xref: /openbmc/linux/drivers/spi/spi.c (revision caf58a2c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	spi_controller_put(spi->controller);
51 	kfree(spi->driver_override);
52 	kfree(spi);
53 }
54 
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 	const struct spi_device	*spi = to_spi_device(dev);
59 	int len;
60 
61 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 	if (len != -ENODEV)
63 		return len;
64 
65 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68 
69 static ssize_t driver_override_store(struct device *dev,
70 				     struct device_attribute *a,
71 				     const char *buf, size_t count)
72 {
73 	struct spi_device *spi = to_spi_device(dev);
74 	const char *end = memchr(buf, '\n', count);
75 	const size_t len = end ? end - buf : count;
76 	const char *driver_override, *old;
77 
78 	/* We need to keep extra room for a newline when displaying value */
79 	if (len >= (PAGE_SIZE - 1))
80 		return -EINVAL;
81 
82 	driver_override = kstrndup(buf, len, GFP_KERNEL);
83 	if (!driver_override)
84 		return -ENOMEM;
85 
86 	device_lock(dev);
87 	old = spi->driver_override;
88 	if (len) {
89 		spi->driver_override = driver_override;
90 	} else {
91 		/* Empty string, disable driver override */
92 		spi->driver_override = NULL;
93 		kfree(driver_override);
94 	}
95 	device_unlock(dev);
96 	kfree(old);
97 
98 	return count;
99 }
100 
101 static ssize_t driver_override_show(struct device *dev,
102 				    struct device_attribute *a, char *buf)
103 {
104 	const struct spi_device *spi = to_spi_device(dev);
105 	ssize_t len;
106 
107 	device_lock(dev);
108 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 	device_unlock(dev);
110 	return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113 
114 #define SPI_STATISTICS_ATTRS(field, file)				\
115 static ssize_t spi_controller_##field##_show(struct device *dev,	\
116 					     struct device_attribute *attr, \
117 					     char *buf)			\
118 {									\
119 	struct spi_controller *ctlr = container_of(dev,			\
120 					 struct spi_controller, dev);	\
121 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
122 }									\
123 static struct device_attribute dev_attr_spi_controller_##field = {	\
124 	.attr = { .name = file, .mode = 0444 },				\
125 	.show = spi_controller_##field##_show,				\
126 };									\
127 static ssize_t spi_device_##field##_show(struct device *dev,		\
128 					 struct device_attribute *attr,	\
129 					char *buf)			\
130 {									\
131 	struct spi_device *spi = to_spi_device(dev);			\
132 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
133 }									\
134 static struct device_attribute dev_attr_spi_device_##field = {		\
135 	.attr = { .name = file, .mode = 0444 },				\
136 	.show = spi_device_##field##_show,				\
137 }
138 
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 					    char *buf)			\
142 {									\
143 	unsigned long flags;						\
144 	ssize_t len;							\
145 	spin_lock_irqsave(&stat->lock, flags);				\
146 	len = sprintf(buf, format_string, stat->field);			\
147 	spin_unlock_irqrestore(&stat->lock, flags);			\
148 	return len;							\
149 }									\
150 SPI_STATISTICS_ATTRS(name, file)
151 
152 #define SPI_STATISTICS_SHOW(field, format_string)			\
153 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
154 				 field, format_string)
155 
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160 
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164 
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168 
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
170 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
171 				 "transfer_bytes_histo_" number,	\
172 				 transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190 
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192 
193 static struct attribute *spi_dev_attrs[] = {
194 	&dev_attr_modalias.attr,
195 	&dev_attr_driver_override.attr,
196 	NULL,
197 };
198 
199 static const struct attribute_group spi_dev_group = {
200 	.attrs  = spi_dev_attrs,
201 };
202 
203 static struct attribute *spi_device_statistics_attrs[] = {
204 	&dev_attr_spi_device_messages.attr,
205 	&dev_attr_spi_device_transfers.attr,
206 	&dev_attr_spi_device_errors.attr,
207 	&dev_attr_spi_device_timedout.attr,
208 	&dev_attr_spi_device_spi_sync.attr,
209 	&dev_attr_spi_device_spi_sync_immediate.attr,
210 	&dev_attr_spi_device_spi_async.attr,
211 	&dev_attr_spi_device_bytes.attr,
212 	&dev_attr_spi_device_bytes_rx.attr,
213 	&dev_attr_spi_device_bytes_tx.attr,
214 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
231 	&dev_attr_spi_device_transfers_split_maxsize.attr,
232 	NULL,
233 };
234 
235 static const struct attribute_group spi_device_statistics_group = {
236 	.name  = "statistics",
237 	.attrs  = spi_device_statistics_attrs,
238 };
239 
240 static const struct attribute_group *spi_dev_groups[] = {
241 	&spi_dev_group,
242 	&spi_device_statistics_group,
243 	NULL,
244 };
245 
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 	&dev_attr_spi_controller_messages.attr,
248 	&dev_attr_spi_controller_transfers.attr,
249 	&dev_attr_spi_controller_errors.attr,
250 	&dev_attr_spi_controller_timedout.attr,
251 	&dev_attr_spi_controller_spi_sync.attr,
252 	&dev_attr_spi_controller_spi_sync_immediate.attr,
253 	&dev_attr_spi_controller_spi_async.attr,
254 	&dev_attr_spi_controller_bytes.attr,
255 	&dev_attr_spi_controller_bytes_rx.attr,
256 	&dev_attr_spi_controller_bytes_tx.attr,
257 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
275 	NULL,
276 };
277 
278 static const struct attribute_group spi_controller_statistics_group = {
279 	.name  = "statistics",
280 	.attrs  = spi_controller_statistics_attrs,
281 };
282 
283 static const struct attribute_group *spi_master_groups[] = {
284 	&spi_controller_statistics_group,
285 	NULL,
286 };
287 
288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 				       struct spi_transfer *xfer,
290 				       struct spi_controller *ctlr)
291 {
292 	unsigned long flags;
293 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294 
295 	if (l2len < 0)
296 		l2len = 0;
297 
298 	spin_lock_irqsave(&stats->lock, flags);
299 
300 	stats->transfers++;
301 	stats->transfer_bytes_histo[l2len]++;
302 
303 	stats->bytes += xfer->len;
304 	if ((xfer->tx_buf) &&
305 	    (xfer->tx_buf != ctlr->dummy_tx))
306 		stats->bytes_tx += xfer->len;
307 	if ((xfer->rx_buf) &&
308 	    (xfer->rx_buf != ctlr->dummy_rx))
309 		stats->bytes_rx += xfer->len;
310 
311 	spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314 
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316  * and the sysfs version makes coldplug work too.
317  */
318 
319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320 						const struct spi_device *sdev)
321 {
322 	while (id->name[0]) {
323 		if (!strcmp(sdev->modalias, id->name))
324 			return id;
325 		id++;
326 	}
327 	return NULL;
328 }
329 
330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333 
334 	return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337 
338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340 	const struct spi_device	*spi = to_spi_device(dev);
341 	const struct spi_driver	*sdrv = to_spi_driver(drv);
342 
343 	/* Check override first, and if set, only use the named driver */
344 	if (spi->driver_override)
345 		return strcmp(spi->driver_override, drv->name) == 0;
346 
347 	/* Attempt an OF style match */
348 	if (of_driver_match_device(dev, drv))
349 		return 1;
350 
351 	/* Then try ACPI */
352 	if (acpi_driver_match_device(dev, drv))
353 		return 1;
354 
355 	if (sdrv->id_table)
356 		return !!spi_match_id(sdrv->id_table, spi);
357 
358 	return strcmp(spi->modalias, drv->name) == 0;
359 }
360 
361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363 	const struct spi_device		*spi = to_spi_device(dev);
364 	int rc;
365 
366 	rc = of_device_uevent_modalias(dev, env);
367 	if (rc != -ENODEV)
368 		return rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 static int spi_probe(struct device *dev)
378 {
379 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
380 	struct spi_device		*spi = to_spi_device(dev);
381 	int ret;
382 
383 	ret = of_clk_set_defaults(dev->of_node, false);
384 	if (ret)
385 		return ret;
386 
387 	if (dev->of_node) {
388 		spi->irq = of_irq_get(dev->of_node, 0);
389 		if (spi->irq == -EPROBE_DEFER)
390 			return -EPROBE_DEFER;
391 		if (spi->irq < 0)
392 			spi->irq = 0;
393 	}
394 
395 	ret = dev_pm_domain_attach(dev, true);
396 	if (ret)
397 		return ret;
398 
399 	if (sdrv->probe) {
400 		ret = sdrv->probe(spi);
401 		if (ret)
402 			dev_pm_domain_detach(dev, true);
403 	}
404 
405 	return ret;
406 }
407 
408 static void spi_remove(struct device *dev)
409 {
410 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
411 
412 	if (sdrv->remove) {
413 		int ret;
414 
415 		ret = sdrv->remove(to_spi_device(dev));
416 		if (ret)
417 			dev_warn(dev,
418 				 "Failed to unbind driver (%pe), ignoring\n",
419 				 ERR_PTR(ret));
420 	}
421 
422 	dev_pm_domain_detach(dev, true);
423 }
424 
425 static void spi_shutdown(struct device *dev)
426 {
427 	if (dev->driver) {
428 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
429 
430 		if (sdrv->shutdown)
431 			sdrv->shutdown(to_spi_device(dev));
432 	}
433 }
434 
435 struct bus_type spi_bus_type = {
436 	.name		= "spi",
437 	.dev_groups	= spi_dev_groups,
438 	.match		= spi_match_device,
439 	.uevent		= spi_uevent,
440 	.probe		= spi_probe,
441 	.remove		= spi_remove,
442 	.shutdown	= spi_shutdown,
443 };
444 EXPORT_SYMBOL_GPL(spi_bus_type);
445 
446 /**
447  * __spi_register_driver - register a SPI driver
448  * @owner: owner module of the driver to register
449  * @sdrv: the driver to register
450  * Context: can sleep
451  *
452  * Return: zero on success, else a negative error code.
453  */
454 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
455 {
456 	sdrv->driver.owner = owner;
457 	sdrv->driver.bus = &spi_bus_type;
458 	return driver_register(&sdrv->driver);
459 }
460 EXPORT_SYMBOL_GPL(__spi_register_driver);
461 
462 /*-------------------------------------------------------------------------*/
463 
464 /* SPI devices should normally not be created by SPI device drivers; that
465  * would make them board-specific.  Similarly with SPI controller drivers.
466  * Device registration normally goes into like arch/.../mach.../board-YYY.c
467  * with other readonly (flashable) information about mainboard devices.
468  */
469 
470 struct boardinfo {
471 	struct list_head	list;
472 	struct spi_board_info	board_info;
473 };
474 
475 static LIST_HEAD(board_list);
476 static LIST_HEAD(spi_controller_list);
477 
478 /*
479  * Used to protect add/del operation for board_info list and
480  * spi_controller list, and their matching process
481  * also used to protect object of type struct idr
482  */
483 static DEFINE_MUTEX(board_lock);
484 
485 /*
486  * Prevents addition of devices with same chip select and
487  * addition of devices below an unregistering controller.
488  */
489 static DEFINE_MUTEX(spi_add_lock);
490 
491 /**
492  * spi_alloc_device - Allocate a new SPI device
493  * @ctlr: Controller to which device is connected
494  * Context: can sleep
495  *
496  * Allows a driver to allocate and initialize a spi_device without
497  * registering it immediately.  This allows a driver to directly
498  * fill the spi_device with device parameters before calling
499  * spi_add_device() on it.
500  *
501  * Caller is responsible to call spi_add_device() on the returned
502  * spi_device structure to add it to the SPI controller.  If the caller
503  * needs to discard the spi_device without adding it, then it should
504  * call spi_dev_put() on it.
505  *
506  * Return: a pointer to the new device, or NULL.
507  */
508 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
509 {
510 	struct spi_device	*spi;
511 
512 	if (!spi_controller_get(ctlr))
513 		return NULL;
514 
515 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
516 	if (!spi) {
517 		spi_controller_put(ctlr);
518 		return NULL;
519 	}
520 
521 	spi->master = spi->controller = ctlr;
522 	spi->dev.parent = &ctlr->dev;
523 	spi->dev.bus = &spi_bus_type;
524 	spi->dev.release = spidev_release;
525 	spi->cs_gpio = -ENOENT;
526 	spi->mode = ctlr->buswidth_override_bits;
527 
528 	spin_lock_init(&spi->statistics.lock);
529 
530 	device_initialize(&spi->dev);
531 	return spi;
532 }
533 EXPORT_SYMBOL_GPL(spi_alloc_device);
534 
535 static void spi_dev_set_name(struct spi_device *spi)
536 {
537 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
538 
539 	if (adev) {
540 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
541 		return;
542 	}
543 
544 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
545 		     spi->chip_select);
546 }
547 
548 static int spi_dev_check(struct device *dev, void *data)
549 {
550 	struct spi_device *spi = to_spi_device(dev);
551 	struct spi_device *new_spi = data;
552 
553 	if (spi->controller == new_spi->controller &&
554 	    spi->chip_select == new_spi->chip_select)
555 		return -EBUSY;
556 	return 0;
557 }
558 
559 static void spi_cleanup(struct spi_device *spi)
560 {
561 	if (spi->controller->cleanup)
562 		spi->controller->cleanup(spi);
563 }
564 
565 static int __spi_add_device(struct spi_device *spi)
566 {
567 	struct spi_controller *ctlr = spi->controller;
568 	struct device *dev = ctlr->dev.parent;
569 	int status;
570 
571 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
572 	if (status) {
573 		dev_err(dev, "chipselect %d already in use\n",
574 				spi->chip_select);
575 		return status;
576 	}
577 
578 	/* Controller may unregister concurrently */
579 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
580 	    !device_is_registered(&ctlr->dev)) {
581 		return -ENODEV;
582 	}
583 
584 	/* Descriptors take precedence */
585 	if (ctlr->cs_gpiods)
586 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 	else if (ctlr->cs_gpios)
588 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589 
590 	/* Drivers may modify this initial i/o setup, but will
591 	 * normally rely on the device being setup.  Devices
592 	 * using SPI_CS_HIGH can't coexist well otherwise...
593 	 */
594 	status = spi_setup(spi);
595 	if (status < 0) {
596 		dev_err(dev, "can't setup %s, status %d\n",
597 				dev_name(&spi->dev), status);
598 		return status;
599 	}
600 
601 	/* Device may be bound to an active driver when this returns */
602 	status = device_add(&spi->dev);
603 	if (status < 0) {
604 		dev_err(dev, "can't add %s, status %d\n",
605 				dev_name(&spi->dev), status);
606 		spi_cleanup(spi);
607 	} else {
608 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
609 	}
610 
611 	return status;
612 }
613 
614 /**
615  * spi_add_device - Add spi_device allocated with spi_alloc_device
616  * @spi: spi_device to register
617  *
618  * Companion function to spi_alloc_device.  Devices allocated with
619  * spi_alloc_device can be added onto the spi bus with this function.
620  *
621  * Return: 0 on success; negative errno on failure
622  */
623 int spi_add_device(struct spi_device *spi)
624 {
625 	struct spi_controller *ctlr = spi->controller;
626 	struct device *dev = ctlr->dev.parent;
627 	int status;
628 
629 	/* Chipselects are numbered 0..max; validate. */
630 	if (spi->chip_select >= ctlr->num_chipselect) {
631 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
632 			ctlr->num_chipselect);
633 		return -EINVAL;
634 	}
635 
636 	/* Set the bus ID string */
637 	spi_dev_set_name(spi);
638 
639 	/* We need to make sure there's no other device with this
640 	 * chipselect **BEFORE** we call setup(), else we'll trash
641 	 * its configuration.  Lock against concurrent add() calls.
