xref: /openbmc/linux/drivers/spi/spi.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43 
44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi masters may cleanup for released devices */
49 	if (spi->master->cleanup)
50 		spi->master->cleanup(spi);
51 
52 	spi_master_put(spi->master);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 static struct attribute *spi_dev_attrs[] = {
71 	&dev_attr_modalias.attr,
72 	NULL,
73 };
74 ATTRIBUTE_GROUPS(spi_dev);
75 
76 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
77  * and the sysfs version makes coldplug work too.
78  */
79 
80 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
81 						const struct spi_device *sdev)
82 {
83 	while (id->name[0]) {
84 		if (!strcmp(sdev->modalias, id->name))
85 			return id;
86 		id++;
87 	}
88 	return NULL;
89 }
90 
91 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
92 {
93 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
94 
95 	return spi_match_id(sdrv->id_table, sdev);
96 }
97 EXPORT_SYMBOL_GPL(spi_get_device_id);
98 
99 static int spi_match_device(struct device *dev, struct device_driver *drv)
100 {
101 	const struct spi_device	*spi = to_spi_device(dev);
102 	const struct spi_driver	*sdrv = to_spi_driver(drv);
103 
104 	/* Attempt an OF style match */
105 	if (of_driver_match_device(dev, drv))
106 		return 1;
107 
108 	/* Then try ACPI */
109 	if (acpi_driver_match_device(dev, drv))
110 		return 1;
111 
112 	if (sdrv->id_table)
113 		return !!spi_match_id(sdrv->id_table, spi);
114 
115 	return strcmp(spi->modalias, drv->name) == 0;
116 }
117 
118 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
119 {
120 	const struct spi_device		*spi = to_spi_device(dev);
121 	int rc;
122 
123 	rc = acpi_device_uevent_modalias(dev, env);
124 	if (rc != -ENODEV)
125 		return rc;
126 
127 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
128 	return 0;
129 }
130 
131 struct bus_type spi_bus_type = {
132 	.name		= "spi",
133 	.dev_groups	= spi_dev_groups,
134 	.match		= spi_match_device,
135 	.uevent		= spi_uevent,
136 };
137 EXPORT_SYMBOL_GPL(spi_bus_type);
138 
139 
140 static int spi_drv_probe(struct device *dev)
141 {
142 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
143 	int ret;
144 
145 	ret = of_clk_set_defaults(dev->of_node, false);
146 	if (ret)
147 		return ret;
148 
149 	ret = dev_pm_domain_attach(dev, true);
150 	if (ret != -EPROBE_DEFER) {
151 		ret = sdrv->probe(to_spi_device(dev));
152 		if (ret)
153 			dev_pm_domain_detach(dev, true);
154 	}
155 
156 	return ret;
157 }
158 
159 static int spi_drv_remove(struct device *dev)
160 {
161 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
162 	int ret;
163 
164 	ret = sdrv->remove(to_spi_device(dev));
165 	dev_pm_domain_detach(dev, true);
166 
167 	return ret;
168 }
169 
170 static void spi_drv_shutdown(struct device *dev)
171 {
172 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
173 
174 	sdrv->shutdown(to_spi_device(dev));
175 }
176 
177 /**
178  * spi_register_driver - register a SPI driver
179  * @sdrv: the driver to register
180  * Context: can sleep
181  */
182 int spi_register_driver(struct spi_driver *sdrv)
183 {
184 	sdrv->driver.bus = &spi_bus_type;
185 	if (sdrv->probe)
186 		sdrv->driver.probe = spi_drv_probe;
187 	if (sdrv->remove)
188 		sdrv->driver.remove = spi_drv_remove;
189 	if (sdrv->shutdown)
190 		sdrv->driver.shutdown = spi_drv_shutdown;
191 	return driver_register(&sdrv->driver);
192 }
193 EXPORT_SYMBOL_GPL(spi_register_driver);
194 
195 /*-------------------------------------------------------------------------*/
196 
197 /* SPI devices should normally not be created by SPI device drivers; that
198  * would make them board-specific.  Similarly with SPI master drivers.
199  * Device registration normally goes into like arch/.../mach.../board-YYY.c
200  * with other readonly (flashable) information about mainboard devices.
201  */
202 
203 struct boardinfo {
204 	struct list_head	list;
205 	struct spi_board_info	board_info;
206 };
207 
208 static LIST_HEAD(board_list);
209 static LIST_HEAD(spi_master_list);
210 
211 /*
212  * Used to protect add/del opertion for board_info list and
213  * spi_master list, and their matching process
214  */
215 static DEFINE_MUTEX(board_lock);
216 
217 /**
218  * spi_alloc_device - Allocate a new SPI device
219  * @master: Controller to which device is connected
220  * Context: can sleep
221  *
222  * Allows a driver to allocate and initialize a spi_device without
223  * registering it immediately.  This allows a driver to directly
224  * fill the spi_device with device parameters before calling
225  * spi_add_device() on it.
226  *
227  * Caller is responsible to call spi_add_device() on the returned
228  * spi_device structure to add it to the SPI master.  If the caller
229  * needs to discard the spi_device without adding it, then it should
230  * call spi_dev_put() on it.
231  *
232  * Returns a pointer to the new device, or NULL.
233  */
234 struct spi_device *spi_alloc_device(struct spi_master *master)
235 {
236 	struct spi_device	*spi;
237 
238 	if (!spi_master_get(master))
239 		return NULL;
240 
241 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
242 	if (!spi) {
243 		spi_master_put(master);
244 		return NULL;
245 	}
246 
247 	spi->master = master;
248 	spi->dev.parent = &master->dev;
249 	spi->dev.bus = &spi_bus_type;
250 	spi->dev.release = spidev_release;
251 	spi->cs_gpio = -ENOENT;
252 	device_initialize(&spi->dev);
253 	return spi;
254 }
255 EXPORT_SYMBOL_GPL(spi_alloc_device);
256 
257 static void spi_dev_set_name(struct spi_device *spi)
258 {
259 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
260 
261 	if (adev) {
262 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
263 		return;
264 	}
265 
266 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
267 		     spi->chip_select);
268 }
269 
270 static int spi_dev_check(struct device *dev, void *data)
271 {
272 	struct spi_device *spi = to_spi_device(dev);
273 	struct spi_device *new_spi = data;
274 
275 	if (spi->master == new_spi->master &&
276 	    spi->chip_select == new_spi->chip_select)
277 		return -EBUSY;
278 	return 0;
279 }
280 
281 /**
282  * spi_add_device - Add spi_device allocated with spi_alloc_device
283  * @spi: spi_device to register
284  *
285  * Companion function to spi_alloc_device.  Devices allocated with
286  * spi_alloc_device can be added onto the spi bus with this function.
287  *
288  * Returns 0 on success; negative errno on failure
289  */
290 int spi_add_device(struct spi_device *spi)
291 {
292 	static DEFINE_MUTEX(spi_add_lock);
293 	struct spi_master *master = spi->master;
294 	struct device *dev = master->dev.parent;
295 	int status;
296 
297 	/* Chipselects are numbered 0..max; validate. */
298 	if (spi->chip_select >= master->num_chipselect) {
299 		dev_err(dev, "cs%d >= max %d\n",
300 			spi->chip_select,
301 			master->num_chipselect);
302 		return -EINVAL;
303 	}
304 
305 	/* Set the bus ID string */
306 	spi_dev_set_name(spi);
307 
308 	/* We need to make sure there's no other device with this
309 	 * chipselect **BEFORE** we call setup(), else we'll trash
310 	 * its configuration.  Lock against concurrent add() calls.
311 	 */
312 	mutex_lock(&spi_add_lock);
313 
314 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
315 	if (status) {
316 		dev_err(dev, "chipselect %d already in use\n",
317 				spi->chip_select);
318 		goto done;
319 	}
320 
321 	if (master->cs_gpios)
322 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
323 
324 	/* Drivers may modify this initial i/o setup, but will
325 	 * normally rely on the device being setup.  Devices
326 	 * using SPI_CS_HIGH can't coexist well otherwise...
327 	 */
328 	status = spi_setup(spi);
329 	if (status < 0) {
330 		dev_err(dev, "can't setup %s, status %d\n",
331 				dev_name(&spi->dev), status);
332 		goto done;
333 	}
334 
335 	/* Device may be bound to an active driver when this returns */
336 	status = device_add(&spi->dev);
337 	if (status < 0)
338 		dev_err(dev, "can't add %s, status %d\n",
339 				dev_name(&spi->dev), status);
340 	else
341 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
342 
343 done:
344 	mutex_unlock(&spi_add_lock);
345 	return status;
346 }
347 EXPORT_SYMBOL_GPL(spi_add_device);
348 
349 /**
350  * spi_new_device - instantiate one new SPI device
351  * @master: Controller to which device is connected
352  * @chip: Describes the SPI device
353  * Context: can sleep
354  *
355  * On typical mainboards, this is purely internal; and it's not needed
356  * after board init creates the hard-wired devices.  Some development
357  * platforms may not be able to use spi_register_board_info though, and
358  * this is exported so that for example a USB or parport based adapter
359  * driver could add devices (which it would learn about out-of-band).
360  *
361  * Returns the new device, or NULL.
362  */
363 struct spi_device *spi_new_device(struct spi_master *master,
364 				  struct spi_board_info *chip)
365 {
366 	struct spi_device	*proxy;
367 	int			status;
368 
369 	/* NOTE:  caller did any chip->bus_num checks necessary.
