice(&rxfer->replaced_transfers,
3236 				    rxfer->replaced_after);
3237 
3238 			/* free the spi_replace_transfer structure */
3239 			spi_res_free(rxfer);
3240 
3241 			/* and return with an error */
3242 			return ERR_PTR(-EINVAL);
3243 		}
3244 
3245 		/* remove the entry after replaced_after from list of
3246 		 * transfers and add it to list of replaced_transfers
3247 		 */
3248 		list_move_tail(rxfer->replaced_after->next,
3249 			       &rxfer->replaced_transfers);
3250 	}
3251 
3252 	/* create copy of the given xfer with identical settings
3253 	 * based on the first transfer to get removed
3254 	 */
3255 	for (i = 0; i < insert; i++) {
3256 		/* we need to run in reverse order */
3257 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3258 
3259 		/* copy all spi_transfer data */
3260 		memcpy(xfer, xfer_first, sizeof(*xfer));
3261 
3262 		/* add to list */
3263 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3264 
3265 		/* clear cs_change and delay for all but the last */
3266 		if (i) {
3267 			xfer->cs_change = false;
3268 			xfer->delay.value = 0;
3269 		}
3270 	}
3271 
3272 	/* set up inserted */
3273 	rxfer->inserted = insert;
3274 
3275 	/* and register it with spi_res/spi_message */
3276 	spi_res_add(msg, rxfer);
3277 
3278 	return rxfer;
3279 }
3280 
3281 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3282 					struct spi_message *msg,
3283 					struct spi_transfer **xferp,
3284 					size_t maxsize,
3285 					gfp_t gfp)
3286 {
3287 	struct spi_transfer *xfer = *xferp, *xfers;
3288 	struct spi_replaced_transfers *srt;
3289 	size_t offset;
3290 	size_t count, i;
3291 
3292 	/* calculate how many we have to replace */
3293 	count = DIV_ROUND_UP(xfer->len, maxsize);
3294 
3295 	/* create replacement */
3296 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3297 	if (IS_ERR(srt))
3298 		return PTR_ERR(srt);
3299 	xfers = srt->inserted_transfers;
3300 
3301 	/* now handle each of those newly inserted spi_transfers
3302 	 * note that the replacements spi_transfers all are preset
3303 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3304 	 * are all identical (as well as most others)
3305 	 * so we just have to fix up len and the pointers.
3306 	 *
3307 	 * this also includes support for the depreciated
3308 	 * spi_message.is_dma_mapped interface
3309 	 */
3310 
3311 	/* the first transfer just needs the length modified, so we
3312 	 * run it outside the loop
3313 	 */
3314 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3315 
3316 	/* all the others need rx_buf/tx_buf also set */
3317 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3318 		/* update rx_buf, tx_buf and dma */
3319 		if (xfers[i].rx_buf)
3320 			xfers[i].rx_buf += offset;
3321 		if (xfers[i].rx_dma)
3322 			xfers[i].rx_dma += offset;
3323 		if (xfers[i].tx_buf)
3324 			xfers[i].tx_buf += offset;
3325 		if (xfers[i].tx_dma)
3326 			xfers[i].tx_dma += offset;
3327 
3328 		/* update length */
3329 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3330 	}
3331 
3332 	/* we set up xferp to the last entry we have inserted,
3333 	 * so that we skip those already split transfers
3334 	 */
3335 	*xferp = &xfers[count - 1];
3336 
3337 	/* increment statistics counters */
3338 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3339 				       transfers_split_maxsize);
3340 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3341 				       transfers_split_maxsize);
3342 
3343 	return 0;
3344 }
3345 
3346 /**
3347  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3348  *                               when an individual transfer exceeds a
3349  *                               certain size
3350  * @ctlr:    the @spi_controller for this transfer
3351  * @msg:   the @spi_message to transform
3352  * @maxsize:  the maximum when to apply this
3353  * @gfp: GFP allocation flags
3354  *
3355  * Return: status of transformation
3356  */
3357 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3358 				struct spi_message *msg,
3359 				size_t maxsize,
3360 				gfp_t gfp)
3361 {
3362 	struct spi_transfer *xfer;
3363 	int ret;
3364 
3365 	/* iterate over the transfer_list,
3366 	 * but note that xfer is advanced to the last transfer inserted
3367 	 * to avoid checking sizes again unnecessarily (also xfer does
3368 	 * potentiall belong to a different list by the time the
3369 	 * replacement has happened
3370 	 */
3371 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3372 		if (xfer->len > maxsize) {
3373 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3374 							   maxsize, gfp);
3375 			if (ret)
3376 				return ret;
3377 		}
3378 	}
3379 
3380 	return 0;
3381 }
3382 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3383 
3384 /*-------------------------------------------------------------------------*/
3385 
3386 /* Core methods for SPI controller protocol drivers.  Some of the
3387  * other core methods are currently defined as inline functions.
