1 /* 2 * spi.c - SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/autoconf.h> 22 #include <linux/kernel.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/cache.h> 26 #include <linux/mutex.h> 27 #include <linux/spi/spi.h> 28 29 30 /* SPI bustype and spi_master class are registered after board init code 31 * provides the SPI device tables, ensuring that both are present by the 32 * time controller driver registration causes spi_devices to "enumerate". 33 */ 34 static void spidev_release(struct device *dev) 35 { 36 struct spi_device *spi = to_spi_device(dev); 37 38 /* spi masters may cleanup for released devices */ 39 if (spi->master->cleanup) 40 spi->master->cleanup(spi); 41 42 spi_master_put(spi->master); 43 kfree(dev); 44 } 45 46 static ssize_t 47 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 48 { 49 const struct spi_device *spi = to_spi_device(dev); 50 51 return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias); 52 } 53 54 static struct device_attribute spi_dev_attrs[] = { 55 __ATTR_RO(modalias), 56 __ATTR_NULL, 57 }; 58 59 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 60 * and the sysfs version makes coldplug work too. 61 */ 62 63 static int spi_match_device(struct device *dev, struct device_driver *drv) 64 { 65 const struct spi_device *spi = to_spi_device(dev); 66 67 return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0; 68 } 69 70 static int spi_uevent(struct device *dev, char **envp, int num_envp, 71 char *buffer, int buffer_size) 72 { 73 const struct spi_device *spi = to_spi_device(dev); 74 75 envp[0] = buffer; 76 snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias); 77 envp[1] = NULL; 78 return 0; 79 } 80 81 #ifdef CONFIG_PM 82 83 /* 84 * NOTE: the suspend() method for an spi_master controller driver 85 * should verify that all its child devices are marked as suspended; 86 * suspend requests delivered through sysfs power/state files don't 87 * enforce such constraints. 88 */ 89 static int spi_suspend(struct device *dev, pm_message_t message) 90 { 91 int value; 92 struct spi_driver *drv = to_spi_driver(dev->driver); 93 94 if (!drv || !drv->suspend) 95 return 0; 96 97 /* suspend will stop irqs and dma; no more i/o */ 98 value = drv->suspend(to_spi_device(dev), message); 99 if (value == 0) 100 dev->power.power_state = message; 101 return value; 102 } 103 104 static int spi_resume(struct device *dev) 105 { 106 int value; 107 struct spi_driver *drv = to_spi_driver(dev->driver); 108 109 if (!drv || !drv->resume) 110 return 0; 111 112 /* resume may restart the i/o queue */ 113 value = drv->resume(to_spi_device(dev)); 114 if (value == 0) 115 dev->power.power_state = PMSG_ON; 116 return value; 117 } 118 119 #else 120 #define spi_suspend NULL 121 #define spi_resume NULL 122 #endif 123 124 struct bus_type spi_bus_type = { 125 .name = "spi", 126 .dev_attrs = spi_dev_attrs, 127 .match = spi_match_device, 128 .uevent = spi_uevent, 129 .suspend = spi_suspend, 130 .resume = spi_resume, 131 }; 132 EXPORT_SYMBOL_GPL(spi_bus_type); 133 134 135 static int spi_drv_probe(struct device *dev) 136 { 137 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 138 139 return sdrv->probe(to_spi_device(dev)); 140 } 141 142 static int spi_drv_remove(struct device *dev) 143 { 144 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 145 146 return sdrv->remove(to_spi_device(dev)); 147 } 148 149 static void spi_drv_shutdown(struct device *dev) 150 { 151 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 152 153 sdrv->shutdown(to_spi_device(dev)); 154 } 155 156 /** 157 * spi_register_driver - register a SPI driver 158 * @sdrv: the driver to register 159 * Context: can sleep 160 */ 161 int spi_register_driver(struct spi_driver *sdrv) 162 { 163 sdrv->driver.bus = &spi_bus_type; 164 if (sdrv->probe) 165 sdrv->driver.probe = spi_drv_probe; 166 if (sdrv->remove) 167 sdrv->driver.remove = spi_drv_remove; 168 if (sdrv->shutdown) 169 sdrv->driver.shutdown = spi_drv_shutdown; 170 return driver_register(&sdrv->driver); 171 } 172 EXPORT_SYMBOL_GPL(spi_register_driver); 173 174 /*-------------------------------------------------------------------------*/ 175 176 /* SPI devices should normally not be created by SPI device drivers; that 177 * would make them board-specific. Similarly with SPI master drivers. 