370 	 *
371 	 * Also, unless we change the return value convention to use
372 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
373 	 * suggests syslogged diagnostics are best here (ugh).
374 	 */
375 
376 	proxy = spi_alloc_device(master);
377 	if (!proxy)
378 		return NULL;
379 
380 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
381 
382 	proxy->chip_select = chip->chip_select;
383 	proxy->max_speed_hz = chip->max_speed_hz;
384 	proxy->mode = chip->mode;
385 	proxy->irq = chip->irq;
386 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
387 	proxy->dev.platform_data = (void *) chip->platform_data;
388 	proxy->controller_data = chip->controller_data;
389 	proxy->controller_state = NULL;
390 
391 	status = spi_add_device(proxy);
392 	if (status < 0) {
393 		spi_dev_put(proxy);
394 		return NULL;
395 	}
396 
397 	return proxy;
398 }
399 EXPORT_SYMBOL_GPL(spi_new_device);
400 
401 static void spi_match_master_to_boardinfo(struct spi_master *master,
402 				struct spi_board_info *bi)
403 {
404 	struct spi_device *dev;
405 
406 	if (master->bus_num != bi->bus_num)
407 		return;
408 
409 	dev = spi_new_device(master, bi);
410 	if (!dev)
411 		dev_err(master->dev.parent, "can't create new device for %s\n",
412 			bi->modalias);
413 }
414 
415 /**
416  * spi_register_board_info - register SPI devices for a given board
417  * @info: array of chip descriptors
418  * @n: how many descriptors are provided
419  * Context: can sleep
420  *
421  * Board-specific early init code calls this (probably during arch_initcall)
422  * with segments of the SPI device table.  Any device nodes are created later,
423  * after the relevant parent SPI controller (bus_num) is defined.  We keep
424  * this table of devices forever, so that reloading a controller driver will
425  * not make Linux forget about these hard-wired devices.
426  *
427  * Other code can also call this, e.g. a particular add-on board might provide
428  * SPI devices through its expansion connector, so code initializing that board
429  * would naturally declare its SPI devices.
430  *
431  * The board info passed can safely be __initdata ... but be careful of
432  * any embedded pointers (platform_data, etc), they're copied as-is.
433  */
434 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
435 {
436 	struct boardinfo *bi;
437 	int i;
438 
439 	if (!n)
440 		return -EINVAL;
441 
442 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
443 	if (!bi)
444 		return -ENOMEM;
445 
446 	for (i = 0; i < n; i++, bi++, info++) {
447 		struct spi_master *master;
448 
449 		memcpy(&bi->board_info, info, sizeof(*info));
450 		mutex_lock(&board_lock);
451 		list_add_tail(&bi->list, &board_list);
452 		list_for_each_entry(master, &spi_master_list, list)
453 			spi_match_master_to_boardinfo(master, &bi->board_info);
454 		mutex_unlock(&board_lock);
455 	}
456 
457 	return 0;
458 }
459 
460 /*-------------------------------------------------------------------------*/
461 
462 static void spi_set_cs(struct spi_device *spi, bool enable)
463 {
464 	if (spi->mode & SPI_CS_HIGH)
465 		enable = !enable;
466 
467 	if (spi->cs_gpio >= 0)
468 		gpio_set_value(spi->cs_gpio, !enable);
469 	else if (spi->master->set_cs)
470 		spi->master->set_cs(spi, !enable);
471 }
472 
473 #ifdef CONFIG_HAS_DMA
474 static int spi_map_buf(struct spi_master *master, struct device *dev,
475 		       struct sg_table *sgt, void *buf, size_t len,
476 		       enum dma_data_direction dir)
477 {
478 	const bool vmalloced_buf = is_vmalloc_addr(buf);
479 	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
480 	const int sgs = DIV_ROUND_UP(len, desc_len);
481 	struct page *vm_page;
482 	void *sg_buf;
483 	size_t min;
484 	int i, ret;
485 
486 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
487 	if (ret != 0)
488 		return ret;
489 
490 	for (i = 0; i < sgs; i++) {
491 		min = min_t(size_t, len, desc_len);
492 
493 		if (vmalloced_buf) {
494 			vm_page = vmalloc_to_page(buf);
495 			if (!vm_page) {
496 				sg_free_table(sgt);
497 				return -ENOMEM;
498 			}
499 			sg_set_page(&sgt->sgl[i], vm_page,
500 				    min, offset_in_page(buf));
501 		} else {
502 			sg_buf = buf;
503 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
504 		}
505 
506 
507 		buf += min;
508 		len -= min;
509 	}
510 
511 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
512 	if (!ret)
513 		ret = -ENOMEM;
514 	if (ret < 0) {
515 		sg_free_table(sgt);
516 		return ret;
517 	}
518 
519 	sgt->nents = ret;
520 
521 	return 0;
522 }
523 
524 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
525 			  struct sg_table *sgt, enum dma_data_direction dir)
526 {
527 	if (sgt->orig_nents) {
528 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
529 		sg_free_table(sgt);
530 	}
531 }
532 
533 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
534 {
535 	struct device *tx_dev, *rx_dev;
536 	struct spi_transfer *xfer;
537 	int ret;
538 
539 	if (!master->can_dma)
540 		return 0;
541 
542 	tx_dev = master->dma_tx->device->dev;
543 	rx_dev = master->dma_rx->device->dev;
544 
545 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
546 		if (!master->can_dma(master, msg->spi, xfer))
547 			continue;
548 
549 		if (xfer->tx_buf != NULL) {
550 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
551 					  (void *)xfer->tx_buf, xfer->len,
552 					  DMA_TO_DEVICE);
553 			if (ret != 0)
554 				return ret;
555 		}
556 
557 		if (xfer->rx_buf != NULL) {
558 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
559 					  xfer->rx_buf, xfer->len,
560 					  DMA_FROM_DEVICE);
561 			if (ret != 0) {
562 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
563 					      DMA_TO_DEVICE);
564 				return ret;
565 			}
566 		}
567 	}
568 
569 	master->cur_msg_mapped = true;
570 
571 	return 0;
572 }
573 
574 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
575 {
576 	struct spi_transfer *xfer;
577 	struct device *tx_dev, *rx_dev;
578 
579 	if (!master->cur_msg_mapped || !master->can_dma)
580 		return 0;
581 
582 	tx_dev = master->dma_tx->device->dev;
583 	rx_dev = master->dma_rx->device->dev;
584 
585 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
586 		if (!master->can_dma(master, msg->spi, xfer))
587 			continue;
588 
589 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
590 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
591 	}
592 
593 	return 0;
594 }
595 #else /* !CONFIG_HAS_DMA */
596 static inline int __spi_map_msg(struct spi_master *master,
597 				struct spi_message *msg)
598 {
599 	return 0;
600 }
601 
602 static inline int __spi_unmap_msg(struct spi_master *master,
603 				  struct spi_message *msg)
604 {
605 	return 0;
606 }
607 #endif /* !CONFIG_HAS_DMA */
608 
609 static inline int spi_unmap_msg(struct spi_master *master,
610 				struct spi_message *msg)
611 {
612 	struct spi_transfer *xfer;
613 
614 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
615 		/*
616 		 * Restore the original value of tx_buf or rx_buf if they are
617 		 * NULL.
618 		 */
619 		if (xfer->tx_buf == master->dummy_tx)
620 			xfer->tx_buf = NULL;
621 		if (xfer->rx_buf == master->dummy_rx)
622 			xfer->rx_buf = NULL;
623 	}
624 
625 	return __spi_unmap_msg(master, msg);
626 }
627 
628 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
629 {
630 	struct spi_transfer *xfer;
631 	void *tmp;
632 	unsigned int max_tx, max_rx;
633 
634 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
635 		max_tx = 0;
636 		max_rx = 0;
637 
638 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
639 			if ((master->flags & SPI_MASTER_MUST_TX) &&
640 			    !xfer->tx_buf)
641 				max_tx = max(xfer->len, max_tx);
642 			if ((master->flags & SPI_MASTER_MUST_RX) &&
643 			    !xfer->rx_buf)
644 				max_rx = max(xfer->len, max_rx);
645 		}
646 
647 		if (max_tx) {
648 			tmp = krealloc(master->dummy_tx, max_tx,
649 				       GFP_KERNEL | GFP_DMA);
650 			if (!tmp)
651 				return -ENOMEM;
652 			master->dummy_tx = tmp;
653 			memset(tmp, 0, max_tx);
654 		}
655 
656 		if (max_rx) {
657 			tmp = krealloc(master->dummy_rx, max_rx,
658 				       GFP_KERNEL | GFP_DMA);
659 			if (!tmp)
660 				return -ENOMEM;
661 			master->dummy_rx = tmp;
662 		}
663 
664 		if (max_tx || max_rx) {
665 			list_for_each_entry(xfer, &msg->transfers,
666 					    transfer_list) {
667 				if (!xfer->tx_buf)
668 					xfer->tx_buf = master->dummy_tx;
669 				if (!xfer->rx_buf)
670 					xfer->rx_buf = master->dummy_rx;
671 			}
672 		}
673 	}
674 
675 	return __spi_map_msg(master, msg);
676 }
677 
678 /*
679  * spi_transfer_one_message - Default implementation of transfer_one_message()
680  *
681  * This is a standard implementation of transfer_one_message() for
682  * drivers which impelment a transfer_one() operation.  It provides
683  * standard handling of delays and chip select management.