3388  */
3389 
3390 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3391 					u8 bits_per_word)
3392 {
3393 	if (ctlr->bits_per_word_mask) {
3394 		/* Only 32 bits fit in the mask */
3395 		if (bits_per_word > 32)
3396 			return -EINVAL;
3397 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3398 			return -EINVAL;
3399 	}
3400 
3401 	return 0;
3402 }
3403 
3404 /**
3405  * spi_setup - setup SPI mode and clock rate
3406  * @spi: the device whose settings are being modified
3407  * Context: can sleep, and no requests are queued to the device
3408  *
3409  * SPI protocol drivers may need to update the transfer mode if the
3410  * device doesn't work with its default.  They may likewise need
3411  * to update clock rates or word sizes from initial values.  This function
3412  * changes those settings, and must be called from a context that can sleep.
3413  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3414  * effect the next time the device is selected and data is transferred to
3415  * or from it.  When this function returns, the spi device is deselected.
3416  *
3417  * Note that this call will fail if the protocol driver specifies an option
3418  * that the underlying controller or its driver does not support.  For
3419  * example, not all hardware supports wire transfers using nine bit words,
3420  * LSB-first wire encoding, or active-high chipselects.
3421  *
3422  * Return: zero on success, else a negative error code.
3423  */
3424 int spi_setup(struct spi_device *spi)
3425 {
3426 	unsigned	bad_bits, ugly_bits;
3427 	int		status;
3428 
3429 	/*
3430 	 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3431 	 * are set at the same time
3432 	 */
3433 	if ((hweight_long(spi->mode &
3434 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3435 	    (hweight_long(spi->mode &
3436 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3437 		dev_err(&spi->dev,
3438 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3439 		return -EINVAL;
3440 	}
3441 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3442 	 */
3443 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3444 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3445 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3446 		return -EINVAL;
3447 	/* help drivers fail *cleanly* when they need options
3448 	 * that aren't supported with their current controller
3449 	 * SPI_CS_WORD has a fallback software implementation,
3450 	 * so it is ignored here.
3451 	 */
3452 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3453 				 SPI_NO_TX | SPI_NO_RX);
3454 	/* nothing prevents from working with active-high CS in case if it
3455 	 * is driven by GPIO.
3456 	 */
3457 	if (gpio_is_valid(spi->cs_gpio))
3458 		bad_bits &= ~SPI_CS_HIGH;
3459 	ugly_bits = bad_bits &
3460 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3461 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3462 	if (ugly_bits) {
3463 		dev_warn(&spi->dev,
3464 			 "setup: ignoring unsupported mode bits %x\n",
3465 			 ugly_bits);
3466 		spi->mode &= ~ugly_bits;
3467 		bad_bits &= ~ugly_bits;
3468 	}
3469 	if (bad_bits) {
3470 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3471 			bad_bits);
3472 		return -EINVAL;
3473 	}
3474 
3475 	if (!spi->bits_per_word)
3476 		spi->bits_per_word = 8;
3477 
3478 	status = __spi_validate_bits_per_word(spi->controller,
3479 					      spi->bits_per_word);
3480 	if (status)
3481 		return status;
3482 
3483 	if (spi->controller->max_speed_hz &&
3484 	    (!spi->max_speed_hz ||
3485 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3486 		spi->max_speed_hz = spi->controller->max_speed_hz;
3487 
3488 	mutex_lock(&spi->controller->io_mutex);
3489 
3490 	if (spi->controller->setup) {
3491 		status = spi->controller->setup(spi);
3492 		if (status) {
3493 			mutex_unlock(&spi->controller->io_mutex);
3494 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3495 				status);
3496 			return status;
3497 		}
3498 	}
3499 
3500 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3501 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3502 		if (status < 0) {
3503 			mutex_unlock(&spi->controller->io_mutex);
3504 			pm_runtime_put_noidle(spi->controller->dev.parent);
3505 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3506 				status);
3507 			return status;
3508 		}
3509 
3510 		/*
3511 		 * We do not want to return positive value from pm_runtime_get,
3512 		 * there are many instances of devices calling spi_setup() and
3513 		 * checking for a non-zero return value instead of a negative
3514 		 * return value.
