xref: /openbmc/linux/drivers/spi/spi.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Emptry string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del opertion for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 	struct spi_device	*spi;
498 
499 	if (!spi_controller_get(ctlr))
500 		return NULL;
501 
502 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 	if (!spi) {
504 		spi_controller_put(ctlr);
505 		return NULL;
506 	}
507 
508 	spi->master = spi->controller = ctlr;
509 	spi->dev.parent = &ctlr->dev;
510 	spi->dev.bus = &spi_bus_type;
511 	spi->dev.release = spidev_release;
512 	spi->cs_gpio = -ENOENT;
513 
514 	spin_lock_init(&spi->statistics.lock);
515 
516 	device_initialize(&spi->dev);
517 	return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520 
521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524 
525 	if (adev) {
526 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 		return;
528 	}
529 
530 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 		     spi->chip_select);
532 }
533 
534 static int spi_dev_check(struct device *dev, void *data)
535 {
536 	struct spi_device *spi = to_spi_device(dev);
537 	struct spi_device *new_spi = data;
538 
539 	if (spi->controller == new_spi->controller &&
540 	    spi->chip_select == new_spi->chip_select)
541 		return -EBUSY;
542 	return 0;
543 }
544 
545 /**
546  * spi_add_device - Add spi_device allocated with spi_alloc_device
547  * @spi: spi_device to register
548  *
549  * Companion function to spi_alloc_device.  Devices allocated with
550  * spi_alloc_device can be added onto the spi bus with this function.
551  *
552  * Return: 0 on success; negative errno on failure
553  */
554 int spi_add_device(struct spi_device *spi)
555 {
556 	static DEFINE_MUTEX(spi_add_lock);
557 	struct spi_controller *ctlr = spi->controller;
558 	struct device *dev = ctlr->dev.parent;
559 	int status;
560 
561 	/* Chipselects are numbered 0..max; validate. */
562 	if (spi->chip_select >= ctlr->num_chipselect) {
563 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 			ctlr->num_chipselect);
565 		return -EINVAL;
566 	}
567 
568 	/* Set the bus ID string */
569 	spi_dev_set_name(spi);
570 
571 	/* We need to make sure there's no other device with this
572 	 * chipselect **BEFORE** we call setup(), else we'll trash
573 	 * its configuration.  Lock against concurrent add() calls.
574 	 */
575 	mutex_lock(&spi_add_lock);
576 
577 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 	if (status) {
579 		dev_err(dev, "chipselect %d already in use\n",
580 				spi->chip_select);
581 		goto done;
582 	}
583 
584 	/* Descriptors take precedence */
585 	if (ctlr->cs_gpiods)
586 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 	else if (ctlr->cs_gpios)
588 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589 
590 	/* Drivers may modify this initial i/o setup, but will
591 	 * normally rely on the device being setup.  Devices
592 	 * using SPI_CS_HIGH can't coexist well otherwise...
593 	 */
594 	status = spi_setup(spi);
595 	if (status < 0) {
596 		dev_err(dev, "can't setup %s, status %d\n",
597 				dev_name(&spi->dev), status);
598 		goto done;
599 	}
600 
601 	/* Device may be bound to an active driver when this returns */
602 	status = device_add(&spi->dev);
603 	if (status < 0)
604 		dev_err(dev, "can't add %s, status %d\n",
605 				dev_name(&spi->dev), status);
606 	else
607 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608 
609 done:
610 	mutex_unlock(&spi_add_lock);
611 	return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614 
615 /**
616  * spi_new_device - instantiate one new SPI device
617  * @ctlr: Controller to which device is connected
618  * @chip: Describes the SPI device
619  * Context: can sleep
620  *
621  * On typical mainboards, this is purely internal; and it's not needed
622  * after board init creates the hard-wired devices.  Some development
623  * platforms may not be able to use spi_register_board_info though, and
624  * this is exported so that for example a USB or parport based adapter
625  * driver could add devices (which it would learn about out-of-band).
626  *
627  * Return: the new device, or NULL.
628  */
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 				  struct spi_board_info *chip)
631 {
632 	struct spi_device	*proxy;
633 	int			status;
634 
635 	/* NOTE:  caller did any chip->bus_num checks necessary.
636 	 *
637 	 * Also, unless we change the return value convention to use
638 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 	 * suggests syslogged diagnostics are best here (ugh).
640 	 */
641 
642 	proxy = spi_alloc_device(ctlr);
643 	if (!proxy)
644 		return NULL;
645 
646 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647 
648 	proxy->chip_select = chip->chip_select;
649 	proxy->max_speed_hz = chip->max_speed_hz;
650 	proxy->mode = chip->mode;
651 	proxy->irq = chip->irq;
652 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 	proxy->dev.platform_data = (void *) chip->platform_data;
654 	proxy->controller_data = chip->controller_data;
655 	proxy->controller_state = NULL;
656 
657 	if (chip->properties) {
658 		status = device_add_properties(&proxy->dev, chip->properties);
659 		if (status) {
660 			dev_err(&ctlr->dev,
661 				"failed to add properties to '%s': %d\n",
662 				chip->modalias, status);
663 			goto err_dev_put;
664 		}
665 	}
666 
667 	status = spi_add_device(proxy);
668 	if (status < 0)
669 		goto err_remove_props;
670 
671 	return proxy;
672 
673 err_remove_props:
674 	if (chip->properties)
675 		device_remove_properties(&proxy->dev);
676 err_dev_put:
677 	spi_dev_put(proxy);
678 	return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681 
682 /**
683  * spi_unregister_device - unregister a single SPI device
684  * @spi: spi_device to unregister
685  *
686  * Start making the passed SPI device vanish. Normally this would be handled
687  * by spi_unregister_controller().
688  */
689 void spi_unregister_device(struct spi_device *spi)
690 {
691 	if (!spi)
692 		return;
693 
694 	if (spi->dev.of_node) {
695 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 		of_node_put(spi->dev.of_node);
697 	}
698 	if (ACPI_COMPANION(&spi->dev))
699 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 	device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703 
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 					      struct spi_board_info *bi)
706 {
707 	struct spi_device *dev;
708 
709 	if (ctlr->bus_num != bi->bus_num)
710 		return;
711 
712 	dev = spi_new_device(ctlr, bi);
713 	if (!dev)
714 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 			bi->modalias);
716 }
717 
718 /**
719  * spi_register_board_info - register SPI devices for a given board
720  * @info: array of chip descriptors
721  * @n: how many descriptors are provided
722  * Context: can sleep
723  *
724  * Board-specific early init code calls this (probably during arch_initcall)
725  * with segments of the SPI device table.  Any device nodes are created later,
726  * after the relevant parent SPI controller (bus_num) is defined.  We keep
727  * this table of devices forever, so that reloading a controller driver will
728  * not make Linux forget about these hard-wired devices.
729  *
730  * Other code can also call this, e.g. a particular add-on board might provide
731  * SPI devices through its expansion connector, so code initializing that board
732  * would naturally declare its SPI devices.
733  *
734  * The board info passed can safely be __initdata ... but be careful of
735  * any embedded pointers (platform_data, etc), they're copied as-is.
736  * Device properties are deep-copied though.
737  *
738  * Return: zero on success, else a negative error code.
739  */
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742 	struct boardinfo *bi;
743 	int i;
744 
745 	if (!n)
746 		return 0;
747 
748 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 	if (!bi)
750 		return -ENOMEM;
751 
752 	for (i = 0; i < n; i++, bi++, info++) {
753 		struct spi_controller *ctlr;
754 
755 		memcpy(&bi->board_info, info, sizeof(*info));
756 		if (info->properties) {
757 			bi->board_info.properties =
758 					property_entries_dup(info->properties);
759 			if (IS_ERR(bi->board_info.properties))
760 				return PTR_ERR(bi->board_info.properties);
761 		}
762 
763 		mutex_lock(&board_lock);
764 		list_add_tail(&bi->list, &board_list);
765 		list_for_each_entry(ctlr, &spi_controller_list, list)
766 			spi_match_controller_to_boardinfo(ctlr,
767 							  &bi->board_info);
768 		mutex_unlock(&board_lock);
769 	}
770 
771 	return 0;
772 }
773 
774 /*-------------------------------------------------------------------------*/
775 
776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778 	if (spi->mode & SPI_CS_HIGH)
779 		enable = !enable;
780 
781 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 		/*
783 		 * Honour the SPI_NO_CS flag and invert the enable line, as
784 		 * active low is default for SPI. Execution paths that handle
785 		 * polarity inversion in gpiolib (such as device tree) will
786 		 * enforce active high using the SPI_CS_HIGH resulting in a
787 		 * double inversion through the code above.
788 		 */
789 		if (!(spi->mode & SPI_NO_CS)) {
790 			if (spi->cs_gpiod)
791 				gpiod_set_value_cansleep(spi->cs_gpiod,
792 							 !enable);
793 			else
794 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
795 		}
796 		/* Some SPI masters need both GPIO CS & slave_select */
797 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 		    spi->controller->set_cs)
799 			spi->controller->set_cs(spi, !enable);
800 	} else if (spi->controller->set_cs) {
801 		spi->controller->set_cs(spi, !enable);
802 	}
803 }
804 
805 #ifdef CONFIG_HAS_DMA
806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 		struct sg_table *sgt, void *buf, size_t len,
808 		enum dma_data_direction dir)
809 {
810 	const bool vmalloced_buf = is_vmalloc_addr(buf);
811 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
812 #ifdef CONFIG_HIGHMEM
813 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 				(unsigned long)buf < (PKMAP_BASE +
815 					(LAST_PKMAP * PAGE_SIZE)));
816 #else
817 	const bool kmap_buf = false;
818 #endif
819 	int desc_len;
820 	int sgs;
821 	struct page *vm_page;
822 	struct scatterlist *sg;
823 	void *sg_buf;
824 	size_t min;
825 	int i, ret;
826 
827 	if (vmalloced_buf || kmap_buf) {
828 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
829 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
830 	} else if (virt_addr_valid(buf)) {
831 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
832 		sgs = DIV_ROUND_UP(len, desc_len);
833 	} else {
834 		return -EINVAL;
835 	}
836 
837 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 	if (ret != 0)
839 		return ret;
840 
841 	sg = &sgt->sgl[0];
842 	for (i = 0; i < sgs; i++) {
843 
844 		if (vmalloced_buf || kmap_buf) {
845 			/*
846 			 * Next scatterlist entry size is the minimum between
847 			 * the desc_len and the remaining buffer length that
848 			 * fits in a page.
849 			 */
850 			min = min_t(size_t, desc_len,
851 				    min_t(size_t, len,
852 					  PAGE_SIZE - offset_in_page(buf)));
853 			if (vmalloced_buf)
854 				vm_page = vmalloc_to_page(buf);
855 			else
856 				vm_page = kmap_to_page(buf);
857 			if (!vm_page) {
858 				sg_free_table(sgt);
859 				return -ENOMEM;
860 			}
861 			sg_set_page(sg, vm_page,
862 				    min, offset_in_page(buf));
863 		} else {
864 			min = min_t(size_t, len, desc_len);
865 			sg_buf = buf;
866 			sg_set_buf(sg, sg_buf, min);
867 		}
868 
869 		buf += min;
870 		len -= min;
871 		sg = sg_next(sg);
872 	}
873 
874 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
875 	if (!ret)
876 		ret = -ENOMEM;
877 	if (ret < 0) {
878 		sg_free_table(sgt);
879 		return ret;
880 	}
881 
882 	sgt->nents = ret;
883 
884 	return 0;
885 }
886 
887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 		   struct sg_table *sgt, enum dma_data_direction dir)
889 {
890 	if (sgt->orig_nents) {
891 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 		sg_free_table(sgt);
893 	}
894 }
895 
896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
897 {
898 	struct device *tx_dev, *rx_dev;
899 	struct spi_transfer *xfer;
900 	int ret;
901 
902 	if (!ctlr->can_dma)
903 		return 0;
904 
905 	if (ctlr->dma_tx)
906 		tx_dev = ctlr->dma_tx->device->dev;
907 	else
908 		tx_dev = ctlr->dev.parent;
909 
910 	if (ctlr->dma_rx)
911 		rx_dev = ctlr->dma_rx->device->dev;
912 	else
913 		rx_dev = ctlr->dev.parent;
914 
915 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
916 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
917 			continue;
918 
919 		if (xfer->tx_buf != NULL) {
920 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
921 					  (void *)xfer->tx_buf, xfer->len,
922 					  DMA_TO_DEVICE);
923 			if (ret != 0)
924 				return ret;
925 		}
926 
927 		if (xfer->rx_buf != NULL) {
928 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
929 					  xfer->rx_buf, xfer->len,
930 					  DMA_FROM_DEVICE);
931 			if (ret != 0) {
932 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
933 					      DMA_TO_DEVICE);
934 				return ret;
935 			}
936 		}
937 	}
938 
939 	ctlr->cur_msg_mapped = true;
940 
941 	return 0;
942 }
943 
944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
945 {
946 	struct spi_transfer *xfer;
947 	struct device *tx_dev, *rx_dev;
948 
949 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
950 		return 0;
951 
952 	if (ctlr->dma_tx)
953 		tx_dev = ctlr->dma_tx->device->dev;
954 	else
955 		tx_dev = ctlr->dev.parent;
956 
957 	if (ctlr->dma_rx)
958 		rx_dev = ctlr->dma_rx->device->dev;
959 	else
960 		rx_dev = ctlr->dev.parent;
961 
962 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
963 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
964 			continue;
965 
966 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
968 	}
969 
970 	return 0;
971 }
972 #else /* !CONFIG_HAS_DMA */
973 static inline int __spi_map_msg(struct spi_controller *ctlr,
974 				struct spi_message *msg)
975 {
976 	return 0;
977 }
978 
979 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
980 				  struct spi_message *msg)
981 {
982 	return 0;
983 }
984 #endif /* !CONFIG_HAS_DMA */
985 
986 static inline int spi_unmap_msg(struct spi_controller *ctlr,
987 				struct spi_message *msg)
988 {
989 	struct spi_transfer *xfer;
990 
991 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 		/*
993 		 * Restore the original value of tx_buf or rx_buf if they are
994 		 * NULL.