642 	 */
643 	mutex_lock(&spi_add_lock);
644 	status = __spi_add_device(spi);
645 	mutex_unlock(&spi_add_lock);
646 	return status;
647 }
648 EXPORT_SYMBOL_GPL(spi_add_device);
649 
650 static int spi_add_device_locked(struct spi_device *spi)
651 {
652 	struct spi_controller *ctlr = spi->controller;
653 	struct device *dev = ctlr->dev.parent;
654 
655 	/* Chipselects are numbered 0..max; validate. */
656 	if (spi->chip_select >= ctlr->num_chipselect) {
657 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
658 			ctlr->num_chipselect);
659 		return -EINVAL;
660 	}
661 
662 	/* Set the bus ID string */
663 	spi_dev_set_name(spi);
664 
665 	WARN_ON(!mutex_is_locked(&spi_add_lock));
666 	return __spi_add_device(spi);
667 }
668 
669 /**
670  * spi_new_device - instantiate one new SPI device
671  * @ctlr: Controller to which device is connected
672  * @chip: Describes the SPI device
673  * Context: can sleep
674  *
675  * On typical mainboards, this is purely internal; and it's not needed
676  * after board init creates the hard-wired devices.  Some development
677  * platforms may not be able to use spi_register_board_info though, and
678  * this is exported so that for example a USB or parport based adapter
679  * driver could add devices (which it would learn about out-of-band).
680  *
681  * Return: the new device, or NULL.
682  */
683 struct spi_device *spi_new_device(struct spi_controller *ctlr,
684 				  struct spi_board_info *chip)
685 {
686 	struct spi_device	*proxy;
687 	int			status;
688 
689 	/* NOTE:  caller did any chip->bus_num checks necessary.
690 	 *
691 	 * Also, unless we change the return value convention to use
692 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
693 	 * suggests syslogged diagnostics are best here (ugh).
694 	 */
695 
696 	proxy = spi_alloc_device(ctlr);
697 	if (!proxy)
698 		return NULL;
699 
700 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
701 
702 	proxy->chip_select = chip->chip_select;
703 	proxy->max_speed_hz = chip->max_speed_hz;
704 	proxy->mode = chip->mode;
705 	proxy->irq = chip->irq;
706 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
707 	proxy->dev.platform_data = (void *) chip->platform_data;
708 	proxy->controller_data = chip->controller_data;
709 	proxy->controller_state = NULL;
710 
711 	if (chip->swnode) {
712 		status = device_add_software_node(&proxy->dev, chip->swnode);
713 		if (status) {
714 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
715 				chip->modalias, status);
716 			goto err_dev_put;
717 		}
718 	}
719 
720 	status = spi_add_device(proxy);
721 	if (status < 0)
722 		goto err_dev_put;
723 
724 	return proxy;
725 
726 err_dev_put:
727 	device_remove_software_node(&proxy->dev);
728 	spi_dev_put(proxy);
729 	return NULL;
730 }
731 EXPORT_SYMBOL_GPL(spi_new_device);
732 
733 /**
734  * spi_unregister_device - unregister a single SPI device
735  * @spi: spi_device to unregister
736  *
737  * Start making the passed SPI device vanish. Normally this would be handled
738  * by spi_unregister_controller().
739  */
740 void spi_unregister_device(struct spi_device *spi)
741 {
742 	if (!spi)
743 		return;
744 
745 	if (spi->dev.of_node) {
746 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
747 		of_node_put(spi->dev.of_node);
748 	}
749 	if (ACPI_COMPANION(&spi->dev))
750 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
751 	device_remove_software_node(&spi->dev);
752 	device_del(&spi->dev);
753 	spi_cleanup(spi);
754 	put_device(&spi->dev);
755 }
756 EXPORT_SYMBOL_GPL(spi_unregister_device);
757 
758 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
759 					      struct spi_board_info *bi)
760 {
761 	struct spi_device *dev;
762 
763 	if (ctlr->bus_num != bi->bus_num)
764 		return;
765 
766 	dev = spi_new_device(ctlr, bi);
767 	if (!dev)
768 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
769 			bi->modalias);
770 }
771 
772 /**
773  * spi_register_board_info - register SPI devices for a given board
774  * @info: array of chip descriptors
775  * @n: how many descriptors are provided
776  * Context: can sleep
777  *
778  * Board-specific early init code calls this (probably during arch_initcall)
779  * with segments of the SPI device table.  Any device nodes are created later,
780  * after the relevant parent SPI controller (bus_num) is defined.  We keep
781  * this table of devices forever, so that reloading a controller driver will
782  * not make Linux forget about these hard-wired devices.
783  *
784  * Other code can also call this, e.g. a particular add-on board might provide
785  * SPI devices through its expansion connector, so code initializing that board
786  * would naturally declare its SPI devices.
787  *
788  * The board info passed can safely be __initdata ... but be careful of
789  * any embedded pointers (platform_data, etc), they're copied as-is.
790  *
791  * Return: zero on success, else a negative error code.
792  */
793 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
794 {
795 	struct boardinfo *bi;
796 	int i;
797 
798 	if (!n)
799 		return 0;
800 
801 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
802 	if (!bi)
803 		return -ENOMEM;
804 
805 	for (i = 0; i < n; i++, bi++, info++) {
806 		struct spi_controller *ctlr;
807 
808 		memcpy(&bi->board_info, info, sizeof(*info));
809 
810 		mutex_lock(&board_lock);
811 		list_add_tail(&bi->list, &board_list);
812 		list_for_each_entry(ctlr, &spi_controller_list, list)
813 			spi_match_controller_to_boardinfo(ctlr,
814 							  &bi->board_info);
815 		mutex_unlock(&board_lock);
816 	}
817 
818 	return 0;
819 }
820 
821 /*-------------------------------------------------------------------------*/
822 
823 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
824 {
825 	bool activate = enable;
826 
827 	/*
828 	 * Avoid calling into the driver (or doing delays) if the chip select
829 	 * isn't actually changing from the last time this was called.
830 	 */
831 	if (!force && (spi->controller->last_cs_enable == enable) &&
832 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
833 		return;
834 
835 	trace_spi_set_cs(spi, activate);
836 
837 	spi->controller->last_cs_enable = enable;
838 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
839 
840 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
841 	    !spi->controller->set_cs_timing) {
842 		if (activate)
843 			spi_delay_exec(&spi->controller->cs_setup, NULL);
844 		else
845 			spi_delay_exec(&spi->controller->cs_hold, NULL);
846 	}
847 
848 	if (spi->mode & SPI_CS_HIGH)
849 		enable = !enable;
850 
851 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
852 		if (!(spi->mode & SPI_NO_CS)) {
853 			if (spi->cs_gpiod) {
854 				/*
855 				 * Historically ACPI has no means of the GPIO polarity and
856 				 * thus the SPISerialBus() resource defines it on the per-chip
857 				 * basis. In order to avoid a chain of negations, the GPIO
858 				 * polarity is considered being Active High. Even for the cases
859 				 * when _DSD() is involved (in the updated versions of ACPI)
860 				 * the GPIO CS polarity must be defined Active High to avoid
861 				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
862 				 * into account.
863 				 */
864 				if (has_acpi_companion(&spi->dev))
865 					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
866 				else
867 					/* Polarity handled by GPIO library */
868 					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
869 			} else {
870 				/*
871 				 * invert the enable line, as active low is
872 				 * default for SPI.
873 				 */
874 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
875 			}
876 		}
877 		/* Some SPI masters need both GPIO CS & slave_select */
878 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
879 		    spi->controller->set_cs)
880 			spi->controller->set_cs(spi, !enable);
881 	} else if (spi->controller->set_cs) {
882 		spi->controller->set_cs(spi, !enable);
883 	}
884 
885 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
886 	    !spi->controller->set_cs_timing) {
887 		if (!activate)
888 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
889 	}
890 }
891 
892 #ifdef CONFIG_HAS_DMA
893 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
894 		struct sg_table *sgt, void *buf, size_t len,
895 		enum dma_data_direction dir)
896 {
897 	const bool vmalloced_buf = is_vmalloc_addr(buf);
898 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
899 #ifdef CONFIG_HIGHMEM
900 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
901 				(unsigned long)buf < (PKMAP_BASE +
902 					(LAST_PKMAP * PAGE_SIZE)));
903 #else
904 	const bool kmap_buf = false;
905 #endif
906 	int desc_len;
907 	int sgs;
908 	struct page *vm_page;
909 	struct scatterlist *sg;
910 	void *sg_buf;
911 	size_t min;
912 	int i, ret;
913 
914 	if (vmalloced_buf || kmap_buf) {
915 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
916 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
917 	} else if (virt_addr_valid(buf)) {
918 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
919 		sgs = DIV_ROUND_UP(len, desc_len);
920 	} else {
921 		return -EINVAL;
922 	}
923 
924 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
925 	if (ret != 0)
926 		return ret;
927 
928 	sg = &sgt->sgl[0];
929 	for (i = 0; i < sgs; i++) {
930 
931 		if (vmalloced_buf || kmap_buf) {
932 			/*
933 			 * Next scatterlist entry size is the minimum between
934 			 * the desc_len and the remaining buffer length that
935 			 * fits in a page.
936 			 */
937 			min = min_t(size_t, desc_len,
938 				    min_t(size_t, len,
939 					  PAGE_SIZE - offset_in_page(buf)));
940 			if (vmalloced_buf)
941 				vm_page = vmalloc_to_page(buf);
942 			else
943 				vm_page = kmap_to_page(buf);
944 			if (!vm_page) {
945 				sg_free_table(sgt);
946 				return -ENOMEM;
947 			}
948 			sg_set_page(sg, vm_page,
949 				    min, offset_in_page(buf));
950 		} else {
951 			min = min_t(size_t, len, desc_len);
952 			sg_buf = buf;
953 			sg_set_buf(sg, sg_buf, min);
954 		}
955 
956 		buf += min;
957 		len -= min;
958 		sg = sg_next(sg);
959 	}
960 
961 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
962 	if (!ret)
963 		ret = -ENOMEM;
964 	if (ret < 0) {
965 		sg_free_table(sgt);
966 		return ret;
967 	}
968 
969 	sgt->nents = ret;
970 
971 	return 0;
972 }
973 
974 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
975 		   struct sg_table *sgt, enum dma_data_direction dir)
976 {
977 	if (sgt->orig_nents) {
978 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
979 		sg_free_table(sgt);
980 	}
981 }
982 
983 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
984 {
985 	struct device *tx_dev, *rx_dev;
986 	struct spi_transfer *xfer;
987 	int ret;
988 
989 	if (!ctlr->can_dma)
990 		return 0;
991 
992 	if (ctlr->dma_tx)
993 		tx_dev = ctlr->dma_tx->device->dev;
994 	else if (ctlr->dma_map_dev)
995 		tx_dev = ctlr->dma_map_dev;
996 	else
997 		tx_dev = ctlr->dev.parent;
998 
999 	if (ctlr->dma_rx)
1000 		rx_dev = ctlr->dma_rx->device->dev;
1001 	else if (ctlr->dma_map_dev)
1002 		rx_dev = ctlr->dma_map_dev;
1003 	else
1004 		rx_dev = ctlr->dev.parent;
1005 
1006 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1007 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1008 			continue;
1009 
1010 		if (xfer->tx_buf != NULL) {
1011 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1012 					  (void *)xfer->tx_buf, xfer->len,
1013 					  DMA_TO_DEVICE);
1014 			if (ret != 0)
1015 				return ret;
1016 		}
1017 
1018 		if (xfer->rx_buf != NULL) {
1019 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1020 					  xfer->rx_buf, xfer->len,
1021 					  DMA_FROM_DEVICE);
1022 			if (ret != 0) {
1023 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1024 					      DMA_TO_DEVICE);
1025 				return ret;
1026 			}
1027 		}
1028 	}
1029 
1030 	ctlr->cur_msg_mapped = true;
1031 
1032 	return 0;
1033 }
1034 
1035 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1036 {
1037 	struct spi_transfer *xfer;
1038 	struct device *tx_dev, *rx_dev;
1039 
1040 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1041 		return 0;
1042 
1043 	if (ctlr->dma_tx)
1044 		tx_dev = ctlr->dma_tx->device->dev;
1045 	else
1046 		tx_dev = ctlr->dev.parent;
1047 
1048 	if (ctlr->dma_rx)
1049 		rx_dev = ctlr->dma_rx->device->dev;
1050 	else
1051 		rx_dev = ctlr->dev.parent;
1052 
1053 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1054 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1055 			continue;
1056 
1057 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1058 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1059 	}
1060 
1061 	ctlr->cur_msg_mapped = false;
1062 
1063 	return 0;
1064 }
1065 #else /* !CONFIG_HAS_DMA */
1066 static inline int __spi_map_msg(struct spi_controller *ctlr,
1067 				struct spi_message *msg)
1068 {
1069 	return 0;
1070 }
1071 
1072 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1073 				  struct spi_message *msg)
1074 {
1075 	return 0;
1076 }
1077 #endif /* !CONFIG_HAS_DMA */
1078 
1079 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1080 				struct spi_message *msg)
1081 {
1082 	struct spi_transfer *xfer;
1083 
1084 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1085 		/*
1086 		 * Restore the original value of tx_buf or rx_buf if they are
1087 		 * NULL.
1088 		 */
1089 		if (xfer->tx_buf == ctlr->dummy_tx)
1090 			xfer->tx_buf = NULL;
1091 		if (xfer->rx_buf == ctlr->dummy_rx)
1092 			xfer->rx_buf = NULL;
1093 	}
1094 
1095 	return __spi_unmap_msg(ctlr, msg);
1096 }
1097 
1098 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1099 {
1100 	struct spi_transfer *xfer;
1101 	void *tmp;
1102 	unsigned int max_tx, max_rx;
1103 
1104 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1105 		&& !(msg->spi->mode & SPI_3WIRE)) {
1106 		max_tx = 0;
1107 		max_rx = 0;
1108 
1109 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1110 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1111 			    !xfer->tx_buf)
1112 				max_tx = max(xfer->len, max_tx);
1113 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1114 			    !xfer->rx_buf)
1115 				max_rx = max(xfer->len, max_rx);
1116 		}
1117 
1118 		if (max_tx) {
1119 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1120 				       GFP_KERNEL | GFP_DMA);
1121 			if (!tmp)
1122 				return -ENOMEM;
1123 			ctlr->dummy_tx = tmp;
1124 			memset(tmp, 0, max_tx);
1125 		}
1126 
1127 		if (max_rx) {
1128 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1129 				       GFP_KERNEL | GFP_DMA);
1130 			if (!tmp)
1131 				return -ENOMEM;
1132 			ctlr->dummy_rx = tmp;
1133 		}
1134 
1135 		if (max_tx || max_rx) {
1136 			list_for_each_entry(xfer, &msg->transfers,
1137 					    transfer_list) {
1138 				if (!xfer->len)
1139 					continue;
1140 				if (!xfer->tx_buf)
1141 					xfer->tx_buf = ctlr->dummy_tx;
1142 				if (!xfer->rx_buf)
1143 					xfer->rx_buf = ctlr->dummy_rx;
1144 			}
1145 		}
1146 	}
1147 
1148 	return __spi_map_msg(ctlr, msg);
1149 }
1150 
1151 static int spi_transfer_wait(struct spi_controller *ctlr,
1152 			     struct spi_message *msg,
1153 			     struct spi_transfer *xfer)
1154 {
1155 	struct spi_statistics *statm = &ctlr->statistics;
1156 	struct spi_statistics *stats = &msg->spi->statistics;
1157 	u32 speed_hz = xfer->speed_hz;
1158 	unsigned long long ms;
1159 
1160 	if (spi_controller_is_slave(ctlr)) {
1161 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1162 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1163 			return -EINTR;
1164 		}
1165 	} else {
1166 		if (!speed_hz)
1167 			speed_hz = 100000;
1168 
1169 		/*
1170 		 * For each byte we wait for 8 cycles of the SPI clock.
1171 		 * Since speed is defined in Hz and we want milliseconds,
1172 		 * use respective multiplier, but before the division,
1173 		 * otherwise we may get 0 for short transfers.
1174 		 */
1175 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1176 		do_div(ms, speed_hz);
1177 
1178 		/*
1179 		 * Increase it twice and add 200 ms tolerance, use
1180 		 * predefined maximum in case of overflow.