3515 		 */
3516 		status = 0;
3517 
3518 		spi_set_cs(spi, false, true);
3519 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3520 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3521 	} else {
3522 		spi_set_cs(spi, false, true);
3523 	}
3524 
3525 	mutex_unlock(&spi->controller->io_mutex);
3526 
3527 	if (spi->rt && !spi->controller->rt) {
3528 		spi->controller->rt = true;
3529 		spi_set_thread_rt(spi->controller);
3530 	}
3531 
3532 	trace_spi_setup(spi, status);
3533 
3534 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3535 			spi->mode & SPI_MODE_X_MASK,
3536 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3537 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3538 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3539 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3540 			spi->bits_per_word, spi->max_speed_hz,
3541 			status);
3542 
3543 	return status;
3544 }
3545 EXPORT_SYMBOL_GPL(spi_setup);
3546 
3547 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3548 				       struct spi_device *spi)
3549 {
3550 	int delay1, delay2;
3551 
3552 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3553 	if (delay1 < 0)
3554 		return delay1;
3555 
3556 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3557 	if (delay2 < 0)
3558 		return delay2;
3559 
3560 	if (delay1 < delay2)
3561 		memcpy(&xfer->word_delay, &spi->word_delay,
3562 		       sizeof(xfer->word_delay));
3563 
3564 	return 0;
3565 }
3566 
3567 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3568 {
3569 	struct spi_controller *ctlr = spi->controller;
3570 	struct spi_transfer *xfer;
3571 	int w_size;
3572 
3573 	if (list_empty(&message->transfers))
3574 		return -EINVAL;
3575 
3576 	/* If an SPI controller does not support toggling the CS line on each
3577 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3578 	 * for the CS line, we can emulate the CS-per-word hardware function by
3579 	 * splitting transfers into one-word transfers and ensuring that
3580 	 * cs_change is set for each transfer.
3581 	 */
3582 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3583 					  spi->cs_gpiod ||
3584 					  gpio_is_valid(spi->cs_gpio))) {
3585 		size_t maxsize;
3586 		int ret;
3587 
3588 		maxsize = (spi->bits_per_word + 7) / 8;
3589 
3590 		/* spi_split_transfers_maxsize() requires message->spi */
3591 		message->spi = spi;
3592 
3593 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3594 						  GFP_KERNEL);
3595 		if (ret)
3596 			return ret;
3597 
3598 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3599 			/* don't change cs_change on the last entry in the list */
3600 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3601 				break;
3602 			xfer->cs_change = 1;
3603 		}
3604 	}
3605 
3606 	/* Half-duplex links include original MicroWire, and ones with
3607 	 * only one data pin like SPI_3WIRE (switches direction) or where
3608 	 * either MOSI or MISO is missing.  They can also be caused by
3609 	 * software limitations.
3610 	 */
3611 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3612 	    (spi->mode & SPI_3WIRE)) {
3613 		unsigned flags = ctlr->flags;
3614 
3615 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3616 			if (xfer->rx_buf && xfer->tx_buf)
3617 				return -EINVAL;
3618 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3619 				return -EINVAL;
3620 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3621 				return -EINVAL;
3622 		}
3623 	}
3624 
3625 	/**
3626 	 * Set transfer bits_per_word and max speed as spi device default if
3627 	 * it is not set for this transfer.
3628 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3629 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3630 	 * Ensure transfer word_delay is at least as long as that required by
3631 	 * device itself.
