1 /* 2 * spi.c - SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/cache.h> 25 #include <linux/mutex.h> 26 #include <linux/spi/spi.h> 27 28 29 /* SPI bustype and spi_master class are registered after board init code 30 * provides the SPI device tables, ensuring that both are present by the 31 * time controller driver registration causes spi_devices to "enumerate". 32 */ 33 static void spidev_release(struct device *dev) 34 { 35 struct spi_device *spi = to_spi_device(dev); 36 37 /* spi masters may cleanup for released devices */ 38 if (spi->master->cleanup) 39 spi->master->cleanup(spi); 40 41 spi_master_put(spi->master); 42 kfree(dev); 43 } 44 45 static ssize_t 46 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 47 { 48 const struct spi_device *spi = to_spi_device(dev); 49 50 return sprintf(buf, "%s\n", spi->modalias); 51 } 52 53 static struct device_attribute spi_dev_attrs[] = { 54 __ATTR_RO(modalias), 55 __ATTR_NULL, 56 }; 57 58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 59 * and the sysfs version makes coldplug work too. 60 */ 61 62 static int spi_match_device(struct device *dev, struct device_driver *drv) 63 { 64 const struct spi_device *spi = to_spi_device(dev); 65 66 return strcmp(spi->modalias, drv->name) == 0; 67 } 68 69 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 70 { 71 const struct spi_device *spi = to_spi_device(dev); 72 73 add_uevent_var(env, "MODALIAS=%s", spi->modalias); 74 return 0; 75 } 76 77 #ifdef CONFIG_PM 78 79 static int spi_suspend(struct device *dev, pm_message_t message) 80 { 81 int value = 0; 82 struct spi_driver *drv = to_spi_driver(dev->driver); 83 84 /* suspend will stop irqs and dma; no more i/o */ 85 if (drv) { 86 if (drv->suspend) 87 value = drv->suspend(to_spi_device(dev), message); 88 else 89 dev_dbg(dev, "... can't suspend\n"); 90 } 91 return value; 92 } 93 94 static int spi_resume(struct device *dev) 95 { 96 int value = 0; 97 struct spi_driver *drv = to_spi_driver(dev->driver); 98 99 /* resume may restart the i/o queue */ 100 if (drv) { 101 if (drv->resume) 102 value = drv->resume(to_spi_device(dev)); 103 else 104 dev_dbg(dev, "... can't resume\n"); 105 } 106 return value; 107 } 108 109 #else 110 #define spi_suspend NULL 111 #define spi_resume NULL 112 #endif 113 114 struct bus_type spi_bus_type = { 115 .name = "spi", 116 .dev_attrs = spi_dev_attrs, 117 .match = spi_match_device, 118 .uevent = spi_uevent, 119 .suspend = spi_suspend, 120 .resume = spi_resume, 121 }; 122 EXPORT_SYMBOL_GPL(spi_bus_type); 123 124 125 static int spi_drv_probe(struct device *dev) 126 { 127 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 128 129 return sdrv->probe(to_spi_device(dev)); 130 } 131 132 static int spi_drv_remove(struct device *dev) 133 { 134 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 135 136 return sdrv->remove(to_spi_device(dev)); 137 } 138 139 static void spi_drv_shutdown(struct device *dev) 140 { 141 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 142 143 sdrv->shutdown(to_spi_device(dev)); 144 } 145 146 /** 147 * spi_register_driver - register a SPI driver 148 * @sdrv: the driver to register 149 * Context: can sleep 150 */ 151 int spi_register_driver(struct spi_driver *sdrv) 152 { 153 sdrv->driver.bus = &spi_bus_type; 154 if (sdrv->probe) 155 sdrv->driver.probe = spi_drv_probe; 156 if (sdrv->remove) 157 sdrv->driver.remove = spi_drv_remove; 158 if (sdrv->shutdown) 159 sdrv->driver.shutdown = spi_drv_shutdown; 160 return driver_register(&sdrv->driver); 161 } 162 EXPORT_SYMBOL_GPL(spi_register_driver); 163 164 /*-------------------------------------------------------------------------*/ 165 166 /* SPI devices should normally not be created by SPI device drivers; that 167 * would make them board-specific. Similarly with SPI master drivers. 168 * Device registration normally goes into like arch/.../mach.../board-YYY.c 169 * with other readonly (flashable) information about mainboard devices. 