xref: /openbmc/linux/drivers/spi/spi.c (revision b34e08d5)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/mutex.h>
30 #include <linux/of_device.h>
31 #include <linux/of_irq.h>
32 #include <linux/slab.h>
33 #include <linux/mod_devicetable.h>
34 #include <linux/spi/spi.h>
35 #include <linux/of_gpio.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/export.h>
38 #include <linux/sched/rt.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/ioport.h>
42 #include <linux/acpi.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/spi.h>
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	/* spi masters may cleanup for released devices */
52 	if (spi->master->cleanup)
53 		spi->master->cleanup(spi);
54 
55 	spi_master_put(spi->master);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static struct attribute *spi_dev_attrs[] = {
74 	&dev_attr_modalias.attr,
75 	NULL,
76 };
77 ATTRIBUTE_GROUPS(spi_dev);
78 
79 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
80  * and the sysfs version makes coldplug work too.
81  */
82 
83 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
84 						const struct spi_device *sdev)
85 {
86 	while (id->name[0]) {
87 		if (!strcmp(sdev->modalias, id->name))
88 			return id;
89 		id++;
90 	}
91 	return NULL;
92 }
93 
94 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
95 {
96 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
97 
98 	return spi_match_id(sdrv->id_table, sdev);
99 }
100 EXPORT_SYMBOL_GPL(spi_get_device_id);
101 
102 static int spi_match_device(struct device *dev, struct device_driver *drv)
103 {
104 	const struct spi_device	*spi = to_spi_device(dev);
105 	const struct spi_driver	*sdrv = to_spi_driver(drv);
106 
107 	/* Attempt an OF style match */
108 	if (of_driver_match_device(dev, drv))
109 		return 1;
110 
111 	/* Then try ACPI */
112 	if (acpi_driver_match_device(dev, drv))
113 		return 1;
114 
115 	if (sdrv->id_table)
116 		return !!spi_match_id(sdrv->id_table, spi);
117 
118 	return strcmp(spi->modalias, drv->name) == 0;
119 }
120 
121 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
122 {
123 	const struct spi_device		*spi = to_spi_device(dev);
124 	int rc;
125 
126 	rc = acpi_device_uevent_modalias(dev, env);
127 	if (rc != -ENODEV)
128 		return rc;
129 
130 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
131 	return 0;
132 }
133 
134 #ifdef CONFIG_PM_SLEEP
135 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
136 {
137 	int			value = 0;
138 	struct spi_driver	*drv = to_spi_driver(dev->driver);
139 
140 	/* suspend will stop irqs and dma; no more i/o */
141 	if (drv) {
142 		if (drv->suspend)
143 			value = drv->suspend(to_spi_device(dev), message);
144 		else
145 			dev_dbg(dev, "... can't suspend\n");
146 	}
147 	return value;
148 }
149 
150 static int spi_legacy_resume(struct device *dev)
151 {
152 	int			value = 0;
153 	struct spi_driver	*drv = to_spi_driver(dev->driver);
154 
155 	/* resume may restart the i/o queue */
156 	if (drv) {
157 		if (drv->resume)
158 			value = drv->resume(to_spi_device(dev));
159 		else
160 			dev_dbg(dev, "... can't resume\n");
161 	}
162 	return value;
163 }
164 
165 static int spi_pm_suspend(struct device *dev)
166 {
167 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
168 
169 	if (pm)
170 		return pm_generic_suspend(dev);
171 	else
172 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
173 }
174 
175 static int spi_pm_resume(struct device *dev)
176 {
177 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
178 
179 	if (pm)
180 		return pm_generic_resume(dev);
181 	else
182 		return spi_legacy_resume(dev);
183 }
184 
185 static int spi_pm_freeze(struct device *dev)
186 {
187 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
188 
189 	if (pm)
190 		return pm_generic_freeze(dev);
191 	else
192 		return spi_legacy_suspend(dev, PMSG_FREEZE);
193 }
194 
195 static int spi_pm_thaw(struct device *dev)
196 {
197 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
198 
199 	if (pm)
200 		return pm_generic_thaw(dev);
201 	else
202 		return spi_legacy_resume(dev);
203 }
204 
205 static int spi_pm_poweroff(struct device *dev)
206 {
207 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
208 
209 	if (pm)
210 		return pm_generic_poweroff(dev);
211 	else
212 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
213 }
214 
215 static int spi_pm_restore(struct device *dev)
216 {
217 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
218 
219 	if (pm)
220 		return pm_generic_restore(dev);
221 	else
222 		return spi_legacy_resume(dev);
223 }
224 #else
225 #define spi_pm_suspend	NULL
226 #define spi_pm_resume	NULL
227 #define spi_pm_freeze	NULL
228 #define spi_pm_thaw	NULL
229 #define spi_pm_poweroff	NULL
230 #define spi_pm_restore	NULL
231 #endif
232 
233 static const struct dev_pm_ops spi_pm = {
234 	.suspend = spi_pm_suspend,
235 	.resume = spi_pm_resume,
236 	.freeze = spi_pm_freeze,
237 	.thaw = spi_pm_thaw,
238 	.poweroff = spi_pm_poweroff,
239 	.restore = spi_pm_restore,
240 	SET_RUNTIME_PM_OPS(
241 		pm_generic_runtime_suspend,
242 		pm_generic_runtime_resume,
243 		NULL
244 	)
245 };
246 
247 struct bus_type spi_bus_type = {
248 	.name		= "spi",
249 	.dev_groups	= spi_dev_groups,
250 	.match		= spi_match_device,
251 	.uevent		= spi_uevent,
252 	.pm		= &spi_pm,
253 };
254 EXPORT_SYMBOL_GPL(spi_bus_type);
255 
256 
257 static int spi_drv_probe(struct device *dev)
258 {
259 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
260 	int ret;
261 
262 	acpi_dev_pm_attach(dev, true);
263 	ret = sdrv->probe(to_spi_device(dev));
264 	if (ret)
265 		acpi_dev_pm_detach(dev, true);
266 
267 	return ret;
268 }
269 
270 static int spi_drv_remove(struct device *dev)
271 {
272 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
273 	int ret;
274 
275 	ret = sdrv->remove(to_spi_device(dev));
276 	acpi_dev_pm_detach(dev, true);
277 
278 	return ret;
279 }
280 
281 static void spi_drv_shutdown(struct device *dev)
282 {
283 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
284 
285 	sdrv->shutdown(to_spi_device(dev));
286 }
287 
288 /**
289  * spi_register_driver - register a SPI driver
290  * @sdrv: the driver to register
291  * Context: can sleep
292  */
293 int spi_register_driver(struct spi_driver *sdrv)
294 {
295 	sdrv->driver.bus = &spi_bus_type;
296 	if (sdrv->probe)
297 		sdrv->driver.probe = spi_drv_probe;
298 	if (sdrv->remove)
299 		sdrv->driver.remove = spi_drv_remove;
300 	if (sdrv->shutdown)
301 		sdrv->driver.shutdown = spi_drv_shutdown;
302 	return driver_register(&sdrv->driver);
303 }
304 EXPORT_SYMBOL_GPL(spi_register_driver);
305 
306 /*-------------------------------------------------------------------------*/
307 
308 /* SPI devices should normally not be created by SPI device drivers; that
309  * would make them board-specific.  Similarly with SPI master drivers.
310  * Device registration normally goes into like arch/.../mach.../board-YYY.c
311  * with other readonly (flashable) information about mainboard devices.
312  */
313 
314 struct boardinfo {
315 	struct list_head	list;
316 	struct spi_board_info	board_info;
317 };
318 
319 static LIST_HEAD(board_list);
320 static LIST_HEAD(spi_master_list);
321 
322 /*
323  * Used to protect add/del opertion for board_info list and
324  * spi_master list, and their matching process
325  */
326 static DEFINE_MUTEX(board_lock);
327 
328 /**
329  * spi_alloc_device - Allocate a new SPI device
330  * @master: Controller to which device is connected
331  * Context: can sleep
332  *
333  * Allows a driver to allocate and initialize a spi_device without
334  * registering it immediately.  This allows a driver to directly
335  * fill the spi_device with device parameters before calling
336  * spi_add_device() on it.
337  *
338  * Caller is responsible to call spi_add_device() on the returned
339  * spi_device structure to add it to the SPI master.  If the caller
340  * needs to discard the spi_device without adding it, then it should
341  * call spi_dev_put() on it.
342  *
343  * Returns a pointer to the new device, or NULL.