178 * Device registration normally goes into like arch/.../mach.../board-YYY.c 179 * with other readonly (flashable) information about mainboard devices. 180 */ 181 182 struct boardinfo { 183 struct list_head list; 184 unsigned n_board_info; 185 struct spi_board_info board_info[0]; 186 }; 187 188 static LIST_HEAD(board_list); 189 static DEFINE_MUTEX(board_lock); 190 191 192 /** 193 * spi_new_device - instantiate one new SPI device 194 * @master: Controller to which device is connected 195 * @chip: Describes the SPI device 196 * Context: can sleep 197 * 198 * On typical mainboards, this is purely internal; and it's not needed 199 * after board init creates the hard-wired devices. Some development 200 * platforms may not be able to use spi_register_board_info though, and 201 * this is exported so that for example a USB or parport based adapter 202 * driver could add devices (which it would learn about out-of-band). 203 */ 204 struct spi_device *spi_new_device(struct spi_master *master, 205 struct spi_board_info *chip) 206 { 207 struct spi_device *proxy; 208 struct device *dev = master->cdev.dev; 209 int status; 210 211 /* NOTE: caller did any chip->bus_num checks necessary */ 212 213 if (!spi_master_get(master)) 214 return NULL; 215 216 proxy = kzalloc(sizeof *proxy, GFP_KERNEL); 217 if (!proxy) { 218 dev_err(dev, "can't alloc dev for cs%d\n", 219 chip->chip_select); 220 goto fail; 221 } 222 proxy->master = master; 223 proxy->chip_select = chip->chip_select; 224 proxy->max_speed_hz = chip->max_speed_hz; 225 proxy->mode = chip->mode; 226 proxy->irq = chip->irq; 227 proxy->modalias = chip->modalias; 228 229 snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id, 230 "%s.%u", master->cdev.class_id, 231 chip->chip_select); 232 proxy->dev.parent = dev; 233 proxy->dev.bus = &spi_bus_type; 234 proxy->dev.platform_data = (void *) chip->platform_data; 235 proxy->controller_data = chip->controller_data; 236 proxy->controller_state = NULL; 237 proxy->dev.release = spidev_release; 238 239 /* drivers may modify this default i/o setup */ 240 status = master->setup(proxy); 241 if (status < 0) { 242 dev_dbg(dev, "can't %s %s, status %d\n", 243 "setup", proxy->dev.bus_id, status); 244 goto fail; 245 } 246 247 /* driver core catches callers that misbehave by defining 248 * devices that already exist. 249 */ 250 status = device_register(&proxy->dev); 251 if (status < 0) { 252 dev_dbg(dev, "can't %s %s, status %d\n", 253 "add", proxy->dev.bus_id, status); 254 goto fail; 255 } 256 dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id); 257 return proxy; 258 259 fail: 260 spi_master_put(master); 261 kfree(proxy); 262 return NULL; 263 } 264 EXPORT_SYMBOL_GPL(spi_new_device); 265 266 /** 267 * spi_register_board_info - register SPI devices for a given board 268 * @info: array of chip descriptors 269 * @n: how many descriptors are provided 270 * Context: can sleep 271 * 272 * Board-specific early init code calls this (probably during arch_initcall) 273 * with segments of the SPI device table. Any device nodes are created later, 274 * after the relevant parent SPI controller (bus_num) is defined. We keep 275 * this table of devices forever, so that reloading a controller driver will 276 * not make Linux forget about these hard-wired devices. 277 * 278 * Other code can also call this, e.g. a particular add-on board might provide 279 * SPI devices through its expansion connector, so code initializing that board 280 * would naturally declare its SPI devices. 