1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 spi_controller_put(spi->controller); 51 kfree(spi->driver_override); 52 kfree(spi); 53 } 54 55 static ssize_t 56 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 57 { 58 const struct spi_device *spi = to_spi_device(dev); 59 int len; 60 61 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 62 if (len != -ENODEV) 63 return len; 64 65 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 66 } 67 static DEVICE_ATTR_RO(modalias); 68 69 static ssize_t driver_override_store(struct device *dev, 70 struct device_attribute *a, 71 const char *buf, size_t count) 72 { 73 struct spi_device *spi = to_spi_device(dev); 74 const char *end = memchr(buf, '\n', count); 75 const size_t len = end ? end - buf : count; 76 const char *driver_override, *old; 77 78 /* We need to keep extra room for a newline when displaying value */ 79 if (len >= (PAGE_SIZE - 1)) 80 return -EINVAL; 81 82 driver_override = kstrndup(buf, len, GFP_KERNEL); 83 if (!driver_override) 84 return -ENOMEM; 85 86 device_lock(dev); 87 old = spi->driver_override; 88 if (len) { 89 spi->driver_override = driver_override; 90 } else { 91 /* Empty string, disable driver override */ 92 spi->driver_override = NULL; 93 kfree(driver_override); 94 } 95 device_unlock(dev); 96 kfree(old); 97 98 return count; 99 } 100 101 static ssize_t driver_override_show(struct device *dev, 102 struct device_attribute *a, char *buf) 103 { 104 const struct spi_device *spi = to_spi_device(dev); 105 ssize_t len; 106 107 device_lock(dev); 108 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 109 device_unlock(dev); 110 return len; 111 } 112 static DEVICE_ATTR_RW(driver_override); 113 114 #define SPI_STATISTICS_ATTRS(field, file) \ 115 static ssize_t spi_controller_##field##_show(struct device *dev, \ 116 struct device_attribute *attr, \ 117 char *buf) \ 118 { \ 119 struct spi_controller *ctlr = container_of(dev, \ 120 struct spi_controller, dev); \ 121 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 122 } \ 123 static struct device_attribute dev_attr_spi_controller_##field = { \ 124 .attr = { .name = file, .mode = 0444 }, \ 125 .show = spi_controller_##field##_show, \ 126 }; \ 127 static ssize_t spi_device_##field##_show(struct device *dev, \ 128 struct device_attribute *attr, \ 129 char *buf) \ 130 { \ 131 struct spi_device *spi = to_spi_device(dev); \ 132 return spi_statistics_##field##_show(&spi->statistics, buf); \ 133 } \ 134 static struct device_attribute dev_attr_spi_device_##field = { \ 135 .attr = { .name = file, .mode = 0444 }, \ 136 .show = spi_device_##field##_show, \ 137 } 138 139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 141 char *buf) \ 142 { \ 143 unsigned long flags; \ 144 ssize_t len; \ 145 spin_lock_irqsave(&stat->lock, flags); \ 146 len = sprintf(buf, format_string, stat->field); \ 147 spin_unlock_irqrestore(&stat->lock, flags); \ 148 return len; \ 149 } \ 150 SPI_STATISTICS_ATTRS(name, file) 151 152 #define SPI_STATISTICS_SHOW(field, format_string) \ 153 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 154 field, format_string) 155 156 SPI_STATISTICS_SHOW(messages, "%lu"); 157 SPI_STATISTICS_SHOW(transfers, "%lu"); 158 SPI_STATISTICS_SHOW(errors, "%lu"); 159 SPI_STATISTICS_SHOW(timedout, "%lu"); 160 161 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 163 SPI_STATISTICS_SHOW(spi_async, "%lu"); 164 165 SPI_STATISTICS_SHOW(bytes, "%llu"); 166 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 167 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 168 169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 170 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 171 "transfer_bytes_histo_" number, \ 172 transfer_bytes_histo[index], "%lu") 173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 190 191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 192 193 static struct attribute *spi_dev_attrs[] = { 194 &dev_attr_modalias.attr, 195 &dev_attr_driver_override.attr, 196 NULL, 197 }; 198 199 static const struct attribute_group spi_dev_group = { 200 .attrs = spi_dev_attrs, 201 }; 202 203 static struct attribute *spi_device_statistics_attrs[] = { 204 &dev_attr_spi_device_messages.attr, 205 &dev_attr_spi_device_transfers.attr, 206 &dev_attr_spi_device_errors.attr, 207 &dev_attr_spi_device_timedout.attr, 208 &dev_attr_spi_device_spi_sync.attr, 209 &dev_attr_spi_device_spi_sync_immediate.attr, 210 &dev_attr_spi_device_spi_async.attr, 211 &dev_attr_spi_device_bytes.attr, 212 &dev_attr_spi_device_bytes_rx.attr, 213 &dev_attr_spi_device_bytes_tx.attr, 214 &dev_attr_spi_device_transfer_bytes_histo0.attr, 215 &dev_attr_spi_device_transfer_bytes_histo1.attr, 216 &dev_attr_spi_device_transfer_bytes_histo2.attr, 217 &dev_attr_spi_device_transfer_bytes_histo3.attr, 218 &dev_attr_spi_device_transfer_bytes_histo4.attr, 219 &dev_attr_spi_device_transfer_bytes_histo5.attr, 220 &dev_attr_spi_device_transfer_bytes_histo6.attr, 221 &dev_attr_spi_device_transfer_bytes_histo7.attr, 222 &dev_attr_spi_device_transfer_bytes_histo8.attr, 223 &dev_attr_spi_device_transfer_bytes_histo9.attr, 224 &dev_attr_spi_device_transfer_bytes_histo10.attr, 225 &dev_attr_spi_device_transfer_bytes_histo11.attr, 226 &dev_attr_spi_device_transfer_bytes_histo12.attr, 227 &dev_attr_spi_device_transfer_bytes_histo13.attr, 228 &dev_attr_spi_device_transfer_bytes_histo14.attr, 229 &dev_attr_spi_device_transfer_bytes_histo15.attr, 230 &dev_attr_spi_device_transfer_bytes_histo16.attr, 231 &dev_attr_spi_device_transfers_split_maxsize.attr, 232 NULL, 233 }; 234 235 static const struct attribute_group spi_device_statistics_group = { 236 .name = "statistics", 237 .attrs = spi_device_statistics_attrs, 238 }; 239 240 static const struct attribute_group *spi_dev_groups[] = { 241 &spi_dev_group, 242 &spi_device_statistics_group, 243 NULL, 244 }; 245 246 static struct attribute *spi_controller_statistics_attrs[] = { 247 &dev_attr_spi_controller_messages.attr, 248 &dev_attr_spi_controller_transfers.attr, 249 &dev_attr_spi_controller_errors.attr, 250 &dev_attr_spi_controller_timedout.attr, 251 &dev_attr_spi_controller_spi_sync.attr, 252 &dev_attr_spi_controller_spi_sync_immediate.attr, 253 &dev_attr_spi_controller_spi_async.attr, 254 &dev_attr_spi_controller_bytes.attr, 255 &dev_attr_spi_controller_bytes_rx.attr, 256 &dev_attr_spi_controller_bytes_tx.attr, 257 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 258 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 259 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 260 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 274 &dev_attr_spi_controller_transfers_split_maxsize.attr, 275 NULL, 276 }; 277 278 static const struct attribute_group spi_controller_statistics_group = { 279 .name = "statistics", 280 .attrs = spi_controller_statistics_attrs, 281 }; 282 283 static const struct attribute_group *spi_master_groups[] = { 284 &spi_controller_statistics_group, 285 NULL, 286 }; 287 288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 289 struct spi_transfer *xfer, 290 struct spi_controller *ctlr) 291 { 292 unsigned long flags; 293 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 294 295 if (l2len < 0) 296 l2len = 0; 297 298 spin_lock_irqsave(&stats->lock, flags); 299 300 stats->transfers++; 301 stats->transfer_bytes_histo[l2len]++; 302 303 stats->bytes += xfer->len; 304 if ((xfer->tx_buf) && 305 (xfer->tx_buf != ctlr->dummy_tx)) 306 stats->bytes_tx += xfer->len; 307 if ((xfer->rx_buf) && 308 (xfer->rx_buf != ctlr->dummy_rx)) 309 stats->bytes_rx += xfer->len; 310 311 spin_unlock_irqrestore(&stats->lock, flags); 312 } 313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 314 315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 316 * and the sysfs version makes coldplug work too. 317 */ 318 319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 320 const struct spi_device *sdev) 321 { 322 while (id->name[0]) { 323 if (!strcmp(sdev->modalias, id->name)) 324 return id; 325 id++; 326 } 327 return NULL; 328 } 329 330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 331 { 332 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 333 334 return spi_match_id(sdrv->id_table, sdev); 335 } 336 EXPORT_SYMBOL_GPL(spi_get_device_id); 337 338 static int spi_match_device(struct device *dev, struct device_driver *drv) 339 { 340 const struct spi_device *spi = to_spi_device(dev); 341 const struct spi_driver *sdrv = to_spi_driver(drv); 342 343 /* Check override first, and if set, only use the named driver */ 344 if (spi->driver_override) 345 return strcmp(spi->driver_override, drv->name) == 0; 346 347 /* Attempt an OF style match */ 348 if (of_driver_match_device(dev, drv)) 349 return 1; 350 351 /* Then try ACPI */ 352 if (acpi_driver_match_device(dev, drv)) 353 return 1; 354 355 if (sdrv->id_table) 356 return !!spi_match_id(sdrv->id_table, spi); 357 358 return strcmp(spi->modalias, drv->name) == 0; 359 } 360 361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 362 { 363 const struct spi_device *spi = to_spi_device(dev); 364 int rc; 365 366 rc = of_device_uevent_modalias(dev, env); 367 if (rc != -ENODEV) 368 return rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 static int spi_probe(struct device *dev) 378 { 379 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 380 struct spi_device *spi = to_spi_device(dev); 381 int ret; 382 383 ret = of_clk_set_defaults(dev->of_node, false); 384 if (ret) 385 return ret; 386 387 if (dev->of_node) { 388 spi->irq = of_irq_get(dev->of_node, 0); 389 if (spi->irq == -EPROBE_DEFER) 390 return -EPROBE_DEFER; 391 if (spi->irq < 0) 392 spi->irq = 0; 393 } 394 395 ret = dev_pm_domain_attach(dev, true); 396 if (ret) 397 return ret; 398 399 if (sdrv->probe) { 400 ret = sdrv->probe(spi); 401 if (ret) 402 dev_pm_domain_detach(dev, true); 403 } 404 405 return ret; 406 } 407 408 static void spi_remove(struct device *dev) 409 { 410 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 411 412 if (sdrv->remove) { 413 int ret; 414 415 ret = sdrv->remove(to_spi_device(dev)); 416 if (ret) 417 dev_warn(dev, 418 "Failed to unbind driver (%pe), ignoring\n", 419 ERR_PTR(ret)); 420 } 421 422 dev_pm_domain_detach(dev, true); 423 } 424 425 static void spi_shutdown(struct device *dev) 426 { 427 if (dev->driver) { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 if (sdrv->shutdown) 431 sdrv->shutdown(to_spi_device(dev)); 432 } 433 } 434 435 struct bus_type spi_bus_type = { 436 .name = "spi", 437 .dev_groups = spi_dev_groups, 438 .match = spi_match_device, 439 .uevent = spi_uevent, 440 .probe = spi_probe, 441 .remove = spi_remove, 442 .shutdown = spi_shutdown, 443 }; 444 EXPORT_SYMBOL_GPL(spi_bus_type); 445 446 /** 447 * __spi_register_driver - register a SPI driver 448 * @owner: owner module of the driver to register 449 * @sdrv: the driver to register 450 * Context: can sleep 451 * 452 * Return: zero on success, else a negative error code. 453 */ 454 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 455 { 456 sdrv->driver.owner = owner; 457 sdrv->driver.bus = &spi_bus_type; 458 return driver_register(&sdrv->driver); 459 } 460 EXPORT_SYMBOL_GPL(__spi_register_driver); 461 462 /*-------------------------------------------------------------------------*/ 463 464 /* SPI devices should normally not be created by SPI device drivers; that 465 * would make them board-specific. Similarly with SPI controller drivers. 466 * Device registration normally goes into like arch/.../mach.../board-YYY.c 467 * with other readonly (flashable) information about mainboard devices. 468 */ 469 470 struct boardinfo { 471 struct list_head list; 472 struct spi_board_info board_info; 473 }; 474 475 static LIST_HEAD(board_list); 476 static LIST_HEAD(spi_controller_list); 477 478 /* 479 * Used to protect add/del operation for board_info list and 480 * spi_controller list, and their matching process 481 * also used to protect object of type struct idr 482 */ 483 static DEFINE_MUTEX(board_lock); 484 485 /* 486 * Prevents addition of devices with same chip select and 487 * addition of devices below an unregistering controller. 488 */ 489 static DEFINE_MUTEX(spi_add_lock); 490 491 /** 492 * spi_alloc_device - Allocate a new SPI device 493 * @ctlr: Controller to which device is connected 494 * Context: can sleep 495 * 496 * Allows a driver to allocate and initialize a spi_device without 497 * registering it immediately. This allows a driver to directly 498 * fill the spi_device with device parameters before calling 499 * spi_add_device() on it. 500 * 501 * Caller is responsible to call spi_add_device() on the returned 502 * spi_device structure to add it to the SPI controller. If the caller 503 * needs to discard the spi_device without adding it, then it should 504 * call spi_dev_put() on it. 505 * 506 * Return: a pointer to the new device, or NULL. 507 */ 508 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 509 { 510 struct spi_device *spi; 511 512 if (!spi_controller_get(ctlr)) 513 return NULL; 514 515 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 516 if (!spi) { 517 spi_controller_put(ctlr); 518 return NULL; 519 } 520 521 spi->master = spi->controller = ctlr; 522 spi->dev.parent = &ctlr->dev; 523 spi->dev.bus = &spi_bus_type; 524 spi->dev.release = spidev_release; 525 spi->cs_gpio = -ENOENT; 526 spi->mode = ctlr->buswidth_override_bits; 527 528 spin_lock_init(&spi->statistics.lock); 529 530 device_initialize(&spi->dev); 531 return spi; 532 } 533 EXPORT_SYMBOL_GPL(spi_alloc_device); 534 535 static void spi_dev_set_name(struct spi_device *spi) 536 { 537 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 538 539 if (adev) { 540 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 541 return; 542 } 543 544 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 545 spi->chip_select); 546 } 547 548 static int spi_dev_check(struct device *dev, void *data) 549 { 550 struct spi_device *spi = to_spi_device(dev); 551 struct spi_device *new_spi = data; 552 553 if (spi->controller == new_spi->controller && 554 spi->chip_select == new_spi->chip_select) 555 return -EBUSY; 556 return 0; 557 } 558 559 static void spi_cleanup(struct spi_device *spi) 560 { 561 if (spi->controller->cleanup) 562 spi->controller->cleanup(spi); 563 } 564 565 static int __spi_add_device(struct spi_device *spi) 566 { 567 struct spi_controller *ctlr = spi->controller; 568 struct device *dev = ctlr->dev.parent; 569 int status; 570 571 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 572 if (status) { 573 dev_err(dev, "chipselect %d already in use\n", 574 spi->chip_select); 575 return status; 576 } 577 578 /* Controller may unregister concurrently */ 579 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 580 !device_is_registered(&ctlr->dev)) { 581 return -ENODEV; 582 } 583 584 /* Descriptors take precedence */ 585 if (ctlr->cs_gpiods) 586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 587 else if (ctlr->cs_gpios) 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 589 590 /* Drivers may modify this initial i/o setup, but will 591 * normally rely on the device being setup. Devices 592 * using SPI_CS_HIGH can't coexist well otherwise... 593 */ 594 status = spi_setup(spi); 595 if (status < 0) { 596 dev_err(dev, "can't setup %s, status %d\n", 597 dev_name(&spi->dev), status); 598 return status; 599 } 600 601 /* Device may be bound to an active driver when this returns */ 602 status = device_add(&spi->dev); 603 if (status < 0) { 604 dev_err(dev, "can't add %s, status %d\n", 605 dev_name(&spi->dev), status); 606 spi_cleanup(spi); 607 } else { 608 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 609 } 610 611 return status; 612 } 613 614 /** 615 * spi_add_device - Add spi_device allocated with spi_alloc_device 616 * @spi: spi_device to register 617 * 618 * Companion function to spi_alloc_device. Devices allocated with 619 * spi_alloc_device can be added onto the spi bus with this function. 