170 */ 171 172 struct boardinfo { 173 struct list_head list; 174 unsigned n_board_info; 175 struct spi_board_info board_info[0]; 176 }; 177 178 static LIST_HEAD(board_list); 179 static DEFINE_MUTEX(board_lock); 180 181 /** 182 * spi_alloc_device - Allocate a new SPI device 183 * @master: Controller to which device is connected 184 * Context: can sleep 185 * 186 * Allows a driver to allocate and initialize a spi_device without 187 * registering it immediately. This allows a driver to directly 188 * fill the spi_device with device parameters before calling 189 * spi_add_device() on it. 190 * 191 * Caller is responsible to call spi_add_device() on the returned 192 * spi_device structure to add it to the SPI master. If the caller 193 * needs to discard the spi_device without adding it, then it should 194 * call spi_dev_put() on it. 195 * 196 * Returns a pointer to the new device, or NULL. 197 */ 198 struct spi_device *spi_alloc_device(struct spi_master *master) 199 { 200 struct spi_device *spi; 201 struct device *dev = master->dev.parent; 202 203 if (!spi_master_get(master)) 204 return NULL; 205 206 spi = kzalloc(sizeof *spi, GFP_KERNEL); 207 if (!spi) { 208 dev_err(dev, "cannot alloc spi_device\n"); 209 spi_master_put(master); 210 return NULL; 211 } 212 213 spi->master = master; 214 spi->dev.parent = dev; 215 spi->dev.bus = &spi_bus_type; 216 spi->dev.release = spidev_release; 217 device_initialize(&spi->dev); 218 return spi; 219 } 220 EXPORT_SYMBOL_GPL(spi_alloc_device); 221 222 /** 223 * spi_add_device - Add spi_device allocated with spi_alloc_device 224 * @spi: spi_device to register 225 * 226 * Companion function to spi_alloc_device. Devices allocated with 227 * spi_alloc_device can be added onto the spi bus with this function. 228 * 229 * Returns 0 on success; negative errno on failure 230 */ 231 int spi_add_device(struct spi_device *spi) 232 { 233 static DEFINE_MUTEX(spi_add_lock); 234 struct device *dev = spi->master->dev.parent; 235 int status; 236 237 /* Chipselects are numbered 0..max; validate. */ 238 if (spi->chip_select >= spi->master->num_chipselect) { 239 dev_err(dev, "cs%d >= max %d\n", 240 spi->chip_select, 241 spi->master->num_chipselect); 242 return -EINVAL; 243 } 244 245 /* Set the bus ID string */ 246 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 247 spi->chip_select); 248 249 250 /* We need to make sure there's no other device with this 251 * chipselect **BEFORE** we call setup(), else we'll trash 252 * its configuration. Lock against concurrent add() calls. 253 */ 254 mutex_lock(&spi_add_lock); 255 256 if (bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev)) 257 != NULL) { 258 dev_err(dev, "chipselect %d already in use\n", 259 spi->chip_select); 260 status = -EBUSY; 261 goto done; 262 } 263 264 /* Drivers may modify this initial i/o setup, but will 265 * normally rely on the device being setup. Devices 266 * using SPI_CS_HIGH can't coexist well otherwise... 267 */ 268 status = spi->master->setup(spi); 269 if (status < 0) { 270 dev_err(dev, "can't %s %s, status %d\n", 271 "setup", dev_name(&spi->dev), status); 272 goto done; 273 } 274 275 /* Device may be bound to an active driver when this returns */ 276 status = device_add(&spi->dev); 277 if (status < 0) 278 dev_err(dev, "can't %s %s, status %d\n", 279 "add", dev_name(&spi->dev), status); 280 else 281 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 282 283 done: 284 mutex_unlock(&spi_add_lock); 285 return status; 286 } 287 EXPORT_SYMBOL_GPL(spi_add_device); 288 289 /** 290 * spi_new_device - instantiate one new SPI device 291 * @master: Controller to which device is connected 292 * @chip: Describes the SPI device 293 * Context: can sleep 294 * 295 * On typical mainboards, this is purely internal; and it's not needed 296 * after board init creates the hard-wired devices. Some development 297 * platforms may not be able to use spi_register_board_info though, and 298 * this is exported so that for example a USB or parport based adapter 299 * driver could add devices (which it would learn about out-of-band). 300 * 301 * Returns the new device, or NULL. 302 */ 303 struct spi_device *spi_new_device(struct spi_master *master, 304 struct spi_board_info *chip) 305 { 306 struct spi_device *proxy; 307 int status; 308 309 /* NOTE: caller did any chip->bus_num checks necessary. 310 * 311 * Also, unless we change the return value convention to use 312 * error-or-pointer (not NULL-or-pointer), troubleshootability 313 * suggests syslogged diagnostics are best here (ugh). 