281 * 282 * The board info passed can safely be __initdata ... but be careful of 283 * any embedded pointers (platform_data, etc), they're copied as-is. 284 */ 285 int __init 286 spi_register_board_info(struct spi_board_info const *info, unsigned n) 287 { 288 struct boardinfo *bi; 289 290 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL); 291 if (!bi) 292 return -ENOMEM; 293 bi->n_board_info = n; 294 memcpy(bi->board_info, info, n * sizeof *info); 295 296 mutex_lock(&board_lock); 297 list_add_tail(&bi->list, &board_list); 298 mutex_unlock(&board_lock); 299 return 0; 300 } 301 302 /* FIXME someone should add support for a __setup("spi", ...) that 303 * creates board info from kernel command lines 304 */ 305 306 static void scan_boardinfo(struct spi_master *master) 307 { 308 struct boardinfo *bi; 309 struct device *dev = master->cdev.dev; 310 311 mutex_lock(&board_lock); 312 list_for_each_entry(bi, &board_list, list) { 313 struct spi_board_info *chip = bi->board_info; 314 unsigned n; 315 316 for (n = bi->n_board_info; n > 0; n--, chip++) { 317 if (chip->bus_num != master->bus_num) 318 continue; 319 /* some controllers only have one chip, so they 320 * might not use chipselects. otherwise, the 321 * chipselects are numbered 0..max. 322 */ 323 if (chip->chip_select >= master->num_chipselect 324 && master->num_chipselect) { 325 dev_dbg(dev, "cs%d > max %d\n", 326 chip->chip_select, 327 master->num_chipselect); 328 continue; 329 } 330 (void) spi_new_device(master, chip); 331 } 332 } 333 mutex_unlock(&board_lock); 334 } 335 336 /*-------------------------------------------------------------------------*/ 337 338 static void spi_master_release(struct class_device *cdev) 339 { 340 struct spi_master *master; 341 342 master = container_of(cdev, struct spi_master, cdev); 343 kfree(master); 344 } 345 346 static struct class spi_master_class = { 347 .name = "spi_master", 348 .owner = THIS_MODULE, 349 .release = spi_master_release, 350 }; 351 352 353 /** 354 * spi_alloc_master - allocate SPI master controller 355 * @dev: the controller, possibly using the platform_bus 356 * @size: how much zeroed driver-private data to allocate; the pointer to this 357 * memory is in the class_data field of the returned class_device, 358 * accessible with spi_master_get_devdata(). 359 * Context: can sleep 360 * 361 * This call is used only by SPI master controller drivers, which are the 362 * only ones directly touching chip registers. It's how they allocate 363 * an spi_master structure, prior to calling spi_register_master(). 364 * 365 * This must be called from context that can sleep. It returns the SPI 366 * master structure on success, else NULL. 367 * 368 * The caller is responsible for assigning the bus number and initializing 369 * the master's methods before calling spi_register_master(); and (after errors 370 * adding the device) calling spi_master_put() to prevent a memory leak. 371 */ 372 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 373 { 374 struct spi_master *master; 375 376 if (!dev) 377 return NULL; 378 379 master = kzalloc(size + sizeof *master, GFP_KERNEL); 380 if (!master) 381 return NULL; 382 383 class_device_initialize(&master->cdev); 384 master->cdev.class = &spi_master_class; 385 master->cdev.dev = get_device(dev); 386 spi_master_set_devdata(master, &master[1]); 387 388 return master; 389 } 390 EXPORT_SYMBOL_GPL(spi_alloc_master); 391 392 /** 393 * spi_register_master - register SPI master controller 394 * @master: initialized master, originally from spi_alloc_master() 395 * Context: can sleep 396 * 397 * SPI master controllers connect to their drivers using some non-SPI bus, 398 * such as the platform bus. The final stage of probe() in that code 399 * includes calling spi_register_master() to hook up to this SPI bus glue. 400 * 401 * SPI controllers use board specific (often SOC specific) bus numbers, 402 * and board-specific addressing for SPI devices combines those numbers 403 * with chip select numbers. Since SPI does not directly support dynamic 404 * device identification, boards need configuration tables telling which 405 * chip is at which address. 406 * 407 * This must be called from context that can sleep. It returns zero on 408 * success, else a negative error code (dropping the master's refcount). 