620 * 621 * Return: 0 on success; negative errno on failure 622 */ 623 int spi_add_device(struct spi_device *spi) 624 { 625 struct spi_controller *ctlr = spi->controller; 626 struct device *dev = ctlr->dev.parent; 627 int status; 628 629 /* Chipselects are numbered 0..max; validate. */ 630 if (spi->chip_select >= ctlr->num_chipselect) { 631 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 632 ctlr->num_chipselect); 633 return -EINVAL; 634 } 635 636 /* Set the bus ID string */ 637 spi_dev_set_name(spi); 638 639 /* We need to make sure there's no other device with this 640 * chipselect **BEFORE** we call setup(), else we'll trash 641 * its configuration. Lock against concurrent add() calls. 642 */ 643 mutex_lock(&spi_add_lock); 644 status = __spi_add_device(spi); 645 mutex_unlock(&spi_add_lock); 646 return status; 647 } 648 EXPORT_SYMBOL_GPL(spi_add_device); 649 650 static int spi_add_device_locked(struct spi_device *spi) 651 { 652 struct spi_controller *ctlr = spi->controller; 653 struct device *dev = ctlr->dev.parent; 654 655 /* Chipselects are numbered 0..max; validate. */ 656 if (spi->chip_select >= ctlr->num_chipselect) { 657 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 658 ctlr->num_chipselect); 659 return -EINVAL; 660 } 661 662 /* Set the bus ID string */ 663 spi_dev_set_name(spi); 664 665 WARN_ON(!mutex_is_locked(&spi_add_lock)); 666 return __spi_add_device(spi); 667 } 668 669 /** 670 * spi_new_device - instantiate one new SPI device 671 * @ctlr: Controller to which device is connected 672 * @chip: Describes the SPI device 673 * Context: can sleep 674 * 675 * On typical mainboards, this is purely internal; and it's not needed 676 * after board init creates the hard-wired devices. Some development 677 * platforms may not be able to use spi_register_board_info though, and 678 * this is exported so that for example a USB or parport based adapter 679 * driver could add devices (which it would learn about out-of-band). 680 * 681 * Return: the new device, or NULL. 682 */ 683 struct spi_device *spi_new_device(struct spi_controller *ctlr, 684 struct spi_board_info *chip) 685 { 686 struct spi_device *proxy; 687 int status; 688 689 /* NOTE: caller did any chip->bus_num checks necessary. 690 * 691 * Also, unless we change the return value convention to use 692 * error-or-pointer (not NULL-or-pointer), troubleshootability 693 * suggests syslogged diagnostics are best here (ugh). 694 */ 695 696 proxy = spi_alloc_device(ctlr); 697 if (!proxy) 698 return NULL; 699 700 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 701 702 proxy->chip_select = chip->chip_select; 703 proxy->max_speed_hz = chip->max_speed_hz; 704 proxy->mode = chip->mode; 705 proxy->irq = chip->irq; 706 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 707 proxy->dev.platform_data = (void *) chip->platform_data; 708 proxy->controller_data = chip->controller_data; 709 proxy->controller_state = NULL; 710 711 if (chip->swnode) { 712 status = device_add_software_node(&proxy->dev, chip->swnode); 713 if (status) { 714 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 715 chip->modalias, status); 716 goto err_dev_put; 717 } 718 } 719 720 status = spi_add_device(proxy); 721 if (status < 0) 722 goto err_dev_put; 723 724 return proxy; 725 726 err_dev_put: 727 device_remove_software_node(&proxy->dev); 728 spi_dev_put(proxy); 729 return NULL; 730 } 731 EXPORT_SYMBOL_GPL(spi_new_device); 732 733 /** 734 * spi_unregister_device - unregister a single SPI device 735 * @spi: spi_device to unregister 736 * 737 * Start making the passed SPI device vanish. Normally this would be handled 738 * by spi_unregister_controller(). 739 */ 740 void spi_unregister_device(struct spi_device *spi) 741 { 742 if (!spi) 743 return; 744 745 if (spi->dev.of_node) { 746 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 747 of_node_put(spi->dev.of_node); 748 } 749 if (ACPI_COMPANION(&spi->dev)) 750 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 751 device_remove_software_node(&spi->dev); 752 device_del(&spi->dev); 753 spi_cleanup(spi); 754 put_device(&spi->dev); 755 } 756 EXPORT_SYMBOL_GPL(spi_unregister_device); 757 758 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 759 struct spi_board_info *bi) 760 { 761 struct spi_device *dev; 762 763 if (ctlr->bus_num != bi->bus_num) 764 return; 765 766 dev = spi_new_device(ctlr, bi); 767 if (!dev) 768 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 769 bi->modalias); 770 } 771 772 /** 773 * spi_register_board_info - register SPI devices for a given board 774 * @info: array of chip descriptors 775 * @n: how many descriptors are provided 776 * Context: can sleep 777 * 778 * Board-specific early init code calls this (probably during arch_initcall) 779 * with segments of the SPI device table. Any device nodes are created later, 780 * after the relevant parent SPI controller (bus_num) is defined. We keep 781 * this table of devices forever, so that reloading a controller driver will 782 * not make Linux forget about these hard-wired devices. 783 * 784 * Other code can also call this, e.g. a particular add-on board might provide 785 * SPI devices through its expansion connector, so code initializing that board 786 * would naturally declare its SPI devices. 787 * 788 * The board info passed can safely be __initdata ... but be careful of 789 * any embedded pointers (platform_data, etc), they're copied as-is. 790 * 791 * Return: zero on success, else a negative error code. 792 */ 793 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 794 { 795 struct boardinfo *bi; 796 int i; 797 798 if (!n) 799 return 0; 800 801 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 802 if (!bi) 803 return -ENOMEM; 804 805 for (i = 0; i < n; i++, bi++, info++) { 806 struct spi_controller *ctlr; 807 808 memcpy(&bi->board_info, info, sizeof(*info)); 809 810 mutex_lock(&board_lock); 811 list_add_tail(&bi->list, &board_list); 812 list_for_each_entry(ctlr, &spi_controller_list, list) 813 spi_match_controller_to_boardinfo(ctlr, 814 &bi->board_info); 815 mutex_unlock(&board_lock); 816 } 817 818 return 0; 819 } 820 821 /*-------------------------------------------------------------------------*/ 822 823 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 824 { 825 bool activate = enable; 826 827 /* 828 * Avoid calling into the driver (or doing delays) if the chip select 829 * isn't actually changing from the last time this was called. 830 */ 831 if (!force && (spi->controller->last_cs_enable == enable) && 832 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 833 return; 834 835 trace_spi_set_cs(spi, activate); 836 837 spi->controller->last_cs_enable = enable; 838 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 839 840 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 841 !spi->controller->set_cs_timing) { 842 if (activate) 843 spi_delay_exec(&spi->controller->cs_setup, NULL); 844 else 845 spi_delay_exec(&spi->controller->cs_hold, NULL); 846 } 847 848 if (spi->mode & SPI_CS_HIGH) 849 enable = !enable; 850 851 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 852 if (!(spi->mode & SPI_NO_CS)) { 853 if (spi->cs_gpiod) { 854 /* 855 * Historically ACPI has no means of the GPIO polarity and 856 * thus the SPISerialBus() resource defines it on the per-chip 857 * basis. In order to avoid a chain of negations, the GPIO 858 * polarity is considered being Active High. Even for the cases 859 * when _DSD() is involved (in the updated versions of ACPI) 860 * the GPIO CS polarity must be defined Active High to avoid 861 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 862 * into account. 863 */ 864 if (has_acpi_companion(&spi->dev)) 865 gpiod_set_value_cansleep(spi->cs_gpiod, !enable); 866 else 867 /* Polarity handled by GPIO library */ 868 gpiod_set_value_cansleep(spi->cs_gpiod, activate); 869 } else { 870 /* 871 * invert the enable line, as active low is 872 * default for SPI. 873 */ 874 gpio_set_value_cansleep(spi->cs_gpio, !enable); 875 } 876 } 877 /* Some SPI masters need both GPIO CS & slave_select */ 878 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 879 spi->controller->set_cs) 880 spi->controller->set_cs(spi, !enable); 881 } else if (spi->controller->set_cs) { 882 spi->controller->set_cs(spi, !enable); 883 } 884 885 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 886 !spi->controller->set_cs_timing) { 887 if (!activate) 888 spi_delay_exec(&spi->controller->cs_inactive, NULL); 889 } 890 } 891 892 #ifdef CONFIG_HAS_DMA 893 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 894 struct sg_table *sgt, void *buf, size_t len, 895 enum dma_data_direction dir) 896 { 897 const bool vmalloced_buf = is_vmalloc_addr(buf); 898 unsigned int max_seg_size = dma_get_max_seg_size(dev); 899 #ifdef CONFIG_HIGHMEM 900 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 901 (unsigned long)buf < (PKMAP_BASE + 902 (LAST_PKMAP * PAGE_SIZE))); 903 #else 904 const bool kmap_buf = false; 905 #endif 906 int desc_len; 907 int sgs; 908 struct page *vm_page; 909 struct scatterlist *sg; 910 void *sg_buf; 911 size_t min; 912 int i, ret; 913 914 if (vmalloced_buf || kmap_buf) { 915 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 916 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 917 } else if (virt_addr_valid(buf)) { 918 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 919 sgs = DIV_ROUND_UP(len, desc_len); 920 } else { 921 return -EINVAL; 922 } 923 924 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 925 if (ret != 0) 926 return ret; 927 928 sg = &sgt->sgl[0]; 929 for (i = 0; i < sgs; i++) { 930 931 if (vmalloced_buf || kmap_buf) { 932 /* 933 * Next scatterlist entry size is the minimum between 934 * the desc_len and the remaining buffer length that 935 * fits in a page. 936 */ 937 min = min_t(size_t, desc_len, 938 min_t(size_t, len, 939 PAGE_SIZE - offset_in_page(buf))); 940 if (vmalloced_buf) 941 vm_page = vmalloc_to_page(buf); 942 else 943 vm_page = kmap_to_page(buf); 944 if (!vm_page) { 945 sg_free_table(sgt); 946 return -ENOMEM; 947 } 948 sg_set_page(sg, vm_page, 949 min, offset_in_page(buf)); 950 } else { 951 min = min_t(size_t, len, desc_len); 952 sg_buf = buf; 953 sg_set_buf(sg, sg_buf, min); 954 } 955 956 buf += min; 957 len -= min; 958 sg = sg_next(sg); 959 } 960 961 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 962 if (!ret) 963 ret = -ENOMEM; 964 if (ret < 0) { 965 sg_free_table(sgt); 966 return ret; 967 } 968 969 sgt->nents = ret; 970 971 return 0; 972 } 973 974 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 975 struct sg_table *sgt, enum dma_data_direction dir) 976 { 977 if (sgt->orig_nents) { 978 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 979 sg_free_table(sgt); 980 } 981 } 982 983 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 984 { 985 struct device *tx_dev, *rx_dev; 986 struct spi_transfer *xfer; 987 int ret; 988 989 if (!ctlr->can_dma) 990 return 0; 991 992 if (ctlr->dma_tx) 993 tx_dev = ctlr->dma_tx->device->dev; 994 else if (ctlr->dma_map_dev) 995 tx_dev = ctlr->dma_map_dev; 996 else 997 tx_dev = ctlr->dev.parent; 998 999 if (ctlr->dma_rx) 1000 rx_dev = ctlr->dma_rx->device->dev; 1001 else if (ctlr->dma_map_dev) 1002 rx_dev = ctlr->dma_map_dev; 1003 else 1004 rx_dev = ctlr->dev.parent; 1005 1006 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1007 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1008 continue; 1009 1010 if (xfer->tx_buf != NULL) { 1011 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 1012 (void *)xfer->tx_buf, xfer->len, 1013 DMA_TO_DEVICE); 1014 if (ret != 0) 1015 return ret; 1016 } 1017 1018 if (xfer->rx_buf != NULL) { 1019 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 1020 xfer->rx_buf, xfer->len, 1021 DMA_FROM_DEVICE); 1022 if (ret != 0) { 1023 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 1024 DMA_TO_DEVICE); 1025 return ret; 1026 } 1027 } 1028 } 1029 1030 ctlr->cur_msg_mapped = true; 1031 1032 return 0; 1033 } 1034 1035 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1036 { 1037 struct spi_transfer *xfer; 1038 struct device *tx_dev, *rx_dev; 1039 1040 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1041 return 0; 1042 1043 if (ctlr->dma_tx) 1044 tx_dev = ctlr->dma_tx->device->dev; 1045 else 1046 tx_dev = ctlr->dev.parent; 1047 1048 if (ctlr->dma_rx) 1049 rx_dev = ctlr->dma_rx->device->dev; 1050 else 1051 rx_dev = ctlr->dev.parent; 1052 1053 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1054 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1055 continue; 1056 1057 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1058 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1059 } 1060 1061 ctlr->cur_msg_mapped = false; 1062 1063 return 0; 1064 } 1065 #else /* !CONFIG_HAS_DMA */ 1066 static inline int __spi_map_msg(struct spi_controller *ctlr, 1067 struct spi_message *msg) 1068 { 1069 return 0; 1070 } 1071 1072 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1073 struct spi_message *msg) 1074 { 1075 return 0; 1076 } 1077 #endif /* !CONFIG_HAS_DMA */ 1078 1079 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1080 struct spi_message *msg) 1081 { 1082 struct spi_transfer *xfer; 1083 1084 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1085 /* 1086 * Restore the original value of tx_buf or rx_buf if they are 1087 * NULL. 1088 */ 1089 if (xfer->tx_buf == ctlr->dummy_tx) 1090 xfer->tx_buf = NULL; 1091 if (xfer->rx_buf == ctlr->dummy_rx) 1092 xfer->rx_buf = NULL; 1093 } 1094 1095 return __spi_unmap_msg(ctlr, msg); 1096 } 1097 1098 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1099 { 1100 struct spi_transfer *xfer; 1101 void *tmp; 1102 unsigned int max_tx, max_rx; 1103 1104 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1105 && !(msg->spi->mode & SPI_3WIRE)) { 1106 max_tx = 0; 1107 max_rx = 0; 1108 1109 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1110 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1111 !xfer->tx_buf) 1112 max_tx = max(xfer->len, max_tx); 1113 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1114 !xfer->rx_buf) 1115 max_rx = max(xfer->len, max_rx); 1116 } 1117 1118 if (max_tx) { 1119 tmp = krealloc(ctlr->dummy_tx, max_tx, 1120 GFP_KERNEL | GFP_DMA); 1121 if (!tmp) 1122 return -ENOMEM; 1123 ctlr->dummy_tx = tmp; 1124 memset(tmp, 0, max_tx); 1125 } 1126 1127 if (max_rx) { 1128 tmp = krealloc(ctlr->dummy_rx, max_rx, 1129 GFP_KERNEL | GFP_DMA); 1130 if (!tmp) 1131 return -ENOMEM; 1132 ctlr->dummy_rx = tmp; 1133 } 1134 1135 if (max_tx || max_rx) { 1136 list_for_each_entry(xfer, &msg->transfers, 1137 transfer_list) { 1138 if (!xfer->len) 1139 continue; 1140 if (!xfer->tx_buf) 1141 xfer->tx_buf = ctlr->dummy_tx; 1142 if (!xfer->rx_buf) 1143 xfer->rx_buf = ctlr->dummy_rx; 1144 } 1145 } 1146 } 1147 1148 return __spi_map_msg(ctlr, msg); 1149 } 1150 1151 static int spi_transfer_wait(struct spi_controller *ctlr, 1152 struct spi_message *msg, 1153 struct spi_transfer *xfer) 1154 { 1155 struct spi_statistics *statm = &ctlr->statistics; 1156 struct spi_statistics *stats = &msg->spi->statistics; 1157 u32 speed_hz = xfer->speed_hz; 1158 unsigned long long ms; 1159 1160 if (spi_controller_is_slave(ctlr)) { 1161 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1162 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1163 return -EINTR; 1164 } 1165 } else { 1166 if (!speed_hz) 1167 speed_hz = 100000; 1168 1169 /* 1170 * For each byte we wait for 8 cycles of the SPI clock. 1171 * Since speed is defined in Hz and we want milliseconds, 1172 * use respective multiplier, but before the division, 1173 * otherwise we may get 0 for short transfers. 