1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/cache.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/mutex.h> 25 #include <linux/of_device.h> 26 #include <linux/of_irq.h> 27 #include <linux/clk/clk-conf.h> 28 #include <linux/slab.h> 29 #include <linux/mod_devicetable.h> 30 #include <linux/spi/spi.h> 31 #include <linux/of_gpio.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/pm_domain.h> 34 #include <linux/property.h> 35 #include <linux/export.h> 36 #include <linux/sched/rt.h> 37 #include <uapi/linux/sched/types.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/ioport.h> 41 #include <linux/acpi.h> 42 #include <linux/highmem.h> 43 #include <linux/idr.h> 44 #include <linux/platform_data/x86/apple.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/spi.h> 48 49 static DEFINE_IDR(spi_master_idr); 50 51 static void spidev_release(struct device *dev) 52 { 53 struct spi_device *spi = to_spi_device(dev); 54 55 /* spi controllers may cleanup for released devices */ 56 if (spi->controller->cleanup) 57 spi->controller->cleanup(spi); 58 59 spi_controller_put(spi->controller); 60 kfree(spi); 61 } 62 63 static ssize_t 64 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 65 { 66 const struct spi_device *spi = to_spi_device(dev); 67 int len; 68 69 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 70 if (len != -ENODEV) 71 return len; 72 73 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 74 } 75 static DEVICE_ATTR_RO(modalias); 76 77 #define SPI_STATISTICS_ATTRS(field, file) \ 78 static ssize_t spi_controller_##field##_show(struct device *dev, \ 79 struct device_attribute *attr, \ 80 char *buf) \ 81 { \ 82 struct spi_controller *ctlr = container_of(dev, \ 83 struct spi_controller, dev); \ 84 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 85 } \ 86 static struct device_attribute dev_attr_spi_controller_##field = { \ 87 .attr = { .name = file, .mode = 0444 }, \ 88 .show = spi_controller_##field##_show, \ 89 }; \ 90 static ssize_t spi_device_##field##_show(struct device *dev, \ 91 struct device_attribute *attr, \ 92 char *buf) \ 93 { \ 94 struct spi_device *spi = to_spi_device(dev); \ 95 return spi_statistics_##field##_show(&spi->statistics, buf); \ 96 } \ 97 static struct device_attribute dev_attr_spi_device_##field = { \ 98 .attr = { .name = file, .mode = 0444 }, \ 99 .show = spi_device_##field##_show, \ 100 } 101 102 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 103 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 104 char *buf) \ 105 { \ 106 unsigned long flags; \ 107 ssize_t len; \ 108 spin_lock_irqsave(&stat->lock, flags); \ 109 len = sprintf(buf, format_string, stat->field); \ 110 spin_unlock_irqrestore(&stat->lock, flags); \ 111 return len; \ 112 } \ 113 SPI_STATISTICS_ATTRS(name, file) 114 115 #define SPI_STATISTICS_SHOW(field, format_string) \ 116 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 117 field, format_string) 118 119 SPI_STATISTICS_SHOW(messages, "%lu"); 120 SPI_STATISTICS_SHOW(transfers, "%lu"); 121 SPI_STATISTICS_SHOW(errors, "%lu"); 122 SPI_STATISTICS_SHOW(timedout, "%lu"); 123 124 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 125 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 126 SPI_STATISTICS_SHOW(spi_async, "%lu"); 127 128 SPI_STATISTICS_SHOW(bytes, "%llu"); 129 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 130 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 131 132 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 133 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 134 "transfer_bytes_histo_" number, \ 135 transfer_bytes_histo[index], "%lu") 136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 153 154 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 155 156 static struct attribute *spi_dev_attrs[] = { 157 &dev_attr_modalias.attr, 158 NULL, 159 }; 160 161 static const struct attribute_group spi_dev_group = { 162 .attrs = spi_dev_attrs, 163 }; 164 165 static struct attribute *spi_device_statistics_attrs[] = { 166 &dev_attr_spi_device_messages.attr, 167 &dev_attr_spi_device_transfers.attr, 168 &dev_attr_spi_device_errors.attr, 169 &dev_attr_spi_device_timedout.attr, 170 &dev_attr_spi_device_spi_sync.attr, 171 &dev_attr_spi_device_spi_sync_immediate.attr, 172 &dev_attr_spi_device_spi_async.attr, 173 &dev_attr_spi_device_bytes.attr, 174 &dev_attr_spi_device_bytes_rx.attr, 175 &dev_attr_spi_device_bytes_tx.attr, 176 &dev_attr_spi_device_transfer_bytes_histo0.attr, 177 &dev_attr_spi_device_transfer_bytes_histo1.attr, 178 &dev_attr_spi_device_transfer_bytes_histo2.attr, 179 &dev_attr_spi_device_transfer_bytes_histo3.attr, 180 &dev_attr_spi_device_transfer_bytes_histo4.attr, 181 &dev_attr_spi_device_transfer_bytes_histo5.attr, 182 &dev_attr_spi_device_transfer_bytes_histo6.attr, 183 &dev_attr_spi_device_transfer_bytes_histo7.attr, 184 &dev_attr_spi_device_transfer_bytes_histo8.attr, 185 &dev_attr_spi_device_transfer_bytes_histo9.attr, 186 &dev_attr_spi_device_transfer_bytes_histo10.attr, 187 &dev_attr_spi_device_transfer_bytes_histo11.attr, 188 &dev_attr_spi_device_transfer_bytes_histo12.attr, 189 &dev_attr_spi_device_transfer_bytes_histo13.attr, 190 &dev_attr_spi_device_transfer_bytes_histo14.attr, 191 &dev_attr_spi_device_transfer_bytes_histo15.attr, 192 &dev_attr_spi_device_transfer_bytes_histo16.attr, 193 &dev_attr_spi_device_transfers_split_maxsize.attr, 194 NULL, 195 }; 196 197 static const struct attribute_group spi_device_statistics_group = { 198 .name = "statistics", 199 .attrs = spi_device_statistics_attrs, 200 }; 201 202 static const struct attribute_group *spi_dev_groups[] = { 203 &spi_dev_group, 204 &spi_device_statistics_group, 205 NULL, 206 }; 207 208 static struct attribute *spi_controller_statistics_attrs[] = { 209 &dev_attr_spi_controller_messages.attr, 210 &dev_attr_spi_controller_transfers.attr, 211 &dev_attr_spi_controller_errors.attr, 212 &dev_attr_spi_controller_timedout.attr, 213 &dev_attr_spi_controller_spi_sync.attr, 214 &dev_attr_spi_controller_spi_sync_immediate.attr, 215 &dev_attr_spi_controller_spi_async.attr, 216 &dev_attr_spi_controller_bytes.attr, 217 &dev_attr_spi_controller_bytes_rx.attr, 218 &dev_attr_spi_controller_bytes_tx.attr, 219 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 220 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 221 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 222 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 223 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 224 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 225 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 226 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 227 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 228 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 229 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 230 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 231 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 232 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 233 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 234 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 235 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 236 &dev_attr_spi_controller_transfers_split_maxsize.attr, 237 NULL, 238 }; 239 240 static const struct attribute_group spi_controller_statistics_group = { 241 .name = "statistics", 242 .attrs = spi_controller_statistics_attrs, 243 }; 244 245 static const struct attribute_group *spi_master_groups[] = { 246 &spi_controller_statistics_group, 247 NULL, 248 }; 249 250 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 251 struct spi_transfer *xfer, 252 struct spi_controller *ctlr) 253 { 254 unsigned long flags; 255 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 256 257 if (l2len < 0) 258 l2len = 0; 259 260 spin_lock_irqsave(&stats->lock, flags); 261 262 stats->transfers++; 263 stats->transfer_bytes_histo[l2len]++; 264 265 stats->bytes += xfer->len; 266 if ((xfer->tx_buf) && 267 (xfer->tx_buf != ctlr->dummy_tx)) 268 stats->bytes_tx += xfer->len; 269 if ((xfer->rx_buf) && 270 (xfer->rx_buf != ctlr->dummy_rx)) 271 stats->bytes_rx += xfer->len; 272 273 spin_unlock_irqrestore(&stats->lock, flags); 274 } 275 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 276 277 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 278 * and the sysfs version makes coldplug work too. 279 */ 280 281 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 282 const struct spi_device *sdev) 283 { 284 while (id->name[0]) { 285 if (!strcmp(sdev->modalias, id->name)) 286 return id; 287 id++; 288 } 289 return NULL; 290 } 291 292 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 293 { 294 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 295 296 return spi_match_id(sdrv->id_table, sdev); 297 } 298 EXPORT_SYMBOL_GPL(spi_get_device_id); 299 300 static int spi_match_device(struct device *dev, struct device_driver *drv) 301 { 302 const struct spi_device *spi = to_spi_device(dev); 303 const struct spi_driver *sdrv = to_spi_driver(drv); 304 305 /* Attempt an OF style match */ 306 if (of_driver_match_device(dev, drv)) 307 return 1; 308 309 /* Then try ACPI */ 310 if (acpi_driver_match_device(dev, drv)) 311 return 1; 312 313 if (sdrv->id_table) 314 return !!spi_match_id(sdrv->id_table, spi); 315 316 return strcmp(spi->modalias, drv->name) == 0; 317 } 318 319 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 320 { 321 const struct spi_device *spi = to_spi_device(dev); 322 int rc; 323 324 rc = acpi_device_uevent_modalias(dev, env); 325 if (rc != -ENODEV) 326 return rc; 327 328 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 329 } 330 331 struct bus_type spi_bus_type = { 332 .name = "spi", 333 .dev_groups = spi_dev_groups, 334 .match = spi_match_device, 335 .uevent = spi_uevent, 336 }; 337 EXPORT_SYMBOL_GPL(spi_bus_type); 338 339 340 static int spi_drv_probe(struct device *dev) 341 { 342 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 343 struct spi_device *spi = to_spi_device(dev); 344 int ret; 345 346 ret = of_clk_set_defaults(dev->of_node, false); 347 if (ret) 348 return ret; 349 350 if (dev->of_node) { 351 spi->irq = of_irq_get(dev->of_node, 0); 352 if (spi->irq == -EPROBE_DEFER) 353 return -EPROBE_DEFER; 354 if (spi->irq < 0) 355 spi->irq = 0; 356 } 357 358 ret = dev_pm_domain_attach(dev, true); 359 if (ret != -EPROBE_DEFER) { 360 ret = sdrv->probe(spi); 361 if (ret) 362 dev_pm_domain_detach(dev, true); 363 } 364 365 return ret; 366 } 367 368 static int spi_drv_remove(struct device *dev) 369 { 370 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 371 int ret; 372 373 ret = sdrv->remove(to_spi_device(dev)); 374 dev_pm_domain_detach(dev, true); 375 376 return ret; 377 } 378 379 static void spi_drv_shutdown(struct device *dev) 380 { 381 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 382 383 sdrv->shutdown(to_spi_device(dev)); 384 } 385 386 /** 387 * __spi_register_driver - register a SPI driver 388 * @owner: owner module of the driver to register 389 * @sdrv: the driver to register 390 * Context: can sleep 391 * 392 * Return: zero on success, else a negative error code. 393 */ 394 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 395 { 396 sdrv->driver.owner = owner; 397 sdrv->driver.bus = &spi_bus_type; 398 if (sdrv->probe) 399 sdrv->driver.probe = spi_drv_probe; 400 if (sdrv->remove) 401 sdrv->driver.remove = spi_drv_remove; 402 if (sdrv->shutdown) 403 sdrv->driver.shutdown = spi_drv_shutdown; 404 return driver_register(&sdrv->driver); 405 } 406 EXPORT_SYMBOL_GPL(__spi_register_driver); 407 408 /*-------------------------------------------------------------------------*/ 409 410 /* SPI devices should normally not be created by SPI device drivers; that 411 * would make them board-specific. Similarly with SPI controller drivers. 412 * Device registration normally goes into like arch/.../mach.../board-YYY.c 413 * with other readonly (flashable) information about mainboard devices. 