409 * After a successful return, the caller is responsible for calling 410 * spi_unregister_master(). 411 */ 412 int spi_register_master(struct spi_master *master) 413 { 414 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 415 struct device *dev = master->cdev.dev; 416 int status = -ENODEV; 417 int dynamic = 0; 418 419 if (!dev) 420 return -ENODEV; 421 422 /* convention: dynamically assigned bus IDs count down from the max */ 423 if (master->bus_num < 0) { 424 master->bus_num = atomic_dec_return(&dyn_bus_id); 425 dynamic = 1; 426 } 427 428 /* register the device, then userspace will see it. 429 * registration fails if the bus ID is in use. 430 */ 431 snprintf(master->cdev.class_id, sizeof master->cdev.class_id, 432 "spi%u", master->bus_num); 433 status = class_device_add(&master->cdev); 434 if (status < 0) 435 goto done; 436 dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id, 437 dynamic ? " (dynamic)" : ""); 438 439 /* populate children from any spi device tables */ 440 scan_boardinfo(master); 441 status = 0; 442 done: 443 return status; 444 } 445 EXPORT_SYMBOL_GPL(spi_register_master); 446 447 448 static int __unregister(struct device *dev, void *unused) 449 { 450 /* note: before about 2.6.14-rc1 this would corrupt memory: */ 451 spi_unregister_device(to_spi_device(dev)); 452 return 0; 453 } 454 455 /** 456 * spi_unregister_master - unregister SPI master controller 457 * @master: the master being unregistered 458 * Context: can sleep 459 * 460 * This call is used only by SPI master controller drivers, which are the 461 * only ones directly touching chip registers. 462 * 463 * This must be called from context that can sleep. 464 */ 465 void spi_unregister_master(struct spi_master *master) 466 { 467 int dummy; 468 469 dummy = device_for_each_child(master->cdev.dev, NULL, __unregister); 470 class_device_unregister(&master->cdev); 471 } 472 EXPORT_SYMBOL_GPL(spi_unregister_master); 473 474 /** 475 * spi_busnum_to_master - look up master associated with bus_num 476 * @bus_num: the master's bus number 477 * Context: can sleep 478 * 479 * This call may be used with devices that are registered after 480 * arch init time. It returns a refcounted pointer to the relevant 481 * spi_master (which the caller must release), or NULL if there is 482 * no such master registered. 483 */ 484 struct spi_master *spi_busnum_to_master(u16 bus_num) 485 { 486 struct class_device *cdev; 487 struct spi_master *master = NULL; 488 struct spi_master *m; 489 490 down(&spi_master_class.sem); 491 list_for_each_entry(cdev, &spi_master_class.children, node) { 492 m = container_of(cdev, struct spi_master, cdev); 493 if (m->bus_num == bus_num) { 494 master = spi_master_get(m); 495 break; 496 } 497 } 498 up(&spi_master_class.sem); 499 return master; 500 } 501 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 502 503 504 /*-------------------------------------------------------------------------*/ 505 506 static void spi_complete(void *arg) 507 { 508 complete(arg); 509 } 510 511 /** 512 * spi_sync - blocking/synchronous SPI data transfers 513 * @spi: device with which data will be exchanged 514 * @message: describes the data transfers 515 * Context: can sleep 516 * 517 * This call may only be used from a context that may sleep. The sleep 518 * is non-interruptible, and has no timeout. Low-overhead controller 519 * drivers may DMA directly into and out of the message buffers. 520 * 521 * Note that the SPI device's chip select is active during the message, 522 * and then is normally disabled between messages. Drivers for some 523 * frequently-used devices may want to minimize costs of selecting a chip, 524 * by leaving it selected in anticipation that the next message will go 525 * to the same chip. (That may increase power usage.) 526 * 527 * Also, the caller is guaranteeing that the memory associated with the 528 * message will not be freed before this call returns. 