1174 */ 1175 ms = 8LL * MSEC_PER_SEC * xfer->len; 1176 do_div(ms, speed_hz); 1177 1178 /* 1179 * Increase it twice and add 200 ms tolerance, use 1180 * predefined maximum in case of overflow. 1181 */ 1182 ms += ms + 200; 1183 if (ms > UINT_MAX) 1184 ms = UINT_MAX; 1185 1186 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1187 msecs_to_jiffies(ms)); 1188 1189 if (ms == 0) { 1190 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1191 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1192 dev_err(&msg->spi->dev, 1193 "SPI transfer timed out\n"); 1194 return -ETIMEDOUT; 1195 } 1196 } 1197 1198 return 0; 1199 } 1200 1201 static void _spi_transfer_delay_ns(u32 ns) 1202 { 1203 if (!ns) 1204 return; 1205 if (ns <= NSEC_PER_USEC) { 1206 ndelay(ns); 1207 } else { 1208 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1209 1210 if (us <= 10) 1211 udelay(us); 1212 else 1213 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1214 } 1215 } 1216 1217 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1218 { 1219 u32 delay = _delay->value; 1220 u32 unit = _delay->unit; 1221 u32 hz; 1222 1223 if (!delay) 1224 return 0; 1225 1226 switch (unit) { 1227 case SPI_DELAY_UNIT_USECS: 1228 delay *= NSEC_PER_USEC; 1229 break; 1230 case SPI_DELAY_UNIT_NSECS: 1231 /* Nothing to do here */ 1232 break; 1233 case SPI_DELAY_UNIT_SCK: 1234 /* clock cycles need to be obtained from spi_transfer */ 1235 if (!xfer) 1236 return -EINVAL; 1237 /* 1238 * If there is unknown effective speed, approximate it 1239 * by underestimating with half of the requested hz. 1240 */ 1241 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1242 if (!hz) 1243 return -EINVAL; 1244 1245 /* Convert delay to nanoseconds */ 1246 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1247 break; 1248 default: 1249 return -EINVAL; 1250 } 1251 1252 return delay; 1253 } 1254 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1255 1256 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1257 { 1258 int delay; 1259 1260 might_sleep(); 1261 1262 if (!_delay) 1263 return -EINVAL; 1264 1265 delay = spi_delay_to_ns(_delay, xfer); 1266 if (delay < 0) 1267 return delay; 1268 1269 _spi_transfer_delay_ns(delay); 1270 1271 return 0; 1272 } 1273 EXPORT_SYMBOL_GPL(spi_delay_exec); 1274 1275 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1276 struct spi_transfer *xfer) 1277 { 1278 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1279 u32 delay = xfer->cs_change_delay.value; 1280 u32 unit = xfer->cs_change_delay.unit; 1281 int ret; 1282 1283 /* return early on "fast" mode - for everything but USECS */ 1284 if (!delay) { 1285 if (unit == SPI_DELAY_UNIT_USECS) 1286 _spi_transfer_delay_ns(default_delay_ns); 1287 return; 1288 } 1289 1290 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1291 if (ret) { 1292 dev_err_once(&msg->spi->dev, 1293 "Use of unsupported delay unit %i, using default of %luus\n", 1294 unit, default_delay_ns / NSEC_PER_USEC); 1295 _spi_transfer_delay_ns(default_delay_ns); 1296 } 1297 } 1298 1299 /* 1300 * spi_transfer_one_message - Default implementation of transfer_one_message() 1301 * 1302 * This is a standard implementation of transfer_one_message() for 1303 * drivers which implement a transfer_one() operation. It provides 1304 * standard handling of delays and chip select management. 1305 */ 1306 static int spi_transfer_one_message(struct spi_controller *ctlr, 1307 struct spi_message *msg) 1308 { 1309 struct spi_transfer *xfer; 1310 bool keep_cs = false; 1311 int ret = 0; 1312 struct spi_statistics *statm = &ctlr->statistics; 1313 struct spi_statistics *stats = &msg->spi->statistics; 1314 1315 spi_set_cs(msg->spi, true, false); 1316 1317 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1318 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1319 1320 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1321 trace_spi_transfer_start(msg, xfer); 1322 1323 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1324 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1325 1326 if (!ctlr->ptp_sts_supported) { 1327 xfer->ptp_sts_word_pre = 0; 1328 ptp_read_system_prets(xfer->ptp_sts); 1329 } 1330 1331 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1332 reinit_completion(&ctlr->xfer_completion); 1333 1334 fallback_pio: 1335 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1336 if (ret < 0) { 1337 if (ctlr->cur_msg_mapped && 1338 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1339 __spi_unmap_msg(ctlr, msg); 1340 ctlr->fallback = true; 1341 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1342 goto fallback_pio; 1343 } 1344 1345 SPI_STATISTICS_INCREMENT_FIELD(statm, 1346 errors); 1347 SPI_STATISTICS_INCREMENT_FIELD(stats, 1348 errors); 1349 dev_err(&msg->spi->dev, 1350 "SPI transfer failed: %d\n", ret); 1351 goto out; 1352 } 1353 1354 if (ret > 0) { 1355 ret = spi_transfer_wait(ctlr, msg, xfer); 1356 if (ret < 0) 1357 msg->status = ret; 1358 } 1359 } else { 1360 if (xfer->len) 1361 dev_err(&msg->spi->dev, 1362 "Bufferless transfer has length %u\n", 1363 xfer->len); 1364 } 1365 1366 if (!ctlr->ptp_sts_supported) { 1367 ptp_read_system_postts(xfer->ptp_sts); 1368 xfer->ptp_sts_word_post = xfer->len; 1369 } 1370 1371 trace_spi_transfer_stop(msg, xfer); 1372 1373 if (msg->status != -EINPROGRESS) 1374 goto out; 1375 1376 spi_transfer_delay_exec(xfer); 1377 1378 if (xfer->cs_change) { 1379 if (list_is_last(&xfer->transfer_list, 1380 &msg->transfers)) { 1381 keep_cs = true; 1382 } else { 1383 spi_set_cs(msg->spi, false, false); 1384 _spi_transfer_cs_change_delay(msg, xfer); 1385 spi_set_cs(msg->spi, true, false); 1386 } 1387 } 1388 1389 msg->actual_length += xfer->len; 1390 } 1391 1392 out: 1393 if (ret != 0 || !keep_cs) 1394 spi_set_cs(msg->spi, false, false); 1395 1396 if (msg->status == -EINPROGRESS) 1397 msg->status = ret; 1398 1399 if (msg->status && ctlr->handle_err) 1400 ctlr->handle_err(ctlr, msg); 1401 1402 spi_finalize_current_message(ctlr); 1403 1404 return ret; 1405 } 1406 1407 /** 1408 * spi_finalize_current_transfer - report completion of a transfer 1409 * @ctlr: the controller reporting completion 1410 * 1411 * Called by SPI drivers using the core transfer_one_message() 1412 * implementation to notify it that the current interrupt driven 1413 * transfer has finished and the next one may be scheduled. 1414 */ 1415 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1416 { 1417 complete(&ctlr->xfer_completion); 1418 } 1419 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1420 1421 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1422 { 1423 if (ctlr->auto_runtime_pm) { 1424 pm_runtime_mark_last_busy(ctlr->dev.parent); 1425 pm_runtime_put_autosuspend(ctlr->dev.parent); 1426 } 1427 } 1428 1429 /** 1430 * __spi_pump_messages - function which processes spi message queue 1431 * @ctlr: controller to process queue for 1432 * @in_kthread: true if we are in the context of the message pump thread 1433 * 1434 * This function checks if there is any spi message in the queue that 1435 * needs processing and if so call out to the driver to initialize hardware 1436 * and transfer each message. 1437 * 1438 * Note that it is called both from the kthread itself and also from 1439 * inside spi_sync(); the queue extraction handling at the top of the 1440 * function should deal with this safely. 1441 */ 1442 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1443 { 1444 struct spi_transfer *xfer; 1445 struct spi_message *msg; 1446 bool was_busy = false; 1447 unsigned long flags; 1448 int ret; 1449 1450 /* Lock queue */ 1451 spin_lock_irqsave(&ctlr->queue_lock, flags); 1452 1453 /* Make sure we are not already running a message */ 1454 if (ctlr->cur_msg) { 1455 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1456 return; 1457 } 1458 1459 /* If another context is idling the device then defer */ 1460 if (ctlr->idling) { 1461 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1462 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1463 return; 1464 } 1465 1466 /* Check if the queue is idle */ 1467 if (list_empty(&ctlr->queue) || !ctlr->running) { 1468 if (!ctlr->busy) { 1469 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1470 return; 1471 } 1472 1473 /* Defer any non-atomic teardown to the thread */ 1474 if (!in_kthread) { 1475 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1476 !ctlr->unprepare_transfer_hardware) { 1477 spi_idle_runtime_pm(ctlr); 1478 ctlr->busy = false; 1479 trace_spi_controller_idle(ctlr); 1480 } else { 1481 kthread_queue_work(ctlr->kworker, 1482 &ctlr->pump_messages); 1483 } 1484 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1485 return; 1486 } 1487 1488 ctlr->busy = false; 1489 ctlr->idling = true; 1490 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1491 1492 kfree(ctlr->dummy_rx); 1493 ctlr->dummy_rx = NULL; 1494 kfree(ctlr->dummy_tx); 1495 ctlr->dummy_tx = NULL; 1496 if (ctlr->unprepare_transfer_hardware && 1497 ctlr->unprepare_transfer_hardware(ctlr)) 1498 dev_err(&ctlr->dev, 1499 "failed to unprepare transfer hardware\n"); 1500 spi_idle_runtime_pm(ctlr); 1501 trace_spi_controller_idle(ctlr); 1502 1503 spin_lock_irqsave(&ctlr->queue_lock, flags); 1504 ctlr->idling = false; 1505 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1506 return; 1507 } 1508 1509 /* Extract head of queue */ 1510 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1511 ctlr->cur_msg = msg; 1512 1513 list_del_init(&msg->queue); 1514 if (ctlr->busy) 1515 was_busy = true; 1516 else 1517 ctlr->busy = true; 1518 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1519 1520 mutex_lock(&ctlr->io_mutex); 1521 1522 if (!was_busy && ctlr->auto_runtime_pm) { 1523 ret = pm_runtime_get_sync(ctlr->dev.parent); 1524 if (ret < 0) { 1525 pm_runtime_put_noidle(ctlr->dev.parent); 1526 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1527 ret); 1528 mutex_unlock(&ctlr->io_mutex); 1529 return; 1530 } 1531 } 1532 1533 if (!was_busy) 1534 trace_spi_controller_busy(ctlr); 1535 1536 if (!was_busy && ctlr->prepare_transfer_hardware) { 1537 ret = ctlr->prepare_transfer_hardware(ctlr); 1538 if (ret) { 1539 dev_err(&ctlr->dev, 1540 "failed to prepare transfer hardware: %d\n", 1541 ret); 1542 1543 if (ctlr->auto_runtime_pm) 1544 pm_runtime_put(ctlr->dev.parent); 1545 1546 msg->status = ret; 1547 spi_finalize_current_message(ctlr); 1548 1549 mutex_unlock(&ctlr->io_mutex); 1550 return; 1551 } 1552 } 1553 1554 trace_spi_message_start(msg); 1555 1556 if (ctlr->prepare_message) { 1557 ret = ctlr->prepare_message(ctlr, msg); 1558 if (ret) { 1559 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1560 ret); 1561 msg->status = ret; 1562 spi_finalize_current_message(ctlr); 1563 goto out; 1564 } 1565 ctlr->cur_msg_prepared = true; 1566 } 1567 1568 ret = spi_map_msg(ctlr, msg); 1569 if (ret) { 1570 msg->status = ret; 1571 spi_finalize_current_message(ctlr); 1572 goto out; 1573 } 1574 1575 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1576 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1577 xfer->ptp_sts_word_pre = 0; 1578 ptp_read_system_prets(xfer->ptp_sts); 1579 } 1580 } 1581 1582 ret = ctlr->transfer_one_message(ctlr, msg); 1583 if (ret) { 1584 dev_err(&ctlr->dev, 1585 "failed to transfer one message from queue\n"); 1586 goto out; 1587 } 1588 1589 out: 1590 mutex_unlock(&ctlr->io_mutex); 1591 1592 /* Prod the scheduler in case transfer_one() was busy waiting */ 1593 if (!ret) 1594 cond_resched(); 1595 } 1596 1597 /** 1598 * spi_pump_messages - kthread work function which processes spi message queue 1599 * @work: pointer to kthread work struct contained in the controller struct 1600 */ 1601 static void spi_pump_messages(struct kthread_work *work) 1602 { 1603 struct spi_controller *ctlr = 1604 container_of(work, struct spi_controller, pump_messages); 1605 1606 __spi_pump_messages(ctlr, true); 1607 } 1608 1609 /** 1610 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1611 * TX timestamp for the requested byte from the SPI 1612 * transfer. The frequency with which this function 1613 * must be called (once per word, once for the whole 1614 * transfer, once per batch of words etc) is arbitrary 1615 * as long as the @tx buffer offset is greater than or 1616 * equal to the requested byte at the time of the 1617 * call. The timestamp is only taken once, at the 1618 * first such call. It is assumed that the driver 1619 * advances its @tx buffer pointer monotonically. 1620 * @ctlr: Pointer to the spi_controller structure of the driver 1621 * @xfer: Pointer to the transfer being timestamped 1622 * @progress: How many words (not bytes) have been transferred so far 1623 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1624 * transfer, for less jitter in time measurement. Only compatible 1625 * with PIO drivers. If true, must follow up with 1626 * spi_take_timestamp_post or otherwise system will crash. 1627 * WARNING: for fully predictable results, the CPU frequency must 1628 * also be under control (governor). 1629 */ 1630 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1631 struct spi_transfer *xfer, 1632 size_t progress, bool irqs_off) 1633 { 1634 if (!xfer->ptp_sts) 1635 return; 1636 1637 if (xfer->timestamped) 1638 return; 1639 1640 if (progress > xfer->ptp_sts_word_pre) 1641 return; 1642 1643 /* Capture the resolution of the timestamp */ 1644 xfer->ptp_sts_word_pre = progress; 1645 1646 if (irqs_off) { 1647 local_irq_save(ctlr->irq_flags); 1648 preempt_disable(); 1649 } 1650 1651 ptp_read_system_prets(xfer->ptp_sts); 1652 } 1653 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1654 1655 /** 1656 * spi_take_timestamp_post - helper for drivers to collect the end of the 1657 * TX timestamp for the requested byte from the SPI 1658 * transfer. Can be called with an arbitrary 1659 * frequency: only the first call where @tx exceeds 1660 * or is equal to the requested word will be 1661 * timestamped. 1662 * @ctlr: Pointer to the spi_controller structure of the driver 1663 * @xfer: Pointer to the transfer being timestamped 1664 * @progress: How many words (not bytes) have been transferred so far 1665 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1666 */ 1667 void spi_take_timestamp_post(struct spi_controller *ctlr, 1668 struct spi_transfer *xfer, 1669 size_t progress, bool irqs_off) 1670 { 1671 if (!xfer->ptp_sts) 1672 return; 1673 1674 if (xfer->timestamped) 1675 return; 1676 1677 if (progress < xfer->ptp_sts_word_post) 1678 return; 1679 1680 ptp_read_system_postts(xfer->ptp_sts); 1681 1682 if (irqs_off) { 1683 local_irq_restore(ctlr->irq_flags); 1684 preempt_enable(); 1685 } 1686 1687 /* Capture the resolution of the timestamp */ 1688 xfer->ptp_sts_word_post = progress; 1689 1690 xfer->timestamped = true; 1691 } 1692 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1693 1694 /** 1695 * spi_set_thread_rt - set the controller to pump at realtime priority 1696 * @ctlr: controller to boost priority of 1697 * 1698 * This can be called because the controller requested realtime priority 1699 * (by setting the ->rt value before calling spi_register_controller()) or 1700 * because a device on the bus said that its transfers needed realtime 1701 * priority. 1702 * 1703 * NOTE: at the moment if any device on a bus says it needs realtime then 1704 * the thread will be at realtime priority for all transfers on that 1705 * controller. If this eventually becomes a problem we may see if we can 1706 * find a way to boost the priority only temporarily during relevant 1707 * transfers. 