1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del operation for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /** 479 * spi_alloc_device - Allocate a new SPI device 480 * @ctlr: Controller to which device is connected 481 * Context: can sleep 482 * 483 * Allows a driver to allocate and initialize a spi_device without 484 * registering it immediately. This allows a driver to directly 485 * fill the spi_device with device parameters before calling 486 * spi_add_device() on it. 487 * 488 * Caller is responsible to call spi_add_device() on the returned 489 * spi_device structure to add it to the SPI controller. If the caller 490 * needs to discard the spi_device without adding it, then it should 491 * call spi_dev_put() on it. 492 * 493 * Return: a pointer to the new device, or NULL. 494 */ 495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 496 { 497 struct spi_device *spi; 498 499 if (!spi_controller_get(ctlr)) 500 return NULL; 501 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 503 if (!spi) { 504 spi_controller_put(ctlr); 505 return NULL; 506 } 507 508 spi->master = spi->controller = ctlr; 509 spi->dev.parent = &ctlr->dev; 510 spi->dev.bus = &spi_bus_type; 511 spi->dev.release = spidev_release; 512 spi->cs_gpio = -ENOENT; 513 514 spin_lock_init(&spi->statistics.lock); 515 516 device_initialize(&spi->dev); 517 return spi; 518 } 519 EXPORT_SYMBOL_GPL(spi_alloc_device); 520 521 static void spi_dev_set_name(struct spi_device *spi) 522 { 523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 524 525 if (adev) { 526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 527 return; 528 } 529 530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 531 spi->chip_select); 532 } 533 534 static int spi_dev_check(struct device *dev, void *data) 535 { 536 struct spi_device *spi = to_spi_device(dev); 537 struct spi_device *new_spi = data; 538 539 if (spi->controller == new_spi->controller && 540 spi->chip_select == new_spi->chip_select) 541 return -EBUSY; 542 return 0; 543 } 544 545 /** 546 * spi_add_device - Add spi_device allocated with spi_alloc_device 547 * @spi: spi_device to register 548 * 549 * Companion function to spi_alloc_device. Devices allocated with 550 * spi_alloc_device can be added onto the spi bus with this function. 551 * 552 * Return: 0 on success; negative errno on failure 553 */ 554 int spi_add_device(struct spi_device *spi) 555 { 556 static DEFINE_MUTEX(spi_add_lock); 557 struct spi_controller *ctlr = spi->controller; 558 struct device *dev = ctlr->dev.parent; 559 int status; 560 561 /* Chipselects are numbered 0..max; validate. */ 562 if (spi->chip_select >= ctlr->num_chipselect) { 563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 564 ctlr->num_chipselect); 565 return -EINVAL; 566 } 567 568 /* Set the bus ID string */ 569 spi_dev_set_name(spi); 570 571 /* We need to make sure there's no other device with this 572 * chipselect **BEFORE** we call setup(), else we'll trash 573 * its configuration. Lock against concurrent add() calls. 574 */ 575 mutex_lock(&spi_add_lock); 576 577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 578 if (status) { 579 dev_err(dev, "chipselect %d already in use\n", 580 spi->chip_select); 581 goto done; 582 } 583 584 /* Descriptors take precedence */ 585 if (ctlr->cs_gpiods) 586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 587 else if (ctlr->cs_gpios) 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 589 590 /* Drivers may modify this initial i/o setup, but will 591 * normally rely on the device being setup. Devices 592 * using SPI_CS_HIGH can't coexist well otherwise... 