1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_controller *ctlr) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if ((xfer->tx_buf) && 332 (xfer->tx_buf != ctlr->dummy_tx)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if ((xfer->rx_buf) && 335 (xfer->rx_buf != ctlr->dummy_rx)) 336 u64_stats_add(&stats->bytes_rx, xfer->len); 337 338 u64_stats_update_end(&stats->syncp); 339 put_cpu(); 340 } 341 342 /* 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 344 * and the sysfs version makes coldplug work too. 345 */ 346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 347 { 348 while (id->name[0]) { 349 if (!strcmp(name, id->name)) 350 return id; 351 id++; 352 } 353 return NULL; 354 } 355 356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 357 { 358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 359 360 return spi_match_id(sdrv->id_table, sdev->modalias); 361 } 362 EXPORT_SYMBOL_GPL(spi_get_device_id); 363 364 const void *spi_get_device_match_data(const struct spi_device *sdev) 365 { 366 const void *match; 367 368 match = device_get_match_data(&sdev->dev); 369 if (match) 370 return match; 371 372 return (const void *)spi_get_device_id(sdev)->driver_data; 373 } 374 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 375 376 static int spi_match_device(struct device *dev, struct device_driver *drv) 377 { 378 const struct spi_device *spi = to_spi_device(dev); 379 const struct spi_driver *sdrv = to_spi_driver(drv); 380 381 /* Check override first, and if set, only use the named driver */ 382 if (spi->driver_override) 383 return strcmp(spi->driver_override, drv->name) == 0; 384 385 /* Attempt an OF style match */ 386 if (of_driver_match_device(dev, drv)) 387 return 1; 388 389 /* Then try ACPI */ 390 if (acpi_driver_match_device(dev, drv)) 391 return 1; 392 393 if (sdrv->id_table) 394 return !!spi_match_id(sdrv->id_table, spi->modalias); 395 396 return strcmp(spi->modalias, drv->name) == 0; 397 } 398 399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 400 { 401 const struct spi_device *spi = to_spi_device(dev); 402 int rc; 403 404 rc = acpi_device_uevent_modalias(dev, env); 405 if (rc != -ENODEV) 406 return rc; 407 408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 409 } 410 411 static int spi_probe(struct device *dev) 412 { 413 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 414 struct spi_device *spi = to_spi_device(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (dev->of_node) { 422 spi->irq = of_irq_get(dev->of_node, 0); 423 if (spi->irq == -EPROBE_DEFER) 424 return -EPROBE_DEFER; 425 if (spi->irq < 0) 426 spi->irq = 0; 427 } 428 429 ret = dev_pm_domain_attach(dev, true); 430 if (ret) 431 return ret; 432 433 if (sdrv->probe) { 434 ret = sdrv->probe(spi); 435 if (ret) 436 dev_pm_domain_detach(dev, true); 437 } 438 439 return ret; 440 } 441 442 static void spi_remove(struct device *dev) 443 { 444 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 445 446 if (sdrv->remove) 447 sdrv->remove(to_spi_device(dev)); 448 449 dev_pm_domain_detach(dev, true); 450 } 451 452 static void spi_shutdown(struct device *dev) 453 { 454 if (dev->driver) { 455 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 456 457 if (sdrv->shutdown) 458 sdrv->shutdown(to_spi_device(dev)); 459 } 460 } 461 462 struct bus_type spi_bus_type = { 463 .name = "spi", 464 .dev_groups = spi_dev_groups, 465 .match = spi_match_device, 466 .uevent = spi_uevent, 467 .probe = spi_probe, 468 .remove = spi_remove, 469 .shutdown = spi_shutdown, 470 }; 471 EXPORT_SYMBOL_GPL(spi_bus_type); 472 473 /** 474 * __spi_register_driver - register a SPI driver 475 * @owner: owner module of the driver to register 476 * @sdrv: the driver to register 477 * Context: can sleep 478 * 479 * Return: zero on success, else a negative error code. 480 */ 481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 482 { 483 sdrv->driver.owner = owner; 484 sdrv->driver.bus = &spi_bus_type; 485 486 /* 487 * For Really Good Reasons we use spi: modaliases not of: 488 * modaliases for DT so module autoloading won't work if we 489 * don't have a spi_device_id as well as a compatible string. 490 */ 491 if (sdrv->driver.of_match_table) { 492 const struct of_device_id *of_id; 493 494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 495 of_id++) { 496 const char *of_name; 497 498 /* Strip off any vendor prefix */ 499 of_name = strnchr(of_id->compatible, 500 sizeof(of_id->compatible), ','); 501 if (of_name) 502 of_name++; 503 else 504 of_name = of_id->compatible; 505 506 if (sdrv->id_table) { 507 const struct spi_device_id *spi_id; 508 509 spi_id = spi_match_id(sdrv->id_table, of_name); 510 if (spi_id) 511 continue; 512 } else { 513 if (strcmp(sdrv->driver.name, of_name) == 0) 514 continue; 515 } 516 517 pr_warn("SPI driver %s has no spi_device_id for %s\n", 518 sdrv->driver.name, of_id->compatible); 519 } 520 } 521 522 return driver_register(&sdrv->driver); 523 } 524 EXPORT_SYMBOL_GPL(__spi_register_driver); 525 526 /*-------------------------------------------------------------------------*/ 527 528 /* 529 * SPI devices should normally not be created by SPI device drivers; that 530 * would make them board-specific. Similarly with SPI controller drivers. 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c 532 * with other readonly (flashable) information about mainboard devices. 533 */ 534 535 struct boardinfo { 536 struct list_head list; 537 struct spi_board_info board_info; 538 }; 539 540 static LIST_HEAD(board_list); 541 static LIST_HEAD(spi_controller_list); 542 543 /* 544 * Used to protect add/del operation for board_info list and 545 * spi_controller list, and their matching process also used 546 * to protect object of type struct idr. 547 */ 548 static DEFINE_MUTEX(board_lock); 549 550 /** 551 * spi_alloc_device - Allocate a new SPI device 552 * @ctlr: Controller to which device is connected 553 * Context: can sleep 554 * 555 * Allows a driver to allocate and initialize a spi_device without 556 * registering it immediately. This allows a driver to directly 557 * fill the spi_device with device parameters before calling 558 * spi_add_device() on it. 559 * 560 * Caller is responsible to call spi_add_device() on the returned 561 * spi_device structure to add it to the SPI controller. If the caller 562 * needs to discard the spi_device without adding it, then it should 563 * call spi_dev_put() on it. 564 * 565 * Return: a pointer to the new device, or NULL. 566 */ 567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 568 { 569 struct spi_device *spi; 570 571 if (!spi_controller_get(ctlr)) 572 return NULL; 573 574 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 575 if (!spi) { 576 spi_controller_put(ctlr); 577 return NULL; 578 } 579 580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 581 if (!spi->pcpu_statistics) { 582 kfree(spi); 583 spi_controller_put(ctlr); 584 return NULL; 585 } 586 587 spi->master = spi->controller = ctlr; 588 spi->dev.parent = &ctlr->dev; 589 spi->dev.bus = &spi_bus_type; 590 spi->dev.release = spidev_release; 591 spi->mode = ctlr->buswidth_override_bits; 592 593 device_initialize(&spi->dev); 594 return spi; 595 } 596 EXPORT_SYMBOL_GPL(spi_alloc_device); 597 598 static void spi_dev_set_name(struct spi_device *spi) 599 { 600 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 601 602 if (adev) { 603 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 604 return; 605 } 606 607 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 608 spi_get_chipselect(spi, 0)); 609 } 610 611 static int spi_dev_check(struct device *dev, void *data) 612 { 613 struct spi_device *spi = to_spi_device(dev); 614 struct spi_device *new_spi = data; 615 616 if (spi->controller == new_spi->controller && 617 spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0)) 618 return -EBUSY; 619 return 0; 620 } 621 622 static void spi_cleanup(struct spi_device *spi) 623 { 624 if (spi->controller->cleanup) 625 spi->controller->cleanup(spi); 626 } 627 628 static int __spi_add_device(struct spi_device *spi) 629 { 630 struct spi_controller *ctlr = spi->controller; 631 struct device *dev = ctlr->dev.parent; 632 int status; 633 634 /* Chipselects are numbered 0..max; validate. */ 635 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) { 636 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0), 637 ctlr->num_chipselect); 638 return -EINVAL; 639 } 640 641 /* Set the bus ID string */ 642 spi_dev_set_name(spi); 643 644 /* 645 * We need to make sure there's no other device with this 646 * chipselect **BEFORE** we call setup(), else we'll trash 647 * its configuration. 648 */ 649 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 650 if (status) { 651 dev_err(dev, "chipselect %d already in use\n", 652 spi_get_chipselect(spi, 0)); 653 return status; 654 } 655 656 /* Controller may unregister concurrently */ 657 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 658 !device_is_registered(&ctlr->dev)) { 659 return -ENODEV; 660 } 661 662 if (ctlr->cs_gpiods) 663 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]); 664 665 /* 666 * Drivers may modify this initial i/o setup, but will 667 * normally rely on the device being setup. Devices 668 * using SPI_CS_HIGH can't coexist well otherwise... 669 */ 670 status = spi_setup(spi); 671 if (status < 0) { 672 dev_err(dev, "can't setup %s, status %d\n", 673 dev_name(&spi->dev), status); 674 return status; 675 } 676 677 /* Device may be bound to an active driver when this returns */ 678 status = device_add(&spi->dev); 679 if (status < 0) { 680 dev_err(dev, "can't add %s, status %d\n", 681 dev_name(&spi->dev), status); 682 spi_cleanup(spi); 683 } else { 684 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 685 } 686 687 return status; 688 } 689 690 /** 691 * spi_add_device - Add spi_device allocated with spi_alloc_device 692 * @spi: spi_device to register 693 * 694 * Companion function to spi_alloc_device. Devices allocated with 695 * spi_alloc_device can be added onto the SPI bus with this function. 696 * 697 * Return: 0 on success; negative errno on failure 698 */ 699 int spi_add_device(struct spi_device *spi) 700 { 701 struct spi_controller *ctlr = spi->controller; 702 int status; 703 704 mutex_lock(&ctlr->add_lock); 705 status = __spi_add_device(spi); 706 mutex_unlock(&ctlr->add_lock); 707 return status; 708 } 709 EXPORT_SYMBOL_GPL(spi_add_device); 710 711 /** 712 * spi_new_device - instantiate one new SPI device 713 * @ctlr: Controller to which device is connected 714 * @chip: Describes the SPI device 715 * Context: can sleep 716 * 717 * On typical mainboards, this is purely internal; and it's not needed 718 * after board init creates the hard-wired devices. Some development 719 * platforms may not be able to use spi_register_board_info though, and 720 * this is exported so that for example a USB or parport based adapter 721 * driver could add devices (which it would learn about out-of-band). 722 * 723 * Return: the new device, or NULL. 724 */ 725 struct spi_device *spi_new_device(struct spi_controller *ctlr, 726 struct spi_board_info *chip) 727 { 728 struct spi_device *proxy; 729 int status; 730 731 /* 732 * NOTE: caller did any chip->bus_num checks necessary. 733 * 734 * Also, unless we change the return value convention to use 735 * error-or-pointer (not NULL-or-pointer), troubleshootability 736 * suggests syslogged diagnostics are best here (ugh). 737 */ 738 739 proxy = spi_alloc_device(ctlr); 740 if (!proxy) 741 return NULL; 742 743 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 744 745 spi_set_chipselect(proxy, 0, chip->chip_select); 746 proxy->max_speed_hz = chip->max_speed_hz; 747 proxy->mode = chip->mode; 748 proxy->irq = chip->irq; 749 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 750 proxy->dev.platform_data = (void *) chip->platform_data; 751 proxy->controller_data = chip->controller_data; 752 proxy->controller_state = NULL; 753 754 if (chip->swnode) { 755 status = device_add_software_node(&proxy->dev, chip->swnode); 756 if (status) { 757 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 758 chip->modalias, status); 759 goto err_dev_put; 760 } 761 } 762 763 status = spi_add_device(proxy); 764 if (status < 0) 765 goto err_dev_put; 766 767 return proxy; 768 769 err_dev_put: 770 device_remove_software_node(&proxy->dev); 771 spi_dev_put(proxy); 772 return NULL; 773 } 774 EXPORT_SYMBOL_GPL(spi_new_device); 775 776 /** 777 * spi_unregister_device - unregister a single SPI device 778 * @spi: spi_device to unregister 779 * 780 * Start making the passed SPI device vanish. Normally this would be handled 781 * by spi_unregister_controller(). 782 */ 783 void spi_unregister_device(struct spi_device *spi) 784 { 785 if (!spi) 786 return; 787 788 if (spi->dev.of_node) { 789 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 790 of_node_put(spi->dev.of_node); 791 } 792 if (ACPI_COMPANION(&spi->dev)) 793 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 794 device_remove_software_node(&spi->dev); 795 device_del(&spi->dev); 796 spi_cleanup(spi); 797 put_device(&spi->dev); 798 } 799 EXPORT_SYMBOL_GPL(spi_unregister_device); 800 801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 802 struct spi_board_info *bi) 803 { 804 struct spi_device *dev; 805 806 if (ctlr->bus_num != bi->bus_num) 807 return; 808 809 dev = spi_new_device(ctlr, bi); 810 if (!dev) 811 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 812 bi->modalias); 813 } 814 815 /** 816 * spi_register_board_info - register SPI devices for a given board 817 * @info: array of chip descriptors 818 * @n: how many descriptors are provided 819 * Context: can sleep 820 * 821 * Board-specific early init code calls this (probably during arch_initcall) 822 * with segments of the SPI device table. Any device nodes are created later, 823 * after the relevant parent SPI controller (bus_num) is defined. We keep 824 * this table of devices forever, so that reloading a controller driver will 825 * not make Linux forget about these hard-wired devices. 826 * 827 * Other code can also call this, e.g. a particular add-on board might provide 828 * SPI devices through its expansion connector, so code initializing that board 829 * would naturally declare its SPI devices. 830 * 831 * The board info passed can safely be __initdata ... but be careful of 832 * any embedded pointers (platform_data, etc), they're copied as-is. 833 * 834 * Return: zero on success, else a negative error code. 835 */ 836 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 837 { 838 struct boardinfo *bi; 839 int i; 840 841 if (!n) 842 return 0; 843 844 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 845 if (!bi) 846 return -ENOMEM; 847 848 for (i = 0; i < n; i++, bi++, info++) { 849 struct spi_controller *ctlr; 850 851 memcpy(&bi->board_info, info, sizeof(*info)); 852 853 mutex_lock(&board_lock); 854 list_add_tail(&bi->list, &board_list); 855 list_for_each_entry(ctlr, &spi_controller_list, list) 856 spi_match_controller_to_boardinfo(ctlr, 857 &bi->board_info); 858 mutex_unlock(&board_lock); 859 } 860 861 return 0; 862 } 863 864 /*-------------------------------------------------------------------------*/ 865 866 /* Core methods for SPI resource management */ 867 868 /** 869 * spi_res_alloc - allocate a spi resource that is life-cycle managed 870 * during the processing of a spi_message while using 871 * spi_transfer_one 872 * @spi: the SPI device for which we allocate memory 873 * @release: the release code to execute for this resource 874 * @size: size to alloc and return 875 * @gfp: GFP allocation flags 876 * 877 * Return: the pointer to the allocated data 878 * 879 * This may get enhanced in the future to allocate from a memory pool 880 * of the @spi_device or @spi_controller to avoid repeated allocations. 