1708 */ 1709 static void spi_set_thread_rt(struct spi_controller *ctlr) 1710 { 1711 dev_info(&ctlr->dev, 1712 "will run message pump with realtime priority\n"); 1713 sched_set_fifo(ctlr->kworker->task); 1714 } 1715 1716 static int spi_init_queue(struct spi_controller *ctlr) 1717 { 1718 ctlr->running = false; 1719 ctlr->busy = false; 1720 1721 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1722 if (IS_ERR(ctlr->kworker)) { 1723 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1724 return PTR_ERR(ctlr->kworker); 1725 } 1726 1727 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1728 1729 /* 1730 * Controller config will indicate if this controller should run the 1731 * message pump with high (realtime) priority to reduce the transfer 1732 * latency on the bus by minimising the delay between a transfer 1733 * request and the scheduling of the message pump thread. Without this 1734 * setting the message pump thread will remain at default priority. 1735 */ 1736 if (ctlr->rt) 1737 spi_set_thread_rt(ctlr); 1738 1739 return 0; 1740 } 1741 1742 /** 1743 * spi_get_next_queued_message() - called by driver to check for queued 1744 * messages 1745 * @ctlr: the controller to check for queued messages 1746 * 1747 * If there are more messages in the queue, the next message is returned from 1748 * this call. 1749 * 1750 * Return: the next message in the queue, else NULL if the queue is empty. 1751 */ 1752 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1753 { 1754 struct spi_message *next; 1755 unsigned long flags; 1756 1757 /* get a pointer to the next message, if any */ 1758 spin_lock_irqsave(&ctlr->queue_lock, flags); 1759 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1760 queue); 1761 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1762 1763 return next; 1764 } 1765 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1766 1767 /** 1768 * spi_finalize_current_message() - the current message is complete 1769 * @ctlr: the controller to return the message to 1770 * 1771 * Called by the driver to notify the core that the message in the front of the 1772 * queue is complete and can be removed from the queue. 1773 */ 1774 void spi_finalize_current_message(struct spi_controller *ctlr) 1775 { 1776 struct spi_transfer *xfer; 1777 struct spi_message *mesg; 1778 unsigned long flags; 1779 int ret; 1780 1781 spin_lock_irqsave(&ctlr->queue_lock, flags); 1782 mesg = ctlr->cur_msg; 1783 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1784 1785 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1786 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1787 ptp_read_system_postts(xfer->ptp_sts); 1788 xfer->ptp_sts_word_post = xfer->len; 1789 } 1790 } 1791 1792 if (unlikely(ctlr->ptp_sts_supported)) 1793 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1794 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1795 1796 spi_unmap_msg(ctlr, mesg); 1797 1798 /* In the prepare_messages callback the spi bus has the opportunity to 1799 * split a transfer to smaller chunks. 1800 * Release splited transfers here since spi_map_msg is done on the 1801 * splited transfers. 1802 */ 1803 spi_res_release(ctlr, mesg); 1804 1805 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1806 ret = ctlr->unprepare_message(ctlr, mesg); 1807 if (ret) { 1808 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1809 ret); 1810 } 1811 } 1812 1813 spin_lock_irqsave(&ctlr->queue_lock, flags); 1814 ctlr->cur_msg = NULL; 1815 ctlr->cur_msg_prepared = false; 1816 ctlr->fallback = false; 1817 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1818 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1819 1820 trace_spi_message_done(mesg); 1821 1822 mesg->state = NULL; 1823 if (mesg->complete) 1824 mesg->complete(mesg->context); 1825 } 1826 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1827 1828 static int spi_start_queue(struct spi_controller *ctlr) 1829 { 1830 unsigned long flags; 1831 1832 spin_lock_irqsave(&ctlr->queue_lock, flags); 1833 1834 if (ctlr->running || ctlr->busy) { 1835 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1836 return -EBUSY; 1837 } 1838 1839 ctlr->running = true; 1840 ctlr->cur_msg = NULL; 1841 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1842 1843 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1844 1845 return 0; 1846 } 1847 1848 static int spi_stop_queue(struct spi_controller *ctlr) 1849 { 1850 unsigned long flags; 1851 unsigned limit = 500; 1852 int ret = 0; 1853 1854 spin_lock_irqsave(&ctlr->queue_lock, flags); 1855 1856 /* 1857 * This is a bit lame, but is optimized for the common execution path. 1858 * A wait_queue on the ctlr->busy could be used, but then the common 1859 * execution path (pump_messages) would be required to call wake_up or 1860 * friends on every SPI message. Do this instead. 1861 */ 1862 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1863 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1864 usleep_range(10000, 11000); 1865 spin_lock_irqsave(&ctlr->queue_lock, flags); 1866 } 1867 1868 if (!list_empty(&ctlr->queue) || ctlr->busy) 1869 ret = -EBUSY; 1870 else 1871 ctlr->running = false; 1872 1873 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1874 1875 if (ret) { 1876 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1877 return ret; 1878 } 1879 return ret; 1880 } 1881 1882 static int spi_destroy_queue(struct spi_controller *ctlr) 1883 { 1884 int ret; 1885 1886 ret = spi_stop_queue(ctlr); 1887 1888 /* 1889 * kthread_flush_worker will block until all work is done. 1890 * If the reason that stop_queue timed out is that the work will never 1891 * finish, then it does no good to call flush/stop thread, so 1892 * return anyway. 1893 */ 1894 if (ret) { 1895 dev_err(&ctlr->dev, "problem destroying queue\n"); 1896 return ret; 1897 } 1898 1899 kthread_destroy_worker(ctlr->kworker); 1900 1901 return 0; 1902 } 1903 1904 static int __spi_queued_transfer(struct spi_device *spi, 1905 struct spi_message *msg, 1906 bool need_pump) 1907 { 1908 struct spi_controller *ctlr = spi->controller; 1909 unsigned long flags; 1910 1911 spin_lock_irqsave(&ctlr->queue_lock, flags); 1912 1913 if (!ctlr->running) { 1914 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1915 return -ESHUTDOWN; 1916 } 1917 msg->actual_length = 0; 1918 msg->status = -EINPROGRESS; 1919 1920 list_add_tail(&msg->queue, &ctlr->queue); 1921 if (!ctlr->busy && need_pump) 1922 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1923 1924 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1925 return 0; 1926 } 1927 1928 /** 1929 * spi_queued_transfer - transfer function for queued transfers 1930 * @spi: spi device which is requesting transfer 1931 * @msg: spi message which is to handled is queued to driver queue 1932 * 1933 * Return: zero on success, else a negative error code. 1934 */ 1935 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1936 { 1937 return __spi_queued_transfer(spi, msg, true); 1938 } 1939 1940 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1941 { 1942 int ret; 1943 1944 ctlr->transfer = spi_queued_transfer; 1945 if (!ctlr->transfer_one_message) 1946 ctlr->transfer_one_message = spi_transfer_one_message; 1947 1948 /* Initialize and start queue */ 1949 ret = spi_init_queue(ctlr); 1950 if (ret) { 1951 dev_err(&ctlr->dev, "problem initializing queue\n"); 1952 goto err_init_queue; 1953 } 1954 ctlr->queued = true; 1955 ret = spi_start_queue(ctlr); 1956 if (ret) { 1957 dev_err(&ctlr->dev, "problem starting queue\n"); 1958 goto err_start_queue; 1959 } 1960 1961 return 0; 1962 1963 err_start_queue: 1964 spi_destroy_queue(ctlr); 1965 err_init_queue: 1966 return ret; 1967 } 1968 1969 /** 1970 * spi_flush_queue - Send all pending messages in the queue from the callers' 1971 * context 1972 * @ctlr: controller to process queue for 1973 * 1974 * This should be used when one wants to ensure all pending messages have been 1975 * sent before doing something. Is used by the spi-mem code to make sure SPI 1976 * memory operations do not preempt regular SPI transfers that have been queued 1977 * before the spi-mem operation. 1978 */ 1979 void spi_flush_queue(struct spi_controller *ctlr) 1980 { 1981 if (ctlr->transfer == spi_queued_transfer) 1982 __spi_pump_messages(ctlr, false); 1983 } 1984 1985 /*-------------------------------------------------------------------------*/ 1986 1987 #if defined(CONFIG_OF) 1988 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1989 struct device_node *nc) 1990 { 1991 u32 value; 1992 int rc; 1993 1994 /* Mode (clock phase/polarity/etc.) */ 1995 if (of_property_read_bool(nc, "spi-cpha")) 1996 spi->mode |= SPI_CPHA; 1997 if (of_property_read_bool(nc, "spi-cpol")) 1998 spi->mode |= SPI_CPOL; 1999 if (of_property_read_bool(nc, "spi-3wire")) 2000 spi->mode |= SPI_3WIRE; 2001 if (of_property_read_bool(nc, "spi-lsb-first")) 2002 spi->mode |= SPI_LSB_FIRST; 2003 if (of_property_read_bool(nc, "spi-cs-high")) 2004 spi->mode |= SPI_CS_HIGH; 2005 2006 /* Device DUAL/QUAD mode */ 2007 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2008 switch (value) { 2009 case 0: 2010 spi->mode |= SPI_NO_TX; 2011 break; 2012 case 1: 2013 break; 2014 case 2: 2015 spi->mode |= SPI_TX_DUAL; 2016 break; 2017 case 4: 2018 spi->mode |= SPI_TX_QUAD; 2019 break; 2020 case 8: 2021 spi->mode |= SPI_TX_OCTAL; 2022 break; 2023 default: 2024 dev_warn(&ctlr->dev, 2025 "spi-tx-bus-width %d not supported\n", 2026 value); 2027 break; 2028 } 2029 } 2030 2031 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2032 switch (value) { 2033 case 0: 2034 spi->mode |= SPI_NO_RX; 2035 break; 2036 case 1: 2037 break; 2038 case 2: 2039 spi->mode |= SPI_RX_DUAL; 2040 break; 2041 case 4: 2042 spi->mode |= SPI_RX_QUAD; 2043 break; 2044 case 8: 2045 spi->mode |= SPI_RX_OCTAL; 2046 break; 2047 default: 2048 dev_warn(&ctlr->dev, 2049 "spi-rx-bus-width %d not supported\n", 2050 value); 2051 break; 2052 } 2053 } 2054 2055 if (spi_controller_is_slave(ctlr)) { 2056 if (!of_node_name_eq(nc, "slave")) { 2057 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2058 nc); 2059 return -EINVAL; 2060 } 2061 return 0; 2062 } 2063 2064 /* Device address */ 2065 rc = of_property_read_u32(nc, "reg", &value); 2066 if (rc) { 2067 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2068 nc, rc); 2069 return rc; 2070 } 2071 spi->chip_select = value; 2072 2073 /* Device speed */ 2074 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2075 spi->max_speed_hz = value; 2076 2077 return 0; 2078 } 2079 2080 static struct spi_device * 2081 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2082 { 2083 struct spi_device *spi; 2084 int rc; 2085 2086 /* Alloc an spi_device */ 2087 spi = spi_alloc_device(ctlr); 2088 if (!spi) { 2089 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2090 rc = -ENOMEM; 2091 goto err_out; 2092 } 2093 2094 /* Select device driver */ 2095 rc = of_modalias_node(nc, spi->modalias, 2096 sizeof(spi->modalias)); 2097 if (rc < 0) { 2098 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2099 goto err_out; 2100 } 2101 2102 rc = of_spi_parse_dt(ctlr, spi, nc); 2103 if (rc) 2104 goto err_out; 2105 2106 /* Store a pointer to the node in the device structure */ 2107 of_node_get(nc); 2108 spi->dev.of_node = nc; 2109 spi->dev.fwnode = of_fwnode_handle(nc); 2110 2111 /* Register the new device */ 2112 rc = spi_add_device(spi); 2113 if (rc) { 2114 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2115 goto err_of_node_put; 2116 } 2117 2118 return spi; 2119 2120 err_of_node_put: 2121 of_node_put(nc); 2122 err_out: 2123 spi_dev_put(spi); 2124 return ERR_PTR(rc); 2125 } 2126 2127 /** 2128 * of_register_spi_devices() - Register child devices onto the SPI bus 2129 * @ctlr: Pointer to spi_controller device 2130 * 2131 * Registers an spi_device for each child node of controller node which 2132 * represents a valid SPI slave. 2133 */ 2134 static void of_register_spi_devices(struct spi_controller *ctlr) 2135 { 2136 struct spi_device *spi; 2137 struct device_node *nc; 2138 2139 if (!ctlr->dev.of_node) 2140 return; 2141 2142 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2143 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2144 continue; 2145 spi = of_register_spi_device(ctlr, nc); 2146 if (IS_ERR(spi)) { 2147 dev_warn(&ctlr->dev, 2148 "Failed to create SPI device for %pOF\n", nc); 2149 of_node_clear_flag(nc, OF_POPULATED); 2150 } 2151 } 2152 } 2153 #else 2154 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2155 #endif 2156 2157 /** 2158 * spi_new_ancillary_device() - Register ancillary SPI device 2159 * @spi: Pointer to the main SPI device registering the ancillary device 2160 * @chip_select: Chip Select of the ancillary device 2161 * 2162 * Register an ancillary SPI device; for example some chips have a chip-select 2163 * for normal device usage and another one for setup/firmware upload. 2164 * 2165 * This may only be called from main SPI device's probe routine. 2166 * 2167 * Return: 0 on success; negative errno on failure 2168 */ 2169 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2170 u8 chip_select) 2171 { 2172 struct spi_device *ancillary; 2173 int rc = 0; 2174 2175 /* Alloc an spi_device */ 2176 ancillary = spi_alloc_device(spi->controller); 2177 if (!ancillary) { 2178 rc = -ENOMEM; 2179 goto err_out; 2180 } 2181 2182 strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2183 2184 /* Use provided chip-select for ancillary device */ 2185 ancillary->chip_select = chip_select; 2186 2187 /* Take over SPI mode/speed from SPI main device */ 2188 ancillary->max_speed_hz = spi->max_speed_hz; 2189 ancillary->mode = spi->mode; 2190 2191 /* Register the new device */ 2192 rc = spi_add_device_locked(ancillary); 2193 if (rc) { 2194 dev_err(&spi->dev, "failed to register ancillary device\n"); 2195 goto err_out; 2196 } 2197 2198 return ancillary; 2199 2200 err_out: 2201 spi_dev_put(ancillary); 2202 return ERR_PTR(rc); 2203 } 2204 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2205 2206 #ifdef CONFIG_ACPI 2207 struct acpi_spi_lookup { 2208 struct spi_controller *ctlr; 2209 u32 max_speed_hz; 2210 u32 mode; 2211 int irq; 2212 u8 bits_per_word; 2213 u8 chip_select; 2214 }; 2215 2216 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2217 struct acpi_spi_lookup *lookup) 2218 { 2219 const union acpi_object *obj; 2220 2221 if (!x86_apple_machine) 2222 return; 2223 2224 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2225 && obj->buffer.length >= 4) 2226 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2227 2228 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2229 && obj->buffer.length == 8) 2230 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2231 2232 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2233 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2234 lookup->mode |= SPI_LSB_FIRST; 2235 2236 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2237 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2238 lookup->mode |= SPI_CPOL; 2239 2240 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2241 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2242 lookup->mode |= SPI_CPHA; 2243 } 2244 2245 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2246 { 2247 struct acpi_spi_lookup *lookup = data; 2248 struct spi_controller *ctlr = lookup->ctlr; 2249 2250 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2251 struct acpi_resource_spi_serialbus *sb; 2252 acpi_handle parent_handle; 2253 acpi_status status; 2254 2255 sb = &ares->data.spi_serial_bus; 2256 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2257 2258 status = acpi_get_handle(NULL, 2259 sb->resource_source.string_ptr, 2260 &parent_handle); 2261 2262 if (ACPI_FAILURE(status) || 2263 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2264 return -ENODEV; 2265 2266 /* 2267 * ACPI DeviceSelection numbering is handled by the 2268 * host controller driver in Windows and can vary 2269 * from driver to driver. In Linux we always expect 2270 * 0 .. max - 1 so we need to ask the driver to 2271 * translate between the two schemes. 