593 */ 594 status = spi_setup(spi); 595 if (status < 0) { 596 dev_err(dev, "can't setup %s, status %d\n", 597 dev_name(&spi->dev), status); 598 goto done; 599 } 600 601 /* Device may be bound to an active driver when this returns */ 602 status = device_add(&spi->dev); 603 if (status < 0) 604 dev_err(dev, "can't add %s, status %d\n", 605 dev_name(&spi->dev), status); 606 else 607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 608 609 done: 610 mutex_unlock(&spi_add_lock); 611 return status; 612 } 613 EXPORT_SYMBOL_GPL(spi_add_device); 614 615 /** 616 * spi_new_device - instantiate one new SPI device 617 * @ctlr: Controller to which device is connected 618 * @chip: Describes the SPI device 619 * Context: can sleep 620 * 621 * On typical mainboards, this is purely internal; and it's not needed 622 * after board init creates the hard-wired devices. Some development 623 * platforms may not be able to use spi_register_board_info though, and 624 * this is exported so that for example a USB or parport based adapter 625 * driver could add devices (which it would learn about out-of-band). 626 * 627 * Return: the new device, or NULL. 628 */ 629 struct spi_device *spi_new_device(struct spi_controller *ctlr, 630 struct spi_board_info *chip) 631 { 632 struct spi_device *proxy; 633 int status; 634 635 /* NOTE: caller did any chip->bus_num checks necessary. 636 * 637 * Also, unless we change the return value convention to use 638 * error-or-pointer (not NULL-or-pointer), troubleshootability 639 * suggests syslogged diagnostics are best here (ugh). 640 */ 641 642 proxy = spi_alloc_device(ctlr); 643 if (!proxy) 644 return NULL; 645 646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 647 648 proxy->chip_select = chip->chip_select; 649 proxy->max_speed_hz = chip->max_speed_hz; 650 proxy->mode = chip->mode; 651 proxy->irq = chip->irq; 652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 653 proxy->dev.platform_data = (void *) chip->platform_data; 654 proxy->controller_data = chip->controller_data; 655 proxy->controller_state = NULL; 656 657 if (chip->properties) { 658 status = device_add_properties(&proxy->dev, chip->properties); 659 if (status) { 660 dev_err(&ctlr->dev, 661 "failed to add properties to '%s': %d\n", 662 chip->modalias, status); 663 goto err_dev_put; 664 } 665 } 666 667 status = spi_add_device(proxy); 668 if (status < 0) 669 goto err_remove_props; 670 671 return proxy; 672 673 err_remove_props: 674 if (chip->properties) 675 device_remove_properties(&proxy->dev); 676 err_dev_put: 677 spi_dev_put(proxy); 678 return NULL; 679 } 680 EXPORT_SYMBOL_GPL(spi_new_device); 681 682 /** 683 * spi_unregister_device - unregister a single SPI device 684 * @spi: spi_device to unregister 685 * 686 * Start making the passed SPI device vanish. Normally this would be handled 687 * by spi_unregister_controller(). 688 */ 689 void spi_unregister_device(struct spi_device *spi) 690 { 691 if (!spi) 692 return; 693 694 if (spi->dev.of_node) { 695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 696 of_node_put(spi->dev.of_node); 697 } 698 if (ACPI_COMPANION(&spi->dev)) 699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 700 device_unregister(&spi->dev); 701 } 702 EXPORT_SYMBOL_GPL(spi_unregister_device); 703 704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 705 struct spi_board_info *bi) 706 { 707 struct spi_device *dev; 708 709 if (ctlr->bus_num != bi->bus_num) 710 return; 711 712 dev = spi_new_device(ctlr, bi); 713 if (!dev) 714 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 715 bi->modalias); 716 } 717 718 /** 719 * spi_register_board_info - register SPI devices for a given board 720 * @info: array of chip descriptors 721 * @n: how many descriptors are provided 722 * Context: can sleep 723 * 724 * Board-specific early init code calls this (probably during arch_initcall) 725 * with segments of the SPI device table. Any device nodes are created later, 726 * after the relevant parent SPI controller (bus_num) is defined. We keep 727 * this table of devices forever, so that reloading a controller driver will 728 * not make Linux forget about these hard-wired devices. 