xref: /openbmc/linux/drivers/spi/spi.c (revision b8fecfdf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Empty string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del operation for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /*
479  * Prevents addition of devices with same chip select and
480  * addition of devices below an unregistering controller.
481  */
482 static DEFINE_MUTEX(spi_add_lock);
483 
484 /**
485  * spi_alloc_device - Allocate a new SPI device
486  * @ctlr: Controller to which device is connected
487  * Context: can sleep
488  *
489  * Allows a driver to allocate and initialize a spi_device without
490  * registering it immediately.  This allows a driver to directly
491  * fill the spi_device with device parameters before calling
492  * spi_add_device() on it.
493  *
494  * Caller is responsible to call spi_add_device() on the returned
495  * spi_device structure to add it to the SPI controller.  If the caller
496  * needs to discard the spi_device without adding it, then it should
497  * call spi_dev_put() on it.
498  *
499  * Return: a pointer to the new device, or NULL.
500  */
501 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
502 {
503 	struct spi_device	*spi;
504 
505 	if (!spi_controller_get(ctlr))
506 		return NULL;
507 
508 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
509 	if (!spi) {
510 		spi_controller_put(ctlr);
511 		return NULL;
512 	}
513 
514 	spi->master = spi->controller = ctlr;
515 	spi->dev.parent = &ctlr->dev;
516 	spi->dev.bus = &spi_bus_type;
517 	spi->dev.release = spidev_release;
518 	spi->cs_gpio = -ENOENT;
519 	spi->mode = ctlr->buswidth_override_bits;
520 
521 	spin_lock_init(&spi->statistics.lock);
522 
523 	device_initialize(&spi->dev);
524 	return spi;
525 }
526 EXPORT_SYMBOL_GPL(spi_alloc_device);
527 
528 static void spi_dev_set_name(struct spi_device *spi)
529 {
530 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
531 
532 	if (adev) {
533 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
534 		return;
535 	}
536 
537 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
538 		     spi->chip_select);
539 }
540 
541 static int spi_dev_check(struct device *dev, void *data)
542 {
543 	struct spi_device *spi = to_spi_device(dev);
544 	struct spi_device *new_spi = data;
545 
546 	if (spi->controller == new_spi->controller &&
547 	    spi->chip_select == new_spi->chip_select)
548 		return -EBUSY;
549 	return 0;
550 }
551 
552 /**
553  * spi_add_device - Add spi_device allocated with spi_alloc_device
554  * @spi: spi_device to register
555  *
556  * Companion function to spi_alloc_device.  Devices allocated with
557  * spi_alloc_device can be added onto the spi bus with this function.
558  *
559  * Return: 0 on success; negative errno on failure
560  */
561 int spi_add_device(struct spi_device *spi)
562 {
563 	struct spi_controller *ctlr = spi->controller;
564 	struct device *dev = ctlr->dev.parent;
565 	int status;
566 
567 	/* Chipselects are numbered 0..max; validate. */
568 	if (spi->chip_select >= ctlr->num_chipselect) {
569 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
570 			ctlr->num_chipselect);
571 		return -EINVAL;
572 	}
573 
574 	/* Set the bus ID string */
575 	spi_dev_set_name(spi);
576 
577 	/* We need to make sure there's no other device with this
578 	 * chipselect **BEFORE** we call setup(), else we'll trash
579 	 * its configuration.  Lock against concurrent add() calls.
580 	 */
581 	mutex_lock(&spi_add_lock);
582 
583 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
584 	if (status) {
585 		dev_err(dev, "chipselect %d already in use\n",
586 				spi->chip_select);
587 		goto done;
588 	}
589 
590 	/* Controller may unregister concurrently */
591 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
592 	    !device_is_registered(&ctlr->dev)) {
593 		status = -ENODEV;
594 		goto done;
595 	}
596 
597 	/* Descriptors take precedence */
598 	if (ctlr->cs_gpiods)
599 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
600 	else if (ctlr->cs_gpios)
601 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
602 
603 	/* Drivers may modify this initial i/o setup, but will
604 	 * normally rely on the device being setup.  Devices
605 	 * using SPI_CS_HIGH can't coexist well otherwise...
606 	 */
607 	status = spi_setup(spi);
608 	if (status < 0) {
609 		dev_err(dev, "can't setup %s, status %d\n",
610 				dev_name(&spi->dev), status);
611 		goto done;
612 	}
613 
614 	/* Device may be bound to an active driver when this returns */
615 	status = device_add(&spi->dev);
616 	if (status < 0)
617 		dev_err(dev, "can't add %s, status %d\n",
618 				dev_name(&spi->dev), status);
619 	else
620 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
621 
622 done:
623 	mutex_unlock(&spi_add_lock);
624 	return status;
625 }
626 EXPORT_SYMBOL_GPL(spi_add_device);
627 
628 /**
629  * spi_new_device - instantiate one new SPI device
630  * @ctlr: Controller to which device is connected
631  * @chip: Describes the SPI device
632  * Context: can sleep
633  *
634  * On typical mainboards, this is purely internal; and it's not needed
635  * after board init creates the hard-wired devices.  Some development
636  * platforms may not be able to use spi_register_board_info though, and
637  * this is exported so that for example a USB or parport based adapter
638  * driver could add devices (which it would learn about out-of-band).
639  *
640  * Return: the new device, or NULL.
641  */
642 struct spi_device *spi_new_device(struct spi_controller *ctlr,
643 				  struct spi_board_info *chip)
644 {
645 	struct spi_device	*proxy;
646 	int			status;
647 
648 	/* NOTE:  caller did any chip->bus_num checks necessary.
649 	 *
650 	 * Also, unless we change the return value convention to use
651 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
652 	 * suggests syslogged diagnostics are best here (ugh).
653 	 */
654 
655 	proxy = spi_alloc_device(ctlr);
656 	if (!proxy)
657 		return NULL;
658 
659 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
660 
661 	proxy->chip_select = chip->chip_select;
662 	proxy->max_speed_hz = chip->max_speed_hz;
663 	proxy->mode = chip->mode;
664 	proxy->irq = chip->irq;
665 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
666 	proxy->dev.platform_data = (void *) chip->platform_data;
667 	proxy->controller_data = chip->controller_data;
668 	proxy->controller_state = NULL;
669 
670 	if (chip->properties) {
671 		status = device_add_properties(&proxy->dev, chip->properties);
672 		if (status) {
673 			dev_err(&ctlr->dev,
674 				"failed to add properties to '%s': %d\n",
675 				chip->modalias, status);
676 			goto err_dev_put;
677 		}
678 	}
679 
680 	status = spi_add_device(proxy);
681 	if (status < 0)
682 		goto err_remove_props;
683 
684 	return proxy;
685 
686 err_remove_props:
687 	if (chip->properties)
688 		device_remove_properties(&proxy->dev);
689 err_dev_put:
690 	spi_dev_put(proxy);
691 	return NULL;
692 }
693 EXPORT_SYMBOL_GPL(spi_new_device);
694 
695 /**
696  * spi_unregister_device - unregister a single SPI device
697  * @spi: spi_device to unregister
698  *
699  * Start making the passed SPI device vanish. Normally this would be handled
700  * by spi_unregister_controller().
701  */
702 void spi_unregister_device(struct spi_device *spi)
703 {
704 	if (!spi)
705 		return;
706 
707 	if (spi->dev.of_node) {
708 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
709 		of_node_put(spi->dev.of_node);
710 	}
711 	if (ACPI_COMPANION(&spi->dev))
712 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
713 	device_unregister(&spi->dev);
714 }
715 EXPORT_SYMBOL_GPL(spi_unregister_device);
716 
717 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
718 					      struct spi_board_info *bi)
719 {
720 	struct spi_device *dev;
721 
722 	if (ctlr->bus_num != bi->bus_num)
723 		return;
724 
725 	dev = spi_new_device(ctlr, bi);
726 	if (!dev)
727 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
728 			bi->modalias);
729 }
730 
731 /**
732  * spi_register_board_info - register SPI devices for a given board
733  * @info: array of chip descriptors
734  * @n: how many descriptors are provided
735  * Context: can sleep
736  *
737  * Board-specific early init code calls this (probably during arch_initcall)
738  * with segments of the SPI device table.  Any device nodes are created later,
739  * after the relevant parent SPI controller (bus_num) is defined.  We keep
740  * this table of devices forever, so that reloading a controller driver will
741  * not make Linux forget about these hard-wired devices.
742  *
743  * Other code can also call this, e.g. a particular add-on board might provide
744  * SPI devices through its expansion connector, so code initializing that board
745  * would naturally declare its SPI devices.
746  *
747  * The board info passed can safely be __initdata ... but be careful of
748  * any embedded pointers (platform_data, etc), they're copied as-is.
749  * Device properties are deep-copied though.
750  *
751  * Return: zero on success, else a negative error code.
752  */
753 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
754 {
755 	struct boardinfo *bi;
756 	int i;
757 
758 	if (!n)
759 		return 0;
760 
761 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
762 	if (!bi)
763 		return -ENOMEM;
764 
765 	for (i = 0; i < n; i++, bi++, info++) {
766 		struct spi_controller *ctlr;
767 
768 		memcpy(&bi->board_info, info, sizeof(*info));
769 		if (info->properties) {
770 			bi->board_info.properties =
771 					property_entries_dup(info->properties);
772 			if (IS_ERR(bi->board_info.properties))
773 				return PTR_ERR(bi->board_info.properties);
774 		}
775 
776 		mutex_lock(&board_lock);
777 		list_add_tail(&bi->list, &board_list);
778 		list_for_each_entry(ctlr, &spi_controller_list, list)
779 			spi_match_controller_to_boardinfo(ctlr,
780 							  &bi->board_info);
781 		mutex_unlock(&board_lock);
782 	}
783 
784 	return 0;
785 }
786 
787 /*-------------------------------------------------------------------------*/
788 
789 static void spi_set_cs(struct spi_device *spi, bool enable)
790 {
791 	bool enable1 = enable;
792 
793 	/*
794 	 * Avoid calling into the driver (or doing delays) if the chip select
795 	 * isn't actually changing from the last time this was called.
796 	 */
797 	if ((spi->controller->last_cs_enable == enable) &&
798 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
799 		return;
800 
801 	spi->controller->last_cs_enable = enable;
802 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
803 
804 	if (!spi->controller->set_cs_timing) {
805 		if (enable1)
806 			spi_delay_exec(&spi->controller->cs_setup, NULL);
807 		else
808 			spi_delay_exec(&spi->controller->cs_hold, NULL);
809 	}
810 
811 	if (spi->mode & SPI_CS_HIGH)
812 		enable = !enable;
813 
814 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
815 		if (!(spi->mode & SPI_NO_CS)) {
816 			if (spi->cs_gpiod)
817 				/* polarity handled by gpiolib */
818 				gpiod_set_value_cansleep(spi->cs_gpiod,
819 							 enable1);
820 			else
821 				/*
822 				 * invert the enable line, as active low is
823 				 * default for SPI.
824 				 */
825 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
826 		}
827 		/* Some SPI masters need both GPIO CS & slave_select */
828 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
829 		    spi->controller->set_cs)
830 			spi->controller->set_cs(spi, !enable);
831 	} else if (spi->controller->set_cs) {
832 		spi->controller->set_cs(spi, !enable);
833 	}
834 
835 	if (!spi->controller->set_cs_timing) {
836 		if (!enable1)
837 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
838 	}
839 }
840 
841 #ifdef CONFIG_HAS_DMA
842 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
843 		struct sg_table *sgt, void *buf, size_t len,
844 		enum dma_data_direction dir)
845 {
846 	const bool vmalloced_buf = is_vmalloc_addr(buf);
847 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
848 #ifdef CONFIG_HIGHMEM
849 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
850 				(unsigned long)buf < (PKMAP_BASE +
851 					(LAST_PKMAP * PAGE_SIZE)));
852 #else
853 	const bool kmap_buf = false;
854 #endif
855 	int desc_len;
856 	int sgs;
857 	struct page *vm_page;
858 	struct scatterlist *sg;
859 	void *sg_buf;
860 	size_t min;
861 	int i, ret;
862 
863 	if (vmalloced_buf || kmap_buf) {
864 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
865 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
866 	} else if (virt_addr_valid(buf)) {
867 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
868 		sgs = DIV_ROUND_UP(len, desc_len);
869 	} else {
870 		return -EINVAL;
871 	}
872 
873 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
874 	if (ret != 0)
875 		return ret;
876 
877 	sg = &sgt->sgl[0];
878 	for (i = 0; i < sgs; i++) {
879 
880 		if (vmalloced_buf || kmap_buf) {
881 			/*
882 			 * Next scatterlist entry size is the minimum between
883 			 * the desc_len and the remaining buffer length that
884 			 * fits in a page.