684  */
685 static int spi_transfer_one_message(struct spi_master *master,
686 				    struct spi_message *msg)
687 {
688 	struct spi_transfer *xfer;
689 	bool keep_cs = false;
690 	int ret = 0;
691 	unsigned long ms = 1;
692 
693 	spi_set_cs(msg->spi, true);
694 
695 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
696 		trace_spi_transfer_start(msg, xfer);
697 
698 		if (xfer->tx_buf || xfer->rx_buf) {
699 			reinit_completion(&master->xfer_completion);
700 
701 			ret = master->transfer_one(master, msg->spi, xfer);
702 			if (ret < 0) {
703 				dev_err(&msg->spi->dev,
704 					"SPI transfer failed: %d\n", ret);
705 				goto out;
706 			}
707 
708 			if (ret > 0) {
709 				ret = 0;
710 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
711 				ms += ms + 100; /* some tolerance */
712 
713 				ms = wait_for_completion_timeout(&master->xfer_completion,
714 								 msecs_to_jiffies(ms));
715 			}
716 
717 			if (ms == 0) {
718 				dev_err(&msg->spi->dev,
719 					"SPI transfer timed out\n");
720 				msg->status = -ETIMEDOUT;
721 			}
722 		} else {
723 			if (xfer->len)
724 				dev_err(&msg->spi->dev,
725 					"Bufferless transfer has length %u\n",
726 					xfer->len);
727 		}
728 
729 		trace_spi_transfer_stop(msg, xfer);
730 
731 		if (msg->status != -EINPROGRESS)
732 			goto out;
733 
734 		if (xfer->delay_usecs)
735 			udelay(xfer->delay_usecs);
736 
737 		if (xfer->cs_change) {
738 			if (list_is_last(&xfer->transfer_list,
739 					 &msg->transfers)) {
740 				keep_cs = true;
741 			} else {
742 				spi_set_cs(msg->spi, false);
743 				udelay(10);
744 				spi_set_cs(msg->spi, true);
745 			}
746 		}
747 
748 		msg->actual_length += xfer->len;
749 	}
750 
751 out:
752 	if (ret != 0 || !keep_cs)
753 		spi_set_cs(msg->spi, false);
754 
755 	if (msg->status == -EINPROGRESS)
756 		msg->status = ret;
757 
758 	if (msg->status && master->handle_err)
759 		master->handle_err(master, msg);
760 
761 	spi_finalize_current_message(master);
762 
763 	return ret;
764 }
765 
766 /**
767  * spi_finalize_current_transfer - report completion of a transfer
768  * @master: the master reporting completion
769  *
770  * Called by SPI drivers using the core transfer_one_message()
771  * implementation to notify it that the current interrupt driven
772  * transfer has finished and the next one may be scheduled.
773  */
774 void spi_finalize_current_transfer(struct spi_master *master)
775 {
776 	complete(&master->xfer_completion);
777 }
778 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
779 
780 /**
781  * __spi_pump_messages - function which processes spi message queue
782  * @master: master to process queue for
783  * @in_kthread: true if we are in the context of the message pump thread
784  *
785  * This function checks if there is any spi message in the queue that
786  * needs processing and if so call out to the driver to initialize hardware
787  * and transfer each message.
788  *
789  * Note that it is called both from the kthread itself and also from
790  * inside spi_sync(); the queue extraction handling at the top of the
791  * function should deal with this safely.
792  */
793 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
794 {
795 	unsigned long flags;
796 	bool was_busy = false;
797 	int ret;
798 
799 	/* Lock queue */
800 	spin_lock_irqsave(&master->queue_lock, flags);
801 
802 	/* Make sure we are not already running a message */
803 	if (master->cur_msg) {
804 		spin_unlock_irqrestore(&master->queue_lock, flags);
805 		return;
806 	}
807 
808 	/* If another context is idling the device then defer */
809 	if (master->idling) {
810 		queue_kthread_work(&master->kworker, &master->pump_messages);
811 		spin_unlock_irqrestore(&master->queue_lock, flags);
812 		return;
813 	}
814 
815 	/* Check if the queue is idle */
816 	if (list_empty(&master->queue) || !master->running) {
817 		if (!master->busy) {
818 			spin_unlock_irqrestore(&master->queue_lock, flags);
819 			return;
820 		}
821 
822 		/* Only do teardown in the thread */
823 		if (!in_kthread) {
824 			queue_kthread_work(&master->kworker,
825 					   &master->pump_messages);
826 			spin_unlock_irqrestore(&master->queue_lock, flags);
827 			return;
828 		}
829 
830 		master->busy = false;
831 		master->idling = true;
832 		spin_unlock_irqrestore(&master->queue_lock, flags);
833 
834 		kfree(master->dummy_rx);
835 		master->dummy_rx = NULL;
836 		kfree(master->dummy_tx);
837 		master->dummy_tx = NULL;
838 		if (master->unprepare_transfer_hardware &&
839 		    master->unprepare_transfer_hardware(master))
840 			dev_err(&master->dev,
841 				"failed to unprepare transfer hardware\n");
842 		if (master->auto_runtime_pm) {
843 			pm_runtime_mark_last_busy(master->dev.parent);
844 			pm_runtime_put_autosuspend(master->dev.parent);
845 		}
846 		trace_spi_master_idle(master);
847 
848 		spin_lock_irqsave(&master->queue_lock, flags);
849 		master->idling = false;
850 		spin_unlock_irqrestore(&master->queue_lock, flags);
851 		return;
852 	}
853 
854 	/* Extract head of queue */
855 	master->cur_msg =
856 		list_first_entry(&master->queue, struct spi_message, queue);
857 
858 	list_del_init(&master->cur_msg->queue);
859 	if (master->busy)
860 		was_busy = true;
861 	else
862 		master->busy = true;
863 	spin_unlock_irqrestore(&master->queue_lock, flags);
864 
865 	if (!was_busy && master->auto_runtime_pm) {
866 		ret = pm_runtime_get_sync(master->dev.parent);
867 		if (ret < 0) {
868 			dev_err(&master->dev, "Failed to power device: %d\n",
869 				ret);
870 			return;
871 		}
872 	}
873 
874 	if (!was_busy)
875 		trace_spi_master_busy(master);
876 
877 	if (!was_busy && master->prepare_transfer_hardware) {
878 		ret = master->prepare_transfer_hardware(master);
879 		if (ret) {
880 			dev_err(&master->dev,
881 				"failed to prepare transfer hardware\n");
882 
883 			if (master->auto_runtime_pm)
884 				pm_runtime_put(master->dev.parent);
885 			return;
886 		}
887 	}
888 
889 	trace_spi_message_start(master->cur_msg);
890 
891 	if (master->prepare_message) {
892 		ret = master->prepare_message(master, master->cur_msg);
893 		if (ret) {
894 			dev_err(&master->dev,
895 				"failed to prepare message: %d\n", ret);
896 			master->cur_msg->status = ret;
897 			spi_finalize_current_message(master);
898 			return;
899 		}
900 		master->cur_msg_prepared = true;
901 	}
902 
903 	ret = spi_map_msg(master, master->cur_msg);
904 	if (ret) {
905 		master->cur_msg->status = ret;
906 		spi_finalize_current_message(master);
907 		return;
908 	}
909 
910 	ret = master->transfer_one_message(master, master->cur_msg);
911 	if (ret) {
912 		dev_err(&master->dev,
913 			"failed to transfer one message from queue\n");
914 		return;
915 	}
916 }
917 
918 /**
919  * spi_pump_messages - kthread work function which processes spi message queue
920  * @work: pointer to kthread work struct contained in the master struct
921  */
922 static void spi_pump_messages(struct kthread_work *work)
923 {
924 	struct spi_master *master =
925 		container_of(work, struct spi_master, pump_messages);
926 
927 	__spi_pump_messages(master, true);
928 }
929 
930 static int spi_init_queue(struct spi_master *master)
931 {
932 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
933 
934 	master->running = false;
935 	master->busy = false;
936 
937 	init_kthread_worker(&master->kworker);
938 	master->kworker_task = kthread_run(kthread_worker_fn,
939 					   &master->kworker, "%s",
940 					   dev_name(&master->dev));
941 	if (IS_ERR(master->kworker_task)) {
942 		dev_err(&master->dev, "failed to create message pump task\n");
943 		return PTR_ERR(master->kworker_task);
944 	}
945 	init_kthread_work(&master->pump_messages, spi_pump_messages);
946 
947 	/*
948 	 * Master config will indicate if this controller should run the
949 	 * message pump with high (realtime) priority to reduce the transfer
950 	 * latency on the bus by minimising the delay between a transfer
951 	 * request and the scheduling of the message pump thread. Without this
952 	 * setting the message pump thread will remain at default priority.
953 	 */
954 	if (master->rt) {
955 		dev_info(&master->dev,
956 			"will run message pump with realtime priority\n");
957 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
958 	}
959 
960 	return 0;
961 }
962 
963 /**
964  * spi_get_next_queued_message() - called by driver to check for queued
965  * messages
966  * @master: the master to check for queued messages
967  *
968  * If there are more messages in the queue, the next message is returned from
969  * this call.