414 */ 415 416 struct boardinfo { 417 struct list_head list; 418 struct spi_board_info board_info; 419 }; 420 421 static LIST_HEAD(board_list); 422 static LIST_HEAD(spi_controller_list); 423 424 /* 425 * Used to protect add/del opertion for board_info list and 426 * spi_controller list, and their matching process 427 * also used to protect object of type struct idr 428 */ 429 static DEFINE_MUTEX(board_lock); 430 431 /** 432 * spi_alloc_device - Allocate a new SPI device 433 * @ctlr: Controller to which device is connected 434 * Context: can sleep 435 * 436 * Allows a driver to allocate and initialize a spi_device without 437 * registering it immediately. This allows a driver to directly 438 * fill the spi_device with device parameters before calling 439 * spi_add_device() on it. 440 * 441 * Caller is responsible to call spi_add_device() on the returned 442 * spi_device structure to add it to the SPI controller. If the caller 443 * needs to discard the spi_device without adding it, then it should 444 * call spi_dev_put() on it. 445 * 446 * Return: a pointer to the new device, or NULL. 447 */ 448 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 449 { 450 struct spi_device *spi; 451 452 if (!spi_controller_get(ctlr)) 453 return NULL; 454 455 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 456 if (!spi) { 457 spi_controller_put(ctlr); 458 return NULL; 459 } 460 461 spi->master = spi->controller = ctlr; 462 spi->dev.parent = &ctlr->dev; 463 spi->dev.bus = &spi_bus_type; 464 spi->dev.release = spidev_release; 465 spi->cs_gpio = -ENOENT; 466 467 spin_lock_init(&spi->statistics.lock); 468 469 device_initialize(&spi->dev); 470 return spi; 471 } 472 EXPORT_SYMBOL_GPL(spi_alloc_device); 473 474 static void spi_dev_set_name(struct spi_device *spi) 475 { 476 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 477 478 if (adev) { 479 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 480 return; 481 } 482 483 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 484 spi->chip_select); 485 } 486 487 static int spi_dev_check(struct device *dev, void *data) 488 { 489 struct spi_device *spi = to_spi_device(dev); 490 struct spi_device *new_spi = data; 491 492 if (spi->controller == new_spi->controller && 493 spi->chip_select == new_spi->chip_select) 494 return -EBUSY; 495 return 0; 496 } 497 498 /** 499 * spi_add_device - Add spi_device allocated with spi_alloc_device 500 * @spi: spi_device to register 501 * 502 * Companion function to spi_alloc_device. Devices allocated with 503 * spi_alloc_device can be added onto the spi bus with this function. 504 * 505 * Return: 0 on success; negative errno on failure 506 */ 507 int spi_add_device(struct spi_device *spi) 508 { 509 static DEFINE_MUTEX(spi_add_lock); 510 struct spi_controller *ctlr = spi->controller; 511 struct device *dev = ctlr->dev.parent; 512 int status; 513 514 /* Chipselects are numbered 0..max; validate. */ 515 if (spi->chip_select >= ctlr->num_chipselect) { 516 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 517 ctlr->num_chipselect); 518 return -EINVAL; 519 } 520 521 /* Set the bus ID string */ 522 spi_dev_set_name(spi); 523 524 /* We need to make sure there's no other device with this 525 * chipselect **BEFORE** we call setup(), else we'll trash 526 * its configuration. Lock against concurrent add() calls. 527 */ 528 mutex_lock(&spi_add_lock); 529 530 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 531 if (status) { 532 dev_err(dev, "chipselect %d already in use\n", 533 spi->chip_select); 534 goto done; 535 } 536 537 if (ctlr->cs_gpios) 538 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 539 540 /* Drivers may modify this initial i/o setup, but will 541 * normally rely on the device being setup. Devices 542 * using SPI_CS_HIGH can't coexist well otherwise... 543 */ 544 status = spi_setup(spi); 545 if (status < 0) { 546 dev_err(dev, "can't setup %s, status %d\n", 547 dev_name(&spi->dev), status); 548 goto done; 549 } 550 551 /* Device may be bound to an active driver when this returns */ 552 status = device_add(&spi->dev); 553 if (status < 0) 554 dev_err(dev, "can't add %s, status %d\n", 555 dev_name(&spi->dev), status); 556 else 557 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 558 559 done: 560 mutex_unlock(&spi_add_lock); 561 return status; 562 } 563 EXPORT_SYMBOL_GPL(spi_add_device); 564 565 /** 566 * spi_new_device - instantiate one new SPI device 567 * @ctlr: Controller to which device is connected 568 * @chip: Describes the SPI device 569 * Context: can sleep 570 * 571 * On typical mainboards, this is purely internal; and it's not needed 572 * after board init creates the hard-wired devices. Some development 573 * platforms may not be able to use spi_register_board_info though, and 574 * this is exported so that for example a USB or parport based adapter 575 * driver could add devices (which it would learn about out-of-band). 576 * 577 * Return: the new device, or NULL. 578 */ 579 struct spi_device *spi_new_device(struct spi_controller *ctlr, 580 struct spi_board_info *chip) 581 { 582 struct spi_device *proxy; 583 int status; 584 585 /* NOTE: caller did any chip->bus_num checks necessary. 586 * 587 * Also, unless we change the return value convention to use 588 * error-or-pointer (not NULL-or-pointer), troubleshootability 589 * suggests syslogged diagnostics are best here (ugh). 590 */ 591 592 proxy = spi_alloc_device(ctlr); 593 if (!proxy) 594 return NULL; 595 596 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 597 598 proxy->chip_select = chip->chip_select; 599 proxy->max_speed_hz = chip->max_speed_hz; 600 proxy->mode = chip->mode; 601 proxy->irq = chip->irq; 602 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 603 proxy->dev.platform_data = (void *) chip->platform_data; 604 proxy->controller_data = chip->controller_data; 605 proxy->controller_state = NULL; 606 607 if (chip->properties) { 608 status = device_add_properties(&proxy->dev, chip->properties); 609 if (status) { 610 dev_err(&ctlr->dev, 611 "failed to add properties to '%s': %d\n", 612 chip->modalias, status); 613 goto err_dev_put; 614 } 615 } 616 617 status = spi_add_device(proxy); 618 if (status < 0) 619 goto err_remove_props; 620 621 return proxy; 622 623 err_remove_props: 624 if (chip->properties) 625 device_remove_properties(&proxy->dev); 626 err_dev_put: 627 spi_dev_put(proxy); 628 return NULL; 629 } 630 EXPORT_SYMBOL_GPL(spi_new_device); 631 632 /** 633 * spi_unregister_device - unregister a single SPI device 634 * @spi: spi_device to unregister 635 * 636 * Start making the passed SPI device vanish. Normally this would be handled 637 * by spi_unregister_controller(). 638 */ 639 void spi_unregister_device(struct spi_device *spi) 640 { 641 if (!spi) 642 return; 643 644 if (spi->dev.of_node) { 645 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 646 of_node_put(spi->dev.of_node); 647 } 648 if (ACPI_COMPANION(&spi->dev)) 649 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 650 device_unregister(&spi->dev); 651 } 652 EXPORT_SYMBOL_GPL(spi_unregister_device); 653 654 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 655 struct spi_board_info *bi) 656 { 657 struct spi_device *dev; 658 659 if (ctlr->bus_num != bi->bus_num) 660 return; 661 662 dev = spi_new_device(ctlr, bi); 663 if (!dev) 664 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 665 bi->modalias); 666 } 667 668 /** 669 * spi_register_board_info - register SPI devices for a given board 670 * @info: array of chip descriptors 671 * @n: how many descriptors are provided 672 * Context: can sleep 673 * 674 * Board-specific early init code calls this (probably during arch_initcall) 675 * with segments of the SPI device table. Any device nodes are created later, 676 * after the relevant parent SPI controller (bus_num) is defined. We keep 677 * this table of devices forever, so that reloading a controller driver will 678 * not make Linux forget about these hard-wired devices. 679 * 680 * Other code can also call this, e.g. a particular add-on board might provide 681 * SPI devices through its expansion connector, so code initializing that board 682 * would naturally declare its SPI devices. 683 * 684 * The board info passed can safely be __initdata ... but be careful of 685 * any embedded pointers (platform_data, etc), they're copied as-is. 686 * Device properties are deep-copied though. 687 * 688 * Return: zero on success, else a negative error code. 689 */ 690 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 691 { 692 struct boardinfo *bi; 693 int i; 694 695 if (!n) 696 return 0; 697 698 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 699 if (!bi) 700 return -ENOMEM; 701 702 for (i = 0; i < n; i++, bi++, info++) { 703 struct spi_controller *ctlr; 704 705 memcpy(&bi->board_info, info, sizeof(*info)); 706 if (info->properties) { 707 bi->board_info.properties = 708 property_entries_dup(info->properties); 709 if (IS_ERR(bi->board_info.properties)) 710 return PTR_ERR(bi->board_info.properties); 711 } 712 713 mutex_lock(&board_lock); 714 list_add_tail(&bi->list, &board_list); 715 list_for_each_entry(ctlr, &spi_controller_list, list) 716 spi_match_controller_to_boardinfo(ctlr, 717 &bi->board_info); 718 mutex_unlock(&board_lock); 719 } 720 721 return 0; 722 } 723 724 /*-------------------------------------------------------------------------*/ 725 726 static void spi_set_cs(struct spi_device *spi, bool enable) 727 { 728 if (spi->mode & SPI_CS_HIGH) 729 enable = !enable; 730 731 if (gpio_is_valid(spi->cs_gpio)) { 732 gpio_set_value(spi->cs_gpio, !enable); 733 /* Some SPI masters need both GPIO CS & slave_select */ 734 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 735 spi->controller->set_cs) 736 spi->controller->set_cs(spi, !enable); 737 } else if (spi->controller->set_cs) { 738 spi->controller->set_cs(spi, !enable); 739 } 740 } 741 742 #ifdef CONFIG_HAS_DMA 743 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 744 struct sg_table *sgt, void *buf, size_t len, 745 enum dma_data_direction dir) 746 { 747 const bool vmalloced_buf = is_vmalloc_addr(buf); 748 unsigned int max_seg_size = dma_get_max_seg_size(dev); 749 #ifdef CONFIG_HIGHMEM 750 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 751 (unsigned long)buf < (PKMAP_BASE + 752 (LAST_PKMAP * PAGE_SIZE))); 753 #else 754 const bool kmap_buf = false; 755 #endif 756 int desc_len; 757 int sgs; 758 struct page *vm_page; 759 struct scatterlist *sg; 760 void *sg_buf; 761 size_t min; 762 int i, ret; 763 764 if (vmalloced_buf || kmap_buf) { 765 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 766 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 767 } else if (virt_addr_valid(buf)) { 768 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 769 sgs = DIV_ROUND_UP(len, desc_len); 770 } else { 771 return -EINVAL; 772 } 773 774 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 775 if (ret != 0) 776 return ret; 777 778 sg = &sgt->sgl[0]; 779 for (i = 0; i < sgs; i++) { 780 781 if (vmalloced_buf || kmap_buf) { 782 /* 783 * Next scatterlist entry size is the minimum between 784 * the desc_len and the remaining buffer length that 785 * fits in a page. 786 */ 787 min = min_t(size_t, desc_len, 788 min_t(size_t, len, 789 PAGE_SIZE - offset_in_page(buf))); 790 if (vmalloced_buf) 791 vm_page = vmalloc_to_page(buf); 792 else 793 vm_page = kmap_to_page(buf); 794 if (!vm_page) { 795 sg_free_table(sgt); 796 return -ENOMEM; 797 } 798 sg_set_page(sg, vm_page, 799 min, offset_in_page(buf)); 800 } else { 801 min = min_t(size_t, len, desc_len); 802 sg_buf = buf; 803 sg_set_buf(sg, sg_buf, min); 804 } 805 806 buf += min; 807 len -= min; 808 sg = sg_next(sg); 809 } 810 811 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 812 if (!ret) 813 ret = -ENOMEM; 814 if (ret < 0) { 815 sg_free_table(sgt); 816 return ret; 817 } 818 819 sgt->nents = ret; 820 821 return 0; 822 } 823 824 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 825 struct sg_table *sgt, enum dma_data_direction dir) 826 { 827 if (sgt->orig_nents) { 828 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 829 sg_free_table(sgt); 830 } 831 } 832 833 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 834 { 835 struct device *tx_dev, *rx_dev; 836 struct spi_transfer *xfer; 837 int ret; 838 839 if (!ctlr->can_dma) 840 return 0; 841 842 if (ctlr->dma_tx) 843 tx_dev = ctlr->dma_tx->device->dev; 844 else 845 tx_dev = ctlr->dev.parent; 846 847 if (ctlr->dma_rx) 848 rx_dev = ctlr->dma_rx->device->dev; 849 else 850 rx_dev = ctlr->dev.parent; 851 852 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 853 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 854 continue; 855 856 if (xfer->tx_buf != NULL) { 857 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 858 (void *)xfer->tx_buf, xfer->len, 859 DMA_TO_DEVICE); 860 if (ret != 0) 861 return ret; 862 } 863 864 if (xfer->rx_buf != NULL) { 865 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 866 xfer->rx_buf, xfer->len, 867 DMA_FROM_DEVICE); 868 if (ret != 0) { 869 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 870 DMA_TO_DEVICE); 871 return ret; 872 } 873 } 874 } 875 876 ctlr->cur_msg_mapped = true; 877 878 return 0; 879 } 880 881 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 882 { 883 struct spi_transfer *xfer; 884 struct device *tx_dev, *rx_dev; 885 886 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 887 return 0; 888 889 if (ctlr->dma_tx) 890 tx_dev = ctlr->dma_tx->device->dev; 891 else 892 tx_dev = ctlr->dev.parent; 893 894 if (ctlr->dma_rx) 895 rx_dev = ctlr->dma_rx->device->dev; 896 else 897 rx_dev = ctlr->dev.parent; 898 899 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 900 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 901 continue; 902 903 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 904 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 905 } 906 907 return 0; 908 } 909 #else /* !CONFIG_HAS_DMA */ 910 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 911 struct sg_table *sgt, void *buf, size_t len, 912 enum dma_data_direction dir) 913 { 914 return -EINVAL; 915 } 916 917 static inline void spi_unmap_buf(struct spi_controller *ctlr, 918 struct device *dev, struct sg_table *sgt, 919 enum dma_data_direction dir) 920 { 921 } 922 923 static