885 			 */
886 			min = min_t(size_t, desc_len,
887 				    min_t(size_t, len,
888 					  PAGE_SIZE - offset_in_page(buf)));
889 			if (vmalloced_buf)
890 				vm_page = vmalloc_to_page(buf);
891 			else
892 				vm_page = kmap_to_page(buf);
893 			if (!vm_page) {
894 				sg_free_table(sgt);
895 				return -ENOMEM;
896 			}
897 			sg_set_page(sg, vm_page,
898 				    min, offset_in_page(buf));
899 		} else {
900 			min = min_t(size_t, len, desc_len);
901 			sg_buf = buf;
902 			sg_set_buf(sg, sg_buf, min);
903 		}
904 
905 		buf += min;
906 		len -= min;
907 		sg = sg_next(sg);
908 	}
909 
910 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
911 	if (!ret)
912 		ret = -ENOMEM;
913 	if (ret < 0) {
914 		sg_free_table(sgt);
915 		return ret;
916 	}
917 
918 	sgt->nents = ret;
919 
920 	return 0;
921 }
922 
923 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
924 		   struct sg_table *sgt, enum dma_data_direction dir)
925 {
926 	if (sgt->orig_nents) {
927 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
928 		sg_free_table(sgt);
929 	}
930 }
931 
932 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
933 {
934 	struct device *tx_dev, *rx_dev;
935 	struct spi_transfer *xfer;
936 	int ret;
937 
938 	if (!ctlr->can_dma)
939 		return 0;
940 
941 	if (ctlr->dma_tx)
942 		tx_dev = ctlr->dma_tx->device->dev;
943 	else
944 		tx_dev = ctlr->dev.parent;
945 
946 	if (ctlr->dma_rx)
947 		rx_dev = ctlr->dma_rx->device->dev;
948 	else
949 		rx_dev = ctlr->dev.parent;
950 
951 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
952 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
953 			continue;
954 
955 		if (xfer->tx_buf != NULL) {
956 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
957 					  (void *)xfer->tx_buf, xfer->len,
958 					  DMA_TO_DEVICE);
959 			if (ret != 0)
960 				return ret;
961 		}
962 
963 		if (xfer->rx_buf != NULL) {
964 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
965 					  xfer->rx_buf, xfer->len,
966 					  DMA_FROM_DEVICE);
967 			if (ret != 0) {
968 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
969 					      DMA_TO_DEVICE);
970 				return ret;
971 			}
972 		}
973 	}
974 
975 	ctlr->cur_msg_mapped = true;
976 
977 	return 0;
978 }
979 
980 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
981 {
982 	struct spi_transfer *xfer;
983 	struct device *tx_dev, *rx_dev;
984 
985 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
986 		return 0;
987 
988 	if (ctlr->dma_tx)
989 		tx_dev = ctlr->dma_tx->device->dev;
990 	else
991 		tx_dev = ctlr->dev.parent;
992 
993 	if (ctlr->dma_rx)
994 		rx_dev = ctlr->dma_rx->device->dev;
995 	else
996 		rx_dev = ctlr->dev.parent;
997 
998 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
999 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1000 			continue;
1001 
1002 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1003 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1004 	}
1005 
1006 	ctlr->cur_msg_mapped = false;
1007 
1008 	return 0;
1009 }
1010 #else /* !CONFIG_HAS_DMA */
1011 static inline int __spi_map_msg(struct spi_controller *ctlr,
1012 				struct spi_message *msg)
1013 {
1014 	return 0;
1015 }
1016 
1017 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1018 				  struct spi_message *msg)
1019 {
1020 	return 0;
1021 }
1022 #endif /* !CONFIG_HAS_DMA */
1023 
1024 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1025 				struct spi_message *msg)
1026 {
1027 	struct spi_transfer *xfer;
1028 
1029 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1030 		/*
1031 		 * Restore the original value of tx_buf or rx_buf if they are
1032 		 * NULL.
1033 		 */
1034 		if (xfer->tx_buf == ctlr->dummy_tx)
1035 			xfer->tx_buf = NULL;
1036 		if (xfer->rx_buf == ctlr->dummy_rx)
1037 			xfer->rx_buf = NULL;
1038 	}
1039 
1040 	return __spi_unmap_msg(ctlr, msg);
1041 }
1042 
1043 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1044 {
1045 	struct spi_transfer *xfer;
1046 	void *tmp;
1047 	unsigned int max_tx, max_rx;
1048 
1049 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1050 		&& !(msg->spi->mode & SPI_3WIRE)) {
1051 		max_tx = 0;
1052 		max_rx = 0;
1053 
1054 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1055 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1056 			    !xfer->tx_buf)
1057 				max_tx = max(xfer->len, max_tx);
1058 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1059 			    !xfer->rx_buf)
1060 				max_rx = max(xfer->len, max_rx);
1061 		}
1062 
1063 		if (max_tx) {
1064 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1065 				       GFP_KERNEL | GFP_DMA);
1066 			if (!tmp)
1067 				return -ENOMEM;
1068 			ctlr->dummy_tx = tmp;
1069 			memset(tmp, 0, max_tx);
1070 		}
1071 
1072 		if (max_rx) {
1073 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1074 				       GFP_KERNEL | GFP_DMA);
1075 			if (!tmp)
1076 				return -ENOMEM;
1077 			ctlr->dummy_rx = tmp;
1078 		}
1079 
1080 		if (max_tx || max_rx) {
1081 			list_for_each_entry(xfer, &msg->transfers,
1082 					    transfer_list) {
1083 				if (!xfer->len)
1084 					continue;
1085 				if (!xfer->tx_buf)
1086 					xfer->tx_buf = ctlr->dummy_tx;
1087 				if (!xfer->rx_buf)
1088 					xfer->rx_buf = ctlr->dummy_rx;
1089 			}
1090 		}
1091 	}
1092 
1093 	return __spi_map_msg(ctlr, msg);
1094 }
1095 
1096 static int spi_transfer_wait(struct spi_controller *ctlr,
1097 			     struct spi_message *msg,
1098 			     struct spi_transfer *xfer)
1099 {
1100 	struct spi_statistics *statm = &ctlr->statistics;
1101 	struct spi_statistics *stats = &msg->spi->statistics;
1102 	unsigned long long ms;
1103 
1104 	if (spi_controller_is_slave(ctlr)) {
1105 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1106 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1107 			return -EINTR;
1108 		}
1109 	} else {
1110 		ms = 8LL * 1000LL * xfer->len;
1111 		do_div(ms, xfer->speed_hz);
1112 		ms += ms + 200; /* some tolerance */
1113 
1114 		if (ms > UINT_MAX)
1115 			ms = UINT_MAX;
1116 
1117 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1118 						 msecs_to_jiffies(ms));
1119 
1120 		if (ms == 0) {
1121 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1122 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1123 			dev_err(&msg->spi->dev,
1124 				"SPI transfer timed out\n");
1125 			return -ETIMEDOUT;
1126 		}
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static void _spi_transfer_delay_ns(u32 ns)
1133 {
1134 	if (!ns)
1135 		return;
1136 	if (ns <= 1000) {
1137 		ndelay(ns);
1138 	} else {
1139 		u32 us = DIV_ROUND_UP(ns, 1000);
1140 
1141 		if (us <= 10)
1142 			udelay(us);
1143 		else
1144 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1145 	}
1146 }
1147 
1148 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1149 {
1150 	u32 delay = _delay->value;
1151 	u32 unit = _delay->unit;
1152 	u32 hz;
1153 
1154 	if (!delay)
1155 		return 0;
1156 
1157 	switch (unit) {
1158 	case SPI_DELAY_UNIT_USECS:
1159 		delay *= 1000;
1160 		break;
1161 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1162 		break;
1163 	case SPI_DELAY_UNIT_SCK:
1164 		/* clock cycles need to be obtained from spi_transfer */
1165 		if (!xfer)
1166 			return -EINVAL;
1167 		/* if there is no effective speed know, then approximate
1168 		 * by underestimating with half the requested hz
1169 		 */
1170 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1171 		if (!hz)
1172 			return -EINVAL;
1173 		delay *= DIV_ROUND_UP(1000000000, hz);
1174 		break;
1175 	default:
1176 		return -EINVAL;
1177 	}
1178 
1179 	return delay;
1180 }
1181 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1182 
1183 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1184 {
1185 	int delay;
1186 
1187 	might_sleep();
1188 
1189 	if (!_delay)
1190 		return -EINVAL;
1191 
1192 	delay = spi_delay_to_ns(_delay, xfer);
1193 	if (delay < 0)
1194 		return delay;
1195 
1196 	_spi_transfer_delay_ns(delay);
1197 
1198 	return 0;
1199 }
1200 EXPORT_SYMBOL_GPL(spi_delay_exec);
1201 
1202 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1203 					  struct spi_transfer *xfer)
1204 {
1205 	u32 delay = xfer->cs_change_delay.value;
1206 	u32 unit = xfer->cs_change_delay.unit;
1207 	int ret;
1208 
1209 	/* return early on "fast" mode - for everything but USECS */
1210 	if (!delay) {
1211 		if (unit == SPI_DELAY_UNIT_USECS)
1212 			_spi_transfer_delay_ns(10000);
1213 		return;
1214 	}
1215 
1216 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1217 	if (ret) {
1218 		dev_err_once(&msg->spi->dev,
1219 			     "Use of unsupported delay unit %i, using default of 10us\n",
1220 			     unit);
1221 		_spi_transfer_delay_ns(10000);
1222 	}
1223 }
1224 
1225 /*
1226  * spi_transfer_one_message - Default implementation of transfer_one_message()
1227  *
1228  * This is a standard implementation of transfer_one_message() for
1229  * drivers which implement a transfer_one() operation.  It provides
1230  * standard handling of delays and chip select management.
1231  */
1232 static int spi_transfer_one_message(struct spi_controller *ctlr,
1233 				    struct spi_message *msg)
1234 {
1235 	struct spi_transfer *xfer;
1236 	bool keep_cs = false;
1237 	int ret = 0;
1238 	struct spi_statistics *statm = &ctlr->statistics;
1239 	struct spi_statistics *stats = &msg->spi->statistics;
1240 
1241 	spi_set_cs(msg->spi, true);
1242 
1243 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1244 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1245 
1246 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1247 		trace_spi_transfer_start(msg, xfer);
1248 
1249 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1250 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1251 
1252 		if (!ctlr->ptp_sts_supported) {
1253 			xfer->ptp_sts_word_pre = 0;
1254 			ptp_read_system_prets(xfer->ptp_sts);
1255 		}
1256 
1257 		if (xfer->tx_buf || xfer->rx_buf) {
1258 			reinit_completion(&ctlr->xfer_completion);
1259 
1260 fallback_pio:
1261 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1262 			if (ret < 0) {
1263 				if (ctlr->cur_msg_mapped &&
1264 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1265 					__spi_unmap_msg(ctlr, msg);
1266 					ctlr->fallback = true;
1267 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1268 					goto fallback_pio;
1269 				}
1270 
1271 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1272 							       errors);
1273 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1274 							       errors);
1275 				dev_err(&msg->spi->dev,
1276 					"SPI transfer failed: %d\n", ret);
1277 				goto out;
1278 			}
1279 
1280 			if (ret > 0) {
1281 				ret = spi_transfer_wait(ctlr, msg, xfer);
1282 				if (ret < 0)
1283 					msg->status = ret;
1284 			}
1285 		} else {
1286 			if (xfer->len)
1287 				dev_err(&msg->spi->dev,
1288 					"Bufferless transfer has length %u\n",
1289 					xfer->len);
1290 		}
1291 
1292 		if (!ctlr->ptp_sts_supported) {
1293 			ptp_read_system_postts(xfer->ptp_sts);
1294 			xfer->ptp_sts_word_post = xfer->len;
1295 		}
1296 
1297 		trace_spi_transfer_stop(msg, xfer);
1298 
1299 		if (msg->status != -EINPROGRESS)
1300 			goto out;
1301 
1302 		spi_transfer_delay_exec(xfer);
1303 
1304 		if (xfer->cs_change) {
1305 			if (list_is_last(&xfer->transfer_list,
1306 					 &msg->transfers)) {
1307 				keep_cs = true;
1308 			} else {
1309 				spi_set_cs(msg->spi, false);
1310 				_spi_transfer_cs_change_delay(msg, xfer);
1311 				spi_set_cs(msg->spi, true);
1312 			}
1313 		}
1314 
1315 		msg->actual_length += xfer->len;
1316 	}
1317 
1318 out:
1319 	if (ret != 0 || !keep_cs)
1320 		spi_set_cs(msg->spi, false);
1321 
1322 	if (msg->status == -EINPROGRESS)
1323 		msg->status = ret;
1324 
1325 	if (msg->status && ctlr->handle_err)
1326 		ctlr->handle_err(ctlr, msg);
1327 
1328 	spi_finalize_current_message(ctlr);
1329 
1330 	return ret;
1331 }
1332 
1333 /**
1334  * spi_finalize_current_transfer - report completion of a transfer
1335  * @ctlr: the controller reporting completion
1336  *
1337  * Called by SPI drivers using the core transfer_one_message()
1338  * implementation to notify it that the current interrupt driven
1339  * transfer has finished and the next one may be scheduled.
1340  */
1341 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1342 {
1343 	complete(&ctlr->xfer_completion);
1344 }
1345 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1346 
1347 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1348 {
1349 	if (ctlr->auto_runtime_pm) {
1350 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1351 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1352 	}
1353 }
1354 
1355 /**
1356  * __spi_pump_messages - function which processes spi message queue
1357  * @ctlr: controller to process queue for
1358  * @in_kthread: true if we are in the context of the message pump thread
1359  *
1360  * This function checks if there is any spi message in the queue that
1361  * needs processing and if so call out to the driver to initialize hardware
1362  * and transfer each message.
1363  *
1364  * Note that it is called both from the kthread itself and also from
1365  * inside spi_sync(); the queue extraction handling at the top of the
1366  * function should deal with this safely.