344  */
345 struct spi_device *spi_alloc_device(struct spi_master *master)
346 {
347 	struct spi_device	*spi;
348 	struct device		*dev = master->dev.parent;
349 
350 	if (!spi_master_get(master))
351 		return NULL;
352 
353 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
354 	if (!spi) {
355 		dev_err(dev, "cannot alloc spi_device\n");
356 		spi_master_put(master);
357 		return NULL;
358 	}
359 
360 	spi->master = master;
361 	spi->dev.parent = &master->dev;
362 	spi->dev.bus = &spi_bus_type;
363 	spi->dev.release = spidev_release;
364 	spi->cs_gpio = -ENOENT;
365 	device_initialize(&spi->dev);
366 	return spi;
367 }
368 EXPORT_SYMBOL_GPL(spi_alloc_device);
369 
370 static void spi_dev_set_name(struct spi_device *spi)
371 {
372 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
373 
374 	if (adev) {
375 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
376 		return;
377 	}
378 
379 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
380 		     spi->chip_select);
381 }
382 
383 static int spi_dev_check(struct device *dev, void *data)
384 {
385 	struct spi_device *spi = to_spi_device(dev);
386 	struct spi_device *new_spi = data;
387 
388 	if (spi->master == new_spi->master &&
389 	    spi->chip_select == new_spi->chip_select)
390 		return -EBUSY;
391 	return 0;
392 }
393 
394 /**
395  * spi_add_device - Add spi_device allocated with spi_alloc_device
396  * @spi: spi_device to register
397  *
398  * Companion function to spi_alloc_device.  Devices allocated with
399  * spi_alloc_device can be added onto the spi bus with this function.
400  *
401  * Returns 0 on success; negative errno on failure
402  */
403 int spi_add_device(struct spi_device *spi)
404 {
405 	static DEFINE_MUTEX(spi_add_lock);
406 	struct spi_master *master = spi->master;
407 	struct device *dev = master->dev.parent;
408 	int status;
409 
410 	/* Chipselects are numbered 0..max; validate. */
411 	if (spi->chip_select >= master->num_chipselect) {
412 		dev_err(dev, "cs%d >= max %d\n",
413 			spi->chip_select,
414 			master->num_chipselect);
415 		return -EINVAL;
416 	}
417 
418 	/* Set the bus ID string */
419 	spi_dev_set_name(spi);
420 
421 	/* We need to make sure there's no other device with this
422 	 * chipselect **BEFORE** we call setup(), else we'll trash
423 	 * its configuration.  Lock against concurrent add() calls.
424 	 */
425 	mutex_lock(&spi_add_lock);
426 
427 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
428 	if (status) {
429 		dev_err(dev, "chipselect %d already in use\n",
430 				spi->chip_select);
431 		goto done;
432 	}
433 
434 	if (master->cs_gpios)
435 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
436 
437 	/* Drivers may modify this initial i/o setup, but will
438 	 * normally rely on the device being setup.  Devices
439 	 * using SPI_CS_HIGH can't coexist well otherwise...
440 	 */
441 	status = spi_setup(spi);
442 	if (status < 0) {
443 		dev_err(dev, "can't setup %s, status %d\n",
444 				dev_name(&spi->dev), status);
445 		goto done;
446 	}
447 
448 	/* Device may be bound to an active driver when this returns */
449 	status = device_add(&spi->dev);
450 	if (status < 0)
451 		dev_err(dev, "can't add %s, status %d\n",
452 				dev_name(&spi->dev), status);
453 	else
454 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
455 
456 done:
457 	mutex_unlock(&spi_add_lock);
458 	return status;
459 }
460 EXPORT_SYMBOL_GPL(spi_add_device);
461 
462 /**
463  * spi_new_device - instantiate one new SPI device
464  * @master: Controller to which device is connected
465  * @chip: Describes the SPI device
466  * Context: can sleep
467  *
468  * On typical mainboards, this is purely internal; and it's not needed
469  * after board init creates the hard-wired devices.  Some development
470  * platforms may not be able to use spi_register_board_info though, and
471  * this is exported so that for example a USB or parport based adapter
472  * driver could add devices (which it would learn about out-of-band).
473  *
474  * Returns the new device, or NULL.
475  */
476 struct spi_device *spi_new_device(struct spi_master *master,
477 				  struct spi_board_info *chip)
478 {
479 	struct spi_device	*proxy;
480 	int			status;
481 
482 	/* NOTE:  caller did any chip->bus_num checks necessary.
483 	 *
484 	 * Also, unless we change the return value convention to use
485 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
486 	 * suggests syslogged diagnostics are best here (ugh).
487 	 */
488 
489 	proxy = spi_alloc_device(master);
490 	if (!proxy)
491 		return NULL;
492 
493 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
494 
495 	proxy->chip_select = chip->chip_select;
496 	proxy->max_speed_hz = chip->max_speed_hz;
497 	proxy->mode = chip->mode;
498 	proxy->irq = chip->irq;
499 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
500 	proxy->dev.platform_data = (void *) chip->platform_data;
501 	proxy->controller_data = chip->controller_data;
502 	proxy->controller_state = NULL;
503 
504 	status = spi_add_device(proxy);
505 	if (status < 0) {
506 		spi_dev_put(proxy);
507 		return NULL;
508 	}
509 
510 	return proxy;
511 }
512 EXPORT_SYMBOL_GPL(spi_new_device);
513 
514 static void spi_match_master_to_boardinfo(struct spi_master *master,
515 				struct spi_board_info *bi)
516 {
517 	struct spi_device *dev;
518 
519 	if (master->bus_num != bi->bus_num)
520 		return;
521 
522 	dev = spi_new_device(master, bi);
523 	if (!dev)
524 		dev_err(master->dev.parent, "can't create new device for %s\n",
525 			bi->modalias);
526 }
527 
528 /**
529  * spi_register_board_info - register SPI devices for a given board
530  * @info: array of chip descriptors
531  * @n: how many descriptors are provided
532  * Context: can sleep
533  *
534  * Board-specific early init code calls this (probably during arch_initcall)
535  * with segments of the SPI device table.  Any device nodes are created later,
536  * after the relevant parent SPI controller (bus_num) is defined.  We keep
537  * this table of devices forever, so that reloading a controller driver will
538  * not make Linux forget about these hard-wired devices.
539  *
540  * Other code can also call this, e.g. a particular add-on board might provide
541  * SPI devices through its expansion connector, so code initializing that board
542  * would naturally declare its SPI devices.
543  *
544  * The board info passed can safely be __initdata ... but be careful of
545  * any embedded pointers (platform_data, etc), they're copied as-is.
546  */
547 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
548 {
549 	struct boardinfo *bi;
550 	int i;
551 
552 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
553 	if (!bi)
554 		return -ENOMEM;
555 
556 	for (i = 0; i < n; i++, bi++, info++) {
557 		struct spi_master *master;
558 
559 		memcpy(&bi->board_info, info, sizeof(*info));
560 		mutex_lock(&board_lock);
561 		list_add_tail(&bi->list, &board_list);
562 		list_for_each_entry(master, &spi_master_list, list)
563 			spi_match_master_to_boardinfo(master, &bi->board_info);
564 		mutex_unlock(&board_lock);
565 	}
566 
567 	return 0;
568 }
569 
570 /*-------------------------------------------------------------------------*/
571 
572 static void spi_set_cs(struct spi_device *spi, bool enable)
573 {
574 	if (spi->mode & SPI_CS_HIGH)
575 		enable = !enable;
576 
577 	if (spi->cs_gpio >= 0)
578 		gpio_set_value(spi->cs_gpio, !enable);
579 	else if (spi->master->set_cs)
580 		spi->master->set_cs(spi, !enable);
581 }
582 
583 static int spi_map_buf(struct spi_master *master, struct device *dev,
584 		       struct sg_table *sgt, void *buf, size_t len,
585 		       enum dma_data_direction dir)
586 {
587 	const bool vmalloced_buf = is_vmalloc_addr(buf);
588 	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
589 	const int sgs = DIV_ROUND_UP(len, desc_len);
590 	struct page *vm_page;
591 	void *sg_buf;
592 	size_t min;
593 	int i, ret;
594 
595 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
596 	if (ret != 0)
597 		return ret;
598 
599 	for (i = 0; i < sgs; i++) {
600 		min = min_t(size_t, len, desc_len);
601 
602 		if (vmalloced_buf) {
603 			vm_page = vmalloc_to_page(buf);
604 			if (!vm_page) {
605 				sg_free_table(sgt);
606 				return -ENOMEM;
607 			}
608 			sg_buf = page_address(vm_page) +
609 				((size_t)buf & ~PAGE_MASK);
610 		} else {
611 			sg_buf = buf;
612 		}
613 
614 		sg_set_buf(&sgt->sgl[i], sg_buf, min);
615 
616 		buf += min;
617 		len -= min;
618 	}
619 
620 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
621 	if (ret < 0) {
622 		sg_free_table(sgt);
623 		return ret;
624 	}
625 
626 	sgt->nents = ret;
627 
628 	return 0;
629 }
630 
631 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
632 			  struct sg_table *sgt, enum dma_data_direction dir)
633 {
634 	if (sgt->orig_nents) {
635 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
636 		sg_free_table(sgt);
637 	}
638 }
639 
640 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
641 {
642 	struct device *tx_dev, *rx_dev;
643 	struct spi_transfer *xfer;
644 	void *tmp;
645 	unsigned int max_tx, max_rx;
646 	int ret;
647 
648 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
649 		max_tx = 0;
650 		max_rx = 0;
651 
652 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