1181 		 */
1182 		ms += ms + 200;
1183 		if (ms > UINT_MAX)
1184 			ms = UINT_MAX;
1185 
1186 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1187 						 msecs_to_jiffies(ms));
1188 
1189 		if (ms == 0) {
1190 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1191 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1192 			dev_err(&msg->spi->dev,
1193 				"SPI transfer timed out\n");
1194 			return -ETIMEDOUT;
1195 		}
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 static void _spi_transfer_delay_ns(u32 ns)
1202 {
1203 	if (!ns)
1204 		return;
1205 	if (ns <= NSEC_PER_USEC) {
1206 		ndelay(ns);
1207 	} else {
1208 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1209 
1210 		if (us <= 10)
1211 			udelay(us);
1212 		else
1213 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1214 	}
1215 }
1216 
1217 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1218 {
1219 	u32 delay = _delay->value;
1220 	u32 unit = _delay->unit;
1221 	u32 hz;
1222 
1223 	if (!delay)
1224 		return 0;
1225 
1226 	switch (unit) {
1227 	case SPI_DELAY_UNIT_USECS:
1228 		delay *= NSEC_PER_USEC;
1229 		break;
1230 	case SPI_DELAY_UNIT_NSECS:
1231 		/* Nothing to do here */
1232 		break;
1233 	case SPI_DELAY_UNIT_SCK:
1234 		/* clock cycles need to be obtained from spi_transfer */
1235 		if (!xfer)
1236 			return -EINVAL;
1237 		/*
1238 		 * If there is unknown effective speed, approximate it
1239 		 * by underestimating with half of the requested hz.
1240 		 */
1241 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1242 		if (!hz)
1243 			return -EINVAL;
1244 
1245 		/* Convert delay to nanoseconds */
1246 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1247 		break;
1248 	default:
1249 		return -EINVAL;
1250 	}
1251 
1252 	return delay;
1253 }
1254 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1255 
1256 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1257 {
1258 	int delay;
1259 
1260 	might_sleep();
1261 
1262 	if (!_delay)
1263 		return -EINVAL;
1264 
1265 	delay = spi_delay_to_ns(_delay, xfer);
1266 	if (delay < 0)
1267 		return delay;
1268 
1269 	_spi_transfer_delay_ns(delay);
1270 
1271 	return 0;
1272 }
1273 EXPORT_SYMBOL_GPL(spi_delay_exec);
1274 
1275 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1276 					  struct spi_transfer *xfer)
1277 {
1278 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1279 	u32 delay = xfer->cs_change_delay.value;
1280 	u32 unit = xfer->cs_change_delay.unit;
1281 	int ret;
1282 
1283 	/* return early on "fast" mode - for everything but USECS */
1284 	if (!delay) {
1285 		if (unit == SPI_DELAY_UNIT_USECS)
1286 			_spi_transfer_delay_ns(default_delay_ns);
1287 		return;
1288 	}
1289 
1290 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1291 	if (ret) {
1292 		dev_err_once(&msg->spi->dev,
1293 			     "Use of unsupported delay unit %i, using default of %luus\n",
1294 			     unit, default_delay_ns / NSEC_PER_USEC);
1295 		_spi_transfer_delay_ns(default_delay_ns);
1296 	}
1297 }
1298 
1299 /*
1300  * spi_transfer_one_message - Default implementation of transfer_one_message()
1301  *
1302  * This is a standard implementation of transfer_one_message() for
1303  * drivers which implement a transfer_one() operation.  It provides
1304  * standard handling of delays and chip select management.
1305  */
1306 static int spi_transfer_one_message(struct spi_controller *ctlr,
1307 				    struct spi_message *msg)
1308 {
1309 	struct spi_transfer *xfer;
1310 	bool keep_cs = false;
1311 	int ret = 0;
1312 	struct spi_statistics *statm = &ctlr->statistics;
1313 	struct spi_statistics *stats = &msg->spi->statistics;
1314 
1315 	spi_set_cs(msg->spi, true, false);
1316 
1317 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1318 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1319 
1320 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1321 		trace_spi_transfer_start(msg, xfer);
1322 
1323 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1324 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1325 
1326 		if (!ctlr->ptp_sts_supported) {
1327 			xfer->ptp_sts_word_pre = 0;
1328 			ptp_read_system_prets(xfer->ptp_sts);
1329 		}
1330 
1331 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1332 			reinit_completion(&ctlr->xfer_completion);
1333 
1334 fallback_pio:
1335 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1336 			if (ret < 0) {
1337 				if (ctlr->cur_msg_mapped &&
1338 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1339 					__spi_unmap_msg(ctlr, msg);
1340 					ctlr->fallback = true;
1341 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1342 					goto fallback_pio;
1343 				}
1344 
1345 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1346 							       errors);
1347 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1348 							       errors);
1349 				dev_err(&msg->spi->dev,
1350 					"SPI transfer failed: %d\n", ret);
1351 				goto out;
1352 			}
1353 
1354 			if (ret > 0) {
1355 				ret = spi_transfer_wait(ctlr, msg, xfer);
1356 				if (ret < 0)
1357 					msg->status = ret;
1358 			}
1359 		} else {
1360 			if (xfer->len)
1361 				dev_err(&msg->spi->dev,
1362 					"Bufferless transfer has length %u\n",
1363 					xfer->len);
1364 		}
1365 
1366 		if (!ctlr->ptp_sts_supported) {
1367 			ptp_read_system_postts(xfer->ptp_sts);
1368 			xfer->ptp_sts_word_post = xfer->len;
1369 		}
1370 
1371 		trace_spi_transfer_stop(msg, xfer);
1372 
1373 		if (msg->status != -EINPROGRESS)
1374 			goto out;
1375 
1376 		spi_transfer_delay_exec(xfer);
1377 
1378 		if (xfer->cs_change) {
1379 			if (list_is_last(&xfer->transfer_list,
1380 					 &msg->transfers)) {
1381 				keep_cs = true;
1382 			} else {
1383 				spi_set_cs(msg->spi, false, false);
1384 				_spi_transfer_cs_change_delay(msg, xfer);
1385 				spi_set_cs(msg->spi, true, false);
1386 			}
1387 		}
1388 
1389 		msg->actual_length += xfer->len;
1390 	}
1391 
1392 out:
1393 	if (ret != 0 || !keep_cs)
1394 		spi_set_cs(msg->spi, false, false);
1395 
1396 	if (msg->status == -EINPROGRESS)
1397 		msg->status = ret;
1398 
1399 	if (msg->status && ctlr->handle_err)
1400 		ctlr->handle_err(ctlr, msg);
1401 
1402 	spi_finalize_current_message(ctlr);
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  * spi_finalize_current_transfer - report completion of a transfer
1409  * @ctlr: the controller reporting completion
1410  *
1411  * Called by SPI drivers using the core transfer_one_message()
1412  * implementation to notify it that the current interrupt driven
1413  * transfer has finished and the next one may be scheduled.
1414  */
1415 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1416 {
1417 	complete(&ctlr->xfer_completion);
1418 }
1419 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1420 
1421 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1422 {
1423 	if (ctlr->auto_runtime_pm) {
1424 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1425 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1426 	}
1427 }
1428 
1429 /**
1430  * __spi_pump_messages - function which processes spi message queue
1431  * @ctlr: controller to process queue for
1432  * @in_kthread: true if we are in the context of the message pump thread
1433  *
1434  * This function checks if there is any spi message in the queue that
1435  * needs processing and if so call out to the driver to initialize hardware
1436  * and transfer each message.
1437  *
1438  * Note that it is called both from the kthread itself and also from
1439  * inside spi_sync(); the queue extraction handling at the top of the
1440  * function should deal with this safely.
1441  */
1442 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1443 {
1444 	struct spi_transfer *xfer;
1445 	struct spi_message *msg;
1446 	bool was_busy = false;
1447 	unsigned long flags;
1448 	int ret;
1449 
1450 	/* Lock queue */
1451 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1452 
1453 	/* Make sure we are not already running a message */
1454 	if (ctlr->cur_msg) {
1455 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1456 		return;
1457 	}
1458 
1459 	/* If another context is idling the device then defer */
1460 	if (ctlr->idling) {
1461 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1462 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1463 		return;
1464 	}
1465 
1466 	/* Check if the queue is idle */
1467 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1468 		if (!ctlr->busy) {
1469 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1470 			return;
1471 		}
1472 
1473 		/* Defer any non-atomic teardown to the thread */
1474 		if (!in_kthread) {
1475 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1476 			    !ctlr->unprepare_transfer_hardware) {
1477 				spi_idle_runtime_pm(ctlr);
1478 				ctlr->busy = false;
1479 				trace_spi_controller_idle(ctlr);
1480 			} else {
1481 				kthread_queue_work(ctlr->kworker,
1482 						   &ctlr->pump_messages);
1483 			}
1484 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1485 			return;
1486 		}
1487 
1488 		ctlr->busy = false;
1489 		ctlr->idling = true;
1490 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1491 
1492 		kfree(ctlr->dummy_rx);
1493 		ctlr->dummy_rx = NULL;
1494 		kfree(ctlr->dummy_tx);
1495 		ctlr->dummy_tx = NULL;
1496 		if (ctlr->unprepare_transfer_hardware &&
1497 		    ctlr->unprepare_transfer_hardware(ctlr))
1498 			dev_err(&ctlr->dev,
1499 				"failed to unprepare transfer hardware\n");
1500 		spi_idle_runtime_pm(ctlr);
1501 		trace_spi_controller_idle(ctlr);
1502 
1503 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1504 		ctlr->idling = false;
1505 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1506 		return;
1507 	}
1508 
1509 	/* Extract head of queue */
1510 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1511 	ctlr->cur_msg = msg;
1512 
1513 	list_del_init(&msg->queue);
1514 	if (ctlr->busy)
1515 		was_busy = true;
1516 	else
1517 		ctlr->busy = true;
1518 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1519 
1520 	mutex_lock(&ctlr->io_mutex);
1521 
1522 	if (!was_busy && ctlr->auto_runtime_pm) {
1523 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1524 		if (ret < 0) {
1525 			pm_runtime_put_noidle(ctlr->dev.parent);
1526 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1527 				ret);
1528 			mutex_unlock(&ctlr->io_mutex);
1529 			return;
1530 		}
1531 	}
1532 
1533 	if (!was_busy)
1534 		trace_spi_controller_busy(ctlr);
1535 
1536 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1537 		ret = ctlr->prepare_transfer_hardware(ctlr);
1538 		if (ret) {
1539 			dev_err(&ctlr->dev,
1540 				"failed to prepare transfer hardware: %d\n",
1541 				ret);
1542 
1543 			if (ctlr->auto_runtime_pm)
1544 				pm_runtime_put(ctlr->dev.parent);
1545 
1546 			msg->status = ret;
1547 			spi_finalize_current_message(ctlr);
1548 
1549 			mutex_unlock(&ctlr->io_mutex);
1550 			return;
1551 		}
1552 	}
1553 
1554 	trace_spi_message_start(msg);
1555 
1556 	if (ctlr->prepare_message) {
1557 		ret = ctlr->prepare_message(ctlr, msg);
1558 		if (ret) {
1559 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1560 				ret);
1561 			msg->status = ret;
1562 			spi_finalize_current_message(ctlr);
1563 			goto out;
1564 		}
1565 		ctlr->cur_msg_prepared = true;
1566 	}
1567 
1568 	ret = spi_map_msg(ctlr, msg);
1569 	if (ret) {
1570 		msg->status = ret;
1571 		spi_finalize_current_message(ctlr);
1572 		goto out;
1573 	}
1574 
1575 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1576 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1577 			xfer->ptp_sts_word_pre = 0;
1578 			ptp_read_system_prets(xfer->ptp_sts);
1579 		}
1580 	}
1581 
1582 	ret = ctlr->transfer_one_message(ctlr, msg);
1583 	if (ret) {
1584 		dev_err(&ctlr->dev,
1585 			"failed to transfer one message from queue\n");
1586 		goto out;
1587 	}
1588 
1589 out:
1590 	mutex_unlock(&ctlr->io_mutex);
1591 
1592 	/* Prod the scheduler in case transfer_one() was busy waiting */
1593 	if (!ret)
1594 		cond_resched();
1595 }
1596 
1597 /**
1598  * spi_pump_messages - kthread work function which processes spi message queue
1599  * @work: pointer to kthread work struct contained in the controller struct
1600  */
1601 static void spi_pump_messages(struct kthread_work *work)
1602 {
1603 	struct spi_controller *ctlr =
1604 		container_of(work, struct spi_controller, pump_messages);
1605 
1606 	__spi_pump_messages(ctlr, true);
1607 }
1608 
1609 /**
1610  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1611  *			    TX timestamp for the requested byte from the SPI
1612  *			    transfer. The frequency with which this function
1613  *			    must be called (once per word, once for the whole
1614  *			    transfer, once per batch of words etc) is arbitrary
1615  *			    as long as the @tx buffer offset is greater than or
1616  *			    equal to the requested byte at the time of the
1617  *			    call. The timestamp is only taken once, at the
1618  *			    first such call. It is assumed that the driver
1619  *			    advances its @tx buffer pointer monotonically.
1620  * @ctlr: Pointer to the spi_controller structure of the driver
1621  * @xfer: Pointer to the transfer being timestamped
1622  * @progress: How many words (not bytes) have been transferred so far
1623  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1624  *	      transfer, for less jitter in time measurement. Only compatible
1625  *	      with PIO drivers. If true, must follow up with
1626  *	      spi_take_timestamp_post or otherwise system will crash.
1627  *	      WARNING: for fully predictable results, the CPU frequency must
1628  *	      also be under control (governor).
1629  */
1630 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1631 			    struct spi_transfer *xfer,
1632 			    size_t progress, bool irqs_off)
1633 {
1634 	if (!xfer->ptp_sts)
1635 		return;
1636 
1637 	if (xfer->timestamped)
1638 		return;
1639 
1640 	if (progress > xfer->ptp_sts_word_pre)
1641 		return;
1642 
1643 	/* Capture the resolution of the timestamp */
1644 	xfer->ptp_sts_word_pre = progress;
1645 
1646 	if (irqs_off) {
1647 		local_irq_save(ctlr->irq_flags);
1648 		preempt_disable();
1649 	}
1650 
1651 	ptp_read_system_prets(xfer->ptp_sts);
1652 }
1653 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1654 
1655 /**
1656  * spi_take_timestamp_post - helper for drivers to collect the end of the
1657  *			     TX timestamp for the requested byte from the SPI
1658  *			     transfer. Can be called with an arbitrary
1659  *			     frequency: only the first call where @tx exceeds
1660  *			     or is equal to the requested word will be
1661  *			     timestamped.
1662  * @ctlr: Pointer to the spi_controller structure of the driver
1663  * @xfer: Pointer to the transfer being timestamped
1664  * @progress: How many words (not bytes) have been transferred so far
1665  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1666  */
1667 void spi_take_timestamp_post(struct spi_controller *ctlr,
1668 			     struct spi_transfer *xfer,
1669 			     size_t progress, bool irqs_off)
1670 {
1671 	if (!xfer->ptp_sts)
1672 		return;
1673 
1674 	if (xfer->timestamped)
1675 		return;
1676 
1677 	if (progress < xfer->ptp_sts_word_post)
1678 		return;
1679 
1680 	ptp_read_system_postts(xfer->ptp_sts);
1681 
1682 	if (irqs_off) {
1683 		local_irq_restore(ctlr->irq_flags);
1684 		preempt_enable();
1685 	}
1686 
1687 	/* Capture the resolution of the timestamp */
1688 	xfer->ptp_sts_word_post = progress;
1689 
1690 	xfer->timestamped = true;
1691 }
1692 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1693 
1694 /**
1695  * spi_set_thread_rt - set the controller to pump at realtime priority
1696  * @ctlr: controller to boost priority of
1697  *
1698  * This can be called because the controller requested realtime priority
1699  * (by setting the ->rt value before calling spi_register_controller()) or
1700  * because a device on the bus said that its transfers needed realtime
1701  * priority.
1702  *
1703  * NOTE: at the moment if any device on a bus says it needs realtime then
1704  * the thread will be at realtime priority for all transfers on that
1705  * controller.  If this eventually becomes a problem we may see if we can
1706  * find a way to boost the priority only temporarily during relevant
1707  * transfers.