995 		 */
996 		if (xfer->tx_buf == ctlr->dummy_tx)
997 			xfer->tx_buf = NULL;
998 		if (xfer->rx_buf == ctlr->dummy_rx)
999 			xfer->rx_buf = NULL;
1000 	}
1001 
1002 	return __spi_unmap_msg(ctlr, msg);
1003 }
1004 
1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006 {
1007 	struct spi_transfer *xfer;
1008 	void *tmp;
1009 	unsigned int max_tx, max_rx;
1010 
1011 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1012 		max_tx = 0;
1013 		max_rx = 0;
1014 
1015 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017 			    !xfer->tx_buf)
1018 				max_tx = max(xfer->len, max_tx);
1019 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020 			    !xfer->rx_buf)
1021 				max_rx = max(xfer->len, max_rx);
1022 		}
1023 
1024 		if (max_tx) {
1025 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1026 				       GFP_KERNEL | GFP_DMA);
1027 			if (!tmp)
1028 				return -ENOMEM;
1029 			ctlr->dummy_tx = tmp;
1030 			memset(tmp, 0, max_tx);
1031 		}
1032 
1033 		if (max_rx) {
1034 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1035 				       GFP_KERNEL | GFP_DMA);
1036 			if (!tmp)
1037 				return -ENOMEM;
1038 			ctlr->dummy_rx = tmp;
1039 		}
1040 
1041 		if (max_tx || max_rx) {
1042 			list_for_each_entry(xfer, &msg->transfers,
1043 					    transfer_list) {
1044 				if (!xfer->len)
1045 					continue;
1046 				if (!xfer->tx_buf)
1047 					xfer->tx_buf = ctlr->dummy_tx;
1048 				if (!xfer->rx_buf)
1049 					xfer->rx_buf = ctlr->dummy_rx;
1050 			}
1051 		}
1052 	}
1053 
1054 	return __spi_map_msg(ctlr, msg);
1055 }
1056 
1057 static int spi_transfer_wait(struct spi_controller *ctlr,
1058 			     struct spi_message *msg,
1059 			     struct spi_transfer *xfer)
1060 {
1061 	struct spi_statistics *statm = &ctlr->statistics;
1062 	struct spi_statistics *stats = &msg->spi->statistics;
1063 	unsigned long long ms = 1;
1064 
1065 	if (spi_controller_is_slave(ctlr)) {
1066 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 			return -EINTR;
1069 		}
1070 	} else {
1071 		ms = 8LL * 1000LL * xfer->len;
1072 		do_div(ms, xfer->speed_hz);
1073 		ms += ms + 200; /* some tolerance */
1074 
1075 		if (ms > UINT_MAX)
1076 			ms = UINT_MAX;
1077 
1078 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 						 msecs_to_jiffies(ms));
1080 
1081 		if (ms == 0) {
1082 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 			dev_err(&msg->spi->dev,
1085 				"SPI transfer timed out\n");
1086 			return -ETIMEDOUT;
1087 		}
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 static void _spi_transfer_delay_ns(u32 ns)
1094 {
1095 	if (!ns)
1096 		return;
1097 	if (ns <= 1000) {
1098 		ndelay(ns);
1099 	} else {
1100 		u32 us = DIV_ROUND_UP(ns, 1000);
1101 
1102 		if (us <= 10)
1103 			udelay(us);
1104 		else
1105 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1106 	}
1107 }
1108 
1109 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110 					  struct spi_transfer *xfer)
1111 {
1112 	u32 delay = xfer->cs_change_delay;
1113 	u32 unit = xfer->cs_change_delay_unit;
1114 	u32 hz;
1115 
1116 	/* return early on "fast" mode - for everything but USECS */
1117 	if (!delay && unit != SPI_DELAY_UNIT_USECS)
1118 		return;
1119 
1120 	switch (unit) {
1121 	case SPI_DELAY_UNIT_USECS:
1122 		/* for compatibility use default of 10us */
1123 		if (!delay)
1124 			delay = 10000;
1125 		else
1126 			delay *= 1000;
1127 		break;
1128 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1129 		break;
1130 	case SPI_DELAY_UNIT_SCK:
1131 		/* if there is no effective speed know, then approximate
1132 		 * by underestimating with half the requested hz
1133 		 */
1134 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1135 		delay *= DIV_ROUND_UP(1000000000, hz);
1136 		break;
1137 	default:
1138 		dev_err_once(&msg->spi->dev,
1139 			     "Use of unsupported delay unit %i, using default of 10us\n",
1140 			     xfer->cs_change_delay_unit);
1141 		delay = 10000;
1142 	}
1143 	/* now sleep for the requested amount of time */
1144 	_spi_transfer_delay_ns(delay);
1145 }
1146 
1147 /*
1148  * spi_transfer_one_message - Default implementation of transfer_one_message()
1149  *
1150  * This is a standard implementation of transfer_one_message() for
1151  * drivers which implement a transfer_one() operation.  It provides
1152  * standard handling of delays and chip select management.
1153  */
1154 static int spi_transfer_one_message(struct spi_controller *ctlr,
1155 				    struct spi_message *msg)
1156 {
1157 	struct spi_transfer *xfer;
1158 	bool keep_cs = false;
1159 	int ret = 0;
1160 	struct spi_statistics *statm = &ctlr->statistics;
1161 	struct spi_statistics *stats = &msg->spi->statistics;
1162 
1163 	spi_set_cs(msg->spi, true);
1164 
1165 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1166 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1167 
1168 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1169 		trace_spi_transfer_start(msg, xfer);
1170 
1171 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1172 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1173 
1174 		if (xfer->tx_buf || xfer->rx_buf) {
1175 			reinit_completion(&ctlr->xfer_completion);
1176 
1177 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1178 			if (ret < 0) {
1179 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1180 							       errors);
1181 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1182 							       errors);
1183 				dev_err(&msg->spi->dev,
1184 					"SPI transfer failed: %d\n", ret);
1185 				goto out;
1186 			}
1187 
1188 			if (ret > 0) {
1189 				ret = spi_transfer_wait(ctlr, msg, xfer);
1190 				if (ret < 0)
1191 					msg->status = ret;
1192 			}
1193 		} else {
1194 			if (xfer->len)
1195 				dev_err(&msg->spi->dev,
1196 					"Bufferless transfer has length %u\n",
1197 					xfer->len);
1198 		}
1199 
1200 		trace_spi_transfer_stop(msg, xfer);
1201 
1202 		if (msg->status != -EINPROGRESS)
1203 			goto out;
1204 
1205 		if (xfer->delay_usecs)
1206 			_spi_transfer_delay_ns(xfer->delay_usecs * 1000);
1207 
1208 		if (xfer->cs_change) {
1209 			if (list_is_last(&xfer->transfer_list,
1210 					 &msg->transfers)) {
1211 				keep_cs = true;
1212 			} else {
1213 				spi_set_cs(msg->spi, false);
1214 				_spi_transfer_cs_change_delay(msg, xfer);
1215 				spi_set_cs(msg->spi, true);
1216 			}
1217 		}
1218 
1219 		msg->actual_length += xfer->len;
1220 	}
1221 
1222 out:
1223 	if (ret != 0 || !keep_cs)
1224 		spi_set_cs(msg->spi, false);
1225 
1226 	if (msg->status == -EINPROGRESS)
1227 		msg->status = ret;
1228 
1229 	if (msg->status && ctlr->handle_err)
1230 		ctlr->handle_err(ctlr, msg);
1231 
1232 	spi_res_release(ctlr, msg);
1233 
1234 	spi_finalize_current_message(ctlr);
1235 
1236 	return ret;
1237 }
1238 
1239 /**
1240  * spi_finalize_current_transfer - report completion of a transfer
1241  * @ctlr: the controller reporting completion
1242  *
1243  * Called by SPI drivers using the core transfer_one_message()
1244  * implementation to notify it that the current interrupt driven
1245  * transfer has finished and the next one may be scheduled.
1246  */
1247 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1248 {
1249 	complete(&ctlr->xfer_completion);
1250 }
1251 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1252 
1253 /**
1254  * __spi_pump_messages - function which processes spi message queue
1255  * @ctlr: controller to process queue for
1256  * @in_kthread: true if we are in the context of the message pump thread
1257  *
1258  * This function checks if there is any spi message in the queue that
1259  * needs processing and if so call out to the driver to initialize hardware
1260  * and transfer each message.
1261  *
1262  * Note that it is called both from the kthread itself and also from
1263  * inside spi_sync(); the queue extraction handling at the top of the
1264  * function should deal with this safely.
1265  */
1266 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1267 {
1268 	unsigned long flags;
1269 	bool was_busy = false;
1270 	int ret;
1271 
1272 	/* Lock queue */
1273 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1274 
1275 	/* Make sure we are not already running a message */
1276 	if (ctlr->cur_msg) {
1277 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1278 		return;
1279 	}
1280 
1281 	/* If another context is idling the device then defer */
1282 	if (ctlr->idling) {
1283 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1284 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1285 		return;
1286 	}
1287 
1288 	/* Check if the queue is idle */
1289 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1290 		if (!ctlr->busy) {
1291 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1292 			return;
1293 		}
1294 
1295 		/* Only do teardown in the thread */
1296 		if (!in_kthread) {
1297 			kthread_queue_work(&ctlr->kworker,
1298 					   &ctlr->pump_messages);
1299 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1300 			return;
1301 		}
1302 
1303 		ctlr->busy = false;
1304 		ctlr->idling = true;
1305 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1306 
1307 		kfree(ctlr->dummy_rx);
1308 		ctlr->dummy_rx = NULL;
1309 		kfree(ctlr->dummy_tx);
1310 		ctlr->dummy_tx = NULL;
1311 		if (ctlr->unprepare_transfer_hardware &&
1312 		    ctlr->unprepare_transfer_hardware(ctlr))
1313 			dev_err(&ctlr->dev,
1314 				"failed to unprepare transfer hardware\n");
1315 		if (ctlr->auto_runtime_pm) {
1316 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1317 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1318 		}
1319 		trace_spi_controller_idle(ctlr);
1320 
1321 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1322 		ctlr->idling = false;
1323 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1324 		return;
1325 	}
1326 
1327 	/* Extract head of queue */
1328 	ctlr->cur_msg =
1329 		list_first_entry(&ctlr->queue, struct spi_message, queue);
1330 
1331 	list_del_init(&ctlr->cur_msg->queue);
1332 	if (ctlr->busy)
1333 		was_busy = true;
1334 	else
1335 		ctlr->busy = true;
1336 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1337 
1338 	mutex_lock(&ctlr->io_mutex);
1339 
1340 	if (!was_busy && ctlr->auto_runtime_pm) {
1341 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1342 		if (ret < 0) {
1343 			pm_runtime_put_noidle(ctlr->dev.parent);
1344 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1345 				ret);
1346 			mutex_unlock(&ctlr->io_mutex);
1347 			return;
1348 		}
1349 	}
1350 
1351 	if (!was_busy)
1352 		trace_spi_controller_busy(ctlr);
1353 
1354 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1355 		ret = ctlr->prepare_transfer_hardware(ctlr);
1356 		if (ret) {
1357 			dev_err(&ctlr->dev,
1358 				"failed to prepare transfer hardware: %d\n",
1359 				ret);
1360 
1361 			if (ctlr->auto_runtime_pm)
1362 				pm_runtime_put(ctlr->dev.parent);
1363 
1364 			ctlr->cur_msg->status = ret;
1365 			spi_finalize_current_message(ctlr);
1366 
1367 			mutex_unlock(&ctlr->io_mutex);
1368 			return;
1369 		}
1370 	}
1371 
1372 	trace_spi_message_start(ctlr->cur_msg);
1373 
1374 	if (ctlr->prepare_message) {
1375 		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1376 		if (ret) {
1377 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1378 				ret);
1379 			ctlr->cur_msg->status = ret;
1380 			spi_finalize_current_message(ctlr);
1381 			goto out;
1382 		}
1383 		ctlr->cur_msg_prepared = true;
1384 	}
1385 
1386 	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1387 	if (ret) {
1388 		ctlr->cur_msg->status = ret;
1389 		spi_finalize_current_message(ctlr);
1390 		goto out;
1391 	}
1392 
1393 	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1394 	if (ret) {
1395 		dev_err(&ctlr->dev,
1396 			"failed to transfer one message from queue\n");
1397 		goto out;
1398 	}
1399 
1400 out:
1401 	mutex_unlock(&ctlr->io_mutex);
1402 
1403 	/* Prod the scheduler in case transfer_one() was busy waiting */
1404 	if (!ret)
1405 		cond_resched();
1406 }
1407 
1408 /**
1409  * spi_pump_messages - kthread work function which processes spi message queue
1410  * @work: pointer to kthread work struct contained in the controller struct
1411  */
1412 static void spi_pump_messages(struct kthread_work *work)
1413 {
1414 	struct spi_controller *ctlr =
1415 		container_of(work, struct spi_controller, pump_messages);
1416 
1417 	__spi_pump_messages(ctlr, true);
1418 }
1419 
1420 /**
1421  * spi_set_thread_rt - set the controller to pump at realtime priority
1422  * @ctlr: controller to boost priority of
1423  *
1424  * This can be called because the controller requested realtime priority
1425  * (by setting the ->rt value before calling spi_register_controller()) or
1426  * because a device on the bus said that its transfers needed realtime
1427  * priority.