2272 */ 2273 if (ctlr->fw_translate_cs) { 2274 int cs = ctlr->fw_translate_cs(ctlr, 2275 sb->device_selection); 2276 if (cs < 0) 2277 return cs; 2278 lookup->chip_select = cs; 2279 } else { 2280 lookup->chip_select = sb->device_selection; 2281 } 2282 2283 lookup->max_speed_hz = sb->connection_speed; 2284 lookup->bits_per_word = sb->data_bit_length; 2285 2286 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2287 lookup->mode |= SPI_CPHA; 2288 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2289 lookup->mode |= SPI_CPOL; 2290 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2291 lookup->mode |= SPI_CS_HIGH; 2292 } 2293 } else if (lookup->irq < 0) { 2294 struct resource r; 2295 2296 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2297 lookup->irq = r.start; 2298 } 2299 2300 /* Always tell the ACPI core to skip this resource */ 2301 return 1; 2302 } 2303 2304 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2305 struct acpi_device *adev) 2306 { 2307 acpi_handle parent_handle = NULL; 2308 struct list_head resource_list; 2309 struct acpi_spi_lookup lookup = {}; 2310 struct spi_device *spi; 2311 int ret; 2312 2313 if (acpi_bus_get_status(adev) || !adev->status.present || 2314 acpi_device_enumerated(adev)) 2315 return AE_OK; 2316 2317 lookup.ctlr = ctlr; 2318 lookup.irq = -1; 2319 2320 INIT_LIST_HEAD(&resource_list); 2321 ret = acpi_dev_get_resources(adev, &resource_list, 2322 acpi_spi_add_resource, &lookup); 2323 acpi_dev_free_resource_list(&resource_list); 2324 2325 if (ret < 0) 2326 /* found SPI in _CRS but it points to another controller */ 2327 return AE_OK; 2328 2329 if (!lookup.max_speed_hz && 2330 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2331 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2332 /* Apple does not use _CRS but nested devices for SPI slaves */ 2333 acpi_spi_parse_apple_properties(adev, &lookup); 2334 } 2335 2336 if (!lookup.max_speed_hz) 2337 return AE_OK; 2338 2339 spi = spi_alloc_device(ctlr); 2340 if (!spi) { 2341 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2342 dev_name(&adev->dev)); 2343 return AE_NO_MEMORY; 2344 } 2345 2346 2347 ACPI_COMPANION_SET(&spi->dev, adev); 2348 spi->max_speed_hz = lookup.max_speed_hz; 2349 spi->mode |= lookup.mode; 2350 spi->irq = lookup.irq; 2351 spi->bits_per_word = lookup.bits_per_word; 2352 spi->chip_select = lookup.chip_select; 2353 2354 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2355 sizeof(spi->modalias)); 2356 2357 if (spi->irq < 0) 2358 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2359 2360 acpi_device_set_enumerated(adev); 2361 2362 adev->power.flags.ignore_parent = true; 2363 if (spi_add_device(spi)) { 2364 adev->power.flags.ignore_parent = false; 2365 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2366 dev_name(&adev->dev)); 2367 spi_dev_put(spi); 2368 } 2369 2370 return AE_OK; 2371 } 2372 2373 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2374 void *data, void **return_value) 2375 { 2376 struct spi_controller *ctlr = data; 2377 struct acpi_device *adev; 2378 2379 if (acpi_bus_get_device(handle, &adev)) 2380 return AE_OK; 2381 2382 return acpi_register_spi_device(ctlr, adev); 2383 } 2384 2385 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2386 2387 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2388 { 2389 acpi_status status; 2390 acpi_handle handle; 2391 2392 handle = ACPI_HANDLE(ctlr->dev.parent); 2393 if (!handle) 2394 return; 2395 2396 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2397 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2398 acpi_spi_add_device, NULL, ctlr, NULL); 2399 if (ACPI_FAILURE(status)) 2400 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2401 } 2402 #else 2403 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2404 #endif /* CONFIG_ACPI */ 2405 2406 static void spi_controller_release(struct device *dev) 2407 { 2408 struct spi_controller *ctlr; 2409 2410 ctlr = container_of(dev, struct spi_controller, dev); 2411 kfree(ctlr); 2412 } 2413 2414 static struct class spi_master_class = { 2415 .name = "spi_master", 2416 .owner = THIS_MODULE, 2417 .dev_release = spi_controller_release, 2418 .dev_groups = spi_master_groups, 2419 }; 2420 2421 #ifdef CONFIG_SPI_SLAVE 2422 /** 2423 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2424 * controller 2425 * @spi: device used for the current transfer 2426 */ 2427 int spi_slave_abort(struct spi_device *spi) 2428 { 2429 struct spi_controller *ctlr = spi->controller; 2430 2431 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2432 return ctlr->slave_abort(ctlr); 2433 2434 return -ENOTSUPP; 2435 } 2436 EXPORT_SYMBOL_GPL(spi_slave_abort); 2437 2438 static int match_true(struct device *dev, void *data) 2439 { 2440 return 1; 2441 } 2442 2443 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2444 char *buf) 2445 { 2446 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2447 dev); 2448 struct device *child; 2449 2450 child = device_find_child(&ctlr->dev, NULL, match_true); 2451 return sprintf(buf, "%s\n", 2452 child ? to_spi_device(child)->modalias : NULL); 2453 } 2454 2455 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2456 const char *buf, size_t count) 2457 { 2458 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2459 dev); 2460 struct spi_device *spi; 2461 struct device *child; 2462 char name[32]; 2463 int rc; 2464 2465 rc = sscanf(buf, "%31s", name); 2466 if (rc != 1 || !name[0]) 2467 return -EINVAL; 2468 2469 child = device_find_child(&ctlr->dev, NULL, match_true); 2470 if (child) { 2471 /* Remove registered slave */ 2472 device_unregister(child); 2473 put_device(child); 2474 } 2475 2476 if (strcmp(name, "(null)")) { 2477 /* Register new slave */ 2478 spi = spi_alloc_device(ctlr); 2479 if (!spi) 2480 return -ENOMEM; 2481 2482 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2483 2484 rc = spi_add_device(spi); 2485 if (rc) { 2486 spi_dev_put(spi); 2487 return rc; 2488 } 2489 } 2490 2491 return count; 2492 } 2493 2494 static DEVICE_ATTR_RW(slave); 2495 2496 static struct attribute *spi_slave_attrs[] = { 2497 &dev_attr_slave.attr, 2498 NULL, 2499 }; 2500 2501 static const struct attribute_group spi_slave_group = { 2502 .attrs = spi_slave_attrs, 2503 }; 2504 2505 static const struct attribute_group *spi_slave_groups[] = { 2506 &spi_controller_statistics_group, 2507 &spi_slave_group, 2508 NULL, 2509 }; 2510 2511 static struct class spi_slave_class = { 2512 .name = "spi_slave", 2513 .owner = THIS_MODULE, 2514 .dev_release = spi_controller_release, 2515 .dev_groups = spi_slave_groups, 2516 }; 2517 #else 2518 extern struct class spi_slave_class; /* dummy */ 2519 #endif 2520 2521 /** 2522 * __spi_alloc_controller - allocate an SPI master or slave controller 2523 * @dev: the controller, possibly using the platform_bus 2524 * @size: how much zeroed driver-private data to allocate; the pointer to this 2525 * memory is in the driver_data field of the returned device, accessible 2526 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2527 * drivers granting DMA access to portions of their private data need to 2528 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2529 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2530 * slave (true) controller 2531 * Context: can sleep 2532 * 2533 * This call is used only by SPI controller drivers, which are the 2534 * only ones directly touching chip registers. It's how they allocate 2535 * an spi_controller structure, prior to calling spi_register_controller(). 2536 * 2537 * This must be called from context that can sleep. 2538 * 2539 * The caller is responsible for assigning the bus number and initializing the 2540 * controller's methods before calling spi_register_controller(); and (after 2541 * errors adding the device) calling spi_controller_put() to prevent a memory 2542 * leak. 2543 * 2544 * Return: the SPI controller structure on success, else NULL. 2545 */ 2546 struct spi_controller *__spi_alloc_controller(struct device *dev, 2547 unsigned int size, bool slave) 2548 { 2549 struct spi_controller *ctlr; 2550 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2551 2552 if (!dev) 2553 return NULL; 2554 2555 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2556 if (!ctlr) 2557 return NULL; 2558 2559 device_initialize(&ctlr->dev); 2560 ctlr->bus_num = -1; 2561 ctlr->num_chipselect = 1; 2562 ctlr->slave = slave; 2563 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2564 ctlr->dev.class = &spi_slave_class; 2565 else 2566 ctlr->dev.class = &spi_master_class; 2567 ctlr->dev.parent = dev; 2568 pm_suspend_ignore_children(&ctlr->dev, true); 2569 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2570 2571 return ctlr; 2572 } 2573 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2574 2575 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2576 { 2577 spi_controller_put(*(struct spi_controller **)ctlr); 2578 } 2579 2580 /** 2581 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2582 * @dev: physical device of SPI controller 2583 * @size: how much zeroed driver-private data to allocate 2584 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2585 * Context: can sleep 2586 * 2587 * Allocate an SPI controller and automatically release a reference on it 2588 * when @dev is unbound from its driver. Drivers are thus relieved from 2589 * having to call spi_controller_put(). 2590 * 2591 * The arguments to this function are identical to __spi_alloc_controller(). 2592 * 2593 * Return: the SPI controller structure on success, else NULL. 2594 */ 2595 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2596 unsigned int size, 2597 bool slave) 2598 { 2599 struct spi_controller **ptr, *ctlr; 2600 2601 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2602 GFP_KERNEL); 2603 if (!ptr) 2604 return NULL; 2605 2606 ctlr = __spi_alloc_controller(dev, size, slave); 2607 if (ctlr) { 2608 ctlr->devm_allocated = true; 2609 *ptr = ctlr; 2610 devres_add(dev, ptr); 2611 } else { 2612 devres_free(ptr); 2613 } 2614 2615 return ctlr; 2616 } 2617 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2618 2619 #ifdef CONFIG_OF 2620 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2621 { 2622 int nb, i, *cs; 2623 struct device_node *np = ctlr->dev.of_node; 2624 2625 if (!np) 2626 return 0; 2627 2628 nb = of_gpio_named_count(np, "cs-gpios"); 2629 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2630 2631 /* Return error only for an incorrectly formed cs-gpios property */ 2632 if (nb == 0 || nb == -ENOENT) 2633 return 0; 2634 else if (nb < 0) 2635 return nb; 2636 2637 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2638 GFP_KERNEL); 2639 ctlr->cs_gpios = cs; 2640 2641 if (!ctlr->cs_gpios) 2642 return -ENOMEM; 2643 2644 for (i = 0; i < ctlr->num_chipselect; i++) 2645 cs[i] = -ENOENT; 2646 2647 for (i = 0; i < nb; i++) 2648 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2649 2650 return 0; 2651 } 2652 #else 2653 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2654 { 2655 return 0; 2656 } 2657 #endif 2658 2659 /** 2660 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2661 * @ctlr: The SPI master to grab GPIO descriptors for 2662 */ 2663 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2664 { 2665 int nb, i; 2666 struct gpio_desc **cs; 2667 struct device *dev = &ctlr->dev; 2668 unsigned long native_cs_mask = 0; 2669 unsigned int num_cs_gpios = 0; 2670 2671 nb = gpiod_count(dev, "cs"); 2672 if (nb < 0) { 2673 /* No GPIOs at all is fine, else return the error */ 2674 if (nb == -ENOENT) 2675 return 0; 2676 return nb; 2677 } 2678 2679 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2680 2681 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2682 GFP_KERNEL); 2683 if (!cs) 2684 return -ENOMEM; 2685 ctlr->cs_gpiods = cs; 2686 2687 for (i = 0; i < nb; i++) { 2688 /* 2689 * Most chipselects are active low, the inverted 2690 * semantics are handled by special quirks in gpiolib, 2691 * so initializing them GPIOD_OUT_LOW here means 2692 * "unasserted", in most cases this will drive the physical 2693 * line high. 2694 */ 2695 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2696 GPIOD_OUT_LOW); 2697 if (IS_ERR(cs[i])) 2698 return PTR_ERR(cs[i]); 2699 2700 if (cs[i]) { 2701 /* 2702 * If we find a CS GPIO, name it after the device and 2703 * chip select line. 2704 */ 2705 char *gpioname; 2706 2707 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2708 dev_name(dev), i); 2709 if (!gpioname) 2710 return -ENOMEM; 2711 gpiod_set_consumer_name(cs[i], gpioname); 2712 num_cs_gpios++; 2713 continue; 2714 } 2715 2716 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2717 dev_err(dev, "Invalid native chip select %d\n", i); 2718 return -EINVAL; 2719 } 2720 native_cs_mask |= BIT(i); 2721 } 2722 2723 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 2724 2725 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios && 2726 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 2727 dev_err(dev, "No unused native chip select available\n"); 2728 return -EINVAL; 2729 } 2730 2731 return 0; 2732 } 2733 2734 static int spi_controller_check_ops(struct spi_controller *ctlr) 2735 { 2736 /* 2737 * The controller may implement only the high-level SPI-memory like 2738 * operations if it does not support regular SPI transfers, and this is 2739 * valid use case. 2740 * If ->mem_ops is NULL, we request that at least one of the 2741 * ->transfer_xxx() method be implemented. 2742 */ 2743 if (ctlr->mem_ops) { 2744 if (!ctlr->mem_ops->exec_op) 2745 return -EINVAL; 2746 } else if (!ctlr->transfer && !ctlr->transfer_one && 2747 !ctlr->transfer_one_message) { 2748 return -EINVAL; 2749 } 2750 2751 return 0; 2752 } 2753 2754 /** 2755 * spi_register_controller - register SPI master or slave controller 2756 * @ctlr: initialized master, originally from spi_alloc_master() or 2757 * spi_alloc_slave() 2758 * Context: can sleep 2759 * 2760 * SPI controllers connect to their drivers using some non-SPI bus, 2761 * such as the platform bus. The final stage of probe() in that code 2762 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2763 * 2764 * SPI controllers use board specific (often SOC specific) bus numbers, 2765 * and board-specific addressing for SPI devices combines those numbers 2766 * with chip select numbers. Since SPI does not directly support dynamic 2767 * device identification, boards need configuration tables telling which 2768 * chip is at which address. 2769 * 2770 * This must be called from context that can sleep. It returns zero on 2771 * success, else a negative error code (dropping the controller's refcount). 2772 * After a successful return, the caller is responsible for calling 2773 * spi_unregister_controller(). 2774 * 2775 * Return: zero on success, else a negative error code. 2776 */ 2777 int spi_register_controller(struct spi_controller *ctlr) 2778 { 2779 struct device *dev = ctlr->dev.parent; 2780 struct boardinfo *bi; 2781 int status; 2782 int id, first_dynamic; 2783 2784 if (!dev) 2785 return -ENODEV; 2786 2787 /* 2788 * Make sure all necessary hooks are implemented before registering 2789 * the SPI controller. 