1367  */
1368 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1369 {
1370 	struct spi_transfer *xfer;
1371 	struct spi_message *msg;
1372 	bool was_busy = false;
1373 	unsigned long flags;
1374 	int ret;
1375 
1376 	/* Lock queue */
1377 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1378 
1379 	/* Make sure we are not already running a message */
1380 	if (ctlr->cur_msg) {
1381 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1382 		return;
1383 	}
1384 
1385 	/* If another context is idling the device then defer */
1386 	if (ctlr->idling) {
1387 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1388 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1389 		return;
1390 	}
1391 
1392 	/* Check if the queue is idle */
1393 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1394 		if (!ctlr->busy) {
1395 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1396 			return;
1397 		}
1398 
1399 		/* Defer any non-atomic teardown to the thread */
1400 		if (!in_kthread) {
1401 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1402 			    !ctlr->unprepare_transfer_hardware) {
1403 				spi_idle_runtime_pm(ctlr);
1404 				ctlr->busy = false;
1405 				trace_spi_controller_idle(ctlr);
1406 			} else {
1407 				kthread_queue_work(ctlr->kworker,
1408 						   &ctlr->pump_messages);
1409 			}
1410 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1411 			return;
1412 		}
1413 
1414 		ctlr->busy = false;
1415 		ctlr->idling = true;
1416 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1417 
1418 		kfree(ctlr->dummy_rx);
1419 		ctlr->dummy_rx = NULL;
1420 		kfree(ctlr->dummy_tx);
1421 		ctlr->dummy_tx = NULL;
1422 		if (ctlr->unprepare_transfer_hardware &&
1423 		    ctlr->unprepare_transfer_hardware(ctlr))
1424 			dev_err(&ctlr->dev,
1425 				"failed to unprepare transfer hardware\n");
1426 		spi_idle_runtime_pm(ctlr);
1427 		trace_spi_controller_idle(ctlr);
1428 
1429 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1430 		ctlr->idling = false;
1431 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1432 		return;
1433 	}
1434 
1435 	/* Extract head of queue */
1436 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1437 	ctlr->cur_msg = msg;
1438 
1439 	list_del_init(&msg->queue);
1440 	if (ctlr->busy)
1441 		was_busy = true;
1442 	else
1443 		ctlr->busy = true;
1444 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1445 
1446 	mutex_lock(&ctlr->io_mutex);
1447 
1448 	if (!was_busy && ctlr->auto_runtime_pm) {
1449 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1450 		if (ret < 0) {
1451 			pm_runtime_put_noidle(ctlr->dev.parent);
1452 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1453 				ret);
1454 			mutex_unlock(&ctlr->io_mutex);
1455 			return;
1456 		}
1457 	}
1458 
1459 	if (!was_busy)
1460 		trace_spi_controller_busy(ctlr);
1461 
1462 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1463 		ret = ctlr->prepare_transfer_hardware(ctlr);
1464 		if (ret) {
1465 			dev_err(&ctlr->dev,
1466 				"failed to prepare transfer hardware: %d\n",
1467 				ret);
1468 
1469 			if (ctlr->auto_runtime_pm)
1470 				pm_runtime_put(ctlr->dev.parent);
1471 
1472 			msg->status = ret;
1473 			spi_finalize_current_message(ctlr);
1474 
1475 			mutex_unlock(&ctlr->io_mutex);
1476 			return;
1477 		}
1478 	}
1479 
1480 	trace_spi_message_start(msg);
1481 
1482 	if (ctlr->prepare_message) {
1483 		ret = ctlr->prepare_message(ctlr, msg);
1484 		if (ret) {
1485 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1486 				ret);
1487 			msg->status = ret;
1488 			spi_finalize_current_message(ctlr);
1489 			goto out;
1490 		}
1491 		ctlr->cur_msg_prepared = true;
1492 	}
1493 
1494 	ret = spi_map_msg(ctlr, msg);
1495 	if (ret) {
1496 		msg->status = ret;
1497 		spi_finalize_current_message(ctlr);
1498 		goto out;
1499 	}
1500 
1501 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1502 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1503 			xfer->ptp_sts_word_pre = 0;
1504 			ptp_read_system_prets(xfer->ptp_sts);
1505 		}
1506 	}
1507 
1508 	ret = ctlr->transfer_one_message(ctlr, msg);
1509 	if (ret) {
1510 		dev_err(&ctlr->dev,
1511 			"failed to transfer one message from queue\n");
1512 		goto out;
1513 	}
1514 
1515 out:
1516 	mutex_unlock(&ctlr->io_mutex);
1517 
1518 	/* Prod the scheduler in case transfer_one() was busy waiting */
1519 	if (!ret)
1520 		cond_resched();
1521 }
1522 
1523 /**
1524  * spi_pump_messages - kthread work function which processes spi message queue
1525  * @work: pointer to kthread work struct contained in the controller struct
1526  */
1527 static void spi_pump_messages(struct kthread_work *work)
1528 {
1529 	struct spi_controller *ctlr =
1530 		container_of(work, struct spi_controller, pump_messages);
1531 
1532 	__spi_pump_messages(ctlr, true);
1533 }
1534 
1535 /**
1536  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1537  *			    TX timestamp for the requested byte from the SPI
1538  *			    transfer. The frequency with which this function
1539  *			    must be called (once per word, once for the whole
1540  *			    transfer, once per batch of words etc) is arbitrary
1541  *			    as long as the @tx buffer offset is greater than or
1542  *			    equal to the requested byte at the time of the
1543  *			    call. The timestamp is only taken once, at the
1544  *			    first such call. It is assumed that the driver
1545  *			    advances its @tx buffer pointer monotonically.
1546  * @ctlr: Pointer to the spi_controller structure of the driver
1547  * @xfer: Pointer to the transfer being timestamped
1548  * @progress: How many words (not bytes) have been transferred so far
1549  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1550  *	      transfer, for less jitter in time measurement. Only compatible
1551  *	      with PIO drivers. If true, must follow up with
1552  *	      spi_take_timestamp_post or otherwise system will crash.
1553  *	      WARNING: for fully predictable results, the CPU frequency must
1554  *	      also be under control (governor).
1555  */
1556 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1557 			    struct spi_transfer *xfer,
1558 			    size_t progress, bool irqs_off)
1559 {
1560 	if (!xfer->ptp_sts)
1561 		return;
1562 
1563 	if (xfer->timestamped)
1564 		return;
1565 
1566 	if (progress > xfer->ptp_sts_word_pre)
1567 		return;
1568 
1569 	/* Capture the resolution of the timestamp */
1570 	xfer->ptp_sts_word_pre = progress;
1571 
1572 	if (irqs_off) {
1573 		local_irq_save(ctlr->irq_flags);
1574 		preempt_disable();
1575 	}
1576 
1577 	ptp_read_system_prets(xfer->ptp_sts);
1578 }
1579 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1580 
1581 /**
1582  * spi_take_timestamp_post - helper for drivers to collect the end of the
1583  *			     TX timestamp for the requested byte from the SPI
1584  *			     transfer. Can be called with an arbitrary
1585  *			     frequency: only the first call where @tx exceeds
1586  *			     or is equal to the requested word will be
1587  *			     timestamped.
1588  * @ctlr: Pointer to the spi_controller structure of the driver
1589  * @xfer: Pointer to the transfer being timestamped
1590  * @progress: How many words (not bytes) have been transferred so far
1591  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1592  */
1593 void spi_take_timestamp_post(struct spi_controller *ctlr,
1594 			     struct spi_transfer *xfer,
1595 			     size_t progress, bool irqs_off)
1596 {
1597 	if (!xfer->ptp_sts)
1598 		return;
1599 
1600 	if (xfer->timestamped)
1601 		return;
1602 
1603 	if (progress < xfer->ptp_sts_word_post)
1604 		return;
1605 
1606 	ptp_read_system_postts(xfer->ptp_sts);
1607 
1608 	if (irqs_off) {
1609 		local_irq_restore(ctlr->irq_flags);
1610 		preempt_enable();
1611 	}
1612 
1613 	/* Capture the resolution of the timestamp */
1614 	xfer->ptp_sts_word_post = progress;
1615 
1616 	xfer->timestamped = true;
1617 }
1618 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1619 
1620 /**
1621  * spi_set_thread_rt - set the controller to pump at realtime priority
1622  * @ctlr: controller to boost priority of
1623  *
1624  * This can be called because the controller requested realtime priority
1625  * (by setting the ->rt value before calling spi_register_controller()) or
1626  * because a device on the bus said that its transfers needed realtime
1627  * priority.
1628  *
1629  * NOTE: at the moment if any device on a bus says it needs realtime then
1630  * the thread will be at realtime priority for all transfers on that
1631  * controller.  If this eventually becomes a problem we may see if we can
1632  * find a way to boost the priority only temporarily during relevant
1633  * transfers.
1634  */
1635 static void spi_set_thread_rt(struct spi_controller *ctlr)
1636 {
1637 	dev_info(&ctlr->dev,
1638 		"will run message pump with realtime priority\n");
1639 	sched_set_fifo(ctlr->kworker->task);
1640 }
1641 
1642 static int spi_init_queue(struct spi_controller *ctlr)
1643 {
1644 	ctlr->running = false;
1645 	ctlr->busy = false;
1646 
1647 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1648 	if (IS_ERR(ctlr->kworker)) {
1649 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1650 		return PTR_ERR(ctlr->kworker);
1651 	}
1652 
1653 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1654 
1655 	/*
1656 	 * Controller config will indicate if this controller should run the
1657 	 * message pump with high (realtime) priority to reduce the transfer
1658 	 * latency on the bus by minimising the delay between a transfer
1659 	 * request and the scheduling of the message pump thread. Without this
1660 	 * setting the message pump thread will remain at default priority.
1661 	 */
1662 	if (ctlr->rt)
1663 		spi_set_thread_rt(ctlr);
1664 
1665 	return 0;
1666 }
1667 
1668 /**
1669  * spi_get_next_queued_message() - called by driver to check for queued
1670  * messages
1671  * @ctlr: the controller to check for queued messages
1672  *
1673  * If there are more messages in the queue, the next message is returned from
1674  * this call.
1675  *
1676  * Return: the next message in the queue, else NULL if the queue is empty.
1677  */
1678 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1679 {
1680 	struct spi_message *next;
1681 	unsigned long flags;
1682 
1683 	/* get a pointer to the next message, if any */
1684 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1685 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1686 					queue);
1687 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1688 
1689 	return next;
1690 }
1691 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1692 
1693 /**
1694  * spi_finalize_current_message() - the current message is complete
1695  * @ctlr: the controller to return the message to
1696  *
1697  * Called by the driver to notify the core that the message in the front of the
1698  * queue is complete and can be removed from the queue.
1699  */
1700 void spi_finalize_current_message(struct spi_controller *ctlr)
1701 {
1702 	struct spi_transfer *xfer;
1703 	struct spi_message *mesg;
1704 	unsigned long flags;
1705 	int ret;
1706 
1707 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1708 	mesg = ctlr->cur_msg;
1709 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1710 
1711 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1712 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1713 			ptp_read_system_postts(xfer->ptp_sts);
1714 			xfer->ptp_sts_word_post = xfer->len;
1715 		}
1716 	}
1717 
1718 	if (unlikely(ctlr->ptp_sts_supported))
1719 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1720 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1721 
1722 	spi_unmap_msg(ctlr, mesg);
1723 
1724 	/* In the prepare_messages callback the spi bus has the opportunity to
1725 	 * split a transfer to smaller chunks.
1726 	 * Release splited transfers here since spi_map_msg is done on the
1727 	 * splited transfers.
1728 	 */
1729 	spi_res_release(ctlr, mesg);
1730 
1731 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1732 		ret = ctlr->unprepare_message(ctlr, mesg);
1733 		if (ret) {
1734 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1735 				ret);
1736 		}
1737 	}
1738 
1739 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1740 	ctlr->cur_msg = NULL;
1741 	ctlr->cur_msg_prepared = false;
1742 	ctlr->fallback = false;
1743 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1744 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1745 
1746 	trace_spi_message_done(mesg);
1747 
1748 	mesg->state = NULL;
1749 	if (mesg->complete)
1750 		mesg->complete(mesg->context);
1751 }
1752 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1753 
1754 static int spi_start_queue(struct spi_controller *ctlr)
1755 {
1756 	unsigned long flags;
1757 
1758 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1759 
1760 	if (ctlr->running || ctlr->busy) {
1761 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1762 		return -EBUSY;
1763 	}
1764 
1765 	ctlr->running = true;
1766 	ctlr->cur_msg = NULL;
1767 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1768 
1769 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1770 
1771 	return 0;
1772 }
1773 
1774 static int spi_stop_queue(struct spi_controller *ctlr)
1775 {
1776 	unsigned long flags;
1777 	unsigned limit = 500;
1778 	int ret = 0;
1779 
1780 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1781 
1782 	/*
1783 	 * This is a bit lame, but is optimized for the common execution path.
1784 	 * A wait_queue on the ctlr->busy could be used, but then the common
1785 	 * execution path (pump_messages) would be required to call wake_up or
1786 	 * friends on every SPI message. Do this instead.
1787 	 */
1788 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1789 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1790 		usleep_range(10000, 11000);
1791 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1792 	}
1793 
1794 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1795 		ret = -EBUSY;
1796 	else
1797 		ctlr->running = false;
1798 
1799 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1800 
1801 	if (ret) {
1802 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1803 		return ret;
1804 	}
1805 	return ret;
1806 }
1807 
1808 static int spi_destroy_queue(struct spi_controller *ctlr)
1809 {
1810 	int ret;
1811 
1812 	ret = spi_stop_queue(ctlr);
1813 
1814 	/*
1815 	 * kthread_flush_worker will block until all work is done.
1816 	 * If the reason that stop_queue timed out is that the work will never
1817 	 * finish, then it does no good to call flush/stop thread, so
1818 	 * return anyway.
1819 	 */
1820 	if (ret) {
1821 		dev_err(&ctlr->dev, "problem destroying queue\n");
1822 		return ret;
1823 	}
1824 
1825 	kthread_destroy_worker(ctlr->kworker);
1826 
1827 	return 0;
1828 }
1829 
1830 static int __spi_queued_transfer(struct spi_device *spi,
1831 				 struct spi_message *msg,
1832 				 bool need_pump)
1833 {
1834 	struct spi_controller *ctlr = spi->controller;
1835 	unsigned long flags;
1836 
1837 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1838 
1839 	if (!ctlr->running) {
1840 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1841 		return -ESHUTDOWN;
1842 	}
1843 	msg->actual_length = 0;
1844 	msg->status = -EINPROGRESS;
1845 
1846 	list_add_tail(&msg->queue, &ctlr->queue);
1847 	if (!ctlr->busy && need_pump)
1848 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1849 
1850 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1851 	return 0;
1852 }
1853 
1854 /**
1855  * spi_queued_transfer - transfer function for queued transfers
1856  * @spi: spi device which is requesting transfer
1857  * @msg: spi message which is to handled is queued to driver queue
1858  *
1859  * Return: zero on success, else a negative error code.
1860  */
1861 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1862 {
1863 	return __spi_queued_transfer(spi, msg, true);
1864 }
1865 
1866 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1867 {
1868 	int ret;
1869 
1870 	ctlr->transfer = spi_queued_transfer;
1871 	if (!ctlr->transfer_one_message)
1872 		ctlr->transfer_one_message = spi_transfer_one_message;
1873 
1874 	/* Initialize and start queue */
1875 	ret = spi_init_queue(ctlr);
1876 	if (ret) {
1877 		dev_err(&ctlr->dev, "problem initializing queue\n");
1878 		goto err_init_queue;
1879 	}
1880 	ctlr->queued = true;
1881 	ret = spi_start_queue(ctlr);
1882 	if (ret) {
1883 		dev_err(&ctlr->dev, "problem starting queue\n");
1884 		goto err_start_queue;
1885 	}
1886 
1887 	return 0;
1888 
1889 err_start_queue:
1890 	spi_destroy_queue(ctlr);
1891 err_init_queue:
1892 	return ret;
1893 }
1894 
1895 /**
1896  * spi_flush_queue - Send all pending messages in the queue from the callers'
1897  *		     context
1898  * @ctlr: controller to process queue for
1899  *
1900  * This should be used when one wants to ensure all pending messages have been
1901  * sent before doing something. Is used by the spi-mem code to make sure SPI
1902  * memory operations do not preempt regular SPI transfers that have been queued
1903  * before the spi-mem operation.