1428  *
1429  * NOTE: at the moment if any device on a bus says it needs realtime then
1430  * the thread will be at realtime priority for all transfers on that
1431  * controller.  If this eventually becomes a problem we may see if we can
1432  * find a way to boost the priority only temporarily during relevant
1433  * transfers.
1434  */
1435 static void spi_set_thread_rt(struct spi_controller *ctlr)
1436 {
1437 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1438 
1439 	dev_info(&ctlr->dev,
1440 		"will run message pump with realtime priority\n");
1441 	sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1442 }
1443 
1444 static int spi_init_queue(struct spi_controller *ctlr)
1445 {
1446 	ctlr->running = false;
1447 	ctlr->busy = false;
1448 
1449 	kthread_init_worker(&ctlr->kworker);
1450 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1451 					 "%s", dev_name(&ctlr->dev));
1452 	if (IS_ERR(ctlr->kworker_task)) {
1453 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1454 		return PTR_ERR(ctlr->kworker_task);
1455 	}
1456 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1457 
1458 	/*
1459 	 * Controller config will indicate if this controller should run the
1460 	 * message pump with high (realtime) priority to reduce the transfer
1461 	 * latency on the bus by minimising the delay between a transfer
1462 	 * request and the scheduling of the message pump thread. Without this
1463 	 * setting the message pump thread will remain at default priority.
1464 	 */
1465 	if (ctlr->rt)
1466 		spi_set_thread_rt(ctlr);
1467 
1468 	return 0;
1469 }
1470 
1471 /**
1472  * spi_get_next_queued_message() - called by driver to check for queued
1473  * messages
1474  * @ctlr: the controller to check for queued messages
1475  *
1476  * If there are more messages in the queue, the next message is returned from
1477  * this call.
1478  *
1479  * Return: the next message in the queue, else NULL if the queue is empty.
1480  */
1481 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1482 {
1483 	struct spi_message *next;
1484 	unsigned long flags;
1485 
1486 	/* get a pointer to the next message, if any */
1487 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1488 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1489 					queue);
1490 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1491 
1492 	return next;
1493 }
1494 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1495 
1496 /**
1497  * spi_finalize_current_message() - the current message is complete
1498  * @ctlr: the controller to return the message to
1499  *
1500  * Called by the driver to notify the core that the message in the front of the
1501  * queue is complete and can be removed from the queue.
1502  */
1503 void spi_finalize_current_message(struct spi_controller *ctlr)
1504 {
1505 	struct spi_message *mesg;
1506 	unsigned long flags;
1507 	int ret;
1508 
1509 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1510 	mesg = ctlr->cur_msg;
1511 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1512 
1513 	spi_unmap_msg(ctlr, mesg);
1514 
1515 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1516 		ret = ctlr->unprepare_message(ctlr, mesg);
1517 		if (ret) {
1518 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1519 				ret);
1520 		}
1521 	}
1522 
1523 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1524 	ctlr->cur_msg = NULL;
1525 	ctlr->cur_msg_prepared = false;
1526 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1527 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1528 
1529 	trace_spi_message_done(mesg);
1530 
1531 	mesg->state = NULL;
1532 	if (mesg->complete)
1533 		mesg->complete(mesg->context);
1534 }
1535 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1536 
1537 static int spi_start_queue(struct spi_controller *ctlr)
1538 {
1539 	unsigned long flags;
1540 
1541 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1542 
1543 	if (ctlr->running || ctlr->busy) {
1544 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1545 		return -EBUSY;
1546 	}
1547 
1548 	ctlr->running = true;
1549 	ctlr->cur_msg = NULL;
1550 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1551 
1552 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1553 
1554 	return 0;
1555 }
1556 
1557 static int spi_stop_queue(struct spi_controller *ctlr)
1558 {
1559 	unsigned long flags;
1560 	unsigned limit = 500;
1561 	int ret = 0;
1562 
1563 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1564 
1565 	/*
1566 	 * This is a bit lame, but is optimized for the common execution path.
1567 	 * A wait_queue on the ctlr->busy could be used, but then the common
1568 	 * execution path (pump_messages) would be required to call wake_up or
1569 	 * friends on every SPI message. Do this instead.
1570 	 */
1571 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1572 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1573 		usleep_range(10000, 11000);
1574 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1575 	}
1576 
1577 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1578 		ret = -EBUSY;
1579 	else
1580 		ctlr->running = false;
1581 
1582 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1583 
1584 	if (ret) {
1585 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1586 		return ret;
1587 	}
1588 	return ret;
1589 }
1590 
1591 static int spi_destroy_queue(struct spi_controller *ctlr)
1592 {
1593 	int ret;
1594 
1595 	ret = spi_stop_queue(ctlr);
1596 
1597 	/*
1598 	 * kthread_flush_worker will block until all work is done.
1599 	 * If the reason that stop_queue timed out is that the work will never
1600 	 * finish, then it does no good to call flush/stop thread, so
1601 	 * return anyway.
1602 	 */
1603 	if (ret) {
1604 		dev_err(&ctlr->dev, "problem destroying queue\n");
1605 		return ret;
1606 	}
1607 
1608 	kthread_flush_worker(&ctlr->kworker);
1609 	kthread_stop(ctlr->kworker_task);
1610 
1611 	return 0;
1612 }
1613 
1614 static int __spi_queued_transfer(struct spi_device *spi,
1615 				 struct spi_message *msg,
1616 				 bool need_pump)
1617 {
1618 	struct spi_controller *ctlr = spi->controller;
1619 	unsigned long flags;
1620 
1621 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1622 
1623 	if (!ctlr->running) {
1624 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1625 		return -ESHUTDOWN;
1626 	}
1627 	msg->actual_length = 0;
1628 	msg->status = -EINPROGRESS;
1629 
1630 	list_add_tail(&msg->queue, &ctlr->queue);
1631 	if (!ctlr->busy && need_pump)
1632 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1633 
1634 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1635 	return 0;
1636 }
1637 
1638 /**
1639  * spi_queued_transfer - transfer function for queued transfers
1640  * @spi: spi device which is requesting transfer
1641  * @msg: spi message which is to handled is queued to driver queue
1642  *
1643  * Return: zero on success, else a negative error code.
1644  */
1645 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1646 {
1647 	return __spi_queued_transfer(spi, msg, true);
1648 }
1649 
1650 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1651 {
1652 	int ret;
1653 
1654 	ctlr->transfer = spi_queued_transfer;
1655 	if (!ctlr->transfer_one_message)
1656 		ctlr->transfer_one_message = spi_transfer_one_message;
1657 
1658 	/* Initialize and start queue */
1659 	ret = spi_init_queue(ctlr);
1660 	if (ret) {
1661 		dev_err(&ctlr->dev, "problem initializing queue\n");
1662 		goto err_init_queue;
1663 	}
1664 	ctlr->queued = true;
1665 	ret = spi_start_queue(ctlr);
1666 	if (ret) {
1667 		dev_err(&ctlr->dev, "problem starting queue\n");
1668 		goto err_start_queue;
1669 	}
1670 
1671 	return 0;
1672 
1673 err_start_queue:
1674 	spi_destroy_queue(ctlr);
1675 err_init_queue:
1676 	return ret;
1677 }
1678 
1679 /**
1680  * spi_flush_queue - Send all pending messages in the queue from the callers'
1681  *		     context
1682  * @ctlr: controller to process queue for
1683  *
1684  * This should be used when one wants to ensure all pending messages have been
1685  * sent before doing something. Is used by the spi-mem code to make sure SPI
1686  * memory operations do not preempt regular SPI transfers that have been queued
1687  * before the spi-mem operation.
1688  */
1689 void spi_flush_queue(struct spi_controller *ctlr)
1690 {
1691 	if (ctlr->transfer == spi_queued_transfer)
1692 		__spi_pump_messages(ctlr, false);
1693 }
1694 
1695 /*-------------------------------------------------------------------------*/
1696 
1697 #if defined(CONFIG_OF)
1698 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1699 			   struct device_node *nc)
1700 {
1701 	u32 value;
1702 	int rc;
1703 
1704 	/* Mode (clock phase/polarity/etc.) */
1705 	if (of_property_read_bool(nc, "spi-cpha"))
1706 		spi->mode |= SPI_CPHA;
1707 	if (of_property_read_bool(nc, "spi-cpol"))
1708 		spi->mode |= SPI_CPOL;
1709 	if (of_property_read_bool(nc, "spi-3wire"))
1710 		spi->mode |= SPI_3WIRE;
1711 	if (of_property_read_bool(nc, "spi-lsb-first"))
1712 		spi->mode |= SPI_LSB_FIRST;
1713 
1714 	/*
1715 	 * For descriptors associated with the device, polarity inversion is
1716 	 * handled in the gpiolib, so all chip selects are "active high" in
1717 	 * the logical sense, the gpiolib will invert the line if need be.
1718 	 */
1719 	if (ctlr->use_gpio_descriptors)
1720 		spi->mode |= SPI_CS_HIGH;
1721 	else if (of_property_read_bool(nc, "spi-cs-high"))
1722 		spi->mode |= SPI_CS_HIGH;
1723 
1724 	/* Device DUAL/QUAD mode */
1725 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1726 		switch (value) {
1727 		case 1:
1728 			break;
1729 		case 2:
1730 			spi->mode |= SPI_TX_DUAL;
1731 			break;
1732 		case 4:
1733 			spi->mode |= SPI_TX_QUAD;
1734 			break;
1735 		case 8:
1736 			spi->mode |= SPI_TX_OCTAL;
1737 			break;
1738 		default:
1739 			dev_warn(&ctlr->dev,
1740 				"spi-tx-bus-width %d not supported\n",
1741 				value);
1742 			break;
1743 		}
1744 	}
1745 
1746 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1747 		switch (value) {
1748 		case 1:
1749 			break;
1750 		case 2:
1751 			spi->mode |= SPI_RX_DUAL;
1752 			break;
1753 		case 4:
1754 			spi->mode |= SPI_RX_QUAD;
1755 			break;
1756 		case 8:
1757 			spi->mode |= SPI_RX_OCTAL;
1758 			break;
1759 		default:
1760 			dev_warn(&ctlr->dev,
1761 				"spi-rx-bus-width %d not supported\n",
1762 				value);
1763 			break;
1764 		}
1765 	}
1766 
1767 	if (spi_controller_is_slave(ctlr)) {
1768 		if (!of_node_name_eq(nc, "slave")) {
1769 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1770 				nc);
1771 			return -EINVAL;
1772 		}
1773 		return 0;
1774 	}
1775 
1776 	/* Device address */
1777 	rc = of_property_read_u32(nc, "reg", &value);
1778 	if (rc) {
1779 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1780 			nc, rc);
1781 		return rc;
1782 	}
1783 	spi->chip_select = value;
1784 
1785 	/* Device speed */
1786 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1787 	if (rc) {
1788 		dev_err(&ctlr->dev,
1789 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1790 		return rc;
1791 	}
1792 	spi->max_speed_hz = value;
1793 
1794 	return 0;
1795 }
1796 
1797 static struct spi_device *
1798 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1799 {
1800 	struct spi_device *spi;
1801 	int rc;
1802 
1803 	/* Alloc an spi_device */
1804 	spi = spi_alloc_device(ctlr);
1805 	if (!spi) {
1806 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1807 		rc = -ENOMEM;
1808 		goto err_out;
1809 	}
1810 
1811 	/* Select device driver */
1812 	rc = of_modalias_node(nc, spi->modalias,
1813 				sizeof(spi->modalias));
1814 	if (rc < 0) {
1815 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1816 		goto err_out;
1817 	}
1818 
1819 	rc = of_spi_parse_dt(ctlr, spi, nc);
1820 	if (rc)
1821 		goto err_out;
1822 
1823 	/* Store a pointer to the node in the device structure */
1824 	of_node_get(nc);
1825 	spi->dev.of_node = nc;
1826 
1827 	/* Register the new device */
1828 	rc = spi_add_device(spi);
1829 	if (rc) {
1830 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1831 		goto err_of_node_put;
1832 	}
1833 
1834 	return spi;
1835 
1836 err_of_node_put:
1837 	of_node_put(nc);
1838 err_out:
1839 	spi_dev_put(spi);
1840 	return ERR_PTR(rc);
1841 }
1842 
1843 /**
1844  * of_register_spi_devices() - Register child devices onto the SPI bus
1845  * @ctlr:	Pointer to spi_controller device
1846  *
1847  * Registers an spi_device for each child node of controller node which
1848  * represents a valid SPI slave.