2790 */ 2791 status = spi_controller_check_ops(ctlr); 2792 if (status) 2793 return status; 2794 2795 if (ctlr->bus_num >= 0) { 2796 /* devices with a fixed bus num must check-in with the num */ 2797 mutex_lock(&board_lock); 2798 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2799 ctlr->bus_num + 1, GFP_KERNEL); 2800 mutex_unlock(&board_lock); 2801 if (WARN(id < 0, "couldn't get idr")) 2802 return id == -ENOSPC ? -EBUSY : id; 2803 ctlr->bus_num = id; 2804 } else if (ctlr->dev.of_node) { 2805 /* allocate dynamic bus number using Linux idr */ 2806 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2807 if (id >= 0) { 2808 ctlr->bus_num = id; 2809 mutex_lock(&board_lock); 2810 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2811 ctlr->bus_num + 1, GFP_KERNEL); 2812 mutex_unlock(&board_lock); 2813 if (WARN(id < 0, "couldn't get idr")) 2814 return id == -ENOSPC ? -EBUSY : id; 2815 } 2816 } 2817 if (ctlr->bus_num < 0) { 2818 first_dynamic = of_alias_get_highest_id("spi"); 2819 if (first_dynamic < 0) 2820 first_dynamic = 0; 2821 else 2822 first_dynamic++; 2823 2824 mutex_lock(&board_lock); 2825 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2826 0, GFP_KERNEL); 2827 mutex_unlock(&board_lock); 2828 if (WARN(id < 0, "couldn't get idr")) 2829 return id; 2830 ctlr->bus_num = id; 2831 } 2832 INIT_LIST_HEAD(&ctlr->queue); 2833 spin_lock_init(&ctlr->queue_lock); 2834 spin_lock_init(&ctlr->bus_lock_spinlock); 2835 mutex_init(&ctlr->bus_lock_mutex); 2836 mutex_init(&ctlr->io_mutex); 2837 ctlr->bus_lock_flag = 0; 2838 init_completion(&ctlr->xfer_completion); 2839 if (!ctlr->max_dma_len) 2840 ctlr->max_dma_len = INT_MAX; 2841 2842 /* register the device, then userspace will see it. 2843 * registration fails if the bus ID is in use. 2844 */ 2845 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2846 2847 if (!spi_controller_is_slave(ctlr)) { 2848 if (ctlr->use_gpio_descriptors) { 2849 status = spi_get_gpio_descs(ctlr); 2850 if (status) 2851 goto free_bus_id; 2852 /* 2853 * A controller using GPIO descriptors always 2854 * supports SPI_CS_HIGH if need be. 2855 */ 2856 ctlr->mode_bits |= SPI_CS_HIGH; 2857 } else { 2858 /* Legacy code path for GPIOs from DT */ 2859 status = of_spi_get_gpio_numbers(ctlr); 2860 if (status) 2861 goto free_bus_id; 2862 } 2863 } 2864 2865 /* 2866 * Even if it's just one always-selected device, there must 2867 * be at least one chipselect. 2868 */ 2869 if (!ctlr->num_chipselect) { 2870 status = -EINVAL; 2871 goto free_bus_id; 2872 } 2873 2874 status = device_add(&ctlr->dev); 2875 if (status < 0) 2876 goto free_bus_id; 2877 dev_dbg(dev, "registered %s %s\n", 2878 spi_controller_is_slave(ctlr) ? "slave" : "master", 2879 dev_name(&ctlr->dev)); 2880 2881 /* 2882 * If we're using a queued driver, start the queue. Note that we don't 2883 * need the queueing logic if the driver is only supporting high-level 2884 * memory operations. 2885 */ 2886 if (ctlr->transfer) { 2887 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2888 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2889 status = spi_controller_initialize_queue(ctlr); 2890 if (status) { 2891 device_del(&ctlr->dev); 2892 goto free_bus_id; 2893 } 2894 } 2895 /* add statistics */ 2896 spin_lock_init(&ctlr->statistics.lock); 2897 2898 mutex_lock(&board_lock); 2899 list_add_tail(&ctlr->list, &spi_controller_list); 2900 list_for_each_entry(bi, &board_list, list) 2901 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2902 mutex_unlock(&board_lock); 2903 2904 /* Register devices from the device tree and ACPI */ 2905 of_register_spi_devices(ctlr); 2906 acpi_register_spi_devices(ctlr); 2907 return status; 2908 2909 free_bus_id: 2910 mutex_lock(&board_lock); 2911 idr_remove(&spi_master_idr, ctlr->bus_num); 2912 mutex_unlock(&board_lock); 2913 return status; 2914 } 2915 EXPORT_SYMBOL_GPL(spi_register_controller); 2916 2917 static void devm_spi_unregister(void *ctlr) 2918 { 2919 spi_unregister_controller(ctlr); 2920 } 2921 2922 /** 2923 * devm_spi_register_controller - register managed SPI master or slave 2924 * controller 2925 * @dev: device managing SPI controller 2926 * @ctlr: initialized controller, originally from spi_alloc_master() or 2927 * spi_alloc_slave() 2928 * Context: can sleep 2929 * 2930 * Register a SPI device as with spi_register_controller() which will 2931 * automatically be unregistered and freed. 2932 * 2933 * Return: zero on success, else a negative error code. 2934 */ 2935 int devm_spi_register_controller(struct device *dev, 2936 struct spi_controller *ctlr) 2937 { 2938 int ret; 2939 2940 ret = spi_register_controller(ctlr); 2941 if (ret) 2942 return ret; 2943 2944 return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr); 2945 } 2946 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2947 2948 static int __unregister(struct device *dev, void *null) 2949 { 2950 spi_unregister_device(to_spi_device(dev)); 2951 return 0; 2952 } 2953 2954 /** 2955 * spi_unregister_controller - unregister SPI master or slave controller 2956 * @ctlr: the controller being unregistered 2957 * Context: can sleep 2958 * 2959 * This call is used only by SPI controller drivers, which are the 2960 * only ones directly touching chip registers. 2961 * 2962 * This must be called from context that can sleep. 2963 * 2964 * Note that this function also drops a reference to the controller. 2965 */ 2966 void spi_unregister_controller(struct spi_controller *ctlr) 2967 { 2968 struct spi_controller *found; 2969 int id = ctlr->bus_num; 2970 2971 /* Prevent addition of new devices, unregister existing ones */ 2972 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2973 mutex_lock(&spi_add_lock); 2974 2975 device_for_each_child(&ctlr->dev, NULL, __unregister); 2976 2977 /* First make sure that this controller was ever added */ 2978 mutex_lock(&board_lock); 2979 found = idr_find(&spi_master_idr, id); 2980 mutex_unlock(&board_lock); 2981 if (ctlr->queued) { 2982 if (spi_destroy_queue(ctlr)) 2983 dev_err(&ctlr->dev, "queue remove failed\n"); 2984 } 2985 mutex_lock(&board_lock); 2986 list_del(&ctlr->list); 2987 mutex_unlock(&board_lock); 2988 2989 device_del(&ctlr->dev); 2990 2991 /* Release the last reference on the controller if its driver 2992 * has not yet been converted to devm_spi_alloc_master/slave(). 2993 */ 2994 if (!ctlr->devm_allocated) 2995 put_device(&ctlr->dev); 2996 2997 /* free bus id */ 2998 mutex_lock(&board_lock); 2999 if (found == ctlr) 3000 idr_remove(&spi_master_idr, id); 3001 mutex_unlock(&board_lock); 3002 3003 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3004 mutex_unlock(&spi_add_lock); 3005 } 3006 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3007 3008 int spi_controller_suspend(struct spi_controller *ctlr) 3009 { 3010 int ret; 3011 3012 /* Basically no-ops for non-queued controllers */ 3013 if (!ctlr->queued) 3014 return 0; 3015 3016 ret = spi_stop_queue(ctlr); 3017 if (ret) 3018 dev_err(&ctlr->dev, "queue stop failed\n"); 3019 3020 return ret; 3021 } 3022 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3023 3024 int spi_controller_resume(struct spi_controller *ctlr) 3025 { 3026 int ret; 3027 3028 if (!ctlr->queued) 3029 return 0; 3030 3031 ret = spi_start_queue(ctlr); 3032 if (ret) 3033 dev_err(&ctlr->dev, "queue restart failed\n"); 3034 3035 return ret; 3036 } 3037 EXPORT_SYMBOL_GPL(spi_controller_resume); 3038 3039 static int __spi_controller_match(struct device *dev, const void *data) 3040 { 3041 struct spi_controller *ctlr; 3042 const u16 *bus_num = data; 3043 3044 ctlr = container_of(dev, struct spi_controller, dev); 3045 return ctlr->bus_num == *bus_num; 3046 } 3047 3048 /** 3049 * spi_busnum_to_master - look up master associated with bus_num 3050 * @bus_num: the master's bus number 3051 * Context: can sleep 3052 * 3053 * This call may be used with devices that are registered after 3054 * arch init time. It returns a refcounted pointer to the relevant 3055 * spi_controller (which the caller must release), or NULL if there is 3056 * no such master registered. 3057 * 3058 * Return: the SPI master structure on success, else NULL. 3059 */ 3060 struct spi_controller *spi_busnum_to_master(u16 bus_num) 3061 { 3062 struct device *dev; 3063 struct spi_controller *ctlr = NULL; 3064 3065 dev = class_find_device(&spi_master_class, NULL, &bus_num, 3066 __spi_controller_match); 3067 if (dev) 3068 ctlr = container_of(dev, struct spi_controller, dev); 3069 /* reference got in class_find_device */ 3070 return ctlr; 3071 } 3072 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 3073 3074 /*-------------------------------------------------------------------------*/ 3075 3076 /* Core methods for SPI resource management */ 3077 3078 /** 3079 * spi_res_alloc - allocate a spi resource that is life-cycle managed 3080 * during the processing of a spi_message while using 3081 * spi_transfer_one 3082 * @spi: the spi device for which we allocate memory 3083 * @release: the release code to execute for this resource 3084 * @size: size to alloc and return 3085 * @gfp: GFP allocation flags 3086 * 3087 * Return: the pointer to the allocated data 3088 * 3089 * This may get enhanced in the future to allocate from a memory pool 3090 * of the @spi_device or @spi_controller to avoid repeated allocations. 3091 */ 3092 void *spi_res_alloc(struct spi_device *spi, 3093 spi_res_release_t release, 3094 size_t size, gfp_t gfp) 3095 { 3096 struct spi_res *sres; 3097 3098 sres = kzalloc(sizeof(*sres) + size, gfp); 3099 if (!sres) 3100 return NULL; 3101 3102 INIT_LIST_HEAD(&sres->entry); 3103 sres->release = release; 3104 3105 return sres->data; 3106 } 3107 EXPORT_SYMBOL_GPL(spi_res_alloc); 3108 3109 /** 3110 * spi_res_free - free an spi resource 3111 * @res: pointer to the custom data of a resource 3112 * 3113 */ 3114 void spi_res_free(void *res) 3115 { 3116 struct spi_res *sres = container_of(res, struct spi_res, data); 3117 3118 if (!res) 3119 return; 3120 3121 WARN_ON(!list_empty(&sres->entry)); 3122 kfree(sres); 3123 } 3124 EXPORT_SYMBOL_GPL(spi_res_free); 3125 3126 /** 3127 * spi_res_add - add a spi_res to the spi_message 3128 * @message: the spi message 3129 * @res: the spi_resource 3130 */ 3131 void spi_res_add(struct spi_message *message, void *res) 3132 { 3133 struct spi_res *sres = container_of(res, struct spi_res, data); 3134 3135 WARN_ON(!list_empty(&sres->entry)); 3136 list_add_tail(&sres->entry, &message->resources); 3137 } 3138 EXPORT_SYMBOL_GPL(spi_res_add); 3139 3140 /** 3141 * spi_res_release - release all spi resources for this message 3142 * @ctlr: the @spi_controller 3143 * @message: the @spi_message 3144 */ 3145 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 3146 { 3147 struct spi_res *res, *tmp; 3148 3149 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 3150 if (res->release) 3151 res->release(ctlr, message, res->data); 3152 3153 list_del(&res->entry); 3154 3155 kfree(res); 3156 } 3157 } 3158 EXPORT_SYMBOL_GPL(spi_res_release); 3159 3160 /*-------------------------------------------------------------------------*/ 3161 3162 /* Core methods for spi_message alterations */ 3163 3164 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3165 struct spi_message *msg, 3166 void *res) 3167 { 3168 struct spi_replaced_transfers *rxfer = res; 3169 size_t i; 3170 3171 /* call extra callback if requested */ 3172 if (rxfer->release) 3173 rxfer->release(ctlr, msg, res); 3174 3175 /* insert replaced transfers back into the message */ 3176 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3177 3178 /* remove the formerly inserted entries */ 3179 for (i = 0; i < rxfer->inserted; i++) 3180 list_del(&rxfer->inserted_transfers[i].transfer_list); 3181 } 3182 3183 /** 3184 * spi_replace_transfers - replace transfers with several transfers 3185 * and register change with spi_message.resources 3186 * @msg: the spi_message we work upon 3187 * @xfer_first: the first spi_transfer we want to replace 3188 * @remove: number of transfers to remove 3189 * @insert: the number of transfers we want to insert instead 3190 * @release: extra release code necessary in some circumstances 3191 * @extradatasize: extra data to allocate (with alignment guarantees 3192 * of struct @spi_transfer) 3193 * @gfp: gfp flags 3194 * 3195 * Returns: pointer to @spi_replaced_transfers, 3196 * PTR_ERR(...) in case of errors. 3197 */ 3198 struct spi_replaced_transfers *spi_replace_transfers( 3199 struct spi_message *msg, 3200 struct spi_transfer *xfer_first, 3201 size_t remove, 3202 size_t insert, 3203 spi_replaced_release_t release, 3204 size_t extradatasize, 3205 gfp_t gfp) 3206 { 3207 struct spi_replaced_transfers *rxfer; 3208 struct spi_transfer *xfer; 3209 size_t i; 3210 3211 /* allocate the structure using spi_res */ 3212 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3213 struct_size(rxfer, inserted_transfers, insert) 3214 + extradatasize, 3215 gfp); 3216 if (!rxfer) 3217 return ERR_PTR(-ENOMEM); 3218 3219 /* the release code to invoke before running the generic release */ 3220 rxfer->release = release; 3221 3222 /* assign extradata */ 3223 if (extradatasize) 3224 rxfer->extradata = 3225 &rxfer->inserted_transfers[insert]; 3226 3227 /* init the replaced_transfers list */ 3228 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3229 3230 /* assign the list_entry after which we should reinsert 3231 * the @replaced_transfers - it may be spi_message.messages! 3232 */ 3233 rxfer->replaced_after = xfer_first->transfer_list.prev; 3234 3235 /* remove the requested number of transfers */ 3236 for (i = 0; i < remove; i++) { 3237 /* if the entry after replaced_after it is msg->transfers 3238 * then we have been requested to remove more transfers 3239 * than are in the list 3240 */ 3241 if (rxfer->replaced_after->next == &msg->transfers) { 3242 dev_err(&msg->spi->dev, 3243 "requested to remove more spi_transfers than are available\n"); 3244 /* insert replaced transfers back into the message */ 3245 list_splice(&rxfer->replaced_transfers, 3246 rxfer->replaced_after); 3247 3248 /* free the spi_replace_transfer structure */ 3249 spi_res_free(rxfer); 3250 3251 /* and return with an error */ 3252 return ERR_PTR(-EINVAL); 3253 } 3254 3255 /* remove the entry after replaced_after from list of 3256 * transfers and add it to list of replaced_transfers 3257 */ 3258 list_move_tail(rxfer->replaced_after->next, 3259 &rxfer->replaced_transfers); 3260 } 3261 3262 /* create copy of the given xfer with identical settings 3263 * based on the first transfer to get removed 3264 */ 3265 for (i = 0; i < insert; i++) { 3266 /* we need to run in reverse order */ 3267 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3268 3269 /* copy all spi_transfer data */ 3270 memcpy(xfer, xfer_first, sizeof(*xfer)); 3271 3272 /* add to list */ 3273 list_add(&xfer->transfer_list, rxfer->replaced_after); 3274 3275 /* clear cs_change and delay for all but the last */ 3276 if (i) { 3277 xfer->cs_change = false; 3278 xfer->delay.value = 0; 3279 } 3280 } 3281 3282 /* set up inserted */ 3283 rxfer->inserted = insert; 3284 3285 /* and register it with spi_res/spi_message */ 3286 spi_res_add(msg, rxfer); 3287 3288 return rxfer; 3289 } 3290 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3291 3292 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3293 struct spi_message *msg, 3294 struct spi_transfer **xferp, 3295 size_t maxsize, 3296 gfp_t gfp) 3297 { 3298 struct spi_transfer *xfer = *xferp, *xfers; 3299 struct spi_replaced_transfers *srt; 3300 size_t offset; 3301 size_t count, i; 3302 3303 /* calculate how many we have to replace */ 3304 count = DIV_ROUND_UP(xfer->len, maxsize); 3305 3306 /* create replacement */ 3307 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3308 if (IS_ERR(srt)) 3309 return PTR_ERR(srt); 3310 xfers = srt->inserted_transfers; 3311 3312 /* now handle each of those newly inserted spi_transfers 3313 * note that the replacements spi_transfers all are preset 3314 * to the same values as *xferp, so tx_buf, rx_buf and len 3315 * are all identical (as well as most others) 3316 * so we just have to fix up len and the pointers. 