1904  */
1905 void spi_flush_queue(struct spi_controller *ctlr)
1906 {
1907 	if (ctlr->transfer == spi_queued_transfer)
1908 		__spi_pump_messages(ctlr, false);
1909 }
1910 
1911 /*-------------------------------------------------------------------------*/
1912 
1913 #if defined(CONFIG_OF)
1914 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1915 			   struct device_node *nc)
1916 {
1917 	u32 value;
1918 	int rc;
1919 
1920 	/* Mode (clock phase/polarity/etc.) */
1921 	if (of_property_read_bool(nc, "spi-cpha"))
1922 		spi->mode |= SPI_CPHA;
1923 	if (of_property_read_bool(nc, "spi-cpol"))
1924 		spi->mode |= SPI_CPOL;
1925 	if (of_property_read_bool(nc, "spi-3wire"))
1926 		spi->mode |= SPI_3WIRE;
1927 	if (of_property_read_bool(nc, "spi-lsb-first"))
1928 		spi->mode |= SPI_LSB_FIRST;
1929 	if (of_property_read_bool(nc, "spi-cs-high"))
1930 		spi->mode |= SPI_CS_HIGH;
1931 
1932 	/* Device DUAL/QUAD mode */
1933 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1934 		switch (value) {
1935 		case 1:
1936 			break;
1937 		case 2:
1938 			spi->mode |= SPI_TX_DUAL;
1939 			break;
1940 		case 4:
1941 			spi->mode |= SPI_TX_QUAD;
1942 			break;
1943 		case 8:
1944 			spi->mode |= SPI_TX_OCTAL;
1945 			break;
1946 		default:
1947 			dev_warn(&ctlr->dev,
1948 				"spi-tx-bus-width %d not supported\n",
1949 				value);
1950 			break;
1951 		}
1952 	}
1953 
1954 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1955 		switch (value) {
1956 		case 1:
1957 			break;
1958 		case 2:
1959 			spi->mode |= SPI_RX_DUAL;
1960 			break;
1961 		case 4:
1962 			spi->mode |= SPI_RX_QUAD;
1963 			break;
1964 		case 8:
1965 			spi->mode |= SPI_RX_OCTAL;
1966 			break;
1967 		default:
1968 			dev_warn(&ctlr->dev,
1969 				"spi-rx-bus-width %d not supported\n",
1970 				value);
1971 			break;
1972 		}
1973 	}
1974 
1975 	if (spi_controller_is_slave(ctlr)) {
1976 		if (!of_node_name_eq(nc, "slave")) {
1977 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1978 				nc);
1979 			return -EINVAL;
1980 		}
1981 		return 0;
1982 	}
1983 
1984 	/* Device address */
1985 	rc = of_property_read_u32(nc, "reg", &value);
1986 	if (rc) {
1987 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1988 			nc, rc);
1989 		return rc;
1990 	}
1991 	spi->chip_select = value;
1992 
1993 	/* Device speed */
1994 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
1995 		spi->max_speed_hz = value;
1996 
1997 	return 0;
1998 }
1999 
2000 static struct spi_device *
2001 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2002 {
2003 	struct spi_device *spi;
2004 	int rc;
2005 
2006 	/* Alloc an spi_device */
2007 	spi = spi_alloc_device(ctlr);
2008 	if (!spi) {
2009 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2010 		rc = -ENOMEM;
2011 		goto err_out;
2012 	}
2013 
2014 	/* Select device driver */
2015 	rc = of_modalias_node(nc, spi->modalias,
2016 				sizeof(spi->modalias));
2017 	if (rc < 0) {
2018 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2019 		goto err_out;
2020 	}
2021 
2022 	rc = of_spi_parse_dt(ctlr, spi, nc);
2023 	if (rc)
2024 		goto err_out;
2025 
2026 	/* Store a pointer to the node in the device structure */
2027 	of_node_get(nc);
2028 	spi->dev.of_node = nc;
2029 
2030 	/* Register the new device */
2031 	rc = spi_add_device(spi);
2032 	if (rc) {
2033 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2034 		goto err_of_node_put;
2035 	}
2036 
2037 	return spi;
2038 
2039 err_of_node_put:
2040 	of_node_put(nc);
2041 err_out:
2042 	spi_dev_put(spi);
2043 	return ERR_PTR(rc);
2044 }
2045 
2046 /**
2047  * of_register_spi_devices() - Register child devices onto the SPI bus
2048  * @ctlr:	Pointer to spi_controller device
2049  *
2050  * Registers an spi_device for each child node of controller node which
2051  * represents a valid SPI slave.
2052  */
2053 static void of_register_spi_devices(struct spi_controller *ctlr)
2054 {
2055 	struct spi_device *spi;
2056 	struct device_node *nc;
2057 
2058 	if (!ctlr->dev.of_node)
2059 		return;
2060 
2061 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2062 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2063 			continue;
2064 		spi = of_register_spi_device(ctlr, nc);
2065 		if (IS_ERR(spi)) {
2066 			dev_warn(&ctlr->dev,
2067 				 "Failed to create SPI device for %pOF\n", nc);
2068 			of_node_clear_flag(nc, OF_POPULATED);
2069 		}
2070 	}
2071 }
2072 #else
2073 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2074 #endif
2075 
2076 #ifdef CONFIG_ACPI
2077 struct acpi_spi_lookup {
2078 	struct spi_controller 	*ctlr;
2079 	u32			max_speed_hz;
2080 	u32			mode;
2081 	int			irq;
2082 	u8			bits_per_word;
2083 	u8			chip_select;
2084 };
2085 
2086 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2087 					    struct acpi_spi_lookup *lookup)
2088 {
2089 	const union acpi_object *obj;
2090 
2091 	if (!x86_apple_machine)
2092 		return;
2093 
2094 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2095 	    && obj->buffer.length >= 4)
2096 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2097 
2098 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2099 	    && obj->buffer.length == 8)
2100 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2101 
2102 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2103 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2104 		lookup->mode |= SPI_LSB_FIRST;
2105 
2106 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2107 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2108 		lookup->mode |= SPI_CPOL;
2109 
2110 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2111 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2112 		lookup->mode |= SPI_CPHA;
2113 }
2114 
2115 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2116 {
2117 	struct acpi_spi_lookup *lookup = data;
2118 	struct spi_controller *ctlr = lookup->ctlr;
2119 
2120 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2121 		struct acpi_resource_spi_serialbus *sb;
2122 		acpi_handle parent_handle;
2123 		acpi_status status;
2124 
2125 		sb = &ares->data.spi_serial_bus;
2126 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2127 
2128 			status = acpi_get_handle(NULL,
2129 						 sb->resource_source.string_ptr,
2130 						 &parent_handle);
2131 
2132 			if (ACPI_FAILURE(status) ||
2133 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2134 				return -ENODEV;
2135 
2136 			/*
2137 			 * ACPI DeviceSelection numbering is handled by the
2138 			 * host controller driver in Windows and can vary
2139 			 * from driver to driver. In Linux we always expect
2140 			 * 0 .. max - 1 so we need to ask the driver to
2141 			 * translate between the two schemes.
2142 			 */
2143 			if (ctlr->fw_translate_cs) {
2144 				int cs = ctlr->fw_translate_cs(ctlr,
2145 						sb->device_selection);
2146 				if (cs < 0)
2147 					return cs;
2148 				lookup->chip_select = cs;
2149 			} else {
2150 				lookup->chip_select = sb->device_selection;
2151 			}
2152 
2153 			lookup->max_speed_hz = sb->connection_speed;
2154 			lookup->bits_per_word = sb->data_bit_length;
2155 
2156 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2157 				lookup->mode |= SPI_CPHA;
2158 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2159 				lookup->mode |= SPI_CPOL;
2160 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2161 				lookup->mode |= SPI_CS_HIGH;
2162 		}
2163 	} else if (lookup->irq < 0) {
2164 		struct resource r;
2165 
2166 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2167 			lookup->irq = r.start;
2168 	}
2169 
2170 	/* Always tell the ACPI core to skip this resource */
2171 	return 1;
2172 }
2173 
2174 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2175 					    struct acpi_device *adev)
2176 {
2177 	acpi_handle parent_handle = NULL;
2178 	struct list_head resource_list;
2179 	struct acpi_spi_lookup lookup = {};
2180 	struct spi_device *spi;
2181 	int ret;
2182 
2183 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2184 	    acpi_device_enumerated(adev))
2185 		return AE_OK;
2186 
2187 	lookup.ctlr		= ctlr;
2188 	lookup.irq		= -1;
2189 
2190 	INIT_LIST_HEAD(&resource_list);
2191 	ret = acpi_dev_get_resources(adev, &resource_list,
2192 				     acpi_spi_add_resource, &lookup);
2193 	acpi_dev_free_resource_list(&resource_list);
2194 
2195 	if (ret < 0)
2196 		/* found SPI in _CRS but it points to another controller */
2197 		return AE_OK;
2198 
2199 	if (!lookup.max_speed_hz &&
2200 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2201 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2202 		/* Apple does not use _CRS but nested devices for SPI slaves */
2203 		acpi_spi_parse_apple_properties(adev, &lookup);
2204 	}
2205 
2206 	if (!lookup.max_speed_hz)
2207 		return AE_OK;
2208 
2209 	spi = spi_alloc_device(ctlr);
2210 	if (!spi) {
2211 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2212 			dev_name(&adev->dev));
2213 		return AE_NO_MEMORY;
2214 	}
2215 
2216 
2217 	ACPI_COMPANION_SET(&spi->dev, adev);
2218 	spi->max_speed_hz	= lookup.max_speed_hz;
2219 	spi->mode		|= lookup.mode;
2220 	spi->irq		= lookup.irq;
2221 	spi->bits_per_word	= lookup.bits_per_word;
2222 	spi->chip_select	= lookup.chip_select;
2223 
2224 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2225 			  sizeof(spi->modalias));
2226 
2227 	if (spi->irq < 0)
2228 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2229 
2230 	acpi_device_set_enumerated(adev);
2231 
2232 	adev->power.flags.ignore_parent = true;
2233 	if (spi_add_device(spi)) {
2234 		adev->power.flags.ignore_parent = false;
2235 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2236 			dev_name(&adev->dev));
2237 		spi_dev_put(spi);
2238 	}
2239 
2240 	return AE_OK;
2241 }
2242 
2243 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2244 				       void *data, void **return_value)
2245 {
2246 	struct spi_controller *ctlr = data;
2247 	struct acpi_device *adev;
2248 
2249 	if (acpi_bus_get_device(handle, &adev))
2250 		return AE_OK;
2251 
2252 	return acpi_register_spi_device(ctlr, adev);
2253 }
2254 
2255 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2256 
2257 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2258 {
2259 	acpi_status status;
2260 	acpi_handle handle;
2261 
2262 	handle = ACPI_HANDLE(ctlr->dev.parent);
2263 	if (!handle)
2264 		return;
2265 
2266 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2267 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2268 				     acpi_spi_add_device, NULL, ctlr, NULL);
2269 	if (ACPI_FAILURE(status))
2270 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2271 }
2272 #else
2273 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2274 #endif /* CONFIG_ACPI */
2275 
2276 static void spi_controller_release(struct device *dev)
2277 {
2278 	struct spi_controller *ctlr;
2279 
2280 	ctlr = container_of(dev, struct spi_controller, dev);
2281 	kfree(ctlr);
2282 }
2283 
2284 static struct class spi_master_class = {
2285 	.name		= "spi_master",
2286 	.owner		= THIS_MODULE,
2287 	.dev_release	= spi_controller_release,
2288 	.dev_groups	= spi_master_groups,
2289 };
2290 
2291 #ifdef CONFIG_SPI_SLAVE
2292 /**
2293  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2294  *		     controller
2295  * @spi: device used for the current transfer
2296  */
2297 int spi_slave_abort(struct spi_device *spi)
2298 {
2299 	struct spi_controller *ctlr = spi->controller;
2300 
2301 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2302 		return ctlr->slave_abort(ctlr);
2303 
2304 	return -ENOTSUPP;
2305 }
2306 EXPORT_SYMBOL_GPL(spi_slave_abort);
2307 
2308 static int match_true(struct device *dev, void *data)
2309 {
2310 	return 1;
2311 }
2312 
2313 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2314 			  char *buf)
2315 {
2316 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2317 						   dev);
2318 	struct device *child;
2319 
2320 	child = device_find_child(&ctlr->dev, NULL, match_true);
2321 	return sprintf(buf, "%s\n",
2322 		       child ? to_spi_device(child)->modalias : NULL);
2323 }
2324 
2325 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2326 			   const char *buf, size_t count)
2327 {
2328 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2329 						   dev);
2330 	struct spi_device *spi;
2331 	struct device *child;
2332 	char name[32];
2333 	int rc;
2334 
2335 	rc = sscanf(buf, "%31s", name);
2336 	if (rc != 1 || !name[0])
2337 		return -EINVAL;
2338 
2339 	child = device_find_child(&ctlr->dev, NULL, match_true);
2340 	if (child) {
2341 		/* Remove registered slave */
2342 		device_unregister(child);
2343 		put_device(child);
2344 	}
2345 
2346 	if (strcmp(name, "(null)")) {
2347 		/* Register new slave */
2348 		spi = spi_alloc_device(ctlr);
2349 		if (!spi)
2350 			return -ENOMEM;
2351 
2352 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2353 
2354 		rc = spi_add_device(spi);
2355 		if (rc) {
2356 			spi_dev_put(spi);
2357 			return rc;
2358 		}
2359 	}
2360 
2361 	return count;
2362 }
2363 
2364 static DEVICE_ATTR_RW(slave);
2365 
2366 static struct attribute *spi_slave_attrs[] = {
2367 	&dev_attr_slave.attr,
2368 	NULL,
2369 };
2370 
2371 static const struct attribute_group spi_slave_group = {
2372 	.attrs = spi_slave_attrs,
2373 };
2374 
2375 static const struct attribute_group *spi_slave_groups[] = {
2376 	&spi_controller_statistics_group,
2377 	&spi_slave_group,
2378 	NULL,
2379 };
2380 
2381 static struct class spi_slave_class = {
2382 	.name		= "spi_slave",
2383 	.owner		= THIS_MODULE,
2384 	.dev_release	= spi_controller_release,
2385 	.dev_groups	= spi_slave_groups,
2386 };
2387 #else
2388 extern struct class spi_slave_class;	/* dummy */
2389 #endif
2390 
2391 /**
2392  * __spi_alloc_controller - allocate an SPI master or slave controller
2393  * @dev: the controller, possibly using the platform_bus
2394  * @size: how much zeroed driver-private data to allocate; the pointer to this
2395  *	memory is in the driver_data field of the returned device, accessible
2396  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2397  *	drivers granting DMA access to portions of their private data need to
2398  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2399  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2400  *	slave (true) controller
2401  * Context: can sleep
2402  *
2403  * This call is used only by SPI controller drivers, which are the
2404  * only ones directly touching chip registers.  It's how they allocate
2405  * an spi_controller structure, prior to calling spi_register_controller().
2406  *
2407  * This must be called from context that can sleep.
2408  *
2409  * The caller is responsible for assigning the bus number and initializing the
2410  * controller's methods before calling spi_register_controller(); and (after
2411  * errors adding the device) calling spi_controller_put() to prevent a memory
2412  * leak.