1849  */
1850 static void of_register_spi_devices(struct spi_controller *ctlr)
1851 {
1852 	struct spi_device *spi;
1853 	struct device_node *nc;
1854 
1855 	if (!ctlr->dev.of_node)
1856 		return;
1857 
1858 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1859 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1860 			continue;
1861 		spi = of_register_spi_device(ctlr, nc);
1862 		if (IS_ERR(spi)) {
1863 			dev_warn(&ctlr->dev,
1864 				 "Failed to create SPI device for %pOF\n", nc);
1865 			of_node_clear_flag(nc, OF_POPULATED);
1866 		}
1867 	}
1868 }
1869 #else
1870 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1871 #endif
1872 
1873 #ifdef CONFIG_ACPI
1874 struct acpi_spi_lookup {
1875 	struct spi_controller 	*ctlr;
1876 	u32			max_speed_hz;
1877 	u32			mode;
1878 	int			irq;
1879 	u8			bits_per_word;
1880 	u8			chip_select;
1881 };
1882 
1883 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1884 					    struct acpi_spi_lookup *lookup)
1885 {
1886 	const union acpi_object *obj;
1887 
1888 	if (!x86_apple_machine)
1889 		return;
1890 
1891 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1892 	    && obj->buffer.length >= 4)
1893 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1894 
1895 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1896 	    && obj->buffer.length == 8)
1897 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
1898 
1899 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1900 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1901 		lookup->mode |= SPI_LSB_FIRST;
1902 
1903 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1904 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1905 		lookup->mode |= SPI_CPOL;
1906 
1907 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1908 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1909 		lookup->mode |= SPI_CPHA;
1910 }
1911 
1912 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1913 {
1914 	struct acpi_spi_lookup *lookup = data;
1915 	struct spi_controller *ctlr = lookup->ctlr;
1916 
1917 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1918 		struct acpi_resource_spi_serialbus *sb;
1919 		acpi_handle parent_handle;
1920 		acpi_status status;
1921 
1922 		sb = &ares->data.spi_serial_bus;
1923 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1924 
1925 			status = acpi_get_handle(NULL,
1926 						 sb->resource_source.string_ptr,
1927 						 &parent_handle);
1928 
1929 			if (ACPI_FAILURE(status) ||
1930 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1931 				return -ENODEV;
1932 
1933 			/*
1934 			 * ACPI DeviceSelection numbering is handled by the
1935 			 * host controller driver in Windows and can vary
1936 			 * from driver to driver. In Linux we always expect
1937 			 * 0 .. max - 1 so we need to ask the driver to
1938 			 * translate between the two schemes.
1939 			 */
1940 			if (ctlr->fw_translate_cs) {
1941 				int cs = ctlr->fw_translate_cs(ctlr,
1942 						sb->device_selection);
1943 				if (cs < 0)
1944 					return cs;
1945 				lookup->chip_select = cs;
1946 			} else {
1947 				lookup->chip_select = sb->device_selection;
1948 			}
1949 
1950 			lookup->max_speed_hz = sb->connection_speed;
1951 
1952 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1953 				lookup->mode |= SPI_CPHA;
1954 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1955 				lookup->mode |= SPI_CPOL;
1956 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1957 				lookup->mode |= SPI_CS_HIGH;
1958 		}
1959 	} else if (lookup->irq < 0) {
1960 		struct resource r;
1961 
1962 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1963 			lookup->irq = r.start;
1964 	}
1965 
1966 	/* Always tell the ACPI core to skip this resource */
1967 	return 1;
1968 }
1969 
1970 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1971 					    struct acpi_device *adev)
1972 {
1973 	acpi_handle parent_handle = NULL;
1974 	struct list_head resource_list;
1975 	struct acpi_spi_lookup lookup = {};
1976 	struct spi_device *spi;
1977 	int ret;
1978 
1979 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1980 	    acpi_device_enumerated(adev))
1981 		return AE_OK;
1982 
1983 	lookup.ctlr		= ctlr;
1984 	lookup.irq		= -1;
1985 
1986 	INIT_LIST_HEAD(&resource_list);
1987 	ret = acpi_dev_get_resources(adev, &resource_list,
1988 				     acpi_spi_add_resource, &lookup);
1989 	acpi_dev_free_resource_list(&resource_list);
1990 
1991 	if (ret < 0)
1992 		/* found SPI in _CRS but it points to another controller */
1993 		return AE_OK;
1994 
1995 	if (!lookup.max_speed_hz &&
1996 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
1997 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
1998 		/* Apple does not use _CRS but nested devices for SPI slaves */
1999 		acpi_spi_parse_apple_properties(adev, &lookup);
2000 	}
2001 
2002 	if (!lookup.max_speed_hz)
2003 		return AE_OK;
2004 
2005 	spi = spi_alloc_device(ctlr);
2006 	if (!spi) {
2007 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2008 			dev_name(&adev->dev));
2009 		return AE_NO_MEMORY;
2010 	}
2011 
2012 	ACPI_COMPANION_SET(&spi->dev, adev);
2013 	spi->max_speed_hz	= lookup.max_speed_hz;
2014 	spi->mode		= lookup.mode;
2015 	spi->irq		= lookup.irq;
2016 	spi->bits_per_word	= lookup.bits_per_word;
2017 	spi->chip_select	= lookup.chip_select;
2018 
2019 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2020 			  sizeof(spi->modalias));
2021 
2022 	if (spi->irq < 0)
2023 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2024 
2025 	acpi_device_set_enumerated(adev);
2026 
2027 	adev->power.flags.ignore_parent = true;
2028 	if (spi_add_device(spi)) {
2029 		adev->power.flags.ignore_parent = false;
2030 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2031 			dev_name(&adev->dev));
2032 		spi_dev_put(spi);
2033 	}
2034 
2035 	return AE_OK;
2036 }
2037 
2038 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2039 				       void *data, void **return_value)
2040 {
2041 	struct spi_controller *ctlr = data;
2042 	struct acpi_device *adev;
2043 
2044 	if (acpi_bus_get_device(handle, &adev))
2045 		return AE_OK;
2046 
2047 	return acpi_register_spi_device(ctlr, adev);
2048 }
2049 
2050 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2051 
2052 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2053 {
2054 	acpi_status status;
2055 	acpi_handle handle;
2056 
2057 	handle = ACPI_HANDLE(ctlr->dev.parent);
2058 	if (!handle)
2059 		return;
2060 
2061 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2062 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2063 				     acpi_spi_add_device, NULL, ctlr, NULL);
2064 	if (ACPI_FAILURE(status))
2065 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2066 }
2067 #else
2068 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2069 #endif /* CONFIG_ACPI */
2070 
2071 static void spi_controller_release(struct device *dev)
2072 {
2073 	struct spi_controller *ctlr;
2074 
2075 	ctlr = container_of(dev, struct spi_controller, dev);
2076 	kfree(ctlr);
2077 }
2078 
2079 static struct class spi_master_class = {
2080 	.name		= "spi_master",
2081 	.owner		= THIS_MODULE,
2082 	.dev_release	= spi_controller_release,
2083 	.dev_groups	= spi_master_groups,
2084 };
2085 
2086 #ifdef CONFIG_SPI_SLAVE
2087 /**
2088  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2089  *		     controller
2090  * @spi: device used for the current transfer
2091  */
2092 int spi_slave_abort(struct spi_device *spi)
2093 {
2094 	struct spi_controller *ctlr = spi->controller;
2095 
2096 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2097 		return ctlr->slave_abort(ctlr);
2098 
2099 	return -ENOTSUPP;
2100 }
2101 EXPORT_SYMBOL_GPL(spi_slave_abort);
2102 
2103 static int match_true(struct device *dev, void *data)
2104 {
2105 	return 1;
2106 }
2107 
2108 static ssize_t spi_slave_show(struct device *dev,
2109 			      struct device_attribute *attr, char *buf)
2110 {
2111 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2112 						   dev);
2113 	struct device *child;
2114 
2115 	child = device_find_child(&ctlr->dev, NULL, match_true);
2116 	return sprintf(buf, "%s\n",
2117 		       child ? to_spi_device(child)->modalias : NULL);
2118 }
2119 
2120 static ssize_t spi_slave_store(struct device *dev,
2121 			       struct device_attribute *attr, const char *buf,
2122 			       size_t count)
2123 {
2124 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2125 						   dev);
2126 	struct spi_device *spi;
2127 	struct device *child;
2128 	char name[32];
2129 	int rc;
2130 
2131 	rc = sscanf(buf, "%31s", name);
2132 	if (rc != 1 || !name[0])
2133 		return -EINVAL;
2134 
2135 	child = device_find_child(&ctlr->dev, NULL, match_true);
2136 	if (child) {
2137 		/* Remove registered slave */
2138 		device_unregister(child);
2139 		put_device(child);
2140 	}
2141 
2142 	if (strcmp(name, "(null)")) {
2143 		/* Register new slave */
2144 		spi = spi_alloc_device(ctlr);
2145 		if (!spi)
2146 			return -ENOMEM;
2147 
2148 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2149 
2150 		rc = spi_add_device(spi);
2151 		if (rc) {
2152 			spi_dev_put(spi);
2153 			return rc;
2154 		}
2155 	}
2156 
2157 	return count;
2158 }
2159 
2160 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2161 
2162 static struct attribute *spi_slave_attrs[] = {
2163 	&dev_attr_slave.attr,
2164 	NULL,
2165 };
2166 
2167 static const struct attribute_group spi_slave_group = {
2168 	.attrs = spi_slave_attrs,
2169 };
2170 
2171 static const struct attribute_group *spi_slave_groups[] = {
2172 	&spi_controller_statistics_group,
2173 	&spi_slave_group,
2174 	NULL,
2175 };
2176 
2177 static struct class spi_slave_class = {
2178 	.name		= "spi_slave",
2179 	.owner		= THIS_MODULE,
2180 	.dev_release	= spi_controller_release,
2181 	.dev_groups	= spi_slave_groups,
2182 };
2183 #else
2184 extern struct class spi_slave_class;	/* dummy */
2185 #endif
2186 
2187 /**
2188  * __spi_alloc_controller - allocate an SPI master or slave controller
2189  * @dev: the controller, possibly using the platform_bus
2190  * @size: how much zeroed driver-private data to allocate; the pointer to this
2191  *	memory is in the driver_data field of the returned device,
2192  *	accessible with spi_controller_get_devdata().
2193  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2194  *	slave (true) controller
2195  * Context: can sleep
2196  *
2197  * This call is used only by SPI controller drivers, which are the
2198  * only ones directly touching chip registers.  It's how they allocate
2199  * an spi_controller structure, prior to calling spi_register_controller().
2200  *
2201  * This must be called from context that can sleep.
2202  *
2203  * The caller is responsible for assigning the bus number and initializing the
2204  * controller's methods before calling spi_register_controller(); and (after
2205  * errors adding the device) calling spi_controller_put() to prevent a memory
2206  * leak.
2207  *
2208  * Return: the SPI controller structure on success, else NULL.