inline int __spi_map_msg(struct spi_controller *ctlr, 924 struct spi_message *msg) 925 { 926 return 0; 927 } 928 929 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 930 struct spi_message *msg) 931 { 932 return 0; 933 } 934 #endif /* !CONFIG_HAS_DMA */ 935 936 static inline int spi_unmap_msg(struct spi_controller *ctlr, 937 struct spi_message *msg) 938 { 939 struct spi_transfer *xfer; 940 941 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 942 /* 943 * Restore the original value of tx_buf or rx_buf if they are 944 * NULL. 945 */ 946 if (xfer->tx_buf == ctlr->dummy_tx) 947 xfer->tx_buf = NULL; 948 if (xfer->rx_buf == ctlr->dummy_rx) 949 xfer->rx_buf = NULL; 950 } 951 952 return __spi_unmap_msg(ctlr, msg); 953 } 954 955 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 956 { 957 struct spi_transfer *xfer; 958 void *tmp; 959 unsigned int max_tx, max_rx; 960 961 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { 962 max_tx = 0; 963 max_rx = 0; 964 965 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 966 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 967 !xfer->tx_buf) 968 max_tx = max(xfer->len, max_tx); 969 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 970 !xfer->rx_buf) 971 max_rx = max(xfer->len, max_rx); 972 } 973 974 if (max_tx) { 975 tmp = krealloc(ctlr->dummy_tx, max_tx, 976 GFP_KERNEL | GFP_DMA); 977 if (!tmp) 978 return -ENOMEM; 979 ctlr->dummy_tx = tmp; 980 memset(tmp, 0, max_tx); 981 } 982 983 if (max_rx) { 984 tmp = krealloc(ctlr->dummy_rx, max_rx, 985 GFP_KERNEL | GFP_DMA); 986 if (!tmp) 987 return -ENOMEM; 988 ctlr->dummy_rx = tmp; 989 } 990 991 if (max_tx || max_rx) { 992 list_for_each_entry(xfer, &msg->transfers, 993 transfer_list) { 994 if (!xfer->tx_buf) 995 xfer->tx_buf = ctlr->dummy_tx; 996 if (!xfer->rx_buf) 997 xfer->rx_buf = ctlr->dummy_rx; 998 } 999 } 1000 } 1001 1002 return __spi_map_msg(ctlr, msg); 1003 } 1004 1005 /* 1006 * spi_transfer_one_message - Default implementation of transfer_one_message() 1007 * 1008 * This is a standard implementation of transfer_one_message() for 1009 * drivers which implement a transfer_one() operation. It provides 1010 * standard handling of delays and chip select management. 1011 */ 1012 static int spi_transfer_one_message(struct spi_controller *ctlr, 1013 struct spi_message *msg) 1014 { 1015 struct spi_transfer *xfer; 1016 bool keep_cs = false; 1017 int ret = 0; 1018 unsigned long long ms = 1; 1019 struct spi_statistics *statm = &ctlr->statistics; 1020 struct spi_statistics *stats = &msg->spi->statistics; 1021 1022 spi_set_cs(msg->spi, true); 1023 1024 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1025 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1026 1027 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1028 trace_spi_transfer_start(msg, xfer); 1029 1030 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1031 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1032 1033 if (xfer->tx_buf || xfer->rx_buf) { 1034 reinit_completion(&ctlr->xfer_completion); 1035 1036 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1037 if (ret < 0) { 1038 SPI_STATISTICS_INCREMENT_FIELD(statm, 1039 errors); 1040 SPI_STATISTICS_INCREMENT_FIELD(stats, 1041 errors); 1042 dev_err(&msg->spi->dev, 1043 "SPI transfer failed: %d\n", ret); 1044 goto out; 1045 } 1046 1047 if (ret > 0) { 1048 ret = 0; 1049 ms = 8LL * 1000LL * xfer->len; 1050 do_div(ms, xfer->speed_hz); 1051 ms += ms + 200; /* some tolerance */ 1052 1053 if (ms > UINT_MAX) 1054 ms = UINT_MAX; 1055 1056 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1057 msecs_to_jiffies(ms)); 1058 } 1059 1060 if (ms == 0) { 1061 SPI_STATISTICS_INCREMENT_FIELD(statm, 1062 timedout); 1063 SPI_STATISTICS_INCREMENT_FIELD(stats, 1064 timedout); 1065 dev_err(&msg->spi->dev, 1066 "SPI transfer timed out\n"); 1067 msg->status = -ETIMEDOUT; 1068 } 1069 } else { 1070 if (xfer->len) 1071 dev_err(&msg->spi->dev, 1072 "Bufferless transfer has length %u\n", 1073 xfer->len); 1074 } 1075 1076 trace_spi_transfer_stop(msg, xfer); 1077 1078 if (msg->status != -EINPROGRESS) 1079 goto out; 1080 1081 if (xfer->delay_usecs) { 1082 u16 us = xfer->delay_usecs; 1083 1084 if (us <= 10) 1085 udelay(us); 1086 else 1087 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1088 } 1089 1090 if (xfer->cs_change) { 1091 if (list_is_last(&xfer->transfer_list, 1092 &msg->transfers)) { 1093 keep_cs = true; 1094 } else { 1095 spi_set_cs(msg->spi, false); 1096 udelay(10); 1097 spi_set_cs(msg->spi, true); 1098 } 1099 } 1100 1101 msg->actual_length += xfer->len; 1102 } 1103 1104 out: 1105 if (ret != 0 || !keep_cs) 1106 spi_set_cs(msg->spi, false); 1107 1108 if (msg->status == -EINPROGRESS) 1109 msg->status = ret; 1110 1111 if (msg->status && ctlr->handle_err) 1112 ctlr->handle_err(ctlr, msg); 1113 1114 spi_res_release(ctlr, msg); 1115 1116 spi_finalize_current_message(ctlr); 1117 1118 return ret; 1119 } 1120 1121 /** 1122 * spi_finalize_current_transfer - report completion of a transfer 1123 * @ctlr: the controller reporting completion 1124 * 1125 * Called by SPI drivers using the core transfer_one_message() 1126 * implementation to notify it that the current interrupt driven 1127 * transfer has finished and the next one may be scheduled. 1128 */ 1129 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1130 { 1131 complete(&ctlr->xfer_completion); 1132 } 1133 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1134 1135 /** 1136 * __spi_pump_messages - function which processes spi message queue 1137 * @ctlr: controller to process queue for 1138 * @in_kthread: true if we are in the context of the message pump thread 1139 * 1140 * This function checks if there is any spi message in the queue that 1141 * needs processing and if so call out to the driver to initialize hardware 1142 * and transfer each message. 1143 * 1144 * Note that it is called both from the kthread itself and also from 1145 * inside spi_sync(); the queue extraction handling at the top of the 1146 * function should deal with this safely. 1147 */ 1148 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1149 { 1150 unsigned long flags; 1151 bool was_busy = false; 1152 int ret; 1153 1154 /* Lock queue */ 1155 spin_lock_irqsave(&ctlr->queue_lock, flags); 1156 1157 /* Make sure we are not already running a message */ 1158 if (ctlr->cur_msg) { 1159 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1160 return; 1161 } 1162 1163 /* If another context is idling the device then defer */ 1164 if (ctlr->idling) { 1165 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1166 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1167 return; 1168 } 1169 1170 /* Check if the queue is idle */ 1171 if (list_empty(&ctlr->queue) || !ctlr->running) { 1172 if (!ctlr->busy) { 1173 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1174 return; 1175 } 1176 1177 /* Only do teardown in the thread */ 1178 if (!in_kthread) { 1179 kthread_queue_work(&ctlr->kworker, 1180 &ctlr->pump_messages); 1181 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1182 return; 1183 } 1184 1185 ctlr->busy = false; 1186 ctlr->idling = true; 1187 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1188 1189 kfree(ctlr->dummy_rx); 1190 ctlr->dummy_rx = NULL; 1191 kfree(ctlr->dummy_tx); 1192 ctlr->dummy_tx = NULL; 1193 if (ctlr->unprepare_transfer_hardware && 1194 ctlr->unprepare_transfer_hardware(ctlr)) 1195 dev_err(&ctlr->dev, 1196 "failed to unprepare transfer hardware\n"); 1197 if (ctlr->auto_runtime_pm) { 1198 pm_runtime_mark_last_busy(ctlr->dev.parent); 1199 pm_runtime_put_autosuspend(ctlr->dev.parent); 1200 } 1201 trace_spi_controller_idle(ctlr); 1202 1203 spin_lock_irqsave(&ctlr->queue_lock, flags); 1204 ctlr->idling = false; 1205 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1206 return; 1207 } 1208 1209 /* Extract head of queue */ 1210 ctlr->cur_msg = 1211 list_first_entry(&ctlr->queue, struct spi_message, queue); 1212 1213 list_del_init(&ctlr->cur_msg->queue); 1214 if (ctlr->busy) 1215 was_busy = true; 1216 else 1217 ctlr->busy = true; 1218 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1219 1220 mutex_lock(&ctlr->io_mutex); 1221 1222 if (!was_busy && ctlr->auto_runtime_pm) { 1223 ret = pm_runtime_get_sync(ctlr->dev.parent); 1224 if (ret < 0) { 1225 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1226 ret); 1227 mutex_unlock(&ctlr->io_mutex); 1228 return; 1229 } 1230 } 1231 1232 if (!was_busy) 1233 trace_spi_controller_busy(ctlr); 1234 1235 if (!was_busy && ctlr->prepare_transfer_hardware) { 1236 ret = ctlr->prepare_transfer_hardware(ctlr); 1237 if (ret) { 1238 dev_err(&ctlr->dev, 1239 "failed to prepare transfer hardware\n"); 1240 1241 if (ctlr->auto_runtime_pm) 1242 pm_runtime_put(ctlr->dev.parent); 1243 mutex_unlock(&ctlr->io_mutex); 1244 return; 1245 } 1246 } 1247 1248 trace_spi_message_start(ctlr->cur_msg); 1249 1250 if (ctlr->prepare_message) { 1251 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg); 1252 if (ret) { 1253 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1254 ret); 1255 ctlr->cur_msg->status = ret; 1256 spi_finalize_current_message(ctlr); 1257 goto out; 1258 } 1259 ctlr->cur_msg_prepared = true; 1260 } 1261 1262 ret = spi_map_msg(ctlr, ctlr->cur_msg); 1263 if (ret) { 1264 ctlr->cur_msg->status = ret; 1265 spi_finalize_current_message(ctlr); 1266 goto out; 1267 } 1268 1269 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg); 1270 if (ret) { 1271 dev_err(&ctlr->dev, 1272 "failed to transfer one message from queue\n"); 1273 goto out; 1274 } 1275 1276 out: 1277 mutex_unlock(&ctlr->io_mutex); 1278 1279 /* Prod the scheduler in case transfer_one() was busy waiting */ 1280 if (!ret) 1281 cond_resched(); 1282 } 1283 1284 /** 1285 * spi_pump_messages - kthread work function which processes spi message queue 1286 * @work: pointer to kthread work struct contained in the controller struct 1287 */ 1288 static void spi_pump_messages(struct kthread_work *work) 1289 { 1290 struct spi_controller *ctlr = 1291 container_of(work, struct spi_controller, pump_messages); 1292 1293 __spi_pump_messages(ctlr, true); 1294 } 1295 1296 static int spi_init_queue(struct spi_controller *ctlr) 1297 { 1298 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1299 1300 ctlr->running = false; 1301 ctlr->busy = false; 1302 1303 kthread_init_worker(&ctlr->kworker); 1304 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, 1305 "%s", dev_name(&ctlr->dev)); 1306 if (IS_ERR(ctlr->kworker_task)) { 1307 dev_err(&ctlr->dev, "failed to create message pump task\n"); 1308 return PTR_ERR(ctlr->kworker_task); 1309 } 1310 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1311 1312 /* 1313 * Controller config will indicate if this controller should run the 1314 * message pump with high (realtime) priority to reduce the transfer 1315 * latency on the bus by minimising the delay between a transfer 1316 * request and the scheduling of the message pump thread. Without this 1317 * setting the message pump thread will remain at default priority. 1318 */ 1319 if (ctlr->rt) { 1320 dev_info(&ctlr->dev, 1321 "will run message pump with realtime priority\n"); 1322 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); 1323 } 1324 1325 return 0; 1326 } 1327 1328 /** 1329 * spi_get_next_queued_message() - called by driver to check for queued 1330 * messages 1331 * @ctlr: the controller to check for queued messages 1332 * 1333 * If there are more messages in the queue, the next message is returned from 1334 * this call. 1335 * 1336 * Return: the next message in the queue, else NULL if the queue is empty. 1337 */ 1338 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1339 { 1340 struct spi_message *next; 1341 unsigned long flags; 1342 1343 /* get a pointer to the next message, if any */ 1344 spin_lock_irqsave(&ctlr->queue_lock, flags); 1345 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1346 queue); 1347 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1348 1349 return next; 1350 } 1351 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1352 1353 /** 1354 * spi_finalize_current_message() - the current message is complete 1355 * @ctlr: the controller to return the message to 1356 * 1357 * Called by the driver to notify the core that the message in the front of the 1358 * queue is complete and can be removed from the queue. 