2413  *
2414  * Return: the SPI controller structure on success, else NULL.
2415  */
2416 struct spi_controller *__spi_alloc_controller(struct device *dev,
2417 					      unsigned int size, bool slave)
2418 {
2419 	struct spi_controller	*ctlr;
2420 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2421 
2422 	if (!dev)
2423 		return NULL;
2424 
2425 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2426 	if (!ctlr)
2427 		return NULL;
2428 
2429 	device_initialize(&ctlr->dev);
2430 	ctlr->bus_num = -1;
2431 	ctlr->num_chipselect = 1;
2432 	ctlr->slave = slave;
2433 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2434 		ctlr->dev.class = &spi_slave_class;
2435 	else
2436 		ctlr->dev.class = &spi_master_class;
2437 	ctlr->dev.parent = dev;
2438 	pm_suspend_ignore_children(&ctlr->dev, true);
2439 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2440 
2441 	return ctlr;
2442 }
2443 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2444 
2445 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2446 {
2447 	spi_controller_put(*(struct spi_controller **)ctlr);
2448 }
2449 
2450 /**
2451  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2452  * @dev: physical device of SPI controller
2453  * @size: how much zeroed driver-private data to allocate
2454  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2455  * Context: can sleep
2456  *
2457  * Allocate an SPI controller and automatically release a reference on it
2458  * when @dev is unbound from its driver.  Drivers are thus relieved from
2459  * having to call spi_controller_put().
2460  *
2461  * The arguments to this function are identical to __spi_alloc_controller().
2462  *
2463  * Return: the SPI controller structure on success, else NULL.
2464  */
2465 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2466 						   unsigned int size,
2467 						   bool slave)
2468 {
2469 	struct spi_controller **ptr, *ctlr;
2470 
2471 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2472 			   GFP_KERNEL);
2473 	if (!ptr)
2474 		return NULL;
2475 
2476 	ctlr = __spi_alloc_controller(dev, size, slave);
2477 	if (ctlr) {
2478 		*ptr = ctlr;
2479 		devres_add(dev, ptr);
2480 	} else {
2481 		devres_free(ptr);
2482 	}
2483 
2484 	return ctlr;
2485 }
2486 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2487 
2488 #ifdef CONFIG_OF
2489 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2490 {
2491 	int nb, i, *cs;
2492 	struct device_node *np = ctlr->dev.of_node;
2493 
2494 	if (!np)
2495 		return 0;
2496 
2497 	nb = of_gpio_named_count(np, "cs-gpios");
2498 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2499 
2500 	/* Return error only for an incorrectly formed cs-gpios property */
2501 	if (nb == 0 || nb == -ENOENT)
2502 		return 0;
2503 	else if (nb < 0)
2504 		return nb;
2505 
2506 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2507 			  GFP_KERNEL);
2508 	ctlr->cs_gpios = cs;
2509 
2510 	if (!ctlr->cs_gpios)
2511 		return -ENOMEM;
2512 
2513 	for (i = 0; i < ctlr->num_chipselect; i++)
2514 		cs[i] = -ENOENT;
2515 
2516 	for (i = 0; i < nb; i++)
2517 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2518 
2519 	return 0;
2520 }
2521 #else
2522 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2523 {
2524 	return 0;
2525 }
2526 #endif
2527 
2528 /**
2529  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2530  * @ctlr: The SPI master to grab GPIO descriptors for
2531  */
2532 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2533 {
2534 	int nb, i;
2535 	struct gpio_desc **cs;
2536 	struct device *dev = &ctlr->dev;
2537 	unsigned long native_cs_mask = 0;
2538 	unsigned int num_cs_gpios = 0;
2539 
2540 	nb = gpiod_count(dev, "cs");
2541 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2542 
2543 	/* No GPIOs at all is fine, else return the error */
2544 	if (nb == 0 || nb == -ENOENT)
2545 		return 0;
2546 	else if (nb < 0)
2547 		return nb;
2548 
2549 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2550 			  GFP_KERNEL);
2551 	if (!cs)
2552 		return -ENOMEM;
2553 	ctlr->cs_gpiods = cs;
2554 
2555 	for (i = 0; i < nb; i++) {
2556 		/*
2557 		 * Most chipselects are active low, the inverted
2558 		 * semantics are handled by special quirks in gpiolib,
2559 		 * so initializing them GPIOD_OUT_LOW here means
2560 		 * "unasserted", in most cases this will drive the physical
2561 		 * line high.
2562 		 */
2563 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2564 						      GPIOD_OUT_LOW);
2565 		if (IS_ERR(cs[i]))
2566 			return PTR_ERR(cs[i]);
2567 
2568 		if (cs[i]) {
2569 			/*
2570 			 * If we find a CS GPIO, name it after the device and
2571 			 * chip select line.
2572 			 */
2573 			char *gpioname;
2574 
2575 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2576 						  dev_name(dev), i);
2577 			if (!gpioname)
2578 				return -ENOMEM;
2579 			gpiod_set_consumer_name(cs[i], gpioname);
2580 			num_cs_gpios++;
2581 			continue;
2582 		}
2583 
2584 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2585 			dev_err(dev, "Invalid native chip select %d\n", i);
2586 			return -EINVAL;
2587 		}
2588 		native_cs_mask |= BIT(i);
2589 	}
2590 
2591 	ctlr->unused_native_cs = ffz(native_cs_mask);
2592 	if (num_cs_gpios && ctlr->max_native_cs &&
2593 	    ctlr->unused_native_cs >= ctlr->max_native_cs) {
2594 		dev_err(dev, "No unused native chip select available\n");
2595 		return -EINVAL;
2596 	}
2597 
2598 	return 0;
2599 }
2600 
2601 static int spi_controller_check_ops(struct spi_controller *ctlr)
2602 {
2603 	/*
2604 	 * The controller may implement only the high-level SPI-memory like
2605 	 * operations if it does not support regular SPI transfers, and this is
2606 	 * valid use case.
2607 	 * If ->mem_ops is NULL, we request that at least one of the
2608 	 * ->transfer_xxx() method be implemented.
2609 	 */
2610 	if (ctlr->mem_ops) {
2611 		if (!ctlr->mem_ops->exec_op)
2612 			return -EINVAL;
2613 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2614 		   !ctlr->transfer_one_message) {
2615 		return -EINVAL;
2616 	}
2617 
2618 	return 0;
2619 }
2620 
2621 /**
2622  * spi_register_controller - register SPI master or slave controller
2623  * @ctlr: initialized master, originally from spi_alloc_master() or
2624  *	spi_alloc_slave()
2625  * Context: can sleep
2626  *
2627  * SPI controllers connect to their drivers using some non-SPI bus,
2628  * such as the platform bus.  The final stage of probe() in that code
2629  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2630  *
2631  * SPI controllers use board specific (often SOC specific) bus numbers,
2632  * and board-specific addressing for SPI devices combines those numbers
2633  * with chip select numbers.  Since SPI does not directly support dynamic
2634  * device identification, boards need configuration tables telling which
2635  * chip is at which address.
2636  *
2637  * This must be called from context that can sleep.  It returns zero on
2638  * success, else a negative error code (dropping the controller's refcount).
2639  * After a successful return, the caller is responsible for calling
2640  * spi_unregister_controller().
2641  *
2642  * Return: zero on success, else a negative error code.
2643  */
2644 int spi_register_controller(struct spi_controller *ctlr)
2645 {
2646 	struct device		*dev = ctlr->dev.parent;
2647 	struct boardinfo	*bi;
2648 	int			status;
2649 	int			id, first_dynamic;
2650 
2651 	if (!dev)
2652 		return -ENODEV;
2653 
2654 	/*
2655 	 * Make sure all necessary hooks are implemented before registering
2656 	 * the SPI controller.
2657 	 */
2658 	status = spi_controller_check_ops(ctlr);
2659 	if (status)
2660 		return status;
2661 
2662 	if (ctlr->bus_num >= 0) {
2663 		/* devices with a fixed bus num must check-in with the num */
2664 		mutex_lock(&board_lock);
2665 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2666 			ctlr->bus_num + 1, GFP_KERNEL);
2667 		mutex_unlock(&board_lock);
2668 		if (WARN(id < 0, "couldn't get idr"))
2669 			return id == -ENOSPC ? -EBUSY : id;
2670 		ctlr->bus_num = id;
2671 	} else if (ctlr->dev.of_node) {
2672 		/* allocate dynamic bus number using Linux idr */
2673 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2674 		if (id >= 0) {
2675 			ctlr->bus_num = id;
2676 			mutex_lock(&board_lock);
2677 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2678 				       ctlr->bus_num + 1, GFP_KERNEL);
2679 			mutex_unlock(&board_lock);
2680 			if (WARN(id < 0, "couldn't get idr"))
2681 				return id == -ENOSPC ? -EBUSY : id;
2682 		}
2683 	}
2684 	if (ctlr->bus_num < 0) {
2685 		first_dynamic = of_alias_get_highest_id("spi");
2686 		if (first_dynamic < 0)
2687 			first_dynamic = 0;
2688 		else
2689 			first_dynamic++;
2690 
2691 		mutex_lock(&board_lock);
2692 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2693 			       0, GFP_KERNEL);
2694 		mutex_unlock(&board_lock);
2695 		if (WARN(id < 0, "couldn't get idr"))
2696 			return id;
2697 		ctlr->bus_num = id;
2698 	}
2699 	INIT_LIST_HEAD(&ctlr->queue);
2700 	spin_lock_init(&ctlr->queue_lock);
2701 	spin_lock_init(&ctlr->bus_lock_spinlock);
2702 	mutex_init(&ctlr->bus_lock_mutex);
2703 	mutex_init(&ctlr->io_mutex);
2704 	ctlr->bus_lock_flag = 0;
2705 	init_completion(&ctlr->xfer_completion);
2706 	if (!ctlr->max_dma_len)
2707 		ctlr->max_dma_len = INT_MAX;
2708 
2709 	/* register the device, then userspace will see it.
2710 	 * registration fails if the bus ID is in use.
2711 	 */
2712 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2713 
2714 	if (!spi_controller_is_slave(ctlr)) {
2715 		if (ctlr->use_gpio_descriptors) {
2716 			status = spi_get_gpio_descs(ctlr);
2717 			if (status)
2718 				goto free_bus_id;
2719 			/*
2720 			 * A controller using GPIO descriptors always
2721 			 * supports SPI_CS_HIGH if need be.
2722 			 */
2723 			ctlr->mode_bits |= SPI_CS_HIGH;
2724 		} else {
2725 			/* Legacy code path for GPIOs from DT */
2726 			status = of_spi_get_gpio_numbers(ctlr);
2727 			if (status)
2728 				goto free_bus_id;
2729 		}
2730 	}
2731 
2732 	/*
2733 	 * Even if it's just one always-selected device, there must
2734 	 * be at least one chipselect.
2735 	 */
2736 	if (!ctlr->num_chipselect) {
2737 		status = -EINVAL;
2738 		goto free_bus_id;
2739 	}
2740 
2741 	status = device_add(&ctlr->dev);
2742 	if (status < 0)
2743 		goto free_bus_id;
2744 	dev_dbg(dev, "registered %s %s\n",
2745 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2746 			dev_name(&ctlr->dev));
2747 
2748 	/*
2749 	 * If we're using a queued driver, start the queue. Note that we don't
2750 	 * need the queueing logic if the driver is only supporting high-level
2751 	 * memory operations.
2752 	 */
2753 	if (ctlr->transfer) {
2754 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2755 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2756 		status = spi_controller_initialize_queue(ctlr);
2757 		if (status) {
2758 			device_del(&ctlr->dev);
2759 			goto free_bus_id;
2760 		}
2761 	}
2762 	/* add statistics */
2763 	spin_lock_init(&ctlr->statistics.lock);
2764 
2765 	mutex_lock(&board_lock);
2766 	list_add_tail(&ctlr->list, &spi_controller_list);
2767 	list_for_each_entry(bi, &board_list, list)
2768 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2769 	mutex_unlock(&board_lock);
2770 
2771 	/* Register devices from the device tree and ACPI */
2772 	of_register_spi_devices(ctlr);
2773 	acpi_register_spi_devices(ctlr);
2774 	return status;
2775 
2776 free_bus_id:
2777 	mutex_lock(&board_lock);
2778 	idr_remove(&spi_master_idr, ctlr->bus_num);
2779 	mutex_unlock(&board_lock);
2780 	return status;
2781 }
2782 EXPORT_SYMBOL_GPL(spi_register_controller);
2783 
2784 static void devm_spi_unregister(struct device *dev, void *res)
2785 {
2786 	spi_unregister_controller(*(struct spi_controller **)res);
2787 }
2788 
2789 /**
2790  * devm_spi_register_controller - register managed SPI master or slave
2791  *	controller
2792  * @dev:    device managing SPI controller
2793  * @ctlr: initialized controller, originally from spi_alloc_master() or
2794  *	spi_alloc_slave()
2795  * Context: can sleep
2796  *
2797  * Register a SPI device as with spi_register_controller() which will
2798  * automatically be unregistered and freed.
2799  *
2800  * Return: zero on success, else a negative error code.
2801  */
2802 int devm_spi_register_controller(struct device *dev,
2803 				 struct spi_controller *ctlr)
2804 {
2805 	struct spi_controller **ptr;
2806 	int ret;
2807 
2808 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2809 	if (!ptr)
2810 		return -ENOMEM;
2811 
2812 	ret = spi_register_controller(ctlr);
2813 	if (!ret) {
2814 		*ptr = ctlr;
2815 		devres_add(dev, ptr);
2816 	} else {
2817 		devres_free(ptr);
2818 	}
2819 
2820 	return ret;
2821 }
2822 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2823 
2824 static int devm_spi_match_controller(struct device *dev, void *res, void *ctlr)
2825 {
2826 	return *(struct spi_controller **)res == ctlr;
2827 }
2828 
2829 static int __unregister(struct device *dev, void *null)
2830 {
2831 	spi_unregister_device(to_spi_device(dev));
2832 	return 0;
2833 }
2834 
2835 /**
2836  * spi_unregister_controller - unregister SPI master or slave controller
2837  * @ctlr: the controller being unregistered
2838  * Context: can sleep
2839  *
2840  * This call is used only by SPI controller drivers, which are the
2841  * only ones directly touching chip registers.
2842  *
2843  * This must be called from context that can sleep.
2844  *
2845  * Note that this function also drops a reference to the controller.
