xref: /openbmc/linux/drivers/spi/spi.c (revision c21b37f6)
1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/autoconf.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/mutex.h>
27 #include <linux/spi/spi.h>
28 
29 
30 /* SPI bustype and spi_master class are registered after board init code
31  * provides the SPI device tables, ensuring that both are present by the
32  * time controller driver registration causes spi_devices to "enumerate".
33  */
34 static void spidev_release(struct device *dev)
35 {
36 	struct spi_device	*spi = to_spi_device(dev);
37 
38 	/* spi masters may cleanup for released devices */
39 	if (spi->master->cleanup)
40 		spi->master->cleanup(spi);
41 
42 	spi_master_put(spi->master);
43 	kfree(dev);
44 }
45 
46 static ssize_t
47 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
48 {
49 	const struct spi_device	*spi = to_spi_device(dev);
50 
51 	return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
52 }
53 
54 static struct device_attribute spi_dev_attrs[] = {
55 	__ATTR_RO(modalias),
56 	__ATTR_NULL,
57 };
58 
59 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
60  * and the sysfs version makes coldplug work too.
61  */
62 
63 static int spi_match_device(struct device *dev, struct device_driver *drv)
64 {
65 	const struct spi_device	*spi = to_spi_device(dev);
66 
67 	return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
68 }
69 
70 static int spi_uevent(struct device *dev, char **envp, int num_envp,
71 		char *buffer, int buffer_size)
72 {
73 	const struct spi_device		*spi = to_spi_device(dev);
74 
75 	envp[0] = buffer;
76 	snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias);
77 	envp[1] = NULL;
78 	return 0;
79 }
80 
81 #ifdef	CONFIG_PM
82 
83 /*
84  * NOTE:  the suspend() method for an spi_master controller driver
85  * should verify that all its child devices are marked as suspended;
86  * suspend requests delivered through sysfs power/state files don't
87  * enforce such constraints.
88  */
89 static int spi_suspend(struct device *dev, pm_message_t message)
90 {
91 	int			value;
92 	struct spi_driver	*drv = to_spi_driver(dev->driver);
93 
94 	if (!drv || !drv->suspend)
95 		return 0;
96 
97 	/* suspend will stop irqs and dma; no more i/o */
98 	value = drv->suspend(to_spi_device(dev), message);
99 	if (value == 0)
100 		dev->power.power_state = message;
101 	return value;
102 }
103 
104 static int spi_resume(struct device *dev)
105 {
106 	int			value;
107 	struct spi_driver	*drv = to_spi_driver(dev->driver);
108 
109 	if (!drv || !drv->resume)
110 		return 0;
111 
112 	/* resume may restart the i/o queue */
113 	value = drv->resume(to_spi_device(dev));
114 	if (value == 0)
115 		dev->power.power_state = PMSG_ON;
116 	return value;
117 }
118 
119 #else
120 #define spi_suspend	NULL
121 #define spi_resume	NULL
122 #endif
123 
124 struct bus_type spi_bus_type = {
125 	.name		= "spi",
126 	.dev_attrs	= spi_dev_attrs,
127 	.match		= spi_match_device,
128 	.uevent		= spi_uevent,
129 	.suspend	= spi_suspend,
130 	.resume		= spi_resume,
131 };
132 EXPORT_SYMBOL_GPL(spi_bus_type);
133 
134 
135 static int spi_drv_probe(struct device *dev)
136 {
137 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
138 
139 	return sdrv->probe(to_spi_device(dev));
140 }
141 
142 static int spi_drv_remove(struct device *dev)
143 {
144 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
145 
146 	return sdrv->remove(to_spi_device(dev));
147 }
148 
149 static void spi_drv_shutdown(struct device *dev)
150 {
151 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
152 
153 	sdrv->shutdown(to_spi_device(dev));
154 }
155 
156 /**
157  * spi_register_driver - register a SPI driver
158  * @sdrv: the driver to register
159  * Context: can sleep
160  */
161 int spi_register_driver(struct spi_driver *sdrv)
162 {
163 	sdrv->driver.bus = &spi_bus_type;
164 	if (sdrv->probe)
165 		sdrv->driver.probe = spi_drv_probe;
166 	if (sdrv->remove)
167 		sdrv->driver.remove = spi_drv_remove;
168 	if (sdrv->shutdown)
169 		sdrv->driver.shutdown = spi_drv_shutdown;
170 	return driver_register(&sdrv->driver);
171 }
172 EXPORT_SYMBOL_GPL(spi_register_driver);
173 
174 /*-------------------------------------------------------------------------*/
175 
176 /* SPI devices should normally not be created by SPI device drivers; that
177  * would make them board-specific.  Similarly with SPI master drivers.