1708  */
1709 static void spi_set_thread_rt(struct spi_controller *ctlr)
1710 {
1711 	dev_info(&ctlr->dev,
1712 		"will run message pump with realtime priority\n");
1713 	sched_set_fifo(ctlr->kworker->task);
1714 }
1715 
1716 static int spi_init_queue(struct spi_controller *ctlr)
1717 {
1718 	ctlr->running = false;
1719 	ctlr->busy = false;
1720 
1721 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1722 	if (IS_ERR(ctlr->kworker)) {
1723 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1724 		return PTR_ERR(ctlr->kworker);
1725 	}
1726 
1727 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1728 
1729 	/*
1730 	 * Controller config will indicate if this controller should run the
1731 	 * message pump with high (realtime) priority to reduce the transfer
1732 	 * latency on the bus by minimising the delay between a transfer
1733 	 * request and the scheduling of the message pump thread. Without this
1734 	 * setting the message pump thread will remain at default priority.
1735 	 */
1736 	if (ctlr->rt)
1737 		spi_set_thread_rt(ctlr);
1738 
1739 	return 0;
1740 }
1741 
1742 /**
1743  * spi_get_next_queued_message() - called by driver to check for queued
1744  * messages
1745  * @ctlr: the controller to check for queued messages
1746  *
1747  * If there are more messages in the queue, the next message is returned from
1748  * this call.
1749  *
1750  * Return: the next message in the queue, else NULL if the queue is empty.
1751  */
1752 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1753 {
1754 	struct spi_message *next;
1755 	unsigned long flags;
1756 
1757 	/* get a pointer to the next message, if any */
1758 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1759 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1760 					queue);
1761 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1762 
1763 	return next;
1764 }
1765 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1766 
1767 /**
1768  * spi_finalize_current_message() - the current message is complete
1769  * @ctlr: the controller to return the message to
1770  *
1771  * Called by the driver to notify the core that the message in the front of the
1772  * queue is complete and can be removed from the queue.
1773  */
1774 void spi_finalize_current_message(struct spi_controller *ctlr)
1775 {
1776 	struct spi_transfer *xfer;
1777 	struct spi_message *mesg;
1778 	unsigned long flags;
1779 	int ret;
1780 
1781 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1782 	mesg = ctlr->cur_msg;
1783 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1784 
1785 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1786 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1787 			ptp_read_system_postts(xfer->ptp_sts);
1788 			xfer->ptp_sts_word_post = xfer->len;
1789 		}
1790 	}
1791 
1792 	if (unlikely(ctlr->ptp_sts_supported))
1793 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1794 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1795 
1796 	spi_unmap_msg(ctlr, mesg);
1797 
1798 	/* In the prepare_messages callback the spi bus has the opportunity to
1799 	 * split a transfer to smaller chunks.
1800 	 * Release splited transfers here since spi_map_msg is done on the
1801 	 * splited transfers.
1802 	 */
1803 	spi_res_release(ctlr, mesg);
1804 
1805 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1806 		ret = ctlr->unprepare_message(ctlr, mesg);
1807 		if (ret) {
1808 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1809 				ret);
1810 		}
1811 	}
1812 
1813 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1814 	ctlr->cur_msg = NULL;
1815 	ctlr->cur_msg_prepared = false;
1816 	ctlr->fallback = false;
1817 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1818 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1819 
1820 	trace_spi_message_done(mesg);
1821 
1822 	mesg->state = NULL;
1823 	if (mesg->complete)
1824 		mesg->complete(mesg->context);
1825 }
1826 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1827 
1828 static int spi_start_queue(struct spi_controller *ctlr)
1829 {
1830 	unsigned long flags;
1831 
1832 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1833 
1834 	if (ctlr->running || ctlr->busy) {
1835 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1836 		return -EBUSY;
1837 	}
1838 
1839 	ctlr->running = true;
1840 	ctlr->cur_msg = NULL;
1841 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1842 
1843 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1844 
1845 	return 0;
1846 }
1847 
1848 static int spi_stop_queue(struct spi_controller *ctlr)
1849 {
1850 	unsigned long flags;
1851 	unsigned limit = 500;
1852 	int ret = 0;
1853 
1854 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1855 
1856 	/*
1857 	 * This is a bit lame, but is optimized for the common execution path.
1858 	 * A wait_queue on the ctlr->busy could be used, but then the common
1859 	 * execution path (pump_messages) would be required to call wake_up or
1860 	 * friends on every SPI message. Do this instead.
1861 	 */
1862 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1863 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1864 		usleep_range(10000, 11000);
1865 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1866 	}
1867 
1868 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1869 		ret = -EBUSY;
1870 	else
1871 		ctlr->running = false;
1872 
1873 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1874 
1875 	if (ret) {
1876 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1877 		return ret;
1878 	}
1879 	return ret;
1880 }
1881 
1882 static int spi_destroy_queue(struct spi_controller *ctlr)
1883 {
1884 	int ret;
1885 
1886 	ret = spi_stop_queue(ctlr);
1887 
1888 	/*
1889 	 * kthread_flush_worker will block until all work is done.
1890 	 * If the reason that stop_queue timed out is that the work will never
1891 	 * finish, then it does no good to call flush/stop thread, so
1892 	 * return anyway.
1893 	 */
1894 	if (ret) {
1895 		dev_err(&ctlr->dev, "problem destroying queue\n");
1896 		return ret;
1897 	}
1898 
1899 	kthread_destroy_worker(ctlr->kworker);
1900 
1901 	return 0;
1902 }
1903 
1904 static int __spi_queued_transfer(struct spi_device *spi,
1905 				 struct spi_message *msg,
1906 				 bool need_pump)
1907 {
1908 	struct spi_controller *ctlr = spi->controller;
1909 	unsigned long flags;
1910 
1911 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1912 
1913 	if (!ctlr->running) {
1914 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1915 		return -ESHUTDOWN;
1916 	}
1917 	msg->actual_length = 0;
1918 	msg->status = -EINPROGRESS;
1919 
1920 	list_add_tail(&msg->queue, &ctlr->queue);
1921 	if (!ctlr->busy && need_pump)
1922 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1923 
1924 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1925 	return 0;
1926 }
1927 
1928 /**
1929  * spi_queued_transfer - transfer function for queued transfers
1930  * @spi: spi device which is requesting transfer
1931  * @msg: spi message which is to handled is queued to driver queue
1932  *
1933  * Return: zero on success, else a negative error code.
1934  */
1935 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1936 {
1937 	return __spi_queued_transfer(spi, msg, true);
1938 }
1939 
1940 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1941 {
1942 	int ret;
1943 
1944 	ctlr->transfer = spi_queued_transfer;
1945 	if (!ctlr->transfer_one_message)
1946 		ctlr->transfer_one_message = spi_transfer_one_message;
1947 
1948 	/* Initialize and start queue */
1949 	ret = spi_init_queue(ctlr);
1950 	if (ret) {
1951 		dev_err(&ctlr->dev, "problem initializing queue\n");
1952 		goto err_init_queue;
1953 	}
1954 	ctlr->queued = true;
1955 	ret = spi_start_queue(ctlr);
1956 	if (ret) {
1957 		dev_err(&ctlr->dev, "problem starting queue\n");
1958 		goto err_start_queue;
1959 	}
1960 
1961 	return 0;
1962 
1963 err_start_queue:
1964 	spi_destroy_queue(ctlr);
1965 err_init_queue:
1966 	return ret;
1967 }
1968 
1969 /**
1970  * spi_flush_queue - Send all pending messages in the queue from the callers'
1971  *		     context
1972  * @ctlr: controller to process queue for
1973  *
1974  * This should be used when one wants to ensure all pending messages have been
1975  * sent before doing something. Is used by the spi-mem code to make sure SPI
1976  * memory operations do not preempt regular SPI transfers that have been queued
1977  * before the spi-mem operation.
1978  */
1979 void spi_flush_queue(struct spi_controller *ctlr)
1980 {
1981 	if (ctlr->transfer == spi_queued_transfer)
1982 		__spi_pump_messages(ctlr, false);
1983 }
1984 
1985 /*-------------------------------------------------------------------------*/
1986 
1987 #if defined(CONFIG_OF)
1988 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1989 			   struct device_node *nc)
1990 {
1991 	u32 value;
1992 	int rc;
1993 
1994 	/* Mode (clock phase/polarity/etc.) */
1995 	if (of_property_read_bool(nc, "spi-cpha"))
1996 		spi->mode |= SPI_CPHA;
1997 	if (of_property_read_bool(nc, "spi-cpol"))
1998 		spi->mode |= SPI_CPOL;
1999 	if (of_property_read_bool(nc, "spi-3wire"))
2000 		spi->mode |= SPI_3WIRE;
2001 	if (of_property_read_bool(nc, "spi-lsb-first"))
2002 		spi->mode |= SPI_LSB_FIRST;
2003 	if (of_property_read_bool(nc, "spi-cs-high"))
2004 		spi->mode |= SPI_CS_HIGH;
2005 
2006 	/* Device DUAL/QUAD mode */
2007 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2008 		switch (value) {
2009 		case 0:
2010 			spi->mode |= SPI_NO_TX;
2011 			break;
2012 		case 1:
2013 			break;
2014 		case 2:
2015 			spi->mode |= SPI_TX_DUAL;
2016 			break;
2017 		case 4:
2018 			spi->mode |= SPI_TX_QUAD;
2019 			break;
2020 		case 8:
2021 			spi->mode |= SPI_TX_OCTAL;
2022 			break;
2023 		default:
2024 			dev_warn(&ctlr->dev,
2025 				"spi-tx-bus-width %d not supported\n",
2026 				value);
2027 			break;
2028 		}
2029 	}
2030 
2031 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2032 		switch (value) {
2033 		case 0:
2034 			spi->mode |= SPI_NO_RX;
2035 			break;
2036 		case 1:
2037 			break;
2038 		case 2:
2039 			spi->mode |= SPI_RX_DUAL;
2040 			break;
2041 		case 4:
2042 			spi->mode |= SPI_RX_QUAD;
2043 			break;
2044 		case 8:
2045 			spi->mode |= SPI_RX_OCTAL;
2046 			break;
2047 		default:
2048 			dev_warn(&ctlr->dev,
2049 				"spi-rx-bus-width %d not supported\n",
2050 				value);
2051 			break;
2052 		}
2053 	}
2054 
2055 	if (spi_controller_is_slave(ctlr)) {
2056 		if (!of_node_name_eq(nc, "slave")) {
2057 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2058 				nc);
2059 			return -EINVAL;
2060 		}
2061 		return 0;
2062 	}
2063 
2064 	/* Device address */
2065 	rc = of_property_read_u32(nc, "reg", &value);
2066 	if (rc) {
2067 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2068 			nc, rc);
2069 		return rc;
2070 	}
2071 	spi->chip_select = value;
2072 
2073 	/* Device speed */
2074 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2075 		spi->max_speed_hz = value;
2076 
2077 	return 0;
2078 }
2079 
2080 static struct spi_device *
2081 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2082 {
2083 	struct spi_device *spi;
2084 	int rc;
2085 
2086 	/* Alloc an spi_device */
2087 	spi = spi_alloc_device(ctlr);
2088 	if (!spi) {
2089 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2090 		rc = -ENOMEM;
2091 		goto err_out;
2092 	}
2093 
2094 	/* Select device driver */
2095 	rc = of_modalias_node(nc, spi->modalias,
2096 				sizeof(spi->modalias));
2097 	if (rc < 0) {
2098 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2099 		goto err_out;
2100 	}
2101 
2102 	rc = of_spi_parse_dt(ctlr, spi, nc);
2103 	if (rc)
2104 		goto err_out;
2105 
2106 	/* Store a pointer to the node in the device structure */
2107 	of_node_get(nc);
2108 	spi->dev.of_node = nc;
2109 	spi->dev.fwnode = of_fwnode_handle(nc);
2110 
2111 	/* Register the new device */
2112 	rc = spi_add_device(spi);
2113 	if (rc) {
2114 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2115 		goto err_of_node_put;
2116 	}
2117 
2118 	return spi;
2119 
2120 err_of_node_put:
2121 	of_node_put(nc);
2122 err_out:
2123 	spi_dev_put(spi);
2124 	return ERR_PTR(rc);
2125 }
2126 
2127 /**
2128  * of_register_spi_devices() - Register child devices onto the SPI bus
2129  * @ctlr:	Pointer to spi_controller device
2130  *
2131  * Registers an spi_device for each child node of controller node which
2132  * represents a valid SPI slave.
2133  */
2134 static void of_register_spi_devices(struct spi_controller *ctlr)
2135 {
2136 	struct spi_device *spi;
2137 	struct device_node *nc;
2138 
2139 	if (!ctlr->dev.of_node)
2140 		return;
2141 
2142 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2143 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2144 			continue;
2145 		spi = of_register_spi_device(ctlr, nc);
2146 		if (IS_ERR(spi)) {
2147 			dev_warn(&ctlr->dev,
2148 				 "Failed to create SPI device for %pOF\n", nc);
2149 			of_node_clear_flag(nc, OF_POPULATED);
2150 		}
2151 	}
2152 }
2153 #else
2154 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2155 #endif
2156 
2157 /**
2158  * spi_new_ancillary_device() - Register ancillary SPI device
2159  * @spi:         Pointer to the main SPI device registering the ancillary device
2160  * @chip_select: Chip Select of the ancillary device
2161  *
2162  * Register an ancillary SPI device; for example some chips have a chip-select
2163  * for normal device usage and another one for setup/firmware upload.
2164  *
2165  * This may only be called from main SPI device's probe routine.
2166  *
2167  * Return: 0 on success; negative errno on failure
2168  */
2169 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2170 					     u8 chip_select)
2171 {
2172 	struct spi_device *ancillary;
2173 	int rc = 0;
2174 
2175 	/* Alloc an spi_device */
2176 	ancillary = spi_alloc_device(spi->controller);
2177 	if (!ancillary) {
2178 		rc = -ENOMEM;
2179 		goto err_out;
2180 	}
2181 
2182 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2183 
2184 	/* Use provided chip-select for ancillary device */
2185 	ancillary->chip_select = chip_select;
2186 
2187 	/* Take over SPI mode/speed from SPI main device */
2188 	ancillary->max_speed_hz = spi->max_speed_hz;
2189 	ancillary->mode = spi->mode;
2190 
2191 	/* Register the new device */
2192 	rc = spi_add_device_locked(ancillary);
2193 	if (rc) {
2194 		dev_err(&spi->dev, "failed to register ancillary device\n");
2195 		goto err_out;
2196 	}
2197 
2198 	return ancillary;
2199 
2200 err_out:
2201 	spi_dev_put(ancillary);
2202 	return ERR_PTR(rc);
2203 }
2204 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2205 
2206 #ifdef CONFIG_ACPI
2207 struct acpi_spi_lookup {
2208 	struct spi_controller 	*ctlr;
2209 	u32			max_speed_hz;
2210 	u32			mode;
2211 	int			irq;
2212 	u8			bits_per_word;
2213 	u8			chip_select;
2214 };
2215 
2216 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2217 					    struct acpi_spi_lookup *lookup)
2218 {
2219 	const union acpi_object *obj;
2220 
2221 	if (!x86_apple_machine)
2222 		return;
2223 
2224 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2225 	    && obj->buffer.length >= 4)
2226 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2227 
2228 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2229 	    && obj->buffer.length == 8)
2230 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2231 
2232 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2233 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2234 		lookup->mode |= SPI_LSB_FIRST;
2235 
2236 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2237 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2238 		lookup->mode |= SPI_CPOL;
2239 
2240 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2241 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2242 		lookup->mode |= SPI_CPHA;
2243 }
2244 
2245 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2246 {
2247 	struct acpi_spi_lookup *lookup = data;
2248 	struct spi_controller *ctlr = lookup->ctlr;
2249 
2250 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2251 		struct acpi_resource_spi_serialbus *sb;
2252 		acpi_handle parent_handle;
2253 		acpi_status status;
2254 
2255 		sb = &ares->data.spi_serial_bus;
2256 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2257 
2258 			status = acpi_get_handle(NULL,
2259 						 sb->resource_source.string_ptr,
2260 						 &parent_handle);
2261 
2262 			if (ACPI_FAILURE(status) ||
2263 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2264 				return -ENODEV;
2265 
2266 			/*
2267 			 * ACPI DeviceSelection numbering is handled by the
2268 			 * host controller driver in Windows and can vary
2269 			 * from driver to driver. In Linux we always expect
2270 			 * 0 .. max - 1 so we need to ask the driver to
2271 			 * translate between the two schemes.