3317 * 3318 * this also includes support for the depreciated 3319 * spi_message.is_dma_mapped interface 3320 */ 3321 3322 /* the first transfer just needs the length modified, so we 3323 * run it outside the loop 3324 */ 3325 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3326 3327 /* all the others need rx_buf/tx_buf also set */ 3328 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3329 /* update rx_buf, tx_buf and dma */ 3330 if (xfers[i].rx_buf) 3331 xfers[i].rx_buf += offset; 3332 if (xfers[i].rx_dma) 3333 xfers[i].rx_dma += offset; 3334 if (xfers[i].tx_buf) 3335 xfers[i].tx_buf += offset; 3336 if (xfers[i].tx_dma) 3337 xfers[i].tx_dma += offset; 3338 3339 /* update length */ 3340 xfers[i].len = min(maxsize, xfers[i].len - offset); 3341 } 3342 3343 /* we set up xferp to the last entry we have inserted, 3344 * so that we skip those already split transfers 3345 */ 3346 *xferp = &xfers[count - 1]; 3347 3348 /* increment statistics counters */ 3349 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3350 transfers_split_maxsize); 3351 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3352 transfers_split_maxsize); 3353 3354 return 0; 3355 } 3356 3357 /** 3358 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3359 * when an individual transfer exceeds a 3360 * certain size 3361 * @ctlr: the @spi_controller for this transfer 3362 * @msg: the @spi_message to transform 3363 * @maxsize: the maximum when to apply this 3364 * @gfp: GFP allocation flags 3365 * 3366 * Return: status of transformation 3367 */ 3368 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3369 struct spi_message *msg, 3370 size_t maxsize, 3371 gfp_t gfp) 3372 { 3373 struct spi_transfer *xfer; 3374 int ret; 3375 3376 /* iterate over the transfer_list, 3377 * but note that xfer is advanced to the last transfer inserted 3378 * to avoid checking sizes again unnecessarily (also xfer does 3379 * potentiall belong to a different list by the time the 3380 * replacement has happened 3381 */ 3382 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3383 if (xfer->len > maxsize) { 3384 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3385 maxsize, gfp); 3386 if (ret) 3387 return ret; 3388 } 3389 } 3390 3391 return 0; 3392 } 3393 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3394 3395 /*-------------------------------------------------------------------------*/ 3396 3397 /* Core methods for SPI controller protocol drivers. Some of the 3398 * other core methods are currently defined as inline functions. 3399 */ 3400 3401 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3402 u8 bits_per_word) 3403 { 3404 if (ctlr->bits_per_word_mask) { 3405 /* Only 32 bits fit in the mask */ 3406 if (bits_per_word > 32) 3407 return -EINVAL; 3408 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3409 return -EINVAL; 3410 } 3411 3412 return 0; 3413 } 3414 3415 /** 3416 * spi_setup - setup SPI mode and clock rate 3417 * @spi: the device whose settings are being modified 3418 * Context: can sleep, and no requests are queued to the device 3419 * 3420 * SPI protocol drivers may need to update the transfer mode if the 3421 * device doesn't work with its default. They may likewise need 3422 * to update clock rates or word sizes from initial values. This function 3423 * changes those settings, and must be called from a context that can sleep. 3424 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3425 * effect the next time the device is selected and data is transferred to 3426 * or from it. When this function returns, the spi device is deselected. 3427 * 3428 * Note that this call will fail if the protocol driver specifies an option 3429 * that the underlying controller or its driver does not support. For 3430 * example, not all hardware supports wire transfers using nine bit words, 3431 * LSB-first wire encoding, or active-high chipselects. 3432 * 3433 * Return: zero on success, else a negative error code. 3434 */ 3435 int spi_setup(struct spi_device *spi) 3436 { 3437 unsigned bad_bits, ugly_bits; 3438 int status; 3439 3440 /* 3441 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3442 * are set at the same time 3443 */ 3444 if ((hweight_long(spi->mode & 3445 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3446 (hweight_long(spi->mode & 3447 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3448 dev_err(&spi->dev, 3449 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3450 return -EINVAL; 3451 } 3452 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3453 */ 3454 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3455 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3456 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3457 return -EINVAL; 3458 /* help drivers fail *cleanly* when they need options 3459 * that aren't supported with their current controller 3460 * SPI_CS_WORD has a fallback software implementation, 3461 * so it is ignored here. 3462 */ 3463 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3464 SPI_NO_TX | SPI_NO_RX); 3465 /* nothing prevents from working with active-high CS in case if it 3466 * is driven by GPIO. 3467 */ 3468 if (gpio_is_valid(spi->cs_gpio)) 3469 bad_bits &= ~SPI_CS_HIGH; 3470 ugly_bits = bad_bits & 3471 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3472 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3473 if (ugly_bits) { 3474 dev_warn(&spi->dev, 3475 "setup: ignoring unsupported mode bits %x\n", 3476 ugly_bits); 3477 spi->mode &= ~ugly_bits; 3478 bad_bits &= ~ugly_bits; 3479 } 3480 if (bad_bits) { 3481 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3482 bad_bits); 3483 return -EINVAL; 3484 } 3485 3486 if (!spi->bits_per_word) 3487 spi->bits_per_word = 8; 3488 3489 status = __spi_validate_bits_per_word(spi->controller, 3490 spi->bits_per_word); 3491 if (status) 3492 return status; 3493 3494 if (spi->controller->max_speed_hz && 3495 (!spi->max_speed_hz || 3496 spi->max_speed_hz > spi->controller->max_speed_hz)) 3497 spi->max_speed_hz = spi->controller->max_speed_hz; 3498 3499 mutex_lock(&spi->controller->io_mutex); 3500 3501 if (spi->controller->setup) { 3502 status = spi->controller->setup(spi); 3503 if (status) { 3504 mutex_unlock(&spi->controller->io_mutex); 3505 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3506 status); 3507 return status; 3508 } 3509 } 3510 3511 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3512 status = pm_runtime_get_sync(spi->controller->dev.parent); 3513 if (status < 0) { 3514 mutex_unlock(&spi->controller->io_mutex); 3515 pm_runtime_put_noidle(spi->controller->dev.parent); 3516 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3517 status); 3518 return status; 3519 } 3520 3521 /* 3522 * We do not want to return positive value from pm_runtime_get, 3523 * there are many instances of devices calling spi_setup() and 3524 * checking for a non-zero return value instead of a negative 3525 * return value. 3526 */ 3527 status = 0; 3528 3529 spi_set_cs(spi, false, true); 3530 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3531 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3532 } else { 3533 spi_set_cs(spi, false, true); 3534 } 3535 3536 mutex_unlock(&spi->controller->io_mutex); 3537 3538 if (spi->rt && !spi->controller->rt) { 3539 spi->controller->rt = true; 3540 spi_set_thread_rt(spi->controller); 3541 } 3542 3543 trace_spi_setup(spi, status); 3544 3545 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3546 spi->mode & SPI_MODE_X_MASK, 3547 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3548 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3549 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3550 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3551 spi->bits_per_word, spi->max_speed_hz, 3552 status); 3553 3554 return status; 3555 } 3556 EXPORT_SYMBOL_GPL(spi_setup); 3557 3558 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3559 struct spi_device *spi) 3560 { 3561 int delay1, delay2; 3562 3563 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3564 if (delay1 < 0) 3565 return delay1; 3566 3567 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3568 if (delay2 < 0) 3569 return delay2; 3570 3571 if (delay1 < delay2) 3572 memcpy(&xfer->word_delay, &spi->word_delay, 3573 sizeof(xfer->word_delay)); 3574 3575 return 0; 3576 } 3577 3578 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3579 { 3580 struct spi_controller *ctlr = spi->controller; 3581 struct spi_transfer *xfer; 3582 int w_size; 3583 3584 if (list_empty(&message->transfers)) 3585 return -EINVAL; 3586 3587 /* If an SPI controller does not support toggling the CS line on each 3588 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3589 * for the CS line, we can emulate the CS-per-word hardware function by 3590 * splitting transfers into one-word transfers and ensuring that 3591 * cs_change is set for each transfer. 3592 */ 3593 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3594 spi->cs_gpiod || 3595 gpio_is_valid(spi->cs_gpio))) { 3596 size_t maxsize; 3597 int ret; 3598 3599 maxsize = (spi->bits_per_word + 7) / 8; 3600 3601 /* spi_split_transfers_maxsize() requires message->spi */ 3602 message->spi = spi; 3603 3604 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3605 GFP_KERNEL); 3606 if (ret) 3607 return ret; 3608 3609 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3610 /* don't change cs_change on the last entry in the list */ 3611 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3612 break; 3613 xfer->cs_change = 1; 3614 } 3615 } 3616 3617 /* Half-duplex links include original MicroWire, and ones with 3618 * only one data pin like SPI_3WIRE (switches direction) or where 3619 * either MOSI or MISO is missing. They can also be caused by 3620 * software limitations. 3621 */ 3622 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3623 (spi->mode & SPI_3WIRE)) { 3624 unsigned flags = ctlr->flags; 3625 3626 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3627 if (xfer->rx_buf && xfer->tx_buf) 3628 return -EINVAL; 3629 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3630 return -EINVAL; 3631 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3632 return -EINVAL; 3633 } 3634 } 3635 3636 /** 3637 * Set transfer bits_per_word and max speed as spi device default if 3638 * it is not set for this transfer. 3639 * Set transfer tx_nbits and rx_nbits as single transfer default 3640 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3641 * Ensure transfer word_delay is at least as long as that required by 3642 * device itself. 3643 */ 3644 message->frame_length = 0; 3645 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3646 xfer->effective_speed_hz = 0; 3647 message->frame_length += xfer->len; 3648 if (!xfer->bits_per_word) 3649 xfer->bits_per_word = spi->bits_per_word; 3650 3651 if (!xfer->speed_hz) 3652 xfer->speed_hz = spi->max_speed_hz; 3653 3654 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3655 xfer->speed_hz = ctlr->max_speed_hz; 3656 3657 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3658 return -EINVAL; 3659 3660 /* 3661 * SPI transfer length should be multiple of SPI word size 3662 * where SPI word size should be power-of-two multiple 3663 */ 3664 if (xfer->bits_per_word <= 8) 3665 w_size = 1; 3666 else if (xfer->bits_per_word <= 16) 3667 w_size = 2; 3668 else 3669 w_size = 4; 3670 3671 /* No partial transfers accepted */ 3672 if (xfer->len % w_size) 3673 return -EINVAL; 3674 3675 if (xfer->speed_hz && ctlr->min_speed_hz && 3676 xfer->speed_hz < ctlr->min_speed_hz) 3677 return -EINVAL; 3678 3679 if (xfer->tx_buf && !xfer->tx_nbits) 3680 xfer->tx_nbits = SPI_NBITS_SINGLE; 3681 if (xfer->rx_buf && !xfer->rx_nbits) 3682 xfer->rx_nbits = SPI_NBITS_SINGLE; 3683 /* check transfer tx/rx_nbits: 3684 * 1. check the value matches one of single, dual and quad 3685 * 2. check tx/rx_nbits match the mode in spi_device 3686 */ 3687 if (xfer->tx_buf) { 3688 if (spi->mode & SPI_NO_TX) 3689 return -EINVAL; 3690 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3691 xfer->tx_nbits != SPI_NBITS_DUAL && 3692 xfer->tx_nbits != SPI_NBITS_QUAD) 3693 return -EINVAL; 3694 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3695 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3696 return -EINVAL; 3697 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3698 !(spi->mode & SPI_TX_QUAD)) 3699 return -EINVAL; 3700 } 3701 /* check transfer rx_nbits */ 3702 if (xfer->rx_buf) { 3703 if (spi->mode & SPI_NO_RX) 3704 return -EINVAL; 3705 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3706 xfer->rx_nbits != SPI_NBITS_DUAL && 3707 xfer->rx_nbits != SPI_NBITS_QUAD) 3708 return -EINVAL; 3709 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3710 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3711 return -EINVAL; 3712 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3713 !(spi->mode & SPI_RX_QUAD)) 3714 return -EINVAL; 3715 } 3716 3717 if (_spi_xfer_word_delay_update(xfer, spi)) 3718 return -EINVAL; 3719 } 3720 3721 message->status = -EINPROGRESS; 3722 3723 return 0; 3724 } 3725 3726 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3727 { 3728 struct spi_controller *ctlr = spi->controller; 3729 struct spi_transfer *xfer; 3730 3731 /* 3732 * Some controllers do not support doing regular SPI transfers. Return 3733 * ENOTSUPP when this is the case. 3734 */ 3735 if (!ctlr->transfer) 3736 return -ENOTSUPP; 3737 3738 message->spi = spi; 3739 3740 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3741 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3742 3743 trace_spi_message_submit(message); 3744 3745 if (!ctlr->ptp_sts_supported) { 3746 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3747 xfer->ptp_sts_word_pre = 0; 3748 ptp_read_system_prets(xfer->ptp_sts); 3749 } 3750 } 3751 3752 return ctlr->transfer(spi, message); 3753 } 3754 3755 /** 3756 * spi_async - asynchronous SPI transfer 3757 * @spi: device with which data will be exchanged 3758 * @message: describes the data transfers, including completion callback 3759 * Context: any (irqs may be blocked, etc) 3760 * 3761 * This call may be used in_irq and other contexts which can't sleep, 3762 * as well as from task contexts which can sleep. 3763 * 3764 * The completion callback is invoked in a context which can't sleep. 3765 * Before that invocation, the value of message->status is undefined. 3766 * When the callback is issued, message->status holds either zero (to 3767 * indicate complete success) or a negative error code. After that 3768 * callback returns, the driver which issued the transfer request may 3769 * deallocate the associated memory; it's no longer in use by any SPI 3770 * core or controller driver code. 3771 * 3772 * Note that although all messages to a spi_device are handled in 3773 * FIFO order, messages may go to different devices in other orders. 3774 * Some device might be higher priority, or have various "hard" access 3775 * time requirements, for example. 3776 * 3777 * On detection of any fault during the transfer, processing of 3778 * the entire message is aborted, and the device is deselected. 3779 * Until returning from the associated message completion callback, 3780 * no other spi_message queued to that device will be processed. 3781 * (This rule applies equally to all the synchronous transfer calls, 3782 * which are wrappers around this core asynchronous primitive.) 3783 * 3784 * Return: zero on success, else a negative error code. 3785 */ 3786 int spi_async(struct spi_device *spi, struct spi_message *message) 3787 { 3788 struct spi_controller *ctlr = spi->controller; 3789 int ret; 3790 unsigned long flags; 3791 3792 ret = __spi_validate(spi, message); 3793 if (ret != 0) 3794 return ret; 3795 3796 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3797 3798 if (ctlr->bus_lock_flag) 3799 ret = -EBUSY; 3800 else 3801 ret = __spi_async(spi, message); 3802 3803 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3804 3805 return ret; 3806 } 3807 EXPORT_SYMBOL_GPL(spi_async); 3808 3809 /** 3810 * spi_async_locked - version of spi_async with exclusive bus usage 3811 * @spi: device with which data will be exchanged 3812 * @message: describes the data transfers, including completion callback 3813 * Context: any (irqs may be blocked, etc) 3814 * 3815 * This call may be used in_irq and other contexts which can't sleep, 3816 * as well as from task contexts which can sleep. 