178  * Device registration normally goes into like arch/.../mach.../board-YYY.c
179  * with other readonly (flashable) information about mainboard devices.
180  */
181 
182 struct boardinfo {
183 	struct list_head	list;
184 	unsigned		n_board_info;
185 	struct spi_board_info	board_info[0];
186 };
187 
188 static LIST_HEAD(board_list);
189 static DEFINE_MUTEX(board_lock);
190 
191 
192 /**
193  * spi_new_device - instantiate one new SPI device
194  * @master: Controller to which device is connected
195  * @chip: Describes the SPI device
196  * Context: can sleep
197  *
198  * On typical mainboards, this is purely internal; and it's not needed
199  * after board init creates the hard-wired devices.  Some development
200  * platforms may not be able to use spi_register_board_info though, and
201  * this is exported so that for example a USB or parport based adapter
202  * driver could add devices (which it would learn about out-of-band).
203  */
204 struct spi_device *spi_new_device(struct spi_master *master,
205 				  struct spi_board_info *chip)
206 {
207 	struct spi_device	*proxy;
208 	struct device		*dev = master->cdev.dev;
209 	int			status;
210 
211 	/* NOTE:  caller did any chip->bus_num checks necessary */
212 
213 	if (!spi_master_get(master))
214 		return NULL;
215 
216 	proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
217 	if (!proxy) {
218 		dev_err(dev, "can't alloc dev for cs%d\n",
219 			chip->chip_select);
220 		goto fail;
221 	}
222 	proxy->master = master;
223 	proxy->chip_select = chip->chip_select;
224 	proxy->max_speed_hz = chip->max_speed_hz;
225 	proxy->mode = chip->mode;
226 	proxy->irq = chip->irq;
227 	proxy->modalias = chip->modalias;
228 
229 	snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
230 			"%s.%u", master->cdev.class_id,
231 			chip->chip_select);
232 	proxy->dev.parent = dev;
233 	proxy->dev.bus = &spi_bus_type;
234 	proxy->dev.platform_data = (void *) chip->platform_data;
235 	proxy->controller_data = chip->controller_data;
236 	proxy->controller_state = NULL;
237 	proxy->dev.release = spidev_release;
238 
239 	/* drivers may modify this default i/o setup */
240 	status = master->setup(proxy);
241 	if (status < 0) {
242 		dev_dbg(dev, "can't %s %s, status %d\n",
243 				"setup", proxy->dev.bus_id, status);
244 		goto fail;
245 	}
246 
247 	/* driver core catches callers that misbehave by defining
248 	 * devices that already exist.
249 	 */
250 	status = device_register(&proxy->dev);
251 	if (status < 0) {
252 		dev_dbg(dev, "can't %s %s, status %d\n",
253 				"add", proxy->dev.bus_id, status);
254 		goto fail;
255 	}
256 	dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
257 	return proxy;
258 
259 fail:
260 	spi_master_put(master);
261 	kfree(proxy);
262 	return NULL;
263 }
264 EXPORT_SYMBOL_GPL(spi_new_device);
265 
266 /**
267  * spi_register_board_info - register SPI devices for a given board
268  * @info: array of chip descriptors
269  * @n: how many descriptors are provided
270  * Context: can sleep
271  *
272  * Board-specific early init code calls this (probably during arch_initcall)
273  * with segments of the SPI device table.  Any device nodes are created later,
274  * after the relevant parent SPI controller (bus_num) is defined.  We keep
275  * this table of devices forever, so that reloading a controller driver will
276  * not make Linux forget about these hard-wired devices.
277  *
278  * Other code can also call this, e.g. a particular add-on board might provide
279  * SPI devices through its expansion connector, so code initializing that board
280  * would naturally declare its SPI devices.
281  *
282  * The board info passed can safely be __initdata ... but be careful of
283  * any embedded pointers (platform_data, etc), they're copied as-is.