2272 			 */
2273 			if (ctlr->fw_translate_cs) {
2274 				int cs = ctlr->fw_translate_cs(ctlr,
2275 						sb->device_selection);
2276 				if (cs < 0)
2277 					return cs;
2278 				lookup->chip_select = cs;
2279 			} else {
2280 				lookup->chip_select = sb->device_selection;
2281 			}
2282 
2283 			lookup->max_speed_hz = sb->connection_speed;
2284 			lookup->bits_per_word = sb->data_bit_length;
2285 
2286 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2287 				lookup->mode |= SPI_CPHA;
2288 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2289 				lookup->mode |= SPI_CPOL;
2290 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2291 				lookup->mode |= SPI_CS_HIGH;
2292 		}
2293 	} else if (lookup->irq < 0) {
2294 		struct resource r;
2295 
2296 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2297 			lookup->irq = r.start;
2298 	}
2299 
2300 	/* Always tell the ACPI core to skip this resource */
2301 	return 1;
2302 }
2303 
2304 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2305 					    struct acpi_device *adev)
2306 {
2307 	acpi_handle parent_handle = NULL;
2308 	struct list_head resource_list;
2309 	struct acpi_spi_lookup lookup = {};
2310 	struct spi_device *spi;
2311 	int ret;
2312 
2313 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2314 	    acpi_device_enumerated(adev))
2315 		return AE_OK;
2316 
2317 	lookup.ctlr		= ctlr;
2318 	lookup.irq		= -1;
2319 
2320 	INIT_LIST_HEAD(&resource_list);
2321 	ret = acpi_dev_get_resources(adev, &resource_list,
2322 				     acpi_spi_add_resource, &lookup);
2323 	acpi_dev_free_resource_list(&resource_list);
2324 
2325 	if (ret < 0)
2326 		/* found SPI in _CRS but it points to another controller */
2327 		return AE_OK;
2328 
2329 	if (!lookup.max_speed_hz &&
2330 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2331 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2332 		/* Apple does not use _CRS but nested devices for SPI slaves */
2333 		acpi_spi_parse_apple_properties(adev, &lookup);
2334 	}
2335 
2336 	if (!lookup.max_speed_hz)
2337 		return AE_OK;
2338 
2339 	spi = spi_alloc_device(ctlr);
2340 	if (!spi) {
2341 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2342 			dev_name(&adev->dev));
2343 		return AE_NO_MEMORY;
2344 	}
2345 
2346 
2347 	ACPI_COMPANION_SET(&spi->dev, adev);
2348 	spi->max_speed_hz	= lookup.max_speed_hz;
2349 	spi->mode		|= lookup.mode;
2350 	spi->irq		= lookup.irq;
2351 	spi->bits_per_word	= lookup.bits_per_word;
2352 	spi->chip_select	= lookup.chip_select;
2353 
2354 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2355 			  sizeof(spi->modalias));
2356 
2357 	if (spi->irq < 0)
2358 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2359 
2360 	acpi_device_set_enumerated(adev);
2361 
2362 	adev->power.flags.ignore_parent = true;
2363 	if (spi_add_device(spi)) {
2364 		adev->power.flags.ignore_parent = false;
2365 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2366 			dev_name(&adev->dev));
2367 		spi_dev_put(spi);
2368 	}
2369 
2370 	return AE_OK;
2371 }
2372 
2373 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2374 				       void *data, void **return_value)
2375 {
2376 	struct spi_controller *ctlr = data;
2377 	struct acpi_device *adev;
2378 
2379 	if (acpi_bus_get_device(handle, &adev))
2380 		return AE_OK;
2381 
2382 	return acpi_register_spi_device(ctlr, adev);
2383 }
2384 
2385 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2386 
2387 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2388 {
2389 	acpi_status status;
2390 	acpi_handle handle;
2391 
2392 	handle = ACPI_HANDLE(ctlr->dev.parent);
2393 	if (!handle)
2394 		return;
2395 
2396 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2397 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2398 				     acpi_spi_add_device, NULL, ctlr, NULL);
2399 	if (ACPI_FAILURE(status))
2400 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2401 }
2402 #else
2403 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2404 #endif /* CONFIG_ACPI */
2405 
2406 static void spi_controller_release(struct device *dev)
2407 {
2408 	struct spi_controller *ctlr;
2409 
2410 	ctlr = container_of(dev, struct spi_controller, dev);
2411 	kfree(ctlr);
2412 }
2413 
2414 static struct class spi_master_class = {
2415 	.name		= "spi_master",
2416 	.owner		= THIS_MODULE,
2417 	.dev_release	= spi_controller_release,
2418 	.dev_groups	= spi_master_groups,
2419 };
2420 
2421 #ifdef CONFIG_SPI_SLAVE
2422 /**
2423  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2424  *		     controller
2425  * @spi: device used for the current transfer
2426  */
2427 int spi_slave_abort(struct spi_device *spi)
2428 {
2429 	struct spi_controller *ctlr = spi->controller;
2430 
2431 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2432 		return ctlr->slave_abort(ctlr);
2433 
2434 	return -ENOTSUPP;
2435 }
2436 EXPORT_SYMBOL_GPL(spi_slave_abort);
2437 
2438 static int match_true(struct device *dev, void *data)
2439 {
2440 	return 1;
2441 }
2442 
2443 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2444 			  char *buf)
2445 {
2446 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2447 						   dev);
2448 	struct device *child;
2449 
2450 	child = device_find_child(&ctlr->dev, NULL, match_true);
2451 	return sprintf(buf, "%s\n",
2452 		       child ? to_spi_device(child)->modalias : NULL);
2453 }
2454 
2455 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2456 			   const char *buf, size_t count)
2457 {
2458 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2459 						   dev);
2460 	struct spi_device *spi;
2461 	struct device *child;
2462 	char name[32];
2463 	int rc;
2464 
2465 	rc = sscanf(buf, "%31s", name);
2466 	if (rc != 1 || !name[0])
2467 		return -EINVAL;
2468 
2469 	child = device_find_child(&ctlr->dev, NULL, match_true);
2470 	if (child) {
2471 		/* Remove registered slave */
2472 		device_unregister(child);
2473 		put_device(child);
2474 	}
2475 
2476 	if (strcmp(name, "(null)")) {
2477 		/* Register new slave */
2478 		spi = spi_alloc_device(ctlr);
2479 		if (!spi)
2480 			return -ENOMEM;
2481 
2482 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2483 
2484 		rc = spi_add_device(spi);
2485 		if (rc) {
2486 			spi_dev_put(spi);
2487 			return rc;
2488 		}
2489 	}
2490 
2491 	return count;
2492 }
2493 
2494 static DEVICE_ATTR_RW(slave);
2495 
2496 static struct attribute *spi_slave_attrs[] = {
2497 	&dev_attr_slave.attr,
2498 	NULL,
2499 };
2500 
2501 static const struct attribute_group spi_slave_group = {
2502 	.attrs = spi_slave_attrs,
2503 };
2504 
2505 static const struct attribute_group *spi_slave_groups[] = {
2506 	&spi_controller_statistics_group,
2507 	&spi_slave_group,
2508 	NULL,
2509 };
2510 
2511 static struct class spi_slave_class = {
2512 	.name		= "spi_slave",
2513 	.owner		= THIS_MODULE,
2514 	.dev_release	= spi_controller_release,
2515 	.dev_groups	= spi_slave_groups,
2516 };
2517 #else
2518 extern struct class spi_slave_class;	/* dummy */
2519 #endif
2520 
2521 /**
2522  * __spi_alloc_controller - allocate an SPI master or slave controller
2523  * @dev: the controller, possibly using the platform_bus
2524  * @size: how much zeroed driver-private data to allocate; the pointer to this
2525  *	memory is in the driver_data field of the returned device, accessible
2526  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2527  *	drivers granting DMA access to portions of their private data need to
2528  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2529  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2530  *	slave (true) controller
2531  * Context: can sleep
2532  *
2533  * This call is used only by SPI controller drivers, which are the
2534  * only ones directly touching chip registers.  It's how they allocate
2535  * an spi_controller structure, prior to calling spi_register_controller().
2536  *
2537  * This must be called from context that can sleep.
2538  *
2539  * The caller is responsible for assigning the bus number and initializing the
2540  * controller's methods before calling spi_register_controller(); and (after
2541  * errors adding the device) calling spi_controller_put() to prevent a memory
2542  * leak.
2543  *
2544  * Return: the SPI controller structure on success, else NULL.
2545  */
2546 struct spi_controller *__spi_alloc_controller(struct device *dev,
2547 					      unsigned int size, bool slave)
2548 {
2549 	struct spi_controller	*ctlr;
2550 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2551 
2552 	if (!dev)
2553 		return NULL;
2554 
2555 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2556 	if (!ctlr)
2557 		return NULL;
2558 
2559 	device_initialize(&ctlr->dev);
2560 	ctlr->bus_num = -1;
2561 	ctlr->num_chipselect = 1;
2562 	ctlr->slave = slave;
2563 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2564 		ctlr->dev.class = &spi_slave_class;
2565 	else
2566 		ctlr->dev.class = &spi_master_class;
2567 	ctlr->dev.parent = dev;
2568 	pm_suspend_ignore_children(&ctlr->dev, true);
2569 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2570 
2571 	return ctlr;
2572 }
2573 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2574 
2575 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2576 {
2577 	spi_controller_put(*(struct spi_controller **)ctlr);
2578 }
2579 
2580 /**
2581  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2582  * @dev: physical device of SPI controller
2583  * @size: how much zeroed driver-private data to allocate
2584  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2585  * Context: can sleep
2586  *
2587  * Allocate an SPI controller and automatically release a reference on it
2588  * when @dev is unbound from its driver.  Drivers are thus relieved from
2589  * having to call spi_controller_put().
2590  *
2591  * The arguments to this function are identical to __spi_alloc_controller().
2592  *
2593  * Return: the SPI controller structure on success, else NULL.
2594  */
2595 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2596 						   unsigned int size,
2597 						   bool slave)
2598 {
2599 	struct spi_controller **ptr, *ctlr;
2600 
2601 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2602 			   GFP_KERNEL);
2603 	if (!ptr)
2604 		return NULL;
2605 
2606 	ctlr = __spi_alloc_controller(dev, size, slave);
2607 	if (ctlr) {
2608 		ctlr->devm_allocated = true;
2609 		*ptr = ctlr;
2610 		devres_add(dev, ptr);
2611 	} else {
2612 		devres_free(ptr);
2613 	}
2614 
2615 	return ctlr;
2616 }
2617 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2618 
2619 #ifdef CONFIG_OF
2620 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2621 {
2622 	int nb, i, *cs;
2623 	struct device_node *np = ctlr->dev.of_node;
2624 
2625 	if (!np)
2626 		return 0;
2627 
2628 	nb = of_gpio_named_count(np, "cs-gpios");
2629 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2630 
2631 	/* Return error only for an incorrectly formed cs-gpios property */
2632 	if (nb == 0 || nb == -ENOENT)
2633 		return 0;
2634 	else if (nb < 0)
2635 		return nb;
2636 
2637 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2638 			  GFP_KERNEL);
2639 	ctlr->cs_gpios = cs;
2640 
2641 	if (!ctlr->cs_gpios)
2642 		return -ENOMEM;
2643 
2644 	for (i = 0; i < ctlr->num_chipselect; i++)
2645 		cs[i] = -ENOENT;
2646 
2647 	for (i = 0; i < nb; i++)
2648 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2649 
2650 	return 0;
2651 }
2652 #else
2653 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2654 {
2655 	return 0;
2656 }
2657 #endif
2658 
2659 /**
2660  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2661  * @ctlr: The SPI master to grab GPIO descriptors for
2662  */
2663 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2664 {
2665 	int nb, i;
2666 	struct gpio_desc **cs;
2667 	struct device *dev = &ctlr->dev;
2668 	unsigned long native_cs_mask = 0;
2669 	unsigned int num_cs_gpios = 0;
2670 
2671 	nb = gpiod_count(dev, "cs");
2672 	if (nb < 0) {
2673 		/* No GPIOs at all is fine, else return the error */
2674 		if (nb == -ENOENT)
2675 			return 0;
2676 		return nb;
2677 	}
2678 
2679 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2680 
2681 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2682 			  GFP_KERNEL);
2683 	if (!cs)
2684 		return -ENOMEM;
2685 	ctlr->cs_gpiods = cs;
2686 
2687 	for (i = 0; i < nb; i++) {
2688 		/*
2689 		 * Most chipselects are active low, the inverted
2690 		 * semantics are handled by special quirks in gpiolib,
2691 		 * so initializing them GPIOD_OUT_LOW here means
2692 		 * "unasserted", in most cases this will drive the physical
2693 		 * line high.
2694 		 */
2695 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2696 						      GPIOD_OUT_LOW);
2697 		if (IS_ERR(cs[i]))
2698 			return PTR_ERR(cs[i]);
2699 
2700 		if (cs[i]) {
2701 			/*
2702 			 * If we find a CS GPIO, name it after the device and
2703 			 * chip select line.
2704 			 */
2705 			char *gpioname;
2706 
2707 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2708 						  dev_name(dev), i);
2709 			if (!gpioname)
2710 				return -ENOMEM;
2711 			gpiod_set_consumer_name(cs[i], gpioname);
2712 			num_cs_gpios++;
2713 			continue;
2714 		}
2715 
2716 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2717 			dev_err(dev, "Invalid native chip select %d\n", i);
2718 			return -EINVAL;
2719 		}
2720 		native_cs_mask |= BIT(i);
2721 	}
2722 
2723 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2724 
2725 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2726 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2727 		dev_err(dev, "No unused native chip select available\n");
2728 		return -EINVAL;
2729 	}
2730 
2731 	return 0;
2732 }
2733 
2734 static int spi_controller_check_ops(struct spi_controller *ctlr)
2735 {
2736 	/*
2737 	 * The controller may implement only the high-level SPI-memory like
2738 	 * operations if it does not support regular SPI transfers, and this is
2739 	 * valid use case.
2740 	 * If ->mem_ops is NULL, we request that at least one of the
2741 	 * ->transfer_xxx() method be implemented.
2742 	 */
2743 	if (ctlr->mem_ops) {
2744 		if (!ctlr->mem_ops->exec_op)
2745 			return -EINVAL;
2746 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2747 		   !ctlr->transfer_one_message) {
2748 		return -EINVAL;
2749 	}
2750 
2751 	return 0;
2752 }
2753 
2754 /**
2755  * spi_register_controller - register SPI master or slave controller
2756  * @ctlr: initialized master, originally from spi_alloc_master() or
2757  *	spi_alloc_slave()
2758  * Context: can sleep
2759  *
2760  * SPI controllers connect to their drivers using some non-SPI bus,
2761  * such as the platform bus.  The final stage of probe() in that code
2762  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2763  *
2764  * SPI controllers use board specific (often SOC specific) bus numbers,
2765  * and board-specific addressing for SPI devices combines those numbers
2766  * with chip select numbers.  Since SPI does not directly support dynamic
2767  * device identification, boards need configuration tables telling which
2768  * chip is at which address.
2769  *
2770  * This must be called from context that can sleep.  It returns zero on
2771  * success, else a negative error code (dropping the controller's refcount).
2772  * After a successful return, the caller is responsible for calling
2773  * spi_unregister_controller().
2774  *
2775  * Return: zero on success, else a negative error code.
2776  */
2777 int spi_register_controller(struct spi_controller *ctlr)
2778 {
2779 	struct device		*dev = ctlr->dev.parent;
2780 	struct boardinfo	*bi;
2781 	int			status;
2782 	int			id, first_dynamic;
2783 
2784 	if (!dev)
2785 		return -ENODEV;
2786 
2787 	/*
2788 	 * Make sure all necessary hooks are implemented before registering
2789 	 * the SPI controller.