729 * 730 * Other code can also call this, e.g. a particular add-on board might provide 731 * SPI devices through its expansion connector, so code initializing that board 732 * would naturally declare its SPI devices. 733 * 734 * The board info passed can safely be __initdata ... but be careful of 735 * any embedded pointers (platform_data, etc), they're copied as-is. 736 * Device properties are deep-copied though. 737 * 738 * Return: zero on success, else a negative error code. 739 */ 740 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 741 { 742 struct boardinfo *bi; 743 int i; 744 745 if (!n) 746 return 0; 747 748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 749 if (!bi) 750 return -ENOMEM; 751 752 for (i = 0; i < n; i++, bi++, info++) { 753 struct spi_controller *ctlr; 754 755 memcpy(&bi->board_info, info, sizeof(*info)); 756 if (info->properties) { 757 bi->board_info.properties = 758 property_entries_dup(info->properties); 759 if (IS_ERR(bi->board_info.properties)) 760 return PTR_ERR(bi->board_info.properties); 761 } 762 763 mutex_lock(&board_lock); 764 list_add_tail(&bi->list, &board_list); 765 list_for_each_entry(ctlr, &spi_controller_list, list) 766 spi_match_controller_to_boardinfo(ctlr, 767 &bi->board_info); 768 mutex_unlock(&board_lock); 769 } 770 771 return 0; 772 } 773 774 /*-------------------------------------------------------------------------*/ 775 776 static void spi_set_cs(struct spi_device *spi, bool enable) 777 { 778 bool enable1 = enable; 779 780 if (!spi->controller->set_cs_timing) { 781 if (enable1) 782 spi_delay_exec(&spi->controller->cs_setup, NULL); 783 else 784 spi_delay_exec(&spi->controller->cs_hold, NULL); 785 } 786 787 if (spi->mode & SPI_CS_HIGH) 788 enable = !enable; 789 790 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 791 /* 792 * Honour the SPI_NO_CS flag and invert the enable line, as 793 * active low is default for SPI. Execution paths that handle 794 * polarity inversion in gpiolib (such as device tree) will 795 * enforce active high using the SPI_CS_HIGH resulting in a 796 * double inversion through the code above. 797 */ 798 if (!(spi->mode & SPI_NO_CS)) { 799 if (spi->cs_gpiod) 800 gpiod_set_value_cansleep(spi->cs_gpiod, 801 !enable); 802 else 803 gpio_set_value_cansleep(spi->cs_gpio, !enable); 804 } 805 /* Some SPI masters need both GPIO CS & slave_select */ 806 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 807 spi->controller->set_cs) 808 spi->controller->set_cs(spi, !enable); 809 } else if (spi->controller->set_cs) { 810 spi->controller->set_cs(spi, !enable); 811 } 812 813 if (!spi->controller->set_cs_timing) { 814 if (!enable1) 815 spi_delay_exec(&spi->controller->cs_inactive, NULL); 816 } 817 } 818 819 #ifdef CONFIG_HAS_DMA 820 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 821 struct sg_table *sgt, void *buf, size_t len, 822 enum dma_data_direction dir) 823 { 824 const bool vmalloced_buf = is_vmalloc_addr(buf); 825 unsigned int max_seg_size = dma_get_max_seg_size(dev); 826 #ifdef CONFIG_HIGHMEM 827 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 828 (unsigned long)buf < (PKMAP_BASE + 829 (LAST_PKMAP * PAGE_SIZE))); 830 #else 831 const bool kmap_buf = false; 832 #endif 833 int desc_len; 834 int sgs; 835 struct page *vm_page; 836 struct scatterlist *sg; 837 void *sg_buf; 838 size_t min; 839 int i, ret; 840 841 if (vmalloced_buf || kmap_buf) { 842 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 843 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 844 } else if (virt_addr_valid(buf)) { 845 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 846 sgs = DIV_ROUND_UP(len, desc_len); 847 } else { 848 return -EINVAL; 849 } 850 851 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 852 if (ret != 0) 853 return ret; 854 855 sg = &sgt->sgl[0]; 856 for (i = 0; i < sgs; i++) { 857 858 if (vmalloced_buf || kmap_buf) { 859 /* 860 * Next scatterlist entry size is the minimum between 861 * the desc_len and the remaining buffer length that 862 * fits in a page. 863 */ 864 min = min_t(size_t, desc_len, 865 min_t(size_t, len, 866 PAGE_SIZE - offset_in_page(buf))); 867 if (vmalloced_buf) 868 vm_page = vmalloc_to_page(buf); 869 else 870 vm_page = kmap_to_page(buf); 871 if (!vm_page) { 872 sg_free_table(sgt); 873 return -ENOMEM; 874 } 875 sg_set_page(sg, vm_page, 876 min, offset_in_page(buf)); 877 } else { 878 min = min_t(size_t, len, desc_len); 879 sg_buf = buf; 880 sg_set_buf(sg, sg_buf, min); 881 } 882 883 buf += min; 884 len -= min; 885 sg = sg_next(sg); 886 } 887 888 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 889 if (!ret) 890 ret = -ENOMEM; 891 if (ret < 0) { 892 sg_free_table(sgt); 893 return ret; 894 } 895 896 sgt->nents = ret; 897 898 return 0; 899 } 900 901 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 902 struct sg_table *sgt, enum dma_data_direction dir) 903 { 904 if (sgt->orig_nents) { 905 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 906 sg_free_table(sgt); 907 } 908 } 909 910 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 911 { 912 struct device *tx_dev, *rx_dev; 913 struct spi_transfer *xfer; 914 int ret; 915 916 if (!ctlr->can_dma) 917 return 0; 918 919 if (ctlr->dma_tx) 920 tx_dev = ctlr->dma_tx->device->dev; 921 else 922 tx_dev = ctlr->dev.parent; 923 924 if (ctlr->dma_rx) 925 rx_dev = ctlr->dma_rx->device->dev; 926 else 927 rx_dev = ctlr->dev.parent; 928 929 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 930 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 931 continue; 932 933 if (xfer->tx_buf != NULL) { 934 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 935 (void *)xfer->tx_buf, xfer->len, 936 DMA_TO_DEVICE); 937 if (ret != 0) 938 return ret; 939 } 940 941 if (xfer->rx_buf != NULL) { 942 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 943 xfer->rx_buf, xfer->len, 944 DMA_FROM_DEVICE); 945 if (ret != 0) { 946 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 947 DMA_TO_DEVICE); 948 return ret; 949 } 950 } 951 } 952 953 ctlr->cur_msg_mapped = true; 954 955 return 0; 956 } 957 958 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 959 { 960 struct spi_transfer *xfer; 961 struct device *tx_dev, *rx_dev; 962 963 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 964 return 0; 965 966 if (ctlr->dma_tx) 967 tx_dev = ctlr->dma_tx->device->dev; 968 else 969 tx_dev = ctlr->dev.parent; 970 971 if (ctlr->dma_rx) 972 rx_dev = ctlr->dma_rx->device->dev; 973 else 974 rx_dev = ctlr->dev.parent; 975 976 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 977 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 978 continue; 979 980 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 981 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 982 } 983 984 return 0; 985 } 986 #else /* !CONFIG_HAS_DMA */ 987 static inline int __spi_map_msg(struct spi_controller *ctlr, 988 struct spi_message *msg) 989 { 990 return 0; 991 } 992 993 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 994 struct spi_message *msg) 995 { 996 return 0; 997 } 998 #endif /* !CONFIG_HAS_DMA */ 999 1000 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1001 struct spi_message *msg) 1002 { 1003 struct spi_transfer *xfer; 1004 1005 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1006 /* 1007 * Restore the original value of tx_buf or rx_buf if they are 1008 * NULL. 1009 */ 1010 if (xfer->tx_buf == ctlr->dummy_tx) 1011 xfer->tx_buf = NULL; 1012 if (xfer->rx_buf == ctlr->dummy_rx) 1013 xfer->rx_buf = NULL; 1014 } 1015 1016 return __spi_unmap_msg(ctlr, msg); 1017 } 1018 1019 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1020 { 1021 struct spi_transfer *xfer; 1022 void *tmp; 1023 unsigned int