881 */ 882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 883 size_t size, gfp_t gfp) 884 { 885 struct spi_res *sres; 886 887 sres = kzalloc(sizeof(*sres) + size, gfp); 888 if (!sres) 889 return NULL; 890 891 INIT_LIST_HEAD(&sres->entry); 892 sres->release = release; 893 894 return sres->data; 895 } 896 897 /** 898 * spi_res_free - free an SPI resource 899 * @res: pointer to the custom data of a resource 900 */ 901 static void spi_res_free(void *res) 902 { 903 struct spi_res *sres = container_of(res, struct spi_res, data); 904 905 if (!res) 906 return; 907 908 WARN_ON(!list_empty(&sres->entry)); 909 kfree(sres); 910 } 911 912 /** 913 * spi_res_add - add a spi_res to the spi_message 914 * @message: the SPI message 915 * @res: the spi_resource 916 */ 917 static void spi_res_add(struct spi_message *message, void *res) 918 { 919 struct spi_res *sres = container_of(res, struct spi_res, data); 920 921 WARN_ON(!list_empty(&sres->entry)); 922 list_add_tail(&sres->entry, &message->resources); 923 } 924 925 /** 926 * spi_res_release - release all SPI resources for this message 927 * @ctlr: the @spi_controller 928 * @message: the @spi_message 929 */ 930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 931 { 932 struct spi_res *res, *tmp; 933 934 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 935 if (res->release) 936 res->release(ctlr, message, res->data); 937 938 list_del(&res->entry); 939 940 kfree(res); 941 } 942 } 943 944 /*-------------------------------------------------------------------------*/ 945 946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 947 { 948 bool activate = enable; 949 950 /* 951 * Avoid calling into the driver (or doing delays) if the chip select 952 * isn't actually changing from the last time this was called. 953 */ 954 if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) || 955 (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) && 956 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 957 return; 958 959 trace_spi_set_cs(spi, activate); 960 961 spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1; 962 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 963 964 if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate) 965 spi_delay_exec(&spi->cs_hold, NULL); 966 967 if (spi->mode & SPI_CS_HIGH) 968 enable = !enable; 969 970 if (spi_get_csgpiod(spi, 0)) { 971 if (!(spi->mode & SPI_NO_CS)) { 972 /* 973 * Historically ACPI has no means of the GPIO polarity and 974 * thus the SPISerialBus() resource defines it on the per-chip 975 * basis. In order to avoid a chain of negations, the GPIO 976 * polarity is considered being Active High. Even for the cases 977 * when _DSD() is involved (in the updated versions of ACPI) 978 * the GPIO CS polarity must be defined Active High to avoid 979 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 980 * into account. 981 */ 982 if (has_acpi_companion(&spi->dev)) 983 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable); 984 else 985 /* Polarity handled by GPIO library */ 986 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate); 987 } 988 /* Some SPI masters need both GPIO CS & slave_select */ 989 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 990 spi->controller->set_cs) 991 spi->controller->set_cs(spi, !enable); 992 } else if (spi->controller->set_cs) { 993 spi->controller->set_cs(spi, !enable); 994 } 995 996 if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) { 997 if (activate) 998 spi_delay_exec(&spi->cs_setup, NULL); 999 else 1000 spi_delay_exec(&spi->cs_inactive, NULL); 1001 } 1002 } 1003 1004 #ifdef CONFIG_HAS_DMA 1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1006 struct sg_table *sgt, void *buf, size_t len, 1007 enum dma_data_direction dir, unsigned long attrs) 1008 { 1009 const bool vmalloced_buf = is_vmalloc_addr(buf); 1010 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1011 #ifdef CONFIG_HIGHMEM 1012 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1013 (unsigned long)buf < (PKMAP_BASE + 1014 (LAST_PKMAP * PAGE_SIZE))); 1015 #else 1016 const bool kmap_buf = false; 1017 #endif 1018 int desc_len; 1019 int sgs; 1020 struct page *vm_page; 1021 struct scatterlist *sg; 1022 void *sg_buf; 1023 size_t min; 1024 int i, ret; 1025 1026 if (vmalloced_buf || kmap_buf) { 1027 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1028 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1029 } else if (virt_addr_valid(buf)) { 1030 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1031 sgs = DIV_ROUND_UP(len, desc_len); 1032 } else { 1033 return -EINVAL; 1034 } 1035 1036 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1037 if (ret != 0) 1038 return ret; 1039 1040 sg = &sgt->sgl[0]; 1041 for (i = 0; i < sgs; i++) { 1042 1043 if (vmalloced_buf || kmap_buf) { 1044 /* 1045 * Next scatterlist entry size is the minimum between 1046 * the desc_len and the remaining buffer length that 1047 * fits in a page. 1048 */ 1049 min = min_t(size_t, desc_len, 1050 min_t(size_t, len, 1051 PAGE_SIZE - offset_in_page(buf))); 1052 if (vmalloced_buf) 1053 vm_page = vmalloc_to_page(buf); 1054 else 1055 vm_page = kmap_to_page(buf); 1056 if (!vm_page) { 1057 sg_free_table(sgt); 1058 return -ENOMEM; 1059 } 1060 sg_set_page(sg, vm_page, 1061 min, offset_in_page(buf)); 1062 } else { 1063 min = min_t(size_t, len, desc_len); 1064 sg_buf = buf; 1065 sg_set_buf(sg, sg_buf, min); 1066 } 1067 1068 buf += min; 1069 len -= min; 1070 sg = sg_next(sg); 1071 } 1072 1073 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1074 if (ret < 0) { 1075 sg_free_table(sgt); 1076 return ret; 1077 } 1078 1079 return 0; 1080 } 1081 1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1083 struct sg_table *sgt, void *buf, size_t len, 1084 enum dma_data_direction dir) 1085 { 1086 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1087 } 1088 1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1090 struct device *dev, struct sg_table *sgt, 1091 enum dma_data_direction dir, 1092 unsigned long attrs) 1093 { 1094 if (sgt->orig_nents) { 1095 dma_unmap_sgtable(dev, sgt, dir, attrs); 1096 sg_free_table(sgt); 1097 sgt->orig_nents = 0; 1098 sgt->nents = 0; 1099 } 1100 } 1101 1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1103 struct sg_table *sgt, enum dma_data_direction dir) 1104 { 1105 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1106 } 1107 1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1109 { 1110 struct device *tx_dev, *rx_dev; 1111 struct spi_transfer *xfer; 1112 int ret; 1113 1114 if (!ctlr->can_dma) 1115 return 0; 1116 1117 if (ctlr->dma_tx) 1118 tx_dev = ctlr->dma_tx->device->dev; 1119 else if (ctlr->dma_map_dev) 1120 tx_dev = ctlr->dma_map_dev; 1121 else 1122 tx_dev = ctlr->dev.parent; 1123 1124 if (ctlr->dma_rx) 1125 rx_dev = ctlr->dma_rx->device->dev; 1126 else if (ctlr->dma_map_dev) 1127 rx_dev = ctlr->dma_map_dev; 1128 else 1129 rx_dev = ctlr->dev.parent; 1130 1131 ret = -ENOMSG; 1132 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1133 /* The sync is done before each transfer. */ 1134 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1135 1136 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1137 continue; 1138 1139 if (xfer->tx_buf != NULL) { 1140 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1141 (void *)xfer->tx_buf, 1142 xfer->len, DMA_TO_DEVICE, 1143 attrs); 1144 if (ret != 0) 1145 return ret; 1146 } 1147 1148 if (xfer->rx_buf != NULL) { 1149 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1150 xfer->rx_buf, xfer->len, 1151 DMA_FROM_DEVICE, attrs); 1152 if (ret != 0) { 1153 spi_unmap_buf_attrs(ctlr, tx_dev, 1154 &xfer->tx_sg, DMA_TO_DEVICE, 1155 attrs); 1156 1157 return ret; 1158 } 1159 } 1160 } 1161 /* No transfer has been mapped, bail out with success */ 1162 if (ret) 1163 return 0; 1164 1165 ctlr->cur_rx_dma_dev = rx_dev; 1166 ctlr->cur_tx_dma_dev = tx_dev; 1167 ctlr->cur_msg_mapped = true; 1168 1169 return 0; 1170 } 1171 1172 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1173 { 1174 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1175 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1176 struct spi_transfer *xfer; 1177 1178 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1179 return 0; 1180 1181 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1182 /* The sync has already been done after each transfer. */ 1183 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1184 1185 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1186 continue; 1187 1188 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1189 DMA_FROM_DEVICE, attrs); 1190 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1191 DMA_TO_DEVICE, attrs); 1192 } 1193 1194 ctlr->cur_msg_mapped = false; 1195 1196 return 0; 1197 } 1198 1199 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1200 struct spi_transfer *xfer) 1201 { 1202 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1203 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1204 1205 if (!ctlr->cur_msg_mapped) 1206 return; 1207 1208 if (xfer->tx_sg.orig_nents) 1209 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1210 if (xfer->rx_sg.orig_nents) 1211 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1212 } 1213 1214 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1215 struct spi_transfer *xfer) 1216 { 1217 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1218 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1219 1220 if (!ctlr->cur_msg_mapped) 1221 return; 1222 1223 if (xfer->rx_sg.orig_nents) 1224 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1225 if (xfer->tx_sg.orig_nents) 1226 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1227 } 1228 #else /* !CONFIG_HAS_DMA */ 1229 static inline int __spi_map_msg(struct spi_controller *ctlr, 1230 struct spi_message *msg) 1231 { 1232 return 0; 1233 } 1234 1235 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1236 struct spi_message *msg) 1237 { 1238 return 0; 1239 } 1240 1241 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1242 struct spi_transfer *xfer) 1243 { 1244 } 1245 1246 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1247 struct spi_transfer *xfer) 1248 { 1249 } 1250 #endif /* !CONFIG_HAS_DMA */ 1251 1252 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1253 struct spi_message *msg) 1254 { 1255 struct spi_transfer *xfer; 1256 1257 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1258 /* 1259 * Restore the original value of tx_buf or rx_buf if they are 1260 * NULL. 1261 */ 1262 if (xfer->tx_buf == ctlr->dummy_tx) 1263 xfer->tx_buf = NULL; 1264 if (xfer->rx_buf == ctlr->dummy_rx) 1265 xfer->rx_buf = NULL; 1266 } 1267 1268 return __spi_unmap_msg(ctlr, msg); 1269 } 1270 1271 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1272 { 1273 struct spi_transfer *xfer; 1274 void *tmp; 1275 unsigned int max_tx, max_rx; 1276 1277 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1278 && !(msg->spi->mode & SPI_3WIRE)) { 1279 max_tx = 0; 1280 max_rx = 0; 1281 1282 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1283 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1284 !xfer->tx_buf) 1285 max_tx = max(xfer->len, max_tx); 1286 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1287 !xfer->rx_buf) 1288 max_rx = max(xfer->len, max_rx); 1289 } 1290 1291 if (max_tx) { 1292 tmp = krealloc(ctlr->dummy_tx, max_tx, 1293 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1294 if (!tmp) 1295 return -ENOMEM; 1296 ctlr->dummy_tx = tmp; 1297 } 1298 1299 if (max_rx) { 1300 tmp = krealloc(ctlr->dummy_rx, max_rx, 1301 GFP_KERNEL | GFP_DMA); 1302 if (!tmp) 1303 return -ENOMEM; 1304 ctlr->dummy_rx = tmp; 1305 } 1306 1307 if (max_tx || max_rx) { 1308 list_for_each_entry(xfer, &msg->transfers, 1309 transfer_list) { 1310 if (!xfer->len) 1311 continue; 1312 if (!xfer->tx_buf) 1313 xfer->tx_buf = ctlr->dummy_tx; 1314 if (!xfer->rx_buf) 1315 xfer->rx_buf = ctlr->dummy_rx; 1316 } 1317 } 1318 } 1319 1320 return __spi_map_msg(ctlr, msg); 1321 } 1322 1323 static int spi_transfer_wait(struct spi_controller *ctlr, 1324 struct spi_message *msg, 1325 struct spi_transfer *xfer) 1326 { 1327 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1328 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1329 u32 speed_hz = xfer->speed_hz; 1330 unsigned long long ms; 1331 1332 if (spi_controller_is_slave(ctlr)) { 1333 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1334 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1335 return -EINTR; 1336 } 1337 } else { 1338 if (!speed_hz) 1339 speed_hz = 100000; 1340 1341 /* 1342 * For each byte we wait for 8 cycles of the SPI clock. 1343 * Since speed is defined in Hz and we want milliseconds, 1344 * use respective multiplier, but before the division, 1345 * otherwise we may get 0 for short transfers. 1346 */ 1347 ms = 8LL * MSEC_PER_SEC * xfer->len; 1348 do_div(ms, speed_hz); 1349 1350 /* 1351 * Increase it twice and add 200 ms tolerance, use 1352 * predefined maximum in case of overflow. 1353 */ 1354 ms += ms + 200; 1355 if (ms > UINT_MAX) 1356 ms = UINT_MAX; 1357 1358 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1359 msecs_to_jiffies(ms)); 1360 1361 if (ms == 0) { 1362 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1363 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1364 dev_err(&msg->spi->dev, 1365 "SPI transfer timed out\n"); 1366 return -ETIMEDOUT; 1367 } 1368 } 1369 1370 return 0; 1371 } 1372 1373 static void _spi_transfer_delay_ns(u32 ns) 1374 { 1375 if (!ns) 1376 return; 1377 if (ns <= NSEC_PER_USEC) { 1378 ndelay(ns); 1379 } else { 1380 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1381 1382 if (us <= 10) 1383 udelay(us); 1384 else 1385 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1386 } 1387 } 1388 1389 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1390 { 1391 u32 delay = _delay->value; 1392 u32 unit = _delay->unit; 1393 u32 hz; 1394 1395 if (!delay) 1396 return 0; 1397 1398 switch (unit) { 1399 case SPI_DELAY_UNIT_USECS: 1400 delay *= NSEC_PER_USEC; 1401 break; 1402 case SPI_DELAY_UNIT_NSECS: 1403 /* Nothing to do here */ 1404 break; 1405 case SPI_DELAY_UNIT_SCK: 1406 /* Clock cycles need to be obtained from spi_transfer */ 1407 if (!xfer) 1408 return -EINVAL; 1409 /* 1410 * If there is unknown effective speed, approximate it 1411 * by underestimating with half of the requested Hz. 1412 */ 1413 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1414 if (!hz) 1415 return -EINVAL; 1416 1417 /* Convert delay to nanoseconds */ 1418 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1419 break; 1420 default: 1421 return -EINVAL; 1422 } 1423 1424 return delay; 1425 } 1426 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1427 1428 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1429 { 1430 int delay; 1431 1432 might_sleep(); 1433 1434 if (!_delay) 1435 return -EINVAL; 1436 1437 delay = spi_delay_to_ns(_delay, xfer); 1438 if (delay < 0) 1439 return delay; 1440 1441 _spi_transfer_delay_ns(delay); 1442 1443 return 0; 1444 } 1445 EXPORT_SYMBOL_GPL(spi_delay_exec); 1446 1447 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1448 struct spi_transfer *xfer) 1449 { 1450 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1451 u32 delay = xfer->cs_change_delay.value; 1452 u32 unit = xfer->cs_change_delay.unit; 1453 int ret; 1454 1455 /* Return early on "fast" mode - for everything but USECS */ 1456 if (!delay) { 1457 if (unit == SPI_DELAY_UNIT_USECS) 1458 _spi_transfer_delay_ns(default_delay_ns); 1459 return; 1460 } 1461 1462 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1463 if (ret) { 1464 dev_err_once(&msg->spi->dev, 1465 "Use of unsupported delay unit %i, using default of %luus\n", 1466 unit, default_delay_ns / NSEC_PER_USEC); 1467 _spi_transfer_delay_ns(default_delay_ns); 1468 } 1469 } 1470 1471 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1472 struct spi_transfer *xfer) 1473 { 1474 _spi_transfer_cs_change_delay(msg, xfer); 1475 } 1476 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1477 1478 /* 1479 * spi_transfer_one_message - Default implementation of transfer_one_message() 1480 * 1481 * This is a standard implementation of transfer_one_message() for 1482 * drivers which implement a transfer_one() operation. It provides 1483 * standard handling of delays and chip select management. 