2790 	 */
2791 	status = spi_controller_check_ops(ctlr);
2792 	if (status)
2793 		return status;
2794 
2795 	if (ctlr->bus_num >= 0) {
2796 		/* devices with a fixed bus num must check-in with the num */
2797 		mutex_lock(&board_lock);
2798 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2799 			ctlr->bus_num + 1, GFP_KERNEL);
2800 		mutex_unlock(&board_lock);
2801 		if (WARN(id < 0, "couldn't get idr"))
2802 			return id == -ENOSPC ? -EBUSY : id;
2803 		ctlr->bus_num = id;
2804 	} else if (ctlr->dev.of_node) {
2805 		/* allocate dynamic bus number using Linux idr */
2806 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2807 		if (id >= 0) {
2808 			ctlr->bus_num = id;
2809 			mutex_lock(&board_lock);
2810 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2811 				       ctlr->bus_num + 1, GFP_KERNEL);
2812 			mutex_unlock(&board_lock);
2813 			if (WARN(id < 0, "couldn't get idr"))
2814 				return id == -ENOSPC ? -EBUSY : id;
2815 		}
2816 	}
2817 	if (ctlr->bus_num < 0) {
2818 		first_dynamic = of_alias_get_highest_id("spi");
2819 		if (first_dynamic < 0)
2820 			first_dynamic = 0;
2821 		else
2822 			first_dynamic++;
2823 
2824 		mutex_lock(&board_lock);
2825 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2826 			       0, GFP_KERNEL);
2827 		mutex_unlock(&board_lock);
2828 		if (WARN(id < 0, "couldn't get idr"))
2829 			return id;
2830 		ctlr->bus_num = id;
2831 	}
2832 	INIT_LIST_HEAD(&ctlr->queue);
2833 	spin_lock_init(&ctlr->queue_lock);
2834 	spin_lock_init(&ctlr->bus_lock_spinlock);
2835 	mutex_init(&ctlr->bus_lock_mutex);
2836 	mutex_init(&ctlr->io_mutex);
2837 	ctlr->bus_lock_flag = 0;
2838 	init_completion(&ctlr->xfer_completion);
2839 	if (!ctlr->max_dma_len)
2840 		ctlr->max_dma_len = INT_MAX;
2841 
2842 	/* register the device, then userspace will see it.
2843 	 * registration fails if the bus ID is in use.
2844 	 */
2845 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2846 
2847 	if (!spi_controller_is_slave(ctlr)) {
2848 		if (ctlr->use_gpio_descriptors) {
2849 			status = spi_get_gpio_descs(ctlr);
2850 			if (status)
2851 				goto free_bus_id;
2852 			/*
2853 			 * A controller using GPIO descriptors always
2854 			 * supports SPI_CS_HIGH if need be.
2855 			 */
2856 			ctlr->mode_bits |= SPI_CS_HIGH;
2857 		} else {
2858 			/* Legacy code path for GPIOs from DT */
2859 			status = of_spi_get_gpio_numbers(ctlr);
2860 			if (status)
2861 				goto free_bus_id;
2862 		}
2863 	}
2864 
2865 	/*
2866 	 * Even if it's just one always-selected device, there must
2867 	 * be at least one chipselect.
2868 	 */
2869 	if (!ctlr->num_chipselect) {
2870 		status = -EINVAL;
2871 		goto free_bus_id;
2872 	}
2873 
2874 	status = device_add(&ctlr->dev);
2875 	if (status < 0)
2876 		goto free_bus_id;
2877 	dev_dbg(dev, "registered %s %s\n",
2878 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2879 			dev_name(&ctlr->dev));
2880 
2881 	/*
2882 	 * If we're using a queued driver, start the queue. Note that we don't
2883 	 * need the queueing logic if the driver is only supporting high-level
2884 	 * memory operations.
2885 	 */
2886 	if (ctlr->transfer) {
2887 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2888 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2889 		status = spi_controller_initialize_queue(ctlr);
2890 		if (status) {
2891 			device_del(&ctlr->dev);
2892 			goto free_bus_id;
2893 		}
2894 	}
2895 	/* add statistics */
2896 	spin_lock_init(&ctlr->statistics.lock);
2897 
2898 	mutex_lock(&board_lock);
2899 	list_add_tail(&ctlr->list, &spi_controller_list);
2900 	list_for_each_entry(bi, &board_list, list)
2901 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2902 	mutex_unlock(&board_lock);
2903 
2904 	/* Register devices from the device tree and ACPI */
2905 	of_register_spi_devices(ctlr);
2906 	acpi_register_spi_devices(ctlr);
2907 	return status;
2908 
2909 free_bus_id:
2910 	mutex_lock(&board_lock);
2911 	idr_remove(&spi_master_idr, ctlr->bus_num);
2912 	mutex_unlock(&board_lock);
2913 	return status;
2914 }
2915 EXPORT_SYMBOL_GPL(spi_register_controller);
2916 
2917 static void devm_spi_unregister(void *ctlr)
2918 {
2919 	spi_unregister_controller(ctlr);
2920 }
2921 
2922 /**
2923  * devm_spi_register_controller - register managed SPI master or slave
2924  *	controller
2925  * @dev:    device managing SPI controller
2926  * @ctlr: initialized controller, originally from spi_alloc_master() or
2927  *	spi_alloc_slave()
2928  * Context: can sleep
2929  *
2930  * Register a SPI device as with spi_register_controller() which will
2931  * automatically be unregistered and freed.
2932  *
2933  * Return: zero on success, else a negative error code.
2934  */
2935 int devm_spi_register_controller(struct device *dev,
2936 				 struct spi_controller *ctlr)
2937 {
2938 	int ret;
2939 
2940 	ret = spi_register_controller(ctlr);
2941 	if (ret)
2942 		return ret;
2943 
2944 	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
2945 }
2946 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2947 
2948 static int __unregister(struct device *dev, void *null)
2949 {
2950 	spi_unregister_device(to_spi_device(dev));
2951 	return 0;
2952 }
2953 
2954 /**
2955  * spi_unregister_controller - unregister SPI master or slave controller
2956  * @ctlr: the controller being unregistered
2957  * Context: can sleep
2958  *
2959  * This call is used only by SPI controller drivers, which are the
2960  * only ones directly touching chip registers.
2961  *
2962  * This must be called from context that can sleep.
2963  *
2964  * Note that this function also drops a reference to the controller.
2965  */
2966 void spi_unregister_controller(struct spi_controller *ctlr)
2967 {
2968 	struct spi_controller *found;
2969 	int id = ctlr->bus_num;
2970 
2971 	/* Prevent addition of new devices, unregister existing ones */
2972 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2973 		mutex_lock(&spi_add_lock);
2974 
2975 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2976 
2977 	/* First make sure that this controller was ever added */
2978 	mutex_lock(&board_lock);
2979 	found = idr_find(&spi_master_idr, id);
2980 	mutex_unlock(&board_lock);
2981 	if (ctlr->queued) {
2982 		if (spi_destroy_queue(ctlr))
2983 			dev_err(&ctlr->dev, "queue remove failed\n");
2984 	}
2985 	mutex_lock(&board_lock);
2986 	list_del(&ctlr->list);
2987 	mutex_unlock(&board_lock);
2988 
2989 	device_del(&ctlr->dev);
2990 
2991 	/* Release the last reference on the controller if its driver
2992 	 * has not yet been converted to devm_spi_alloc_master/slave().
2993 	 */
2994 	if (!ctlr->devm_allocated)
2995 		put_device(&ctlr->dev);
2996 
2997 	/* free bus id */
2998 	mutex_lock(&board_lock);
2999 	if (found == ctlr)
3000 		idr_remove(&spi_master_idr, id);
3001 	mutex_unlock(&board_lock);
3002 
3003 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3004 		mutex_unlock(&spi_add_lock);
3005 }
3006 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3007 
3008 int spi_controller_suspend(struct spi_controller *ctlr)
3009 {
3010 	int ret;
3011 
3012 	/* Basically no-ops for non-queued controllers */
3013 	if (!ctlr->queued)
3014 		return 0;
3015 
3016 	ret = spi_stop_queue(ctlr);
3017 	if (ret)
3018 		dev_err(&ctlr->dev, "queue stop failed\n");
3019 
3020 	return ret;
3021 }
3022 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3023 
3024 int spi_controller_resume(struct spi_controller *ctlr)
3025 {
3026 	int ret;
3027 
3028 	if (!ctlr->queued)
3029 		return 0;
3030 
3031 	ret = spi_start_queue(ctlr);
3032 	if (ret)
3033 		dev_err(&ctlr->dev, "queue restart failed\n");
3034 
3035 	return ret;
3036 }
3037 EXPORT_SYMBOL_GPL(spi_controller_resume);
3038 
3039 static int __spi_controller_match(struct device *dev, const void *data)
3040 {
3041 	struct spi_controller *ctlr;
3042 	const u16 *bus_num = data;
3043 
3044 	ctlr = container_of(dev, struct spi_controller, dev);
3045 	return ctlr->bus_num == *bus_num;
3046 }
3047 
3048 /**
3049  * spi_busnum_to_master - look up master associated with bus_num
3050  * @bus_num: the master's bus number
3051  * Context: can sleep
3052  *
3053  * This call may be used with devices that are registered after
3054  * arch init time.  It returns a refcounted pointer to the relevant
3055  * spi_controller (which the caller must release), or NULL if there is
3056  * no such master registered.
3057  *
3058  * Return: the SPI master structure on success, else NULL.
3059  */
3060 struct spi_controller *spi_busnum_to_master(u16 bus_num)
3061 {
3062 	struct device		*dev;
3063 	struct spi_controller	*ctlr = NULL;
3064 
3065 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
3066 				__spi_controller_match);
3067 	if (dev)
3068 		ctlr = container_of(dev, struct spi_controller, dev);
3069 	/* reference got in class_find_device */
3070 	return ctlr;
3071 }
3072 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3073 
3074 /*-------------------------------------------------------------------------*/
3075 
3076 /* Core methods for SPI resource management */
3077 
3078 /**
3079  * spi_res_alloc - allocate a spi resource that is life-cycle managed
3080  *                 during the processing of a spi_message while using
3081  *                 spi_transfer_one
3082  * @spi:     the spi device for which we allocate memory
3083  * @release: the release code to execute for this resource
3084  * @size:    size to alloc and return
3085  * @gfp:     GFP allocation flags
3086  *
3087  * Return: the pointer to the allocated data
3088  *
3089  * This may get enhanced in the future to allocate from a memory pool
3090  * of the @spi_device or @spi_controller to avoid repeated allocations.
3091  */
3092 void *spi_res_alloc(struct spi_device *spi,
3093 		    spi_res_release_t release,
3094 		    size_t size, gfp_t gfp)
3095 {
3096 	struct spi_res *sres;
3097 
3098 	sres = kzalloc(sizeof(*sres) + size, gfp);
3099 	if (!sres)
3100 		return NULL;
3101 
3102 	INIT_LIST_HEAD(&sres->entry);
3103 	sres->release = release;
3104 
3105 	return sres->data;
3106 }
3107 EXPORT_SYMBOL_GPL(spi_res_alloc);
3108 
3109 /**
3110  * spi_res_free - free an spi resource
3111  * @res: pointer to the custom data of a resource
3112  *
3113  */
3114 void spi_res_free(void *res)
3115 {
3116 	struct spi_res *sres = container_of(res, struct spi_res, data);
3117 
3118 	if (!res)
3119 		return;
3120 
3121 	WARN_ON(!list_empty(&sres->entry));
3122 	kfree(sres);
3123 }
3124 EXPORT_SYMBOL_GPL(spi_res_free);
3125 
3126 /**
3127  * spi_res_add - add a spi_res to the spi_message
3128  * @message: the spi message
3129  * @res:     the spi_resource
3130  */
3131 void spi_res_add(struct spi_message *message, void *res)
3132 {
3133 	struct spi_res *sres = container_of(res, struct spi_res, data);
3134 
3135 	WARN_ON(!list_empty(&sres->entry));
3136 	list_add_tail(&sres->entry, &message->resources);
3137 }
3138 EXPORT_SYMBOL_GPL(spi_res_add);
3139 
3140 /**
3141  * spi_res_release - release all spi resources for this message
3142  * @ctlr:  the @spi_controller
3143  * @message: the @spi_message
3144  */
3145 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3146 {
3147 	struct spi_res *res, *tmp;
3148 
3149 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3150 		if (res->release)
3151 			res->release(ctlr, message, res->data);
3152 
3153 		list_del(&res->entry);
3154 
3155 		kfree(res);
3156 	}
3157 }
3158 EXPORT_SYMBOL_GPL(spi_res_release);
3159 
3160 /*-------------------------------------------------------------------------*/
3161 
3162 /* Core methods for spi_message alterations */
3163 
3164 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3165 					    struct spi_message *msg,
3166 					    void *res)
3167 {
3168 	struct spi_replaced_transfers *rxfer = res;
3169 	size_t i;
3170 
3171 	/* call extra callback if requested */
3172 	if (rxfer->release)
3173 		rxfer->release(ctlr, msg, res);
3174 
3175 	/* insert replaced transfers back into the message */
3176 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3177 
3178 	/* remove the formerly inserted entries */
3179 	for (i = 0; i < rxfer->inserted; i++)
3180 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3181 }
3182 
3183 /**
3184  * spi_replace_transfers - replace transfers with several transfers
3185  *                         and register change with spi_message.resources
3186  * @msg:           the spi_message we work upon
3187  * @xfer_first:    the first spi_transfer we want to replace
3188  * @remove:        number of transfers to remove
3189  * @insert:        the number of transfers we want to insert instead
3190  * @release:       extra release code necessary in some circumstances
3191  * @extradatasize: extra data to allocate (with alignment guarantees
3192  *                 of struct @spi_transfer)
3193  * @gfp:           gfp flags
3194  *
3195  * Returns: pointer to @spi_replaced_transfers,
3196  *          PTR_ERR(...) in case of errors.
3197  */
3198 struct spi_replaced_transfers *spi_replace_transfers(
3199 	struct spi_message *msg,
3200 	struct spi_transfer *xfer_first,
3201 	size_t remove,
3202 	size_t insert,
3203 	spi_replaced_release_t release,
3204 	size_t extradatasize,
3205 	gfp_t gfp)
3206 {
3207 	struct spi_replaced_transfers *rxfer;
3208 	struct spi_transfer *xfer;
3209 	size_t i;
3210 
3211 	/* allocate the structure using spi_res */
3212 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3213 			      struct_size(rxfer, inserted_transfers, insert)
3214 			      + extradatasize,
3215 			      gfp);
3216 	if (!rxfer)
3217 		return ERR_PTR(-ENOMEM);
3218 
3219 	/* the release code to invoke before running the generic release */
3220 	rxfer->release = release;
3221 
3222 	/* assign extradata */
3223 	if (extradatasize)
3224 		rxfer->extradata =
3225 			&rxfer->inserted_transfers[insert];
3226 
3227 	/* init the replaced_transfers list */
3228 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3229 
3230 	/* assign the list_entry after which we should reinsert
3231 	 * the @replaced_transfers - it may be spi_message.messages!
3232 	 */
3233 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3234 
3235 	/* remove the requested number of transfers */
3236 	for (i = 0; i < remove; i++) {
3237 		/* if the entry after replaced_after it is msg->transfers
3238 		 * then we have been requested to remove more transfers
3239 		 * than are in the list
3240 		 */
3241 		if (rxfer->replaced_after->next == &msg->transfers) {
3242 			dev_err(&msg->spi->dev,
3243 				"requested to remove more spi_transfers than are available\n");
3244 			/* insert replaced transfers back into the message */
3245 			list_splice(&rxfer->replaced_transfers,
3246 				    rxfer->replaced_after);
3247 
3248 			/* free the spi_replace_transfer structure */
3249 			spi_res_free(rxfer);
3250 
3251 			/* and return with an error */
3252 			return ERR_PTR(-EINVAL);
3253 		}
3254 
3255 		/* remove the entry after replaced_after from list of
3256 		 * transfers and add it to list of replaced_transfers
3257 		 */
3258 		list_move_tail(rxfer->replaced_after->next,
3259 			       &rxfer->replaced_transfers);
3260 	}
3261 
3262 	/* create copy of the given xfer with identical settings
3263 	 * based on the first transfer to get removed
3264 	 */
3265 	for (i = 0; i < insert; i++) {
3266 		/* we need to run in reverse order */
3267 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3268 
3269 		/* copy all spi_transfer data */
3270 		memcpy(xfer, xfer_first, sizeof(*xfer));
3271 
3272 		/* add to list */
3273 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3274 
3275 		/* clear cs_change and delay for all but the last */
3276 		if (i) {
3277 			xfer->cs_change = false;
3278 			xfer->delay.value = 0;
3279 		}
3280 	}
3281 
3282 	/* set up inserted */
3283 	rxfer->inserted = insert;
3284 
3285 	/* and register it with spi_res/spi_message */
3286 	spi_res_add(msg, rxfer);
3287 
3288 	return rxfer;
3289 }
3290 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3291 
3292 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3293 					struct spi_message *msg,
3294 					struct spi_transfer **xferp,
3295 					size_t maxsize,
3296 					gfp_t gfp)
3297 {
3298 	struct spi_transfer *xfer = *xferp, *xfers;
3299 	struct spi_replaced_transfers *srt;
3300 	size_t offset;
3301 	size_t count, i;
3302 
3303 	/* calculate how many we have to replace */
3304 	count = DIV_ROUND_UP(xfer->len, maxsize);
3305 
3306 	/* create replacement */
3307 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3308 	if (IS_ERR(srt))
3309 		return PTR_ERR(srt);
3310 	xfers = srt->inserted_transfers;
3311 
3312 	/* now handle each of those newly inserted spi_transfers
3313 	 * note that the replacements spi_transfers all are preset
3314 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3315 	 * are all identical (as well as most others)
3316 	 * so we just have to fix up len and the pointers.