284  */
285 int __init
286 spi_register_board_info(struct spi_board_info const *info, unsigned n)
287 {
288 	struct boardinfo	*bi;
289 
290 	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
291 	if (!bi)
292 		return -ENOMEM;
293 	bi->n_board_info = n;
294 	memcpy(bi->board_info, info, n * sizeof *info);
295 
296 	mutex_lock(&board_lock);
297 	list_add_tail(&bi->list, &board_list);
298 	mutex_unlock(&board_lock);
299 	return 0;
300 }
301 
302 /* FIXME someone should add support for a __setup("spi", ...) that
303  * creates board info from kernel command lines
304  */
305 
306 static void scan_boardinfo(struct spi_master *master)
307 {
308 	struct boardinfo	*bi;
309 	struct device		*dev = master->cdev.dev;
310 
311 	mutex_lock(&board_lock);
312 	list_for_each_entry(bi, &board_list, list) {
313 		struct spi_board_info	*chip = bi->board_info;
314 		unsigned		n;
315 
316 		for (n = bi->n_board_info; n > 0; n--, chip++) {
317 			if (chip->bus_num != master->bus_num)
318 				continue;
319 			/* some controllers only have one chip, so they
320 			 * might not use chipselects.  otherwise, the
321 			 * chipselects are numbered 0..max.
322 			 */
323 			if (chip->chip_select >= master->num_chipselect
324 					&& master->num_chipselect) {
325 				dev_dbg(dev, "cs%d > max %d\n",
326 					chip->chip_select,
327 					master->num_chipselect);
328 				continue;
329 			}
330 			(void) spi_new_device(master, chip);
331 		}
332 	}
333 	mutex_unlock(&board_lock);
334 }
335 
336 /*-------------------------------------------------------------------------*/
337 
338 static void spi_master_release(struct class_device *cdev)
339 {
340 	struct spi_master *master;
341 
342 	master = container_of(cdev, struct spi_master, cdev);
343 	kfree(master);
344 }
345 
346 static struct class spi_master_class = {
347 	.name		= "spi_master",
348 	.owner		= THIS_MODULE,
349 	.release	= spi_master_release,
350 };
351 
352 
353 /**
354  * spi_alloc_master - allocate SPI master controller
355  * @dev: the controller, possibly using the platform_bus
356  * @size: how much zeroed driver-private data to allocate; the pointer to this
357  *	memory is in the class_data field of the returned class_device,
358  *	accessible with spi_master_get_devdata().
359  * Context: can sleep
360  *
361  * This call is used only by SPI master controller drivers, which are the
362  * only ones directly touching chip registers.  It's how they allocate
363  * an spi_master structure, prior to calling spi_register_master().
364  *
365  * This must be called from context that can sleep.  It returns the SPI
366  * master structure on success, else NULL.
367  *
368  * The caller is responsible for assigning the bus number and initializing
369  * the master's methods before calling spi_register_master(); and (after errors
370  * adding the device) calling spi_master_put() to prevent a memory leak.
371  */
372 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
373 {
374 	struct spi_master	*master;
375 
376 	if (!dev)
377 		return NULL;
378 
379 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
380 	if (!master)
381 		return NULL;
382 
383 	class_device_initialize(&master->cdev);
384 	master->cdev.class = &spi_master_class;
385 	master->cdev.dev = get_device(dev);
386 	spi_master_set_devdata(master, &master[1]);
387 
388 	return master;
389 }
390 EXPORT_SYMBOL_GPL(spi_alloc_master);
391 
392 /**
393  * spi_register_master - register SPI master controller
394  * @master: initialized master, originally from spi_alloc_master()
395  * Context: can sleep
396  *
397  * SPI master controllers connect to their drivers using some non-SPI bus,
398  * such as the platform bus.  The final stage of probe() in that code
399  * includes calling spi_register_master() to hook up to this SPI bus glue.
400  *
401  * SPI controllers use board specific (often SOC specific) bus numbers,
402  * and board-specific addressing for SPI devices combines those numbers
403  * with chip select numbers.  Since SPI does not directly support dynamic
404  * device identification, boards need configuration tables telling which
405  * chip is at which address.
406  *
407  * This must be called from context that can sleep.  It returns zero on
408  * success, else a negative error code (dropping the master's refcount).