2846  */
2847 void spi_unregister_controller(struct spi_controller *ctlr)
2848 {
2849 	struct spi_controller *found;
2850 	int id = ctlr->bus_num;
2851 
2852 	/* Prevent addition of new devices, unregister existing ones */
2853 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2854 		mutex_lock(&spi_add_lock);
2855 
2856 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2857 
2858 	/* First make sure that this controller was ever added */
2859 	mutex_lock(&board_lock);
2860 	found = idr_find(&spi_master_idr, id);
2861 	mutex_unlock(&board_lock);
2862 	if (ctlr->queued) {
2863 		if (spi_destroy_queue(ctlr))
2864 			dev_err(&ctlr->dev, "queue remove failed\n");
2865 	}
2866 	mutex_lock(&board_lock);
2867 	list_del(&ctlr->list);
2868 	mutex_unlock(&board_lock);
2869 
2870 	device_del(&ctlr->dev);
2871 
2872 	/* Release the last reference on the controller if its driver
2873 	 * has not yet been converted to devm_spi_alloc_master/slave().
2874 	 */
2875 	if (!devres_find(ctlr->dev.parent, devm_spi_release_controller,
2876 			 devm_spi_match_controller, ctlr))
2877 		put_device(&ctlr->dev);
2878 
2879 	/* free bus id */
2880 	mutex_lock(&board_lock);
2881 	if (found == ctlr)
2882 		idr_remove(&spi_master_idr, id);
2883 	mutex_unlock(&board_lock);
2884 
2885 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2886 		mutex_unlock(&spi_add_lock);
2887 }
2888 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2889 
2890 int spi_controller_suspend(struct spi_controller *ctlr)
2891 {
2892 	int ret;
2893 
2894 	/* Basically no-ops for non-queued controllers */
2895 	if (!ctlr->queued)
2896 		return 0;
2897 
2898 	ret = spi_stop_queue(ctlr);
2899 	if (ret)
2900 		dev_err(&ctlr->dev, "queue stop failed\n");
2901 
2902 	return ret;
2903 }
2904 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2905 
2906 int spi_controller_resume(struct spi_controller *ctlr)
2907 {
2908 	int ret;
2909 
2910 	if (!ctlr->queued)
2911 		return 0;
2912 
2913 	ret = spi_start_queue(ctlr);
2914 	if (ret)
2915 		dev_err(&ctlr->dev, "queue restart failed\n");
2916 
2917 	return ret;
2918 }
2919 EXPORT_SYMBOL_GPL(spi_controller_resume);
2920 
2921 static int __spi_controller_match(struct device *dev, const void *data)
2922 {
2923 	struct spi_controller *ctlr;
2924 	const u16 *bus_num = data;
2925 
2926 	ctlr = container_of(dev, struct spi_controller, dev);
2927 	return ctlr->bus_num == *bus_num;
2928 }
2929 
2930 /**
2931  * spi_busnum_to_master - look up master associated with bus_num
2932  * @bus_num: the master's bus number
2933  * Context: can sleep
2934  *
2935  * This call may be used with devices that are registered after
2936  * arch init time.  It returns a refcounted pointer to the relevant
2937  * spi_controller (which the caller must release), or NULL if there is
2938  * no such master registered.
2939  *
2940  * Return: the SPI master structure on success, else NULL.
2941  */
2942 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2943 {
2944 	struct device		*dev;
2945 	struct spi_controller	*ctlr = NULL;
2946 
2947 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2948 				__spi_controller_match);
2949 	if (dev)
2950 		ctlr = container_of(dev, struct spi_controller, dev);
2951 	/* reference got in class_find_device */
2952 	return ctlr;
2953 }
2954 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2955 
2956 /*-------------------------------------------------------------------------*/
2957 
2958 /* Core methods for SPI resource management */
2959 
2960 /**
2961  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2962  *                 during the processing of a spi_message while using
2963  *                 spi_transfer_one
2964  * @spi:     the spi device for which we allocate memory
2965  * @release: the release code to execute for this resource
2966  * @size:    size to alloc and return
2967  * @gfp:     GFP allocation flags
2968  *
2969  * Return: the pointer to the allocated data
2970  *
2971  * This may get enhanced in the future to allocate from a memory pool
2972  * of the @spi_device or @spi_controller to avoid repeated allocations.
2973  */
2974 void *spi_res_alloc(struct spi_device *spi,
2975 		    spi_res_release_t release,
2976 		    size_t size, gfp_t gfp)
2977 {
2978 	struct spi_res *sres;
2979 
2980 	sres = kzalloc(sizeof(*sres) + size, gfp);
2981 	if (!sres)
2982 		return NULL;
2983 
2984 	INIT_LIST_HEAD(&sres->entry);
2985 	sres->release = release;
2986 
2987 	return sres->data;
2988 }
2989 EXPORT_SYMBOL_GPL(spi_res_alloc);
2990 
2991 /**
2992  * spi_res_free - free an spi resource
2993  * @res: pointer to the custom data of a resource
2994  *
2995  */
2996 void spi_res_free(void *res)
2997 {
2998 	struct spi_res *sres = container_of(res, struct spi_res, data);
2999 
3000 	if (!res)
3001 		return;
3002 
3003 	WARN_ON(!list_empty(&sres->entry));
3004 	kfree(sres);
3005 }
3006 EXPORT_SYMBOL_GPL(spi_res_free);
3007 
3008 /**
3009  * spi_res_add - add a spi_res to the spi_message
3010  * @message: the spi message
3011  * @res:     the spi_resource
3012  */
3013 void spi_res_add(struct spi_message *message, void *res)
3014 {
3015 	struct spi_res *sres = container_of(res, struct spi_res, data);
3016 
3017 	WARN_ON(!list_empty(&sres->entry));
3018 	list_add_tail(&sres->entry, &message->resources);
3019 }
3020 EXPORT_SYMBOL_GPL(spi_res_add);
3021 
3022 /**
3023  * spi_res_release - release all spi resources for this message
3024  * @ctlr:  the @spi_controller
3025  * @message: the @spi_message
3026  */
3027 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3028 {
3029 	struct spi_res *res, *tmp;
3030 
3031 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3032 		if (res->release)
3033 			res->release(ctlr, message, res->data);
3034 
3035 		list_del(&res->entry);
3036 
3037 		kfree(res);
3038 	}
3039 }
3040 EXPORT_SYMBOL_GPL(spi_res_release);
3041 
3042 /*-------------------------------------------------------------------------*/
3043 
3044 /* Core methods for spi_message alterations */
3045 
3046 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3047 					    struct spi_message *msg,
3048 					    void *res)
3049 {
3050 	struct spi_replaced_transfers *rxfer = res;
3051 	size_t i;
3052 
3053 	/* call extra callback if requested */
3054 	if (rxfer->release)
3055 		rxfer->release(ctlr, msg, res);
3056 
3057 	/* insert replaced transfers back into the message */
3058 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3059 
3060 	/* remove the formerly inserted entries */
3061 	for (i = 0; i < rxfer->inserted; i++)
3062 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3063 }
3064 
3065 /**
3066  * spi_replace_transfers - replace transfers with several transfers
3067  *                         and register change with spi_message.resources
3068  * @msg:           the spi_message we work upon
3069  * @xfer_first:    the first spi_transfer we want to replace
3070  * @remove:        number of transfers to remove
3071  * @insert:        the number of transfers we want to insert instead
3072  * @release:       extra release code necessary in some circumstances
3073  * @extradatasize: extra data to allocate (with alignment guarantees
3074  *                 of struct @spi_transfer)
3075  * @gfp:           gfp flags
3076  *
3077  * Returns: pointer to @spi_replaced_transfers,
3078  *          PTR_ERR(...) in case of errors.
3079  */
3080 struct spi_replaced_transfers *spi_replace_transfers(
3081 	struct spi_message *msg,
3082 	struct spi_transfer *xfer_first,
3083 	size_t remove,
3084 	size_t insert,
3085 	spi_replaced_release_t release,
3086 	size_t extradatasize,
3087 	gfp_t gfp)
3088 {
3089 	struct spi_replaced_transfers *rxfer;
3090 	struct spi_transfer *xfer;
3091 	size_t i;
3092 
3093 	/* allocate the structure using spi_res */
3094 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3095 			      struct_size(rxfer, inserted_transfers, insert)
3096 			      + extradatasize,
3097 			      gfp);
3098 	if (!rxfer)
3099 		return ERR_PTR(-ENOMEM);
3100 
3101 	/* the release code to invoke before running the generic release */
3102 	rxfer->release = release;
3103 
3104 	/* assign extradata */
3105 	if (extradatasize)
3106 		rxfer->extradata =
3107 			&rxfer->inserted_transfers[insert];
3108 
3109 	/* init the replaced_transfers list */
3110 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3111 
3112 	/* assign the list_entry after which we should reinsert
3113 	 * the @replaced_transfers - it may be spi_message.messages!
3114 	 */
3115 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3116 
3117 	/* remove the requested number of transfers */
3118 	for (i = 0; i < remove; i++) {
3119 		/* if the entry after replaced_after it is msg->transfers
3120 		 * then we have been requested to remove more transfers
3121 		 * than are in the list
3122 		 */
3123 		if (rxfer->replaced_after->next == &msg->transfers) {
3124 			dev_err(&msg->spi->dev,
3125 				"requested to remove more spi_transfers than are available\n");
3126 			/* insert replaced transfers back into the message */
3127 			list_splice(&rxfer->replaced_transfers,
3128 				    rxfer->replaced_after);
3129 
3130 			/* free the spi_replace_transfer structure */
3131 			spi_res_free(rxfer);
3132 
3133 			/* and return with an error */
3134 			return ERR_PTR(-EINVAL);
3135 		}
3136 
3137 		/* remove the entry after replaced_after from list of
3138 		 * transfers and add it to list of replaced_transfers
3139 		 */
3140 		list_move_tail(rxfer->replaced_after->next,
3141 			       &rxfer->replaced_transfers);
3142 	}
3143 
3144 	/* create copy of the given xfer with identical settings
3145 	 * based on the first transfer to get removed
3146 	 */
3147 	for (i = 0; i < insert; i++) {
3148 		/* we need to run in reverse order */
3149 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3150 
3151 		/* copy all spi_transfer data */
3152 		memcpy(xfer, xfer_first, sizeof(*xfer));
3153 
3154 		/* add to list */
3155 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3156 
3157 		/* clear cs_change and delay for all but the last */
3158 		if (i) {
3159 			xfer->cs_change = false;
3160 			xfer->delay_usecs = 0;
3161 			xfer->delay.value = 0;
3162 		}
3163 	}
3164 
3165 	/* set up inserted */
3166 	rxfer->inserted = insert;
3167 
3168 	/* and register it with spi_res/spi_message */
3169 	spi_res_add(msg, rxfer);
3170 
3171 	return rxfer;
3172 }
3173 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3174 
3175 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3176 					struct spi_message *msg,
3177 					struct spi_transfer **xferp,
3178 					size_t maxsize,
3179 					gfp_t gfp)
3180 {
3181 	struct spi_transfer *xfer = *xferp, *xfers;
3182 	struct spi_replaced_transfers *srt;
3183 	size_t offset;
3184 	size_t count, i;
3185 
3186 	/* calculate how many we have to replace */
3187 	count = DIV_ROUND_UP(xfer->len, maxsize);
3188 
3189 	/* create replacement */
3190 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3191 	if (IS_ERR(srt))
3192 		return PTR_ERR(srt);
3193 	xfers = srt->inserted_transfers;
3194 
3195 	/* now handle each of those newly inserted spi_transfers
3196 	 * note that the replacements spi_transfers all are preset
3197 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3198 	 * are all identical (as well as most others)
3199 	 * so we just have to fix up len and the pointers.
3200 	 *
3201 	 * this also includes support for the depreciated
3202 	 * spi_message.is_dma_mapped interface
3203 	 */
3204 
3205 	/* the first transfer just needs the length modified, so we
3206 	 * run it outside the loop
3207 	 */
3208 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3209 
3210 	/* all the others need rx_buf/tx_buf also set */
3211 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3212 		/* update rx_buf, tx_buf and dma */
3213 		if (xfers[i].rx_buf)
3214 			xfers[i].rx_buf += offset;
3215 		if (xfers[i].rx_dma)
3216 			xfers[i].rx_dma += offset;
3217 		if (xfers[i].tx_buf)
3218 			xfers[i].tx_buf += offset;
3219 		if (xfers[i].tx_dma)
3220 			xfers[i].tx_dma += offset;
3221 
3222 		/* update length */
3223 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3224 	}
3225 
3226 	/* we set up xferp to the last entry we have inserted,
3227 	 * so that we skip those already split transfers
3228 	 */
3229 	*xferp = &xfers[count - 1];
3230 
3231 	/* increment statistics counters */
3232 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3233 				       transfers_split_maxsize);
3234 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3235 				       transfers_split_maxsize);
3236 
3237 	return 0;
3238 }
3239 
3240 /**
3241  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3242  *                              when an individual transfer exceeds a
3243  *                              certain size
3244  * @ctlr:    the @spi_controller for this transfer
3245  * @msg:   the @spi_message to transform
3246  * @maxsize:  the maximum when to apply this
3247  * @gfp: GFP allocation flags
3248  *
3249  * Return: status of transformation
3250  */
3251 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3252 				struct spi_message *msg,
3253 				size_t maxsize,
3254 				gfp_t gfp)
3255 {
3256 	struct spi_transfer *xfer;
3257 	int ret;
3258 
3259 	/* iterate over the transfer_list,
3260 	 * but note that xfer is advanced to the last transfer inserted
3261 	 * to avoid checking sizes again unnecessarily (also xfer does
3262 	 * potentiall belong to a different list by the time the
3263 	 * replacement has happened
3264 	 */
3265 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3266 		if (xfer->len > maxsize) {
3267 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3268 							   maxsize, gfp);
3269 			if (ret)
3270 				return ret;
3271 		}
3272 	}
3273 
3274 	return 0;
3275 }
3276 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3277 
3278 /*-------------------------------------------------------------------------*/
3279 
3280 /* Core methods for SPI controller protocol drivers.  Some of the
3281  * other core methods are currently defined as inline functions.
3282  */
3283 
3284 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3285 					u8 bits_per_word)
3286 {
3287 	if (ctlr->bits_per_word_mask) {
3288 		/* Only 32 bits fit in the mask */
3289 		if (bits_per_word > 32)
3290 			return -EINVAL;
3291 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3292 			return -EINVAL;
3293 	}
3294 
3295 	return 0;
3296 }
3297 
3298 /**
3299  * spi_setup - setup SPI mode and clock rate
3300  * @spi: the device whose settings are being modified
3301  * Context: can sleep, and no requests are queued to the device
3302  *
3303  * SPI protocol drivers may need to update the transfer mode if the
3304  * device doesn't work with its default.  They may likewise need
3305  * to update clock rates or word sizes from initial values.  This function
3306  * changes those settings, and must be called from a context that can sleep.