3317 	 *
3318 	 * this also includes support for the depreciated
3319 	 * spi_message.is_dma_mapped interface
3320 	 */
3321 
3322 	/* the first transfer just needs the length modified, so we
3323 	 * run it outside the loop
3324 	 */
3325 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3326 
3327 	/* all the others need rx_buf/tx_buf also set */
3328 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3329 		/* update rx_buf, tx_buf and dma */
3330 		if (xfers[i].rx_buf)
3331 			xfers[i].rx_buf += offset;
3332 		if (xfers[i].rx_dma)
3333 			xfers[i].rx_dma += offset;
3334 		if (xfers[i].tx_buf)
3335 			xfers[i].tx_buf += offset;
3336 		if (xfers[i].tx_dma)
3337 			xfers[i].tx_dma += offset;
3338 
3339 		/* update length */
3340 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3341 	}
3342 
3343 	/* we set up xferp to the last entry we have inserted,
3344 	 * so that we skip those already split transfers
3345 	 */
3346 	*xferp = &xfers[count - 1];
3347 
3348 	/* increment statistics counters */
3349 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3350 				       transfers_split_maxsize);
3351 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3352 				       transfers_split_maxsize);
3353 
3354 	return 0;
3355 }
3356 
3357 /**
3358  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3359  *                               when an individual transfer exceeds a
3360  *                               certain size
3361  * @ctlr:    the @spi_controller for this transfer
3362  * @msg:   the @spi_message to transform
3363  * @maxsize:  the maximum when to apply this
3364  * @gfp: GFP allocation flags
3365  *
3366  * Return: status of transformation
3367  */
3368 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3369 				struct spi_message *msg,
3370 				size_t maxsize,
3371 				gfp_t gfp)
3372 {
3373 	struct spi_transfer *xfer;
3374 	int ret;
3375 
3376 	/* iterate over the transfer_list,
3377 	 * but note that xfer is advanced to the last transfer inserted
3378 	 * to avoid checking sizes again unnecessarily (also xfer does
3379 	 * potentiall belong to a different list by the time the
3380 	 * replacement has happened
3381 	 */
3382 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3383 		if (xfer->len > maxsize) {
3384 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3385 							   maxsize, gfp);
3386 			if (ret)
3387 				return ret;
3388 		}
3389 	}
3390 
3391 	return 0;
3392 }
3393 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3394 
3395 /*-------------------------------------------------------------------------*/
3396 
3397 /* Core methods for SPI controller protocol drivers.  Some of the
3398  * other core methods are currently defined as inline functions.
3399  */
3400 
3401 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3402 					u8 bits_per_word)
3403 {
3404 	if (ctlr->bits_per_word_mask) {
3405 		/* Only 32 bits fit in the mask */
3406 		if (bits_per_word > 32)
3407 			return -EINVAL;
3408 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3409 			return -EINVAL;
3410 	}
3411 
3412 	return 0;
3413 }
3414 
3415 /**
3416  * spi_setup - setup SPI mode and clock rate
3417  * @spi: the device whose settings are being modified
3418  * Context: can sleep, and no requests are queued to the device
3419  *
3420  * SPI protocol drivers may need to update the transfer mode if the
3421  * device doesn't work with its default.  They may likewise need
3422  * to update clock rates or word sizes from initial values.  This function
3423  * changes those settings, and must be called from a context that can sleep.
3424  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3425  * effect the next time the device is selected and data is transferred to
3426  * or from it.  When this function returns, the spi device is deselected.
3427  *
3428  * Note that this call will fail if the protocol driver specifies an option
3429  * that the underlying controller or its driver does not support.  For
3430  * example, not all hardware supports wire transfers using nine bit words,
3431  * LSB-first wire encoding, or active-high chipselects.
3432  *
3433  * Return: zero on success, else a negative error code.
3434  */
3435 int spi_setup(struct spi_device *spi)
3436 {
3437 	unsigned	bad_bits, ugly_bits;
3438 	int		status;
3439 
3440 	/*
3441 	 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3442 	 * are set at the same time
3443 	 */
3444 	if ((hweight_long(spi->mode &
3445 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3446 	    (hweight_long(spi->mode &
3447 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3448 		dev_err(&spi->dev,
3449 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3450 		return -EINVAL;
3451 	}
3452 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3453 	 */
3454 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3455 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3456 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3457 		return -EINVAL;
3458 	/* help drivers fail *cleanly* when they need options
3459 	 * that aren't supported with their current controller
3460 	 * SPI_CS_WORD has a fallback software implementation,
3461 	 * so it is ignored here.
3462 	 */
3463 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3464 				 SPI_NO_TX | SPI_NO_RX);
3465 	/* nothing prevents from working with active-high CS in case if it
3466 	 * is driven by GPIO.
3467 	 */
3468 	if (gpio_is_valid(spi->cs_gpio))
3469 		bad_bits &= ~SPI_CS_HIGH;
3470 	ugly_bits = bad_bits &
3471 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3472 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3473 	if (ugly_bits) {
3474 		dev_warn(&spi->dev,
3475 			 "setup: ignoring unsupported mode bits %x\n",
3476 			 ugly_bits);
3477 		spi->mode &= ~ugly_bits;
3478 		bad_bits &= ~ugly_bits;
3479 	}
3480 	if (bad_bits) {
3481 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3482 			bad_bits);
3483 		return -EINVAL;
3484 	}
3485 
3486 	if (!spi->bits_per_word)
3487 		spi->bits_per_word = 8;
3488 
3489 	status = __spi_validate_bits_per_word(spi->controller,
3490 					      spi->bits_per_word);
3491 	if (status)
3492 		return status;
3493 
3494 	if (spi->controller->max_speed_hz &&
3495 	    (!spi->max_speed_hz ||
3496 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3497 		spi->max_speed_hz = spi->controller->max_speed_hz;
3498 
3499 	mutex_lock(&spi->controller->io_mutex);
3500 
3501 	if (spi->controller->setup) {
3502 		status = spi->controller->setup(spi);
3503 		if (status) {
3504 			mutex_unlock(&spi->controller->io_mutex);
3505 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3506 				status);
3507 			return status;
3508 		}
3509 	}
3510 
3511 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3512 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3513 		if (status < 0) {
3514 			mutex_unlock(&spi->controller->io_mutex);
3515 			pm_runtime_put_noidle(spi->controller->dev.parent);
3516 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3517 				status);
3518 			return status;
3519 		}
3520 
3521 		/*
3522 		 * We do not want to return positive value from pm_runtime_get,
3523 		 * there are many instances of devices calling spi_setup() and
3524 		 * checking for a non-zero return value instead of a negative
3525 		 * return value.
3526 		 */
3527 		status = 0;
3528 
3529 		spi_set_cs(spi, false, true);
3530 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3531 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3532 	} else {
3533 		spi_set_cs(spi, false, true);
3534 	}
3535 
3536 	mutex_unlock(&spi->controller->io_mutex);
3537 
3538 	if (spi->rt && !spi->controller->rt) {
3539 		spi->controller->rt = true;
3540 		spi_set_thread_rt(spi->controller);
3541 	}
3542 
3543 	trace_spi_setup(spi, status);
3544 
3545 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3546 			spi->mode & SPI_MODE_X_MASK,
3547 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3548 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3549 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3550 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3551 			spi->bits_per_word, spi->max_speed_hz,
3552 			status);
3553 
3554 	return status;
3555 }
3556 EXPORT_SYMBOL_GPL(spi_setup);
3557 
3558 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3559 				       struct spi_device *spi)
3560 {
3561 	int delay1, delay2;
3562 
3563 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3564 	if (delay1 < 0)
3565 		return delay1;
3566 
3567 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3568 	if (delay2 < 0)
3569 		return delay2;
3570 
3571 	if (delay1 < delay2)
3572 		memcpy(&xfer->word_delay, &spi->word_delay,
3573 		       sizeof(xfer->word_delay));
3574 
3575 	return 0;
3576 }
3577 
3578 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3579 {
3580 	struct spi_controller *ctlr = spi->controller;
3581 	struct spi_transfer *xfer;
3582 	int w_size;
3583 
3584 	if (list_empty(&message->transfers))
3585 		return -EINVAL;
3586 
3587 	/* If an SPI controller does not support toggling the CS line on each
3588 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3589 	 * for the CS line, we can emulate the CS-per-word hardware function by
3590 	 * splitting transfers into one-word transfers and ensuring that
3591 	 * cs_change is set for each transfer.
3592 	 */
3593 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3594 					  spi->cs_gpiod ||
3595 					  gpio_is_valid(spi->cs_gpio))) {
3596 		size_t maxsize;
3597 		int ret;
3598 
3599 		maxsize = (spi->bits_per_word + 7) / 8;
3600 
3601 		/* spi_split_transfers_maxsize() requires message->spi */
3602 		message->spi = spi;
3603 
3604 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3605 						  GFP_KERNEL);
3606 		if (ret)
3607 			return ret;
3608 
3609 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3610 			/* don't change cs_change on the last entry in the list */
3611 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3612 				break;
3613 			xfer->cs_change = 1;
3614 		}
3615 	}
3616 
3617 	/* Half-duplex links include original MicroWire, and ones with
3618 	 * only one data pin like SPI_3WIRE (switches direction) or where
3619 	 * either MOSI or MISO is missing.  They can also be caused by
3620 	 * software limitations.
3621 	 */
3622 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3623 	    (spi->mode & SPI_3WIRE)) {
3624 		unsigned flags = ctlr->flags;
3625 
3626 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3627 			if (xfer->rx_buf && xfer->tx_buf)
3628 				return -EINVAL;
3629 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3630 				return -EINVAL;
3631 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3632 				return -EINVAL;
3633 		}
3634 	}
3635 
3636 	/**
3637 	 * Set transfer bits_per_word and max speed as spi device default if
3638 	 * it is not set for this transfer.
3639 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3640 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3641 	 * Ensure transfer word_delay is at least as long as that required by
3642 	 * device itself.
3643 	 */
3644 	message->frame_length = 0;
3645 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3646 		xfer->effective_speed_hz = 0;
3647 		message->frame_length += xfer->len;
3648 		if (!xfer->bits_per_word)
3649 			xfer->bits_per_word = spi->bits_per_word;
3650 
3651 		if (!xfer->speed_hz)
3652 			xfer->speed_hz = spi->max_speed_hz;
3653 
3654 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3655 			xfer->speed_hz = ctlr->max_speed_hz;
3656 
3657 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3658 			return -EINVAL;
3659 
3660 		/*
3661 		 * SPI transfer length should be multiple of SPI word size
3662 		 * where SPI word size should be power-of-two multiple
3663 		 */
3664 		if (xfer->bits_per_word <= 8)
3665 			w_size = 1;
3666 		else if (xfer->bits_per_word <= 16)
3667 			w_size = 2;
3668 		else
3669 			w_size = 4;
3670 
3671 		/* No partial transfers accepted */
3672 		if (xfer->len % w_size)
3673 			return -EINVAL;
3674 
3675 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3676 		    xfer->speed_hz < ctlr->min_speed_hz)
3677 			return -EINVAL;
3678 
3679 		if (xfer->tx_buf && !xfer->tx_nbits)
3680 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3681 		if (xfer->rx_buf && !xfer->rx_nbits)
3682 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3683 		/* check transfer tx/rx_nbits:
3684 		 * 1. check the value matches one of single, dual and quad
3685 		 * 2. check tx/rx_nbits match the mode in spi_device
3686 		 */
3687 		if (xfer->tx_buf) {
3688 			if (spi->mode & SPI_NO_TX)
3689 				return -EINVAL;
3690 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3691 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3692 				xfer->tx_nbits != SPI_NBITS_QUAD)
3693 				return -EINVAL;
3694 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3695 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3696 				return -EINVAL;
3697 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3698 				!(spi->mode & SPI_TX_QUAD))
3699 				return -EINVAL;
3700 		}
3701 		/* check transfer rx_nbits */
3702 		if (xfer->rx_buf) {
3703 			if (spi->mode & SPI_NO_RX)
3704 				return -EINVAL;
3705 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3706 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3707 				xfer->rx_nbits != SPI_NBITS_QUAD)
3708 				return -EINVAL;
3709 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3710 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3711 				return -EINVAL;
3712 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3713 				!(spi->mode & SPI_RX_QUAD))
3714 				return -EINVAL;
3715 		}
3716 
3717 		if (_spi_xfer_word_delay_update(xfer, spi))
3718 			return -EINVAL;
3719 	}
3720 
3721 	message->status = -EINPROGRESS;
3722 
3723 	return 0;
3724 }
3725 
3726 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3727 {
3728 	struct spi_controller *ctlr = spi->controller;
3729 	struct spi_transfer *xfer;
3730 
3731 	/*
3732 	 * Some controllers do not support doing regular SPI transfers. Return
3733 	 * ENOTSUPP when this is the case.
3734 	 */
3735 	if (!ctlr->transfer)
3736 		return -ENOTSUPP;
3737 
3738 	message->spi = spi;
3739 
3740 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3741 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3742 
3743 	trace_spi_message_submit(message);
3744 
3745 	if (!ctlr->ptp_sts_supported) {
3746 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3747 			xfer->ptp_sts_word_pre = 0;
3748 			ptp_read_system_prets(xfer->ptp_sts);
3749 		}
3750 	}
3751 
3752 	return ctlr->transfer(spi, message);
3753 }
3754 
3755 /**
3756  * spi_async - asynchronous SPI transfer
3757  * @spi: device with which data will be exchanged
3758  * @message: describes the data transfers, including completion callback
3759  * Context: any (irqs may be blocked, etc)
3760  *
3761  * This call may be used in_irq and other contexts which can't sleep,
3762  * as well as from task contexts which can sleep.
3763  *
3764  * The completion callback is invoked in a context which can't sleep.
3765  * Before that invocation, the value of message->status is undefined.
3766  * When the callback is issued, message->status holds either zero (to
3767  * indicate complete success) or a negative error code.  After that
3768  * callback returns, the driver which issued the transfer request may
3769  * deallocate the associated memory; it's no longer in use by any SPI
3770  * core or controller driver code.
3771  *
3772  * Note that although all messages to a spi_device are handled in
3773  * FIFO order, messages may go to different devices in other orders.
3774  * Some device might be higher priority, or have various "hard" access
3775  * time requirements, for example.
3776  *
3777  * On detection of any fault during the transfer, processing of
3778  * the entire message is aborted, and the device is deselected.
3779  * Until returning from the associated message completion callback,
3780  * no other spi_message queued to that device will be processed.
3781  * (This rule applies equally to all the synchronous transfer calls,
3782  * which are wrappers around this core asynchronous primitive.)
3783  *
3784  * Return: zero on success, else a negative error code.