2209  */
2210 struct spi_controller *__spi_alloc_controller(struct device *dev,
2211 					      unsigned int size, bool slave)
2212 {
2213 	struct spi_controller	*ctlr;
2214 
2215 	if (!dev)
2216 		return NULL;
2217 
2218 	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2219 	if (!ctlr)
2220 		return NULL;
2221 
2222 	device_initialize(&ctlr->dev);
2223 	ctlr->bus_num = -1;
2224 	ctlr->num_chipselect = 1;
2225 	ctlr->slave = slave;
2226 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2227 		ctlr->dev.class = &spi_slave_class;
2228 	else
2229 		ctlr->dev.class = &spi_master_class;
2230 	ctlr->dev.parent = dev;
2231 	pm_suspend_ignore_children(&ctlr->dev, true);
2232 	spi_controller_set_devdata(ctlr, &ctlr[1]);
2233 
2234 	return ctlr;
2235 }
2236 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2237 
2238 #ifdef CONFIG_OF
2239 static int of_spi_register_master(struct spi_controller *ctlr)
2240 {
2241 	int nb, i, *cs;
2242 	struct device_node *np = ctlr->dev.of_node;
2243 
2244 	if (!np)
2245 		return 0;
2246 
2247 	nb = of_gpio_named_count(np, "cs-gpios");
2248 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2249 
2250 	/* Return error only for an incorrectly formed cs-gpios property */
2251 	if (nb == 0 || nb == -ENOENT)
2252 		return 0;
2253 	else if (nb < 0)
2254 		return nb;
2255 
2256 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2257 			  GFP_KERNEL);
2258 	ctlr->cs_gpios = cs;
2259 
2260 	if (!ctlr->cs_gpios)
2261 		return -ENOMEM;
2262 
2263 	for (i = 0; i < ctlr->num_chipselect; i++)
2264 		cs[i] = -ENOENT;
2265 
2266 	for (i = 0; i < nb; i++)
2267 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2268 
2269 	return 0;
2270 }
2271 #else
2272 static int of_spi_register_master(struct spi_controller *ctlr)
2273 {
2274 	return 0;
2275 }
2276 #endif
2277 
2278 /**
2279  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2280  * @ctlr: The SPI master to grab GPIO descriptors for
2281  */
2282 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2283 {
2284 	int nb, i;
2285 	struct gpio_desc **cs;
2286 	struct device *dev = &ctlr->dev;
2287 
2288 	nb = gpiod_count(dev, "cs");
2289 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2290 
2291 	/* No GPIOs at all is fine, else return the error */
2292 	if (nb == 0 || nb == -ENOENT)
2293 		return 0;
2294 	else if (nb < 0)
2295 		return nb;
2296 
2297 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2298 			  GFP_KERNEL);
2299 	if (!cs)
2300 		return -ENOMEM;
2301 	ctlr->cs_gpiods = cs;
2302 
2303 	for (i = 0; i < nb; i++) {
2304 		/*
2305 		 * Most chipselects are active low, the inverted
2306 		 * semantics are handled by special quirks in gpiolib,
2307 		 * so initializing them GPIOD_OUT_LOW here means
2308 		 * "unasserted", in most cases this will drive the physical
2309 		 * line high.
2310 		 */
2311 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2312 						      GPIOD_OUT_LOW);
2313 		if (IS_ERR(cs[i]))
2314 			return PTR_ERR(cs[i]);
2315 
2316 		if (cs[i]) {
2317 			/*
2318 			 * If we find a CS GPIO, name it after the device and
2319 			 * chip select line.
2320 			 */
2321 			char *gpioname;
2322 
2323 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2324 						  dev_name(dev), i);
2325 			if (!gpioname)
2326 				return -ENOMEM;
2327 			gpiod_set_consumer_name(cs[i], gpioname);
2328 		}
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 static int spi_controller_check_ops(struct spi_controller *ctlr)
2335 {
2336 	/*
2337 	 * The controller may implement only the high-level SPI-memory like
2338 	 * operations if it does not support regular SPI transfers, and this is
2339 	 * valid use case.
2340 	 * If ->mem_ops is NULL, we request that at least one of the
2341 	 * ->transfer_xxx() method be implemented.
2342 	 */
2343 	if (ctlr->mem_ops) {
2344 		if (!ctlr->mem_ops->exec_op)
2345 			return -EINVAL;
2346 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2347 		   !ctlr->transfer_one_message) {
2348 		return -EINVAL;
2349 	}
2350 
2351 	return 0;
2352 }
2353 
2354 /**
2355  * spi_register_controller - register SPI master or slave controller
2356  * @ctlr: initialized master, originally from spi_alloc_master() or
2357  *	spi_alloc_slave()
2358  * Context: can sleep
2359  *
2360  * SPI controllers connect to their drivers using some non-SPI bus,
2361  * such as the platform bus.  The final stage of probe() in that code
2362  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2363  *
2364  * SPI controllers use board specific (often SOC specific) bus numbers,
2365  * and board-specific addressing for SPI devices combines those numbers
2366  * with chip select numbers.  Since SPI does not directly support dynamic
2367  * device identification, boards need configuration tables telling which
2368  * chip is at which address.
2369  *
2370  * This must be called from context that can sleep.  It returns zero on
2371  * success, else a negative error code (dropping the controller's refcount).
2372  * After a successful return, the caller is responsible for calling
2373  * spi_unregister_controller().
2374  *
2375  * Return: zero on success, else a negative error code.
2376  */
2377 int spi_register_controller(struct spi_controller *ctlr)
2378 {
2379 	struct device		*dev = ctlr->dev.parent;
2380 	struct boardinfo	*bi;
2381 	int			status;
2382 	int			id, first_dynamic;
2383 
2384 	if (!dev)
2385 		return -ENODEV;
2386 
2387 	/*
2388 	 * Make sure all necessary hooks are implemented before registering
2389 	 * the SPI controller.
2390 	 */
2391 	status = spi_controller_check_ops(ctlr);
2392 	if (status)
2393 		return status;
2394 
2395 	if (ctlr->bus_num >= 0) {
2396 		/* devices with a fixed bus num must check-in with the num */
2397 		mutex_lock(&board_lock);
2398 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2399 			ctlr->bus_num + 1, GFP_KERNEL);
2400 		mutex_unlock(&board_lock);
2401 		if (WARN(id < 0, "couldn't get idr"))
2402 			return id == -ENOSPC ? -EBUSY : id;
2403 		ctlr->bus_num = id;
2404 	} else if (ctlr->dev.of_node) {
2405 		/* allocate dynamic bus number using Linux idr */
2406 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2407 		if (id >= 0) {
2408 			ctlr->bus_num = id;
2409 			mutex_lock(&board_lock);
2410 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2411 				       ctlr->bus_num + 1, GFP_KERNEL);
2412 			mutex_unlock(&board_lock);
2413 			if (WARN(id < 0, "couldn't get idr"))
2414 				return id == -ENOSPC ? -EBUSY : id;
2415 		}
2416 	}
2417 	if (ctlr->bus_num < 0) {
2418 		first_dynamic = of_alias_get_highest_id("spi");
2419 		if (first_dynamic < 0)
2420 			first_dynamic = 0;
2421 		else
2422 			first_dynamic++;
2423 
2424 		mutex_lock(&board_lock);
2425 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2426 			       0, GFP_KERNEL);
2427 		mutex_unlock(&board_lock);
2428 		if (WARN(id < 0, "couldn't get idr"))
2429 			return id;
2430 		ctlr->bus_num = id;
2431 	}
2432 	INIT_LIST_HEAD(&ctlr->queue);
2433 	spin_lock_init(&ctlr->queue_lock);
2434 	spin_lock_init(&ctlr->bus_lock_spinlock);
2435 	mutex_init(&ctlr->bus_lock_mutex);
2436 	mutex_init(&ctlr->io_mutex);
2437 	ctlr->bus_lock_flag = 0;
2438 	init_completion(&ctlr->xfer_completion);
2439 	if (!ctlr->max_dma_len)
2440 		ctlr->max_dma_len = INT_MAX;
2441 
2442 	/* register the device, then userspace will see it.
2443 	 * registration fails if the bus ID is in use.
2444 	 */
2445 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2446 
2447 	if (!spi_controller_is_slave(ctlr)) {
2448 		if (ctlr->use_gpio_descriptors) {
2449 			status = spi_get_gpio_descs(ctlr);
2450 			if (status)
2451 				return status;
2452 			/*
2453 			 * A controller using GPIO descriptors always
2454 			 * supports SPI_CS_HIGH if need be.
2455 			 */
2456 			ctlr->mode_bits |= SPI_CS_HIGH;
2457 		} else {
2458 			/* Legacy code path for GPIOs from DT */
2459 			status = of_spi_register_master(ctlr);
2460 			if (status)
2461 				return status;
2462 		}
2463 	}
2464 
2465 	/*
2466 	 * Even if it's just one always-selected device, there must
2467 	 * be at least one chipselect.
2468 	 */
2469 	if (!ctlr->num_chipselect)
2470 		return -EINVAL;
2471 
2472 	status = device_add(&ctlr->dev);
2473 	if (status < 0) {
2474 		/* free bus id */
2475 		mutex_lock(&board_lock);
2476 		idr_remove(&spi_master_idr, ctlr->bus_num);
2477 		mutex_unlock(&board_lock);
2478 		goto done;
2479 	}
2480 	dev_dbg(dev, "registered %s %s\n",
2481 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2482 			dev_name(&ctlr->dev));
2483 
2484 	/*
2485 	 * If we're using a queued driver, start the queue. Note that we don't
2486 	 * need the queueing logic if the driver is only supporting high-level
2487 	 * memory operations.
2488 	 */
2489 	if (ctlr->transfer) {
2490 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2491 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2492 		status = spi_controller_initialize_queue(ctlr);
2493 		if (status) {
2494 			device_del(&ctlr->dev);
2495 			/* free bus id */
2496 			mutex_lock(&board_lock);
2497 			idr_remove(&spi_master_idr, ctlr->bus_num);
2498 			mutex_unlock(&board_lock);
2499 			goto done;
2500 		}
2501 	}
2502 	/* add statistics */
2503 	spin_lock_init(&ctlr->statistics.lock);
2504 
2505 	mutex_lock(&board_lock);
2506 	list_add_tail(&ctlr->list, &spi_controller_list);
2507 	list_for_each_entry(bi, &board_list, list)
2508 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2509 	mutex_unlock(&board_lock);
2510 
2511 	/* Register devices from the device tree and ACPI */
2512 	of_register_spi_devices(ctlr);
2513 	acpi_register_spi_devices(ctlr);
2514 done:
2515 	return status;
2516 }
2517 EXPORT_SYMBOL_GPL(spi_register_controller);
2518 
2519 static void devm_spi_unregister(struct device *dev, void *res)
2520 {
2521 	spi_unregister_controller(*(struct spi_controller **)res);
2522 }
2523 
2524 /**
2525  * devm_spi_register_controller - register managed SPI master or slave
2526  *	controller
2527  * @dev:    device managing SPI controller
2528  * @ctlr: initialized controller, originally from spi_alloc_master() or
2529  *	spi_alloc_slave()
2530  * Context: can sleep
2531  *
2532  * Register a SPI device as with spi_register_controller() which will
2533  * automatically be unregistered and freed.
2534  *
2535  * Return: zero on success, else a negative error code.
2536  */
2537 int devm_spi_register_controller(struct device *dev,
2538 				 struct spi_controller *ctlr)
2539 {
2540 	struct spi_controller **ptr;
2541 	int ret;
2542 
2543 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2544 	if (!ptr)
2545 		return -ENOMEM;
2546 
2547 	ret = spi_register_controller(ctlr);
2548 	if (!ret) {
2549 		*ptr = ctlr;
2550 		devres_add(dev, ptr);
2551 	} else {
2552 		devres_free(ptr);
2553 	}
2554 
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2558 
2559 static int __unregister(struct device *dev, void *null)
2560 {
2561 	spi_unregister_device(to_spi_device(dev));
2562 	return 0;
2563 }
2564 
2565 /**
2566  * spi_unregister_controller - unregister SPI master or slave controller
2567  * @ctlr: the controller being unregistered
2568  * Context: can sleep
2569  *
2570  * This call is used only by SPI controller drivers, which are the
2571  * only ones directly touching chip registers.
2572  *
2573  * This must be called from context that can sleep.
2574  *
2575  * Note that this function also drops a reference to the controller.
2576  */
2577 void spi_unregister_controller(struct spi_controller *ctlr)
2578 {
2579 	struct spi_controller *found;
2580 	int id = ctlr->bus_num;
2581 
2582 	/* First make sure that this controller was ever added */
2583 	mutex_lock(&board_lock);
2584 	found = idr_find(&spi_master_idr, id);
2585 	mutex_unlock(&board_lock);
2586 	if (ctlr->queued) {
2587 		if (spi_destroy_queue(ctlr))
2588 			dev_err(&ctlr->dev, "queue remove failed\n");
2589 	}
2590 	mutex_lock(&board_lock);
2591 	list_del(&ctlr->list);
2592 	mutex_unlock(&board_lock);
2593 
2594 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2595 	device_unregister(&ctlr->dev);
2596 	/* free bus id */
2597 	mutex_lock(&board_lock);
2598 	if (found == ctlr)
2599 		idr_remove(&spi_master_idr, id);
2600 	mutex_unlock(&board_lock);
2601 }
2602 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2603 
2604 int spi_controller_suspend(struct spi_controller *ctlr)
2605 {
2606 	int ret;
2607 
2608 	/* Basically no-ops for non-queued controllers */
2609 	if (!ctlr->queued)
2610 		return 0;
2611 
2612 	ret = spi_stop_queue(ctlr);
2613 	if (ret)
2614 		dev_err(&ctlr->dev, "queue stop failed\n");
2615 
2616 	return ret;
2617 }
2618 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2619 
2620 int spi_controller_resume(struct spi_controller *ctlr)
2621 {
2622 	int ret;
2623 
2624 	if (!ctlr->queued)
2625 		return 0;
2626 
2627 	ret = spi_start_queue(ctlr);
2628 	if (ret)
2629 		dev_err(&ctlr->dev, "queue restart failed\n");
2630 
2631 	return ret;
2632 }
2633 EXPORT_SYMBOL_GPL(spi_controller_resume);
2634 
2635 static int __spi_controller_match(struct device *dev, const void *data)
2636 {
2637 	struct spi_controller *ctlr;
2638 	const u16 *bus_num = data;
2639 
2640 	ctlr = container_of(dev, struct spi_controller, dev);
2641 	return ctlr->bus_num == *bus_num;
2642 }
2643 
2644 /**
2645  * spi_busnum_to_master - look up master associated with bus_num
2646  * @bus_num: the master's bus number
2647  * Context: can sleep
2648  *
2649  * This call may be used with devices that are registered after
2650  * arch init time.  It returns a refcounted pointer to the relevant
2651  * spi_controller (which the caller must release), or NULL if there is
2652  * no such master registered.