3632 	 */
3633 	message->frame_length = 0;
3634 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3635 		xfer->effective_speed_hz = 0;
3636 		message->frame_length += xfer->len;
3637 		if (!xfer->bits_per_word)
3638 			xfer->bits_per_word = spi->bits_per_word;
3639 
3640 		if (!xfer->speed_hz)
3641 			xfer->speed_hz = spi->max_speed_hz;
3642 
3643 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3644 			xfer->speed_hz = ctlr->max_speed_hz;
3645 
3646 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3647 			return -EINVAL;
3648 
3649 		/*
3650 		 * SPI transfer length should be multiple of SPI word size
3651 		 * where SPI word size should be power-of-two multiple
3652 		 */
3653 		if (xfer->bits_per_word <= 8)
3654 			w_size = 1;
3655 		else if (xfer->bits_per_word <= 16)
3656 			w_size = 2;
3657 		else
3658 			w_size = 4;
3659 
3660 		/* No partial transfers accepted */
3661 		if (xfer->len % w_size)
3662 			return -EINVAL;
3663 
3664 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3665 		    xfer->speed_hz < ctlr->min_speed_hz)
3666 			return -EINVAL;
3667 
3668 		if (xfer->tx_buf && !xfer->tx_nbits)
3669 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3670 		if (xfer->rx_buf && !xfer->rx_nbits)
3671 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3672 		/* check transfer tx/rx_nbits:
3673 		 * 1. check the value matches one of single, dual and quad
3674 		 * 2. check tx/rx_nbits match the mode in spi_device
3675 		 */
3676 		if (xfer->tx_buf) {
3677 			if (spi->mode & SPI_NO_TX)
3678 				return -EINVAL;
3679 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3680 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3681 				xfer->tx_nbits != SPI_NBITS_QUAD)
3682 				return -EINVAL;
3683 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3684 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3685 				return -EINVAL;
3686 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3687 				!(spi->mode & SPI_TX_QUAD))
3688 				return -EINVAL;
3689 		}
3690 		/* check transfer rx_nbits */
3691 		if (xfer->rx_buf) {
3692 			if (spi->mode & SPI_NO_RX)
3693 				return -EINVAL;
3694 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3695 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3696 				xfer->rx_nbits != SPI_NBITS_QUAD)
3697 				return -EINVAL;
3698 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3699 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3700 				return -EINVAL;
3701 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3702 				!(spi->mode & SPI_RX_QUAD))
3703 				return -EINVAL;
3704 		}
3705 
3706 		if (_spi_xfer_word_delay_update(xfer, spi))
3707 			return -EINVAL;
3708 	}
3709 
3710 	message->status = -EINPROGRESS;
3711 
3712 	return 0;
3713 }
3714 
3715 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3716 {
3717 	struct spi_controller *ctlr = spi->controller;
3718 	struct spi_transfer *xfer;
3719 
3720 	/*
3721 	 * Some controllers do not support doing regular SPI transfers. Return
3722 	 * ENOTSUPP when this is the case.
3723 	 */
3724 	if (!ctlr->transfer)
3725 		return -ENOTSUPP;
3726 
3727 	message->spi = spi;
3728 
3729 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3730 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3731 
3732 	trace_spi_message_submit(message);
3733 
3734 	if (!ctlr->ptp_sts_supported) {
3735 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3736 			xfer->ptp_sts_word_pre = 0;
3737 			ptp_read_system_prets(xfer->ptp_sts);
3738 		}
3739 	}
3740 
3741 	return ctlr->transfer(spi, message);
3742 }
3743 
3744 /**
3745  * spi_async - asynchronous SPI transfer
3746  * @spi: device with which data will be exchanged
3747  * @message: describes the data transfers, including completion callback
3748  * Context: any (irqs may be blocked, etc)
3749  *
3750  * This call may be used in_irq and other contexts which can't sleep,
3751  * as well as from task contexts which can sleep.
3752  *
3753  * The completion callback is invoked in a context which can't sleep.
3754  * Before that invocation, the value of message->status is undefined.
3755  * When the callback is issued, message->status holds either zero (to
3756  * indicate complete success) or a negative error code.  After that
3757  * callback returns, the driver which issued the transfer request may
3758  * deallocate the associated memory; it's no longer in use by any SPI
3759  * core or controller driver code.
3760  *
3761  * Note that although all messages to a spi_device are handled in
3762  * FIFO order, messages may go to different devices in other orders.
3763  * Some device might be higher priority, or have various "hard" access
3764  * time requirements, for example.
3765  *
3766  * On detection of any fault during the transfer, processing of
3767  * the entire message is aborted, and the device is deselected.
3768  * Until returning from the associated message completion callback,
3769  * no other spi_message queued to that device will be processed.