529 * 530 * The return value is a negative error code if the message could not be 531 * submitted, else zero. When the value is zero, then message->status is 532 * also defined; it's the completion code for the transfer, either zero 533 * or a negative error code from the controller driver. 534 */ 535 int spi_sync(struct spi_device *spi, struct spi_message *message) 536 { 537 DECLARE_COMPLETION_ONSTACK(done); 538 int status; 539 540 message->complete = spi_complete; 541 message->context = &done; 542 status = spi_async(spi, message); 543 if (status == 0) 544 wait_for_completion(&done); 545 message->context = NULL; 546 return status; 547 } 548 EXPORT_SYMBOL_GPL(spi_sync); 549 550 /* portable code must never pass more than 32 bytes */ 551 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 552 553 static u8 *buf; 554 555 /** 556 * spi_write_then_read - SPI synchronous write followed by read 557 * @spi: device with which data will be exchanged 558 * @txbuf: data to be written (need not be dma-safe) 559 * @n_tx: size of txbuf, in bytes 560 * @rxbuf: buffer into which data will be read 561 * @n_rx: size of rxbuf, in bytes (need not be dma-safe) 562 * Context: can sleep 563 * 564 * This performs a half duplex MicroWire style transaction with the 565 * device, sending txbuf and then reading rxbuf. The return value 566 * is zero for success, else a negative errno status code. 567 * This call may only be used from a context that may sleep. 568 * 569 * Parameters to this routine are always copied using a small buffer; 570 * portable code should never use this for more than 32 bytes. 571 * Performance-sensitive or bulk transfer code should instead use 572 * spi_{async,sync}() calls with dma-safe buffers. 573 */ 574 int spi_write_then_read(struct spi_device *spi, 575 const u8 *txbuf, unsigned n_tx, 576 u8 *rxbuf, unsigned n_rx) 577 { 578 static DECLARE_MUTEX(lock); 579 580 int status; 581 struct spi_message message; 582 struct spi_transfer x[2]; 583 u8 *local_buf; 584 585 /* Use preallocated DMA-safe buffer. We can't avoid copying here, 586 * (as a pure convenience thing), but we can keep heap costs 587 * out of the hot path ... 588 */ 589 if ((n_tx + n_rx) > SPI_BUFSIZ) 590 return -EINVAL; 591 592 spi_message_init(&message); 593 memset(x, 0, sizeof x); 594 if (n_tx) { 595 x[0].len = n_tx; 596 spi_message_add_tail(&x[0], &message); 597 } 598 if (n_rx) { 599 x[1].len = n_rx; 600 spi_message_add_tail(&x[1], &message); 601 } 602 603 /* ... unless someone else is using the pre-allocated buffer */ 604 if (down_trylock(&lock)) { 605 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 606 if (!local_buf) 607 return -ENOMEM; 608 } else 609 local_buf = buf; 610 611 memcpy(local_buf, txbuf, n_tx); 612 x[0].tx_buf = local_buf; 613 x[1].rx_buf = local_buf + n_tx; 614 615 /* do the i/o */ 616 status = spi_sync(spi, &message); 617 if (status == 0) { 618 memcpy(rxbuf, x[1].rx_buf, n_rx); 619 status = message.status; 620 } 621 622 if (x[0].tx_buf == buf) 623 up(&lock); 624 else 625 kfree(local_buf); 626 627 return status; 628 } 629 EXPORT_SYMBOL_GPL(spi_write_then_read); 630 631 /*-------------------------------------------------------------------------*/ 632 633 static int __init spi_init(void) 634 { 635 int status; 636 637 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 638 if (!buf) { 639 status = -ENOMEM; 640 goto err0; 641 } 642 643 status = bus_register(&spi_bus_type); 644 if (status < 0) 645 goto err1; 646 647 status = class_register(&spi_master_class); 648 if (status < 0) 649 goto err2; 650 return 0; 651 652 err2: 653 bus_unregister(&spi_bus_type); 654 err1: 655 kfree(buf); 656 buf = NULL; 657 err0: 658 return status; 659 } 660 661 /* board_info is normally registered in arch_initcall(), 662 * but even essential drivers wait till later 663 * 664 * REVISIT only boardinfo really needs static linking. the rest (device and 665 * driver registration) _could_ be dynamically linked (modular) ... costs 666 * include needing to have boardinfo data structures be much more public. 667 */ 668 subsys_initcall(spi_init); 669 670