2653  *
2654  * Return: the SPI master structure on success, else NULL.
2655  */
2656 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2657 {
2658 	struct device		*dev;
2659 	struct spi_controller	*ctlr = NULL;
2660 
2661 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2662 				__spi_controller_match);
2663 	if (dev)
2664 		ctlr = container_of(dev, struct spi_controller, dev);
2665 	/* reference got in class_find_device */
2666 	return ctlr;
2667 }
2668 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2669 
2670 /*-------------------------------------------------------------------------*/
2671 
2672 /* Core methods for SPI resource management */
2673 
2674 /**
2675  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2676  *                 during the processing of a spi_message while using
2677  *                 spi_transfer_one
2678  * @spi:     the spi device for which we allocate memory
2679  * @release: the release code to execute for this resource
2680  * @size:    size to alloc and return
2681  * @gfp:     GFP allocation flags
2682  *
2683  * Return: the pointer to the allocated data
2684  *
2685  * This may get enhanced in the future to allocate from a memory pool
2686  * of the @spi_device or @spi_controller to avoid repeated allocations.
2687  */
2688 void *spi_res_alloc(struct spi_device *spi,
2689 		    spi_res_release_t release,
2690 		    size_t size, gfp_t gfp)
2691 {
2692 	struct spi_res *sres;
2693 
2694 	sres = kzalloc(sizeof(*sres) + size, gfp);
2695 	if (!sres)
2696 		return NULL;
2697 
2698 	INIT_LIST_HEAD(&sres->entry);
2699 	sres->release = release;
2700 
2701 	return sres->data;
2702 }
2703 EXPORT_SYMBOL_GPL(spi_res_alloc);
2704 
2705 /**
2706  * spi_res_free - free an spi resource
2707  * @res: pointer to the custom data of a resource
2708  *
2709  */
2710 void spi_res_free(void *res)
2711 {
2712 	struct spi_res *sres = container_of(res, struct spi_res, data);
2713 
2714 	if (!res)
2715 		return;
2716 
2717 	WARN_ON(!list_empty(&sres->entry));
2718 	kfree(sres);
2719 }
2720 EXPORT_SYMBOL_GPL(spi_res_free);
2721 
2722 /**
2723  * spi_res_add - add a spi_res to the spi_message
2724  * @message: the spi message
2725  * @res:     the spi_resource
2726  */
2727 void spi_res_add(struct spi_message *message, void *res)
2728 {
2729 	struct spi_res *sres = container_of(res, struct spi_res, data);
2730 
2731 	WARN_ON(!list_empty(&sres->entry));
2732 	list_add_tail(&sres->entry, &message->resources);
2733 }
2734 EXPORT_SYMBOL_GPL(spi_res_add);
2735 
2736 /**
2737  * spi_res_release - release all spi resources for this message
2738  * @ctlr:  the @spi_controller
2739  * @message: the @spi_message
2740  */
2741 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2742 {
2743 	struct spi_res *res, *tmp;
2744 
2745 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2746 		if (res->release)
2747 			res->release(ctlr, message, res->data);
2748 
2749 		list_del(&res->entry);
2750 
2751 		kfree(res);
2752 	}
2753 }
2754 EXPORT_SYMBOL_GPL(spi_res_release);
2755 
2756 /*-------------------------------------------------------------------------*/
2757 
2758 /* Core methods for spi_message alterations */
2759 
2760 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2761 					    struct spi_message *msg,
2762 					    void *res)
2763 {
2764 	struct spi_replaced_transfers *rxfer = res;
2765 	size_t i;
2766 
2767 	/* call extra callback if requested */
2768 	if (rxfer->release)
2769 		rxfer->release(ctlr, msg, res);
2770 
2771 	/* insert replaced transfers back into the message */
2772 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2773 
2774 	/* remove the formerly inserted entries */
2775 	for (i = 0; i < rxfer->inserted; i++)
2776 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2777 }
2778 
2779 /**
2780  * spi_replace_transfers - replace transfers with several transfers
2781  *                         and register change with spi_message.resources
2782  * @msg:           the spi_message we work upon
2783  * @xfer_first:    the first spi_transfer we want to replace
2784  * @remove:        number of transfers to remove
2785  * @insert:        the number of transfers we want to insert instead
2786  * @release:       extra release code necessary in some circumstances
2787  * @extradatasize: extra data to allocate (with alignment guarantees
2788  *                 of struct @spi_transfer)
2789  * @gfp:           gfp flags
2790  *
2791  * Returns: pointer to @spi_replaced_transfers,
2792  *          PTR_ERR(...) in case of errors.
2793  */
2794 struct spi_replaced_transfers *spi_replace_transfers(
2795 	struct spi_message *msg,
2796 	struct spi_transfer *xfer_first,
2797 	size_t remove,
2798 	size_t insert,
2799 	spi_replaced_release_t release,
2800 	size_t extradatasize,
2801 	gfp_t gfp)
2802 {
2803 	struct spi_replaced_transfers *rxfer;
2804 	struct spi_transfer *xfer;
2805 	size_t i;
2806 
2807 	/* allocate the structure using spi_res */
2808 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2809 			      struct_size(rxfer, inserted_transfers, insert)
2810 			      + extradatasize,
2811 			      gfp);
2812 	if (!rxfer)
2813 		return ERR_PTR(-ENOMEM);
2814 
2815 	/* the release code to invoke before running the generic release */
2816 	rxfer->release = release;
2817 
2818 	/* assign extradata */
2819 	if (extradatasize)
2820 		rxfer->extradata =
2821 			&rxfer->inserted_transfers[insert];
2822 
2823 	/* init the replaced_transfers list */
2824 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2825 
2826 	/* assign the list_entry after which we should reinsert
2827 	 * the @replaced_transfers - it may be spi_message.messages!
2828 	 */
2829 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2830 
2831 	/* remove the requested number of transfers */
2832 	for (i = 0; i < remove; i++) {
2833 		/* if the entry after replaced_after it is msg->transfers
2834 		 * then we have been requested to remove more transfers
2835 		 * than are in the list
2836 		 */
2837 		if (rxfer->replaced_after->next == &msg->transfers) {
2838 			dev_err(&msg->spi->dev,
2839 				"requested to remove more spi_transfers than are available\n");
2840 			/* insert replaced transfers back into the message */
2841 			list_splice(&rxfer->replaced_transfers,
2842 				    rxfer->replaced_after);
2843 
2844 			/* free the spi_replace_transfer structure */
2845 			spi_res_free(rxfer);
2846 
2847 			/* and return with an error */
2848 			return ERR_PTR(-EINVAL);
2849 		}
2850 
2851 		/* remove the entry after replaced_after from list of
2852 		 * transfers and add it to list of replaced_transfers
2853 		 */
2854 		list_move_tail(rxfer->replaced_after->next,
2855 			       &rxfer->replaced_transfers);
2856 	}
2857 
2858 	/* create copy of the given xfer with identical settings
2859 	 * based on the first transfer to get removed
2860 	 */
2861 	for (i = 0; i < insert; i++) {
2862 		/* we need to run in reverse order */
2863 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2864 
2865 		/* copy all spi_transfer data */
2866 		memcpy(xfer, xfer_first, sizeof(*xfer));
2867 
2868 		/* add to list */
2869 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2870 
2871 		/* clear cs_change and delay_usecs for all but the last */
2872 		if (i) {
2873 			xfer->cs_change = false;
2874 			xfer->delay_usecs = 0;
2875 		}
2876 	}
2877 
2878 	/* set up inserted */
2879 	rxfer->inserted = insert;
2880 
2881 	/* and register it with spi_res/spi_message */
2882 	spi_res_add(msg, rxfer);
2883 
2884 	return rxfer;
2885 }
2886 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2887 
2888 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2889 					struct spi_message *msg,
2890 					struct spi_transfer **xferp,
2891 					size_t maxsize,
2892 					gfp_t gfp)
2893 {
2894 	struct spi_transfer *xfer = *xferp, *xfers;
2895 	struct spi_replaced_transfers *srt;
2896 	size_t offset;
2897 	size_t count, i;
2898 
2899 	/* calculate how many we have to replace */
2900 	count = DIV_ROUND_UP(xfer->len, maxsize);
2901 
2902 	/* create replacement */
2903 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2904 	if (IS_ERR(srt))
2905 		return PTR_ERR(srt);
2906 	xfers = srt->inserted_transfers;
2907 
2908 	/* now handle each of those newly inserted spi_transfers
2909 	 * note that the replacements spi_transfers all are preset
2910 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2911 	 * are all identical (as well as most others)
2912 	 * so we just have to fix up len and the pointers.
2913 	 *
2914 	 * this also includes support for the depreciated
2915 	 * spi_message.is_dma_mapped interface
2916 	 */
2917 
2918 	/* the first transfer just needs the length modified, so we
2919 	 * run it outside the loop
2920 	 */
2921 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2922 
2923 	/* all the others need rx_buf/tx_buf also set */
2924 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2925 		/* update rx_buf, tx_buf and dma */
2926 		if (xfers[i].rx_buf)
2927 			xfers[i].rx_buf += offset;
2928 		if (xfers[i].rx_dma)
2929 			xfers[i].rx_dma += offset;
2930 		if (xfers[i].tx_buf)
2931 			xfers[i].tx_buf += offset;
2932 		if (xfers[i].tx_dma)
2933 			xfers[i].tx_dma += offset;
2934 
2935 		/* update length */
2936 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2937 	}
2938 
2939 	/* we set up xferp to the last entry we have inserted,
2940 	 * so that we skip those already split transfers
2941 	 */
2942 	*xferp = &xfers[count - 1];
2943 
2944 	/* increment statistics counters */
2945 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2946 				       transfers_split_maxsize);
2947 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2948 				       transfers_split_maxsize);
2949 
2950 	return 0;
2951 }
2952 
2953 /**
2954  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2955  *                              when an individual transfer exceeds a
2956  *                              certain size
2957  * @ctlr:    the @spi_controller for this transfer
2958  * @msg:   the @spi_message to transform
2959  * @maxsize:  the maximum when to apply this
2960  * @gfp: GFP allocation flags
2961  *
2962  * Return: status of transformation
2963  */
2964 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2965 				struct spi_message *msg,
2966 				size_t maxsize,
2967 				gfp_t gfp)
2968 {
2969 	struct spi_transfer *xfer;
2970 	int ret;
2971 
2972 	/* iterate over the transfer_list,
2973 	 * but note that xfer is advanced to the last transfer inserted
2974 	 * to avoid checking sizes again unnecessarily (also xfer does
2975 	 * potentiall belong to a different list by the time the
2976 	 * replacement has happened
2977 	 */
2978 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2979 		if (xfer->len > maxsize) {
2980 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2981 							   maxsize, gfp);
2982 			if (ret)
2983 				return ret;
2984 		}
2985 	}
2986 
2987 	return 0;
2988 }
2989 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2990 
2991 /*-------------------------------------------------------------------------*/
2992 
2993 /* Core methods for SPI controller protocol drivers.  Some of the
2994  * other core methods are currently defined as inline functions.
2995  */
2996 
2997 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2998 					u8 bits_per_word)
2999 {
3000 	if (ctlr->bits_per_word_mask) {
3001 		/* Only 32 bits fit in the mask */
3002 		if (bits_per_word > 32)
3003 			return -EINVAL;
3004 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3005 			return -EINVAL;
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 /**
3012  * spi_setup - setup SPI mode and clock rate
3013  * @spi: the device whose settings are being modified
3014  * Context: can sleep, and no requests are queued to the device
3015  *
3016  * SPI protocol drivers may need to update the transfer mode if the
3017  * device doesn't work with its default.  They may likewise need
3018  * to update clock rates or word sizes from initial values.  This function
3019  * changes those settings, and must be called from a context that can sleep.
3020  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3021  * effect the next time the device is selected and data is transferred to
3022  * or from it.  When this function returns, the spi device is deselected.
3023  *
3024  * Note that this call will fail if the protocol driver specifies an option
3025  * that the underlying controller or its driver does not support.  For
3026  * example, not all hardware supports wire transfers using nine bit words,
3027  * LSB-first wire encoding, or active-high chipselects.
3028  *
3029  * Return: zero on success, else a negative error code.
3030  */
3031 int spi_setup(struct spi_device *spi)
3032 {
3033 	unsigned	bad_bits, ugly_bits;
3034 	int		status;
3035 
3036 	/* check mode to prevent that DUAL and QUAD set at the same time
3037 	 */
3038 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3039 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3040 		dev_err(&spi->dev,
3041 		"setup: can not select dual and quad at the same time\n");
3042 		return -EINVAL;
3043 	}
3044 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3045 	 */
3046 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3047 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3048 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3049 		return -EINVAL;
3050 	/* help drivers fail *cleanly* when they need options
3051 	 * that aren't supported with their current controller
3052 	 * SPI_CS_WORD has a fallback software implementation,
3053 	 * so it is ignored here.