3785  */
3786 int spi_async(struct spi_device *spi, struct spi_message *message)
3787 {
3788 	struct spi_controller *ctlr = spi->controller;
3789 	int ret;
3790 	unsigned long flags;
3791 
3792 	ret = __spi_validate(spi, message);
3793 	if (ret != 0)
3794 		return ret;
3795 
3796 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3797 
3798 	if (ctlr->bus_lock_flag)
3799 		ret = -EBUSY;
3800 	else
3801 		ret = __spi_async(spi, message);
3802 
3803 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3804 
3805 	return ret;
3806 }
3807 EXPORT_SYMBOL_GPL(spi_async);
3808 
3809 /**
3810  * spi_async_locked - version of spi_async with exclusive bus usage
3811  * @spi: device with which data will be exchanged
3812  * @message: describes the data transfers, including completion callback
3813  * Context: any (irqs may be blocked, etc)
3814  *
3815  * This call may be used in_irq and other contexts which can't sleep,
3816  * as well as from task contexts which can sleep.
3817  *
3818  * The completion callback is invoked in a context which can't sleep.
3819  * Before that invocation, the value of message->status is undefined.
3820  * When the callback is issued, message->status holds either zero (to
3821  * indicate complete success) or a negative error code.  After that
3822  * callback returns, the driver which issued the transfer request may
3823  * deallocate the associated memory; it's no longer in use by any SPI
3824  * core or controller driver code.
3825  *
3826  * Note that although all messages to a spi_device are handled in
3827  * FIFO order, messages may go to different devices in other orders.
3828  * Some device might be higher priority, or have various "hard" access
3829  * time requirements, for example.
3830  *
3831  * On detection of any fault during the transfer, processing of
3832  * the entire message is aborted, and the device is deselected.
3833  * Until returning from the associated message completion callback,
3834  * no other spi_message queued to that device will be processed.
3835  * (This rule applies equally to all the synchronous transfer calls,
3836  * which are wrappers around this core asynchronous primitive.)
3837  *
3838  * Return: zero on success, else a negative error code.
3839  */
3840 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3841 {
3842 	struct spi_controller *ctlr = spi->controller;
3843 	int ret;
3844 	unsigned long flags;
3845 
3846 	ret = __spi_validate(spi, message);
3847 	if (ret != 0)
3848 		return ret;
3849 
3850 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3851 
3852 	ret = __spi_async(spi, message);
3853 
3854 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3855 
3856 	return ret;
3857 
3858 }
3859 EXPORT_SYMBOL_GPL(spi_async_locked);
3860 
3861 /*-------------------------------------------------------------------------*/
3862 
3863 /* Utility methods for SPI protocol drivers, layered on
3864  * top of the core.  Some other utility methods are defined as
3865  * inline functions.
3866  */
3867 
3868 static void spi_complete(void *arg)
3869 {
3870 	complete(arg);
3871 }
3872 
3873 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3874 {
3875 	DECLARE_COMPLETION_ONSTACK(done);
3876 	int status;
3877 	struct spi_controller *ctlr = spi->controller;
3878 	unsigned long flags;
3879 
3880 	status = __spi_validate(spi, message);
3881 	if (status != 0)
3882 		return status;
3883 
3884 	message->complete = spi_complete;
3885 	message->context = &done;
3886 	message->spi = spi;
3887 
3888 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3889 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3890 
3891 	/* If we're not using the legacy transfer method then we will
3892 	 * try to transfer in the calling context so special case.
3893 	 * This code would be less tricky if we could remove the
3894 	 * support for driver implemented message queues.
3895 	 */
3896 	if (ctlr->transfer == spi_queued_transfer) {
3897 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3898 
3899 		trace_spi_message_submit(message);
3900 
3901 		status = __spi_queued_transfer(spi, message, false);
3902 
3903 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3904 	} else {
3905 		status = spi_async_locked(spi, message);
3906 	}
3907 
3908 	if (status == 0) {
3909 		/* Push out the messages in the calling context if we
3910 		 * can.
3911 		 */
3912 		if (ctlr->transfer == spi_queued_transfer) {
3913 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3914 						       spi_sync_immediate);
3915 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3916 						       spi_sync_immediate);
3917 			__spi_pump_messages(ctlr, false);
3918 		}
3919 
3920 		wait_for_completion(&done);
3921 		status = message->status;
3922 	}
3923 	message->context = NULL;
3924 	return status;
3925 }
3926 
3927 /**
3928  * spi_sync - blocking/synchronous SPI data transfers
3929  * @spi: device with which data will be exchanged
3930  * @message: describes the data transfers
3931  * Context: can sleep
3932  *
3933  * This call may only be used from a context that may sleep.  The sleep
3934  * is non-interruptible, and has no timeout.  Low-overhead controller
3935  * drivers may DMA directly into and out of the message buffers.
3936  *
3937  * Note that the SPI device's chip select is active during the message,
3938  * and then is normally disabled between messages.  Drivers for some
3939  * frequently-used devices may want to minimize costs of selecting a chip,
3940  * by leaving it selected in anticipation that the next message will go
3941  * to the same chip.  (That may increase power usage.)
3942  *
3943  * Also, the caller is guaranteeing that the memory associated with the
3944  * message will not be freed before this call returns.
3945  *
3946  * Return: zero on success, else a negative error code.
3947  */
3948 int spi_sync(struct spi_device *spi, struct spi_message *message)
3949 {
3950 	int ret;
3951 
3952 	mutex_lock(&spi->controller->bus_lock_mutex);
3953 	ret = __spi_sync(spi, message);
3954 	mutex_unlock(&spi->controller->bus_lock_mutex);
3955 
3956 	return ret;
3957 }
3958 EXPORT_SYMBOL_GPL(spi_sync);
3959 
3960 /**
3961  * spi_sync_locked - version of spi_sync with exclusive bus usage
3962  * @spi: device with which data will be exchanged
3963  * @message: describes the data transfers
3964  * Context: can sleep
3965  *
3966  * This call may only be used from a context that may sleep.  The sleep
3967  * is non-interruptible, and has no timeout.  Low-overhead controller
3968  * drivers may DMA directly into and out of the message buffers.
3969  *
3970  * This call should be used by drivers that require exclusive access to the
3971  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3972  * be released by a spi_bus_unlock call when the exclusive access is over.
3973  *
3974  * Return: zero on success, else a negative error code.
3975  */
3976 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3977 {
3978 	return __spi_sync(spi, message);
3979 }
3980 EXPORT_SYMBOL_GPL(spi_sync_locked);
3981 
3982 /**
3983  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3984  * @ctlr: SPI bus master that should be locked for exclusive bus access
3985  * Context: can sleep
3986  *
3987  * This call may only be used from a context that may sleep.  The sleep
3988  * is non-interruptible, and has no timeout.
3989  *
3990  * This call should be used by drivers that require exclusive access to the
3991  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3992  * exclusive access is over. Data transfer must be done by spi_sync_locked
3993  * and spi_async_locked calls when the SPI bus lock is held.
3994  *
3995  * Return: always zero.
3996  */
3997 int spi_bus_lock(struct spi_controller *ctlr)
3998 {
3999 	unsigned long flags;
4000 
4001 	mutex_lock(&ctlr->bus_lock_mutex);
4002 
4003 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4004 	ctlr->bus_lock_flag = 1;
4005 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4006 
4007 	/* mutex remains locked until spi_bus_unlock is called */
4008 
4009 	return 0;
4010 }
4011 EXPORT_SYMBOL_GPL(spi_bus_lock);
4012 
4013 /**
4014  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4015  * @ctlr: SPI bus master that was locked for exclusive bus access
4016  * Context: can sleep
4017  *
4018  * This call may only be used from a context that may sleep.  The sleep
4019  * is non-interruptible, and has no timeout.
4020  *
4021  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4022  * call.
4023  *
4024  * Return: always zero.
4025  */
4026 int spi_bus_unlock(struct spi_controller *ctlr)
4027 {
4028 	ctlr->bus_lock_flag = 0;
4029 
4030 	mutex_unlock(&ctlr->bus_lock_mutex);
4031 
4032 	return 0;
4033 }
4034 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4035 
4036 /* portable code must never pass more than 32 bytes */
4037 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4038 
4039 static u8	*buf;
4040 
4041 /**
4042  * spi_write_then_read - SPI synchronous write followed by read
4043  * @spi: device with which data will be exchanged
4044  * @txbuf: data to be written (need not be dma-safe)
4045  * @n_tx: size of txbuf, in bytes
4046  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4047  * @n_rx: size of rxbuf, in bytes
4048  * Context: can sleep
4049  *
4050  * This performs a half duplex MicroWire style transaction with the
4051  * device, sending txbuf and then reading rxbuf.  The return value
4052  * is zero for success, else a negative errno status code.
4053  * This call may only be used from a context that may sleep.
4054  *
4055  * Parameters to this routine are always copied using a small buffer.
4056  * Performance-sensitive or bulk transfer code should instead use
4057  * spi_{async,sync}() calls with dma-safe buffers.
4058  *
4059  * Return: zero on success, else a negative error code.
4060  */
4061 int spi_write_then_read(struct spi_device *spi,
4062 		const void *txbuf, unsigned n_tx,
4063 		void *rxbuf, unsigned n_rx)
4064 {
4065 	static DEFINE_MUTEX(lock);
4066 
4067 	int			status;
4068 	struct spi_message	message;
4069 	struct spi_transfer	x[2];
4070 	u8			*local_buf;
4071 
4072 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
4073 	 * copying here, (as a pure convenience thing), but we can
4074 	 * keep heap costs out of the hot path unless someone else is
4075 	 * using the pre-allocated buffer or the transfer is too large.
4076 	 */
4077 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4078 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4079 				    GFP_KERNEL | GFP_DMA);
4080 		if (!local_buf)
4081 			return -ENOMEM;
4082 	} else {
4083 		local_buf = buf;
4084 	}
4085 
4086 	spi_message_init(&message);
4087 	memset(x, 0, sizeof(x));
4088 	if (n_tx) {
4089 		x[0].len = n_tx;
4090 		spi_message_add_tail(&x[0], &message);
4091 	}
4092 	if (n_rx) {
4093 		x[1].len = n_rx;
4094 		spi_message_add_tail(&x[1], &message);
4095 	}
4096 
4097 	memcpy(local_buf, txbuf, n_tx);
4098 	x[0].tx_buf = local_buf;
4099 	x[1].rx_buf = local_buf + n_tx;
4100 
4101 	/* do the i/o */
4102 	status = spi_sync(spi, &message);
4103 	if (status == 0)
4104 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4105 
4106 	if (x[0].tx_buf == buf)
4107 		mutex_unlock(&lock);
4108 	else
4109 		kfree(local_buf);
4110 
4111 	return status;
4112 }
4113 EXPORT_SYMBOL_GPL(spi_write_then_read);
4114 
4115 /*-------------------------------------------------------------------------*/
4116 
4117 #if IS_ENABLED(CONFIG_OF)
4118 /* must call put_device() when done with returned spi_device device */
4119 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4120 {
4121 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4122 
4123 	return dev ? to_spi_device(dev) : NULL;
4124 }
4125 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4126 #endif /* IS_ENABLED(CONFIG_OF) */
4127 
4128 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4129 /* the spi controllers are not using spi_bus, so we find it with another way */
4130 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4131 {
4132 	struct device *dev;
4133 
4134 	dev = class_find_device_by_of_node(&spi_master_class, node);
4135 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4136 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4137 	if (!dev)
4138 		return NULL;
4139 
4140 	/* reference got in class_find_device */
4141 	return container_of(dev, struct spi_controller, dev);
4142 }
4143 
4144 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4145 			 void *arg)
4146 {
4147 	struct of_reconfig_data *rd = arg;
4148 	struct spi_controller *ctlr;
4149 	struct spi_device *spi;
4150 
4151 	switch (of_reconfig_get_state_change(action, arg)) {
4152 	case OF_RECONFIG_CHANGE_ADD:
4153 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4154 		if (ctlr == NULL)
4155 			return NOTIFY_OK;	/* not for us */
4156 
4157 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4158 			put_device(&ctlr->dev);
4159 			return NOTIFY_OK;
4160 		}
4161 
4162 		spi = of_register_spi_device(ctlr, rd->dn);
4163 		put_device(&ctlr->dev);
4164 
4165 		if (IS_ERR(spi)) {
4166 			pr_err("%s: failed to create for '%pOF'\n",
4167 					__func__, rd->dn);
4168 			of_node_clear_flag(rd->dn, OF_POPULATED);
4169 			return notifier_from_errno(PTR_ERR(spi));
4170 		}
4171 		break;
4172 
4173 	case OF_RECONFIG_CHANGE_REMOVE:
4174 		/* already depopulated? */
4175 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4176 			return NOTIFY_OK;
4177 
4178 		/* find our device by node */
4179 		spi = of_find_spi_device_by_node(rd->dn);
4180 		if (spi == NULL)
4181 			return NOTIFY_OK;	/* no? not meant for us */
4182 
4183 		/* unregister takes one ref away */
4184 		spi_unregister_device(spi);
4185 
4186 		/* and put the reference of the find */
4187 		put_device(&spi->dev);
4188 		break;
4189 	}
4190 
4191 	return NOTIFY_OK;
4192 }
4193 
4194 static struct notifier_block spi_of_notifier = {
4195 	.notifier_call = of_spi_notify,
4196 };
4197 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4198 extern struct notifier_block spi_of_notifier;
4199 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4200 
4201 #if IS_ENABLED(CONFIG_ACPI)
4202 static int spi_acpi_controller_match(struct device *dev, const void *data)
4203 {
4204 	return ACPI_COMPANION(dev->parent) == data;
4205 }
4206 
4207 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4208 {
4209 	struct device *dev;
4210 
4211 	dev = class_find_device(&spi_master_class, NULL, adev,
4212 				spi_acpi_controller_match);
4213 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4214 		dev = class_find_device(&spi_slave_class, NULL, adev,
4215 					spi_acpi_controller_match);
4216 	if (!dev)
4217 		return NULL;
4218 
4219 	return container_of(dev, struct spi_controller, dev);
4220 }
4221 
4222 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4223 {
4224 	struct device *dev;
4225 
4226 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4227 	return to_spi_device(dev);
4228 }
4229 
4230 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4231 			   void *arg)
4232 {
4233 	struct acpi_device *adev = arg;
4234 	struct spi_controller *ctlr;
4235 	struct spi_device *spi;
4236 
4237 	switch (value) {
4238 	case ACPI_RECONFIG_DEVICE_ADD:
4239 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4240 		if (!ctlr)
4241 			break;
4242 
4243 		acpi_register_spi_device(ctlr, adev);
4244 		put_device(&ctlr->dev);
4245 		break;
4246 	case ACPI_RECONFIG_DEVICE_REMOVE:
4247 		if (!acpi_device_enumerated(adev))
4248 			break;
4249 
4250 		spi = acpi_spi_find_device_by_adev(adev);
4251 		if (!spi)
4252 			break;
4253 
4254 		spi_unregister_device(spi);
4255 		put_device(&spi->dev);
4256 		break;
4257 	}
4258 
4259 	return NOTIFY_OK;
4260 }
4261 
4262 static struct notifier_block spi_acpi_notifier = {
4263 	.notifier_call = acpi_spi_notify,
4264 };
4265 #else
4266 extern struct notifier_block spi_acpi_notifier;
4267 #endif
4268 
4269 static int __init spi_init(void)
4270 {
4271 	int	status;
4272 
4273 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4274 	if (!buf) {
4275 		status = -ENOMEM;
4276 		goto err0;
4277 	}
4278 
4279 	status = bus_register(&spi_bus_type);
4280 	if (status < 0)
4281 		goto err1;
4282 
4283 	status = class_register(&spi_master_class);
4284 	if (status < 0)
4285 		goto err2;
4286 
4287 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4288 		status = class_register(&spi_slave_class);
4289 		if (status < 0)
4290 			goto err3;
4291 	}
4292 
4293 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4294 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4295 	if (IS_ENABLED(CONFIG_ACPI))
4296 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4297 
4298 	return 0;
4299 
4300 err3:
4301 	class_unregister(&spi_master_class);
4302 err2:
4303 	bus_unregister(&spi_bus_type);
4304 err1:
4305 	kfree(buf);
4306 	buf = NULL;
4307 err0:
4308 	return status;
4309 }
4310 
4311 /* board_info is normally registered in arch_initcall(),
4312  * but even essential drivers wait till later
4313  *
4314  * REVISIT only boardinfo really needs static linking. the rest (device and
4315  * driver registration) _could_ be dynamically linked (modular) ... costs
4316  * include needing to have boardinfo data structures be much more public.
4317  */
4318 postcore_initcall(spi_init);
4319