1484 */ 1485 static int spi_transfer_one_message(struct spi_controller *ctlr, 1486 struct spi_message *msg) 1487 { 1488 struct spi_transfer *xfer; 1489 bool keep_cs = false; 1490 int ret = 0; 1491 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1492 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1493 1494 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1495 spi_set_cs(msg->spi, !xfer->cs_off, false); 1496 1497 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1498 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1499 1500 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1501 trace_spi_transfer_start(msg, xfer); 1502 1503 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1504 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1505 1506 if (!ctlr->ptp_sts_supported) { 1507 xfer->ptp_sts_word_pre = 0; 1508 ptp_read_system_prets(xfer->ptp_sts); 1509 } 1510 1511 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1512 reinit_completion(&ctlr->xfer_completion); 1513 1514 fallback_pio: 1515 spi_dma_sync_for_device(ctlr, xfer); 1516 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1517 if (ret < 0) { 1518 spi_dma_sync_for_cpu(ctlr, xfer); 1519 1520 if (ctlr->cur_msg_mapped && 1521 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1522 __spi_unmap_msg(ctlr, msg); 1523 ctlr->fallback = true; 1524 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1525 goto fallback_pio; 1526 } 1527 1528 SPI_STATISTICS_INCREMENT_FIELD(statm, 1529 errors); 1530 SPI_STATISTICS_INCREMENT_FIELD(stats, 1531 errors); 1532 dev_err(&msg->spi->dev, 1533 "SPI transfer failed: %d\n", ret); 1534 goto out; 1535 } 1536 1537 if (ret > 0) { 1538 ret = spi_transfer_wait(ctlr, msg, xfer); 1539 if (ret < 0) 1540 msg->status = ret; 1541 } 1542 1543 spi_dma_sync_for_cpu(ctlr, xfer); 1544 } else { 1545 if (xfer->len) 1546 dev_err(&msg->spi->dev, 1547 "Bufferless transfer has length %u\n", 1548 xfer->len); 1549 } 1550 1551 if (!ctlr->ptp_sts_supported) { 1552 ptp_read_system_postts(xfer->ptp_sts); 1553 xfer->ptp_sts_word_post = xfer->len; 1554 } 1555 1556 trace_spi_transfer_stop(msg, xfer); 1557 1558 if (msg->status != -EINPROGRESS) 1559 goto out; 1560 1561 spi_transfer_delay_exec(xfer); 1562 1563 if (xfer->cs_change) { 1564 if (list_is_last(&xfer->transfer_list, 1565 &msg->transfers)) { 1566 keep_cs = true; 1567 } else { 1568 if (!xfer->cs_off) 1569 spi_set_cs(msg->spi, false, false); 1570 _spi_transfer_cs_change_delay(msg, xfer); 1571 if (!list_next_entry(xfer, transfer_list)->cs_off) 1572 spi_set_cs(msg->spi, true, false); 1573 } 1574 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1575 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1576 spi_set_cs(msg->spi, xfer->cs_off, false); 1577 } 1578 1579 msg->actual_length += xfer->len; 1580 } 1581 1582 out: 1583 if (ret != 0 || !keep_cs) 1584 spi_set_cs(msg->spi, false, false); 1585 1586 if (msg->status == -EINPROGRESS) 1587 msg->status = ret; 1588 1589 if (msg->status && ctlr->handle_err) 1590 ctlr->handle_err(ctlr, msg); 1591 1592 spi_finalize_current_message(ctlr); 1593 1594 return ret; 1595 } 1596 1597 /** 1598 * spi_finalize_current_transfer - report completion of a transfer 1599 * @ctlr: the controller reporting completion 1600 * 1601 * Called by SPI drivers using the core transfer_one_message() 1602 * implementation to notify it that the current interrupt driven 1603 * transfer has finished and the next one may be scheduled. 1604 */ 1605 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1606 { 1607 complete(&ctlr->xfer_completion); 1608 } 1609 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1610 1611 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1612 { 1613 if (ctlr->auto_runtime_pm) { 1614 pm_runtime_mark_last_busy(ctlr->dev.parent); 1615 pm_runtime_put_autosuspend(ctlr->dev.parent); 1616 } 1617 } 1618 1619 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1620 struct spi_message *msg, bool was_busy) 1621 { 1622 struct spi_transfer *xfer; 1623 int ret; 1624 1625 if (!was_busy && ctlr->auto_runtime_pm) { 1626 ret = pm_runtime_get_sync(ctlr->dev.parent); 1627 if (ret < 0) { 1628 pm_runtime_put_noidle(ctlr->dev.parent); 1629 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1630 ret); 1631 1632 msg->status = ret; 1633 spi_finalize_current_message(ctlr); 1634 1635 return ret; 1636 } 1637 } 1638 1639 if (!was_busy) 1640 trace_spi_controller_busy(ctlr); 1641 1642 if (!was_busy && ctlr->prepare_transfer_hardware) { 1643 ret = ctlr->prepare_transfer_hardware(ctlr); 1644 if (ret) { 1645 dev_err(&ctlr->dev, 1646 "failed to prepare transfer hardware: %d\n", 1647 ret); 1648 1649 if (ctlr->auto_runtime_pm) 1650 pm_runtime_put(ctlr->dev.parent); 1651 1652 msg->status = ret; 1653 spi_finalize_current_message(ctlr); 1654 1655 return ret; 1656 } 1657 } 1658 1659 trace_spi_message_start(msg); 1660 1661 ret = spi_split_transfers_maxsize(ctlr, msg, 1662 spi_max_transfer_size(msg->spi), 1663 GFP_KERNEL | GFP_DMA); 1664 if (ret) { 1665 msg->status = ret; 1666 spi_finalize_current_message(ctlr); 1667 return ret; 1668 } 1669 1670 if (ctlr->prepare_message) { 1671 ret = ctlr->prepare_message(ctlr, msg); 1672 if (ret) { 1673 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1674 ret); 1675 msg->status = ret; 1676 spi_finalize_current_message(ctlr); 1677 return ret; 1678 } 1679 msg->prepared = true; 1680 } 1681 1682 ret = spi_map_msg(ctlr, msg); 1683 if (ret) { 1684 msg->status = ret; 1685 spi_finalize_current_message(ctlr); 1686 return ret; 1687 } 1688 1689 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1690 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1691 xfer->ptp_sts_word_pre = 0; 1692 ptp_read_system_prets(xfer->ptp_sts); 1693 } 1694 } 1695 1696 /* 1697 * Drivers implementation of transfer_one_message() must arrange for 1698 * spi_finalize_current_message() to get called. Most drivers will do 1699 * this in the calling context, but some don't. For those cases, a 1700 * completion is used to guarantee that this function does not return 1701 * until spi_finalize_current_message() is done accessing 1702 * ctlr->cur_msg. 1703 * Use of the following two flags enable to opportunistically skip the 1704 * use of the completion since its use involves expensive spin locks. 1705 * In case of a race with the context that calls 1706 * spi_finalize_current_message() the completion will always be used, 1707 * due to strict ordering of these flags using barriers. 1708 */ 1709 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1710 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1711 reinit_completion(&ctlr->cur_msg_completion); 1712 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1713 1714 ret = ctlr->transfer_one_message(ctlr, msg); 1715 if (ret) { 1716 dev_err(&ctlr->dev, 1717 "failed to transfer one message from queue\n"); 1718 return ret; 1719 } 1720 1721 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1722 smp_mb(); /* See spi_finalize_current_message()... */ 1723 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1724 wait_for_completion(&ctlr->cur_msg_completion); 1725 1726 return 0; 1727 } 1728 1729 /** 1730 * __spi_pump_messages - function which processes SPI message queue 1731 * @ctlr: controller to process queue for 1732 * @in_kthread: true if we are in the context of the message pump thread 1733 * 1734 * This function checks if there is any SPI message in the queue that 1735 * needs processing and if so call out to the driver to initialize hardware 1736 * and transfer each message. 1737 * 1738 * Note that it is called both from the kthread itself and also from 1739 * inside spi_sync(); the queue extraction handling at the top of the 1740 * function should deal with this safely. 1741 */ 1742 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1743 { 1744 struct spi_message *msg; 1745 bool was_busy = false; 1746 unsigned long flags; 1747 int ret; 1748 1749 /* Take the I/O mutex */ 1750 mutex_lock(&ctlr->io_mutex); 1751 1752 /* Lock queue */ 1753 spin_lock_irqsave(&ctlr->queue_lock, flags); 1754 1755 /* Make sure we are not already running a message */ 1756 if (ctlr->cur_msg) 1757 goto out_unlock; 1758 1759 /* Check if the queue is idle */ 1760 if (list_empty(&ctlr->queue) || !ctlr->running) { 1761 if (!ctlr->busy) 1762 goto out_unlock; 1763 1764 /* Defer any non-atomic teardown to the thread */ 1765 if (!in_kthread) { 1766 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1767 !ctlr->unprepare_transfer_hardware) { 1768 spi_idle_runtime_pm(ctlr); 1769 ctlr->busy = false; 1770 ctlr->queue_empty = true; 1771 trace_spi_controller_idle(ctlr); 1772 } else { 1773 kthread_queue_work(ctlr->kworker, 1774 &ctlr->pump_messages); 1775 } 1776 goto out_unlock; 1777 } 1778 1779 ctlr->busy = false; 1780 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1781 1782 kfree(ctlr->dummy_rx); 1783 ctlr->dummy_rx = NULL; 1784 kfree(ctlr->dummy_tx); 1785 ctlr->dummy_tx = NULL; 1786 if (ctlr->unprepare_transfer_hardware && 1787 ctlr->unprepare_transfer_hardware(ctlr)) 1788 dev_err(&ctlr->dev, 1789 "failed to unprepare transfer hardware\n"); 1790 spi_idle_runtime_pm(ctlr); 1791 trace_spi_controller_idle(ctlr); 1792 1793 spin_lock_irqsave(&ctlr->queue_lock, flags); 1794 ctlr->queue_empty = true; 1795 goto out_unlock; 1796 } 1797 1798 /* Extract head of queue */ 1799 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1800 ctlr->cur_msg = msg; 1801 1802 list_del_init(&msg->queue); 1803 if (ctlr->busy) 1804 was_busy = true; 1805 else 1806 ctlr->busy = true; 1807 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1808 1809 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1810 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1811 1812 ctlr->cur_msg = NULL; 1813 ctlr->fallback = false; 1814 1815 mutex_unlock(&ctlr->io_mutex); 1816 1817 /* Prod the scheduler in case transfer_one() was busy waiting */ 1818 if (!ret) 1819 cond_resched(); 1820 return; 1821 1822 out_unlock: 1823 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1824 mutex_unlock(&ctlr->io_mutex); 1825 } 1826 1827 /** 1828 * spi_pump_messages - kthread work function which processes spi message queue 1829 * @work: pointer to kthread work struct contained in the controller struct 1830 */ 1831 static void spi_pump_messages(struct kthread_work *work) 1832 { 1833 struct spi_controller *ctlr = 1834 container_of(work, struct spi_controller, pump_messages); 1835 1836 __spi_pump_messages(ctlr, true); 1837 } 1838 1839 /** 1840 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1841 * @ctlr: Pointer to the spi_controller structure of the driver 1842 * @xfer: Pointer to the transfer being timestamped 1843 * @progress: How many words (not bytes) have been transferred so far 1844 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1845 * transfer, for less jitter in time measurement. Only compatible 1846 * with PIO drivers. If true, must follow up with 1847 * spi_take_timestamp_post or otherwise system will crash. 1848 * WARNING: for fully predictable results, the CPU frequency must 1849 * also be under control (governor). 1850 * 1851 * This is a helper for drivers to collect the beginning of the TX timestamp 1852 * for the requested byte from the SPI transfer. The frequency with which this 1853 * function must be called (once per word, once for the whole transfer, once 1854 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1855 * greater than or equal to the requested byte at the time of the call. The 1856 * timestamp is only taken once, at the first such call. It is assumed that 1857 * the driver advances its @tx buffer pointer monotonically. 1858 */ 1859 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1860 struct spi_transfer *xfer, 1861 size_t progress, bool irqs_off) 1862 { 1863 if (!xfer->ptp_sts) 1864 return; 1865 1866 if (xfer->timestamped) 1867 return; 1868 1869 if (progress > xfer->ptp_sts_word_pre) 1870 return; 1871 1872 /* Capture the resolution of the timestamp */ 1873 xfer->ptp_sts_word_pre = progress; 1874 1875 if (irqs_off) { 1876 local_irq_save(ctlr->irq_flags); 1877 preempt_disable(); 1878 } 1879 1880 ptp_read_system_prets(xfer->ptp_sts); 1881 } 1882 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1883 1884 /** 1885 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1886 * @ctlr: Pointer to the spi_controller structure of the driver 1887 * @xfer: Pointer to the transfer being timestamped 1888 * @progress: How many words (not bytes) have been transferred so far 1889 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1890 * 1891 * This is a helper for drivers to collect the end of the TX timestamp for 1892 * the requested byte from the SPI transfer. Can be called with an arbitrary 1893 * frequency: only the first call where @tx exceeds or is equal to the 1894 * requested word will be timestamped. 1895 */ 1896 void spi_take_timestamp_post(struct spi_controller *ctlr, 1897 struct spi_transfer *xfer, 1898 size_t progress, bool irqs_off) 1899 { 1900 if (!xfer->ptp_sts) 1901 return; 1902 1903 if (xfer->timestamped) 1904 return; 1905 1906 if (progress < xfer->ptp_sts_word_post) 1907 return; 1908 1909 ptp_read_system_postts(xfer->ptp_sts); 1910 1911 if (irqs_off) { 1912 local_irq_restore(ctlr->irq_flags); 1913 preempt_enable(); 1914 } 1915 1916 /* Capture the resolution of the timestamp */ 1917 xfer->ptp_sts_word_post = progress; 1918 1919 xfer->timestamped = 1; 1920 } 1921 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1922 1923 /** 1924 * spi_set_thread_rt - set the controller to pump at realtime priority 1925 * @ctlr: controller to boost priority of 1926 * 1927 * This can be called because the controller requested realtime priority 1928 * (by setting the ->rt value before calling spi_register_controller()) or 1929 * because a device on the bus said that its transfers needed realtime 1930 * priority. 1931 * 1932 * NOTE: at the moment if any device on a bus says it needs realtime then 1933 * the thread will be at realtime priority for all transfers on that 1934 * controller. If this eventually becomes a problem we may see if we can 1935 * find a way to boost the priority only temporarily during relevant 1936 * transfers. 1937 */ 1938 static void spi_set_thread_rt(struct spi_controller *ctlr) 1939 { 1940 dev_info(&ctlr->dev, 1941 "will run message pump with realtime priority\n"); 1942 sched_set_fifo(ctlr->kworker->task); 1943 } 1944 1945 static int spi_init_queue(struct spi_controller *ctlr) 1946 { 1947 ctlr->running = false; 1948 ctlr->busy = false; 1949 ctlr->queue_empty = true; 1950 1951 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1952 if (IS_ERR(ctlr->kworker)) { 1953 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1954 return PTR_ERR(ctlr->kworker); 1955 } 1956 1957 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1958 1959 /* 1960 * Controller config will indicate if this controller should run the 1961 * message pump with high (realtime) priority to reduce the transfer 1962 * latency on the bus by minimising the delay between a transfer 1963 * request and the scheduling of the message pump thread. Without this 1964 * setting the message pump thread will remain at default priority. 1965 */ 1966 if (ctlr->rt) 1967 spi_set_thread_rt(ctlr); 1968 1969 return 0; 1970 } 1971 1972 /** 1973 * spi_get_next_queued_message() - called by driver to check for queued 1974 * messages 1975 * @ctlr: the controller to check for queued messages 1976 * 1977 * If there are more messages in the queue, the next message is returned from 1978 * this call. 1979 * 1980 * Return: the next message in the queue, else NULL if the queue is empty. 1981 */ 1982 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1983 { 1984 struct spi_message *next; 1985 unsigned long flags; 1986 1987 /* Get a pointer to the next message, if any */ 1988 spin_lock_irqsave(&ctlr->queue_lock, flags); 1989 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1990 queue); 1991 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1992 1993 return next; 1994 } 1995 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1996 1997 /** 1998 * spi_finalize_current_message() - the current message is complete 1999 * @ctlr: the controller to return the message to 2000 * 2001 * Called by the driver to notify the core that the message in the front of the 2002 * queue is complete and can be removed from the queue. 