1359 */ 1360 void spi_finalize_current_message(struct spi_controller *ctlr) 1361 { 1362 struct spi_message *mesg; 1363 unsigned long flags; 1364 int ret; 1365 1366 spin_lock_irqsave(&ctlr->queue_lock, flags); 1367 mesg = ctlr->cur_msg; 1368 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1369 1370 spi_unmap_msg(ctlr, mesg); 1371 1372 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1373 ret = ctlr->unprepare_message(ctlr, mesg); 1374 if (ret) { 1375 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1376 ret); 1377 } 1378 } 1379 1380 spin_lock_irqsave(&ctlr->queue_lock, flags); 1381 ctlr->cur_msg = NULL; 1382 ctlr->cur_msg_prepared = false; 1383 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1384 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1385 1386 trace_spi_message_done(mesg); 1387 1388 mesg->state = NULL; 1389 if (mesg->complete) 1390 mesg->complete(mesg->context); 1391 } 1392 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1393 1394 static int spi_start_queue(struct spi_controller *ctlr) 1395 { 1396 unsigned long flags; 1397 1398 spin_lock_irqsave(&ctlr->queue_lock, flags); 1399 1400 if (ctlr->running || ctlr->busy) { 1401 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1402 return -EBUSY; 1403 } 1404 1405 ctlr->running = true; 1406 ctlr->cur_msg = NULL; 1407 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1408 1409 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1410 1411 return 0; 1412 } 1413 1414 static int spi_stop_queue(struct spi_controller *ctlr) 1415 { 1416 unsigned long flags; 1417 unsigned limit = 500; 1418 int ret = 0; 1419 1420 spin_lock_irqsave(&ctlr->queue_lock, flags); 1421 1422 /* 1423 * This is a bit lame, but is optimized for the common execution path. 1424 * A wait_queue on the ctlr->busy could be used, but then the common 1425 * execution path (pump_messages) would be required to call wake_up or 1426 * friends on every SPI message. Do this instead. 1427 */ 1428 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1429 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1430 usleep_range(10000, 11000); 1431 spin_lock_irqsave(&ctlr->queue_lock, flags); 1432 } 1433 1434 if (!list_empty(&ctlr->queue) || ctlr->busy) 1435 ret = -EBUSY; 1436 else 1437 ctlr->running = false; 1438 1439 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1440 1441 if (ret) { 1442 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1443 return ret; 1444 } 1445 return ret; 1446 } 1447 1448 static int spi_destroy_queue(struct spi_controller *ctlr) 1449 { 1450 int ret; 1451 1452 ret = spi_stop_queue(ctlr); 1453 1454 /* 1455 * kthread_flush_worker will block until all work is done. 1456 * If the reason that stop_queue timed out is that the work will never 1457 * finish, then it does no good to call flush/stop thread, so 1458 * return anyway. 1459 */ 1460 if (ret) { 1461 dev_err(&ctlr->dev, "problem destroying queue\n"); 1462 return ret; 1463 } 1464 1465 kthread_flush_worker(&ctlr->kworker); 1466 kthread_stop(ctlr->kworker_task); 1467 1468 return 0; 1469 } 1470 1471 static int __spi_queued_transfer(struct spi_device *spi, 1472 struct spi_message *msg, 1473 bool need_pump) 1474 { 1475 struct spi_controller *ctlr = spi->controller; 1476 unsigned long flags; 1477 1478 spin_lock_irqsave(&ctlr->queue_lock, flags); 1479 1480 if (!ctlr->running) { 1481 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1482 return -ESHUTDOWN; 1483 } 1484 msg->actual_length = 0; 1485 msg->status = -EINPROGRESS; 1486 1487 list_add_tail(&msg->queue, &ctlr->queue); 1488 if (!ctlr->busy && need_pump) 1489 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1490 1491 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1492 return 0; 1493 } 1494 1495 /** 1496 * spi_queued_transfer - transfer function for queued transfers 1497 * @spi: spi device which is requesting transfer 1498 * @msg: spi message which is to handled is queued to driver queue 1499 * 1500 * Return: zero on success, else a negative error code. 1501 */ 1502 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1503 { 1504 return __spi_queued_transfer(spi, msg, true); 1505 } 1506 1507 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1508 { 1509 int ret; 1510 1511 ctlr->transfer = spi_queued_transfer; 1512 if (!ctlr->transfer_one_message) 1513 ctlr->transfer_one_message = spi_transfer_one_message; 1514 1515 /* Initialize and start queue */ 1516 ret = spi_init_queue(ctlr); 1517 if (ret) { 1518 dev_err(&ctlr->dev, "problem initializing queue\n"); 1519 goto err_init_queue; 1520 } 1521 ctlr->queued = true; 1522 ret = spi_start_queue(ctlr); 1523 if (ret) { 1524 dev_err(&ctlr->dev, "problem starting queue\n"); 1525 goto err_start_queue; 1526 } 1527 1528 return 0; 1529 1530 err_start_queue: 1531 spi_destroy_queue(ctlr); 1532 err_init_queue: 1533 return ret; 1534 } 1535 1536 /*-------------------------------------------------------------------------*/ 1537 1538 #if defined(CONFIG_OF) 1539 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1540 struct device_node *nc) 1541 { 1542 u32 value; 1543 int rc; 1544 1545 /* Mode (clock phase/polarity/etc.) */ 1546 if (of_property_read_bool(nc, "spi-cpha")) 1547 spi->mode |= SPI_CPHA; 1548 if (of_property_read_bool(nc, "spi-cpol")) 1549 spi->mode |= SPI_CPOL; 1550 if (of_property_read_bool(nc, "spi-cs-high")) 1551 spi->mode |= SPI_CS_HIGH; 1552 if (of_property_read_bool(nc, "spi-3wire")) 1553 spi->mode |= SPI_3WIRE; 1554 if (of_property_read_bool(nc, "spi-lsb-first")) 1555 spi->mode |= SPI_LSB_FIRST; 1556 1557 /* Device DUAL/QUAD mode */ 1558 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1559 switch (value) { 1560 case 1: 1561 break; 1562 case 2: 1563 spi->mode |= SPI_TX_DUAL; 1564 break; 1565 case 4: 1566 spi->mode |= SPI_TX_QUAD; 1567 break; 1568 default: 1569 dev_warn(&ctlr->dev, 1570 "spi-tx-bus-width %d not supported\n", 1571 value); 1572 break; 1573 } 1574 } 1575 1576 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1577 switch (value) { 1578 case 1: 1579 break; 1580 case 2: 1581 spi->mode |= SPI_RX_DUAL; 1582 break; 1583 case 4: 1584 spi->mode |= SPI_RX_QUAD; 1585 break; 1586 default: 1587 dev_warn(&ctlr->dev, 1588 "spi-rx-bus-width %d not supported\n", 1589 value); 1590 break; 1591 } 1592 } 1593 1594 if (spi_controller_is_slave(ctlr)) { 1595 if (strcmp(nc->name, "slave")) { 1596 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1597 nc); 1598 return -EINVAL; 1599 } 1600 return 0; 1601 } 1602 1603 /* Device address */ 1604 rc = of_property_read_u32(nc, "reg", &value); 1605 if (rc) { 1606 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1607 nc, rc); 1608 return rc; 1609 } 1610 spi->chip_select = value; 1611 1612 /* Device speed */ 1613 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1614 if (rc) { 1615 dev_err(&ctlr->dev, 1616 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); 1617 return rc; 1618 } 1619 spi->max_speed_hz = value; 1620 1621 return 0; 1622 } 1623 1624 static struct spi_device * 1625 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1626 { 1627 struct spi_device *spi; 1628 int rc; 1629 1630 /* Alloc an spi_device */ 1631 spi = spi_alloc_device(ctlr); 1632 if (!spi) { 1633 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 1634 rc = -ENOMEM; 1635 goto err_out; 1636 } 1637 1638 /* Select device driver */ 1639 rc = of_modalias_node(nc, spi->modalias, 1640 sizeof(spi->modalias)); 1641 if (rc < 0) { 1642 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 1643 goto err_out; 1644 } 1645 1646 rc = of_spi_parse_dt(ctlr, spi, nc); 1647 if (rc) 1648 goto err_out; 1649 1650 /* Store a pointer to the node in the device structure */ 1651 of_node_get(nc); 1652 spi->dev.of_node = nc; 1653 1654 /* Register the new device */ 1655 rc = spi_add_device(spi); 1656 if (rc) { 1657 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 1658 goto err_of_node_put; 1659 } 1660 1661 return spi; 1662 1663 err_of_node_put: 1664 of_node_put(nc); 1665 err_out: 1666 spi_dev_put(spi); 1667 return ERR_PTR(rc); 1668 } 1669 1670 /** 1671 * of_register_spi_devices() - Register child devices onto the SPI bus 1672 * @ctlr: Pointer to spi_controller device 1673 * 1674 * Registers an spi_device for each child node of controller node which 1675 * represents a valid SPI slave. 1676 */ 1677 static void of_register_spi_devices(struct spi_controller *ctlr) 1678 { 1679 struct spi_device *spi; 1680 struct device_node *nc; 1681 1682 if (!ctlr->dev.of_node) 1683 return; 1684 1685 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 1686 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 1687 continue; 1688 spi = of_register_spi_device(ctlr, nc); 1689 if (IS_ERR(spi)) { 1690 dev_warn(&ctlr->dev, 1691 "Failed to create SPI device for %pOF\n", nc); 1692 of_node_clear_flag(nc, OF_POPULATED); 1693 } 1694 } 1695 } 1696 #else 1697 static void of_register_spi_devices(struct spi_controller *ctlr) { } 1698 #endif 1699 1700 #ifdef CONFIG_ACPI 1701 static void acpi_spi_parse_apple_properties(struct spi_device *spi) 1702 { 1703 struct acpi_device *dev = ACPI_COMPANION(&spi->dev); 1704 const union acpi_object *obj; 1705 1706 if (!x86_apple_machine) 1707 return; 1708 1709 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 1710 && obj->buffer.length >= 4) 1711 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 1712 1713 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 1714 && obj->buffer.length == 8) 1715 spi->bits_per_word = *(u64 *)obj->buffer.pointer; 1716 1717 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 1718 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 1719 spi->mode |= SPI_LSB_FIRST; 1720 1721 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 1722 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1723 spi->mode |= SPI_CPOL; 1724 1725 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 1726 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1727 spi->mode |= SPI_CPHA; 1728 } 1729 1730 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1731 { 1732 struct spi_device *spi = data; 1733 struct spi_controller *ctlr = spi->controller; 1734 1735 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1736 struct acpi_resource_spi_serialbus *sb; 1737 1738 sb = &ares->data.spi_serial_bus; 1739 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1740 /* 1741 * ACPI DeviceSelection numbering is handled by the 1742 * host controller driver in Windows and can vary 1743 * from driver to driver. In Linux we always expect 1744 * 0 .. max - 1 so we need to ask the driver to 1745 * translate between the two schemes. 1746 */ 1747 if (ctlr->fw_translate_cs) { 1748 int cs = ctlr->fw_translate_cs(ctlr, 1749 sb->device_selection); 1750 if (cs < 0) 1751 return cs; 1752 spi->chip_select = cs; 1753 } else { 1754 spi->chip_select = sb->device_selection; 1755 } 1756 1757 spi->max_speed_hz = sb->connection_speed; 1758 1759 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1760 spi->mode |= SPI_CPHA; 1761 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1762 spi->mode |= SPI_CPOL; 1763 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1764 spi->mode |= SPI_CS_HIGH; 1765 } 1766 } else if (spi->irq < 0) { 1767 struct resource r; 1768 1769 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1770 spi->irq = r.start; 1771 } 1772 1773 /* Always tell the ACPI core to skip this resource */ 1774 return 1; 1775 } 1776 1777 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 1778 struct acpi_device *adev) 1779 { 1780 struct list_head resource_list; 1781 struct spi_device *spi; 1782 int ret; 1783 1784 if (acpi_bus_get_status(adev) || !adev->status.present || 1785 acpi_device_enumerated(adev)) 1786 return AE_OK; 1787 1788 spi = spi_alloc_device(ctlr); 1789 if (!spi) { 1790 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 1791 dev_name(&adev->dev)); 1792 return AE_NO_MEMORY; 1793 } 1794 1795 ACPI_COMPANION_SET(&spi->dev, adev); 1796 spi->irq = -1; 1797 1798 INIT_LIST_HEAD(&resource_list); 1799 ret = acpi_dev_get_resources(adev, &resource_list, 1800 acpi_spi_add_resource, spi); 1801 acpi_dev_free_resource_list(&resource_list); 1802 1803 acpi_spi_parse_apple_properties(spi); 1804 1805 if (ret < 0 || !spi->max_speed_hz) { 1806 spi_dev_put(spi); 1807 return AE_OK; 1808 } 1809 1810 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 1811 sizeof(spi->modalias)); 1812 1813 if (spi->irq < 0) 1814 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 1815 1816 acpi_device_set_enumerated(adev); 1817 1818 adev->power.flags.ignore_parent = true; 1819 if (spi_add_device(spi)) { 1820 adev->power.flags.ignore_parent = false; 1821 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 1822 dev_name(&adev->dev)); 1823 spi_dev_put(spi); 1824 } 1825 1826 return AE_OK; 1827 } 1828 1829 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1830 void *data, void **return_value) 1831 { 1832 struct spi_controller *ctlr = data; 1833 struct acpi_device *adev; 1834 1835 if (acpi_bus_get_device(handle, &adev)) 1836 return AE_OK; 1837 1838 return acpi_register_spi_device(ctlr, adev); 1839 } 1840 1841 static void acpi_register_spi_devices(struct spi_controller *ctlr) 1842 { 1843 acpi_status status; 1844 acpi_handle handle; 1845 1846 handle = ACPI_HANDLE(ctlr->dev.parent); 1847 if (!handle) 1848 return; 1849 1850 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1851 acpi_spi_add_device, NULL, ctlr, NULL); 1852 if (ACPI_FAILURE(status)) 1853 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 1854 } 1855 #else 1856 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 1857 #endif /* CONFIG_ACPI */ 1858 1859 static void spi_controller_release(struct device *dev) 1860 { 1861 struct spi_controller *ctlr; 1862 1863 ctlr = container_of(dev, struct spi_controller, dev); 1864 kfree(ctlr); 1865 } 1866 1867 static struct class spi_master_class = { 1868 .name = "spi_master", 1869 .owner = THIS_MODULE, 1870 .dev_release = spi_controller_release, 1871 .dev_groups = spi_master_groups, 