970  */
971 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
972 {
973 	struct spi_message *next;
974 	unsigned long flags;
975 
976 	/* get a pointer to the next message, if any */
977 	spin_lock_irqsave(&master->queue_lock, flags);
978 	next = list_first_entry_or_null(&master->queue, struct spi_message,
979 					queue);
980 	spin_unlock_irqrestore(&master->queue_lock, flags);
981 
982 	return next;
983 }
984 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
985 
986 /**
987  * spi_finalize_current_message() - the current message is complete
988  * @master: the master to return the message to
989  *
990  * Called by the driver to notify the core that the message in the front of the
991  * queue is complete and can be removed from the queue.
992  */
993 void spi_finalize_current_message(struct spi_master *master)
994 {
995 	struct spi_message *mesg;
996 	unsigned long flags;
997 	int ret;
998 
999 	spin_lock_irqsave(&master->queue_lock, flags);
1000 	mesg = master->cur_msg;
1001 	spin_unlock_irqrestore(&master->queue_lock, flags);
1002 
1003 	spi_unmap_msg(master, mesg);
1004 
1005 	if (master->cur_msg_prepared && master->unprepare_message) {
1006 		ret = master->unprepare_message(master, mesg);
1007 		if (ret) {
1008 			dev_err(&master->dev,
1009 				"failed to unprepare message: %d\n", ret);
1010 		}
1011 	}
1012 
1013 	spin_lock_irqsave(&master->queue_lock, flags);
1014 	master->cur_msg = NULL;
1015 	master->cur_msg_prepared = false;
1016 	queue_kthread_work(&master->kworker, &master->pump_messages);
1017 	spin_unlock_irqrestore(&master->queue_lock, flags);
1018 
1019 	trace_spi_message_done(mesg);
1020 
1021 	mesg->state = NULL;
1022 	if (mesg->complete)
1023 		mesg->complete(mesg->context);
1024 }
1025 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1026 
1027 static int spi_start_queue(struct spi_master *master)
1028 {
1029 	unsigned long flags;
1030 
1031 	spin_lock_irqsave(&master->queue_lock, flags);
1032 
1033 	if (master->running || master->busy) {
1034 		spin_unlock_irqrestore(&master->queue_lock, flags);
1035 		return -EBUSY;
1036 	}
1037 
1038 	master->running = true;
1039 	master->cur_msg = NULL;
1040 	spin_unlock_irqrestore(&master->queue_lock, flags);
1041 
1042 	queue_kthread_work(&master->kworker, &master->pump_messages);
1043 
1044 	return 0;
1045 }
1046 
1047 static int spi_stop_queue(struct spi_master *master)
1048 {
1049 	unsigned long flags;
1050 	unsigned limit = 500;
1051 	int ret = 0;
1052 
1053 	spin_lock_irqsave(&master->queue_lock, flags);
1054 
1055 	/*
1056 	 * This is a bit lame, but is optimized for the common execution path.
1057 	 * A wait_queue on the master->busy could be used, but then the common
1058 	 * execution path (pump_messages) would be required to call wake_up or
1059 	 * friends on every SPI message. Do this instead.
1060 	 */
1061 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1062 		spin_unlock_irqrestore(&master->queue_lock, flags);
1063 		usleep_range(10000, 11000);
1064 		spin_lock_irqsave(&master->queue_lock, flags);
1065 	}
1066 
1067 	if (!list_empty(&master->queue) || master->busy)
1068 		ret = -EBUSY;
1069 	else
1070 		master->running = false;
1071 
1072 	spin_unlock_irqrestore(&master->queue_lock, flags);
1073 
1074 	if (ret) {
1075 		dev_warn(&master->dev,
1076 			 "could not stop message queue\n");
1077 		return ret;
1078 	}
1079 	return ret;
1080 }
1081 
1082 static int spi_destroy_queue(struct spi_master *master)
1083 {
1084 	int ret;
1085 
1086 	ret = spi_stop_queue(master);
1087 
1088 	/*
1089 	 * flush_kthread_worker will block until all work is done.
1090 	 * If the reason that stop_queue timed out is that the work will never
1091 	 * finish, then it does no good to call flush/stop thread, so
1092 	 * return anyway.
1093 	 */
1094 	if (ret) {
1095 		dev_err(&master->dev, "problem destroying queue\n");
1096 		return ret;
1097 	}
1098 
1099 	flush_kthread_worker(&master->kworker);
1100 	kthread_stop(master->kworker_task);
1101 
1102 	return 0;
1103 }
1104 
1105 static int __spi_queued_transfer(struct spi_device *spi,
1106 				 struct spi_message *msg,
1107 				 bool need_pump)
1108 {
1109 	struct spi_master *master = spi->master;
1110 	unsigned long flags;
1111 
1112 	spin_lock_irqsave(&master->queue_lock, flags);
1113 
1114 	if (!master->running) {
1115 		spin_unlock_irqrestore(&master->queue_lock, flags);
1116 		return -ESHUTDOWN;
1117 	}
1118 	msg->actual_length = 0;
1119 	msg->status = -EINPROGRESS;
1120 
1121 	list_add_tail(&msg->queue, &master->queue);
1122 	if (!master->busy && need_pump)
1123 		queue_kthread_work(&master->kworker, &master->pump_messages);
1124 
1125 	spin_unlock_irqrestore(&master->queue_lock, flags);
1126 	return 0;
1127 }
1128 
1129 /**
1130  * spi_queued_transfer - transfer function for queued transfers
1131  * @spi: spi device which is requesting transfer
1132  * @msg: spi message which is to handled is queued to driver queue
1133  */
1134 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1135 {
1136 	return __spi_queued_transfer(spi, msg, true);
1137 }
1138 
1139 static int spi_master_initialize_queue(struct spi_master *master)
1140 {
1141 	int ret;
1142 
1143 	master->transfer = spi_queued_transfer;
1144 	if (!master->transfer_one_message)
1145 		master->transfer_one_message = spi_transfer_one_message;
1146 
1147 	/* Initialize and start queue */
1148 	ret = spi_init_queue(master);
1149 	if (ret) {
1150 		dev_err(&master->dev, "problem initializing queue\n");
1151 		goto err_init_queue;
1152 	}
1153 	master->queued = true;
1154 	ret = spi_start_queue(master);
1155 	if (ret) {
1156 		dev_err(&master->dev, "problem starting queue\n");
1157 		goto err_start_queue;
1158 	}
1159 
1160 	return 0;
1161 
1162 err_start_queue:
1163 	spi_destroy_queue(master);
1164 err_init_queue:
1165 	return ret;
1166 }
1167 
1168 /*-------------------------------------------------------------------------*/
1169 
1170 #if defined(CONFIG_OF)
1171 static struct spi_device *
1172 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1173 {
1174 	struct spi_device *spi;
1175 	int rc;
1176 	u32 value;
1177 
1178 	/* Alloc an spi_device */
1179 	spi = spi_alloc_device(master);
1180 	if (!spi) {
1181 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1182 			nc->full_name);
1183 		rc = -ENOMEM;
1184 		goto err_out;
1185 	}
1186 
1187 	/* Select device driver */
1188 	rc = of_modalias_node(nc, spi->modalias,
1189 				sizeof(spi->modalias));
1190 	if (rc < 0) {
1191 		dev_err(&master->dev, "cannot find modalias for %s\n",
1192 			nc->full_name);
1193 		goto err_out;
1194 	}
1195 
1196 	/* Device address */
1197 	rc = of_property_read_u32(nc, "reg", &value);
1198 	if (rc) {
1199 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1200 			nc->full_name, rc);
1201 		goto err_out;
1202 	}
1203 	spi->chip_select = value;
1204 
1205 	/* Mode (clock phase/polarity/etc.) */
1206 	if (of_find_property(nc, "spi-cpha", NULL))
1207 		spi->mode |= SPI_CPHA;
1208 	if (of_find_property(nc, "spi-cpol", NULL))
1209 		spi->mode |= SPI_CPOL;
1210 	if (of_find_property(nc, "spi-cs-high", NULL))
1211 		spi->mode |= SPI_CS_HIGH;
1212 	if (of_find_property(nc, "spi-3wire", NULL))
1213 		spi->mode |= SPI_3WIRE;
1214 	if (of_find_property(nc, "spi-lsb-first", NULL))
1215 		spi->mode |= SPI_LSB_FIRST;
1216 
1217 	/* Device DUAL/QUAD mode */
1218 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1219 		switch (value) {
1220 		case 1:
1221 			break;
1222 		case 2:
1223 			spi->mode |= SPI_TX_DUAL;
1224 			break;
1225 		case 4:
1226 			spi->mode |= SPI_TX_QUAD;
1227 			break;
1228 		default:
1229 			dev_warn(&master->dev,
1230 				"spi-tx-bus-width %d not supported\n",
1231 				value);
1232 			break;
1233 		}
1234 	}
1235 
1236 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1237 		switch (value) {
1238 		case 1:
1239 			break;
1240 		case 2:
1241 			spi->mode |= SPI_RX_DUAL;
1242 			break;
1243 		case 4:
1244 			spi->mode |= SPI_RX_QUAD;
1245 			break;
1246 		default:
1247 			dev_warn(&master->dev,
1248 				"spi-rx-bus-width %d not supported\n",
1249 				value);
1250 			break;
1251 		}
1252 	}
1253 
1254 	/* Device speed */
1255 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1256 	if (rc) {
1257 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1258 			nc->full_name, rc);
1259 		goto err_out;
1260 	}
1261 	spi->max_speed_hz = value;
1262 
1263 	/* IRQ */
1264 	spi->irq = irq_of_parse_and_map(nc, 0);
1265 
1266 	/* Store a pointer to the node in the device structure */
1267 	of_node_get(nc);
1268 	spi->dev.of_node = nc;
1269 
1270 	/* Register the new device */
1271 	rc = spi_add_device(spi);
1272 	if (rc) {
1273 		dev_err(&master->dev, "spi_device register error %s\n",
1274 			nc->full_name);
1275 		goto err_out;
1276 	}
1277 
1278 	return spi;
1279 
1280 err_out:
1281 	spi_dev_put(spi);
1282 	return ERR_PTR(rc);
1283 }
1284 
1285 /**
1286  * of_register_spi_devices() - Register child devices onto the SPI bus
1287  * @master:	Pointer to spi_master device
1288  *
1289  * Registers an spi_device for each child node of master node which has a 'reg'
1290  * property.