653 			if ((master->flags & SPI_MASTER_MUST_TX) &&
654 			    !xfer->tx_buf)
655 				max_tx = max(xfer->len, max_tx);
656 			if ((master->flags & SPI_MASTER_MUST_RX) &&
657 			    !xfer->rx_buf)
658 				max_rx = max(xfer->len, max_rx);
659 		}
660 
661 		if (max_tx) {
662 			tmp = krealloc(master->dummy_tx, max_tx,
663 				       GFP_KERNEL | GFP_DMA);
664 			if (!tmp)
665 				return -ENOMEM;
666 			master->dummy_tx = tmp;
667 			memset(tmp, 0, max_tx);
668 		}
669 
670 		if (max_rx) {
671 			tmp = krealloc(master->dummy_rx, max_rx,
672 				       GFP_KERNEL | GFP_DMA);
673 			if (!tmp)
674 				return -ENOMEM;
675 			master->dummy_rx = tmp;
676 		}
677 
678 		if (max_tx || max_rx) {
679 			list_for_each_entry(xfer, &msg->transfers,
680 					    transfer_list) {
681 				if (!xfer->tx_buf)
682 					xfer->tx_buf = master->dummy_tx;
683 				if (!xfer->rx_buf)
684 					xfer->rx_buf = master->dummy_rx;
685 			}
686 		}
687 	}
688 
689 	if (!master->can_dma)
690 		return 0;
691 
692 	tx_dev = &master->dma_tx->dev->device;
693 	rx_dev = &master->dma_rx->dev->device;
694 
695 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
696 		if (!master->can_dma(master, msg->spi, xfer))
697 			continue;
698 
699 		if (xfer->tx_buf != NULL) {
700 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
701 					  (void *)xfer->tx_buf, xfer->len,
702 					  DMA_TO_DEVICE);
703 			if (ret != 0)
704 				return ret;
705 		}
706 
707 		if (xfer->rx_buf != NULL) {
708 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
709 					  xfer->rx_buf, xfer->len,
710 					  DMA_FROM_DEVICE);
711 			if (ret != 0) {
712 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
713 					      DMA_TO_DEVICE);
714 				return ret;
715 			}
716 		}
717 	}
718 
719 	master->cur_msg_mapped = true;
720 
721 	return 0;
722 }
723 
724 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
725 {
726 	struct spi_transfer *xfer;
727 	struct device *tx_dev, *rx_dev;
728 
729 	if (!master->cur_msg_mapped || !master->can_dma)
730 		return 0;
731 
732 	tx_dev = &master->dma_tx->dev->device;
733 	rx_dev = &master->dma_rx->dev->device;
734 
735 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
736 		if (!master->can_dma(master, msg->spi, xfer))
737 			continue;
738 
739 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
740 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
741 	}
742 
743 	return 0;
744 }
745 
746 /*
747  * spi_transfer_one_message - Default implementation of transfer_one_message()
748  *
749  * This is a standard implementation of transfer_one_message() for
750  * drivers which impelment a transfer_one() operation.  It provides
751  * standard handling of delays and chip select management.
752  */
753 static int spi_transfer_one_message(struct spi_master *master,
754 				    struct spi_message *msg)
755 {
756 	struct spi_transfer *xfer;
757 	bool keep_cs = false;
758 	int ret = 0;
759 	int ms = 1;
760 
761 	spi_set_cs(msg->spi, true);
762 
763 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
764 		trace_spi_transfer_start(msg, xfer);
765 
766 		reinit_completion(&master->xfer_completion);
767 
768 		ret = master->transfer_one(master, msg->spi, xfer);
769 		if (ret < 0) {
770 			dev_err(&msg->spi->dev,
771 				"SPI transfer failed: %d\n", ret);
772 			goto out;
773 		}
774 
775 		if (ret > 0) {
776 			ret = 0;
777 			ms = xfer->len * 8 * 1000 / xfer->speed_hz;
778 			ms += 10; /* some tolerance */
779 
780 			ms = wait_for_completion_timeout(&master->xfer_completion,
781 							 msecs_to_jiffies(ms));
782 		}
783 
784 		if (ms == 0) {
785 			dev_err(&msg->spi->dev, "SPI transfer timed out\n");
786 			msg->status = -ETIMEDOUT;
787 		}
788 
789 		trace_spi_transfer_stop(msg, xfer);
790 
791 		if (msg->status != -EINPROGRESS)
792 			goto out;
793 
794 		if (xfer->delay_usecs)
795 			udelay(xfer->delay_usecs);
796 
797 		if (xfer->cs_change) {
798 			if (list_is_last(&xfer->transfer_list,
799 					 &msg->transfers)) {
800 				keep_cs = true;
801 			} else {
802 				spi_set_cs(msg->spi, false);
803 				udelay(10);
804 				spi_set_cs(msg->spi, true);
805 			}
806 		}
807 
808 		msg->actual_length += xfer->len;
809 	}
810 
811 out:
812 	if (ret != 0 || !keep_cs)
813 		spi_set_cs(msg->spi, false);
814 
815 	if (msg->status == -EINPROGRESS)
816 		msg->status = ret;
817 
818 	spi_finalize_current_message(master);
819 
820 	return ret;
821 }
822 
823 /**
824  * spi_finalize_current_transfer - report completion of a transfer
825  *
826  * Called by SPI drivers using the core transfer_one_message()
827  * implementation to notify it that the current interrupt driven
828  * transfer has finished and the next one may be scheduled.
829  */
830 void spi_finalize_current_transfer(struct spi_master *master)
831 {
832 	complete(&master->xfer_completion);
833 }
834 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
835 
836 /**
837  * spi_pump_messages - kthread work function which processes spi message queue
838  * @work: pointer to kthread work struct contained in the master struct
839  *
840  * This function checks if there is any spi message in the queue that
841  * needs processing and if so call out to the driver to initialize hardware
842  * and transfer each message.
843  *
844  */
845 static void spi_pump_messages(struct kthread_work *work)
846 {
847 	struct spi_master *master =
848 		container_of(work, struct spi_master, pump_messages);
849 	unsigned long flags;
850 	bool was_busy = false;
851 	int ret;
852 
853 	/* Lock queue and check for queue work */
854 	spin_lock_irqsave(&master->queue_lock, flags);
855 	if (list_empty(&master->queue) || !master->running) {
856 		if (!master->busy) {
857 			spin_unlock_irqrestore(&master->queue_lock, flags);
858 			return;
859 		}
860 		master->busy = false;
861 		spin_unlock_irqrestore(&master->queue_lock, flags);
862 		kfree(master->dummy_rx);
863 		master->dummy_rx = NULL;
864 		kfree(master->dummy_tx);
865 		master->dummy_tx = NULL;
866 		if (master->unprepare_transfer_hardware &&
867 		    master->unprepare_transfer_hardware(master))
868 			dev_err(&master->dev,
869 				"failed to unprepare transfer hardware\n");
870 		if (master->auto_runtime_pm) {
871 			pm_runtime_mark_last_busy(master->dev.parent);
872 			pm_runtime_put_autosuspend(master->dev.parent);
873 		}
874 		trace_spi_master_idle(master);
875 		return;
876 	}
877 
878 	/* Make sure we are not already running a message */
879 	if (master->cur_msg) {
880 		spin_unlock_irqrestore(&master->queue_lock, flags);
881 		return;
882 	}
883 	/* Extract head of queue */
884 	master->cur_msg =
885 		list_first_entry(&master->queue, struct spi_message, queue);
886 
887 	list_del_init(&master->cur_msg->queue);
888 	if (master->busy)
889 		was_busy = true;
890 	else
891 		master->busy = true;
892 	spin_unlock_irqrestore(&master->queue_lock, flags);
893 
894 	if (!was_busy && master->auto_runtime_pm) {
895 		ret = pm_runtime_get_sync(master->dev.parent);
896 		if (ret < 0) {
897 			dev_err(&master->dev, "Failed to power device: %d\n",
898 				ret);
899 			return;
900 		}
901 	}
902 
903 	if (!was_busy)
904 		trace_spi_master_busy(master);
905 
906 	if (!was_busy && master->prepare_transfer_hardware) {
907 		ret = master->prepare_transfer_hardware(master);
908 		if (ret) {
909 			dev_err(&master->dev,
910 				"failed to prepare transfer hardware\n");
911 
912 			if (master->auto_runtime_pm)
913 				pm_runtime_put(master->dev.parent);
914 			return;
915 		}
916 	}
917 
918 	trace_spi_message_start(master->cur_msg);
919 
920 	if (master->prepare_message) {
921 		ret = master->prepare_message(master, master->cur_msg);
922 		if (ret) {
923 			dev_err(&master->dev,
924 				"failed to prepare message: %d\n", ret);
925 			master->cur_msg->status = ret;
926 			spi_finalize_current_message(master);
927 			return;
928 		}
929 		master->cur_msg_prepared = true;
930 	}
931 
932 	ret = spi_map_msg(master, master->cur_msg);
933 	if (ret) {
934 		master->cur_msg->status = ret;
935 		spi_finalize_current_message(master);
936 		return;
937 	}
938 
939 	ret = master->transfer_one_message(master, master->cur_msg);
940 	if (ret) {
941 		dev_err(&master->dev,
942 			"failed to transfer one message from queue\n");
943 		return;
944 	}
945 }
946 
947 static int spi_init_queue(struct spi_master *master)
948 {
949 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
950 
951 	INIT_LIST_HEAD(&master->queue);
952 	spin_lock_init(&master->queue_lock);
953 
954 	master->running = false;
955 	master->busy = false;
956 
957 	init_kthread_worker(&master->kworker);
958 	master->kworker_task = kthread_run(kthread_worker_fn,
959 					   &master->kworker, "%s",
960 					   dev_name(&master->dev));
961 	if (IS_ERR(master->kworker_task)) {
962 		dev_err(&master->dev, "failed to create message pump task\n");
963 		return -ENOMEM;
964 	}
965 	init_kthread_work(&master->pump_messages, spi_pump_messages);
966 
967 	/*
968 	 * Master config will indicate if this controller should run the
969 	 * message pump with high (realtime) priority to reduce the transfer
970 	 * latency on the bus by minimising the delay between a transfer
971 	 * request and the scheduling of the message pump thread. Without this
972 	 * setting the message pump thread will remain at default priority.