1872 }; 1873 1874 #ifdef CONFIG_SPI_SLAVE 1875 /** 1876 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 1877 * controller 1878 * @spi: device used for the current transfer 1879 */ 1880 int spi_slave_abort(struct spi_device *spi) 1881 { 1882 struct spi_controller *ctlr = spi->controller; 1883 1884 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 1885 return ctlr->slave_abort(ctlr); 1886 1887 return -ENOTSUPP; 1888 } 1889 EXPORT_SYMBOL_GPL(spi_slave_abort); 1890 1891 static int match_true(struct device *dev, void *data) 1892 { 1893 return 1; 1894 } 1895 1896 static ssize_t spi_slave_show(struct device *dev, 1897 struct device_attribute *attr, char *buf) 1898 { 1899 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 1900 dev); 1901 struct device *child; 1902 1903 child = device_find_child(&ctlr->dev, NULL, match_true); 1904 return sprintf(buf, "%s\n", 1905 child ? to_spi_device(child)->modalias : NULL); 1906 } 1907 1908 static ssize_t spi_slave_store(struct device *dev, 1909 struct device_attribute *attr, const char *buf, 1910 size_t count) 1911 { 1912 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 1913 dev); 1914 struct spi_device *spi; 1915 struct device *child; 1916 char name[32]; 1917 int rc; 1918 1919 rc = sscanf(buf, "%31s", name); 1920 if (rc != 1 || !name[0]) 1921 return -EINVAL; 1922 1923 child = device_find_child(&ctlr->dev, NULL, match_true); 1924 if (child) { 1925 /* Remove registered slave */ 1926 device_unregister(child); 1927 put_device(child); 1928 } 1929 1930 if (strcmp(name, "(null)")) { 1931 /* Register new slave */ 1932 spi = spi_alloc_device(ctlr); 1933 if (!spi) 1934 return -ENOMEM; 1935 1936 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 1937 1938 rc = spi_add_device(spi); 1939 if (rc) { 1940 spi_dev_put(spi); 1941 return rc; 1942 } 1943 } 1944 1945 return count; 1946 } 1947 1948 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store); 1949 1950 static struct attribute *spi_slave_attrs[] = { 1951 &dev_attr_slave.attr, 1952 NULL, 1953 }; 1954 1955 static const struct attribute_group spi_slave_group = { 1956 .attrs = spi_slave_attrs, 1957 }; 1958 1959 static const struct attribute_group *spi_slave_groups[] = { 1960 &spi_controller_statistics_group, 1961 &spi_slave_group, 1962 NULL, 1963 }; 1964 1965 static struct class spi_slave_class = { 1966 .name = "spi_slave", 1967 .owner = THIS_MODULE, 1968 .dev_release = spi_controller_release, 1969 .dev_groups = spi_slave_groups, 1970 }; 1971 #else 1972 extern struct class spi_slave_class; /* dummy */ 1973 #endif 1974 1975 /** 1976 * __spi_alloc_controller - allocate an SPI master or slave controller 1977 * @dev: the controller, possibly using the platform_bus 1978 * @size: how much zeroed driver-private data to allocate; the pointer to this 1979 * memory is in the driver_data field of the returned device, 1980 * accessible with spi_controller_get_devdata(). 1981 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 1982 * slave (true) controller 1983 * Context: can sleep 1984 * 1985 * This call is used only by SPI controller drivers, which are the 1986 * only ones directly touching chip registers. It's how they allocate 1987 * an spi_controller structure, prior to calling spi_register_controller(). 1988 * 1989 * This must be called from context that can sleep. 1990 * 1991 * The caller is responsible for assigning the bus number and initializing the 1992 * controller's methods before calling spi_register_controller(); and (after 1993 * errors adding the device) calling spi_controller_put() to prevent a memory 1994 * leak. 1995 * 1996 * Return: the SPI controller structure on success, else NULL. 1997 */ 1998 struct spi_controller *__spi_alloc_controller(struct device *dev, 1999 unsigned int size, bool slave) 2000 { 2001 struct spi_controller *ctlr; 2002 2003 if (!dev) 2004 return NULL; 2005 2006 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL); 2007 if (!ctlr) 2008 return NULL; 2009 2010 device_initialize(&ctlr->dev); 2011 ctlr->bus_num = -1; 2012 ctlr->num_chipselect = 1; 2013 ctlr->slave = slave; 2014 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2015 ctlr->dev.class = &spi_slave_class; 2016 else 2017 ctlr->dev.class = &spi_master_class; 2018 ctlr->dev.parent = dev; 2019 pm_suspend_ignore_children(&ctlr->dev, true); 2020 spi_controller_set_devdata(ctlr, &ctlr[1]); 2021 2022 return ctlr; 2023 } 2024 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2025 2026 #ifdef CONFIG_OF 2027 static int of_spi_register_master(struct spi_controller *ctlr) 2028 { 2029 int nb, i, *cs; 2030 struct device_node *np = ctlr->dev.of_node; 2031 2032 if (!np) 2033 return 0; 2034 2035 nb = of_gpio_named_count(np, "cs-gpios"); 2036 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2037 2038 /* Return error only for an incorrectly formed cs-gpios property */ 2039 if (nb == 0 || nb == -ENOENT) 2040 return 0; 2041 else if (nb < 0) 2042 return nb; 2043 2044 cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect, 2045 GFP_KERNEL); 2046 ctlr->cs_gpios = cs; 2047 2048 if (!ctlr->cs_gpios) 2049 return -ENOMEM; 2050 2051 for (i = 0; i < ctlr->num_chipselect; i++) 2052 cs[i] = -ENOENT; 2053 2054 for (i = 0; i < nb; i++) 2055 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2056 2057 return 0; 2058 } 2059 #else 2060 static int of_spi_register_master(struct spi_controller *ctlr) 2061 { 2062 return 0; 2063 } 2064 #endif 2065 2066 /** 2067 * spi_register_controller - register SPI master or slave controller 2068 * @ctlr: initialized master, originally from spi_alloc_master() or 2069 * spi_alloc_slave() 2070 * Context: can sleep 2071 * 2072 * SPI controllers connect to their drivers using some non-SPI bus, 2073 * such as the platform bus. The final stage of probe() in that code 2074 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2075 * 2076 * SPI controllers use board specific (often SOC specific) bus numbers, 2077 * and board-specific addressing for SPI devices combines those numbers 2078 * with chip select numbers. Since SPI does not directly support dynamic 2079 * device identification, boards need configuration tables telling which 2080 * chip is at which address. 2081 * 2082 * This must be called from context that can sleep. It returns zero on 2083 * success, else a negative error code (dropping the controller's refcount). 2084 * After a successful return, the caller is responsible for calling 2085 * spi_unregister_controller(). 2086 * 2087 * Return: zero on success, else a negative error code. 2088 */ 2089 int spi_register_controller(struct spi_controller *ctlr) 2090 { 2091 struct device *dev = ctlr->dev.parent; 2092 struct boardinfo *bi; 2093 int status = -ENODEV; 2094 int id, first_dynamic; 2095 2096 if (!dev) 2097 return -ENODEV; 2098 2099 if (!spi_controller_is_slave(ctlr)) { 2100 status = of_spi_register_master(ctlr); 2101 if (status) 2102 return status; 2103 } 2104 2105 /* even if it's just one always-selected device, there must 2106 * be at least one chipselect 2107 */ 2108 if (ctlr->num_chipselect == 0) 2109 return -EINVAL; 2110 /* allocate dynamic bus number using Linux idr */ 2111 if ((ctlr->bus_num < 0) && ctlr->dev.of_node) { 2112 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2113 if (id >= 0) { 2114 ctlr->bus_num = id; 2115 mutex_lock(&board_lock); 2116 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2117 ctlr->bus_num + 1, GFP_KERNEL); 2118 mutex_unlock(&board_lock); 2119 if (WARN(id < 0, "couldn't get idr")) 2120 return id == -ENOSPC ? -EBUSY : id; 2121 } 2122 } 2123 if (ctlr->bus_num < 0) { 2124 first_dynamic = of_alias_get_highest_id("spi"); 2125 if (first_dynamic < 0) 2126 first_dynamic = 0; 2127 else 2128 first_dynamic++; 2129 2130 mutex_lock(&board_lock); 2131 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2132 0, GFP_KERNEL); 2133 mutex_unlock(&board_lock); 2134 if (WARN(id < 0, "couldn't get idr")) 2135 return id; 2136 ctlr->bus_num = id; 2137 } 2138 INIT_LIST_HEAD(&ctlr->queue); 2139 spin_lock_init(&ctlr->queue_lock); 2140 spin_lock_init(&ctlr->bus_lock_spinlock); 2141 mutex_init(&ctlr->bus_lock_mutex); 2142 mutex_init(&ctlr->io_mutex); 2143 ctlr->bus_lock_flag = 0; 2144 init_completion(&ctlr->xfer_completion); 2145 if (!ctlr->max_dma_len) 2146 ctlr->max_dma_len = INT_MAX; 2147 2148 /* register the device, then userspace will see it. 2149 * registration fails if the bus ID is in use. 2150 */ 2151 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2152 status = device_add(&ctlr->dev); 2153 if (status < 0) { 2154 /* free bus id */ 2155 mutex_lock(&board_lock); 2156 idr_remove(&spi_master_idr, ctlr->bus_num); 2157 mutex_unlock(&board_lock); 2158 goto done; 2159 } 2160 dev_dbg(dev, "registered %s %s\n", 2161 spi_controller_is_slave(ctlr) ? "slave" : "master", 2162 dev_name(&ctlr->dev)); 2163 2164 /* If we're using a queued driver, start the queue */ 2165 if (ctlr->transfer) 2166 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2167 else { 2168 status = spi_controller_initialize_queue(ctlr); 2169 if (status) { 2170 device_del(&ctlr->dev); 2171 /* free bus id */ 2172 mutex_lock(&board_lock); 2173 idr_remove(&spi_master_idr, ctlr->bus_num); 2174 mutex_unlock(&board_lock); 2175 goto done; 2176 } 2177 } 2178 /* add statistics */ 2179 spin_lock_init(&ctlr->statistics.lock); 2180 2181 mutex_lock(&board_lock); 2182 list_add_tail(&ctlr->list, &spi_controller_list); 2183 list_for_each_entry(bi, &board_list, list) 2184 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2185 mutex_unlock(&board_lock); 2186 2187 /* Register devices from the device tree and ACPI */ 2188 of_register_spi_devices(ctlr); 2189 acpi_register_spi_devices(ctlr); 2190 done: 2191 return status; 2192 } 2193 EXPORT_SYMBOL_GPL(spi_register_controller); 2194 2195 static void devm_spi_unregister(struct device *dev, void *res) 2196 { 2197 spi_unregister_controller(*(struct spi_controller **)res); 2198 } 2199 2200 /** 2201 * devm_spi_register_controller - register managed SPI master or slave 2202 * controller 2203 * @dev: device managing SPI controller 2204 * @ctlr: initialized controller, originally from spi_alloc_master() or 2205 * spi_alloc_slave() 2206 * Context: can sleep 2207 * 2208 * Register a SPI device as with spi_register_controller() which will 2209 * automatically be unregistered and freed. 2210 * 2211 * Return: zero on success, else a negative error code. 2212 */ 2213 int devm_spi_register_controller(struct device *dev, 2214 struct spi_controller *ctlr) 2215 { 2216 struct spi_controller **ptr; 2217 int ret; 2218 2219 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2220 if (!ptr) 2221 return -ENOMEM; 2222 2223 ret = spi_register_controller(ctlr); 2224 if (!ret) { 2225 *ptr = ctlr; 2226 devres_add(dev, ptr); 2227 } else { 2228 devres_free(ptr); 2229 } 2230 2231 return ret; 2232 } 2233 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2234 2235 static int __unregister(struct device *dev, void *null) 2236 { 2237 spi_unregister_device(to_spi_device(dev)); 2238 return 0; 2239 } 2240 2241 /** 2242 * spi_unregister_controller - unregister SPI master or slave controller 2243 * @ctlr: the controller being unregistered 2244 * Context: can sleep 2245 * 2246 * This call is used only by SPI controller drivers, which are the 2247 * only ones directly touching chip registers. 2248 * 2249 * This must be called from context that can sleep. 2250 * 2251 * Note that this function also drops a reference to the controller. 2252 */ 2253 void spi_unregister_controller(struct spi_controller *ctlr) 2254 { 2255 struct spi_controller *found; 2256 int id = ctlr->bus_num; 2257 int dummy; 2258 2259 /* First make sure that this controller was ever added */ 2260 mutex_lock(&board_lock); 2261 found = idr_find(&spi_master_idr, id); 2262 mutex_unlock(&board_lock); 2263 if (ctlr->queued) { 2264 if (spi_destroy_queue(ctlr)) 2265 dev_err(&ctlr->dev, "queue remove failed\n"); 2266 } 2267 mutex_lock(&board_lock); 2268 list_del(&ctlr->list); 2269 mutex_unlock(&board_lock); 2270 2271 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister); 2272 device_unregister(&ctlr->dev); 2273 /* free bus id */ 2274 mutex_lock(&board_lock); 2275 if (found == ctlr) 2276 idr_remove(&spi_master_idr, id); 2277 mutex_unlock(&board_lock); 2278 } 2279 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2280 2281 int spi_controller_suspend(struct spi_controller *ctlr) 2282 { 2283 int ret; 2284 2285 /* Basically no-ops for non-queued controllers */ 2286 if (!ctlr->queued) 2287 return 0; 2288 2289 ret = spi_stop_queue(ctlr); 2290 if (ret) 2291 dev_err(&ctlr->dev, "queue stop failed\n"); 2292 2293 return ret; 2294 } 2295 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2296 2297 int spi_controller_resume(struct spi_controller *ctlr) 2298 { 2299 int ret; 2300 2301 if (!ctlr->queued) 2302 return 0; 2303 2304 ret = spi_start_queue(ctlr); 2305 if (ret) 2306 dev_err(&ctlr->dev, "queue restart failed\n"); 2307 2308 return ret; 2309 } 2310 EXPORT_SYMBOL_GPL(spi_controller_resume); 2311 2312 static int __spi_controller_match(struct device *dev, const void *data) 2313 { 2314 struct spi_controller *ctlr; 2315 const u16 *bus_num = data; 2316 2317 ctlr = container_of(dev, struct spi_controller, dev); 2318 return ctlr->bus_num == *bus_num; 2319 } 2320 2321 /** 2322 * spi_busnum_to_master - look up master associated with bus_num 2323 * @bus_num: the master's bus number 2324 * Context: can sleep 2325 * 2326 * This call may be used with devices that are registered after 2327 * arch init time. It returns a refcounted pointer to the relevant 2328 * spi_controller (which the caller must release), or NULL if there is 2329 * no such master registered. 