1291  */
1292 static void of_register_spi_devices(struct spi_master *master)
1293 {
1294 	struct spi_device *spi;
1295 	struct device_node *nc;
1296 
1297 	if (!master->dev.of_node)
1298 		return;
1299 
1300 	for_each_available_child_of_node(master->dev.of_node, nc) {
1301 		spi = of_register_spi_device(master, nc);
1302 		if (IS_ERR(spi))
1303 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1304 				nc->full_name);
1305 	}
1306 }
1307 #else
1308 static void of_register_spi_devices(struct spi_master *master) { }
1309 #endif
1310 
1311 #ifdef CONFIG_ACPI
1312 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1313 {
1314 	struct spi_device *spi = data;
1315 
1316 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1317 		struct acpi_resource_spi_serialbus *sb;
1318 
1319 		sb = &ares->data.spi_serial_bus;
1320 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1321 			spi->chip_select = sb->device_selection;
1322 			spi->max_speed_hz = sb->connection_speed;
1323 
1324 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1325 				spi->mode |= SPI_CPHA;
1326 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1327 				spi->mode |= SPI_CPOL;
1328 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1329 				spi->mode |= SPI_CS_HIGH;
1330 		}
1331 	} else if (spi->irq < 0) {
1332 		struct resource r;
1333 
1334 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1335 			spi->irq = r.start;
1336 	}
1337 
1338 	/* Always tell the ACPI core to skip this resource */
1339 	return 1;
1340 }
1341 
1342 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1343 				       void *data, void **return_value)
1344 {
1345 	struct spi_master *master = data;
1346 	struct list_head resource_list;
1347 	struct acpi_device *adev;
1348 	struct spi_device *spi;
1349 	int ret;
1350 
1351 	if (acpi_bus_get_device(handle, &adev))
1352 		return AE_OK;
1353 	if (acpi_bus_get_status(adev) || !adev->status.present)
1354 		return AE_OK;
1355 
1356 	spi = spi_alloc_device(master);
1357 	if (!spi) {
1358 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1359 			dev_name(&adev->dev));
1360 		return AE_NO_MEMORY;
1361 	}
1362 
1363 	ACPI_COMPANION_SET(&spi->dev, adev);
1364 	spi->irq = -1;
1365 
1366 	INIT_LIST_HEAD(&resource_list);
1367 	ret = acpi_dev_get_resources(adev, &resource_list,
1368 				     acpi_spi_add_resource, spi);
1369 	acpi_dev_free_resource_list(&resource_list);
1370 
1371 	if (ret < 0 || !spi->max_speed_hz) {
1372 		spi_dev_put(spi);
1373 		return AE_OK;
1374 	}
1375 
1376 	adev->power.flags.ignore_parent = true;
1377 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1378 	if (spi_add_device(spi)) {
1379 		adev->power.flags.ignore_parent = false;
1380 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1381 			dev_name(&adev->dev));
1382 		spi_dev_put(spi);
1383 	}
1384 
1385 	return AE_OK;
1386 }
1387 
1388 static void acpi_register_spi_devices(struct spi_master *master)
1389 {
1390 	acpi_status status;
1391 	acpi_handle handle;
1392 
1393 	handle = ACPI_HANDLE(master->dev.parent);
1394 	if (!handle)
1395 		return;
1396 
1397 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1398 				     acpi_spi_add_device, NULL,
1399 				     master, NULL);
1400 	if (ACPI_FAILURE(status))
1401 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1402 }
1403 #else
1404 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1405 #endif /* CONFIG_ACPI */
1406 
1407 static void spi_master_release(struct device *dev)
1408 {
1409 	struct spi_master *master;
1410 
1411 	master = container_of(dev, struct spi_master, dev);
1412 	kfree(master);
1413 }
1414 
1415 static struct class spi_master_class = {
1416 	.name		= "spi_master",
1417 	.owner		= THIS_MODULE,
1418 	.dev_release	= spi_master_release,
1419 };
1420 
1421 
1422 
1423 /**
1424  * spi_alloc_master - allocate SPI master controller
1425  * @dev: the controller, possibly using the platform_bus
1426  * @size: how much zeroed driver-private data to allocate; the pointer to this
1427  *	memory is in the driver_data field of the returned device,
1428  *	accessible with spi_master_get_devdata().
1429  * Context: can sleep
1430  *
1431  * This call is used only by SPI master controller drivers, which are the
1432  * only ones directly touching chip registers.  It's how they allocate
1433  * an spi_master structure, prior to calling spi_register_master().
1434  *
1435  * This must be called from context that can sleep.  It returns the SPI
1436  * master structure on success, else NULL.
1437  *
1438  * The caller is responsible for assigning the bus number and initializing
1439  * the master's methods before calling spi_register_master(); and (after errors
1440  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1441  * leak.
1442  */
1443 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1444 {
1445 	struct spi_master	*master;
1446 
1447 	if (!dev)
1448 		return NULL;
1449 
1450 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1451 	if (!master)
1452 		return NULL;
1453 
1454 	device_initialize(&master->dev);
1455 	master->bus_num = -1;
1456 	master->num_chipselect = 1;
1457 	master->dev.class = &spi_master_class;
1458 	master->dev.parent = get_device(dev);
1459 	spi_master_set_devdata(master, &master[1]);
1460 
1461 	return master;
1462 }
1463 EXPORT_SYMBOL_GPL(spi_alloc_master);
1464 
1465 #ifdef CONFIG_OF
1466 static int of_spi_register_master(struct spi_master *master)
1467 {
1468 	int nb, i, *cs;
1469 	struct device_node *np = master->dev.of_node;
1470 
1471 	if (!np)
1472 		return 0;
1473 
1474 	nb = of_gpio_named_count(np, "cs-gpios");
1475 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1476 
1477 	/* Return error only for an incorrectly formed cs-gpios property */
1478 	if (nb == 0 || nb == -ENOENT)
1479 		return 0;
1480 	else if (nb < 0)
1481 		return nb;
1482 
1483 	cs = devm_kzalloc(&master->dev,
1484 			  sizeof(int) * master->num_chipselect,
1485 			  GFP_KERNEL);
1486 	master->cs_gpios = cs;
1487 
1488 	if (!master->cs_gpios)
1489 		return -ENOMEM;
1490 
1491 	for (i = 0; i < master->num_chipselect; i++)
1492 		cs[i] = -ENOENT;
1493 
1494 	for (i = 0; i < nb; i++)
1495 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1496 
1497 	return 0;
1498 }
1499 #else
1500 static int of_spi_register_master(struct spi_master *master)
1501 {
1502 	return 0;
1503 }
1504 #endif
1505 
1506 /**
1507  * spi_register_master - register SPI master controller
1508  * @master: initialized master, originally from spi_alloc_master()
1509  * Context: can sleep
1510  *
1511  * SPI master controllers connect to their drivers using some non-SPI bus,
1512  * such as the platform bus.  The final stage of probe() in that code
1513  * includes calling spi_register_master() to hook up to this SPI bus glue.
1514  *
1515  * SPI controllers use board specific (often SOC specific) bus numbers,
1516  * and board-specific addressing for SPI devices combines those numbers
1517  * with chip select numbers.  Since SPI does not directly support dynamic
1518  * device identification, boards need configuration tables telling which
1519  * chip is at which address.
1520  *
1521  * This must be called from context that can sleep.  It returns zero on
1522  * success, else a negative error code (dropping the master's refcount).
1523  * After a successful return, the caller is responsible for calling
1524  * spi_unregister_master().
1525  */
1526 int spi_register_master(struct spi_master *master)
1527 {
1528 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1529 	struct device		*dev = master->dev.parent;
1530 	struct boardinfo	*bi;
1531 	int			status = -ENODEV;
1532 	int			dynamic = 0;
1533 
1534 	if (!dev)
1535 		return -ENODEV;
1536 
1537 	status = of_spi_register_master(master);
1538 	if (status)
1539 		return status;
1540 
1541 	/* even if it's just one always-selected device, there must
1542 	 * be at least one chipselect
1543 	 */
1544 	if (master->num_chipselect == 0)
1545 		return -EINVAL;
1546 
1547 	if ((master->bus_num < 0) && master->dev.of_node)
1548 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1549 
1550 	/* convention:  dynamically assigned bus IDs count down from the max */
1551 	if (master->bus_num < 0) {
1552 		/* FIXME switch to an IDR based scheme, something like
1553 		 * I2C now uses, so we can't run out of "dynamic" IDs
1554 		 */
1555 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1556 		dynamic = 1;
1557 	}
1558 
1559 	INIT_LIST_HEAD(&master->queue);
1560 	spin_lock_init(&master->queue_lock);
1561 	spin_lock_init(&master->bus_lock_spinlock);
1562 	mutex_init(&master->bus_lock_mutex);
1563 	master->bus_lock_flag = 0;
1564 	init_completion(&master->xfer_completion);
1565 	if (!master->max_dma_len)
1566 		master->max_dma_len = INT_MAX;
1567 
1568 	/* register the device, then userspace will see it.