973 	 */
974 	if (master->rt) {
975 		dev_info(&master->dev,
976 			"will run message pump with realtime priority\n");
977 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
978 	}
979 
980 	return 0;
981 }
982 
983 /**
984  * spi_get_next_queued_message() - called by driver to check for queued
985  * messages
986  * @master: the master to check for queued messages
987  *
988  * If there are more messages in the queue, the next message is returned from
989  * this call.
990  */
991 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
992 {
993 	struct spi_message *next;
994 	unsigned long flags;
995 
996 	/* get a pointer to the next message, if any */
997 	spin_lock_irqsave(&master->queue_lock, flags);
998 	next = list_first_entry_or_null(&master->queue, struct spi_message,
999 					queue);
1000 	spin_unlock_irqrestore(&master->queue_lock, flags);
1001 
1002 	return next;
1003 }
1004 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1005 
1006 /**
1007  * spi_finalize_current_message() - the current message is complete
1008  * @master: the master to return the message to
1009  *
1010  * Called by the driver to notify the core that the message in the front of the
1011  * queue is complete and can be removed from the queue.
1012  */
1013 void spi_finalize_current_message(struct spi_master *master)
1014 {
1015 	struct spi_message *mesg;
1016 	unsigned long flags;
1017 	int ret;
1018 
1019 	spin_lock_irqsave(&master->queue_lock, flags);
1020 	mesg = master->cur_msg;
1021 	master->cur_msg = NULL;
1022 
1023 	queue_kthread_work(&master->kworker, &master->pump_messages);
1024 	spin_unlock_irqrestore(&master->queue_lock, flags);
1025 
1026 	spi_unmap_msg(master, mesg);
1027 
1028 	if (master->cur_msg_prepared && master->unprepare_message) {
1029 		ret = master->unprepare_message(master, mesg);
1030 		if (ret) {
1031 			dev_err(&master->dev,
1032 				"failed to unprepare message: %d\n", ret);
1033 		}
1034 	}
1035 	master->cur_msg_prepared = false;
1036 
1037 	mesg->state = NULL;
1038 	if (mesg->complete)
1039 		mesg->complete(mesg->context);
1040 
1041 	trace_spi_message_done(mesg);
1042 }
1043 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1044 
1045 static int spi_start_queue(struct spi_master *master)
1046 {
1047 	unsigned long flags;
1048 
1049 	spin_lock_irqsave(&master->queue_lock, flags);
1050 
1051 	if (master->running || master->busy) {
1052 		spin_unlock_irqrestore(&master->queue_lock, flags);
1053 		return -EBUSY;
1054 	}
1055 
1056 	master->running = true;
1057 	master->cur_msg = NULL;
1058 	spin_unlock_irqrestore(&master->queue_lock, flags);
1059 
1060 	queue_kthread_work(&master->kworker, &master->pump_messages);
1061 
1062 	return 0;
1063 }
1064 
1065 static int spi_stop_queue(struct spi_master *master)
1066 {
1067 	unsigned long flags;
1068 	unsigned limit = 500;
1069 	int ret = 0;
1070 
1071 	spin_lock_irqsave(&master->queue_lock, flags);
1072 
1073 	/*
1074 	 * This is a bit lame, but is optimized for the common execution path.
1075 	 * A wait_queue on the master->busy could be used, but then the common
1076 	 * execution path (pump_messages) would be required to call wake_up or
1077 	 * friends on every SPI message. Do this instead.
1078 	 */
1079 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1080 		spin_unlock_irqrestore(&master->queue_lock, flags);
1081 		usleep_range(10000, 11000);
1082 		spin_lock_irqsave(&master->queue_lock, flags);
1083 	}
1084 
1085 	if (!list_empty(&master->queue) || master->busy)
1086 		ret = -EBUSY;
1087 	else
1088 		master->running = false;
1089 
1090 	spin_unlock_irqrestore(&master->queue_lock, flags);
1091 
1092 	if (ret) {
1093 		dev_warn(&master->dev,
1094 			 "could not stop message queue\n");
1095 		return ret;
1096 	}
1097 	return ret;
1098 }
1099 
1100 static int spi_destroy_queue(struct spi_master *master)
1101 {
1102 	int ret;
1103 
1104 	ret = spi_stop_queue(master);
1105 
1106 	/*
1107 	 * flush_kthread_worker will block until all work is done.
1108 	 * If the reason that stop_queue timed out is that the work will never
1109 	 * finish, then it does no good to call flush/stop thread, so
1110 	 * return anyway.
1111 	 */
1112 	if (ret) {
1113 		dev_err(&master->dev, "problem destroying queue\n");
1114 		return ret;
1115 	}
1116 
1117 	flush_kthread_worker(&master->kworker);
1118 	kthread_stop(master->kworker_task);
1119 
1120 	return 0;
1121 }
1122 
1123 /**
1124  * spi_queued_transfer - transfer function for queued transfers
1125  * @spi: spi device which is requesting transfer
1126  * @msg: spi message which is to handled is queued to driver queue
1127  */
1128 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1129 {
1130 	struct spi_master *master = spi->master;
1131 	unsigned long flags;
1132 
1133 	spin_lock_irqsave(&master->queue_lock, flags);
1134 
1135 	if (!master->running) {
1136 		spin_unlock_irqrestore(&master->queue_lock, flags);
1137 		return -ESHUTDOWN;
1138 	}
1139 	msg->actual_length = 0;
1140 	msg->status = -EINPROGRESS;
1141 
1142 	list_add_tail(&msg->queue, &master->queue);
1143 	if (!master->busy)
1144 		queue_kthread_work(&master->kworker, &master->pump_messages);
1145 
1146 	spin_unlock_irqrestore(&master->queue_lock, flags);
1147 	return 0;
1148 }
1149 
1150 static int spi_master_initialize_queue(struct spi_master *master)
1151 {
1152 	int ret;
1153 
1154 	master->queued = true;
1155 	master->transfer = spi_queued_transfer;
1156 	if (!master->transfer_one_message)
1157 		master->transfer_one_message = spi_transfer_one_message;
1158 
1159 	/* Initialize and start queue */
1160 	ret = spi_init_queue(master);
1161 	if (ret) {
1162 		dev_err(&master->dev, "problem initializing queue\n");
1163 		goto err_init_queue;
1164 	}
1165 	ret = spi_start_queue(master);
1166 	if (ret) {
1167 		dev_err(&master->dev, "problem starting queue\n");
1168 		goto err_start_queue;
1169 	}
1170 
1171 	return 0;
1172 
1173 err_start_queue:
1174 err_init_queue:
1175 	spi_destroy_queue(master);
1176 	return ret;
1177 }
1178 
1179 /*-------------------------------------------------------------------------*/
1180 
1181 #if defined(CONFIG_OF)
1182 /**
1183  * of_register_spi_devices() - Register child devices onto the SPI bus
1184  * @master:	Pointer to spi_master device
1185  *
1186  * Registers an spi_device for each child node of master node which has a 'reg'
1187  * property.