2330 * 2331 * Return: the SPI master structure on success, else NULL. 2332 */ 2333 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2334 { 2335 struct device *dev; 2336 struct spi_controller *ctlr = NULL; 2337 2338 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2339 __spi_controller_match); 2340 if (dev) 2341 ctlr = container_of(dev, struct spi_controller, dev); 2342 /* reference got in class_find_device */ 2343 return ctlr; 2344 } 2345 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2346 2347 /*-------------------------------------------------------------------------*/ 2348 2349 /* Core methods for SPI resource management */ 2350 2351 /** 2352 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2353 * during the processing of a spi_message while using 2354 * spi_transfer_one 2355 * @spi: the spi device for which we allocate memory 2356 * @release: the release code to execute for this resource 2357 * @size: size to alloc and return 2358 * @gfp: GFP allocation flags 2359 * 2360 * Return: the pointer to the allocated data 2361 * 2362 * This may get enhanced in the future to allocate from a memory pool 2363 * of the @spi_device or @spi_controller to avoid repeated allocations. 2364 */ 2365 void *spi_res_alloc(struct spi_device *spi, 2366 spi_res_release_t release, 2367 size_t size, gfp_t gfp) 2368 { 2369 struct spi_res *sres; 2370 2371 sres = kzalloc(sizeof(*sres) + size, gfp); 2372 if (!sres) 2373 return NULL; 2374 2375 INIT_LIST_HEAD(&sres->entry); 2376 sres->release = release; 2377 2378 return sres->data; 2379 } 2380 EXPORT_SYMBOL_GPL(spi_res_alloc); 2381 2382 /** 2383 * spi_res_free - free an spi resource 2384 * @res: pointer to the custom data of a resource 2385 * 2386 */ 2387 void spi_res_free(void *res) 2388 { 2389 struct spi_res *sres = container_of(res, struct spi_res, data); 2390 2391 if (!res) 2392 return; 2393 2394 WARN_ON(!list_empty(&sres->entry)); 2395 kfree(sres); 2396 } 2397 EXPORT_SYMBOL_GPL(spi_res_free); 2398 2399 /** 2400 * spi_res_add - add a spi_res to the spi_message 2401 * @message: the spi message 2402 * @res: the spi_resource 2403 */ 2404 void spi_res_add(struct spi_message *message, void *res) 2405 { 2406 struct spi_res *sres = container_of(res, struct spi_res, data); 2407 2408 WARN_ON(!list_empty(&sres->entry)); 2409 list_add_tail(&sres->entry, &message->resources); 2410 } 2411 EXPORT_SYMBOL_GPL(spi_res_add); 2412 2413 /** 2414 * spi_res_release - release all spi resources for this message 2415 * @ctlr: the @spi_controller 2416 * @message: the @spi_message 2417 */ 2418 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2419 { 2420 struct spi_res *res; 2421 2422 while (!list_empty(&message->resources)) { 2423 res = list_last_entry(&message->resources, 2424 struct spi_res, entry); 2425 2426 if (res->release) 2427 res->release(ctlr, message, res->data); 2428 2429 list_del(&res->entry); 2430 2431 kfree(res); 2432 } 2433 } 2434 EXPORT_SYMBOL_GPL(spi_res_release); 2435 2436 /*-------------------------------------------------------------------------*/ 2437 2438 /* Core methods for spi_message alterations */ 2439 2440 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2441 struct spi_message *msg, 2442 void *res) 2443 { 2444 struct spi_replaced_transfers *rxfer = res; 2445 size_t i; 2446 2447 /* call extra callback if requested */ 2448 if (rxfer->release) 2449 rxfer->release(ctlr, msg, res); 2450 2451 /* insert replaced transfers back into the message */ 2452 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2453 2454 /* remove the formerly inserted entries */ 2455 for (i = 0; i < rxfer->inserted; i++) 2456 list_del(&rxfer->inserted_transfers[i].transfer_list); 2457 } 2458 2459 /** 2460 * spi_replace_transfers - replace transfers with several transfers 2461 * and register change with spi_message.resources 2462 * @msg: the spi_message we work upon 2463 * @xfer_first: the first spi_transfer we want to replace 2464 * @remove: number of transfers to remove 2465 * @insert: the number of transfers we want to insert instead 2466 * @release: extra release code necessary in some circumstances 2467 * @extradatasize: extra data to allocate (with alignment guarantees 2468 * of struct @spi_transfer) 2469 * @gfp: gfp flags 2470 * 2471 * Returns: pointer to @spi_replaced_transfers, 2472 * PTR_ERR(...) in case of errors. 2473 */ 2474 struct spi_replaced_transfers *spi_replace_transfers( 2475 struct spi_message *msg, 2476 struct spi_transfer *xfer_first, 2477 size_t remove, 2478 size_t insert, 2479 spi_replaced_release_t release, 2480 size_t extradatasize, 2481 gfp_t gfp) 2482 { 2483 struct spi_replaced_transfers *rxfer; 2484 struct spi_transfer *xfer; 2485 size_t i; 2486 2487 /* allocate the structure using spi_res */ 2488 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2489 insert * sizeof(struct spi_transfer) 2490 + sizeof(struct spi_replaced_transfers) 2491 + extradatasize, 2492 gfp); 2493 if (!rxfer) 2494 return ERR_PTR(-ENOMEM); 2495 2496 /* the release code to invoke before running the generic release */ 2497 rxfer->release = release; 2498 2499 /* assign extradata */ 2500 if (extradatasize) 2501 rxfer->extradata = 2502 &rxfer->inserted_transfers[insert]; 2503 2504 /* init the replaced_transfers list */ 2505 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2506 2507 /* assign the list_entry after which we should reinsert 2508 * the @replaced_transfers - it may be spi_message.messages! 2509 */ 2510 rxfer->replaced_after = xfer_first->transfer_list.prev; 2511 2512 /* remove the requested number of transfers */ 2513 for (i = 0; i < remove; i++) { 2514 /* if the entry after replaced_after it is msg->transfers 2515 * then we have been requested to remove more transfers 2516 * than are in the list 2517 */ 2518 if (rxfer->replaced_after->next == &msg->transfers) { 2519 dev_err(&msg->spi->dev, 2520 "requested to remove more spi_transfers than are available\n"); 2521 /* insert replaced transfers back into the message */ 2522 list_splice(&rxfer->replaced_transfers, 2523 rxfer->replaced_after); 2524 2525 /* free the spi_replace_transfer structure */ 2526 spi_res_free(rxfer); 2527 2528 /* and return with an error */ 2529 return ERR_PTR(-EINVAL); 2530 } 2531 2532 /* remove the entry after replaced_after from list of 2533 * transfers and add it to list of replaced_transfers 2534 */ 2535 list_move_tail(rxfer->replaced_after->next, 2536 &rxfer->replaced_transfers); 2537 } 2538 2539 /* create copy of the given xfer with identical settings 2540 * based on the first transfer to get removed 2541 */ 2542 for (i = 0; i < insert; i++) { 2543 /* we need to run in reverse order */ 2544 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 2545 2546 /* copy all spi_transfer data */ 2547 memcpy(xfer, xfer_first, sizeof(*xfer)); 2548 2549 /* add to list */ 2550 list_add(&xfer->transfer_list, rxfer->replaced_after); 2551 2552 /* clear cs_change and delay_usecs for all but the last */ 2553 if (i) { 2554 xfer->cs_change = false; 2555 xfer->delay_usecs = 0; 2556 } 2557 } 2558 2559 /* set up inserted */ 2560 rxfer->inserted = insert; 2561 2562 /* and register it with spi_res/spi_message */ 2563 spi_res_add(msg, rxfer); 2564 2565 return rxfer; 2566 } 2567 EXPORT_SYMBOL_GPL(spi_replace_transfers); 2568 2569 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 2570 struct spi_message *msg, 2571 struct spi_transfer **xferp, 2572 size_t maxsize, 2573 gfp_t gfp) 2574 { 2575 struct spi_transfer *xfer = *xferp, *xfers; 2576 struct spi_replaced_transfers *srt; 2577 size_t offset; 2578 size_t count, i; 2579 2580 /* warn once about this fact that we are splitting a transfer */ 2581 dev_warn_once(&msg->spi->dev, 2582 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n", 2583 xfer->len, maxsize); 2584 2585 /* calculate how many we have to replace */ 2586 count = DIV_ROUND_UP(xfer->len, maxsize); 2587 2588 /* create replacement */ 2589 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 2590 if (IS_ERR(srt)) 2591 return PTR_ERR(srt); 2592 xfers = srt->inserted_transfers; 2593 2594 /* now handle each of those newly inserted spi_transfers 2595 * note that the replacements spi_transfers all are preset 2596 * to the same values as *xferp, so tx_buf, rx_buf and len 2597 * are all identical (as well as most others) 2598 * so we just have to fix up len and the pointers. 2599 * 2600 * this also includes support for the depreciated 2601 * spi_message.is_dma_mapped interface 2602 */ 2603 2604 /* the first transfer just needs the length modified, so we 2605 * run it outside the loop 2606 */ 2607 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 2608 2609 /* all the others need rx_buf/tx_buf also set */ 2610 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 2611 /* update rx_buf, tx_buf and dma */ 2612 if (xfers[i].rx_buf) 2613 xfers[i].rx_buf += offset; 2614 if (xfers[i].rx_dma) 2615 xfers[i].rx_dma += offset; 2616 if (xfers[i].tx_buf) 2617 xfers[i].tx_buf += offset; 2618 if (xfers[i].tx_dma) 2619 xfers[i].tx_dma += offset; 2620 2621 /* update length */ 2622 xfers[i].len = min(maxsize, xfers[i].len - offset); 2623 } 2624 2625 /* we set up xferp to the last entry we have inserted, 2626 * so that we skip those already split transfers 2627 */ 2628 *xferp = &xfers[count - 1]; 2629 2630 /* increment statistics counters */ 2631 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 2632 transfers_split_maxsize); 2633 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 2634 transfers_split_maxsize); 2635 2636 return 0; 2637 } 2638 2639 /** 2640 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 2641 * when an individual transfer exceeds a 2642 * certain size 2643 * @ctlr: the @spi_controller for this transfer 2644 * @msg: the @spi_message to transform 2645 * @maxsize: the maximum when to apply this 2646 * @gfp: GFP allocation flags 2647 * 2648 * Return: status of transformation 2649 */ 2650 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 2651 struct spi_message *msg, 2652 size_t maxsize, 2653 gfp_t gfp) 2654 { 2655 struct spi_transfer *xfer; 2656 int ret; 2657 2658 /* iterate over the transfer_list, 2659 * but note that xfer is advanced to the last transfer inserted 2660 * to avoid checking sizes again unnecessarily (also xfer does 2661 * potentiall belong to a different list by the time the 2662 * replacement has happened 2663 */ 2664 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 2665 if (xfer->len > maxsize) { 2666 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 2667 maxsize, gfp); 2668 if (ret) 2669 return ret; 2670 } 2671 } 2672 2673 return 0; 2674 } 2675 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 2676 2677 /*-------------------------------------------------------------------------*/ 2678 2679 /* Core methods for SPI controller protocol drivers. Some of the 2680 * other core methods are currently defined as inline functions. 2681 */ 2682 2683 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 2684 u8 bits_per_word) 2685 { 2686 if (ctlr->bits_per_word_mask) { 2687 /* Only 32 bits fit in the mask */ 2688 if (bits_per_word > 32) 2689 return -EINVAL; 2690 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 2691 return -EINVAL; 2692 } 2693 2694 return 0; 2695 } 2696 2697 /** 2698 * spi_setup - setup SPI mode and clock rate 2699 * @spi: the device whose settings are being modified 2700 * Context: can sleep, and no requests are queued to the device 2701 * 2702 * SPI protocol drivers may need to update the transfer mode if the 2703 * device doesn't work with its default. They may likewise need 2704 * to update clock rates or word sizes from initial values. This function 2705 * changes those settings, and must be called from a context that can sleep. 2706 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 2707 * effect the next time the device is selected and data is transferred to 2708 * or from it. When this function returns, the spi device is deselected. 2709 * 2710 * Note that this call will fail if the protocol driver specifies an option 2711 * that the underlying controller or its driver does not support. For 2712 * example, not all hardware supports wire transfers using nine bit words, 2713 * LSB-first wire encoding, or active-high chipselects. 