3770  * (This rule applies equally to all the synchronous transfer calls,
3771  * which are wrappers around this core asynchronous primitive.)
3772  *
3773  * Return: zero on success, else a negative error code.
3774  */
3775 int spi_async(struct spi_device *spi, struct spi_message *message)
3776 {
3777 	struct spi_controller *ctlr = spi->controller;
3778 	int ret;
3779 	unsigned long flags;
3780 
3781 	ret = __spi_validate(spi, message);
3782 	if (ret != 0)
3783 		return ret;
3784 
3785 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3786 
3787 	if (ctlr->bus_lock_flag)
3788 		ret = -EBUSY;
3789 	else
3790 		ret = __spi_async(spi, message);
3791 
3792 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3793 
3794 	return ret;
3795 }
3796 EXPORT_SYMBOL_GPL(spi_async);
3797 
3798 /**
3799  * spi_async_locked - version of spi_async with exclusive bus usage
3800  * @spi: device with which data will be exchanged
3801  * @message: describes the data transfers, including completion callback
3802  * Context: any (irqs may be blocked, etc)
3803  *
3804  * This call may be used in_irq and other contexts which can't sleep,
3805  * as well as from task contexts which can sleep.
3806  *
3807  * The completion callback is invoked in a context which can't sleep.
3808  * Before that invocation, the value of message->status is undefined.
3809  * When the callback is issued, message->status holds either zero (to
3810  * indicate complete success) or a negative error code.  After that
3811  * callback returns, the driver which issued the transfer request may
3812  * deallocate the associated memory; it's no longer in use by any SPI
3813  * core or controller driver code.
3814  *
3815  * Note that although all messages to a spi_device are handled in
3816  * FIFO order, messages may go to different devices in other orders.
3817  * Some device might be higher priority, or have various "hard" access
3818  * time requirements, for example.
3819  *
3820  * On detection of any fault during the transfer, processing of
3821  * the entire message is aborted, and the device is deselected.
3822  * Until returning from the associated message completion callback,
3823  * no other spi_message queued to that device will be processed.
3824  * (This rule applies equally to all the synchronous transfer calls,
3825  * which are wrappers around this core asynchronous primitive.)
3826  *
3827  * Return: zero on success, else a negative error code.
3828  */
3829 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3830 {
3831 	struct spi_controller *ctlr = spi->controller;
3832 	int ret;
3833 	unsigned long flags;
3834 
3835 	ret = __spi_validate(spi, message);
3836 	if (ret != 0)
3837 		return ret;
3838 
3839 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3840 
3841 	ret = __spi_async(spi, message);
3842 
3843 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3844 
3845 	return ret;
3846 
3847 }
3848 
3849 /*-------------------------------------------------------------------------*/
3850 
3851 /* Utility methods for SPI protocol drivers, layered on
3852  * top of the core.  Some other utility methods are defined as
3853  * inline functions.
3854  */
3855 
3856 static void spi_complete(void *arg)
3857 {
3858 	complete(arg);
3859 }
3860 
3861 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3862 {
3863 	DECLARE_COMPLETION_ONSTACK(done);
3864 	int status;
3865 	struct spi_controller *ctlr = spi->controller;
3866 	unsigned long flags;
3867 
3868 	status = __spi_validate(spi, message);
3869 	if (status != 0)
3870 		return status;
3871 
3872 	message->complete = spi_complete;
3873 	message->context = &done;
3874 	message->spi = spi;
3875 
3876 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3877 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3878 
3879 	/* If we're not using the legacy transfer method then we will
3880 	 * try to transfer in the calling context so special case.
3881 	 * This code would be less tricky if we could remove the
3882 	 * support for driver implemented message queues.
3883 	 */
3884 	if (ctlr->transfer == spi_queued_transfer) {
3885 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3886 
3887 		trace_spi_message_submit(message);
3888 
3889 		status = __spi_queued_transfer(spi, message, false);
3890 
3891 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3892 	} else {
3893 		status = spi_async_locked(spi, message);
3894 	}
3895 
3896 	if (status == 0) {
3897 		/* Push out the messages in the calling context if we
3898 		 * can.