314 */ 315 316 proxy = spi_alloc_device(master); 317 if (!proxy) 318 return NULL; 319 320 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 321 322 proxy->chip_select = chip->chip_select; 323 proxy->max_speed_hz = chip->max_speed_hz; 324 proxy->mode = chip->mode; 325 proxy->irq = chip->irq; 326 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 327 proxy->dev.platform_data = (void *) chip->platform_data; 328 proxy->controller_data = chip->controller_data; 329 proxy->controller_state = NULL; 330 331 status = spi_add_device(proxy); 332 if (status < 0) { 333 spi_dev_put(proxy); 334 return NULL; 335 } 336 337 return proxy; 338 } 339 EXPORT_SYMBOL_GPL(spi_new_device); 340 341 /** 342 * spi_register_board_info - register SPI devices for a given board 343 * @info: array of chip descriptors 344 * @n: how many descriptors are provided 345 * Context: can sleep 346 * 347 * Board-specific early init code calls this (probably during arch_initcall) 348 * with segments of the SPI device table. Any device nodes are created later, 349 * after the relevant parent SPI controller (bus_num) is defined. We keep 350 * this table of devices forever, so that reloading a controller driver will 351 * not make Linux forget about these hard-wired devices. 352 * 353 * Other code can also call this, e.g. a particular add-on board might provide 354 * SPI devices through its expansion connector, so code initializing that board 355 * would naturally declare its SPI devices. 356 * 357 * The board info passed can safely be __initdata ... but be careful of 358 * any embedded pointers (platform_data, etc), they're copied as-is. 359 */ 360 int __init 361 spi_register_board_info(struct spi_board_info const *info, unsigned n) 362 { 363 struct boardinfo *bi; 364 365 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL); 366 if (!bi) 367 return -ENOMEM; 368 bi->n_board_info = n; 369 memcpy(bi->board_info, info, n * sizeof *info); 370 371 mutex_lock(&board_lock); 372 list_add_tail(&bi->list, &board_list); 373 mutex_unlock(&board_lock); 374 return 0; 375 } 376 377 /* FIXME someone should add support for a __setup("spi", ...) that 378 * creates board info from kernel command lines 379 */ 380 381 static void scan_boardinfo(struct spi_master *master) 382 { 383 struct boardinfo *bi; 384 385 mutex_lock(&board_lock); 386 list_for_each_entry(bi, &board_list, list) { 387 struct spi_board_info *chip = bi->board_info; 388 unsigned n; 389 390 for (n = bi->n_board_info; n > 0; n--, chip++) { 391 if (chip->bus_num != master->bus_num) 392 continue; 393 /* NOTE: this relies on spi_new_device to 394 * issue diagnostics when given bogus inputs 395 */ 396 (void) spi_new_device(master, chip); 397 } 398 } 399 mutex_unlock(&board_lock); 400 } 401 402 /*-------------------------------------------------------------------------*/ 403 404 static void spi_master_release(struct device *dev) 405 { 406 struct spi_master *master; 407 408 master = container_of(dev, struct spi_master, dev); 409 kfree(master); 410 } 411 412 static struct class spi_master_class = { 413 .name = "spi_master", 414 .owner = THIS_MODULE, 415 .dev_release = spi_master_release, 416 }; 417 418 419 /** 420 * spi_alloc_master - allocate SPI master controller 421 * @dev: the controller, possibly using the platform_bus 422 * @size: how much zeroed driver-private data to allocate; the pointer to this 423 * memory is in the driver_data field of the returned device, 424 * accessible with spi_master_get_devdata(). 425 * Context: can sleep 426 * 427 * This call is used only by SPI master controller drivers, which are the 428 * only ones directly touching chip registers. It's how they allocate 429 * an spi_master structure, prior to calling spi_register_master(). 430 * 431 * This must be called from context that can sleep. It returns the SPI 432 * master structure on success, else NULL. 433 * 434 * The caller is responsible for assigning the bus number and initializing 435 * the master's methods before calling spi_register_master(); and (after errors 436 * adding the device) calling spi_master_put() to prevent a memory leak. 437 */ 438 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 439 { 440 struct spi_master *master; 441 442 if (!dev) 443 return NULL; 444 445 master = kzalloc(size + sizeof *master, GFP_KERNEL); 446 if (!master) 447 return NULL; 448 449 device_initialize(&master->dev); 450 master->dev.class = &spi_master_class; 451 master->dev.parent = get_device(dev); 452 spi_master_set_devdata(master, &master[1]); 453 454 return master; 455 } 456 EXPORT_SYMBOL_GPL(spi_alloc_master); 457 458 /** 459 * spi_register_master - register SPI master controller 460 * @master: initialized master, originally from spi_alloc_master() 461 * Context: can sleep 462 * 463 * SPI master controllers connect to their drivers using some non-SPI bus, 464 * such as the platform bus. The final stage of probe() in that code 465 * includes calling spi_register_master() to hook up to this SPI bus glue. 466 * 467 * SPI controllers use board specific (often SOC specific) bus numbers, 468 * and board-specific addressing for SPI devices combines those numbers 469 * with chip select numbers. Since SPI does not directly support dynamic 470 * device identification, boards need configuration tables telling which 471 * chip is at which address. 