2714 * 2715 * Return: zero on success, else a negative error code. 2716 */ 2717 int spi_setup(struct spi_device *spi) 2718 { 2719 unsigned bad_bits, ugly_bits; 2720 int status; 2721 2722 /* check mode to prevent that DUAL and QUAD set at the same time 2723 */ 2724 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 2725 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 2726 dev_err(&spi->dev, 2727 "setup: can not select dual and quad at the same time\n"); 2728 return -EINVAL; 2729 } 2730 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 2731 */ 2732 if ((spi->mode & SPI_3WIRE) && (spi->mode & 2733 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 2734 return -EINVAL; 2735 /* help drivers fail *cleanly* when they need options 2736 * that aren't supported with their current controller 2737 */ 2738 bad_bits = spi->mode & ~spi->controller->mode_bits; 2739 ugly_bits = bad_bits & 2740 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); 2741 if (ugly_bits) { 2742 dev_warn(&spi->dev, 2743 "setup: ignoring unsupported mode bits %x\n", 2744 ugly_bits); 2745 spi->mode &= ~ugly_bits; 2746 bad_bits &= ~ugly_bits; 2747 } 2748 if (bad_bits) { 2749 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 2750 bad_bits); 2751 return -EINVAL; 2752 } 2753 2754 if (!spi->bits_per_word) 2755 spi->bits_per_word = 8; 2756 2757 status = __spi_validate_bits_per_word(spi->controller, 2758 spi->bits_per_word); 2759 if (status) 2760 return status; 2761 2762 if (!spi->max_speed_hz) 2763 spi->max_speed_hz = spi->controller->max_speed_hz; 2764 2765 if (spi->controller->setup) 2766 status = spi->controller->setup(spi); 2767 2768 spi_set_cs(spi, false); 2769 2770 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 2771 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 2772 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 2773 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 2774 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 2775 (spi->mode & SPI_LOOP) ? "loopback, " : "", 2776 spi->bits_per_word, spi->max_speed_hz, 2777 status); 2778 2779 return status; 2780 } 2781 EXPORT_SYMBOL_GPL(spi_setup); 2782 2783 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 2784 { 2785 struct spi_controller *ctlr = spi->controller; 2786 struct spi_transfer *xfer; 2787 int w_size; 2788 2789 if (list_empty(&message->transfers)) 2790 return -EINVAL; 2791 2792 /* Half-duplex links include original MicroWire, and ones with 2793 * only one data pin like SPI_3WIRE (switches direction) or where 2794 * either MOSI or MISO is missing. They can also be caused by 2795 * software limitations. 2796 */ 2797 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 2798 (spi->mode & SPI_3WIRE)) { 2799 unsigned flags = ctlr->flags; 2800 2801 list_for_each_entry(xfer, &message->transfers, transfer_list) { 2802 if (xfer->rx_buf && xfer->tx_buf) 2803 return -EINVAL; 2804 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 2805 return -EINVAL; 2806 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 2807 return -EINVAL; 2808 } 2809 } 2810 2811 /** 2812 * Set transfer bits_per_word and max speed as spi device default if 2813 * it is not set for this transfer. 2814 * Set transfer tx_nbits and rx_nbits as single transfer default 2815 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 2816 */ 2817 message->frame_length = 0; 2818 list_for_each_entry(xfer, &message->transfers, transfer_list) { 2819 message->frame_length += xfer->len; 2820 if (!xfer->bits_per_word) 2821 xfer->bits_per_word = spi->bits_per_word; 2822 2823 if (!xfer->speed_hz) 2824 xfer->speed_hz = spi->max_speed_hz; 2825 if (!xfer->speed_hz) 2826 xfer->speed_hz = ctlr->max_speed_hz; 2827 2828 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 2829 xfer->speed_hz = ctlr->max_speed_hz; 2830 2831 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 2832 return -EINVAL; 2833 2834 /* 2835 * SPI transfer length should be multiple of SPI word size 2836 * where SPI word size should be power-of-two multiple 2837 */ 2838 if (xfer->bits_per_word <= 8) 2839 w_size = 1; 2840 else if (xfer->bits_per_word <= 16) 2841 w_size = 2; 2842 else 2843 w_size = 4; 2844 2845 /* No partial transfers accepted */ 2846 if (xfer->len % w_size) 2847 return -EINVAL; 2848 2849 if (xfer->speed_hz && ctlr->min_speed_hz && 2850 xfer->speed_hz < ctlr->min_speed_hz) 2851 return -EINVAL; 2852 2853 if (xfer->tx_buf && !xfer->tx_nbits) 2854 xfer->tx_nbits = SPI_NBITS_SINGLE; 2855 if (xfer->rx_buf && !xfer->rx_nbits) 2856 xfer->rx_nbits = SPI_NBITS_SINGLE; 2857 /* check transfer tx/rx_nbits: 2858 * 1. check the value matches one of single, dual and quad 2859 * 2. check tx/rx_nbits match the mode in spi_device 2860 */ 2861 if (xfer->tx_buf) { 2862 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 2863 xfer->tx_nbits != SPI_NBITS_DUAL && 2864 xfer->tx_nbits != SPI_NBITS_QUAD) 2865 return -EINVAL; 2866 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 2867 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 2868 return -EINVAL; 2869 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 2870 !(spi->mode & SPI_TX_QUAD)) 2871 return -EINVAL; 2872 } 2873 /* check transfer rx_nbits */ 2874 if (xfer->rx_buf) { 2875 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 2876 xfer->rx_nbits != SPI_NBITS_DUAL && 2877 xfer->rx_nbits != SPI_NBITS_QUAD) 2878 return -EINVAL; 2879 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 2880 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 2881 return -EINVAL; 2882 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 2883 !(spi->mode & SPI_RX_QUAD)) 2884 return -EINVAL; 2885 } 2886 } 2887 2888 message->status = -EINPROGRESS; 2889 2890 return 0; 2891 } 2892 2893 static int __spi_async(struct spi_device *spi, struct spi_message *message) 2894 { 2895 struct spi_controller *ctlr = spi->controller; 2896 2897 message->spi = spi; 2898 2899 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 2900 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 2901 2902 trace_spi_message_submit(message); 2903 2904 return ctlr->transfer(spi, message); 2905 } 2906 2907 /** 2908 * spi_async - asynchronous SPI transfer 2909 * @spi: device with which data will be exchanged 2910 * @message: describes the data transfers, including completion callback 2911 * Context: any (irqs may be blocked, etc) 2912 * 2913 * This call may be used in_irq and other contexts which can't sleep, 2914 * as well as from task contexts which can sleep. 2915 * 2916 * The completion callback is invoked in a context which can't sleep. 2917 * Before that invocation, the value of message->status is undefined. 2918 * When the callback is issued, message->status holds either zero (to 2919 * indicate complete success) or a negative error code. After that 2920 * callback returns, the driver which issued the transfer request may 2921 * deallocate the associated memory; it's no longer in use by any SPI 2922 * core or controller driver code. 2923 * 2924 * Note that although all messages to a spi_device are handled in 2925 * FIFO order, messages may go to different devices in other orders. 2926 * Some device might be higher priority, or have various "hard" access 2927 * time requirements, for example. 2928 * 2929 * On detection of any fault during the transfer, processing of 2930 * the entire message is aborted, and the device is deselected. 2931 * Until returning from the associated message completion callback, 2932 * no other spi_message queued to that device will be processed. 2933 * (This rule applies equally to all the synchronous transfer calls, 2934 * which are wrappers around this core asynchronous primitive.) 2935 * 2936 * Return: zero on success, else a negative error code. 2937 */ 2938 int spi_async(struct spi_device *spi, struct spi_message *message) 2939 { 2940 struct spi_controller *ctlr = spi->controller; 2941 int ret; 2942 unsigned long flags; 2943 2944 ret = __spi_validate(spi, message); 2945 if (ret != 0) 2946 return ret; 2947 2948 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 2949 2950 if (ctlr->bus_lock_flag) 2951 ret = -EBUSY; 2952 else 2953 ret = __spi_async(spi, message); 2954 2955 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 2956 2957 return ret; 2958 } 2959 EXPORT_SYMBOL_GPL(spi_async); 2960 2961 /** 2962 * spi_async_locked - version of spi_async with exclusive bus usage 2963 * @spi: device with which data will be exchanged 2964 * @message: describes the data transfers, including completion callback 2965 * Context: any (irqs may be blocked, etc) 2966 * 2967 * This call may be used in_irq and other contexts which can't sleep, 2968 * as well as from task contexts which can sleep. 2969 * 2970 * The completion callback is invoked in a context which can't sleep. 2971 * Before that invocation, the value of message->status is undefined. 2972 * When the callback is issued, message->status holds either zero (to 2973 * indicate complete success) or a negative error code. After that 2974 * callback returns, the driver which issued the transfer request may 2975 * deallocate the associated memory; it's no longer in use by any SPI 2976 * core or controller driver code. 2977 * 2978 * Note that although all messages to a spi_device are handled in 2979 * FIFO order, messages may go to different devices in other orders. 2980 * Some device might be higher priority, or have various "hard" access 2981 * time requirements, for example. 2982 * 2983 * On detection of any fault during the transfer, processing of 2984 * the entire message is aborted, and the device is deselected. 2985 * Until returning from the associated message completion callback, 2986 * no other spi_message queued to that device will be processed. 2987 * (This rule applies equally to all the synchronous transfer calls, 2988 * which are wrappers around this core asynchronous primitive.) 2989 * 2990 * Return: zero on success, else a negative error code. 2991 */ 2992 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 2993 { 2994 struct spi_controller *ctlr = spi->controller; 2995 int ret; 2996 unsigned long flags; 2997 2998 ret = __spi_validate(spi, message); 2999 if (ret != 0) 3000 return ret; 3001 3002 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3003 3004 ret = __spi_async(spi, message); 3005 3006 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3007 3008 return ret; 3009 3010 } 3011 EXPORT_SYMBOL_GPL(spi_async_locked); 3012 3013 3014 int spi_flash_read(struct spi_device *spi, 3015 struct spi_flash_read_message *msg) 3016 3017 { 3018 struct spi_controller *master = spi->controller; 3019 struct device *rx_dev = NULL; 3020 int ret; 3021 3022 if ((msg->opcode_nbits == SPI_NBITS_DUAL || 3023 msg->addr_nbits == SPI_NBITS_DUAL) && 3024 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3025 return -EINVAL; 3026 if ((msg->opcode_nbits == SPI_NBITS_QUAD || 3027 msg->addr_nbits == SPI_NBITS_QUAD) && 3028 !(spi->mode & SPI_TX_QUAD)) 3029 return -EINVAL; 3030 if (msg->data_nbits == SPI_NBITS_DUAL && 3031 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3032 return -EINVAL; 3033 if (msg->data_nbits == SPI_NBITS_QUAD && 3034 !(spi->mode & SPI_RX_QUAD)) 3035 return -EINVAL; 3036 3037 if (master->auto_runtime_pm) { 3038 ret = pm_runtime_get_sync(master->dev.parent); 3039 if (ret < 0) { 3040 dev_err(&master->dev, "Failed to power device: %d\n", 3041 ret); 3042 return ret; 3043 } 3044 } 3045 3046 mutex_lock(&master->bus_lock_mutex); 3047 mutex_lock(&master->io_mutex); 3048 if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) { 3049 rx_dev = master->dma_rx->device->dev; 3050 ret = spi_map_buf(master, rx_dev, &msg->rx_sg, 3051 msg->buf, msg->len, 3052 DMA_FROM_DEVICE); 3053 if (!ret) 3054 msg->cur_msg_mapped = true; 3055 } 3056 ret = master->spi_flash_read(spi, msg); 3057 if (msg->cur_msg_mapped) 3058 spi_unmap_buf(master, rx_dev, &msg->rx_sg, 3059 DMA_FROM_DEVICE); 3060 mutex_unlock(&master->io_mutex); 3061 mutex_unlock(&master->bus_lock_mutex); 3062 3063 if (master->auto_runtime_pm) 3064 pm_runtime_put(master->dev.parent); 3065 3066 return ret; 3067 } 3068 EXPORT_SYMBOL_GPL(spi_flash_read); 3069 3070 /*-------------------------------------------------------------------------*/ 3071 3072 /* Utility methods for SPI protocol drivers, layered on 3073 * top of the core. Some other utility methods are defined as 3074 * inline functions. 3075 */ 3076 3077 static void spi_complete(void *arg) 3078 { 3079 complete(arg); 3080 } 3081 3082 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3083 { 3084 DECLARE_COMPLETION_ONSTACK(done); 3085 int status; 3086 struct spi_controller *ctlr = spi->controller; 3087 unsigned long flags; 3088 3089 status = __spi_validate(spi, message); 3090 if (status != 0) 3091 return status; 3092 3093 message->complete = spi_complete; 3094 message->context = &done; 3095 message->spi = spi; 3096 3097 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3098 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3099 3100 /* If we're not using the legacy transfer method then we will 3101 * try to transfer in the calling context so special case. 3102 * This code would be less tricky if we could remove the 3103 * support for driver implemented message queues. 