2003 */ 2004 void spi_finalize_current_message(struct spi_controller *ctlr) 2005 { 2006 struct spi_transfer *xfer; 2007 struct spi_message *mesg; 2008 int ret; 2009 2010 mesg = ctlr->cur_msg; 2011 2012 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2013 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2014 ptp_read_system_postts(xfer->ptp_sts); 2015 xfer->ptp_sts_word_post = xfer->len; 2016 } 2017 } 2018 2019 if (unlikely(ctlr->ptp_sts_supported)) 2020 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2021 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2022 2023 spi_unmap_msg(ctlr, mesg); 2024 2025 /* 2026 * In the prepare_messages callback the SPI bus has the opportunity 2027 * to split a transfer to smaller chunks. 2028 * 2029 * Release the split transfers here since spi_map_msg() is done on 2030 * the split transfers. 2031 */ 2032 spi_res_release(ctlr, mesg); 2033 2034 if (mesg->prepared && ctlr->unprepare_message) { 2035 ret = ctlr->unprepare_message(ctlr, mesg); 2036 if (ret) { 2037 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2038 ret); 2039 } 2040 } 2041 2042 mesg->prepared = false; 2043 2044 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2045 smp_mb(); /* See __spi_pump_transfer_message()... */ 2046 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2047 complete(&ctlr->cur_msg_completion); 2048 2049 trace_spi_message_done(mesg); 2050 2051 mesg->state = NULL; 2052 if (mesg->complete) 2053 mesg->complete(mesg->context); 2054 } 2055 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2056 2057 static int spi_start_queue(struct spi_controller *ctlr) 2058 { 2059 unsigned long flags; 2060 2061 spin_lock_irqsave(&ctlr->queue_lock, flags); 2062 2063 if (ctlr->running || ctlr->busy) { 2064 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2065 return -EBUSY; 2066 } 2067 2068 ctlr->running = true; 2069 ctlr->cur_msg = NULL; 2070 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2071 2072 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2073 2074 return 0; 2075 } 2076 2077 static int spi_stop_queue(struct spi_controller *ctlr) 2078 { 2079 unsigned long flags; 2080 unsigned limit = 500; 2081 int ret = 0; 2082 2083 spin_lock_irqsave(&ctlr->queue_lock, flags); 2084 2085 /* 2086 * This is a bit lame, but is optimized for the common execution path. 2087 * A wait_queue on the ctlr->busy could be used, but then the common 2088 * execution path (pump_messages) would be required to call wake_up or 2089 * friends on every SPI message. Do this instead. 2090 */ 2091 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2092 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2093 usleep_range(10000, 11000); 2094 spin_lock_irqsave(&ctlr->queue_lock, flags); 2095 } 2096 2097 if (!list_empty(&ctlr->queue) || ctlr->busy) 2098 ret = -EBUSY; 2099 else 2100 ctlr->running = false; 2101 2102 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2103 2104 if (ret) { 2105 dev_warn(&ctlr->dev, "could not stop message queue\n"); 2106 return ret; 2107 } 2108 return ret; 2109 } 2110 2111 static int spi_destroy_queue(struct spi_controller *ctlr) 2112 { 2113 int ret; 2114 2115 ret = spi_stop_queue(ctlr); 2116 2117 /* 2118 * kthread_flush_worker will block until all work is done. 2119 * If the reason that stop_queue timed out is that the work will never 2120 * finish, then it does no good to call flush/stop thread, so 2121 * return anyway. 2122 */ 2123 if (ret) { 2124 dev_err(&ctlr->dev, "problem destroying queue\n"); 2125 return ret; 2126 } 2127 2128 kthread_destroy_worker(ctlr->kworker); 2129 2130 return 0; 2131 } 2132 2133 static int __spi_queued_transfer(struct spi_device *spi, 2134 struct spi_message *msg, 2135 bool need_pump) 2136 { 2137 struct spi_controller *ctlr = spi->controller; 2138 unsigned long flags; 2139 2140 spin_lock_irqsave(&ctlr->queue_lock, flags); 2141 2142 if (!ctlr->running) { 2143 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2144 return -ESHUTDOWN; 2145 } 2146 msg->actual_length = 0; 2147 msg->status = -EINPROGRESS; 2148 2149 list_add_tail(&msg->queue, &ctlr->queue); 2150 ctlr->queue_empty = false; 2151 if (!ctlr->busy && need_pump) 2152 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2153 2154 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2155 return 0; 2156 } 2157 2158 /** 2159 * spi_queued_transfer - transfer function for queued transfers 2160 * @spi: SPI device which is requesting transfer 2161 * @msg: SPI message which is to handled is queued to driver queue 2162 * 2163 * Return: zero on success, else a negative error code. 2164 */ 2165 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2166 { 2167 return __spi_queued_transfer(spi, msg, true); 2168 } 2169 2170 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2171 { 2172 int ret; 2173 2174 ctlr->transfer = spi_queued_transfer; 2175 if (!ctlr->transfer_one_message) 2176 ctlr->transfer_one_message = spi_transfer_one_message; 2177 2178 /* Initialize and start queue */ 2179 ret = spi_init_queue(ctlr); 2180 if (ret) { 2181 dev_err(&ctlr->dev, "problem initializing queue\n"); 2182 goto err_init_queue; 2183 } 2184 ctlr->queued = true; 2185 ret = spi_start_queue(ctlr); 2186 if (ret) { 2187 dev_err(&ctlr->dev, "problem starting queue\n"); 2188 goto err_start_queue; 2189 } 2190 2191 return 0; 2192 2193 err_start_queue: 2194 spi_destroy_queue(ctlr); 2195 err_init_queue: 2196 return ret; 2197 } 2198 2199 /** 2200 * spi_flush_queue - Send all pending messages in the queue from the callers' 2201 * context 2202 * @ctlr: controller to process queue for 2203 * 2204 * This should be used when one wants to ensure all pending messages have been 2205 * sent before doing something. Is used by the spi-mem code to make sure SPI 2206 * memory operations do not preempt regular SPI transfers that have been queued 2207 * before the spi-mem operation. 2208 */ 2209 void spi_flush_queue(struct spi_controller *ctlr) 2210 { 2211 if (ctlr->transfer == spi_queued_transfer) 2212 __spi_pump_messages(ctlr, false); 2213 } 2214 2215 /*-------------------------------------------------------------------------*/ 2216 2217 #if defined(CONFIG_OF) 2218 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2219 struct spi_delay *delay, const char *prop) 2220 { 2221 u32 value; 2222 2223 if (!of_property_read_u32(nc, prop, &value)) { 2224 if (value > U16_MAX) { 2225 delay->value = DIV_ROUND_UP(value, 1000); 2226 delay->unit = SPI_DELAY_UNIT_USECS; 2227 } else { 2228 delay->value = value; 2229 delay->unit = SPI_DELAY_UNIT_NSECS; 2230 } 2231 } 2232 } 2233 2234 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2235 struct device_node *nc) 2236 { 2237 u32 value; 2238 int rc; 2239 2240 /* Mode (clock phase/polarity/etc.) */ 2241 if (of_property_read_bool(nc, "spi-cpha")) 2242 spi->mode |= SPI_CPHA; 2243 if (of_property_read_bool(nc, "spi-cpol")) 2244 spi->mode |= SPI_CPOL; 2245 if (of_property_read_bool(nc, "spi-3wire")) 2246 spi->mode |= SPI_3WIRE; 2247 if (of_property_read_bool(nc, "spi-lsb-first")) 2248 spi->mode |= SPI_LSB_FIRST; 2249 if (of_property_read_bool(nc, "spi-cs-high")) 2250 spi->mode |= SPI_CS_HIGH; 2251 2252 /* Device DUAL/QUAD mode */ 2253 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2254 switch (value) { 2255 case 0: 2256 spi->mode |= SPI_NO_TX; 2257 break; 2258 case 1: 2259 break; 2260 case 2: 2261 spi->mode |= SPI_TX_DUAL; 2262 break; 2263 case 4: 2264 spi->mode |= SPI_TX_QUAD; 2265 break; 2266 case 8: 2267 spi->mode |= SPI_TX_OCTAL; 2268 break; 2269 default: 2270 dev_warn(&ctlr->dev, 2271 "spi-tx-bus-width %d not supported\n", 2272 value); 2273 break; 2274 } 2275 } 2276 2277 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2278 switch (value) { 2279 case 0: 2280 spi->mode |= SPI_NO_RX; 2281 break; 2282 case 1: 2283 break; 2284 case 2: 2285 spi->mode |= SPI_RX_DUAL; 2286 break; 2287 case 4: 2288 spi->mode |= SPI_RX_QUAD; 2289 break; 2290 case 8: 2291 spi->mode |= SPI_RX_OCTAL; 2292 break; 2293 default: 2294 dev_warn(&ctlr->dev, 2295 "spi-rx-bus-width %d not supported\n", 2296 value); 2297 break; 2298 } 2299 } 2300 2301 if (spi_controller_is_slave(ctlr)) { 2302 if (!of_node_name_eq(nc, "slave")) { 2303 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2304 nc); 2305 return -EINVAL; 2306 } 2307 return 0; 2308 } 2309 2310 /* Device address */ 2311 rc = of_property_read_u32(nc, "reg", &value); 2312 if (rc) { 2313 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2314 nc, rc); 2315 return rc; 2316 } 2317 spi_set_chipselect(spi, 0, value); 2318 2319 /* Device speed */ 2320 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2321 spi->max_speed_hz = value; 2322 2323 /* Device CS delays */ 2324 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2325 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2326 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2327 2328 return 0; 2329 } 2330 2331 static struct spi_device * 2332 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2333 { 2334 struct spi_device *spi; 2335 int rc; 2336 2337 /* Alloc an spi_device */ 2338 spi = spi_alloc_device(ctlr); 2339 if (!spi) { 2340 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2341 rc = -ENOMEM; 2342 goto err_out; 2343 } 2344 2345 /* Select device driver */ 2346 rc = of_alias_from_compatible(nc, spi->modalias, 2347 sizeof(spi->modalias)); 2348 if (rc < 0) { 2349 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2350 goto err_out; 2351 } 2352 2353 rc = of_spi_parse_dt(ctlr, spi, nc); 2354 if (rc) 2355 goto err_out; 2356 2357 /* Store a pointer to the node in the device structure */ 2358 of_node_get(nc); 2359 2360 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2361 2362 /* Register the new device */ 2363 rc = spi_add_device(spi); 2364 if (rc) { 2365 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2366 goto err_of_node_put; 2367 } 2368 2369 return spi; 2370 2371 err_of_node_put: 2372 of_node_put(nc); 2373 err_out: 2374 spi_dev_put(spi); 2375 return ERR_PTR(rc); 2376 } 2377 2378 /** 2379 * of_register_spi_devices() - Register child devices onto the SPI bus 2380 * @ctlr: Pointer to spi_controller device 2381 * 2382 * Registers an spi_device for each child node of controller node which 2383 * represents a valid SPI slave. 2384 */ 2385 static void of_register_spi_devices(struct spi_controller *ctlr) 2386 { 2387 struct spi_device *spi; 2388 struct device_node *nc; 2389 2390 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2391 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2392 continue; 2393 spi = of_register_spi_device(ctlr, nc); 2394 if (IS_ERR(spi)) { 2395 dev_warn(&ctlr->dev, 2396 "Failed to create SPI device for %pOF\n", nc); 2397 of_node_clear_flag(nc, OF_POPULATED); 2398 } 2399 } 2400 } 2401 #else 2402 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2403 #endif 2404 2405 /** 2406 * spi_new_ancillary_device() - Register ancillary SPI device 2407 * @spi: Pointer to the main SPI device registering the ancillary device 2408 * @chip_select: Chip Select of the ancillary device 2409 * 2410 * Register an ancillary SPI device; for example some chips have a chip-select 2411 * for normal device usage and another one for setup/firmware upload. 2412 * 2413 * This may only be called from main SPI device's probe routine. 2414 * 2415 * Return: 0 on success; negative errno on failure 2416 */ 2417 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2418 u8 chip_select) 2419 { 2420 struct spi_controller *ctlr = spi->controller; 2421 struct spi_device *ancillary; 2422 int rc = 0; 2423 2424 /* Alloc an spi_device */ 2425 ancillary = spi_alloc_device(ctlr); 2426 if (!ancillary) { 2427 rc = -ENOMEM; 2428 goto err_out; 2429 } 2430 2431 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2432 2433 /* Use provided chip-select for ancillary device */ 2434 spi_set_chipselect(ancillary, 0, chip_select); 2435 2436 /* Take over SPI mode/speed from SPI main device */ 2437 ancillary->max_speed_hz = spi->max_speed_hz; 2438 ancillary->mode = spi->mode; 2439 2440 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2441 2442 /* Register the new device */ 2443 rc = __spi_add_device(ancillary); 2444 if (rc) { 2445 dev_err(&spi->dev, "failed to register ancillary device\n"); 2446 goto err_out; 2447 } 2448 2449 return ancillary; 2450 2451 err_out: 2452 spi_dev_put(ancillary); 2453 return ERR_PTR(rc); 2454 } 2455 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2456 2457 #ifdef CONFIG_ACPI 2458 struct acpi_spi_lookup { 2459 struct spi_controller *ctlr; 2460 u32 max_speed_hz; 2461 u32 mode; 2462 int irq; 2463 u8 bits_per_word; 2464 u8 chip_select; 2465 int n; 2466 int index; 2467 }; 2468 2469 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2470 { 2471 struct acpi_resource_spi_serialbus *sb; 2472 int *count = data; 2473 2474 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2475 return 1; 2476 2477 sb = &ares->data.spi_serial_bus; 2478 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2479 return 1; 2480 2481 *count = *count + 1; 2482 2483 return 1; 2484 } 2485 2486 /** 2487 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2488 * @adev: ACPI device 2489 * 2490 * Return: the number of SpiSerialBus resources in the ACPI-device's 2491 * resource-list; or a negative error code. 2492 */ 2493 int acpi_spi_count_resources(struct acpi_device *adev) 2494 { 2495 LIST_HEAD(r); 2496 int count = 0; 2497 int ret; 2498 2499 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2500 if (ret < 0) 2501 return ret; 2502 2503 acpi_dev_free_resource_list(&r); 2504 2505 return count; 2506 } 2507 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2508 2509 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2510 struct acpi_spi_lookup *lookup) 2511 { 2512 const union acpi_object *obj; 2513 2514 if (!x86_apple_machine) 2515 return; 2516 2517 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2518 && obj->buffer.length >= 4) 2519 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2520 2521 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2522 && obj->buffer.length == 8) 2523 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2524 2525 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2526 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2527 lookup->mode |= SPI_LSB_FIRST; 2528 2529 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2530 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2531 lookup->mode |= SPI_CPOL; 2532 2533 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2534 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2535 lookup->mode |= SPI_CPHA; 2536 } 2537 2538 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 2539 2540 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2541 { 2542 struct acpi_spi_lookup *lookup = data; 2543 struct spi_controller *ctlr = lookup->ctlr; 2544 2545 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2546 struct acpi_resource_spi_serialbus *sb; 2547 acpi_handle parent_handle; 2548 acpi_status status; 2549 2550 sb = &ares->data.spi_serial_bus; 2551 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2552 2553 if (lookup->index != -1 && lookup->n++ != lookup->index) 2554 return 1; 2555 2556 status = acpi_get_handle(NULL, 2557 sb->resource_source.string_ptr, 2558 &parent_handle); 2559 2560 if (ACPI_FAILURE(status)) 2561 return -ENODEV; 2562 2563 if (ctlr) { 2564 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2565 return -ENODEV; 2566 } else { 2567 struct acpi_device *adev; 2568 2569 adev = acpi_fetch_acpi_dev(parent_handle); 2570 if (!adev) 2571 return -ENODEV; 2572 2573 ctlr = acpi_spi_find_controller_by_adev(adev); 2574 if (!ctlr) 2575 return -EPROBE_DEFER; 2576 2577 lookup->ctlr = ctlr; 2578 } 2579 2580 /* 2581 * ACPI DeviceSelection numbering is handled by the 2582 * host controller driver in Windows and can vary 2583 * from driver to driver. In Linux we always expect 2584 * 0 .. max - 1 so we need to ask the driver to 2585 * translate between the two schemes. 