1188  */
1189 static void of_register_spi_devices(struct spi_master *master)
1190 {
1191 	struct spi_device *spi;
1192 	struct device_node *nc;
1193 	int rc;
1194 	u32 value;
1195 
1196 	if (!master->dev.of_node)
1197 		return;
1198 
1199 	for_each_available_child_of_node(master->dev.of_node, nc) {
1200 		/* Alloc an spi_device */
1201 		spi = spi_alloc_device(master);
1202 		if (!spi) {
1203 			dev_err(&master->dev, "spi_device alloc error for %s\n",
1204 				nc->full_name);
1205 			spi_dev_put(spi);
1206 			continue;
1207 		}
1208 
1209 		/* Select device driver */
1210 		if (of_modalias_node(nc, spi->modalias,
1211 				     sizeof(spi->modalias)) < 0) {
1212 			dev_err(&master->dev, "cannot find modalias for %s\n",
1213 				nc->full_name);
1214 			spi_dev_put(spi);
1215 			continue;
1216 		}
1217 
1218 		/* Device address */
1219 		rc = of_property_read_u32(nc, "reg", &value);
1220 		if (rc) {
1221 			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1222 				nc->full_name, rc);
1223 			spi_dev_put(spi);
1224 			continue;
1225 		}
1226 		spi->chip_select = value;
1227 
1228 		/* Mode (clock phase/polarity/etc.) */
1229 		if (of_find_property(nc, "spi-cpha", NULL))
1230 			spi->mode |= SPI_CPHA;
1231 		if (of_find_property(nc, "spi-cpol", NULL))
1232 			spi->mode |= SPI_CPOL;
1233 		if (of_find_property(nc, "spi-cs-high", NULL))
1234 			spi->mode |= SPI_CS_HIGH;
1235 		if (of_find_property(nc, "spi-3wire", NULL))
1236 			spi->mode |= SPI_3WIRE;
1237 
1238 		/* Device DUAL/QUAD mode */
1239 		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1240 			switch (value) {
1241 			case 1:
1242 				break;
1243 			case 2:
1244 				spi->mode |= SPI_TX_DUAL;
1245 				break;
1246 			case 4:
1247 				spi->mode |= SPI_TX_QUAD;
1248 				break;
1249 			default:
1250 				dev_err(&master->dev,
1251 					"spi-tx-bus-width %d not supported\n",
1252 					value);
1253 				spi_dev_put(spi);
1254 				continue;
1255 			}
1256 		}
1257 
1258 		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1259 			switch (value) {
1260 			case 1:
1261 				break;
1262 			case 2:
1263 				spi->mode |= SPI_RX_DUAL;
1264 				break;
1265 			case 4:
1266 				spi->mode |= SPI_RX_QUAD;
1267 				break;
1268 			default:
1269 				dev_err(&master->dev,
1270 					"spi-rx-bus-width %d not supported\n",
1271 					value);
1272 				spi_dev_put(spi);
1273 				continue;
1274 			}
1275 		}
1276 
1277 		/* Device speed */
1278 		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1279 		if (rc) {
1280 			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1281 				nc->full_name, rc);
1282 			spi_dev_put(spi);
1283 			continue;
1284 		}
1285 		spi->max_speed_hz = value;
1286 
1287 		/* IRQ */
1288 		spi->irq = irq_of_parse_and_map(nc, 0);
1289 
1290 		/* Store a pointer to the node in the device structure */
1291 		of_node_get(nc);
1292 		spi->dev.of_node = nc;
1293 
1294 		/* Register the new device */
1295 		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1296 		rc = spi_add_device(spi);
1297 		if (rc) {
1298 			dev_err(&master->dev, "spi_device register error %s\n",
1299 				nc->full_name);
1300 			spi_dev_put(spi);
1301 		}
1302 
1303 	}
1304 }
1305 #else
1306 static void of_register_spi_devices(struct spi_master *master) { }
1307 #endif
1308 
1309 #ifdef CONFIG_ACPI
1310 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1311 {
1312 	struct spi_device *spi = data;
1313 
1314 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1315 		struct acpi_resource_spi_serialbus *sb;
1316 
1317 		sb = &ares->data.spi_serial_bus;
1318 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1319 			spi->chip_select = sb->device_selection;
1320 			spi->max_speed_hz = sb->connection_speed;
1321 
1322 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1323 				spi->mode |= SPI_CPHA;
1324 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1325 				spi->mode |= SPI_CPOL;
1326 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1327 				spi->mode |= SPI_CS_HIGH;
1328 		}
1329 	} else if (spi->irq < 0) {
1330 		struct resource r;
1331 
1332 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1333 			spi->irq = r.start;
1334 	}
1335 
1336 	/* Always tell the ACPI core to skip this resource */
1337 	return 1;
1338 }
1339 
1340 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1341 				       void *data, void **return_value)
1342 {
1343 	struct spi_master *master = data;
1344 	struct list_head resource_list;
1345 	struct acpi_device *adev;
1346 	struct spi_device *spi;
1347 	int ret;
1348 
1349 	if (acpi_bus_get_device(handle, &adev))
1350 		return AE_OK;
1351 	if (acpi_bus_get_status(adev) || !adev->status.present)
1352 		return AE_OK;
1353 
1354 	spi = spi_alloc_device(master);
1355 	if (!spi) {
1356 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1357 			dev_name(&adev->dev));
1358 		return AE_NO_MEMORY;
1359 	}
1360 
1361 	ACPI_COMPANION_SET(&spi->dev, adev);
1362 	spi->irq = -1;
1363 
1364 	INIT_LIST_HEAD(&resource_list);
1365 	ret = acpi_dev_get_resources(adev, &resource_list,
1366 				     acpi_spi_add_resource, spi);
1367 	acpi_dev_free_resource_list(&resource_list);
1368 
1369 	if (ret < 0 || !spi->max_speed_hz) {
1370 		spi_dev_put(spi);
1371 		return AE_OK;
1372 	}
1373 
1374 	adev->power.flags.ignore_parent = true;
1375 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1376 	if (spi_add_device(spi)) {
1377 		adev->power.flags.ignore_parent = false;
1378 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1379 			dev_name(&adev->dev));
1380 		spi_dev_put(spi);
1381 	}
1382 
1383 	return AE_OK;
1384 }
1385 
1386 static void acpi_register_spi_devices(struct spi_master *master)
1387 {
1388 	acpi_status status;
1389 	acpi_handle handle;
1390 
1391 	handle = ACPI_HANDLE(master->dev.parent);
1392 	if (!handle)
1393 		return;
1394 
1395 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1396 				     acpi_spi_add_device, NULL,
1397 				     master, NULL);
1398 	if (ACPI_FAILURE(status))
1399 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1400 }
1401 #else
1402 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1403 #endif /* CONFIG_ACPI */
1404 
1405 static void spi_master_release(struct device *dev)
1406 {
1407 	struct spi_master *master;
1408 
1409 	master = container_of(dev, struct spi_master, dev);
1410 	kfree(master);
1411 }
1412 
1413 static struct class spi_master_class = {
1414 	.name		= "spi_master",
1415 	.owner		= THIS_MODULE,
1416 	.dev_release	= spi_master_release,
1417 };
1418 
1419 
1420 
1421 /**
1422  * spi_alloc_master - allocate SPI master controller
1423  * @dev: the controller, possibly using the platform_bus
1424  * @size: how much zeroed driver-private data to allocate; the pointer to this
1425  *	memory is in the driver_data field of the returned device,
1426  *	accessible with spi_master_get_devdata().
1427  * Context: can sleep
1428  *
1429  * This call is used only by SPI master controller drivers, which are the
1430  * only ones directly touching chip registers.  It's how they allocate
1431  * an spi_master structure, prior to calling spi_register_master().
1432  *
1433  * This must be called from context that can sleep.  It returns the SPI
1434  * master structure on success, else NULL.
1435  *
1436  * The caller is responsible for assigning the bus number and initializing
1437  * the master's methods before calling spi_register_master(); and (after errors
1438  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1439  * leak.
1440  */
1441 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1442 {
1443 	struct spi_master	*master;
1444 
1445 	if (!dev)
1446 		return NULL;
1447 
1448 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1449 	if (!master)
1450 		return NULL;
1451 
1452 	device_initialize(&master->dev);
1453 	master->bus_num = -1;
1454 	master->num_chipselect = 1;
1455 	master->dev.class = &spi_master_class;
1456 	master->dev.parent = get_device(dev);
1457 	spi_master_set_devdata(master, &master[1]);
1458 
1459 	return master;
1460 }
1461 EXPORT_SYMBOL_GPL(spi_alloc_master);
1462 
1463 #ifdef CONFIG_OF
1464 static int of_spi_register_master(struct spi_master *master)
1465 {
1466 	int nb, i, *cs;
1467 	struct device_node *np = master->dev.of_node;
1468 
1469 	if (!np)
1470 		return 0;
1471 
1472 	nb = of_gpio_named_count(np, "cs-gpios");
1473 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1474 
1475 	/* Return error only for an incorrectly formed cs-gpios property */
1476 	if (nb == 0 || nb == -ENOENT)
1477 		return 0;
1478 	else if (nb < 0)
1479 		return nb;
1480 
1481 	cs = devm_kzalloc(&master->dev,
1482 			  sizeof(int) * master->num_chipselect,
1483 			  GFP_KERNEL);
1484 	master->cs_gpios = cs;
1485 
1486 	if (!master->cs_gpios)
1487 		return -ENOMEM;
1488 
1489 	for (i = 0; i < master->num_chipselect; i++)
1490 		cs[i] = -ENOENT;
1491 
1492 	for (i = 0; i < nb; i++)
1493 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1494 
1495 	return 0;
1496 }
1497 #else
1498 static int of_spi_register_master(struct spi_master *master)
1499 {
1500 	return 0;
1501 }
1502 #endif
1503 
1504 /**
1505  * spi_register_master - register SPI master controller
1506  * @master: initialized master, originally from spi_alloc_master()
1507  * Context: can sleep
1508  *
1509  * SPI master controllers connect to their drivers using some non-SPI bus,
1510  * such as the platform bus.  The final stage of probe() in that code
1511  * includes calling spi_register_master() to hook up to this SPI bus glue.