472 * 473 * This must be called from context that can sleep. It returns zero on 474 * success, else a negative error code (dropping the master's refcount). 475 * After a successful return, the caller is responsible for calling 476 * spi_unregister_master(). 477 */ 478 int spi_register_master(struct spi_master *master) 479 { 480 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 481 struct device *dev = master->dev.parent; 482 int status = -ENODEV; 483 int dynamic = 0; 484 485 if (!dev) 486 return -ENODEV; 487 488 /* even if it's just one always-selected device, there must 489 * be at least one chipselect 490 */ 491 if (master->num_chipselect == 0) 492 return -EINVAL; 493 494 /* convention: dynamically assigned bus IDs count down from the max */ 495 if (master->bus_num < 0) { 496 /* FIXME switch to an IDR based scheme, something like 497 * I2C now uses, so we can't run out of "dynamic" IDs 498 */ 499 master->bus_num = atomic_dec_return(&dyn_bus_id); 500 dynamic = 1; 501 } 502 503 /* register the device, then userspace will see it. 504 * registration fails if the bus ID is in use. 505 */ 506 dev_set_name(&master->dev, "spi%u", master->bus_num); 507 status = device_add(&master->dev); 508 if (status < 0) 509 goto done; 510 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 511 dynamic ? " (dynamic)" : ""); 512 513 /* populate children from any spi device tables */ 514 scan_boardinfo(master); 515 status = 0; 516 done: 517 return status; 518 } 519 EXPORT_SYMBOL_GPL(spi_register_master); 520 521 522 static int __unregister(struct device *dev, void *master_dev) 523 { 524 /* note: before about 2.6.14-rc1 this would corrupt memory: */ 525 if (dev != master_dev) 526 spi_unregister_device(to_spi_device(dev)); 527 return 0; 528 } 529 530 /** 531 * spi_unregister_master - unregister SPI master controller 532 * @master: the master being unregistered 533 * Context: can sleep 534 * 535 * This call is used only by SPI master controller drivers, which are the 536 * only ones directly touching chip registers. 537 * 538 * This must be called from context that can sleep. 539 */ 540 void spi_unregister_master(struct spi_master *master) 541 { 542 int dummy; 543 544 dummy = device_for_each_child(master->dev.parent, &master->dev, 545 __unregister); 546 device_unregister(&master->dev); 547 } 548 EXPORT_SYMBOL_GPL(spi_unregister_master); 549 550 static int __spi_master_match(struct device *dev, void *data) 551 { 552 struct spi_master *m; 553 u16 *bus_num = data; 554 555 m = container_of(dev, struct spi_master, dev); 556 return m->bus_num == *bus_num; 557 } 558 559 /** 560 * spi_busnum_to_master - look up master associated with bus_num 561 * @bus_num: the master's bus number 562 * Context: can sleep 563 * 564 * This call may be used with devices that are registered after 565 * arch init time. It returns a refcounted pointer to the relevant 566 * spi_master (which the caller must release), or NULL if there is 567 * no such master registered. 568 */ 569 struct spi_master *spi_busnum_to_master(u16 bus_num) 570 { 571 struct device *dev; 572 struct spi_master *master = NULL; 573 574 dev = class_find_device(&spi_master_class, NULL, &bus_num, 575 __spi_master_match); 576 if (dev) 577 master = container_of(dev, struct spi_master, dev); 578 /* reference got in class_find_device */ 579 return master; 580 } 581 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 582 583 584 /*-------------------------------------------------------------------------*/ 585 586 static void spi_complete(void *arg) 587 { 588 complete(arg); 589 } 590 591 /** 592 * spi_sync - blocking/synchronous SPI data transfers 593 * @spi: device with which data will be exchanged 594 * @message: describes the data transfers 595 * Context: can sleep 596 * 597 * This call may only be used from a context that may sleep. The sleep 598 * is non-interruptible, and has no timeout. Low-overhead controller 599 * drivers may DMA directly into and out of the message buffers. 