3899 		 */
3900 		if (ctlr->transfer == spi_queued_transfer) {
3901 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3902 						       spi_sync_immediate);
3903 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3904 						       spi_sync_immediate);
3905 			__spi_pump_messages(ctlr, false);
3906 		}
3907 
3908 		wait_for_completion(&done);
3909 		status = message->status;
3910 	}
3911 	message->context = NULL;
3912 	return status;
3913 }
3914 
3915 /**
3916  * spi_sync - blocking/synchronous SPI data transfers
3917  * @spi: device with which data will be exchanged
3918  * @message: describes the data transfers
3919  * Context: can sleep
3920  *
3921  * This call may only be used from a context that may sleep.  The sleep
3922  * is non-interruptible, and has no timeout.  Low-overhead controller
3923  * drivers may DMA directly into and out of the message buffers.
3924  *
3925  * Note that the SPI device's chip select is active during the message,
3926  * and then is normally disabled between messages.  Drivers for some
3927  * frequently-used devices may want to minimize costs of selecting a chip,
3928  * by leaving it selected in anticipation that the next message will go
3929  * to the same chip.  (That may increase power usage.)
3930  *
3931  * Also, the caller is guaranteeing that the memory associated with the
3932  * message will not be freed before this call returns.
3933  *
3934  * Return: zero on success, else a negative error code.
3935  */
3936 int spi_sync(struct spi_device *spi, struct spi_message *message)
3937 {
3938 	int ret;
3939 
3940 	mutex_lock(&spi->controller->bus_lock_mutex);
3941 	ret = __spi_sync(spi, message);
3942 	mutex_unlock(&spi->controller->bus_lock_mutex);
3943 
3944 	return ret;
3945 }
3946 EXPORT_SYMBOL_GPL(spi_sync);
3947 
3948 /**
3949  * spi_sync_locked - version of spi_sync with exclusive bus usage
3950  * @spi: device with which data will be exchanged
3951  * @message: describes the data transfers
3952  * Context: can sleep
3953  *
3954  * This call may only be used from a context that may sleep.  The sleep
3955  * is non-interruptible, and has no timeout.  Low-overhead controller
3956  * drivers may DMA directly into and out of the message buffers.
3957  *
3958  * This call should be used by drivers that require exclusive access to the
3959  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3960  * be released by a spi_bus_unlock call when the exclusive access is over.
3961  *
3962  * Return: zero on success, else a negative error code.
3963  */
3964 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3965 {
3966 	return __spi_sync(spi, message);
3967 }
3968 EXPORT_SYMBOL_GPL(spi_sync_locked);
3969 
3970 /**
3971  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3972  * @ctlr: SPI bus master that should be locked for exclusive bus access
3973  * Context: can sleep
3974  *
3975  * This call may only be used from a context that may sleep.  The sleep
3976  * is non-interruptible, and has no timeout.
3977  *
3978  * This call should be used by drivers that require exclusive access to the
3979  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3980  * exclusive access is over. Data transfer must be done by spi_sync_locked
3981  * and spi_async_locked calls when the SPI bus lock is held.
3982  *
3983  * Return: always zero.
3984  */
3985 int spi_bus_lock(struct spi_controller *ctlr)
3986 {
3987 	unsigned long flags;
3988 
3989 	mutex_lock(&ctlr->bus_lock_mutex);
3990 
3991 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3992 	ctlr->bus_lock_flag = 1;
3993 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3994 
3995 	/* mutex remains locked until spi_bus_unlock is called */
3996 
3997 	return 0;
3998 }
3999 EXPORT_SYMBOL_GPL(spi_bus_lock);
4000 
4001 /**
4002  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4003  * @ctlr: SPI bus master that was locked for exclusive bus access
4004  * Context: can sleep
4005  *
4006  * This call may only be used from a context that may sleep.  The sleep
4007  * is non-interruptible, and has no timeout.
4008  *
4009  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4010  * call.
4011  *
4012  * Return: always zero.
4013  */
4014 int spi_bus_unlock(struct spi_controller *ctlr)
4015 {
4016 	ctlr->bus_lock_flag = 0;
4017 
4018 	mutex_unlock(&ctlr->bus_lock_mutex);
4019 
4020 	return 0;
4021 }
4022 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4023 
4024 /* portable code must never pass more than 32 bytes */
4025 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4026 
4027 static u8	*buf;
4028 
4029 /**
4030  * spi_write_then_read - SPI synchronous write followed by read
4031  * @spi: device with which data will be exchanged
4032  * @txbuf: data to be written (need not be dma-safe)
4033  * @n_tx: size of txbuf, in bytes
4034  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4035  * @n_rx: size of rxbuf, in bytes
4036  * Context: can sleep
4037  *
4038  * This performs a half duplex MicroWire style transaction with the
4039  * device, sending txbuf and then reading rxbuf.  The return value
4040  * is zero for success, else a negative errno status code.