1512  *
1513  * SPI controllers use board specific (often SOC specific) bus numbers,
1514  * and board-specific addressing for SPI devices combines those numbers
1515  * with chip select numbers.  Since SPI does not directly support dynamic
1516  * device identification, boards need configuration tables telling which
1517  * chip is at which address.
1518  *
1519  * This must be called from context that can sleep.  It returns zero on
1520  * success, else a negative error code (dropping the master's refcount).
1521  * After a successful return, the caller is responsible for calling
1522  * spi_unregister_master().
1523  */
1524 int spi_register_master(struct spi_master *master)
1525 {
1526 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1527 	struct device		*dev = master->dev.parent;
1528 	struct boardinfo	*bi;
1529 	int			status = -ENODEV;
1530 	int			dynamic = 0;
1531 
1532 	if (!dev)
1533 		return -ENODEV;
1534 
1535 	status = of_spi_register_master(master);
1536 	if (status)
1537 		return status;
1538 
1539 	/* even if it's just one always-selected device, there must
1540 	 * be at least one chipselect
1541 	 */
1542 	if (master->num_chipselect == 0)
1543 		return -EINVAL;
1544 
1545 	if ((master->bus_num < 0) && master->dev.of_node)
1546 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1547 
1548 	/* convention:  dynamically assigned bus IDs count down from the max */
1549 	if (master->bus_num < 0) {
1550 		/* FIXME switch to an IDR based scheme, something like
1551 		 * I2C now uses, so we can't run out of "dynamic" IDs
1552 		 */
1553 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1554 		dynamic = 1;
1555 	}
1556 
1557 	spin_lock_init(&master->bus_lock_spinlock);
1558 	mutex_init(&master->bus_lock_mutex);
1559 	master->bus_lock_flag = 0;
1560 	init_completion(&master->xfer_completion);
1561 	if (!master->max_dma_len)
1562 		master->max_dma_len = INT_MAX;
1563 
1564 	/* register the device, then userspace will see it.
1565 	 * registration fails if the bus ID is in use.
1566 	 */
1567 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1568 	status = device_add(&master->dev);
1569 	if (status < 0)
1570 		goto done;
1571 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1572 			dynamic ? " (dynamic)" : "");
1573 
1574 	/* If we're using a queued driver, start the queue */
1575 	if (master->transfer)
1576 		dev_info(dev, "master is unqueued, this is deprecated\n");
1577 	else {
1578 		status = spi_master_initialize_queue(master);
1579 		if (status) {
1580 			device_del(&master->dev);
1581 			goto done;
1582 		}
1583 	}
1584 
1585 	mutex_lock(&board_lock);
1586 	list_add_tail(&master->list, &spi_master_list);
1587 	list_for_each_entry(bi, &board_list, list)
1588 		spi_match_master_to_boardinfo(master, &bi->board_info);
1589 	mutex_unlock(&board_lock);
1590 
1591 	/* Register devices from the device tree and ACPI */
1592 	of_register_spi_devices(master);
1593 	acpi_register_spi_devices(master);
1594 done:
1595 	return status;
1596 }
1597 EXPORT_SYMBOL_GPL(spi_register_master);
1598 
1599 static void devm_spi_unregister(struct device *dev, void *res)
1600 {
1601 	spi_unregister_master(*(struct spi_master **)res);
1602 }
1603 
1604 /**
1605  * dev_spi_register_master - register managed SPI master controller
1606  * @dev:    device managing SPI master
1607  * @master: initialized master, originally from spi_alloc_master()
1608  * Context: can sleep
1609  *
1610  * Register a SPI device as with spi_register_master() which will
1611  * automatically be unregister
1612  */
1613 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1614 {
1615 	struct spi_master **ptr;
1616 	int ret;
1617 
1618 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1619 	if (!ptr)
1620 		return -ENOMEM;
1621 
1622 	ret = spi_register_master(master);
1623 	if (!ret) {
1624 		*ptr = master;
1625 		devres_add(dev, ptr);
1626 	} else {
1627 		devres_free(ptr);
1628 	}
1629 
1630 	return ret;
1631 }
1632 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1633 
1634 static int __unregister(struct device *dev, void *null)
1635 {
1636 	spi_unregister_device(to_spi_device(dev));
1637 	return 0;
1638 }
1639 
1640 /**
1641  * spi_unregister_master - unregister SPI master controller
1642  * @master: the master being unregistered
1643  * Context: can sleep
1644  *
1645  * This call is used only by SPI master controller drivers, which are the
1646  * only ones directly touching chip registers.
1647  *
1648  * This must be called from context that can sleep.
1649  */
1650 void spi_unregister_master(struct spi_master *master)
1651 {
1652 	int dummy;
1653 
1654 	if (master->queued) {
1655 		if (spi_destroy_queue(master))
1656 			dev_err(&master->dev, "queue remove failed\n");
1657 	}
1658 
1659 	mutex_lock(&board_lock);
1660 	list_del(&master->list);
1661 	mutex_unlock(&board_lock);
1662 
1663 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1664 	device_unregister(&master->dev);
1665 }
1666 EXPORT_SYMBOL_GPL(spi_unregister_master);
1667 
1668 int spi_master_suspend(struct spi_master *master)
1669 {
1670 	int ret;
1671 
1672 	/* Basically no-ops for non-queued masters */
1673 	if (!master->queued)
1674 		return 0;
1675 
1676 	ret = spi_stop_queue(master);
1677 	if (ret)
1678 		dev_err(&master->dev, "queue stop failed\n");
1679 
1680 	return ret;
1681 }
1682 EXPORT_SYMBOL_GPL(spi_master_suspend);
1683 
1684 int spi_master_resume(struct spi_master *master)
1685 {
1686 	int ret;
1687 
1688 	if (!master->queued)
1689 		return 0;
1690 
1691 	ret = spi_start_queue(master);
1692 	if (ret)
1693 		dev_err(&master->dev, "queue restart failed\n");
1694 
1695 	return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(spi_master_resume);
1698 
1699 static int __spi_master_match(struct device *dev, const void *data)
1700 {
1701 	struct spi_master *m;
1702 	const u16 *bus_num = data;
1703 
1704 	m = container_of(dev, struct spi_master, dev);
1705 	return m->bus_num == *bus_num;
1706 }
1707 
1708 /**
1709  * spi_busnum_to_master - look up master associated with bus_num
1710  * @bus_num: the master's bus number
1711  * Context: can sleep
1712  *
1713  * This call may be used with devices that are registered after
1714  * arch init time.  It returns a refcounted pointer to the relevant
1715  * spi_master (which the caller must release), or NULL if there is
1716  * no such master registered.
1717  */
1718 struct spi_master *spi_busnum_to_master(u16 bus_num)
1719 {
1720 	struct device		*dev;
1721 	struct spi_master	*master = NULL;
1722 
1723 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1724 				__spi_master_match);
1725 	if (dev)
1726 		master = container_of(dev, struct spi_master, dev);
1727 	/* reference got in class_find_device */
1728 	return master;
1729 }
1730 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1731 
1732 
1733 /*-------------------------------------------------------------------------*/
1734 
1735 /* Core methods for SPI master protocol drivers.  Some of the
1736  * other core methods are currently defined as inline functions.
1737  */
1738 
1739 /**
1740  * spi_setup - setup SPI mode and clock rate
1741  * @spi: the device whose settings are being modified
1742  * Context: can sleep, and no requests are queued to the device
1743  *
1744  * SPI protocol drivers may need to update the transfer mode if the
1745  * device doesn't work with its default.  They may likewise need
1746  * to update clock rates or word sizes from initial values.  This function
1747  * changes those settings, and must be called from a context that can sleep.
1748  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1749  * effect the next time the device is selected and data is transferred to
1750  * or from it.  When this function returns, the spi device is deselected.
1751  *
1752  * Note that this call will fail if the protocol driver specifies an option
1753  * that the underlying controller or its driver does not support.  For
1754  * example, not all hardware supports wire transfers using nine bit words,
1755  * LSB-first wire encoding, or active-high chipselects.