600 * 601 * Note that the SPI device's chip select is active during the message, 602 * and then is normally disabled between messages. Drivers for some 603 * frequently-used devices may want to minimize costs of selecting a chip, 604 * by leaving it selected in anticipation that the next message will go 605 * to the same chip. (That may increase power usage.) 606 * 607 * Also, the caller is guaranteeing that the memory associated with the 608 * message will not be freed before this call returns. 609 * 610 * It returns zero on success, else a negative error code. 611 */ 612 int spi_sync(struct spi_device *spi, struct spi_message *message) 613 { 614 DECLARE_COMPLETION_ONSTACK(done); 615 int status; 616 617 message->complete = spi_complete; 618 message->context = &done; 619 status = spi_async(spi, message); 620 if (status == 0) { 621 wait_for_completion(&done); 622 status = message->status; 623 } 624 message->context = NULL; 625 return status; 626 } 627 EXPORT_SYMBOL_GPL(spi_sync); 628 629 /* portable code must never pass more than 32 bytes */ 630 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 631 632 static u8 *buf; 633 634 /** 635 * spi_write_then_read - SPI synchronous write followed by read 636 * @spi: device with which data will be exchanged 637 * @txbuf: data to be written (need not be dma-safe) 638 * @n_tx: size of txbuf, in bytes 639 * @rxbuf: buffer into which data will be read 640 * @n_rx: size of rxbuf, in bytes (need not be dma-safe) 641 * Context: can sleep 642 * 643 * This performs a half duplex MicroWire style transaction with the 644 * device, sending txbuf and then reading rxbuf. The return value 645 * is zero for success, else a negative errno status code. 646 * This call may only be used from a context that may sleep. 647 * 648 * Parameters to this routine are always copied using a small buffer; 649 * portable code should never use this for more than 32 bytes. 650 * Performance-sensitive or bulk transfer code should instead use 651 * spi_{async,sync}() calls with dma-safe buffers. 652 */ 653 int spi_write_then_read(struct spi_device *spi, 654 const u8 *txbuf, unsigned n_tx, 655 u8 *rxbuf, unsigned n_rx) 656 { 657 static DEFINE_MUTEX(lock); 658 659 int status; 660 struct spi_message message; 661 struct spi_transfer x[2]; 662 u8 *local_buf; 663 664 /* Use preallocated DMA-safe buffer. We can't avoid copying here, 665 * (as a pure convenience thing), but we can keep heap costs 666 * out of the hot path ... 667 */ 668 if ((n_tx + n_rx) > SPI_BUFSIZ) 669 return -EINVAL; 670 671 spi_message_init(&message); 672 memset(x, 0, sizeof x); 673 if (n_tx) { 674 x[0].len = n_tx; 675 spi_message_add_tail(&x[0], &message); 676 } 677 if (n_rx) { 678 x[1].len = n_rx; 679 spi_message_add_tail(&x[1], &message); 680 } 681 682 /* ... unless someone else is using the pre-allocated buffer */ 683 if (!mutex_trylock(&lock)) { 684 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 685 if (!local_buf) 686 return -ENOMEM; 687 } else 688 local_buf = buf; 689 690 memcpy(local_buf, txbuf, n_tx); 691 x[0].tx_buf = local_buf; 692 x[1].rx_buf = local_buf + n_tx; 693 694 /* do the i/o */ 695 status = spi_sync(spi, &message); 696 if (status == 0) 697 memcpy(rxbuf, x[1].rx_buf, n_rx); 698 699 if (x[0].tx_buf == buf) 700 mutex_unlock(&lock); 701 else 702 kfree(local_buf); 703 704 return status; 705 } 706 EXPORT_SYMBOL_GPL(spi_write_then_read); 707 708 /*-------------------------------------------------------------------------*/ 709 710 static int __init spi_init(void) 711 { 712 int status; 713 714 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 715 if (!buf) { 716 status = -ENOMEM; 717 goto err0; 718 } 719 720 status = bus_register(&spi_bus_type); 721 if (status < 0) 722 goto err1; 723 724 status = class_register(&spi_master_class); 725 if (status < 0) 726 goto err2; 727 return 0; 728 729 err2: 730 bus_unregister(&spi_bus_type); 731 err1: 732 kfree(buf); 733 buf = NULL; 734 err0: 735 return status; 736 } 737 738 /* board_info is normally registered in arch_initcall(), 739 * but even essential drivers wait till later 740 * 741 * REVISIT only boardinfo really needs static linking. the rest (device and 742 * driver registration) _could_ be dynamically linked (modular) ... costs 743 * include needing to have boardinfo data structures be much more public. 744 */ 745 postcore_initcall(spi_init); 746 747