2586 */ 2587 if (ctlr->fw_translate_cs) { 2588 int cs = ctlr->fw_translate_cs(ctlr, 2589 sb->device_selection); 2590 if (cs < 0) 2591 return cs; 2592 lookup->chip_select = cs; 2593 } else { 2594 lookup->chip_select = sb->device_selection; 2595 } 2596 2597 lookup->max_speed_hz = sb->connection_speed; 2598 lookup->bits_per_word = sb->data_bit_length; 2599 2600 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2601 lookup->mode |= SPI_CPHA; 2602 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2603 lookup->mode |= SPI_CPOL; 2604 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2605 lookup->mode |= SPI_CS_HIGH; 2606 } 2607 } else if (lookup->irq < 0) { 2608 struct resource r; 2609 2610 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2611 lookup->irq = r.start; 2612 } 2613 2614 /* Always tell the ACPI core to skip this resource */ 2615 return 1; 2616 } 2617 2618 /** 2619 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2620 * @ctlr: controller to which the spi device belongs 2621 * @adev: ACPI Device for the spi device 2622 * @index: Index of the spi resource inside the ACPI Node 2623 * 2624 * This should be used to allocate a new SPI device from and ACPI Device node. 2625 * The caller is responsible for calling spi_add_device to register the SPI device. 2626 * 2627 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2628 * using the resource. 2629 * If index is set to -1, index is not used. 2630 * Note: If index is -1, ctlr must be set. 2631 * 2632 * Return: a pointer to the new device, or ERR_PTR on error. 2633 */ 2634 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2635 struct acpi_device *adev, 2636 int index) 2637 { 2638 acpi_handle parent_handle = NULL; 2639 struct list_head resource_list; 2640 struct acpi_spi_lookup lookup = {}; 2641 struct spi_device *spi; 2642 int ret; 2643 2644 if (!ctlr && index == -1) 2645 return ERR_PTR(-EINVAL); 2646 2647 lookup.ctlr = ctlr; 2648 lookup.irq = -1; 2649 lookup.index = index; 2650 lookup.n = 0; 2651 2652 INIT_LIST_HEAD(&resource_list); 2653 ret = acpi_dev_get_resources(adev, &resource_list, 2654 acpi_spi_add_resource, &lookup); 2655 acpi_dev_free_resource_list(&resource_list); 2656 2657 if (ret < 0) 2658 /* Found SPI in _CRS but it points to another controller */ 2659 return ERR_PTR(ret); 2660 2661 if (!lookup.max_speed_hz && 2662 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2663 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2664 /* Apple does not use _CRS but nested devices for SPI slaves */ 2665 acpi_spi_parse_apple_properties(adev, &lookup); 2666 } 2667 2668 if (!lookup.max_speed_hz) 2669 return ERR_PTR(-ENODEV); 2670 2671 spi = spi_alloc_device(lookup.ctlr); 2672 if (!spi) { 2673 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2674 dev_name(&adev->dev)); 2675 return ERR_PTR(-ENOMEM); 2676 } 2677 2678 ACPI_COMPANION_SET(&spi->dev, adev); 2679 spi->max_speed_hz = lookup.max_speed_hz; 2680 spi->mode |= lookup.mode; 2681 spi->irq = lookup.irq; 2682 spi->bits_per_word = lookup.bits_per_word; 2683 spi_set_chipselect(spi, 0, lookup.chip_select); 2684 2685 return spi; 2686 } 2687 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2688 2689 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2690 struct acpi_device *adev) 2691 { 2692 struct spi_device *spi; 2693 2694 if (acpi_bus_get_status(adev) || !adev->status.present || 2695 acpi_device_enumerated(adev)) 2696 return AE_OK; 2697 2698 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2699 if (IS_ERR(spi)) { 2700 if (PTR_ERR(spi) == -ENOMEM) 2701 return AE_NO_MEMORY; 2702 else 2703 return AE_OK; 2704 } 2705 2706 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2707 sizeof(spi->modalias)); 2708 2709 if (spi->irq < 0) 2710 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2711 2712 acpi_device_set_enumerated(adev); 2713 2714 adev->power.flags.ignore_parent = true; 2715 if (spi_add_device(spi)) { 2716 adev->power.flags.ignore_parent = false; 2717 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2718 dev_name(&adev->dev)); 2719 spi_dev_put(spi); 2720 } 2721 2722 return AE_OK; 2723 } 2724 2725 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2726 void *data, void **return_value) 2727 { 2728 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2729 struct spi_controller *ctlr = data; 2730 2731 if (!adev) 2732 return AE_OK; 2733 2734 return acpi_register_spi_device(ctlr, adev); 2735 } 2736 2737 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2738 2739 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2740 { 2741 acpi_status status; 2742 acpi_handle handle; 2743 2744 handle = ACPI_HANDLE(ctlr->dev.parent); 2745 if (!handle) 2746 return; 2747 2748 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2749 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2750 acpi_spi_add_device, NULL, ctlr, NULL); 2751 if (ACPI_FAILURE(status)) 2752 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2753 } 2754 #else 2755 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2756 #endif /* CONFIG_ACPI */ 2757 2758 static void spi_controller_release(struct device *dev) 2759 { 2760 struct spi_controller *ctlr; 2761 2762 ctlr = container_of(dev, struct spi_controller, dev); 2763 kfree(ctlr); 2764 } 2765 2766 static struct class spi_master_class = { 2767 .name = "spi_master", 2768 .dev_release = spi_controller_release, 2769 .dev_groups = spi_master_groups, 2770 }; 2771 2772 #ifdef CONFIG_SPI_SLAVE 2773 /** 2774 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2775 * controller 2776 * @spi: device used for the current transfer 2777 */ 2778 int spi_slave_abort(struct spi_device *spi) 2779 { 2780 struct spi_controller *ctlr = spi->controller; 2781 2782 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2783 return ctlr->slave_abort(ctlr); 2784 2785 return -ENOTSUPP; 2786 } 2787 EXPORT_SYMBOL_GPL(spi_slave_abort); 2788 2789 int spi_target_abort(struct spi_device *spi) 2790 { 2791 struct spi_controller *ctlr = spi->controller; 2792 2793 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2794 return ctlr->target_abort(ctlr); 2795 2796 return -ENOTSUPP; 2797 } 2798 EXPORT_SYMBOL_GPL(spi_target_abort); 2799 2800 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2801 char *buf) 2802 { 2803 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2804 dev); 2805 struct device *child; 2806 2807 child = device_find_any_child(&ctlr->dev); 2808 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2809 } 2810 2811 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2812 const char *buf, size_t count) 2813 { 2814 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2815 dev); 2816 struct spi_device *spi; 2817 struct device *child; 2818 char name[32]; 2819 int rc; 2820 2821 rc = sscanf(buf, "%31s", name); 2822 if (rc != 1 || !name[0]) 2823 return -EINVAL; 2824 2825 child = device_find_any_child(&ctlr->dev); 2826 if (child) { 2827 /* Remove registered slave */ 2828 device_unregister(child); 2829 put_device(child); 2830 } 2831 2832 if (strcmp(name, "(null)")) { 2833 /* Register new slave */ 2834 spi = spi_alloc_device(ctlr); 2835 if (!spi) 2836 return -ENOMEM; 2837 2838 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2839 2840 rc = spi_add_device(spi); 2841 if (rc) { 2842 spi_dev_put(spi); 2843 return rc; 2844 } 2845 } 2846 2847 return count; 2848 } 2849 2850 static DEVICE_ATTR_RW(slave); 2851 2852 static struct attribute *spi_slave_attrs[] = { 2853 &dev_attr_slave.attr, 2854 NULL, 2855 }; 2856 2857 static const struct attribute_group spi_slave_group = { 2858 .attrs = spi_slave_attrs, 2859 }; 2860 2861 static const struct attribute_group *spi_slave_groups[] = { 2862 &spi_controller_statistics_group, 2863 &spi_slave_group, 2864 NULL, 2865 }; 2866 2867 static struct class spi_slave_class = { 2868 .name = "spi_slave", 2869 .dev_release = spi_controller_release, 2870 .dev_groups = spi_slave_groups, 2871 }; 2872 #else 2873 extern struct class spi_slave_class; /* dummy */ 2874 #endif 2875 2876 /** 2877 * __spi_alloc_controller - allocate an SPI master or slave controller 2878 * @dev: the controller, possibly using the platform_bus 2879 * @size: how much zeroed driver-private data to allocate; the pointer to this 2880 * memory is in the driver_data field of the returned device, accessible 2881 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2882 * drivers granting DMA access to portions of their private data need to 2883 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2884 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2885 * slave (true) controller 2886 * Context: can sleep 2887 * 2888 * This call is used only by SPI controller drivers, which are the 2889 * only ones directly touching chip registers. It's how they allocate 2890 * an spi_controller structure, prior to calling spi_register_controller(). 2891 * 2892 * This must be called from context that can sleep. 2893 * 2894 * The caller is responsible for assigning the bus number and initializing the 2895 * controller's methods before calling spi_register_controller(); and (after 2896 * errors adding the device) calling spi_controller_put() to prevent a memory 2897 * leak. 2898 * 2899 * Return: the SPI controller structure on success, else NULL. 2900 */ 2901 struct spi_controller *__spi_alloc_controller(struct device *dev, 2902 unsigned int size, bool slave) 2903 { 2904 struct spi_controller *ctlr; 2905 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2906 2907 if (!dev) 2908 return NULL; 2909 2910 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2911 if (!ctlr) 2912 return NULL; 2913 2914 device_initialize(&ctlr->dev); 2915 INIT_LIST_HEAD(&ctlr->queue); 2916 spin_lock_init(&ctlr->queue_lock); 2917 spin_lock_init(&ctlr->bus_lock_spinlock); 2918 mutex_init(&ctlr->bus_lock_mutex); 2919 mutex_init(&ctlr->io_mutex); 2920 mutex_init(&ctlr->add_lock); 2921 ctlr->bus_num = -1; 2922 ctlr->num_chipselect = 1; 2923 ctlr->slave = slave; 2924 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2925 ctlr->dev.class = &spi_slave_class; 2926 else 2927 ctlr->dev.class = &spi_master_class; 2928 ctlr->dev.parent = dev; 2929 pm_suspend_ignore_children(&ctlr->dev, true); 2930 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2931 2932 return ctlr; 2933 } 2934 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2935 2936 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2937 { 2938 spi_controller_put(*(struct spi_controller **)ctlr); 2939 } 2940 2941 /** 2942 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2943 * @dev: physical device of SPI controller 2944 * @size: how much zeroed driver-private data to allocate 2945 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2946 * Context: can sleep 2947 * 2948 * Allocate an SPI controller and automatically release a reference on it 2949 * when @dev is unbound from its driver. Drivers are thus relieved from 2950 * having to call spi_controller_put(). 2951 * 2952 * The arguments to this function are identical to __spi_alloc_controller(). 2953 * 2954 * Return: the SPI controller structure on success, else NULL. 2955 */ 2956 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2957 unsigned int size, 2958 bool slave) 2959 { 2960 struct spi_controller **ptr, *ctlr; 2961 2962 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2963 GFP_KERNEL); 2964 if (!ptr) 2965 return NULL; 2966 2967 ctlr = __spi_alloc_controller(dev, size, slave); 2968 if (ctlr) { 2969 ctlr->devm_allocated = true; 2970 *ptr = ctlr; 2971 devres_add(dev, ptr); 2972 } else { 2973 devres_free(ptr); 2974 } 2975 2976 return ctlr; 2977 } 2978 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2979 2980 /** 2981 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2982 * @ctlr: The SPI master to grab GPIO descriptors for 2983 */ 2984 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2985 { 2986 int nb, i; 2987 struct gpio_desc **cs; 2988 struct device *dev = &ctlr->dev; 2989 unsigned long native_cs_mask = 0; 2990 unsigned int num_cs_gpios = 0; 2991 2992 nb = gpiod_count(dev, "cs"); 2993 if (nb < 0) { 2994 /* No GPIOs at all is fine, else return the error */ 2995 if (nb == -ENOENT) 2996 return 0; 2997 return nb; 2998 } 2999 3000 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3001 3002 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3003 GFP_KERNEL); 3004 if (!cs) 3005 return -ENOMEM; 3006 ctlr->cs_gpiods = cs; 3007 3008 for (i = 0; i < nb; i++) { 3009 /* 3010 * Most chipselects are active low, the inverted 3011 * semantics are handled by special quirks in gpiolib, 3012 * so initializing them GPIOD_OUT_LOW here means 3013 * "unasserted", in most cases this will drive the physical 3014 * line high. 3015 */ 3016 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3017 GPIOD_OUT_LOW); 3018 if (IS_ERR(cs[i])) 3019 return PTR_ERR(cs[i]); 3020 3021 if (cs[i]) { 3022 /* 3023 * If we find a CS GPIO, name it after the device and 3024 * chip select line. 3025 */ 3026 char *gpioname; 3027 3028 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3029 dev_name(dev), i); 3030 if (!gpioname) 3031 return -ENOMEM; 3032 gpiod_set_consumer_name(cs[i], gpioname); 3033 num_cs_gpios++; 3034 continue; 3035 } 3036 3037 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3038 dev_err(dev, "Invalid native chip select %d\n", i); 3039 return -EINVAL; 3040 } 3041 native_cs_mask |= BIT(i); 3042 } 3043 3044 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3045 3046 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3047 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3048 dev_err(dev, "No unused native chip select available\n"); 3049 return -EINVAL; 3050 } 3051 3052 return 0; 3053 } 3054 3055 static int spi_controller_check_ops(struct spi_controller *ctlr) 3056 { 3057 /* 3058 * The controller may implement only the high-level SPI-memory like 3059 * operations if it does not support regular SPI transfers, and this is 3060 * valid use case. 3061 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3062 * one of the ->transfer_xxx() method be implemented. 3063 */ 3064 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3065 if (!ctlr->transfer && !ctlr->transfer_one && 3066 !ctlr->transfer_one_message) { 3067 return -EINVAL; 3068 } 3069 } 3070 3071 return 0; 3072 } 3073 3074 /* Allocate dynamic bus number using Linux idr */ 3075 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3076 { 3077 int id; 3078 3079 mutex_lock(&board_lock); 3080 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3081 mutex_unlock(&board_lock); 3082 if (WARN(id < 0, "couldn't get idr")) 3083 return id == -ENOSPC ? -EBUSY : id; 3084 ctlr->bus_num = id; 3085 return 0; 3086 } 3087 3088 /** 3089 * spi_register_controller - register SPI master or slave controller 3090 * @ctlr: initialized master, originally from spi_alloc_master() or 3091 * spi_alloc_slave() 3092 * Context: can sleep 3093 * 3094 * SPI controllers connect to their drivers using some non-SPI bus, 3095 * such as the platform bus. The final stage of probe() in that code 3096 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3097 * 3098 * SPI controllers use board specific (often SOC specific) bus numbers, 3099 * and board-specific addressing for SPI devices combines those numbers 3100 * with chip select numbers. Since SPI does not directly support dynamic 3101 * device identification, boards need configuration tables telling which 3102 * chip is at which address. 3103 * 3104 * This must be called from context that can sleep. It returns zero on 3105 * success, else a negative error code (dropping the controller's refcount). 3106 * After a successful return, the caller is responsible for calling 3107 * spi_unregister_controller(). 3108 * 3109 * Return: zero on success, else a negative error code. 3110 */ 3111 int spi_register_controller(struct spi_controller *ctlr) 3112 { 3113 struct device *dev = ctlr->dev.parent; 3114 struct boardinfo *bi; 3115 int first_dynamic; 3116 int status; 3117 3118 if (!dev) 3119 return -ENODEV; 3120 3121 /* 3122 * Make sure all necessary hooks are implemented before registering 3123 * the SPI controller. 