1756  */
1757 int spi_setup(struct spi_device *spi)
1758 {
1759 	unsigned	bad_bits;
1760 	int		status = 0;
1761 
1762 	/* check mode to prevent that DUAL and QUAD set at the same time
1763 	 */
1764 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1765 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1766 		dev_err(&spi->dev,
1767 		"setup: can not select dual and quad at the same time\n");
1768 		return -EINVAL;
1769 	}
1770 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1771 	 */
1772 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1773 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1774 		return -EINVAL;
1775 	/* help drivers fail *cleanly* when they need options
1776 	 * that aren't supported with their current master
1777 	 */
1778 	bad_bits = spi->mode & ~spi->master->mode_bits;
1779 	if (bad_bits) {
1780 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1781 			bad_bits);
1782 		return -EINVAL;
1783 	}
1784 
1785 	if (!spi->bits_per_word)
1786 		spi->bits_per_word = 8;
1787 
1788 	if (!spi->max_speed_hz)
1789 		spi->max_speed_hz = spi->master->max_speed_hz;
1790 
1791 	if (spi->master->setup)
1792 		status = spi->master->setup(spi);
1793 
1794 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1795 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1796 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1797 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1798 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1799 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1800 			spi->bits_per_word, spi->max_speed_hz,
1801 			status);
1802 
1803 	return status;
1804 }
1805 EXPORT_SYMBOL_GPL(spi_setup);
1806 
1807 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1808 {
1809 	struct spi_master *master = spi->master;
1810 	struct spi_transfer *xfer;
1811 	int w_size;
1812 
1813 	if (list_empty(&message->transfers))
1814 		return -EINVAL;
1815 
1816 	/* Half-duplex links include original MicroWire, and ones with
1817 	 * only one data pin like SPI_3WIRE (switches direction) or where
1818 	 * either MOSI or MISO is missing.  They can also be caused by
1819 	 * software limitations.
1820 	 */
1821 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1822 			|| (spi->mode & SPI_3WIRE)) {
1823 		unsigned flags = master->flags;
1824 
1825 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1826 			if (xfer->rx_buf && xfer->tx_buf)
1827 				return -EINVAL;
1828 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1829 				return -EINVAL;
1830 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1831 				return -EINVAL;
1832 		}
1833 	}
1834 
1835 	/**
1836 	 * Set transfer bits_per_word and max speed as spi device default if
1837 	 * it is not set for this transfer.
1838 	 * Set transfer tx_nbits and rx_nbits as single transfer default
1839 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1840 	 */
1841 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1842 		message->frame_length += xfer->len;
1843 		if (!xfer->bits_per_word)
1844 			xfer->bits_per_word = spi->bits_per_word;
1845 
1846 		if (!xfer->speed_hz)
1847 			xfer->speed_hz = spi->max_speed_hz;
1848 
1849 		if (master->max_speed_hz &&
1850 		    xfer->speed_hz > master->max_speed_hz)
1851 			xfer->speed_hz = master->max_speed_hz;
1852 
1853 		if (master->bits_per_word_mask) {
1854 			/* Only 32 bits fit in the mask */
1855 			if (xfer->bits_per_word > 32)
1856 				return -EINVAL;
1857 			if (!(master->bits_per_word_mask &
1858 					BIT(xfer->bits_per_word - 1)))
1859 				return -EINVAL;
1860 		}
1861 
1862 		/*
1863 		 * SPI transfer length should be multiple of SPI word size
1864 		 * where SPI word size should be power-of-two multiple
1865 		 */
1866 		if (xfer->bits_per_word <= 8)
1867 			w_size = 1;
1868 		else if (xfer->bits_per_word <= 16)
1869 			w_size = 2;
1870 		else
1871 			w_size = 4;
1872 
1873 		/* No partial transfers accepted */
1874 		if (xfer->len % w_size)
1875 			return -EINVAL;
1876 
1877 		if (xfer->speed_hz && master->min_speed_hz &&
1878 		    xfer->speed_hz < master->min_speed_hz)
1879 			return -EINVAL;
1880 
1881 		if (xfer->tx_buf && !xfer->tx_nbits)
1882 			xfer->tx_nbits = SPI_NBITS_SINGLE;
1883 		if (xfer->rx_buf && !xfer->rx_nbits)
1884 			xfer->rx_nbits = SPI_NBITS_SINGLE;
1885 		/* check transfer tx/rx_nbits:
1886 		 * 1. check the value matches one of single, dual and quad
1887 		 * 2. check tx/rx_nbits match the mode in spi_device
1888 		 */
1889 		if (xfer->tx_buf) {
1890 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1891 				xfer->tx_nbits != SPI_NBITS_DUAL &&
1892 				xfer->tx_nbits != SPI_NBITS_QUAD)
1893 				return -EINVAL;
1894 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1895 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1896 				return -EINVAL;
1897 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1898 				!(spi->mode & SPI_TX_QUAD))
1899 				return -EINVAL;
1900 		}
1901 		/* check transfer rx_nbits */
1902 		if (xfer->rx_buf) {
1903 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1904 				xfer->rx_nbits != SPI_NBITS_DUAL &&
1905 				xfer->rx_nbits != SPI_NBITS_QUAD)
1906 				return -EINVAL;
1907 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1908 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1909 				return -EINVAL;
1910 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1911 				!(spi->mode & SPI_RX_QUAD))
1912 				return -EINVAL;
1913 		}
1914 	}
1915 
1916 	message->status = -EINPROGRESS;
1917 
1918 	return 0;
1919 }
1920 
1921 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1922 {
1923 	struct spi_master *master = spi->master;
1924 
1925 	message->spi = spi;
1926 
1927 	trace_spi_message_submit(message);
1928 
1929 	return master->transfer(spi, message);
1930 }
1931 
1932 /**
1933  * spi_async - asynchronous SPI transfer
1934  * @spi: device with which data will be exchanged
1935  * @message: describes the data transfers, including completion callback
1936  * Context: any (irqs may be blocked, etc)
1937  *
1938  * This call may be used in_irq and other contexts which can't sleep,
1939  * as well as from task contexts which can sleep.
1940  *
1941  * The completion callback is invoked in a context which can't sleep.
1942  * Before that invocation, the value of message->status is undefined.
1943  * When the callback is issued, message->status holds either zero (to
1944  * indicate complete success) or a negative error code.  After that
1945  * callback returns, the driver which issued the transfer request may
1946  * deallocate the associated memory; it's no longer in use by any SPI
1947  * core or controller driver code.
1948  *
1949  * Note that although all messages to a spi_device are handled in
1950  * FIFO order, messages may go to different devices in other orders.
1951  * Some device might be higher priority, or have various "hard" access
1952  * time requirements, for example.
1953  *
1954  * On detection of any fault during the transfer, processing of
1955  * the entire message is aborted, and the device is deselected.
1956  * Until returning from the associated message completion callback,
1957  * no other spi_message queued to that device will be processed.
1958  * (This rule applies equally to all the synchronous transfer calls,
1959  * which are wrappers around this core asynchronous primitive.)
1960  */
1961 int spi_async(struct spi_device *spi, struct spi_message *message)
1962 {
1963 	struct spi_master *master = spi->master;
1964 	int ret;
1965 	unsigned long flags;
1966 
1967 	ret = __spi_validate(spi, message);
1968 	if (ret != 0)
1969 		return ret;
1970 
1971 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1972 
1973 	if (master->bus_lock_flag)
1974 		ret = -EBUSY;
1975 	else
1976 		ret = __spi_async(spi, message);
1977 
1978 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1979 
1980 	return ret;
1981 }
1982 EXPORT_SYMBOL_GPL(spi_async);
1983 
1984 /**
1985  * spi_async_locked - version of spi_async with exclusive bus usage
1986  * @spi: device with which data will be exchanged
1987  * @message: describes the data transfers, including completion callback
1988  * Context: any (irqs may be blocked, etc)
1989  *
1990  * This call may be used in_irq and other contexts which can't sleep,
1991  * as well as from task contexts which can sleep.
1992  *
1993  * The completion callback is invoked in a context which can't sleep.
1994  * Before that invocation, the value of message->status is undefined.
1995  * When the callback is issued, message->status holds either zero (to
1996  * indicate complete success) or a negative error code.  After that
1997  * callback returns, the driver which issued the transfer request may
1998  * deallocate the associated memory; it's no longer in use by any SPI
1999  * core or controller driver code.
2000  *
2001  * Note that although all messages to a spi_device are handled in
2002  * FIFO order, messages may go to different devices in other orders.
2003  * Some device might be higher priority, or have various "hard" access
2004  * time requirements, for example.
2005  *
2006  * On detection of any fault during the transfer, processing of
2007  * the entire message is aborted, and the device is deselected.
2008  * Until returning from the associated message completion callback,
2009  * no other spi_message queued to that device will be processed.
2010  * (This rule applies equally to all the synchronous transfer calls,
2011  * which are wrappers around this core asynchronous primitive.)