4041  * This call may only be used from a context that may sleep.
4042  *
4043  * Parameters to this routine are always copied using a small buffer.
4044  * Performance-sensitive or bulk transfer code should instead use
4045  * spi_{async,sync}() calls with dma-safe buffers.
4046  *
4047  * Return: zero on success, else a negative error code.
4048  */
4049 int spi_write_then_read(struct spi_device *spi,
4050 		const void *txbuf, unsigned n_tx,
4051 		void *rxbuf, unsigned n_rx)
4052 {
4053 	static DEFINE_MUTEX(lock);
4054 
4055 	int			status;
4056 	struct spi_message	message;
4057 	struct spi_transfer	x[2];
4058 	u8			*local_buf;
4059 
4060 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
4061 	 * copying here, (as a pure convenience thing), but we can
4062 	 * keep heap costs out of the hot path unless someone else is
4063 	 * using the pre-allocated buffer or the transfer is too large.
4064 	 */
4065 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4066 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4067 				    GFP_KERNEL | GFP_DMA);
4068 		if (!local_buf)
4069 			return -ENOMEM;
4070 	} else {
4071 		local_buf = buf;
4072 	}
4073 
4074 	spi_message_init(&message);
4075 	memset(x, 0, sizeof(x));
4076 	if (n_tx) {
4077 		x[0].len = n_tx;
4078 		spi_message_add_tail(&x[0], &message);
4079 	}
4080 	if (n_rx) {
4081 		x[1].len = n_rx;
4082 		spi_message_add_tail(&x[1], &message);
4083 	}
4084 
4085 	memcpy(local_buf, txbuf, n_tx);
4086 	x[0].tx_buf = local_buf;
4087 	x[1].rx_buf = local_buf + n_tx;
4088 
4089 	/* do the i/o */
4090 	status = spi_sync(spi, &message);
4091 	if (status == 0)
4092 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4093 
4094 	if (x[0].tx_buf == buf)
4095 		mutex_unlock(&lock);
4096 	else
4097 		kfree(local_buf);
4098 
4099 	return status;
4100 }
4101 EXPORT_SYMBOL_GPL(spi_write_then_read);
4102 
4103 /*-------------------------------------------------------------------------*/
4104 
4105 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4106 /* must call put_device() when done with returned spi_device device */
4107 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4108 {
4109 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4110 
4111 	return dev ? to_spi_device(dev) : NULL;
4112 }
4113 
4114 /* the spi controllers are not using spi_bus, so we find it with another way */
4115 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4116 {
4117 	struct device *dev;
4118 
4119 	dev = class_find_device_by_of_node(&spi_master_class, node);
4120 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4121 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4122 	if (!dev)
4123 		return NULL;
4124 
4125 	/* reference got in class_find_device */
4126 	return container_of(dev, struct spi_controller, dev);
4127 }
4128 
4129 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4130 			 void *arg)
4131 {
4132 	struct of_reconfig_data *rd = arg;
4133 	struct spi_controller *ctlr;
4134 	struct spi_device *spi;
4135 
4136 	switch (of_reconfig_get_state_change(action, arg)) {
4137 	case OF_RECONFIG_CHANGE_ADD:
4138 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4139 		if (ctlr == NULL)
4140 			return NOTIFY_OK;	/* not for us */
4141 
4142 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4143 			put_device(&ctlr->dev);
4144 			return NOTIFY_OK;
4145 		}
4146 
4147 		spi = of_register_spi_device(ctlr, rd->dn);
4148 		put_device(&ctlr->dev);
4149 
4150 		if (IS_ERR(spi)) {
4151 			pr_err("%s: failed to create for '%pOF'\n",
4152 					__func__, rd->dn);
4153 			of_node_clear_flag(rd->dn, OF_POPULATED);
4154 			return notifier_from_errno(PTR_ERR(spi));
4155 		}
4156 		break;
4157 
4158 	case OF_RECONFIG_CHANGE_REMOVE:
4159 		/* already depopulated? */
4160 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4161 			return NOTIFY_OK;
4162 