3307  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3308  * effect the next time the device is selected and data is transferred to
3309  * or from it.  When this function returns, the spi device is deselected.
3310  *
3311  * Note that this call will fail if the protocol driver specifies an option
3312  * that the underlying controller or its driver does not support.  For
3313  * example, not all hardware supports wire transfers using nine bit words,
3314  * LSB-first wire encoding, or active-high chipselects.
3315  *
3316  * Return: zero on success, else a negative error code.
3317  */
3318 int spi_setup(struct spi_device *spi)
3319 {
3320 	unsigned	bad_bits, ugly_bits;
3321 	int		status;
3322 
3323 	/* check mode to prevent that DUAL and QUAD set at the same time
3324 	 */
3325 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3326 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3327 		dev_err(&spi->dev,
3328 		"setup: can not select dual and quad at the same time\n");
3329 		return -EINVAL;
3330 	}
3331 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3332 	 */
3333 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3334 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3335 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3336 		return -EINVAL;
3337 	/* help drivers fail *cleanly* when they need options
3338 	 * that aren't supported with their current controller
3339 	 * SPI_CS_WORD has a fallback software implementation,
3340 	 * so it is ignored here.
3341 	 */
3342 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3343 	/* nothing prevents from working with active-high CS in case if it
3344 	 * is driven by GPIO.
3345 	 */
3346 	if (gpio_is_valid(spi->cs_gpio))
3347 		bad_bits &= ~SPI_CS_HIGH;
3348 	ugly_bits = bad_bits &
3349 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3350 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3351 	if (ugly_bits) {
3352 		dev_warn(&spi->dev,
3353 			 "setup: ignoring unsupported mode bits %x\n",
3354 			 ugly_bits);
3355 		spi->mode &= ~ugly_bits;
3356 		bad_bits &= ~ugly_bits;
3357 	}
3358 	if (bad_bits) {
3359 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3360 			bad_bits);
3361 		return -EINVAL;
3362 	}
3363 
3364 	if (!spi->bits_per_word)
3365 		spi->bits_per_word = 8;
3366 
3367 	status = __spi_validate_bits_per_word(spi->controller,
3368 					      spi->bits_per_word);
3369 	if (status)
3370 		return status;
3371 
3372 	if (!spi->max_speed_hz)
3373 		spi->max_speed_hz = spi->controller->max_speed_hz;
3374 
3375 	mutex_lock(&spi->controller->io_mutex);
3376 
3377 	if (spi->controller->setup)
3378 		status = spi->controller->setup(spi);
3379 
3380 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3381 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3382 		if (status < 0) {
3383 			mutex_unlock(&spi->controller->io_mutex);
3384 			pm_runtime_put_noidle(spi->controller->dev.parent);
3385 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3386 				status);
3387 			return status;
3388 		}
3389 
3390 		/*
3391 		 * We do not want to return positive value from pm_runtime_get,
3392 		 * there are many instances of devices calling spi_setup() and
3393 		 * checking for a non-zero return value instead of a negative
3394 		 * return value.
3395 		 */
3396 		status = 0;
3397 
3398 		spi_set_cs(spi, false);
3399 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3400 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3401 	} else {
3402 		spi_set_cs(spi, false);
3403 	}
3404 
3405 	mutex_unlock(&spi->controller->io_mutex);
3406 
3407 	if (spi->rt && !spi->controller->rt) {
3408 		spi->controller->rt = true;
3409 		spi_set_thread_rt(spi->controller);
3410 	}
3411 
3412 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3413 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3414 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3415 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3416 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3417 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3418 			spi->bits_per_word, spi->max_speed_hz,
3419 			status);
3420 
3421 	return status;
3422 }
3423 EXPORT_SYMBOL_GPL(spi_setup);
3424 
3425 /**
3426  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3427  * @spi: the device that requires specific CS timing configuration
3428  * @setup: CS setup time specified via @spi_delay
3429  * @hold: CS hold time specified via @spi_delay
3430  * @inactive: CS inactive delay between transfers specified via @spi_delay
3431  *
3432  * Return: zero on success, else a negative error code.
3433  */
3434 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3435 		      struct spi_delay *hold, struct spi_delay *inactive)
3436 {
3437 	size_t len;
3438 
3439 	if (spi->controller->set_cs_timing)
3440 		return spi->controller->set_cs_timing(spi, setup, hold,
3441 						      inactive);
3442 
3443 	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3444 	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3445 	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3446 		dev_err(&spi->dev,
3447 			"Clock-cycle delays for CS not supported in SW mode\n");
3448 		return -ENOTSUPP;
3449 	}
3450 
3451 	len = sizeof(struct spi_delay);
3452 
3453 	/* copy delays to controller */
3454 	if (setup)
3455 		memcpy(&spi->controller->cs_setup, setup, len);
3456 	else
3457 		memset(&spi->controller->cs_setup, 0, len);
3458 
3459 	if (hold)
3460 		memcpy(&spi->controller->cs_hold, hold, len);
3461 	else
3462 		memset(&spi->controller->cs_hold, 0, len);
3463 
3464 	if (inactive)
3465 		memcpy(&spi->controller->cs_inactive, inactive, len);
3466 	else
3467 		memset(&spi->controller->cs_inactive, 0, len);
3468 
3469 	return 0;
3470 }
3471 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3472 
3473 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3474 				       struct spi_device *spi)
3475 {
3476 	int delay1, delay2;
3477 
3478 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3479 	if (delay1 < 0)
3480 		return delay1;
3481 
3482 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3483 	if (delay2 < 0)
3484 		return delay2;
3485 
3486 	if (delay1 < delay2)
3487 		memcpy(&xfer->word_delay, &spi->word_delay,
3488 		       sizeof(xfer->word_delay));
3489 
3490 	return 0;
3491 }
3492 
3493 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3494 {
3495 	struct spi_controller *ctlr = spi->controller;
3496 	struct spi_transfer *xfer;
3497 	int w_size;
3498 
3499 	if (list_empty(&message->transfers))
3500 		return -EINVAL;
3501 
3502 	/* If an SPI controller does not support toggling the CS line on each
3503 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3504 	 * for the CS line, we can emulate the CS-per-word hardware function by
3505 	 * splitting transfers into one-word transfers and ensuring that
3506 	 * cs_change is set for each transfer.
3507 	 */
3508 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3509 					  spi->cs_gpiod ||
3510 					  gpio_is_valid(spi->cs_gpio))) {
3511 		size_t maxsize;
3512 		int ret;
3513 
3514 		maxsize = (spi->bits_per_word + 7) / 8;
3515 
3516 		/* spi_split_transfers_maxsize() requires message->spi */
3517 		message->spi = spi;
3518 
3519 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3520 						  GFP_KERNEL);
3521 		if (ret)
3522 			return ret;
3523 
3524 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3525 			/* don't change cs_change on the last entry in the list */
3526 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3527 				break;
3528 			xfer->cs_change = 1;
3529 		}
3530 	}
3531 
3532 	/* Half-duplex links include original MicroWire, and ones with
3533 	 * only one data pin like SPI_3WIRE (switches direction) or where
3534 	 * either MOSI or MISO is missing.  They can also be caused by
3535 	 * software limitations.
3536 	 */
3537 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3538 	    (spi->mode & SPI_3WIRE)) {
3539 		unsigned flags = ctlr->flags;
3540 
3541 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3542 			if (xfer->rx_buf && xfer->tx_buf)
3543 				return -EINVAL;
3544 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3545 				return -EINVAL;
3546 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3547 				return -EINVAL;
3548 		}
3549 	}
3550 
3551 	/**
3552 	 * Set transfer bits_per_word and max speed as spi device default if
3553 	 * it is not set for this transfer.
3554 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3555 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3556 	 * Ensure transfer word_delay is at least as long as that required by
3557 	 * device itself.
3558 	 */
3559 	message->frame_length = 0;
3560 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3561 		xfer->effective_speed_hz = 0;
3562 		message->frame_length += xfer->len;
3563 		if (!xfer->bits_per_word)
3564 			xfer->bits_per_word = spi->bits_per_word;
3565 
3566 		if (!xfer->speed_hz)
3567 			xfer->speed_hz = spi->max_speed_hz;
3568 
3569 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3570 			xfer->speed_hz = ctlr->max_speed_hz;
3571 
3572 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3573 			return -EINVAL;
3574 
3575 		/*
3576 		 * SPI transfer length should be multiple of SPI word size
3577 		 * where SPI word size should be power-of-two multiple
3578 		 */
3579 		if (xfer->bits_per_word <= 8)
3580 			w_size = 1;
3581 		else if (xfer->bits_per_word <= 16)
3582 			w_size = 2;
3583 		else
3584 			w_size = 4;
3585 
3586 		/* No partial transfers accepted */
3587 		if (xfer->len % w_size)
3588 			return -EINVAL;
3589 
3590 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3591 		    xfer->speed_hz < ctlr->min_speed_hz)
3592 			return -EINVAL;
3593 
3594 		if (xfer->tx_buf && !xfer->tx_nbits)
3595 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3596 		if (xfer->rx_buf && !xfer->rx_nbits)
3597 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3598 		/* check transfer tx/rx_nbits:
3599 		 * 1. check the value matches one of single, dual and quad
3600 		 * 2. check tx/rx_nbits match the mode in spi_device
3601 		 */
3602 		if (xfer->tx_buf) {
3603 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3604 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3605 				xfer->tx_nbits != SPI_NBITS_QUAD)
3606 				return -EINVAL;
3607 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3608 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3609 				return -EINVAL;
3610 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3611 				!(spi->mode & SPI_TX_QUAD))
3612 				return -EINVAL;
3613 		}
3614 		/* check transfer rx_nbits */
3615 		if (xfer->rx_buf) {
3616 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3617 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3618 				xfer->rx_nbits != SPI_NBITS_QUAD)
3619 				return -EINVAL;
3620 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3621 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3622 				return -EINVAL;
3623 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3624 				!(spi->mode & SPI_RX_QUAD))
3625 				return -EINVAL;
3626 		}
3627 
3628 		if (_spi_xfer_word_delay_update(xfer, spi))
3629 			return -EINVAL;
3630 	}
3631 
3632 	message->status = -EINPROGRESS;
3633 
3634 	return 0;
3635 }
3636 
3637 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3638 {
3639 	struct spi_controller *ctlr = spi->controller;
3640 	struct spi_transfer *xfer;
3641 
3642 	/*
3643 	 * Some controllers do not support doing regular SPI transfers. Return
3644 	 * ENOTSUPP when this is the case.
3645 	 */
3646 	if (!ctlr->transfer)
3647 		return -ENOTSUPP;
3648 
3649 	message->spi = spi;
3650 
3651 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3652 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3653 
3654 	trace_spi_message_submit(message);
3655 
3656 	if (!ctlr->ptp_sts_supported) {
3657 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3658 			xfer->ptp_sts_word_pre = 0;
3659 			ptp_read_system_prets(xfer->ptp_sts);
3660 		}
3661 	}
3662 
3663 	return ctlr->transfer(spi, message);
3664 }
3665 
3666 /**
3667  * spi_async - asynchronous SPI transfer
3668  * @spi: device with which data will be exchanged
3669  * @message: describes the data transfers, including completion callback
3670  * Context: any (irqs may be blocked, etc)
3671  *
3672  * This call may be used in_irq and other contexts which can't sleep,
3673  * as well as from task contexts which can sleep.
3674  *
3675  * The completion callback is invoked in a context which can't sleep.
3676  * Before that invocation, the value of message->status is undefined.
3677  * When the callback is issued, message->status holds either zero (to
3678  * indicate complete success) or a negative error code.  After that
3679  * callback returns, the driver which issued the transfer request may
3680  * deallocate the associated memory; it's no longer in use by any SPI
3681  * core or controller driver code.
3682  *
3683  * Note that although all messages to a spi_device are handled in
3684  * FIFO order, messages may go to different devices in other orders.
3685  * Some device might be higher priority, or have various "hard" access
3686  * time requirements, for example.
3687  *
3688  * On detection of any fault during the transfer, processing of
3689  * the entire message is aborted, and the device is deselected.
3690  * Until returning from the associated message completion callback,
3691  * no other spi_message queued to that device will be processed.
3692  * (This rule applies equally to all the synchronous transfer calls,
3693  * which are wrappers around this core asynchronous primitive.)
3694  *
3695  * Return: zero on success, else a negative error code.
3696  */
3697 int spi_async(struct spi_device *spi, struct spi_message *message)
3698 {
3699 	struct spi_controller *ctlr = spi->controller;
3700 	int ret;
3701 	unsigned long flags;
3702 
3703 	ret = __spi_validate(spi, message);
3704 	if (ret != 0)
3705 		return ret;
3706 
3707 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3708 
3709 	if (ctlr->bus_lock_flag)
3710 		ret = -EBUSY;
3711 	else
3712 		ret = __spi_async(spi, message);
3713 
3714 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3715 
3716 	return ret;
3717 }
3718 EXPORT_SYMBOL_GPL(spi_async);
3719 
3720 /**
3721  * spi_async_locked - version of spi_async with exclusive bus usage
3722  * @spi: device with which data will be exchanged
3723  * @message: describes the data transfers, including completion callback
3724  * Context: any (irqs may be blocked, etc)
3725  *
3726  * This call may be used in_irq and other contexts which can't sleep,
3727  * as well as from task contexts which can sleep.
3728  *
3729  * The completion callback is invoked in a context which can't sleep.
3730  * Before that invocation, the value of message->status is undefined.
3731  * When the callback is issued, message->status holds either zero (to
3732  * indicate complete success) or a negative error code.  After that
3733  * callback returns, the driver which issued the transfer request may
3734  * deallocate the associated memory; it's no longer in use by any SPI
3735  * core or controller driver code.
3736  *
3737  * Note that although all messages to a spi_device are handled in
3738  * FIFO order, messages may go to different devices in other orders.
3739  * Some device might be higher priority, or have various "hard" access
3740  * time requirements, for example.
3741  *
3742  * On detection of any fault during the transfer, processing of
3743  * the entire message is aborted, and the device is deselected.
3744  * Until returning from the associated message completion callback,
3745  * no other spi_message queued to that device will be processed.
3746  * (This rule applies equally to all the synchronous transfer calls,
3747  * which are wrappers around this core asynchronous primitive.)
3748  *
3749  * Return: zero on success, else a negative error code.