3817 * 3818 * The completion callback is invoked in a context which can't sleep. 3819 * Before that invocation, the value of message->status is undefined. 3820 * When the callback is issued, message->status holds either zero (to 3821 * indicate complete success) or a negative error code. After that 3822 * callback returns, the driver which issued the transfer request may 3823 * deallocate the associated memory; it's no longer in use by any SPI 3824 * core or controller driver code. 3825 * 3826 * Note that although all messages to a spi_device are handled in 3827 * FIFO order, messages may go to different devices in other orders. 3828 * Some device might be higher priority, or have various "hard" access 3829 * time requirements, for example. 3830 * 3831 * On detection of any fault during the transfer, processing of 3832 * the entire message is aborted, and the device is deselected. 3833 * Until returning from the associated message completion callback, 3834 * no other spi_message queued to that device will be processed. 3835 * (This rule applies equally to all the synchronous transfer calls, 3836 * which are wrappers around this core asynchronous primitive.) 3837 * 3838 * Return: zero on success, else a negative error code. 3839 */ 3840 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3841 { 3842 struct spi_controller *ctlr = spi->controller; 3843 int ret; 3844 unsigned long flags; 3845 3846 ret = __spi_validate(spi, message); 3847 if (ret != 0) 3848 return ret; 3849 3850 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3851 3852 ret = __spi_async(spi, message); 3853 3854 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3855 3856 return ret; 3857 3858 } 3859 EXPORT_SYMBOL_GPL(spi_async_locked); 3860 3861 /*-------------------------------------------------------------------------*/ 3862 3863 /* Utility methods for SPI protocol drivers, layered on 3864 * top of the core. Some other utility methods are defined as 3865 * inline functions. 3866 */ 3867 3868 static void spi_complete(void *arg) 3869 { 3870 complete(arg); 3871 } 3872 3873 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3874 { 3875 DECLARE_COMPLETION_ONSTACK(done); 3876 int status; 3877 struct spi_controller *ctlr = spi->controller; 3878 unsigned long flags; 3879 3880 status = __spi_validate(spi, message); 3881 if (status != 0) 3882 return status; 3883 3884 message->complete = spi_complete; 3885 message->context = &done; 3886 message->spi = spi; 3887 3888 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3889 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3890 3891 /* If we're not using the legacy transfer method then we will 3892 * try to transfer in the calling context so special case. 3893 * This code would be less tricky if we could remove the 3894 * support for driver implemented message queues. 3895 */ 3896 if (ctlr->transfer == spi_queued_transfer) { 3897 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3898 3899 trace_spi_message_submit(message); 3900 3901 status = __spi_queued_transfer(spi, message, false); 3902 3903 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3904 } else { 3905 status = spi_async_locked(spi, message); 3906 } 3907 3908 if (status == 0) { 3909 /* Push out the messages in the calling context if we 3910 * can. 3911 */ 3912 if (ctlr->transfer == spi_queued_transfer) { 3913 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3914 spi_sync_immediate); 3915 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3916 spi_sync_immediate); 3917 __spi_pump_messages(ctlr, false); 3918 } 3919 3920 wait_for_completion(&done); 3921 status = message->status; 3922 } 3923 message->context = NULL; 3924 return status; 3925 } 3926 3927 /** 3928 * spi_sync - blocking/synchronous SPI data transfers 3929 * @spi: device with which data will be exchanged 3930 * @message: describes the data transfers 3931 * Context: can sleep 3932 * 3933 * This call may only be used from a context that may sleep. The sleep 3934 * is non-interruptible, and has no timeout. Low-overhead controller 3935 * drivers may DMA directly into and out of the message buffers. 3936 * 3937 * Note that the SPI device's chip select is active during the message, 3938 * and then is normally disabled between messages. Drivers for some 3939 * frequently-used devices may want to minimize costs of selecting a chip, 3940 * by leaving it selected in anticipation that the next message will go 3941 * to the same chip. (That may increase power usage.) 3942 * 3943 * Also, the caller is guaranteeing that the memory associated with the 3944 * message will not be freed before this call returns. 3945 * 3946 * Return: zero on success, else a negative error code. 3947 */ 3948 int spi_sync(struct spi_device *spi, struct spi_message *message) 3949 { 3950 int ret; 3951 3952 mutex_lock(&spi->controller->bus_lock_mutex); 3953 ret = __spi_sync(spi, message); 3954 mutex_unlock(&spi->controller->bus_lock_mutex); 3955 3956 return ret; 3957 } 3958 EXPORT_SYMBOL_GPL(spi_sync); 3959 3960 /** 3961 * spi_sync_locked - version of spi_sync with exclusive bus usage 3962 * @spi: device with which data will be exchanged 3963 * @message: describes the data transfers 3964 * Context: can sleep 3965 * 3966 * This call may only be used from a context that may sleep. The sleep 3967 * is non-interruptible, and has no timeout. Low-overhead controller 3968 * drivers may DMA directly into and out of the message buffers. 3969 * 3970 * This call should be used by drivers that require exclusive access to the 3971 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3972 * be released by a spi_bus_unlock call when the exclusive access is over. 3973 * 3974 * Return: zero on success, else a negative error code. 3975 */ 3976 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3977 { 3978 return __spi_sync(spi, message); 3979 } 3980 EXPORT_SYMBOL_GPL(spi_sync_locked); 3981 3982 /** 3983 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3984 * @ctlr: SPI bus master that should be locked for exclusive bus access 3985 * Context: can sleep 3986 * 3987 * This call may only be used from a context that may sleep. The sleep 3988 * is non-interruptible, and has no timeout. 3989 * 3990 * This call should be used by drivers that require exclusive access to the 3991 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3992 * exclusive access is over. Data transfer must be done by spi_sync_locked 3993 * and spi_async_locked calls when the SPI bus lock is held. 3994 * 3995 * Return: always zero. 3996 */ 3997 int spi_bus_lock(struct spi_controller *ctlr) 3998 { 3999 unsigned long flags; 4000 4001 mutex_lock(&ctlr->bus_lock_mutex); 4002 4003 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4004 ctlr->bus_lock_flag = 1; 4005 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4006 4007 /* mutex remains locked until spi_bus_unlock is called */ 4008 4009 return 0; 4010 } 4011 EXPORT_SYMBOL_GPL(spi_bus_lock); 4012 4013 /** 4014 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4015 * @ctlr: SPI bus master that was locked for exclusive bus access 4016 * Context: can sleep 4017 * 4018 * This call may only be used from a context that may sleep. The sleep 4019 * is non-interruptible, and has no timeout. 4020 * 4021 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4022 * call. 4023 * 4024 * Return: always zero. 4025 */ 4026 int spi_bus_unlock(struct spi_controller *ctlr) 4027 { 4028 ctlr->bus_lock_flag = 0; 4029 4030 mutex_unlock(&ctlr->bus_lock_mutex); 4031 4032 return 0; 4033 } 4034 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4035 4036 /* portable code must never pass more than 32 bytes */ 4037 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4038 4039 static u8 *buf; 4040 4041 /** 4042 * spi_write_then_read - SPI synchronous write followed by read 4043 * @spi: device with which data will be exchanged 4044 * @txbuf: data to be written (need not be dma-safe) 4045 * @n_tx: size of txbuf, in bytes 4046 * @rxbuf: buffer into which data will be read (need not be dma-safe) 4047 * @n_rx: size of rxbuf, in bytes 4048 * Context: can sleep 4049 * 4050 * This performs a half duplex MicroWire style transaction with the 4051 * device, sending txbuf and then reading rxbuf. The return value 4052 * is zero for success, else a negative errno status code. 4053 * This call may only be used from a context that may sleep. 4054 * 4055 * Parameters to this routine are always copied using a small buffer. 4056 * Performance-sensitive or bulk transfer code should instead use 4057 * spi_{async,sync}() calls with dma-safe buffers. 4058 * 4059 * Return: zero on success, else a negative error code. 4060 */ 4061 int spi_write_then_read(struct spi_device *spi, 4062 const void *txbuf, unsigned n_tx, 4063 void *rxbuf, unsigned n_rx) 4064 { 4065 static DEFINE_MUTEX(lock); 4066 4067 int status; 4068 struct spi_message message; 4069 struct spi_transfer x[2]; 4070 u8 *local_buf; 4071 4072 /* Use preallocated DMA-safe buffer if we can. We can't avoid 4073 * copying here, (as a pure convenience thing), but we can 4074 * keep heap costs out of the hot path unless someone else is 4075 * using the pre-allocated buffer or the transfer is too large. 4076 */ 4077 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4078 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4079 GFP_KERNEL | GFP_DMA); 4080 if (!local_buf) 4081 return -ENOMEM; 4082 } else { 4083 local_buf = buf; 4084 } 4085 4086 spi_message_init(&message); 4087 memset(x, 0, sizeof(x)); 4088 if (n_tx) { 4089 x[0].len = n_tx; 4090 spi_message_add_tail(&x[0], &message); 4091 } 4092 if (n_rx) { 4093 x[1].len = n_rx; 4094 spi_message_add_tail(&x[1], &message); 4095 } 4096 4097 memcpy(local_buf, txbuf, n_tx); 4098 x[0].tx_buf = local_buf; 4099 x[1].rx_buf = local_buf + n_tx; 4100 4101 /* do the i/o */ 4102 status = spi_sync(spi, &message); 4103 if (status == 0) 4104 memcpy(rxbuf, x[1].rx_buf, n_rx); 4105 4106 if (x[0].tx_buf == buf) 4107 mutex_unlock(&lock); 4108 else 4109 kfree(local_buf); 4110 4111 return status; 4112 } 4113 EXPORT_SYMBOL_GPL(spi_write_then_read); 4114 4115 /*-------------------------------------------------------------------------*/ 4116 4117 #if IS_ENABLED(CONFIG_OF) 4118 /* must call put_device() when done with returned spi_device device */ 4119 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4120 { 4121 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4122 4123 return dev ? to_spi_device(dev) : NULL; 4124 } 4125 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 4126 #endif /* IS_ENABLED(CONFIG_OF) */ 4127 4128 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4129 /* the spi controllers are not using spi_bus, so we find it with another way */ 4130 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4131 { 4132 struct device *dev; 4133 4134 dev = class_find_device_by_of_node(&spi_master_class, node); 4135 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4136 dev = class_find_device_by_of_node(&spi_slave_class, node); 4137 if (!dev) 4138 return NULL; 4139 4140 /* reference got in class_find_device */ 4141 return container_of(dev, struct spi_controller, dev); 4142 } 4143 4144 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4145 void *arg) 4146 { 4147 struct of_reconfig_data *rd = arg; 4148 struct spi_controller *ctlr; 4149 struct spi_device *spi; 4150 4151 switch (of_reconfig_get_state_change(action, arg)) { 4152 case OF_RECONFIG_CHANGE_ADD: 4153 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4154 if (ctlr == NULL) 4155 return NOTIFY_OK; /* not for us */ 4156 4157 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4158 put_device(&ctlr->dev); 4159 return NOTIFY_OK; 4160 } 4161 4162 spi = of_register_spi_device(ctlr, rd->dn); 4163 put_device(&ctlr->dev); 4164 4165 if (IS_ERR(spi)) { 4166 pr_err("%s: failed to create for '%pOF'\n", 4167 __func__, rd->dn); 4168 of_node_clear_flag(rd->dn, OF_POPULATED); 4169 return notifier_from_errno(PTR_ERR(spi)); 4170 } 4171 break; 4172 4173 case OF_RECONFIG_CHANGE_REMOVE: 4174 /* already depopulated? */ 4175 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4176 return NOTIFY_OK; 4177 4178 /* find our device by node */ 4179 spi = of_find_spi_device_by_node(rd->dn); 4180 if (spi == NULL) 4181 return NOTIFY_OK; /* no? not meant for us */ 4182 4183 /* unregister takes one ref away */ 4184 spi_unregister_device(spi); 4185 4186 /* and put the reference of the find */ 4187 put_device(&spi->dev); 4188 break; 4189 } 4190 4191 return NOTIFY_OK; 4192 } 4193 4194 static struct notifier_block spi_of_notifier = { 4195 .notifier_call = of_spi_notify, 4196 }; 4197 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4198 extern struct notifier_block spi_of_notifier; 4199 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4200 4201 #if IS_ENABLED(CONFIG_ACPI) 4202 static int spi_acpi_controller_match(struct device *dev, const void *data) 4203 { 4204 return ACPI_COMPANION(dev->parent) == data; 4205 } 4206 4207 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4208 { 4209 struct device *dev; 4210 4211 dev = class_find_device(&spi_master_class, NULL, adev, 4212 spi_acpi_controller_match); 4213 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4214 dev = class_find_device(&spi_slave_class, NULL, adev, 4215 spi_acpi_controller_match); 4216 if (!dev) 4217 return NULL; 4218 4219 return container_of(dev, struct spi_controller, dev); 4220 } 4221 4222 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4223 { 4224 struct device *dev; 4225 4226 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4227 return to_spi_device(dev); 4228 } 4229 4230 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4231 void *arg) 4232 { 4233 struct acpi_device *adev = arg; 4234 struct spi_controller *ctlr; 4235 struct spi_device *spi; 4236 4237 switch (value) { 4238 case ACPI_RECONFIG_DEVICE_ADD: 4239 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4240 if (!ctlr) 4241 break; 4242 4243 acpi_register_spi_device(ctlr, adev); 4244 put_device(&ctlr->dev); 4245 break; 4246 case ACPI_RECONFIG_DEVICE_REMOVE: 4247 if (!acpi_device_enumerated(adev)) 4248 break; 4249 4250 spi = acpi_spi_find_device_by_adev(adev); 4251 if (!spi) 4252 break; 4253 4254 spi_unregister_device(spi); 4255 put_device(&spi->dev); 4256 break; 4257 } 4258 4259 return NOTIFY_OK; 4260 } 4261 4262 static struct notifier_block spi_acpi_notifier = { 4263 .notifier_call = acpi_spi_notify, 4264 }; 4265 #else 4266 extern struct notifier_block spi_acpi_notifier; 4267 #endif 4268 4269 static int __init spi_init(void) 4270 { 4271 int status; 4272 4273 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4274 if (!buf) { 4275 status = -ENOMEM; 4276 goto err0; 4277 } 4278 4279 status = bus_register(&spi_bus_type); 4280 if (status < 0) 4281 goto err1; 4282 4283 status = class_register(&spi_master_class); 4284 if (status < 0) 4285 goto err2; 4286 4287 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4288 status = class_register(&spi_slave_class); 4289 if (status < 0) 4290 goto err3; 4291 } 4292 4293 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4294 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4295 if (IS_ENABLED(CONFIG_ACPI)) 4296 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4297 4298 return 0; 4299 4300 err3: 4301 class_unregister(&spi_master_class); 4302 err2: 4303 bus_unregister(&spi_bus_type); 4304 err1: 4305 kfree(buf); 4306 buf = NULL; 4307 err0: 4308 return status; 4309 } 4310 4311 /* board_info is normally registered in arch_initcall(), 4312 * but even essential drivers wait till later 4313 * 4314 * REVISIT only boardinfo really needs static linking. the rest (device and 4315 * driver registration) _could_ be dynamically linked (modular) ... costs 4316 * include needing to have boardinfo data structures be much more public. 4317 */ 4318 postcore_initcall(spi_init); 4319