3054 	 */
3055 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3056 	/* nothing prevents from working with active-high CS in case if it
3057 	 * is driven by GPIO.
3058 	 */
3059 	if (gpio_is_valid(spi->cs_gpio))
3060 		bad_bits &= ~SPI_CS_HIGH;
3061 	ugly_bits = bad_bits &
3062 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3063 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3064 	if (ugly_bits) {
3065 		dev_warn(&spi->dev,
3066 			 "setup: ignoring unsupported mode bits %x\n",
3067 			 ugly_bits);
3068 		spi->mode &= ~ugly_bits;
3069 		bad_bits &= ~ugly_bits;
3070 	}
3071 	if (bad_bits) {
3072 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3073 			bad_bits);
3074 		return -EINVAL;
3075 	}
3076 
3077 	if (!spi->bits_per_word)
3078 		spi->bits_per_word = 8;
3079 
3080 	status = __spi_validate_bits_per_word(spi->controller,
3081 					      spi->bits_per_word);
3082 	if (status)
3083 		return status;
3084 
3085 	if (!spi->max_speed_hz)
3086 		spi->max_speed_hz = spi->controller->max_speed_hz;
3087 
3088 	if (spi->controller->setup)
3089 		status = spi->controller->setup(spi);
3090 
3091 	spi_set_cs(spi, false);
3092 
3093 	if (spi->rt && !spi->controller->rt) {
3094 		spi->controller->rt = true;
3095 		spi_set_thread_rt(spi->controller);
3096 	}
3097 
3098 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3099 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3100 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3101 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3102 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3103 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3104 			spi->bits_per_word, spi->max_speed_hz,
3105 			status);
3106 
3107 	return status;
3108 }
3109 EXPORT_SYMBOL_GPL(spi_setup);
3110 
3111 /**
3112  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3113  * @spi: the device that requires specific CS timing configuration
3114  * @setup: CS setup time in terms of clock count
3115  * @hold: CS hold time in terms of clock count
3116  * @inactive_dly: CS inactive delay between transfers in terms of clock count
3117  */
3118 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3119 		       u8 inactive_dly)
3120 {
3121 	if (spi->controller->set_cs_timing)
3122 		spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3123 }
3124 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3125 
3126 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3127 {
3128 	struct spi_controller *ctlr = spi->controller;
3129 	struct spi_transfer *xfer;
3130 	int w_size;
3131 
3132 	if (list_empty(&message->transfers))
3133 		return -EINVAL;
3134 
3135 	/* If an SPI controller does not support toggling the CS line on each
3136 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3137 	 * for the CS line, we can emulate the CS-per-word hardware function by
3138 	 * splitting transfers into one-word transfers and ensuring that
3139 	 * cs_change is set for each transfer.
3140 	 */
3141 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3142 					  spi->cs_gpiod ||
3143 					  gpio_is_valid(spi->cs_gpio))) {
3144 		size_t maxsize;
3145 		int ret;
3146 
3147 		maxsize = (spi->bits_per_word + 7) / 8;
3148 
3149 		/* spi_split_transfers_maxsize() requires message->spi */
3150 		message->spi = spi;
3151 
3152 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3153 						  GFP_KERNEL);
3154 		if (ret)
3155 			return ret;
3156 
3157 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3158 			/* don't change cs_change on the last entry in the list */
3159 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3160 				break;
3161 			xfer->cs_change = 1;
3162 		}
3163 	}
3164 
3165 	/* Half-duplex links include original MicroWire, and ones with
3166 	 * only one data pin like SPI_3WIRE (switches direction) or where
3167 	 * either MOSI or MISO is missing.  They can also be caused by
3168 	 * software limitations.
3169 	 */
3170 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3171 	    (spi->mode & SPI_3WIRE)) {
3172 		unsigned flags = ctlr->flags;
3173 
3174 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3175 			if (xfer->rx_buf && xfer->tx_buf)
3176 				return -EINVAL;
3177 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3178 				return -EINVAL;
3179 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3180 				return -EINVAL;
3181 		}
3182 	}
3183 
3184 	/**
3185 	 * Set transfer bits_per_word and max speed as spi device default if
3186 	 * it is not set for this transfer.
3187 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3188 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3189 	 * Ensure transfer word_delay is at least as long as that required by
3190 	 * device itself.
3191 	 */
3192 	message->frame_length = 0;
3193 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3194 		xfer->effective_speed_hz = 0;
3195 		message->frame_length += xfer->len;
3196 		if (!xfer->bits_per_word)
3197 			xfer->bits_per_word = spi->bits_per_word;
3198 
3199 		if (!xfer->speed_hz)
3200 			xfer->speed_hz = spi->max_speed_hz;
3201 
3202 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3203 			xfer->speed_hz = ctlr->max_speed_hz;
3204 
3205 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3206 			return -EINVAL;
3207 
3208 		/*
3209 		 * SPI transfer length should be multiple of SPI word size
3210 		 * where SPI word size should be power-of-two multiple
3211 		 */
3212 		if (xfer->bits_per_word <= 8)
3213 			w_size = 1;
3214 		else if (xfer->bits_per_word <= 16)
3215 			w_size = 2;
3216 		else
3217 			w_size = 4;
3218 
3219 		/* No partial transfers accepted */
3220 		if (xfer->len % w_size)
3221 			return -EINVAL;
3222 
3223 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3224 		    xfer->speed_hz < ctlr->min_speed_hz)
3225 			return -EINVAL;
3226 
3227 		if (xfer->tx_buf && !xfer->tx_nbits)
3228 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3229 		if (xfer->rx_buf && !xfer->rx_nbits)
3230 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3231 		/* check transfer tx/rx_nbits:
3232 		 * 1. check the value matches one of single, dual and quad
3233 		 * 2. check tx/rx_nbits match the mode in spi_device
3234 		 */
3235 		if (xfer->tx_buf) {
3236 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3237 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3238 				xfer->tx_nbits != SPI_NBITS_QUAD)
3239 				return -EINVAL;
3240 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3241 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3242 				return -EINVAL;
3243 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3244 				!(spi->mode & SPI_TX_QUAD))
3245 				return -EINVAL;
3246 		}
3247 		/* check transfer rx_nbits */
3248 		if (xfer->rx_buf) {
3249 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3250 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3251 				xfer->rx_nbits != SPI_NBITS_QUAD)
3252 				return -EINVAL;
3253 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3254 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3255 				return -EINVAL;
3256 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3257 				!(spi->mode & SPI_RX_QUAD))
3258 				return -EINVAL;
3259 		}
3260 
3261 		if (xfer->word_delay_usecs < spi->word_delay_usecs)
3262 			xfer->word_delay_usecs = spi->word_delay_usecs;
3263 	}
3264 
3265 	message->status = -EINPROGRESS;
3266 
3267 	return 0;
3268 }
3269 
3270 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3271 {
3272 	struct spi_controller *ctlr = spi->controller;
3273 
3274 	/*
3275 	 * Some controllers do not support doing regular SPI transfers. Return
3276 	 * ENOTSUPP when this is the case.
3277 	 */
3278 	if (!ctlr->transfer)
3279 		return -ENOTSUPP;
3280 
3281 	message->spi = spi;
3282 
3283 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3284 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3285 
3286 	trace_spi_message_submit(message);
3287 
3288 	return ctlr->transfer(spi, message);
3289 }
3290 
3291 /**
3292  * spi_async - asynchronous SPI transfer
3293  * @spi: device with which data will be exchanged
3294  * @message: describes the data transfers, including completion callback
3295  * Context: any (irqs may be blocked, etc)
3296  *
3297  * This call may be used in_irq and other contexts which can't sleep,
3298  * as well as from task contexts which can sleep.
3299  *
3300  * The completion callback is invoked in a context which can't sleep.
3301  * Before that invocation, the value of message->status is undefined.
3302  * When the callback is issued, message->status holds either zero (to
3303  * indicate complete success) or a negative error code.  After that
3304  * callback returns, the driver which issued the transfer request may
3305  * deallocate the associated memory; it's no longer in use by any SPI
3306  * core or controller driver code.
3307  *
3308  * Note that although all messages to a spi_device are handled in
3309  * FIFO order, messages may go to different devices in other orders.
3310  * Some device might be higher priority, or have various "hard" access
3311  * time requirements, for example.
3312  *
3313  * On detection of any fault during the transfer, processing of
3314  * the entire message is aborted, and the device is deselected.
3315  * Until returning from the associated message completion callback,
3316  * no other spi_message queued to that device will be processed.
3317  * (This rule applies equally to all the synchronous transfer calls,
3318  * which are wrappers around this core asynchronous primitive.)
3319  *
3320  * Return: zero on success, else a negative error code.
3321  */
3322 int spi_async(struct spi_device *spi, struct spi_message *message)
3323 {
3324 	struct spi_controller *ctlr = spi->controller;
3325 	int ret;
3326 	unsigned long flags;
3327 
3328 	ret = __spi_validate(spi, message);
3329 	if (ret != 0)
3330 		return ret;
3331 
3332 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3333 
3334 	if (ctlr->bus_lock_flag)
3335 		ret = -EBUSY;
3336 	else
3337 		ret = __spi_async(spi, message);
3338 
3339 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3340 
3341 	return ret;
3342 }
3343 EXPORT_SYMBOL_GPL(spi_async);
3344 
3345 /**
3346  * spi_async_locked - version of spi_async with exclusive bus usage
3347  * @spi: device with which data will be exchanged
3348  * @message: describes the data transfers, including completion callback
3349  * Context: any (irqs may be blocked, etc)
3350  *
3351  * This call may be used in_irq and other contexts which can't sleep,
3352  * as well as from task contexts which can sleep.
3353  *
3354  * The completion callback is invoked in a context which can't sleep.
3355  * Before that invocation, the value of message->status is undefined.
3356  * When the callback is issued, message->status holds either zero (to
3357  * indicate complete success) or a negative error code.  After that
3358  * callback returns, the driver which issued the transfer request may
3359  * deallocate the associated memory; it's no longer in use by any SPI
3360  * core or controller driver code.
3361  *
3362  * Note that although all messages to a spi_device are handled in
3363  * FIFO order, messages may go to different devices in other orders.
3364  * Some device might be higher priority, or have various "hard" access
3365  * time requirements, for example.
3366  *
3367  * On detection of any fault during the transfer, processing of
3368  * the entire message is aborted, and the device is deselected.
3369  * Until returning from the associated message completion callback,
3370  * no other spi_message queued to that device will be processed.
3371  * (This rule applies equally to all the synchronous transfer calls,
3372  * which are wrappers around this core asynchronous primitive.)
3373  *
3374  * Return: zero on success, else a negative error code.
3375  */
3376 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3377 {
3378 	struct spi_controller *ctlr = spi->controller;
3379 	int ret;
3380 	unsigned long flags;
3381 
3382 	ret = __spi_validate(spi, message);
3383 	if (ret != 0)
3384 		return ret;
3385 
3386 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3387 
3388 	ret = __spi_async(spi, message);
3389 
3390 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3391 
3392 	return ret;
3393 
3394 }
3395 EXPORT_SYMBOL_GPL(spi_async_locked);
3396 
3397 /*-------------------------------------------------------------------------*/
3398 
3399 /* Utility methods for SPI protocol drivers, layered on
3400  * top of the core.  Some other utility methods are defined as
3401  * inline functions.
3402  */
3403 
3404 static void spi_complete(void *arg)
3405 {
3406 	complete(arg);
3407 }
3408 
3409 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3410 {
3411 	DECLARE_COMPLETION_ONSTACK(done);
3412 	int status;
3413 	struct spi_controller *ctlr = spi->controller;
3414 	unsigned long flags;
3415 
3416 	status = __spi_validate(spi, message);
3417 	if (status != 0)
3418 		return status;
3419 
3420 	message->complete = spi_complete;
3421 	message->context = &done;
3422 	message->spi = spi;
3423 
3424 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3425 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3426 
3427 	/* If we're not using the legacy transfer method then we will
3428 	 * try to transfer in the calling context so special case.
3429 	 * This code would be less tricky if we could remove the
3430 	 * support for driver implemented message queues.
3431 	 */
3432 	if (ctlr->transfer == spi_queued_transfer) {
3433 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3434 
3435 		trace_spi_message_submit(message);
3436 
3437 		status = __spi_queued_transfer(spi, message, false);
3438 
3439 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3440 	} else {
3441 		status = spi_async_locked(spi, message);
3442 	}
3443 
3444 	if (status == 0) {
3445 		/* Push out the messages in the calling context if we
3446 		 * can.
3447 		 */
3448 		if (ctlr->transfer == spi_queued_transfer) {
3449 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3450 						       spi_sync_immediate);
3451 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3452 						       spi_sync_immediate);
3453 			__spi_pump_messages(ctlr, false);
3454 		}
3455 
3456 		wait_for_completion(&done);
3457 		status = message->status;
3458 	}
3459 	message->context = NULL;
3460 	return status;
3461 }
3462 
3463 /**
3464  * spi_sync - blocking/synchronous SPI data transfers
3465  * @spi: device with which data will be exchanged
3466  * @message: describes the data transfers
3467  * Context: can sleep
3468  *
3469  * This call may only be used from a context that may sleep.  The sleep
3470  * is non-interruptible, and has no timeout.  Low-overhead controller
3471  * drivers may DMA directly into and out of the message buffers.