4163 		/* find our device by node */
4164 		spi = of_find_spi_device_by_node(rd->dn);
4165 		if (spi == NULL)
4166 			return NOTIFY_OK;	/* no? not meant for us */
4167 
4168 		/* unregister takes one ref away */
4169 		spi_unregister_device(spi);
4170 
4171 		/* and put the reference of the find */
4172 		put_device(&spi->dev);
4173 		break;
4174 	}
4175 
4176 	return NOTIFY_OK;
4177 }
4178 
4179 static struct notifier_block spi_of_notifier = {
4180 	.notifier_call = of_spi_notify,
4181 };
4182 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4183 extern struct notifier_block spi_of_notifier;
4184 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4185 
4186 #if IS_ENABLED(CONFIG_ACPI)
4187 static int spi_acpi_controller_match(struct device *dev, const void *data)
4188 {
4189 	return ACPI_COMPANION(dev->parent) == data;
4190 }
4191 
4192 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4193 {
4194 	struct device *dev;
4195 
4196 	dev = class_find_device(&spi_master_class, NULL, adev,
4197 				spi_acpi_controller_match);
4198 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4199 		dev = class_find_device(&spi_slave_class, NULL, adev,
4200 					spi_acpi_controller_match);
4201 	if (!dev)
4202 		return NULL;
4203 
4204 	return container_of(dev, struct spi_controller, dev);
4205 }
4206 
4207 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4208 {
4209 	struct device *dev;
4210 
4211 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4212 	return to_spi_device(dev);
4213 }
4214 
4215 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4216 			   void *arg)
4217 {
4218 	struct acpi_device *adev = arg;
4219 	struct spi_controller *ctlr;
4220 	struct spi_device *spi;
4221 
4222 	switch (value) {
4223 	case ACPI_RECONFIG_DEVICE_ADD:
4224 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4225 		if (!ctlr)
4226 			break;
4227 
4228 		acpi_register_spi_device(ctlr, adev);
4229 		put_device(&ctlr->dev);
4230 		break;
4231 	case ACPI_RECONFIG_DEVICE_REMOVE:
4232 		if (!acpi_device_enumerated(adev))
4233 			break;
4234 
4235 		spi = acpi_spi_find_device_by_adev(adev);
4236 		if (!spi)
4237 			break;
4238 
4239 		spi_unregister_device(spi);
4240 		put_device(&spi->dev);
4241 		break;
4242 	}
4243 
4244 	return NOTIFY_OK;
4245 }
4246 
4247 static struct notifier_block spi_acpi_notifier = {
4248 	.notifier_call = acpi_spi_notify,
4249 };
4250 #else
4251 extern struct notifier_block spi_acpi_notifier;
4252 #endif
4253 
4254 static int __init spi_init(void)
4255 {
4256 	int	status;
4257 
4258 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4259 	if (!buf) {
4260 		status = -ENOMEM;
4261 		goto err0;
4262 	}
4263 
4264 	status = bus_register(&spi_bus_type);
4265 	if (status < 0)
4266 		goto err1;
4267 
4268 	status = class_register(&spi_master_class);
4269 	if (status < 0)
4270 		goto err2;
4271 
4272 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4273 		status = class_register(&spi_slave_class);
4274 		if (status < 0)
4275 			goto err3;
4276 	}
4277 
4278 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4279 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4280 	if (IS_ENABLED(CONFIG_ACPI))
4281 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4282 
4283 	return 0;
4284 
4285 err3:
4286 	class_unregister(&spi_master_class);
4287 err2:
4288 	bus_unregister(&spi_bus_type);
4289 err1:
4290 	kfree(buf);
4291 	buf = NULL;
4292 err0:
4293 	return status;
4294 }
4295 
4296 /* board_info is normally registered in arch_initcall(),
4297  * but even essential drivers wait till later
4298  *
4299  * REVISIT only boardinfo really needs static linking. the rest (device and
4300  * driver registration) _could_ be dynamically linked (modular) ... costs
4301  * include needing to have boardinfo data structures be much more public.
4302  */
4303 postcore_initcall(spi_init);
4304