1569 	 * registration fails if the bus ID is in use.
1570 	 */
1571 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1572 	status = device_add(&master->dev);
1573 	if (status < 0)
1574 		goto done;
1575 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1576 			dynamic ? " (dynamic)" : "");
1577 
1578 	/* If we're using a queued driver, start the queue */
1579 	if (master->transfer)
1580 		dev_info(dev, "master is unqueued, this is deprecated\n");
1581 	else {
1582 		status = spi_master_initialize_queue(master);
1583 		if (status) {
1584 			device_del(&master->dev);
1585 			goto done;
1586 		}
1587 	}
1588 
1589 	mutex_lock(&board_lock);
1590 	list_add_tail(&master->list, &spi_master_list);
1591 	list_for_each_entry(bi, &board_list, list)
1592 		spi_match_master_to_boardinfo(master, &bi->board_info);
1593 	mutex_unlock(&board_lock);
1594 
1595 	/* Register devices from the device tree and ACPI */
1596 	of_register_spi_devices(master);
1597 	acpi_register_spi_devices(master);
1598 done:
1599 	return status;
1600 }
1601 EXPORT_SYMBOL_GPL(spi_register_master);
1602 
1603 static void devm_spi_unregister(struct device *dev, void *res)
1604 {
1605 	spi_unregister_master(*(struct spi_master **)res);
1606 }
1607 
1608 /**
1609  * dev_spi_register_master - register managed SPI master controller
1610  * @dev:    device managing SPI master
1611  * @master: initialized master, originally from spi_alloc_master()
1612  * Context: can sleep
1613  *
1614  * Register a SPI device as with spi_register_master() which will
1615  * automatically be unregister
1616  */
1617 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1618 {
1619 	struct spi_master **ptr;
1620 	int ret;
1621 
1622 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1623 	if (!ptr)
1624 		return -ENOMEM;
1625 
1626 	ret = spi_register_master(master);
1627 	if (!ret) {
1628 		*ptr = master;
1629 		devres_add(dev, ptr);
1630 	} else {
1631 		devres_free(ptr);
1632 	}
1633 
1634 	return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1637 
1638 static int __unregister(struct device *dev, void *null)
1639 {
1640 	spi_unregister_device(to_spi_device(dev));
1641 	return 0;
1642 }
1643 
1644 /**
1645  * spi_unregister_master - unregister SPI master controller
1646  * @master: the master being unregistered
1647  * Context: can sleep
1648  *
1649  * This call is used only by SPI master controller drivers, which are the
1650  * only ones directly touching chip registers.
1651  *
1652  * This must be called from context that can sleep.
1653  */
1654 void spi_unregister_master(struct spi_master *master)
1655 {
1656 	int dummy;
1657 
1658 	if (master->queued) {
1659 		if (spi_destroy_queue(master))
1660 			dev_err(&master->dev, "queue remove failed\n");
1661 	}
1662 
1663 	mutex_lock(&board_lock);
1664 	list_del(&master->list);
1665 	mutex_unlock(&board_lock);
1666 
1667 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1668 	device_unregister(&master->dev);
1669 }
1670 EXPORT_SYMBOL_GPL(spi_unregister_master);
1671 
1672 int spi_master_suspend(struct spi_master *master)
1673 {
1674 	int ret;
1675 
1676 	/* Basically no-ops for non-queued masters */
1677 	if (!master->queued)
1678 		return 0;
1679 
1680 	ret = spi_stop_queue(master);
1681 	if (ret)
1682 		dev_err(&master->dev, "queue stop failed\n");
1683 
1684 	return ret;
1685 }
1686 EXPORT_SYMBOL_GPL(spi_master_suspend);
1687 
1688 int spi_master_resume(struct spi_master *master)
1689 {
1690 	int ret;
1691 
1692 	if (!master->queued)
1693 		return 0;
1694 
1695 	ret = spi_start_queue(master);
1696 	if (ret)
1697 		dev_err(&master->dev, "queue restart failed\n");
1698 
1699 	return ret;
1700 }
1701 EXPORT_SYMBOL_GPL(spi_master_resume);
1702 
1703 static int __spi_master_match(struct device *dev, const void *data)
1704 {
1705 	struct spi_master *m;
1706 	const u16 *bus_num = data;
1707 
1708 	m = container_of(dev, struct spi_master, dev);
1709 	return m->bus_num == *bus_num;
1710 }
1711 
1712 /**
1713  * spi_busnum_to_master - look up master associated with bus_num
1714  * @bus_num: the master's bus number
1715  * Context: can sleep
1716  *
1717  * This call may be used with devices that are registered after
1718  * arch init time.  It returns a refcounted pointer to the relevant
1719  * spi_master (which the caller must release), or NULL if there is
1720  * no such master registered.
1721  */
1722 struct spi_master *spi_busnum_to_master(u16 bus_num)
1723 {
1724 	struct device		*dev;
1725 	struct spi_master	*master = NULL;
1726 
1727 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1728 				__spi_master_match);
1729 	if (dev)
1730 		master = container_of(dev, struct spi_master, dev);
1731 	/* reference got in class_find_device */
1732 	return master;
1733 }
1734 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1735 
1736 
1737 /*-------------------------------------------------------------------------*/
1738 
1739 /* Core methods for SPI master protocol drivers.  Some of the
1740  * other core methods are currently defined as inline functions.
1741  */
1742 
1743 /**
1744  * spi_setup - setup SPI mode and clock rate
1745  * @spi: the device whose settings are being modified
1746  * Context: can sleep, and no requests are queued to the device
1747  *
1748  * SPI protocol drivers may need to update the transfer mode if the
1749  * device doesn't work with its default.  They may likewise need
1750  * to update clock rates or word sizes from initial values.  This function
1751  * changes those settings, and must be called from a context that can sleep.
1752  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1753  * effect the next time the device is selected and data is transferred to
1754  * or from it.  When this function returns, the spi device is deselected.
1755  *
1756  * Note that this call will fail if the protocol driver specifies an option
1757  * that the underlying controller or its driver does not support.  For
1758  * example, not all hardware supports wire transfers using nine bit words,
1759  * LSB-first wire encoding, or active-high chipselects.
1760  */
1761 int spi_setup(struct spi_device *spi)
1762 {
1763 	unsigned	bad_bits, ugly_bits;
1764 	int		status = 0;
1765 
1766 	/* check mode to prevent that DUAL and QUAD set at the same time
1767 	 */
1768 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1769 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1770 		dev_err(&spi->dev,
1771 		"setup: can not select dual and quad at the same time\n");
1772 		return -EINVAL;
1773 	}
1774 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1775 	 */
1776 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1777 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1778 		return -EINVAL;
1779 	/* help drivers fail *cleanly* when they need options
1780 	 * that aren't supported with their current master
1781 	 */
1782 	bad_bits = spi->mode & ~spi->master->mode_bits;
1783 	ugly_bits = bad_bits &
1784 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1785 	if (ugly_bits) {
1786 		dev_warn(&spi->dev,
1787 			 "setup: ignoring unsupported mode bits %x\n",
1788 			 ugly_bits);
1789 		spi->mode &= ~ugly_bits;
1790 		bad_bits &= ~ugly_bits;
1791 	}
1792 	if (bad_bits) {
1793 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1794 			bad_bits);
1795 		return -EINVAL;
1796 	}
1797 
1798 	if (!spi->bits_per_word)
1799 		spi->bits_per_word = 8;
1800 
1801 	if (!spi->max_speed_hz)
1802 		spi->max_speed_hz = spi->master->max_speed_hz;
1803 
1804 	spi_set_cs(spi, false);
1805 
1806 	if (spi->master->setup)
1807 		status = spi->master->setup(spi);
1808 
1809 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1810 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1811 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1812 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1813 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1814 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1815 			spi->bits_per_word, spi->max_speed_hz,
1816 			status);
1817 
1818 	return status;
1819 }
1820 EXPORT_SYMBOL_GPL(spi_setup);
1821 
1822 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1823 {
1824 	struct spi_master *master = spi->master;
1825 	struct spi_transfer *xfer;
1826 	int w_size;
1827 
1828 	if (list_empty(&message->transfers))
1829 		return -EINVAL;
1830 
1831 	/* Half-duplex links include original MicroWire, and ones with
1832 	 * only one data pin like SPI_3WIRE (switches direction) or where
1833 	 * either MOSI or MISO is missing.  They can also be caused by
1834 	 * software limitations.
1835 	 */
1836 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1837 			|| (spi->mode & SPI_3WIRE)) {
1838 		unsigned flags = master->flags;
1839 
1840 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1841 			if (xfer->rx_buf && xfer->tx_buf)
1842 				return -EINVAL;
1843 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1844 				return -EINVAL;
1845 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1846 				return -EINVAL;
1847 		}
1848 	}
1849 
1850 	/**
1851 	 * Set transfer bits_per_word and max speed as spi device default if
1852 	 * it is not set for this transfer.