3104 */ 3105 if (ctlr->transfer == spi_queued_transfer) { 3106 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3107 3108 trace_spi_message_submit(message); 3109 3110 status = __spi_queued_transfer(spi, message, false); 3111 3112 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3113 } else { 3114 status = spi_async_locked(spi, message); 3115 } 3116 3117 if (status == 0) { 3118 /* Push out the messages in the calling context if we 3119 * can. 3120 */ 3121 if (ctlr->transfer == spi_queued_transfer) { 3122 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3123 spi_sync_immediate); 3124 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3125 spi_sync_immediate); 3126 __spi_pump_messages(ctlr, false); 3127 } 3128 3129 wait_for_completion(&done); 3130 status = message->status; 3131 } 3132 message->context = NULL; 3133 return status; 3134 } 3135 3136 /** 3137 * spi_sync - blocking/synchronous SPI data transfers 3138 * @spi: device with which data will be exchanged 3139 * @message: describes the data transfers 3140 * Context: can sleep 3141 * 3142 * This call may only be used from a context that may sleep. The sleep 3143 * is non-interruptible, and has no timeout. Low-overhead controller 3144 * drivers may DMA directly into and out of the message buffers. 3145 * 3146 * Note that the SPI device's chip select is active during the message, 3147 * and then is normally disabled between messages. Drivers for some 3148 * frequently-used devices may want to minimize costs of selecting a chip, 3149 * by leaving it selected in anticipation that the next message will go 3150 * to the same chip. (That may increase power usage.) 3151 * 3152 * Also, the caller is guaranteeing that the memory associated with the 3153 * message will not be freed before this call returns. 3154 * 3155 * Return: zero on success, else a negative error code. 3156 */ 3157 int spi_sync(struct spi_device *spi, struct spi_message *message) 3158 { 3159 int ret; 3160 3161 mutex_lock(&spi->controller->bus_lock_mutex); 3162 ret = __spi_sync(spi, message); 3163 mutex_unlock(&spi->controller->bus_lock_mutex); 3164 3165 return ret; 3166 } 3167 EXPORT_SYMBOL_GPL(spi_sync); 3168 3169 /** 3170 * spi_sync_locked - version of spi_sync with exclusive bus usage 3171 * @spi: device with which data will be exchanged 3172 * @message: describes the data transfers 3173 * Context: can sleep 3174 * 3175 * This call may only be used from a context that may sleep. The sleep 3176 * is non-interruptible, and has no timeout. Low-overhead controller 3177 * drivers may DMA directly into and out of the message buffers. 3178 * 3179 * This call should be used by drivers that require exclusive access to the 3180 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3181 * be released by a spi_bus_unlock call when the exclusive access is over. 3182 * 3183 * Return: zero on success, else a negative error code. 3184 */ 3185 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3186 { 3187 return __spi_sync(spi, message); 3188 } 3189 EXPORT_SYMBOL_GPL(spi_sync_locked); 3190 3191 /** 3192 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3193 * @ctlr: SPI bus master that should be locked for exclusive bus access 3194 * Context: can sleep 3195 * 3196 * This call may only be used from a context that may sleep. The sleep 3197 * is non-interruptible, and has no timeout. 3198 * 3199 * This call should be used by drivers that require exclusive access to the 3200 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3201 * exclusive access is over. Data transfer must be done by spi_sync_locked 3202 * and spi_async_locked calls when the SPI bus lock is held. 3203 * 3204 * Return: always zero. 3205 */ 3206 int spi_bus_lock(struct spi_controller *ctlr) 3207 { 3208 unsigned long flags; 3209 3210 mutex_lock(&ctlr->bus_lock_mutex); 3211 3212 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3213 ctlr->bus_lock_flag = 1; 3214 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3215 3216 /* mutex remains locked until spi_bus_unlock is called */ 3217 3218 return 0; 3219 } 3220 EXPORT_SYMBOL_GPL(spi_bus_lock); 3221 3222 /** 3223 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3224 * @ctlr: SPI bus master that was locked for exclusive bus access 3225 * Context: can sleep 3226 * 3227 * This call may only be used from a context that may sleep. The sleep 3228 * is non-interruptible, and has no timeout. 3229 * 3230 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3231 * call. 3232 * 3233 * Return: always zero. 3234 */ 3235 int spi_bus_unlock(struct spi_controller *ctlr) 3236 { 3237 ctlr->bus_lock_flag = 0; 3238 3239 mutex_unlock(&ctlr->bus_lock_mutex); 3240 3241 return 0; 3242 } 3243 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3244 3245 /* portable code must never pass more than 32 bytes */ 3246 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3247 3248 static u8 *buf; 3249 3250 /** 3251 * spi_write_then_read - SPI synchronous write followed by read 3252 * @spi: device with which data will be exchanged 3253 * @txbuf: data to be written (need not be dma-safe) 3254 * @n_tx: size of txbuf, in bytes 3255 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3256 * @n_rx: size of rxbuf, in bytes 3257 * Context: can sleep 3258 * 3259 * This performs a half duplex MicroWire style transaction with the 3260 * device, sending txbuf and then reading rxbuf. The return value 3261 * is zero for success, else a negative errno status code. 3262 * This call may only be used from a context that may sleep. 3263 * 3264 * Parameters to this routine are always copied using a small buffer; 3265 * portable code should never use this for more than 32 bytes. 3266 * Performance-sensitive or bulk transfer code should instead use 3267 * spi_{async,sync}() calls with dma-safe buffers. 3268 * 3269 * Return: zero on success, else a negative error code. 3270 */ 3271 int spi_write_then_read(struct spi_device *spi, 3272 const void *txbuf, unsigned n_tx, 3273 void *rxbuf, unsigned n_rx) 3274 { 3275 static DEFINE_MUTEX(lock); 3276 3277 int status; 3278 struct spi_message message; 3279 struct spi_transfer x[2]; 3280 u8 *local_buf; 3281 3282 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3283 * copying here, (as a pure convenience thing), but we can 3284 * keep heap costs out of the hot path unless someone else is 3285 * using the pre-allocated buffer or the transfer is too large. 3286 */ 3287 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3288 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3289 GFP_KERNEL | GFP_DMA); 3290 if (!local_buf) 3291 return -ENOMEM; 3292 } else { 3293 local_buf = buf; 3294 } 3295 3296 spi_message_init(&message); 3297 memset(x, 0, sizeof(x)); 3298 if (n_tx) { 3299 x[0].len = n_tx; 3300 spi_message_add_tail(&x[0], &message); 3301 } 3302 if (n_rx) { 3303 x[1].len = n_rx; 3304 spi_message_add_tail(&x[1], &message); 3305 } 3306 3307 memcpy(local_buf, txbuf, n_tx); 3308 x[0].tx_buf = local_buf; 3309 x[1].rx_buf = local_buf + n_tx; 3310 3311 /* do the i/o */ 3312 status = spi_sync(spi, &message); 3313 if (status == 0) 3314 memcpy(rxbuf, x[1].rx_buf, n_rx); 3315 3316 if (x[0].tx_buf == buf) 3317 mutex_unlock(&lock); 3318 else 3319 kfree(local_buf); 3320 3321 return status; 3322 } 3323 EXPORT_SYMBOL_GPL(spi_write_then_read); 3324 3325 /*-------------------------------------------------------------------------*/ 3326 3327 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3328 static int __spi_of_device_match(struct device *dev, void *data) 3329 { 3330 return dev->of_node == data; 3331 } 3332 3333 /* must call put_device() when done with returned spi_device device */ 3334 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3335 { 3336 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 3337 __spi_of_device_match); 3338 return dev ? to_spi_device(dev) : NULL; 3339 } 3340 3341 static int __spi_of_controller_match(struct device *dev, const void *data) 3342 { 3343 return dev->of_node == data; 3344 } 3345 3346 /* the spi controllers are not using spi_bus, so we find it with another way */ 3347 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3348 { 3349 struct device *dev; 3350 3351 dev = class_find_device(&spi_master_class, NULL, node, 3352 __spi_of_controller_match); 3353 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3354 dev = class_find_device(&spi_slave_class, NULL, node, 3355 __spi_of_controller_match); 3356 if (!dev) 3357 return NULL; 3358 3359 /* reference got in class_find_device */ 3360 return container_of(dev, struct spi_controller, dev); 3361 } 3362 3363 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3364 void *arg) 3365 { 3366 struct of_reconfig_data *rd = arg; 3367 struct spi_controller *ctlr; 3368 struct spi_device *spi; 3369 3370 switch (of_reconfig_get_state_change(action, arg)) { 3371 case OF_RECONFIG_CHANGE_ADD: 3372 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3373 if (ctlr == NULL) 3374 return NOTIFY_OK; /* not for us */ 3375 3376 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3377 put_device(&ctlr->dev); 3378 return NOTIFY_OK; 3379 } 3380 3381 spi = of_register_spi_device(ctlr, rd->dn); 3382 put_device(&ctlr->dev); 3383 3384 if (IS_ERR(spi)) { 3385 pr_err("%s: failed to create for '%pOF'\n", 3386 __func__, rd->dn); 3387 of_node_clear_flag(rd->dn, OF_POPULATED); 3388 return notifier_from_errno(PTR_ERR(spi)); 3389 } 3390 break; 3391 3392 case OF_RECONFIG_CHANGE_REMOVE: 3393 /* already depopulated? */ 3394 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3395 return NOTIFY_OK; 3396 3397 /* find our device by node */ 3398 spi = of_find_spi_device_by_node(rd->dn); 3399 if (spi == NULL) 3400 return NOTIFY_OK; /* no? not meant for us */ 3401 3402 /* unregister takes one ref away */ 3403 spi_unregister_device(spi); 3404 3405 /* and put the reference of the find */ 3406 put_device(&spi->dev); 3407 break; 3408 } 3409 3410 return NOTIFY_OK; 3411 } 3412 3413 static struct notifier_block spi_of_notifier = { 3414 .notifier_call = of_spi_notify, 3415 }; 3416 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3417 extern struct notifier_block spi_of_notifier; 3418 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3419 3420 #if IS_ENABLED(CONFIG_ACPI) 3421 static int spi_acpi_controller_match(struct device *dev, const void *data) 3422 { 3423 return ACPI_COMPANION(dev->parent) == data; 3424 } 3425 3426 static int spi_acpi_device_match(struct device *dev, void *data) 3427 { 3428 return ACPI_COMPANION(dev) == data; 3429 } 3430 3431 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 3432 { 3433 struct device *dev; 3434 3435 dev = class_find_device(&spi_master_class, NULL, adev, 3436 spi_acpi_controller_match); 3437 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3438 dev = class_find_device(&spi_slave_class, NULL, adev, 3439 spi_acpi_controller_match); 3440 if (!dev) 3441 return NULL; 3442 3443 return container_of(dev, struct spi_controller, dev); 3444 } 3445 3446 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 3447 { 3448 struct device *dev; 3449 3450 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match); 3451 3452 return dev ? to_spi_device(dev) : NULL; 3453 } 3454 3455 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 3456 void *arg) 3457 { 3458 struct acpi_device *adev = arg; 3459 struct spi_controller *ctlr; 3460 struct spi_device *spi; 3461 3462 switch (value) { 3463 case ACPI_RECONFIG_DEVICE_ADD: 3464 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 3465 if (!ctlr) 3466 break; 3467 3468 acpi_register_spi_device(ctlr, adev); 3469 put_device(&ctlr->dev); 3470 break; 3471 case ACPI_RECONFIG_DEVICE_REMOVE: 3472 if (!acpi_device_enumerated(adev)) 3473 break; 3474 3475 spi = acpi_spi_find_device_by_adev(adev); 3476 if (!spi) 3477 break; 3478 3479 spi_unregister_device(spi); 3480 put_device(&spi->dev); 3481 break; 3482 } 3483 3484 return NOTIFY_OK; 3485 } 3486 3487 static struct notifier_block spi_acpi_notifier = { 3488 .notifier_call = acpi_spi_notify, 3489 }; 3490 #else 3491 extern struct notifier_block spi_acpi_notifier; 3492 #endif 3493 3494 static int __init spi_init(void) 3495 { 3496 int status; 3497 3498 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 3499 if (!buf) { 3500 status = -ENOMEM; 3501 goto err0; 3502 } 3503 3504 status = bus_register(&spi_bus_type); 3505 if (status < 0) 3506 goto err1; 3507 3508 status = class_register(&spi_master_class); 3509 if (status < 0) 3510 goto err2; 3511 3512 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 3513 status = class_register(&spi_slave_class); 3514 if (status < 0) 3515 goto err3; 3516 } 3517 3518 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 3519 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 3520 if (IS_ENABLED(CONFIG_ACPI)) 3521 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 3522 3523 return 0; 3524 3525 err3: 3526 class_unregister(&spi_master_class); 3527 err2: 3528 bus_unregister(&spi_bus_type); 3529 err1: 3530 kfree(buf); 3531 buf = NULL; 3532 err0: 3533 return status; 3534 } 3535 3536 /* board_info is normally registered in arch_initcall(), 3537 * but even essential drivers wait till later 3538 * 3539 * REVISIT only boardinfo really needs static linking. the rest (device and 3540 * driver registration) _could_ be dynamically linked (modular) ... costs 3541 * include needing to have boardinfo data structures be much more public. 3542 */ 3543 postcore_initcall(spi_init); 3544 3545