409  * After a successful return, the caller is responsible for calling
410  * spi_unregister_master().
411  */
412 int spi_register_master(struct spi_master *master)
413 {
414 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
415 	struct device		*dev = master->cdev.dev;
416 	int			status = -ENODEV;
417 	int			dynamic = 0;
418 
419 	if (!dev)
420 		return -ENODEV;
421 
422 	/* convention:  dynamically assigned bus IDs count down from the max */
423 	if (master->bus_num < 0) {
424 		master->bus_num = atomic_dec_return(&dyn_bus_id);
425 		dynamic = 1;
426 	}
427 
428 	/* register the device, then userspace will see it.
429 	 * registration fails if the bus ID is in use.
430 	 */
431 	snprintf(master->cdev.class_id, sizeof master->cdev.class_id,
432 		"spi%u", master->bus_num);
433 	status = class_device_add(&master->cdev);
434 	if (status < 0)
435 		goto done;
436 	dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id,
437 			dynamic ? " (dynamic)" : "");
438 
439 	/* populate children from any spi device tables */
440 	scan_boardinfo(master);
441 	status = 0;
442 done:
443 	return status;
444 }
445 EXPORT_SYMBOL_GPL(spi_register_master);
446 
447 
448 static int __unregister(struct device *dev, void *unused)
449 {
450 	/* note: before about 2.6.14-rc1 this would corrupt memory: */
451 	spi_unregister_device(to_spi_device(dev));
452 	return 0;
453 }
454 
455 /**
456  * spi_unregister_master - unregister SPI master controller
457  * @master: the master being unregistered
458  * Context: can sleep
459  *
460  * This call is used only by SPI master controller drivers, which are the
461  * only ones directly touching chip registers.
462  *
463  * This must be called from context that can sleep.
464  */
465 void spi_unregister_master(struct spi_master *master)
466 {
467 	int dummy;
468 
469 	dummy = device_for_each_child(master->cdev.dev, NULL, __unregister);
470 	class_device_unregister(&master->cdev);
471 }
472 EXPORT_SYMBOL_GPL(spi_unregister_master);
473 
474 /**
475  * spi_busnum_to_master - look up master associated with bus_num
476  * @bus_num: the master's bus number
477  * Context: can sleep
478  *
479  * This call may be used with devices that are registered after
480  * arch init time.  It returns a refcounted pointer to the relevant
481  * spi_master (which the caller must release), or NULL if there is
482  * no such master registered.
483  */
484 struct spi_master *spi_busnum_to_master(u16 bus_num)
485 {
486 	struct class_device	*cdev;
487 	struct spi_master	*master = NULL;
488 	struct spi_master	*m;
489 
490 	down(&spi_master_class.sem);
491 	list_for_each_entry(cdev, &spi_master_class.children, node) {
492 		m = container_of(cdev, struct spi_master, cdev);
493 		if (m->bus_num == bus_num) {
494 			master = spi_master_get(m);
495 			break;
496 		}
497 	}
498 	up(&spi_master_class.sem);
499 	return master;
500 }
501 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
502 
503 
504 /*-------------------------------------------------------------------------*/
505 
506 static void spi_complete(void *arg)
507 {
508 	complete(arg);
509 }
510 
511 /**
512  * spi_sync - blocking/synchronous SPI data transfers
513  * @spi: device with which data will be exchanged
514  * @message: describes the data transfers
515  * Context: can sleep
516  *
517  * This call may only be used from a context that may sleep.  The sleep
518  * is non-interruptible, and has no timeout.  Low-overhead controller
519  * drivers may DMA directly into and out of the message buffers.
520  *
521  * Note that the SPI device's chip select is active during the message,
522  * and then is normally disabled between messages.  Drivers for some
523  * frequently-used devices may want to minimize costs of selecting a chip,
524  * by leaving it selected in anticipation that the next message will go
525  * to the same chip.  (That may increase power usage.)
526  *
527  * Also, the caller is guaranteeing that the memory associated with the
528  * message will not be freed before this call returns.
529  *
530  * The return value is a negative error code if the message could not be
531  * submitted, else zero.  When the value is zero, then message->status is
532  * also defined;  it's the completion code for the transfer, either zero
533  * or a negative error code from the controller driver.