1853 	 * Set transfer tx_nbits and rx_nbits as single transfer default
1854 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1855 	 */
1856 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1857 		message->frame_length += xfer->len;
1858 		if (!xfer->bits_per_word)
1859 			xfer->bits_per_word = spi->bits_per_word;
1860 
1861 		if (!xfer->speed_hz)
1862 			xfer->speed_hz = spi->max_speed_hz;
1863 
1864 		if (master->max_speed_hz &&
1865 		    xfer->speed_hz > master->max_speed_hz)
1866 			xfer->speed_hz = master->max_speed_hz;
1867 
1868 		if (master->bits_per_word_mask) {
1869 			/* Only 32 bits fit in the mask */
1870 			if (xfer->bits_per_word > 32)
1871 				return -EINVAL;
1872 			if (!(master->bits_per_word_mask &
1873 					BIT(xfer->bits_per_word - 1)))
1874 				return -EINVAL;
1875 		}
1876 
1877 		/*
1878 		 * SPI transfer length should be multiple of SPI word size
1879 		 * where SPI word size should be power-of-two multiple
1880 		 */
1881 		if (xfer->bits_per_word <= 8)
1882 			w_size = 1;
1883 		else if (xfer->bits_per_word <= 16)
1884 			w_size = 2;
1885 		else
1886 			w_size = 4;
1887 
1888 		/* No partial transfers accepted */
1889 		if (xfer->len % w_size)
1890 			return -EINVAL;
1891 
1892 		if (xfer->speed_hz && master->min_speed_hz &&
1893 		    xfer->speed_hz < master->min_speed_hz)
1894 			return -EINVAL;
1895 
1896 		if (xfer->tx_buf && !xfer->tx_nbits)
1897 			xfer->tx_nbits = SPI_NBITS_SINGLE;
1898 		if (xfer->rx_buf && !xfer->rx_nbits)
1899 			xfer->rx_nbits = SPI_NBITS_SINGLE;
1900 		/* check transfer tx/rx_nbits:
1901 		 * 1. check the value matches one of single, dual and quad
1902 		 * 2. check tx/rx_nbits match the mode in spi_device
1903 		 */
1904 		if (xfer->tx_buf) {
1905 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1906 				xfer->tx_nbits != SPI_NBITS_DUAL &&
1907 				xfer->tx_nbits != SPI_NBITS_QUAD)
1908 				return -EINVAL;
1909 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1910 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1911 				return -EINVAL;
1912 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1913 				!(spi->mode & SPI_TX_QUAD))
1914 				return -EINVAL;
1915 		}
1916 		/* check transfer rx_nbits */
1917 		if (xfer->rx_buf) {
1918 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1919 				xfer->rx_nbits != SPI_NBITS_DUAL &&
1920 				xfer->rx_nbits != SPI_NBITS_QUAD)
1921 				return -EINVAL;
1922 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1923 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1924 				return -EINVAL;
1925 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1926 				!(spi->mode & SPI_RX_QUAD))
1927 				return -EINVAL;
1928 		}
1929 	}
1930 
1931 	message->status = -EINPROGRESS;
1932 
1933 	return 0;
1934 }
1935 
1936 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1937 {
1938 	struct spi_master *master = spi->master;
1939 
1940 	message->spi = spi;
1941 
1942 	trace_spi_message_submit(message);
1943 
1944 	return master->transfer(spi, message);
1945 }
1946 
1947 /**
1948  * spi_async - asynchronous SPI transfer
1949  * @spi: device with which data will be exchanged
1950  * @message: describes the data transfers, including completion callback
1951  * Context: any (irqs may be blocked, etc)
1952  *
1953  * This call may be used in_irq and other contexts which can't sleep,
1954  * as well as from task contexts which can sleep.
1955  *
1956  * The completion callback is invoked in a context which can't sleep.
1957  * Before that invocation, the value of message->status is undefined.
1958  * When the callback is issued, message->status holds either zero (to
1959  * indicate complete success) or a negative error code.  After that
1960  * callback returns, the driver which issued the transfer request may
1961  * deallocate the associated memory; it's no longer in use by any SPI
1962  * core or controller driver code.
1963  *
1964  * Note that although all messages to a spi_device are handled in
1965  * FIFO order, messages may go to different devices in other orders.
1966  * Some device might be higher priority, or have various "hard" access
1967  * time requirements, for example.
1968  *
1969  * On detection of any fault during the transfer, processing of
1970  * the entire message is aborted, and the device is deselected.
1971  * Until returning from the associated message completion callback,
1972  * no other spi_message queued to that device will be processed.
1973  * (This rule applies equally to all the synchronous transfer calls,
1974  * which are wrappers around this core asynchronous primitive.)
1975  */
1976 int spi_async(struct spi_device *spi, struct spi_message *message)
1977 {
1978 	struct spi_master *master = spi->master;
1979 	int ret;
1980 	unsigned long flags;
1981 
1982 	ret = __spi_validate(spi, message);
1983 	if (ret != 0)
1984 		return ret;
1985 
1986 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1987 
1988 	if (master->bus_lock_flag)
1989 		ret = -EBUSY;
1990 	else
1991 		ret = __spi_async(spi, message);
1992 
1993 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1994 
1995 	return ret;
1996 }
1997 EXPORT_SYMBOL_GPL(spi_async);
1998 
1999 /**
2000  * spi_async_locked - version of spi_async with exclusive bus usage
2001  * @spi: device with which data will be exchanged
2002  * @message: describes the data transfers, including completion callback
2003  * Context: any (irqs may be blocked, etc)
2004  *
2005  * This call may be used in_irq and other contexts which can't sleep,
2006  * as well as from task contexts which can sleep.
2007  *
2008  * The completion callback is invoked in a context which can't sleep.
2009  * Before that invocation, the value of message->status is undefined.
2010  * When the callback is issued, message->status holds either zero (to
2011  * indicate complete success) or a negative error code.  After that
2012  * callback returns, the driver which issued the transfer request may
2013  * deallocate the associated memory; it's no longer in use by any SPI
2014  * core or controller driver code.
2015  *
2016  * Note that although all messages to a spi_device are handled in
2017  * FIFO order, messages may go to different devices in other orders.
2018  * Some device might be higher priority, or have various "hard" access
2019  * time requirements, for example.
2020  *
2021  * On detection of any fault during the transfer, processing of
2022  * the entire message is aborted, and the device is deselected.
2023  * Until returning from the associated message completion callback,
2024  * no other spi_message queued to that device will be processed.
2025  * (This rule applies equally to all the synchronous transfer calls,
2026  * which are wrappers around this core asynchronous primitive.)
2027  */
2028 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2029 {
2030 	struct spi_master *master = spi->master;
2031 	int ret;
2032 	unsigned long flags;
2033 
2034 	ret = __spi_validate(spi, message);
2035 	if (ret != 0)
2036 		return ret;
2037 
2038 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2039 
2040 	ret = __spi_async(spi, message);
2041 
2042 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2043 
2044 	return ret;
2045 
2046 }
2047 EXPORT_SYMBOL_GPL(spi_async_locked);
2048 
2049 
2050 /*-------------------------------------------------------------------------*/
2051 
2052 /* Utility methods for SPI master protocol drivers, layered on
2053  * top of the core.  Some other utility methods are defined as
2054  * inline functions.
2055  */
2056 
2057 static void spi_complete(void *arg)
2058 {
2059 	complete(arg);
2060 }
2061 
2062 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2063 		      int bus_locked)
2064 {
2065 	DECLARE_COMPLETION_ONSTACK(done);
2066 	int status;
2067 	struct spi_master *master = spi->master;
2068 	unsigned long flags;
2069 
2070 	status = __spi_validate(spi, message);
2071 	if (status != 0)
2072 		return status;
2073 
2074 	message->complete = spi_complete;
2075 	message->context = &done;
2076 	message->spi = spi;
2077 
2078 	if (!bus_locked)
2079 		mutex_lock(&master->bus_lock_mutex);
2080 
2081 	/* If we're not using the legacy transfer method then we will
2082 	 * try to transfer in the calling context so special case.
2083 	 * This code would be less tricky if we could remove the
2084 	 * support for driver implemented message queues.
2085 	 */
2086 	if (master->transfer == spi_queued_transfer) {
2087 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2088 
2089 		trace_spi_message_submit(message);
2090 
2091 		status = __spi_queued_transfer(spi, message, false);
2092 
2093 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2094 	} else {
2095 		status = spi_async_locked(spi, message);
2096 	}
2097 
2098 	if (!bus_locked)
2099 		mutex_unlock(&master->bus_lock_mutex);
2100 
2101 	if (status == 0) {
2102 		/* Push out the messages in the calling context if we
2103 		 * can.
2104 		 */
2105 		if (master->transfer == spi_queued_transfer)
2106 			__spi_pump_messages(master, false);
2107 
2108 		wait_for_completion(&done);
2109 		status = message->status;
2110 	}
2111 	message->context = NULL;
2112 	return status;
2113 }
2114 
2115 /**
2116  * spi_sync - blocking/synchronous SPI data transfers
2117  * @spi: device with which data will be exchanged
2118  * @message: describes the data transfers
2119  * Context: can sleep
2120  *
2121  * This call may only be used from a context that may sleep.  The sleep
2122  * is non-interruptible, and has no timeout.  Low-overhead controller
2123  * drivers may DMA directly into and out of the message buffers.
2124  *
2125  * Note that the SPI device's chip select is active during the message,
2126  * and then is normally disabled between messages.  Drivers for some
2127  * frequently-used devices may want to minimize costs of selecting a chip,
2128  * by leaving it selected in anticipation that the next message will go
2129  * to the same chip.  (That may increase power usage.)