3124 */ 3125 status = spi_controller_check_ops(ctlr); 3126 if (status) 3127 return status; 3128 3129 if (ctlr->bus_num < 0) 3130 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3131 if (ctlr->bus_num >= 0) { 3132 /* Devices with a fixed bus num must check-in with the num */ 3133 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3134 if (status) 3135 return status; 3136 } 3137 if (ctlr->bus_num < 0) { 3138 first_dynamic = of_alias_get_highest_id("spi"); 3139 if (first_dynamic < 0) 3140 first_dynamic = 0; 3141 else 3142 first_dynamic++; 3143 3144 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3145 if (status) 3146 return status; 3147 } 3148 ctlr->bus_lock_flag = 0; 3149 init_completion(&ctlr->xfer_completion); 3150 init_completion(&ctlr->cur_msg_completion); 3151 if (!ctlr->max_dma_len) 3152 ctlr->max_dma_len = INT_MAX; 3153 3154 /* 3155 * Register the device, then userspace will see it. 3156 * Registration fails if the bus ID is in use. 3157 */ 3158 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3159 3160 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3161 status = spi_get_gpio_descs(ctlr); 3162 if (status) 3163 goto free_bus_id; 3164 /* 3165 * A controller using GPIO descriptors always 3166 * supports SPI_CS_HIGH if need be. 3167 */ 3168 ctlr->mode_bits |= SPI_CS_HIGH; 3169 } 3170 3171 /* 3172 * Even if it's just one always-selected device, there must 3173 * be at least one chipselect. 3174 */ 3175 if (!ctlr->num_chipselect) { 3176 status = -EINVAL; 3177 goto free_bus_id; 3178 } 3179 3180 /* Setting last_cs to -1 means no chip selected */ 3181 ctlr->last_cs = -1; 3182 3183 status = device_add(&ctlr->dev); 3184 if (status < 0) 3185 goto free_bus_id; 3186 dev_dbg(dev, "registered %s %s\n", 3187 spi_controller_is_slave(ctlr) ? "slave" : "master", 3188 dev_name(&ctlr->dev)); 3189 3190 /* 3191 * If we're using a queued driver, start the queue. Note that we don't 3192 * need the queueing logic if the driver is only supporting high-level 3193 * memory operations. 3194 */ 3195 if (ctlr->transfer) { 3196 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3197 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3198 status = spi_controller_initialize_queue(ctlr); 3199 if (status) { 3200 device_del(&ctlr->dev); 3201 goto free_bus_id; 3202 } 3203 } 3204 /* Add statistics */ 3205 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3206 if (!ctlr->pcpu_statistics) { 3207 dev_err(dev, "Error allocating per-cpu statistics\n"); 3208 status = -ENOMEM; 3209 goto destroy_queue; 3210 } 3211 3212 mutex_lock(&board_lock); 3213 list_add_tail(&ctlr->list, &spi_controller_list); 3214 list_for_each_entry(bi, &board_list, list) 3215 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3216 mutex_unlock(&board_lock); 3217 3218 /* Register devices from the device tree and ACPI */ 3219 of_register_spi_devices(ctlr); 3220 acpi_register_spi_devices(ctlr); 3221 return status; 3222 3223 destroy_queue: 3224 spi_destroy_queue(ctlr); 3225 free_bus_id: 3226 mutex_lock(&board_lock); 3227 idr_remove(&spi_master_idr, ctlr->bus_num); 3228 mutex_unlock(&board_lock); 3229 return status; 3230 } 3231 EXPORT_SYMBOL_GPL(spi_register_controller); 3232 3233 static void devm_spi_unregister(struct device *dev, void *res) 3234 { 3235 spi_unregister_controller(*(struct spi_controller **)res); 3236 } 3237 3238 /** 3239 * devm_spi_register_controller - register managed SPI master or slave 3240 * controller 3241 * @dev: device managing SPI controller 3242 * @ctlr: initialized controller, originally from spi_alloc_master() or 3243 * spi_alloc_slave() 3244 * Context: can sleep 3245 * 3246 * Register a SPI device as with spi_register_controller() which will 3247 * automatically be unregistered and freed. 3248 * 3249 * Return: zero on success, else a negative error code. 3250 */ 3251 int devm_spi_register_controller(struct device *dev, 3252 struct spi_controller *ctlr) 3253 { 3254 struct spi_controller **ptr; 3255 int ret; 3256 3257 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3258 if (!ptr) 3259 return -ENOMEM; 3260 3261 ret = spi_register_controller(ctlr); 3262 if (!ret) { 3263 *ptr = ctlr; 3264 devres_add(dev, ptr); 3265 } else { 3266 devres_free(ptr); 3267 } 3268 3269 return ret; 3270 } 3271 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3272 3273 static int __unregister(struct device *dev, void *null) 3274 { 3275 spi_unregister_device(to_spi_device(dev)); 3276 return 0; 3277 } 3278 3279 /** 3280 * spi_unregister_controller - unregister SPI master or slave controller 3281 * @ctlr: the controller being unregistered 3282 * Context: can sleep 3283 * 3284 * This call is used only by SPI controller drivers, which are the 3285 * only ones directly touching chip registers. 3286 * 3287 * This must be called from context that can sleep. 3288 * 3289 * Note that this function also drops a reference to the controller. 3290 */ 3291 void spi_unregister_controller(struct spi_controller *ctlr) 3292 { 3293 struct spi_controller *found; 3294 int id = ctlr->bus_num; 3295 3296 /* Prevent addition of new devices, unregister existing ones */ 3297 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3298 mutex_lock(&ctlr->add_lock); 3299 3300 device_for_each_child(&ctlr->dev, NULL, __unregister); 3301 3302 /* First make sure that this controller was ever added */ 3303 mutex_lock(&board_lock); 3304 found = idr_find(&spi_master_idr, id); 3305 mutex_unlock(&board_lock); 3306 if (ctlr->queued) { 3307 if (spi_destroy_queue(ctlr)) 3308 dev_err(&ctlr->dev, "queue remove failed\n"); 3309 } 3310 mutex_lock(&board_lock); 3311 list_del(&ctlr->list); 3312 mutex_unlock(&board_lock); 3313 3314 device_del(&ctlr->dev); 3315 3316 /* Free bus id */ 3317 mutex_lock(&board_lock); 3318 if (found == ctlr) 3319 idr_remove(&spi_master_idr, id); 3320 mutex_unlock(&board_lock); 3321 3322 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3323 mutex_unlock(&ctlr->add_lock); 3324 3325 /* 3326 * Release the last reference on the controller if its driver 3327 * has not yet been converted to devm_spi_alloc_master/slave(). 3328 */ 3329 if (!ctlr->devm_allocated) 3330 put_device(&ctlr->dev); 3331 } 3332 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3333 3334 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3335 { 3336 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3337 } 3338 3339 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3340 { 3341 mutex_lock(&ctlr->bus_lock_mutex); 3342 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3343 mutex_unlock(&ctlr->bus_lock_mutex); 3344 } 3345 3346 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3347 { 3348 mutex_lock(&ctlr->bus_lock_mutex); 3349 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3350 mutex_unlock(&ctlr->bus_lock_mutex); 3351 } 3352 3353 int spi_controller_suspend(struct spi_controller *ctlr) 3354 { 3355 int ret = 0; 3356 3357 /* Basically no-ops for non-queued controllers */ 3358 if (ctlr->queued) { 3359 ret = spi_stop_queue(ctlr); 3360 if (ret) 3361 dev_err(&ctlr->dev, "queue stop failed\n"); 3362 } 3363 3364 __spi_mark_suspended(ctlr); 3365 return ret; 3366 } 3367 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3368 3369 int spi_controller_resume(struct spi_controller *ctlr) 3370 { 3371 int ret = 0; 3372 3373 __spi_mark_resumed(ctlr); 3374 3375 if (ctlr->queued) { 3376 ret = spi_start_queue(ctlr); 3377 if (ret) 3378 dev_err(&ctlr->dev, "queue restart failed\n"); 3379 } 3380 return ret; 3381 } 3382 EXPORT_SYMBOL_GPL(spi_controller_resume); 3383 3384 /*-------------------------------------------------------------------------*/ 3385 3386 /* Core methods for spi_message alterations */ 3387 3388 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3389 struct spi_message *msg, 3390 void *res) 3391 { 3392 struct spi_replaced_transfers *rxfer = res; 3393 size_t i; 3394 3395 /* Call extra callback if requested */ 3396 if (rxfer->release) 3397 rxfer->release(ctlr, msg, res); 3398 3399 /* Insert replaced transfers back into the message */ 3400 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3401 3402 /* Remove the formerly inserted entries */ 3403 for (i = 0; i < rxfer->inserted; i++) 3404 list_del(&rxfer->inserted_transfers[i].transfer_list); 3405 } 3406 3407 /** 3408 * spi_replace_transfers - replace transfers with several transfers 3409 * and register change with spi_message.resources 3410 * @msg: the spi_message we work upon 3411 * @xfer_first: the first spi_transfer we want to replace 3412 * @remove: number of transfers to remove 3413 * @insert: the number of transfers we want to insert instead 3414 * @release: extra release code necessary in some circumstances 3415 * @extradatasize: extra data to allocate (with alignment guarantees 3416 * of struct @spi_transfer) 3417 * @gfp: gfp flags 3418 * 3419 * Returns: pointer to @spi_replaced_transfers, 3420 * PTR_ERR(...) in case of errors. 3421 */ 3422 static struct spi_replaced_transfers *spi_replace_transfers( 3423 struct spi_message *msg, 3424 struct spi_transfer *xfer_first, 3425 size_t remove, 3426 size_t insert, 3427 spi_replaced_release_t release, 3428 size_t extradatasize, 3429 gfp_t gfp) 3430 { 3431 struct spi_replaced_transfers *rxfer; 3432 struct spi_transfer *xfer; 3433 size_t i; 3434 3435 /* Allocate the structure using spi_res */ 3436 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3437 struct_size(rxfer, inserted_transfers, insert) 3438 + extradatasize, 3439 gfp); 3440 if (!rxfer) 3441 return ERR_PTR(-ENOMEM); 3442 3443 /* The release code to invoke before running the generic release */ 3444 rxfer->release = release; 3445 3446 /* Assign extradata */ 3447 if (extradatasize) 3448 rxfer->extradata = 3449 &rxfer->inserted_transfers[insert]; 3450 3451 /* Init the replaced_transfers list */ 3452 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3453 3454 /* 3455 * Assign the list_entry after which we should reinsert 3456 * the @replaced_transfers - it may be spi_message.messages! 3457 */ 3458 rxfer->replaced_after = xfer_first->transfer_list.prev; 3459 3460 /* Remove the requested number of transfers */ 3461 for (i = 0; i < remove; i++) { 3462 /* 3463 * If the entry after replaced_after it is msg->transfers 3464 * then we have been requested to remove more transfers 3465 * than are in the list. 3466 */ 3467 if (rxfer->replaced_after->next == &msg->transfers) { 3468 dev_err(&msg->spi->dev, 3469 "requested to remove more spi_transfers than are available\n"); 3470 /* Insert replaced transfers back into the message */ 3471 list_splice(&rxfer->replaced_transfers, 3472 rxfer->replaced_after); 3473 3474 /* Free the spi_replace_transfer structure... */ 3475 spi_res_free(rxfer); 3476 3477 /* ...and return with an error */ 3478 return ERR_PTR(-EINVAL); 3479 } 3480 3481 /* 3482 * Remove the entry after replaced_after from list of 3483 * transfers and add it to list of replaced_transfers. 3484 */ 3485 list_move_tail(rxfer->replaced_after->next, 3486 &rxfer->replaced_transfers); 3487 } 3488 3489 /* 3490 * Create copy of the given xfer with identical settings 3491 * based on the first transfer to get removed. 3492 */ 3493 for (i = 0; i < insert; i++) { 3494 /* We need to run in reverse order */ 3495 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3496 3497 /* Copy all spi_transfer data */ 3498 memcpy(xfer, xfer_first, sizeof(*xfer)); 3499 3500 /* Add to list */ 3501 list_add(&xfer->transfer_list, rxfer->replaced_after); 3502 3503 /* Clear cs_change and delay for all but the last */ 3504 if (i) { 3505 xfer->cs_change = false; 3506 xfer->delay.value = 0; 3507 } 3508 } 3509 3510 /* Set up inserted... */ 3511 rxfer->inserted = insert; 3512 3513 /* ...and register it with spi_res/spi_message */ 3514 spi_res_add(msg, rxfer); 3515 3516 return rxfer; 3517 } 3518 3519 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3520 struct spi_message *msg, 3521 struct spi_transfer **xferp, 3522 size_t maxsize, 3523 gfp_t gfp) 3524 { 3525 struct spi_transfer *xfer = *xferp, *xfers; 3526 struct spi_replaced_transfers *srt; 3527 size_t offset; 3528 size_t count, i; 3529 3530 /* Calculate how many we have to replace */ 3531 count = DIV_ROUND_UP(xfer->len, maxsize); 3532 3533 /* Create replacement */ 3534 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3535 if (IS_ERR(srt)) 3536 return PTR_ERR(srt); 3537 xfers = srt->inserted_transfers; 3538 3539 /* 3540 * Now handle each of those newly inserted spi_transfers. 3541 * Note that the replacements spi_transfers all are preset 3542 * to the same values as *xferp, so tx_buf, rx_buf and len 3543 * are all identical (as well as most others) 3544 * so we just have to fix up len and the pointers. 3545 * 3546 * This also includes support for the depreciated 3547 * spi_message.is_dma_mapped interface. 3548 */ 3549 3550 /* 3551 * The first transfer just needs the length modified, so we 3552 * run it outside the loop. 3553 */ 3554 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3555 3556 /* All the others need rx_buf/tx_buf also set */ 3557 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3558 /* Update rx_buf, tx_buf and DMA */ 3559 if (xfers[i].rx_buf) 3560 xfers[i].rx_buf += offset; 3561 if (xfers[i].rx_dma) 3562 xfers[i].rx_dma += offset; 3563 if (xfers[i].tx_buf) 3564 xfers[i].tx_buf += offset; 3565 if (xfers[i].tx_dma) 3566 xfers[i].tx_dma += offset; 3567 3568 /* Update length */ 3569 xfers[i].len = min(maxsize, xfers[i].len - offset); 3570 } 3571 3572 /* 3573 * We set up xferp to the last entry we have inserted, 3574 * so that we skip those already split transfers. 3575 */ 3576 *xferp = &xfers[count - 1]; 3577 3578 /* Increment statistics counters */ 3579 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3580 transfers_split_maxsize); 3581 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3582 transfers_split_maxsize); 3583 3584 return 0; 3585 } 3586 3587 /** 3588 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3589 * when an individual transfer exceeds a 3590 * certain size 3591 * @ctlr: the @spi_controller for this transfer 3592 * @msg: the @spi_message to transform 3593 * @maxsize: the maximum when to apply this 3594 * @gfp: GFP allocation flags 3595 * 3596 * Return: status of transformation 3597 */ 3598 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3599 struct spi_message *msg, 3600 size_t maxsize, 3601 gfp_t gfp) 3602 { 3603 struct spi_transfer *xfer; 3604 int ret; 3605 3606 /* 3607 * Iterate over the transfer_list, 3608 * but note that xfer is advanced to the last transfer inserted 3609 * to avoid checking sizes again unnecessarily (also xfer does 3610 * potentially belong to a different list by the time the 3611 * replacement has happened). 3612 */ 3613 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3614 if (xfer->len > maxsize) { 3615 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3616 maxsize, gfp); 3617 if (ret) 3618 return ret; 3619 } 3620 } 3621 3622 return 0; 3623 } 3624 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3625 3626 3627 /** 3628 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3629 * when an individual transfer exceeds a 3630 * certain number of SPI words 3631 * @ctlr: the @spi_controller for this transfer 3632 * @msg: the @spi_message to transform 3633 * @maxwords: the number of words to limit each transfer to 3634 * @gfp: GFP allocation flags 3635 * 3636 * Return: status of transformation 3637 */ 3638 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3639 struct spi_message *msg, 3640 size_t maxwords, 3641 gfp_t gfp) 3642 { 3643 struct spi_transfer *xfer; 3644 3645 /* 3646 * Iterate over the transfer_list, 3647 * but note that xfer is advanced to the last transfer inserted 3648 * to avoid checking sizes again unnecessarily (also xfer does 3649 * potentially belong to a different list by the time the 3650 * replacement has happened). 