534  */
535 int spi_sync(struct spi_device *spi, struct spi_message *message)
536 {
537 	DECLARE_COMPLETION_ONSTACK(done);
538 	int status;
539 
540 	message->complete = spi_complete;
541 	message->context = &done;
542 	status = spi_async(spi, message);
543 	if (status == 0)
544 		wait_for_completion(&done);
545 	message->context = NULL;
546 	return status;
547 }
548 EXPORT_SYMBOL_GPL(spi_sync);
549 
550 /* portable code must never pass more than 32 bytes */
551 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
552 
553 static u8	*buf;
554 
555 /**
556  * spi_write_then_read - SPI synchronous write followed by read
557  * @spi: device with which data will be exchanged
558  * @txbuf: data to be written (need not be dma-safe)
559  * @n_tx: size of txbuf, in bytes
560  * @rxbuf: buffer into which data will be read
561  * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
562  * Context: can sleep
563  *
564  * This performs a half duplex MicroWire style transaction with the
565  * device, sending txbuf and then reading rxbuf.  The return value
566  * is zero for success, else a negative errno status code.
567  * This call may only be used from a context that may sleep.
568  *
569  * Parameters to this routine are always copied using a small buffer;
570  * portable code should never use this for more than 32 bytes.
571  * Performance-sensitive or bulk transfer code should instead use
572  * spi_{async,sync}() calls with dma-safe buffers.
573  */
574 int spi_write_then_read(struct spi_device *spi,
575 		const u8 *txbuf, unsigned n_tx,
576 		u8 *rxbuf, unsigned n_rx)
577 {
578 	static DECLARE_MUTEX(lock);
579 
580 	int			status;
581 	struct spi_message	message;
582 	struct spi_transfer	x[2];
583 	u8			*local_buf;
584 
585 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
586 	 * (as a pure convenience thing), but we can keep heap costs
587 	 * out of the hot path ...
588 	 */
589 	if ((n_tx + n_rx) > SPI_BUFSIZ)
590 		return -EINVAL;
591 
592 	spi_message_init(&message);
593 	memset(x, 0, sizeof x);
594 	if (n_tx) {
595 		x[0].len = n_tx;
596 		spi_message_add_tail(&x[0], &message);
597 	}
598 	if (n_rx) {
599 		x[1].len = n_rx;
600 		spi_message_add_tail(&x[1], &message);
601 	}
602 
603 	/* ... unless someone else is using the pre-allocated buffer */
604 	if (down_trylock(&lock)) {
605 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
606 		if (!local_buf)
607 			return -ENOMEM;
608 	} else
609 		local_buf = buf;
610 
611 	memcpy(local_buf, txbuf, n_tx);
612 	x[0].tx_buf = local_buf;
613 	x[1].rx_buf = local_buf + n_tx;
614 
615 	/* do the i/o */
616 	status = spi_sync(spi, &message);
617 	if (status == 0) {
618 		memcpy(rxbuf, x[1].rx_buf, n_rx);
619 		status = message.status;
620 	}
621 
622 	if (x[0].tx_buf == buf)
623 		up(&lock);
624 	else
625 		kfree(local_buf);
626 
627 	return status;
628 }
629 EXPORT_SYMBOL_GPL(spi_write_then_read);
630 
631 /*-------------------------------------------------------------------------*/
632 
633 static int __init spi_init(void)
634 {
635 	int	status;
636 
637 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
638 	if (!buf) {
639 		status = -ENOMEM;
640 		goto err0;
641 	}
642 
643 	status = bus_register(&spi_bus_type);
644 	if (status < 0)
645 		goto err1;
646 
647 	status = class_register(&spi_master_class);
648 	if (status < 0)
649 		goto err2;
650 	return 0;
651 
652 err2:
653 	bus_unregister(&spi_bus_type);
654 err1:
655 	kfree(buf);
656 	buf = NULL;
657 err0:
658 	return status;
659 }
660 
661 /* board_info is normally registered in arch_initcall(),
662  * but even essential drivers wait till later
663  *
664  * REVISIT only boardinfo really needs static linking. the rest (device and
665  * driver registration) _could_ be dynamically linked (modular) ... costs
666  * include needing to have boardinfo data structures be much more public.
667  */
668 subsys_initcall(spi_init);
669 
670