3750  */
3751 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3752 {
3753 	struct spi_controller *ctlr = spi->controller;
3754 	int ret;
3755 	unsigned long flags;
3756 
3757 	ret = __spi_validate(spi, message);
3758 	if (ret != 0)
3759 		return ret;
3760 
3761 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3762 
3763 	ret = __spi_async(spi, message);
3764 
3765 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3766 
3767 	return ret;
3768 
3769 }
3770 EXPORT_SYMBOL_GPL(spi_async_locked);
3771 
3772 /*-------------------------------------------------------------------------*/
3773 
3774 /* Utility methods for SPI protocol drivers, layered on
3775  * top of the core.  Some other utility methods are defined as
3776  * inline functions.
3777  */
3778 
3779 static void spi_complete(void *arg)
3780 {
3781 	complete(arg);
3782 }
3783 
3784 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3785 {
3786 	DECLARE_COMPLETION_ONSTACK(done);
3787 	int status;
3788 	struct spi_controller *ctlr = spi->controller;
3789 	unsigned long flags;
3790 
3791 	status = __spi_validate(spi, message);
3792 	if (status != 0)
3793 		return status;
3794 
3795 	message->complete = spi_complete;
3796 	message->context = &done;
3797 	message->spi = spi;
3798 
3799 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3800 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3801 
3802 	/* If we're not using the legacy transfer method then we will
3803 	 * try to transfer in the calling context so special case.
3804 	 * This code would be less tricky if we could remove the
3805 	 * support for driver implemented message queues.
3806 	 */
3807 	if (ctlr->transfer == spi_queued_transfer) {
3808 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3809 
3810 		trace_spi_message_submit(message);
3811 
3812 		status = __spi_queued_transfer(spi, message, false);
3813 
3814 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3815 	} else {
3816 		status = spi_async_locked(spi, message);
3817 	}
3818 
3819 	if (status == 0) {
3820 		/* Push out the messages in the calling context if we
3821 		 * can.
3822 		 */
3823 		if (ctlr->transfer == spi_queued_transfer) {
3824 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3825 						       spi_sync_immediate);
3826 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3827 						       spi_sync_immediate);
3828 			__spi_pump_messages(ctlr, false);
3829 		}
3830 
3831 		wait_for_completion(&done);
3832 		status = message->status;
3833 	}
3834 	message->context = NULL;
3835 	return status;
3836 }
3837 
3838 /**
3839  * spi_sync - blocking/synchronous SPI data transfers
3840  * @spi: device with which data will be exchanged
3841  * @message: describes the data transfers
3842  * Context: can sleep
3843  *
3844  * This call may only be used from a context that may sleep.  The sleep
3845  * is non-interruptible, and has no timeout.  Low-overhead controller
3846  * drivers may DMA directly into and out of the message buffers.
3847  *
3848  * Note that the SPI device's chip select is active during the message,
3849  * and then is normally disabled between messages.  Drivers for some
3850  * frequently-used devices may want to minimize costs of selecting a chip,
3851  * by leaving it selected in anticipation that the next message will go
3852  * to the same chip.  (That may increase power usage.)
3853  *
3854  * Also, the caller is guaranteeing that the memory associated with the
3855  * message will not be freed before this call returns.
3856  *
3857  * Return: zero on success, else a negative error code.
3858  */
3859 int spi_sync(struct spi_device *spi, struct spi_message *message)
3860 {
3861 	int ret;
3862 
3863 	mutex_lock(&spi->controller->bus_lock_mutex);
3864 	ret = __spi_sync(spi, message);
3865 	mutex_unlock(&spi->controller->bus_lock_mutex);
3866 
3867 	return ret;
3868 }
3869 EXPORT_SYMBOL_GPL(spi_sync);
3870 
3871 /**
3872  * spi_sync_locked - version of spi_sync with exclusive bus usage
3873  * @spi: device with which data will be exchanged
3874  * @message: describes the data transfers
3875  * Context: can sleep
3876  *
3877  * This call may only be used from a context that may sleep.  The sleep
3878  * is non-interruptible, and has no timeout.  Low-overhead controller
3879  * drivers may DMA directly into and out of the message buffers.
3880  *
3881  * This call should be used by drivers that require exclusive access to the
3882  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3883  * be released by a spi_bus_unlock call when the exclusive access is over.
3884  *
3885  * Return: zero on success, else a negative error code.
3886  */
3887 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3888 {
3889 	return __spi_sync(spi, message);
3890 }
3891 EXPORT_SYMBOL_GPL(spi_sync_locked);
3892 
3893 /**
3894  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3895  * @ctlr: SPI bus master that should be locked for exclusive bus access
3896  * Context: can sleep
3897  *
3898  * This call may only be used from a context that may sleep.  The sleep
3899  * is non-interruptible, and has no timeout.
3900  *
3901  * This call should be used by drivers that require exclusive access to the
3902  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3903  * exclusive access is over. Data transfer must be done by spi_sync_locked
3904  * and spi_async_locked calls when the SPI bus lock is held.
3905  *
3906  * Return: always zero.
3907  */
3908 int spi_bus_lock(struct spi_controller *ctlr)
3909 {
3910 	unsigned long flags;
3911 
3912 	mutex_lock(&ctlr->bus_lock_mutex);
3913 
3914 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3915 	ctlr->bus_lock_flag = 1;
3916 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3917 
3918 	/* mutex remains locked until spi_bus_unlock is called */
3919 
3920 	return 0;
3921 }
3922 EXPORT_SYMBOL_GPL(spi_bus_lock);
3923 
3924 /**
3925  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3926  * @ctlr: SPI bus master that was locked for exclusive bus access
3927  * Context: can sleep
3928  *
3929  * This call may only be used from a context that may sleep.  The sleep
3930  * is non-interruptible, and has no timeout.
3931  *
3932  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3933  * call.
3934  *
3935  * Return: always zero.
3936  */
3937 int spi_bus_unlock(struct spi_controller *ctlr)
3938 {
3939 	ctlr->bus_lock_flag = 0;
3940 
3941 	mutex_unlock(&ctlr->bus_lock_mutex);
3942 
3943 	return 0;
3944 }
3945 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3946 
3947 /* portable code must never pass more than 32 bytes */
3948 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3949 
3950 static u8	*buf;
3951 
3952 /**
3953  * spi_write_then_read - SPI synchronous write followed by read
3954  * @spi: device with which data will be exchanged
3955  * @txbuf: data to be written (need not be dma-safe)
3956  * @n_tx: size of txbuf, in bytes
3957  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3958  * @n_rx: size of rxbuf, in bytes
3959  * Context: can sleep
3960  *
3961  * This performs a half duplex MicroWire style transaction with the
3962  * device, sending txbuf and then reading rxbuf.  The return value
3963  * is zero for success, else a negative errno status code.
3964  * This call may only be used from a context that may sleep.
3965  *
3966  * Parameters to this routine are always copied using a small buffer.
3967  * Performance-sensitive or bulk transfer code should instead use
3968  * spi_{async,sync}() calls with dma-safe buffers.
3969  *
3970  * Return: zero on success, else a negative error code.
3971  */
3972 int spi_write_then_read(struct spi_device *spi,
3973 		const void *txbuf, unsigned n_tx,
3974 		void *rxbuf, unsigned n_rx)
3975 {
3976 	static DEFINE_MUTEX(lock);
3977 
3978 	int			status;
3979 	struct spi_message	message;
3980 	struct spi_transfer	x[2];
3981 	u8			*local_buf;
3982 
3983 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3984 	 * copying here, (as a pure convenience thing), but we can
3985 	 * keep heap costs out of the hot path unless someone else is
3986 	 * using the pre-allocated buffer or the transfer is too large.
3987 	 */
3988 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3989 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3990 				    GFP_KERNEL | GFP_DMA);
3991 		if (!local_buf)
3992 			return -ENOMEM;
3993 	} else {
3994 		local_buf = buf;
3995 	}
3996 
3997 	spi_message_init(&message);
3998 	memset(x, 0, sizeof(x));
3999 	if (n_tx) {
4000 		x[0].len = n_tx;
4001 		spi_message_add_tail(&x[0], &message);
4002 	}
4003 	if (n_rx) {
4004 		x[1].len = n_rx;
4005 		spi_message_add_tail(&x[1], &message);
4006 	}
4007 
4008 	memcpy(local_buf, txbuf, n_tx);
4009 	x[0].tx_buf = local_buf;
4010 	x[1].rx_buf = local_buf + n_tx;
4011 
4012 	/* do the i/o */
4013 	status = spi_sync(spi, &message);
4014 	if (status == 0)
4015 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4016 
4017 	if (x[0].tx_buf == buf)
4018 		mutex_unlock(&lock);
4019 	else
4020 		kfree(local_buf);
4021 
4022 	return status;
4023 }
4024 EXPORT_SYMBOL_GPL(spi_write_then_read);
4025 
4026 /*-------------------------------------------------------------------------*/
4027 
4028 #if IS_ENABLED(CONFIG_OF)
4029 /* must call put_device() when done with returned spi_device device */
4030 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4031 {
4032 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4033 
4034 	return dev ? to_spi_device(dev) : NULL;
4035 }
4036 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4037 #endif /* IS_ENABLED(CONFIG_OF) */
4038 
4039 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4040 /* the spi controllers are not using spi_bus, so we find it with another way */
4041 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4042 {
4043 	struct device *dev;
4044 
4045 	dev = class_find_device_by_of_node(&spi_master_class, node);
4046 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4047 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4048 	if (!dev)
4049 		return NULL;
4050 
4051 	/* reference got in class_find_device */
4052 	return container_of(dev, struct spi_controller, dev);
4053 }
4054 
4055 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4056 			 void *arg)
4057 {
4058 	struct of_reconfig_data *rd = arg;
4059 	struct spi_controller *ctlr;
4060 	struct spi_device *spi;
4061 
4062 	switch (of_reconfig_get_state_change(action, arg)) {
4063 	case OF_RECONFIG_CHANGE_ADD:
4064 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4065 		if (ctlr == NULL)
4066 			return NOTIFY_OK;	/* not for us */
4067 
4068 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4069 			put_device(&ctlr->dev);
4070 			return NOTIFY_OK;
4071 		}
4072 
4073 		spi = of_register_spi_device(ctlr, rd->dn);
4074 		put_device(&ctlr->dev);
4075 
4076 		if (IS_ERR(spi)) {
4077 			pr_err("%s: failed to create for '%pOF'\n",
4078 					__func__, rd->dn);
4079 			of_node_clear_flag(rd->dn, OF_POPULATED);
4080 			return notifier_from_errno(PTR_ERR(spi));
4081 		}
4082 		break;
4083 
4084 	case OF_RECONFIG_CHANGE_REMOVE:
4085 		/* already depopulated? */
4086 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4087 			return NOTIFY_OK;
4088 
4089 		/* find our device by node */
4090 		spi = of_find_spi_device_by_node(rd->dn);
4091 		if (spi == NULL)
4092 			return NOTIFY_OK;	/* no? not meant for us */
4093 
4094 		/* unregister takes one ref away */
4095 		spi_unregister_device(spi);
4096 
4097 		/* and put the reference of the find */
4098 		put_device(&spi->dev);
4099 		break;
4100 	}
4101 
4102 	return NOTIFY_OK;
4103 }
4104 
4105 static struct notifier_block spi_of_notifier = {
4106 	.notifier_call = of_spi_notify,
4107 };
4108 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4109 extern struct notifier_block spi_of_notifier;
4110 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4111 
4112 #if IS_ENABLED(CONFIG_ACPI)
4113 static int spi_acpi_controller_match(struct device *dev, const void *data)
4114 {
4115 	return ACPI_COMPANION(dev->parent) == data;
4116 }
4117 
4118 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4119 {
4120 	struct device *dev;
4121 
4122 	dev = class_find_device(&spi_master_class, NULL, adev,
4123 				spi_acpi_controller_match);
4124 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4125 		dev = class_find_device(&spi_slave_class, NULL, adev,
4126 					spi_acpi_controller_match);
4127 	if (!dev)
4128 		return NULL;
4129 
4130 	return container_of(dev, struct spi_controller, dev);
4131 }
4132 
4133 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4134 {
4135 	struct device *dev;
4136 
4137 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4138 	return to_spi_device(dev);
4139 }
4140 
4141 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4142 			   void *arg)
4143 {
4144 	struct acpi_device *adev = arg;
4145 	struct spi_controller *ctlr;
4146 	struct spi_device *spi;
4147 
4148 	switch (value) {
4149 	case ACPI_RECONFIG_DEVICE_ADD:
4150 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4151 		if (!ctlr)
4152 			break;
4153 
4154 		acpi_register_spi_device(ctlr, adev);
4155 		put_device(&ctlr->dev);
4156 		break;
4157 	case ACPI_RECONFIG_DEVICE_REMOVE:
4158 		if (!acpi_device_enumerated(adev))
4159 			break;
4160 
4161 		spi = acpi_spi_find_device_by_adev(adev);
4162 		if (!spi)
4163 			break;
4164 
4165 		spi_unregister_device(spi);
4166 		put_device(&spi->dev);
4167 		break;
4168 	}
4169 
4170 	return NOTIFY_OK;
4171 }
4172 
4173 static struct notifier_block spi_acpi_notifier = {
4174 	.notifier_call = acpi_spi_notify,
4175 };
4176 #else
4177 extern struct notifier_block spi_acpi_notifier;
4178 #endif
4179 
4180 static int __init spi_init(void)
4181 {
4182 	int	status;
4183 
4184 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4185 	if (!buf) {
4186 		status = -ENOMEM;
4187 		goto err0;
4188 	}
4189 
4190 	status = bus_register(&spi_bus_type);
4191 	if (status < 0)
4192 		goto err1;
4193 
4194 	status = class_register(&spi_master_class);
4195 	if (status < 0)
4196 		goto err2;
4197 
4198 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4199 		status = class_register(&spi_slave_class);
4200 		if (status < 0)
4201 			goto err3;
4202 	}
4203 
4204 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4205 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4206 	if (IS_ENABLED(CONFIG_ACPI))
4207 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4208 
4209 	return 0;
4210 
4211 err3:
4212 	class_unregister(&spi_master_class);
4213 err2:
4214 	bus_unregister(&spi_bus_type);
4215 err1:
4216 	kfree(buf);
4217 	buf = NULL;
4218 err0:
4219 	return status;
4220 }
4221 
4222 /* board_info is normally registered in arch_initcall(),
4223  * but even essential drivers wait till later
4224  *
4225  * REVISIT only boardinfo really needs static linking. the rest (device and
4226  * driver registration) _could_ be dynamically linked (modular) ... costs
4227  * include needing to have boardinfo data structures be much more public.
4228  */
4229 postcore_initcall(spi_init);
4230