2130  *
2131  * Also, the caller is guaranteeing that the memory associated with the
2132  * message will not be freed before this call returns.
2133  *
2134  * It returns zero on success, else a negative error code.
2135  */
2136 int spi_sync(struct spi_device *spi, struct spi_message *message)
2137 {
2138 	return __spi_sync(spi, message, 0);
2139 }
2140 EXPORT_SYMBOL_GPL(spi_sync);
2141 
2142 /**
2143  * spi_sync_locked - version of spi_sync with exclusive bus usage
2144  * @spi: device with which data will be exchanged
2145  * @message: describes the data transfers
2146  * Context: can sleep
2147  *
2148  * This call may only be used from a context that may sleep.  The sleep
2149  * is non-interruptible, and has no timeout.  Low-overhead controller
2150  * drivers may DMA directly into and out of the message buffers.
2151  *
2152  * This call should be used by drivers that require exclusive access to the
2153  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2154  * be released by a spi_bus_unlock call when the exclusive access is over.
2155  *
2156  * It returns zero on success, else a negative error code.
2157  */
2158 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2159 {
2160 	return __spi_sync(spi, message, 1);
2161 }
2162 EXPORT_SYMBOL_GPL(spi_sync_locked);
2163 
2164 /**
2165  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2166  * @master: SPI bus master that should be locked for exclusive bus access
2167  * Context: can sleep
2168  *
2169  * This call may only be used from a context that may sleep.  The sleep
2170  * is non-interruptible, and has no timeout.
2171  *
2172  * This call should be used by drivers that require exclusive access to the
2173  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2174  * exclusive access is over. Data transfer must be done by spi_sync_locked
2175  * and spi_async_locked calls when the SPI bus lock is held.
2176  *
2177  * It returns zero on success, else a negative error code.
2178  */
2179 int spi_bus_lock(struct spi_master *master)
2180 {
2181 	unsigned long flags;
2182 
2183 	mutex_lock(&master->bus_lock_mutex);
2184 
2185 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2186 	master->bus_lock_flag = 1;
2187 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2188 
2189 	/* mutex remains locked until spi_bus_unlock is called */
2190 
2191 	return 0;
2192 }
2193 EXPORT_SYMBOL_GPL(spi_bus_lock);
2194 
2195 /**
2196  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2197  * @master: SPI bus master that was locked for exclusive bus access
2198  * Context: can sleep
2199  *
2200  * This call may only be used from a context that may sleep.  The sleep
2201  * is non-interruptible, and has no timeout.
2202  *
2203  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2204  * call.
2205  *
2206  * It returns zero on success, else a negative error code.
2207  */
2208 int spi_bus_unlock(struct spi_master *master)
2209 {
2210 	master->bus_lock_flag = 0;
2211 
2212 	mutex_unlock(&master->bus_lock_mutex);
2213 
2214 	return 0;
2215 }
2216 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2217 
2218 /* portable code must never pass more than 32 bytes */
2219 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2220 
2221 static u8	*buf;
2222 
2223 /**
2224  * spi_write_then_read - SPI synchronous write followed by read
2225  * @spi: device with which data will be exchanged
2226  * @txbuf: data to be written (need not be dma-safe)
2227  * @n_tx: size of txbuf, in bytes
2228  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2229  * @n_rx: size of rxbuf, in bytes
2230  * Context: can sleep
2231  *
2232  * This performs a half duplex MicroWire style transaction with the
2233  * device, sending txbuf and then reading rxbuf.  The return value
2234  * is zero for success, else a negative errno status code.
2235  * This call may only be used from a context that may sleep.
2236  *
2237  * Parameters to this routine are always copied using a small buffer;
2238  * portable code should never use this for more than 32 bytes.
2239  * Performance-sensitive or bulk transfer code should instead use
2240  * spi_{async,sync}() calls with dma-safe buffers.
2241  */
2242 int spi_write_then_read(struct spi_device *spi,
2243 		const void *txbuf, unsigned n_tx,
2244 		void *rxbuf, unsigned n_rx)
2245 {
2246 	static DEFINE_MUTEX(lock);
2247 
2248 	int			status;
2249 	struct spi_message	message;
2250 	struct spi_transfer	x[2];
2251 	u8			*local_buf;
2252 
2253 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2254 	 * copying here, (as a pure convenience thing), but we can
2255 	 * keep heap costs out of the hot path unless someone else is
2256 	 * using the pre-allocated buffer or the transfer is too large.
2257 	 */
2258 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2259 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2260 				    GFP_KERNEL | GFP_DMA);
2261 		if (!local_buf)
2262 			return -ENOMEM;
2263 	} else {
2264 		local_buf = buf;
2265 	}
2266 
2267 	spi_message_init(&message);
2268 	memset(x, 0, sizeof(x));
2269 	if (n_tx) {
2270 		x[0].len = n_tx;
2271 		spi_message_add_tail(&x[0], &message);
2272 	}
2273 	if (n_rx) {
2274 		x[1].len = n_rx;
2275 		spi_message_add_tail(&x[1], &message);
2276 	}
2277 
2278 	memcpy(local_buf, txbuf, n_tx);
2279 	x[0].tx_buf = local_buf;
2280 	x[1].rx_buf = local_buf + n_tx;
2281 
2282 	/* do the i/o */
2283 	status = spi_sync(spi, &message);
2284 	if (status == 0)
2285 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2286 
2287 	if (x[0].tx_buf == buf)
2288 		mutex_unlock(&lock);
2289 	else
2290 		kfree(local_buf);
2291 
2292 	return status;
2293 }
2294 EXPORT_SYMBOL_GPL(spi_write_then_read);
2295 
2296 /*-------------------------------------------------------------------------*/
2297 
2298 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2299 static int __spi_of_device_match(struct device *dev, void *data)
2300 {
2301 	return dev->of_node == data;
2302 }
2303 
2304 /* must call put_device() when done with returned spi_device device */
2305 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2306 {
2307 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2308 						__spi_of_device_match);
2309 	return dev ? to_spi_device(dev) : NULL;
2310 }
2311 
2312 static int __spi_of_master_match(struct device *dev, const void *data)
2313 {
2314 	return dev->of_node == data;
2315 }
2316 
2317 /* the spi masters are not using spi_bus, so we find it with another way */
2318 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2319 {
2320 	struct device *dev;
2321 
2322 	dev = class_find_device(&spi_master_class, NULL, node,
2323 				__spi_of_master_match);
2324 	if (!dev)
2325 		return NULL;
2326 
2327 	/* reference got in class_find_device */
2328 	return container_of(dev, struct spi_master, dev);
2329 }
2330 
2331 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2332 			 void *arg)
2333 {
2334 	struct of_reconfig_data *rd = arg;
2335 	struct spi_master *master;
2336 	struct spi_device *spi;
2337 
2338 	switch (of_reconfig_get_state_change(action, arg)) {
2339 	case OF_RECONFIG_CHANGE_ADD:
2340 		master = of_find_spi_master_by_node(rd->dn->parent);
2341 		if (master == NULL)
2342 			return NOTIFY_OK;	/* not for us */
2343 
2344 		spi = of_register_spi_device(master, rd->dn);
2345 		put_device(&master->dev);
2346 
2347 		if (IS_ERR(spi)) {
2348 			pr_err("%s: failed to create for '%s'\n",
2349 					__func__, rd->dn->full_name);
2350 			return notifier_from_errno(PTR_ERR(spi));
2351 		}
2352 		break;
2353 
2354 	case OF_RECONFIG_CHANGE_REMOVE:
2355 		/* find our device by node */
2356 		spi = of_find_spi_device_by_node(rd->dn);
2357 		if (spi == NULL)
2358 			return NOTIFY_OK;	/* no? not meant for us */
2359 
2360 		/* unregister takes one ref away */
2361 		spi_unregister_device(spi);
2362 
2363 		/* and put the reference of the find */
2364 		put_device(&spi->dev);
2365 		break;
2366 	}
2367 
2368 	return NOTIFY_OK;
2369 }
2370 
2371 static struct notifier_block spi_of_notifier = {
2372 	.notifier_call = of_spi_notify,
2373 };
2374 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2375 extern struct notifier_block spi_of_notifier;
2376 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2377 
2378 static int __init spi_init(void)
2379 {
2380 	int	status;
2381 
2382 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2383 	if (!buf) {
2384 		status = -ENOMEM;
2385 		goto err0;
2386 	}
2387 
2388 	status = bus_register(&spi_bus_type);
2389 	if (status < 0)
2390 		goto err1;
2391 
2392 	status = class_register(&spi_master_class);
2393 	if (status < 0)
2394 		goto err2;
2395 
2396 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2397 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2398 
2399 	return 0;
2400 
2401 err2:
2402 	bus_unregister(&spi_bus_type);
2403 err1:
2404 	kfree(buf);
2405 	buf = NULL;
2406 err0:
2407 	return status;
2408 }
2409 
2410 /* board_info is normally registered in arch_initcall(),
2411  * but even essential drivers wait till later
2412  *
2413  * REVISIT only boardinfo really needs static linking. the rest (device and
2414  * driver registration) _could_ be dynamically linked (modular) ... costs
2415  * include needing to have boardinfo data structures be much more public.
2416  */
2417 postcore_initcall(spi_init);
2418 
2419