2012  */
2013 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2014 {
2015 	struct spi_master *master = spi->master;
2016 	int ret;
2017 	unsigned long flags;
2018 
2019 	ret = __spi_validate(spi, message);
2020 	if (ret != 0)
2021 		return ret;
2022 
2023 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2024 
2025 	ret = __spi_async(spi, message);
2026 
2027 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2028 
2029 	return ret;
2030 
2031 }
2032 EXPORT_SYMBOL_GPL(spi_async_locked);
2033 
2034 
2035 /*-------------------------------------------------------------------------*/
2036 
2037 /* Utility methods for SPI master protocol drivers, layered on
2038  * top of the core.  Some other utility methods are defined as
2039  * inline functions.
2040  */
2041 
2042 static void spi_complete(void *arg)
2043 {
2044 	complete(arg);
2045 }
2046 
2047 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2048 		      int bus_locked)
2049 {
2050 	DECLARE_COMPLETION_ONSTACK(done);
2051 	int status;
2052 	struct spi_master *master = spi->master;
2053 
2054 	message->complete = spi_complete;
2055 	message->context = &done;
2056 
2057 	if (!bus_locked)
2058 		mutex_lock(&master->bus_lock_mutex);
2059 
2060 	status = spi_async_locked(spi, message);
2061 
2062 	if (!bus_locked)
2063 		mutex_unlock(&master->bus_lock_mutex);
2064 
2065 	if (status == 0) {
2066 		wait_for_completion(&done);
2067 		status = message->status;
2068 	}
2069 	message->context = NULL;
2070 	return status;
2071 }
2072 
2073 /**
2074  * spi_sync - blocking/synchronous SPI data transfers
2075  * @spi: device with which data will be exchanged
2076  * @message: describes the data transfers
2077  * Context: can sleep
2078  *
2079  * This call may only be used from a context that may sleep.  The sleep
2080  * is non-interruptible, and has no timeout.  Low-overhead controller
2081  * drivers may DMA directly into and out of the message buffers.
2082  *
2083  * Note that the SPI device's chip select is active during the message,
2084  * and then is normally disabled between messages.  Drivers for some
2085  * frequently-used devices may want to minimize costs of selecting a chip,
2086  * by leaving it selected in anticipation that the next message will go
2087  * to the same chip.  (That may increase power usage.)
2088  *
2089  * Also, the caller is guaranteeing that the memory associated with the
2090  * message will not be freed before this call returns.
2091  *
2092  * It returns zero on success, else a negative error code.
2093  */
2094 int spi_sync(struct spi_device *spi, struct spi_message *message)
2095 {
2096 	return __spi_sync(spi, message, 0);
2097 }
2098 EXPORT_SYMBOL_GPL(spi_sync);
2099 
2100 /**
2101  * spi_sync_locked - version of spi_sync with exclusive bus usage
2102  * @spi: device with which data will be exchanged
2103  * @message: describes the data transfers
2104  * Context: can sleep
2105  *
2106  * This call may only be used from a context that may sleep.  The sleep
2107  * is non-interruptible, and has no timeout.  Low-overhead controller
2108  * drivers may DMA directly into and out of the message buffers.
2109  *
2110  * This call should be used by drivers that require exclusive access to the
2111  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2112  * be released by a spi_bus_unlock call when the exclusive access is over.
2113  *
2114  * It returns zero on success, else a negative error code.
2115  */
2116 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2117 {
2118 	return __spi_sync(spi, message, 1);
2119 }
2120 EXPORT_SYMBOL_GPL(spi_sync_locked);
2121 
2122 /**
2123  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2124  * @master: SPI bus master that should be locked for exclusive bus access
2125  * Context: can sleep
2126  *
2127  * This call may only be used from a context that may sleep.  The sleep
2128  * is non-interruptible, and has no timeout.
2129  *
2130  * This call should be used by drivers that require exclusive access to the
2131  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2132  * exclusive access is over. Data transfer must be done by spi_sync_locked
2133  * and spi_async_locked calls when the SPI bus lock is held.
2134  *
2135  * It returns zero on success, else a negative error code.
2136  */
2137 int spi_bus_lock(struct spi_master *master)
2138 {
2139 	unsigned long flags;
2140 
2141 	mutex_lock(&master->bus_lock_mutex);
2142 
2143 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2144 	master->bus_lock_flag = 1;
2145 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2146 
2147 	/* mutex remains locked until spi_bus_unlock is called */
2148 
2149 	return 0;
2150 }
2151 EXPORT_SYMBOL_GPL(spi_bus_lock);
2152 
2153 /**
2154  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2155  * @master: SPI bus master that was locked for exclusive bus access
2156  * Context: can sleep
2157  *
2158  * This call may only be used from a context that may sleep.  The sleep
2159  * is non-interruptible, and has no timeout.
2160  *
2161  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2162  * call.
2163  *
2164  * It returns zero on success, else a negative error code.
2165  */
2166 int spi_bus_unlock(struct spi_master *master)
2167 {
2168 	master->bus_lock_flag = 0;
2169 
2170 	mutex_unlock(&master->bus_lock_mutex);
2171 
2172 	return 0;
2173 }
2174 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2175 
2176 /* portable code must never pass more than 32 bytes */
2177 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2178 
2179 static u8	*buf;
2180 
2181 /**
2182  * spi_write_then_read - SPI synchronous write followed by read
2183  * @spi: device with which data will be exchanged
2184  * @txbuf: data to be written (need not be dma-safe)
2185  * @n_tx: size of txbuf, in bytes
2186  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2187  * @n_rx: size of rxbuf, in bytes
2188  * Context: can sleep
2189  *
2190  * This performs a half duplex MicroWire style transaction with the
2191  * device, sending txbuf and then reading rxbuf.  The return value
2192  * is zero for success, else a negative errno status code.
2193  * This call may only be used from a context that may sleep.
2194  *
2195  * Parameters to this routine are always copied using a small buffer;
2196  * portable code should never use this for more than 32 bytes.
2197  * Performance-sensitive or bulk transfer code should instead use
2198  * spi_{async,sync}() calls with dma-safe buffers.
2199  */
2200 int spi_write_then_read(struct spi_device *spi,
2201 		const void *txbuf, unsigned n_tx,
2202 		void *rxbuf, unsigned n_rx)
2203 {
2204 	static DEFINE_MUTEX(lock);
2205 
2206 	int			status;
2207 	struct spi_message	message;
2208 	struct spi_transfer	x[2];
2209 	u8			*local_buf;
2210 
2211 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2212 	 * copying here, (as a pure convenience thing), but we can
2213 	 * keep heap costs out of the hot path unless someone else is
2214 	 * using the pre-allocated buffer or the transfer is too large.
2215 	 */
2216 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2217 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2218 				    GFP_KERNEL | GFP_DMA);
2219 		if (!local_buf)
2220 			return -ENOMEM;
2221 	} else {
2222 		local_buf = buf;
2223 	}
2224 
2225 	spi_message_init(&message);
2226 	memset(x, 0, sizeof(x));
2227 	if (n_tx) {
2228 		x[0].len = n_tx;
2229 		spi_message_add_tail(&x[0], &message);
2230 	}
2231 	if (n_rx) {
2232 		x[1].len = n_rx;
2233 		spi_message_add_tail(&x[1], &message);
2234 	}
2235 
2236 	memcpy(local_buf, txbuf, n_tx);
2237 	x[0].tx_buf = local_buf;
2238 	x[1].rx_buf = local_buf + n_tx;
2239 
2240 	/* do the i/o */
2241 	status = spi_sync(spi, &message);
2242 	if (status == 0)
2243 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2244 
2245 	if (x[0].tx_buf == buf)
2246 		mutex_unlock(&lock);
2247 	else
2248 		kfree(local_buf);
2249 
2250 	return status;
2251 }
2252 EXPORT_SYMBOL_GPL(spi_write_then_read);
2253 
2254 /*-------------------------------------------------------------------------*/
2255 
2256 static int __init spi_init(void)
2257 {
2258 	int	status;
2259 
2260 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2261 	if (!buf) {
2262 		status = -ENOMEM;
2263 		goto err0;
2264 	}
2265 
2266 	status = bus_register(&spi_bus_type);
2267 	if (status < 0)
2268 		goto err1;
2269 
2270 	status = class_register(&spi_master_class);
2271 	if (status < 0)
2272 		goto err2;
2273 	return 0;
2274 
2275 err2:
2276 	bus_unregister(&spi_bus_type);
2277 err1:
2278 	kfree(buf);
2279 	buf = NULL;
2280 err0:
2281 	return status;
2282 }
2283 
2284 /* board_info is normally registered in arch_initcall(),
2285  * but even essential drivers wait till later
2286  *
2287  * REVISIT only boardinfo really needs static linking. the rest (device and
2288  * driver registration) _could_ be dynamically linked (modular) ... costs
2289  * include needing to have boardinfo data structures be much more public.
2290  */
2291 postcore_initcall(spi_init);
2292 
2293