3651 */ 3652 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3653 size_t maxsize; 3654 int ret; 3655 3656 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3657 if (xfer->len > maxsize) { 3658 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3659 maxsize, gfp); 3660 if (ret) 3661 return ret; 3662 } 3663 } 3664 3665 return 0; 3666 } 3667 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3668 3669 /*-------------------------------------------------------------------------*/ 3670 3671 /* 3672 * Core methods for SPI controller protocol drivers. Some of the 3673 * other core methods are currently defined as inline functions. 3674 */ 3675 3676 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3677 u8 bits_per_word) 3678 { 3679 if (ctlr->bits_per_word_mask) { 3680 /* Only 32 bits fit in the mask */ 3681 if (bits_per_word > 32) 3682 return -EINVAL; 3683 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3684 return -EINVAL; 3685 } 3686 3687 return 0; 3688 } 3689 3690 /** 3691 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3692 * @spi: the device that requires specific CS timing configuration 3693 * 3694 * Return: zero on success, else a negative error code. 3695 */ 3696 static int spi_set_cs_timing(struct spi_device *spi) 3697 { 3698 struct device *parent = spi->controller->dev.parent; 3699 int status = 0; 3700 3701 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3702 if (spi->controller->auto_runtime_pm) { 3703 status = pm_runtime_get_sync(parent); 3704 if (status < 0) { 3705 pm_runtime_put_noidle(parent); 3706 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3707 status); 3708 return status; 3709 } 3710 3711 status = spi->controller->set_cs_timing(spi); 3712 pm_runtime_mark_last_busy(parent); 3713 pm_runtime_put_autosuspend(parent); 3714 } else { 3715 status = spi->controller->set_cs_timing(spi); 3716 } 3717 } 3718 return status; 3719 } 3720 3721 /** 3722 * spi_setup - setup SPI mode and clock rate 3723 * @spi: the device whose settings are being modified 3724 * Context: can sleep, and no requests are queued to the device 3725 * 3726 * SPI protocol drivers may need to update the transfer mode if the 3727 * device doesn't work with its default. They may likewise need 3728 * to update clock rates or word sizes from initial values. This function 3729 * changes those settings, and must be called from a context that can sleep. 3730 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3731 * effect the next time the device is selected and data is transferred to 3732 * or from it. When this function returns, the SPI device is deselected. 3733 * 3734 * Note that this call will fail if the protocol driver specifies an option 3735 * that the underlying controller or its driver does not support. For 3736 * example, not all hardware supports wire transfers using nine bit words, 3737 * LSB-first wire encoding, or active-high chipselects. 3738 * 3739 * Return: zero on success, else a negative error code. 3740 */ 3741 int spi_setup(struct spi_device *spi) 3742 { 3743 unsigned bad_bits, ugly_bits; 3744 int status = 0; 3745 3746 /* 3747 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3748 * are set at the same time. 3749 */ 3750 if ((hweight_long(spi->mode & 3751 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3752 (hweight_long(spi->mode & 3753 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3754 dev_err(&spi->dev, 3755 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3756 return -EINVAL; 3757 } 3758 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3759 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3760 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3761 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3762 return -EINVAL; 3763 /* 3764 * Help drivers fail *cleanly* when they need options 3765 * that aren't supported with their current controller. 3766 * SPI_CS_WORD has a fallback software implementation, 3767 * so it is ignored here. 3768 */ 3769 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3770 SPI_NO_TX | SPI_NO_RX); 3771 ugly_bits = bad_bits & 3772 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3773 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3774 if (ugly_bits) { 3775 dev_warn(&spi->dev, 3776 "setup: ignoring unsupported mode bits %x\n", 3777 ugly_bits); 3778 spi->mode &= ~ugly_bits; 3779 bad_bits &= ~ugly_bits; 3780 } 3781 if (bad_bits) { 3782 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3783 bad_bits); 3784 return -EINVAL; 3785 } 3786 3787 if (!spi->bits_per_word) { 3788 spi->bits_per_word = 8; 3789 } else { 3790 /* 3791 * Some controllers may not support the default 8 bits-per-word 3792 * so only perform the check when this is explicitly provided. 3793 */ 3794 status = __spi_validate_bits_per_word(spi->controller, 3795 spi->bits_per_word); 3796 if (status) 3797 return status; 3798 } 3799 3800 if (spi->controller->max_speed_hz && 3801 (!spi->max_speed_hz || 3802 spi->max_speed_hz > spi->controller->max_speed_hz)) 3803 spi->max_speed_hz = spi->controller->max_speed_hz; 3804 3805 mutex_lock(&spi->controller->io_mutex); 3806 3807 if (spi->controller->setup) { 3808 status = spi->controller->setup(spi); 3809 if (status) { 3810 mutex_unlock(&spi->controller->io_mutex); 3811 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3812 status); 3813 return status; 3814 } 3815 } 3816 3817 status = spi_set_cs_timing(spi); 3818 if (status) { 3819 mutex_unlock(&spi->controller->io_mutex); 3820 return status; 3821 } 3822 3823 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3824 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3825 if (status < 0) { 3826 mutex_unlock(&spi->controller->io_mutex); 3827 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3828 status); 3829 return status; 3830 } 3831 3832 /* 3833 * We do not want to return positive value from pm_runtime_get, 3834 * there are many instances of devices calling spi_setup() and 3835 * checking for a non-zero return value instead of a negative 3836 * return value. 3837 */ 3838 status = 0; 3839 3840 spi_set_cs(spi, false, true); 3841 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3842 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3843 } else { 3844 spi_set_cs(spi, false, true); 3845 } 3846 3847 mutex_unlock(&spi->controller->io_mutex); 3848 3849 if (spi->rt && !spi->controller->rt) { 3850 spi->controller->rt = true; 3851 spi_set_thread_rt(spi->controller); 3852 } 3853 3854 trace_spi_setup(spi, status); 3855 3856 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3857 spi->mode & SPI_MODE_X_MASK, 3858 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3859 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3860 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3861 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3862 spi->bits_per_word, spi->max_speed_hz, 3863 status); 3864 3865 return status; 3866 } 3867 EXPORT_SYMBOL_GPL(spi_setup); 3868 3869 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3870 struct spi_device *spi) 3871 { 3872 int delay1, delay2; 3873 3874 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3875 if (delay1 < 0) 3876 return delay1; 3877 3878 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3879 if (delay2 < 0) 3880 return delay2; 3881 3882 if (delay1 < delay2) 3883 memcpy(&xfer->word_delay, &spi->word_delay, 3884 sizeof(xfer->word_delay)); 3885 3886 return 0; 3887 } 3888 3889 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3890 { 3891 struct spi_controller *ctlr = spi->controller; 3892 struct spi_transfer *xfer; 3893 int w_size; 3894 3895 if (list_empty(&message->transfers)) 3896 return -EINVAL; 3897 3898 /* 3899 * If an SPI controller does not support toggling the CS line on each 3900 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3901 * for the CS line, we can emulate the CS-per-word hardware function by 3902 * splitting transfers into one-word transfers and ensuring that 3903 * cs_change is set for each transfer. 3904 */ 3905 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3906 spi_get_csgpiod(spi, 0))) { 3907 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word); 3908 int ret; 3909 3910 /* spi_split_transfers_maxsize() requires message->spi */ 3911 message->spi = spi; 3912 3913 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3914 GFP_KERNEL); 3915 if (ret) 3916 return ret; 3917 3918 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3919 /* Don't change cs_change on the last entry in the list */ 3920 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3921 break; 3922 xfer->cs_change = 1; 3923 } 3924 } 3925 3926 /* 3927 * Half-duplex links include original MicroWire, and ones with 3928 * only one data pin like SPI_3WIRE (switches direction) or where 3929 * either MOSI or MISO is missing. They can also be caused by 3930 * software limitations. 3931 */ 3932 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3933 (spi->mode & SPI_3WIRE)) { 3934 unsigned flags = ctlr->flags; 3935 3936 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3937 if (xfer->rx_buf && xfer->tx_buf) 3938 return -EINVAL; 3939 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3940 return -EINVAL; 3941 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3942 return -EINVAL; 3943 } 3944 } 3945 3946 /* 3947 * Set transfer bits_per_word and max speed as spi device default if 3948 * it is not set for this transfer. 3949 * Set transfer tx_nbits and rx_nbits as single transfer default 3950 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3951 * Ensure transfer word_delay is at least as long as that required by 3952 * device itself. 3953 */ 3954 message->frame_length = 0; 3955 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3956 xfer->effective_speed_hz = 0; 3957 message->frame_length += xfer->len; 3958 if (!xfer->bits_per_word) 3959 xfer->bits_per_word = spi->bits_per_word; 3960 3961 if (!xfer->speed_hz) 3962 xfer->speed_hz = spi->max_speed_hz; 3963 3964 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3965 xfer->speed_hz = ctlr->max_speed_hz; 3966 3967 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3968 return -EINVAL; 3969 3970 /* 3971 * SPI transfer length should be multiple of SPI word size 3972 * where SPI word size should be power-of-two multiple. 3973 */ 3974 if (xfer->bits_per_word <= 8) 3975 w_size = 1; 3976 else if (xfer->bits_per_word <= 16) 3977 w_size = 2; 3978 else 3979 w_size = 4; 3980 3981 /* No partial transfers accepted */ 3982 if (xfer->len % w_size) 3983 return -EINVAL; 3984 3985 if (xfer->speed_hz && ctlr->min_speed_hz && 3986 xfer->speed_hz < ctlr->min_speed_hz) 3987 return -EINVAL; 3988 3989 if (xfer->tx_buf && !xfer->tx_nbits) 3990 xfer->tx_nbits = SPI_NBITS_SINGLE; 3991 if (xfer->rx_buf && !xfer->rx_nbits) 3992 xfer->rx_nbits = SPI_NBITS_SINGLE; 3993 /* 3994 * Check transfer tx/rx_nbits: 3995 * 1. check the value matches one of single, dual and quad 3996 * 2. check tx/rx_nbits match the mode in spi_device 3997 */ 3998 if (xfer->tx_buf) { 3999 if (spi->mode & SPI_NO_TX) 4000 return -EINVAL; 4001 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4002 xfer->tx_nbits != SPI_NBITS_DUAL && 4003 xfer->tx_nbits != SPI_NBITS_QUAD) 4004 return -EINVAL; 4005 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4006 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4007 return -EINVAL; 4008 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4009 !(spi->mode & SPI_TX_QUAD)) 4010 return -EINVAL; 4011 } 4012 /* Check transfer rx_nbits */ 4013 if (xfer->rx_buf) { 4014 if (spi->mode & SPI_NO_RX) 4015 return -EINVAL; 4016 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4017 xfer->rx_nbits != SPI_NBITS_DUAL && 4018 xfer->rx_nbits != SPI_NBITS_QUAD) 4019 return -EINVAL; 4020 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4021 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4022 return -EINVAL; 4023 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4024 !(spi->mode & SPI_RX_QUAD)) 4025 return -EINVAL; 4026 } 4027 4028 if (_spi_xfer_word_delay_update(xfer, spi)) 4029 return -EINVAL; 4030 } 4031 4032 message->status = -EINPROGRESS; 4033 4034 return 0; 4035 } 4036 4037 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4038 { 4039 struct spi_controller *ctlr = spi->controller; 4040 struct spi_transfer *xfer; 4041 4042 /* 4043 * Some controllers do not support doing regular SPI transfers. Return 4044 * ENOTSUPP when this is the case. 4045 */ 4046 if (!ctlr->transfer) 4047 return -ENOTSUPP; 4048 4049 message->spi = spi; 4050 4051 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4052 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4053 4054 trace_spi_message_submit(message); 4055 4056 if (!ctlr->ptp_sts_supported) { 4057 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4058 xfer->ptp_sts_word_pre = 0; 4059 ptp_read_system_prets(xfer->ptp_sts); 4060 } 4061 } 4062 4063 return ctlr->transfer(spi, message); 4064 } 4065 4066 /** 4067 * spi_async - asynchronous SPI transfer 4068 * @spi: device with which data will be exchanged 4069 * @message: describes the data transfers, including completion callback 4070 * Context: any (IRQs may be blocked, etc) 4071 * 4072 * This call may be used in_irq and other contexts which can't sleep, 4073 * as well as from task contexts which can sleep. 4074 * 4075 * The completion callback is invoked in a context which can't sleep. 4076 * Before that invocation, the value of message->status is undefined. 4077 * When the callback is issued, message->status holds either zero (to 4078 * indicate complete success) or a negative error code. After that 4079 * callback returns, the driver which issued the transfer request may 4080 * deallocate the associated memory; it's no longer in use by any SPI 4081 * core or controller driver code. 4082 * 4083 * Note that although all messages to a spi_device are handled in 4084 * FIFO order, messages may go to different devices in other orders. 4085 * Some device might be higher priority, or have various "hard" access 4086 * time requirements, for example. 4087 * 4088 * On detection of any fault during the transfer, processing of 4089 * the entire message is aborted, and the device is deselected. 4090 * Until returning from the associated message completion callback, 4091 * no other spi_message queued to that device will be processed. 4092 * (This rule applies equally to all the synchronous transfer calls, 4093 * which are wrappers around this core asynchronous primitive.) 4094 * 4095 * Return: zero on success, else a negative error code. 4096 */ 4097 int spi_async(struct spi_device *spi, struct spi_message *message) 4098 { 4099 struct spi_controller *ctlr = spi->controller; 4100 int ret; 4101 unsigned long flags; 4102 4103 ret = __spi_validate(spi, message); 4104 if (ret != 0) 4105 return ret; 4106 4107 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4108 4109 if (ctlr->bus_lock_flag) 4110 ret = -EBUSY; 4111 else 4112 ret = __spi_async(spi, message); 4113 4114 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4115 4116 return ret; 4117 } 4118 EXPORT_SYMBOL_GPL(spi_async); 4119 4120 /** 4121 * spi_async_locked - version of spi_async with exclusive bus usage 4122 * @spi: device with which data will be exchanged 4123 * @message: describes the data transfers, including completion callback 4124 * Context: any (IRQs may be blocked, etc) 4125 * 4126 * This call may be used in_irq and other contexts which can't sleep, 4127 * as well as from task contexts which can sleep. 4128 * 4129 * The completion callback is invoked in a context which can't sleep. 4130 * Before that invocation, the value of message->status is undefined. 4131 * When the callback is issued, message->status holds either zero (to 4132 * indicate complete success) or a negative error code. After that 4133 * callback returns, the driver which issued the transfer request may 4134 * deallocate the associated memory; it's no longer in use by any SPI 4135 * core or controller driver code. 4136 * 4137 * Note that although all messages to a spi_device are handled in 4138 * FIFO order, messages may go to different devices in other orders. 4139 * Some device might be higher priority, or have various "hard" access 4140 * time requirements, for example. 