3472  *
3473  * Note that the SPI device's chip select is active during the message,
3474  * and then is normally disabled between messages.  Drivers for some
3475  * frequently-used devices may want to minimize costs of selecting a chip,
3476  * by leaving it selected in anticipation that the next message will go
3477  * to the same chip.  (That may increase power usage.)
3478  *
3479  * Also, the caller is guaranteeing that the memory associated with the
3480  * message will not be freed before this call returns.
3481  *
3482  * Return: zero on success, else a negative error code.
3483  */
3484 int spi_sync(struct spi_device *spi, struct spi_message *message)
3485 {
3486 	int ret;
3487 
3488 	mutex_lock(&spi->controller->bus_lock_mutex);
3489 	ret = __spi_sync(spi, message);
3490 	mutex_unlock(&spi->controller->bus_lock_mutex);
3491 
3492 	return ret;
3493 }
3494 EXPORT_SYMBOL_GPL(spi_sync);
3495 
3496 /**
3497  * spi_sync_locked - version of spi_sync with exclusive bus usage
3498  * @spi: device with which data will be exchanged
3499  * @message: describes the data transfers
3500  * Context: can sleep
3501  *
3502  * This call may only be used from a context that may sleep.  The sleep
3503  * is non-interruptible, and has no timeout.  Low-overhead controller
3504  * drivers may DMA directly into and out of the message buffers.
3505  *
3506  * This call should be used by drivers that require exclusive access to the
3507  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3508  * be released by a spi_bus_unlock call when the exclusive access is over.
3509  *
3510  * Return: zero on success, else a negative error code.
3511  */
3512 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3513 {
3514 	return __spi_sync(spi, message);
3515 }
3516 EXPORT_SYMBOL_GPL(spi_sync_locked);
3517 
3518 /**
3519  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3520  * @ctlr: SPI bus master that should be locked for exclusive bus access
3521  * Context: can sleep
3522  *
3523  * This call may only be used from a context that may sleep.  The sleep
3524  * is non-interruptible, and has no timeout.
3525  *
3526  * This call should be used by drivers that require exclusive access to the
3527  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3528  * exclusive access is over. Data transfer must be done by spi_sync_locked
3529  * and spi_async_locked calls when the SPI bus lock is held.
3530  *
3531  * Return: always zero.
3532  */
3533 int spi_bus_lock(struct spi_controller *ctlr)
3534 {
3535 	unsigned long flags;
3536 
3537 	mutex_lock(&ctlr->bus_lock_mutex);
3538 
3539 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3540 	ctlr->bus_lock_flag = 1;
3541 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3542 
3543 	/* mutex remains locked until spi_bus_unlock is called */
3544 
3545 	return 0;
3546 }
3547 EXPORT_SYMBOL_GPL(spi_bus_lock);
3548 
3549 /**
3550  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3551  * @ctlr: SPI bus master that was locked for exclusive bus access
3552  * Context: can sleep
3553  *
3554  * This call may only be used from a context that may sleep.  The sleep
3555  * is non-interruptible, and has no timeout.
3556  *
3557  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3558  * call.
3559  *
3560  * Return: always zero.
3561  */
3562 int spi_bus_unlock(struct spi_controller *ctlr)
3563 {
3564 	ctlr->bus_lock_flag = 0;
3565 
3566 	mutex_unlock(&ctlr->bus_lock_mutex);
3567 
3568 	return 0;
3569 }
3570 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3571 
3572 /* portable code must never pass more than 32 bytes */
3573 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3574 
3575 static u8	*buf;
3576 
3577 /**
3578  * spi_write_then_read - SPI synchronous write followed by read
3579  * @spi: device with which data will be exchanged
3580  * @txbuf: data to be written (need not be dma-safe)
3581  * @n_tx: size of txbuf, in bytes
3582  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3583  * @n_rx: size of rxbuf, in bytes
3584  * Context: can sleep
3585  *
3586  * This performs a half duplex MicroWire style transaction with the
3587  * device, sending txbuf and then reading rxbuf.  The return value
3588  * is zero for success, else a negative errno status code.
3589  * This call may only be used from a context that may sleep.
3590  *
3591  * Parameters to this routine are always copied using a small buffer;
3592  * portable code should never use this for more than 32 bytes.
3593  * Performance-sensitive or bulk transfer code should instead use
3594  * spi_{async,sync}() calls with dma-safe buffers.
3595  *
3596  * Return: zero on success, else a negative error code.
3597  */
3598 int spi_write_then_read(struct spi_device *spi,
3599 		const void *txbuf, unsigned n_tx,
3600 		void *rxbuf, unsigned n_rx)
3601 {
3602 	static DEFINE_MUTEX(lock);
3603 
3604 	int			status;
3605 	struct spi_message	message;
3606 	struct spi_transfer	x[2];
3607 	u8			*local_buf;
3608 
3609 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3610 	 * copying here, (as a pure convenience thing), but we can
3611 	 * keep heap costs out of the hot path unless someone else is
3612 	 * using the pre-allocated buffer or the transfer is too large.
3613 	 */
3614 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3615 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3616 				    GFP_KERNEL | GFP_DMA);
3617 		if (!local_buf)
3618 			return -ENOMEM;
3619 	} else {
3620 		local_buf = buf;
3621 	}
3622 
3623 	spi_message_init(&message);
3624 	memset(x, 0, sizeof(x));
3625 	if (n_tx) {
3626 		x[0].len = n_tx;
3627 		spi_message_add_tail(&x[0], &message);
3628 	}
3629 	if (n_rx) {
3630 		x[1].len = n_rx;
3631 		spi_message_add_tail(&x[1], &message);
3632 	}
3633 
3634 	memcpy(local_buf, txbuf, n_tx);
3635 	x[0].tx_buf = local_buf;
3636 	x[1].rx_buf = local_buf + n_tx;
3637 
3638 	/* do the i/o */
3639 	status = spi_sync(spi, &message);
3640 	if (status == 0)
3641 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3642 
3643 	if (x[0].tx_buf == buf)
3644 		mutex_unlock(&lock);
3645 	else
3646 		kfree(local_buf);
3647 
3648 	return status;
3649 }
3650 EXPORT_SYMBOL_GPL(spi_write_then_read);
3651 
3652 /*-------------------------------------------------------------------------*/
3653 
3654 #if IS_ENABLED(CONFIG_OF)
3655 static int __spi_of_device_match(struct device *dev, const void *data)
3656 {
3657 	return dev->of_node == data;
3658 }
3659 
3660 /* must call put_device() when done with returned spi_device device */
3661 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3662 {
3663 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3664 						__spi_of_device_match);
3665 	return dev ? to_spi_device(dev) : NULL;
3666 }
3667 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3668 #endif /* IS_ENABLED(CONFIG_OF) */
3669 
3670 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3671 static int __spi_of_controller_match(struct device *dev, const void *data)
3672 {
3673 	return dev->of_node == data;
3674 }
3675 
3676 /* the spi controllers are not using spi_bus, so we find it with another way */
3677 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3678 {
3679 	struct device *dev;
3680 
3681 	dev = class_find_device(&spi_master_class, NULL, node,
3682 				__spi_of_controller_match);
3683 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3684 		dev = class_find_device(&spi_slave_class, NULL, node,
3685 					__spi_of_controller_match);
3686 	if (!dev)
3687 		return NULL;
3688 
3689 	/* reference got in class_find_device */
3690 	return container_of(dev, struct spi_controller, dev);
3691 }
3692 
3693 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3694 			 void *arg)
3695 {
3696 	struct of_reconfig_data *rd = arg;
3697 	struct spi_controller *ctlr;
3698 	struct spi_device *spi;
3699 
3700 	switch (of_reconfig_get_state_change(action, arg)) {
3701 	case OF_RECONFIG_CHANGE_ADD:
3702 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3703 		if (ctlr == NULL)
3704 			return NOTIFY_OK;	/* not for us */
3705 
3706 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3707 			put_device(&ctlr->dev);
3708 			return NOTIFY_OK;
3709 		}
3710 
3711 		spi = of_register_spi_device(ctlr, rd->dn);
3712 		put_device(&ctlr->dev);
3713 
3714 		if (IS_ERR(spi)) {
3715 			pr_err("%s: failed to create for '%pOF'\n",
3716 					__func__, rd->dn);
3717 			of_node_clear_flag(rd->dn, OF_POPULATED);
3718 			return notifier_from_errno(PTR_ERR(spi));
3719 		}
3720 		break;
3721 
3722 	case OF_RECONFIG_CHANGE_REMOVE:
3723 		/* already depopulated? */
3724 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3725 			return NOTIFY_OK;
3726 
3727 		/* find our device by node */
3728 		spi = of_find_spi_device_by_node(rd->dn);
3729 		if (spi == NULL)
3730 			return NOTIFY_OK;	/* no? not meant for us */
3731 
3732 		/* unregister takes one ref away */
3733 		spi_unregister_device(spi);
3734 
3735 		/* and put the reference of the find */
3736 		put_device(&spi->dev);
3737 		break;
3738 	}
3739 
3740 	return NOTIFY_OK;
3741 }
3742 
3743 static struct notifier_block spi_of_notifier = {
3744 	.notifier_call = of_spi_notify,
3745 };
3746 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3747 extern struct notifier_block spi_of_notifier;
3748 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3749 
3750 #if IS_ENABLED(CONFIG_ACPI)
3751 static int spi_acpi_controller_match(struct device *dev, const void *data)
3752 {
3753 	return ACPI_COMPANION(dev->parent) == data;
3754 }
3755 
3756 static int spi_acpi_device_match(struct device *dev, const void *data)
3757 {
3758 	return ACPI_COMPANION(dev) == data;
3759 }
3760 
3761 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3762 {
3763 	struct device *dev;
3764 
3765 	dev = class_find_device(&spi_master_class, NULL, adev,
3766 				spi_acpi_controller_match);
3767 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3768 		dev = class_find_device(&spi_slave_class, NULL, adev,
3769 					spi_acpi_controller_match);
3770 	if (!dev)
3771 		return NULL;
3772 
3773 	return container_of(dev, struct spi_controller, dev);
3774 }
3775 
3776 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3777 {
3778 	struct device *dev;
3779 
3780 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3781 
3782 	return dev ? to_spi_device(dev) : NULL;
3783 }
3784 
3785 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3786 			   void *arg)
3787 {
3788 	struct acpi_device *adev = arg;
3789 	struct spi_controller *ctlr;
3790 	struct spi_device *spi;
3791 
3792 	switch (value) {
3793 	case ACPI_RECONFIG_DEVICE_ADD:
3794 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3795 		if (!ctlr)
3796 			break;
3797 
3798 		acpi_register_spi_device(ctlr, adev);
3799 		put_device(&ctlr->dev);
3800 		break;
3801 	case ACPI_RECONFIG_DEVICE_REMOVE:
3802 		if (!acpi_device_enumerated(adev))
3803 			break;
3804 
3805 		spi = acpi_spi_find_device_by_adev(adev);
3806 		if (!spi)
3807 			break;
3808 
3809 		spi_unregister_device(spi);
3810 		put_device(&spi->dev);
3811 		break;
3812 	}
3813 
3814 	return NOTIFY_OK;
3815 }
3816 
3817 static struct notifier_block spi_acpi_notifier = {
3818 	.notifier_call = acpi_spi_notify,
3819 };
3820 #else
3821 extern struct notifier_block spi_acpi_notifier;
3822 #endif
3823 
3824 static int __init spi_init(void)
3825 {
3826 	int	status;
3827 
3828 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3829 	if (!buf) {
3830 		status = -ENOMEM;
3831 		goto err0;
3832 	}
3833 
3834 	status = bus_register(&spi_bus_type);
3835 	if (status < 0)
3836 		goto err1;
3837 
3838 	status = class_register(&spi_master_class);
3839 	if (status < 0)
3840 		goto err2;
3841 
3842 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3843 		status = class_register(&spi_slave_class);
3844 		if (status < 0)
3845 			goto err3;
3846 	}
3847 
3848 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3849 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3850 	if (IS_ENABLED(CONFIG_ACPI))
3851 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3852 
3853 	return 0;
3854 
3855 err3:
3856 	class_unregister(&spi_master_class);
3857 err2:
3858 	bus_unregister(&spi_bus_type);
3859 err1:
3860 	kfree(buf);
3861 	buf = NULL;
3862 err0:
3863 	return status;
3864 }
3865 
3866 /* board_info is normally registered in arch_initcall(),
3867  * but even essential drivers wait till later
3868  *
3869  * REVISIT only boardinfo really needs static linking. the rest (device and
3870  * driver registration) _could_ be dynamically linked (modular) ... costs
3871  * include needing to have boardinfo data structures be much more public.
3872  */
3873 postcore_initcall(spi_init);
3874