4141 * 4142 * On detection of any fault during the transfer, processing of 4143 * the entire message is aborted, and the device is deselected. 4144 * Until returning from the associated message completion callback, 4145 * no other spi_message queued to that device will be processed. 4146 * (This rule applies equally to all the synchronous transfer calls, 4147 * which are wrappers around this core asynchronous primitive.) 4148 * 4149 * Return: zero on success, else a negative error code. 4150 */ 4151 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 4152 { 4153 struct spi_controller *ctlr = spi->controller; 4154 int ret; 4155 unsigned long flags; 4156 4157 ret = __spi_validate(spi, message); 4158 if (ret != 0) 4159 return ret; 4160 4161 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4162 4163 ret = __spi_async(spi, message); 4164 4165 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4166 4167 return ret; 4168 4169 } 4170 4171 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4172 { 4173 bool was_busy; 4174 int ret; 4175 4176 mutex_lock(&ctlr->io_mutex); 4177 4178 was_busy = ctlr->busy; 4179 4180 ctlr->cur_msg = msg; 4181 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4182 if (ret) 4183 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4184 ctlr->cur_msg = NULL; 4185 ctlr->fallback = false; 4186 4187 if (!was_busy) { 4188 kfree(ctlr->dummy_rx); 4189 ctlr->dummy_rx = NULL; 4190 kfree(ctlr->dummy_tx); 4191 ctlr->dummy_tx = NULL; 4192 if (ctlr->unprepare_transfer_hardware && 4193 ctlr->unprepare_transfer_hardware(ctlr)) 4194 dev_err(&ctlr->dev, 4195 "failed to unprepare transfer hardware\n"); 4196 spi_idle_runtime_pm(ctlr); 4197 } 4198 4199 mutex_unlock(&ctlr->io_mutex); 4200 } 4201 4202 /*-------------------------------------------------------------------------*/ 4203 4204 /* 4205 * Utility methods for SPI protocol drivers, layered on 4206 * top of the core. Some other utility methods are defined as 4207 * inline functions. 4208 */ 4209 4210 static void spi_complete(void *arg) 4211 { 4212 complete(arg); 4213 } 4214 4215 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4216 { 4217 DECLARE_COMPLETION_ONSTACK(done); 4218 int status; 4219 struct spi_controller *ctlr = spi->controller; 4220 4221 if (__spi_check_suspended(ctlr)) { 4222 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4223 return -ESHUTDOWN; 4224 } 4225 4226 status = __spi_validate(spi, message); 4227 if (status != 0) 4228 return status; 4229 4230 message->spi = spi; 4231 4232 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4233 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4234 4235 /* 4236 * Checking queue_empty here only guarantees async/sync message 4237 * ordering when coming from the same context. It does not need to 4238 * guard against reentrancy from a different context. The io_mutex 4239 * will catch those cases. 4240 */ 4241 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4242 message->actual_length = 0; 4243 message->status = -EINPROGRESS; 4244 4245 trace_spi_message_submit(message); 4246 4247 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4248 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4249 4250 __spi_transfer_message_noqueue(ctlr, message); 4251 4252 return message->status; 4253 } 4254 4255 /* 4256 * There are messages in the async queue that could have originated 4257 * from the same context, so we need to preserve ordering. 4258 * Therefor we send the message to the async queue and wait until they 4259 * are completed. 4260 */ 4261 message->complete = spi_complete; 4262 message->context = &done; 4263 status = spi_async_locked(spi, message); 4264 if (status == 0) { 4265 wait_for_completion(&done); 4266 status = message->status; 4267 } 4268 message->complete = NULL; 4269 message->context = NULL; 4270 4271 return status; 4272 } 4273 4274 /** 4275 * spi_sync - blocking/synchronous SPI data transfers 4276 * @spi: device with which data will be exchanged 4277 * @message: describes the data transfers 4278 * Context: can sleep 4279 * 4280 * This call may only be used from a context that may sleep. The sleep 4281 * is non-interruptible, and has no timeout. Low-overhead controller 4282 * drivers may DMA directly into and out of the message buffers. 4283 * 4284 * Note that the SPI device's chip select is active during the message, 4285 * and then is normally disabled between messages. Drivers for some 4286 * frequently-used devices may want to minimize costs of selecting a chip, 4287 * by leaving it selected in anticipation that the next message will go 4288 * to the same chip. (That may increase power usage.) 4289 * 4290 * Also, the caller is guaranteeing that the memory associated with the 4291 * message will not be freed before this call returns. 4292 * 4293 * Return: zero on success, else a negative error code. 4294 */ 4295 int spi_sync(struct spi_device *spi, struct spi_message *message) 4296 { 4297 int ret; 4298 4299 mutex_lock(&spi->controller->bus_lock_mutex); 4300 ret = __spi_sync(spi, message); 4301 mutex_unlock(&spi->controller->bus_lock_mutex); 4302 4303 return ret; 4304 } 4305 EXPORT_SYMBOL_GPL(spi_sync); 4306 4307 /** 4308 * spi_sync_locked - version of spi_sync with exclusive bus usage 4309 * @spi: device with which data will be exchanged 4310 * @message: describes the data transfers 4311 * Context: can sleep 4312 * 4313 * This call may only be used from a context that may sleep. The sleep 4314 * is non-interruptible, and has no timeout. Low-overhead controller 4315 * drivers may DMA directly into and out of the message buffers. 4316 * 4317 * This call should be used by drivers that require exclusive access to the 4318 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4319 * be released by a spi_bus_unlock call when the exclusive access is over. 4320 * 4321 * Return: zero on success, else a negative error code. 4322 */ 4323 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4324 { 4325 return __spi_sync(spi, message); 4326 } 4327 EXPORT_SYMBOL_GPL(spi_sync_locked); 4328 4329 /** 4330 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4331 * @ctlr: SPI bus master that should be locked for exclusive bus access 4332 * Context: can sleep 4333 * 4334 * This call may only be used from a context that may sleep. The sleep 4335 * is non-interruptible, and has no timeout. 4336 * 4337 * This call should be used by drivers that require exclusive access to the 4338 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4339 * exclusive access is over. Data transfer must be done by spi_sync_locked 4340 * and spi_async_locked calls when the SPI bus lock is held. 4341 * 4342 * Return: always zero. 4343 */ 4344 int spi_bus_lock(struct spi_controller *ctlr) 4345 { 4346 unsigned long flags; 4347 4348 mutex_lock(&ctlr->bus_lock_mutex); 4349 4350 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4351 ctlr->bus_lock_flag = 1; 4352 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4353 4354 /* Mutex remains locked until spi_bus_unlock() is called */ 4355 4356 return 0; 4357 } 4358 EXPORT_SYMBOL_GPL(spi_bus_lock); 4359 4360 /** 4361 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4362 * @ctlr: SPI bus master that was locked for exclusive bus access 4363 * Context: can sleep 4364 * 4365 * This call may only be used from a context that may sleep. The sleep 4366 * is non-interruptible, and has no timeout. 4367 * 4368 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4369 * call. 4370 * 4371 * Return: always zero. 4372 */ 4373 int spi_bus_unlock(struct spi_controller *ctlr) 4374 { 4375 ctlr->bus_lock_flag = 0; 4376 4377 mutex_unlock(&ctlr->bus_lock_mutex); 4378 4379 return 0; 4380 } 4381 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4382 4383 /* Portable code must never pass more than 32 bytes */ 4384 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4385 4386 static u8 *buf; 4387 4388 /** 4389 * spi_write_then_read - SPI synchronous write followed by read 4390 * @spi: device with which data will be exchanged 4391 * @txbuf: data to be written (need not be DMA-safe) 4392 * @n_tx: size of txbuf, in bytes 4393 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4394 * @n_rx: size of rxbuf, in bytes 4395 * Context: can sleep 4396 * 4397 * This performs a half duplex MicroWire style transaction with the 4398 * device, sending txbuf and then reading rxbuf. The return value 4399 * is zero for success, else a negative errno status code. 4400 * This call may only be used from a context that may sleep. 4401 * 4402 * Parameters to this routine are always copied using a small buffer. 4403 * Performance-sensitive or bulk transfer code should instead use 4404 * spi_{async,sync}() calls with DMA-safe buffers. 4405 * 4406 * Return: zero on success, else a negative error code. 4407 */ 4408 int spi_write_then_read(struct spi_device *spi, 4409 const void *txbuf, unsigned n_tx, 4410 void *rxbuf, unsigned n_rx) 4411 { 4412 static DEFINE_MUTEX(lock); 4413 4414 int status; 4415 struct spi_message message; 4416 struct spi_transfer x[2]; 4417 u8 *local_buf; 4418 4419 /* 4420 * Use preallocated DMA-safe buffer if we can. We can't avoid 4421 * copying here, (as a pure convenience thing), but we can 4422 * keep heap costs out of the hot path unless someone else is 4423 * using the pre-allocated buffer or the transfer is too large. 4424 */ 4425 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4426 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4427 GFP_KERNEL | GFP_DMA); 4428 if (!local_buf) 4429 return -ENOMEM; 4430 } else { 4431 local_buf = buf; 4432 } 4433 4434 spi_message_init(&message); 4435 memset(x, 0, sizeof(x)); 4436 if (n_tx) { 4437 x[0].len = n_tx; 4438 spi_message_add_tail(&x[0], &message); 4439 } 4440 if (n_rx) { 4441 x[1].len = n_rx; 4442 spi_message_add_tail(&x[1], &message); 4443 } 4444 4445 memcpy(local_buf, txbuf, n_tx); 4446 x[0].tx_buf = local_buf; 4447 x[1].rx_buf = local_buf + n_tx; 4448 4449 /* Do the I/O */ 4450 status = spi_sync(spi, &message); 4451 if (status == 0) 4452 memcpy(rxbuf, x[1].rx_buf, n_rx); 4453 4454 if (x[0].tx_buf == buf) 4455 mutex_unlock(&lock); 4456 else 4457 kfree(local_buf); 4458 4459 return status; 4460 } 4461 EXPORT_SYMBOL_GPL(spi_write_then_read); 4462 4463 /*-------------------------------------------------------------------------*/ 4464 4465 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4466 /* Must call put_device() when done with returned spi_device device */ 4467 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4468 { 4469 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4470 4471 return dev ? to_spi_device(dev) : NULL; 4472 } 4473 4474 /* The spi controllers are not using spi_bus, so we find it with another way */ 4475 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4476 { 4477 struct device *dev; 4478 4479 dev = class_find_device_by_of_node(&spi_master_class, node); 4480 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4481 dev = class_find_device_by_of_node(&spi_slave_class, node); 4482 if (!dev) 4483 return NULL; 4484 4485 /* Reference got in class_find_device */ 4486 return container_of(dev, struct spi_controller, dev); 4487 } 4488 4489 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4490 void *arg) 4491 { 4492 struct of_reconfig_data *rd = arg; 4493 struct spi_controller *ctlr; 4494 struct spi_device *spi; 4495 4496 switch (of_reconfig_get_state_change(action, arg)) { 4497 case OF_RECONFIG_CHANGE_ADD: 4498 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4499 if (ctlr == NULL) 4500 return NOTIFY_OK; /* Not for us */ 4501 4502 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4503 put_device(&ctlr->dev); 4504 return NOTIFY_OK; 4505 } 4506 4507 /* 4508 * Clear the flag before adding the device so that fw_devlink 4509 * doesn't skip adding consumers to this device. 4510 */ 4511 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4512 spi = of_register_spi_device(ctlr, rd->dn); 4513 put_device(&ctlr->dev); 4514 4515 if (IS_ERR(spi)) { 4516 pr_err("%s: failed to create for '%pOF'\n", 4517 __func__, rd->dn); 4518 of_node_clear_flag(rd->dn, OF_POPULATED); 4519 return notifier_from_errno(PTR_ERR(spi)); 4520 } 4521 break; 4522 4523 case OF_RECONFIG_CHANGE_REMOVE: 4524 /* Already depopulated? */ 4525 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4526 return NOTIFY_OK; 4527 4528 /* Find our device by node */ 4529 spi = of_find_spi_device_by_node(rd->dn); 4530 if (spi == NULL) 4531 return NOTIFY_OK; /* No? not meant for us */ 4532 4533 /* Unregister takes one ref away */ 4534 spi_unregister_device(spi); 4535 4536 /* And put the reference of the find */ 4537 put_device(&spi->dev); 4538 break; 4539 } 4540 4541 return NOTIFY_OK; 4542 } 4543 4544 static struct notifier_block spi_of_notifier = { 4545 .notifier_call = of_spi_notify, 4546 }; 4547 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4548 extern struct notifier_block spi_of_notifier; 4549 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4550 4551 #if IS_ENABLED(CONFIG_ACPI) 4552 static int spi_acpi_controller_match(struct device *dev, const void *data) 4553 { 4554 return ACPI_COMPANION(dev->parent) == data; 4555 } 4556 4557 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4558 { 4559 struct device *dev; 4560 4561 dev = class_find_device(&spi_master_class, NULL, adev, 4562 spi_acpi_controller_match); 4563 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4564 dev = class_find_device(&spi_slave_class, NULL, adev, 4565 spi_acpi_controller_match); 4566 if (!dev) 4567 return NULL; 4568 4569 return container_of(dev, struct spi_controller, dev); 4570 } 4571 4572 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4573 { 4574 struct device *dev; 4575 4576 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4577 return to_spi_device(dev); 4578 } 4579 4580 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4581 void *arg) 4582 { 4583 struct acpi_device *adev = arg; 4584 struct spi_controller *ctlr; 4585 struct spi_device *spi; 4586 4587 switch (value) { 4588 case ACPI_RECONFIG_DEVICE_ADD: 4589 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4590 if (!ctlr) 4591 break; 4592 4593 acpi_register_spi_device(ctlr, adev); 4594 put_device(&ctlr->dev); 4595 break; 4596 case ACPI_RECONFIG_DEVICE_REMOVE: 4597 if (!acpi_device_enumerated(adev)) 4598 break; 4599 4600 spi = acpi_spi_find_device_by_adev(adev); 4601 if (!spi) 4602 break; 4603 4604 spi_unregister_device(spi); 4605 put_device(&spi->dev); 4606 break; 4607 } 4608 4609 return NOTIFY_OK; 4610 } 4611 4612 static struct notifier_block spi_acpi_notifier = { 4613 .notifier_call = acpi_spi_notify, 4614 }; 4615 #else 4616 extern struct notifier_block spi_acpi_notifier; 4617 #endif 4618 4619 static int __init spi_init(void) 4620 { 4621 int status; 4622 4623 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4624 if (!buf) { 4625 status = -ENOMEM; 4626 goto err0; 4627 } 4628 4629 status = bus_register(&spi_bus_type); 4630 if (status < 0) 4631 goto err1; 4632 4633 status = class_register(&spi_master_class); 4634 if (status < 0) 4635 goto err2; 4636 4637 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4638 status = class_register(&spi_slave_class); 4639 if (status < 0) 4640 goto err3; 4641 } 4642 4643 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4644 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4645 if (IS_ENABLED(CONFIG_ACPI)) 4646 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4647 4648 return 0; 4649 4650 err3: 4651 class_unregister(&spi_master_class); 4652 err2: 4653 bus_unregister(&spi_bus_type); 4654 err1: 4655 kfree(buf); 4656 buf = NULL; 4657 err0: 4658 return status; 4659 } 4660 4661 /* 4662 * A board_info is normally registered in arch_initcall(), 4663 * but even essential drivers wait till later. 4664 * 4665 * REVISIT only boardinfo really needs static linking. The rest (device and 4666 * driver registration) _could_ be dynamically linked (modular) ... Costs 4667 * include needing to have boardinfo data structures be much more public. 4668 */ 4669 postcore_initcall(spi_init); 4670