max_tx, max_rx; 1024 1025 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { 1026 max_tx = 0; 1027 max_rx = 0; 1028 1029 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1030 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1031 !xfer->tx_buf) 1032 max_tx = max(xfer->len, max_tx); 1033 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1034 !xfer->rx_buf) 1035 max_rx = max(xfer->len, max_rx); 1036 } 1037 1038 if (max_tx) { 1039 tmp = krealloc(ctlr->dummy_tx, max_tx, 1040 GFP_KERNEL | GFP_DMA); 1041 if (!tmp) 1042 return -ENOMEM; 1043 ctlr->dummy_tx = tmp; 1044 memset(tmp, 0, max_tx); 1045 } 1046 1047 if (max_rx) { 1048 tmp = krealloc(ctlr->dummy_rx, max_rx, 1049 GFP_KERNEL | GFP_DMA); 1050 if (!tmp) 1051 return -ENOMEM; 1052 ctlr->dummy_rx = tmp; 1053 } 1054 1055 if (max_tx || max_rx) { 1056 list_for_each_entry(xfer, &msg->transfers, 1057 transfer_list) { 1058 if (!xfer->len) 1059 continue; 1060 if (!xfer->tx_buf) 1061 xfer->tx_buf = ctlr->dummy_tx; 1062 if (!xfer->rx_buf) 1063 xfer->rx_buf = ctlr->dummy_rx; 1064 } 1065 } 1066 } 1067 1068 return __spi_map_msg(ctlr, msg); 1069 } 1070 1071 static int spi_transfer_wait(struct spi_controller *ctlr, 1072 struct spi_message *msg, 1073 struct spi_transfer *xfer) 1074 { 1075 struct spi_statistics *statm = &ctlr->statistics; 1076 struct spi_statistics *stats = &msg->spi->statistics; 1077 unsigned long long ms = 1; 1078 1079 if (spi_controller_is_slave(ctlr)) { 1080 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1081 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1082 return -EINTR; 1083 } 1084 } else { 1085 ms = 8LL * 1000LL * xfer->len; 1086 do_div(ms, xfer->speed_hz); 1087 ms += ms + 200; /* some tolerance */ 1088 1089 if (ms > UINT_MAX) 1090 ms = UINT_MAX; 1091 1092 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1093 msecs_to_jiffies(ms)); 1094 1095 if (ms == 0) { 1096 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1097 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1098 dev_err(&msg->spi->dev, 1099 "SPI transfer timed out\n"); 1100 return -ETIMEDOUT; 1101 } 1102 } 1103 1104 return 0; 1105 } 1106 1107 static void _spi_transfer_delay_ns(u32 ns) 1108 { 1109 if (!ns) 1110 return; 1111 if (ns <= 1000) { 1112 ndelay(ns); 1113 } else { 1114 u32 us = DIV_ROUND_UP(ns, 1000); 1115 1116 if (us <= 10) 1117 udelay(us); 1118 else 1119 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1120 } 1121 } 1122 1123 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1124 { 1125 u32 delay = _delay->value; 1126 u32 unit = _delay->unit; 1127 u32 hz; 1128 1129 if (!delay) 1130 return 0; 1131 1132 switch (unit) { 1133 case SPI_DELAY_UNIT_USECS: 1134 delay *= 1000; 1135 break; 1136 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1137 break; 1138 case SPI_DELAY_UNIT_SCK: 1139 /* clock cycles need to be obtained from spi_transfer */ 1140 if (!xfer) 1141 return -EINVAL; 1142 /* if there is no effective speed know, then approximate 1143 * by underestimating with half the requested hz 1144 */ 1145 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1146 if (!hz) 1147 return -EINVAL; 1148 delay *= DIV_ROUND_UP(1000000000, hz); 1149 break; 1150 default: 1151 return -EINVAL; 1152 } 1153 1154 return delay; 1155 } 1156 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1157 1158 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1159 { 1160 int delay; 1161 1162 if (!_delay) 1163 return -EINVAL; 1164 1165 delay = spi_delay_to_ns(_delay, xfer); 1166 if (delay < 0) 1167 return delay; 1168 1169 _spi_transfer_delay_ns(delay); 1170 1171 return 0; 1172 } 1173 EXPORT_SYMBOL_GPL(spi_delay_exec); 1174 1175 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1176 struct spi_transfer *xfer) 1177 { 1178 u32 delay = xfer->cs_change_delay.value; 1179 u32 unit = xfer->cs_change_delay.unit; 1180 int ret; 1181 1182 /* return early on "fast" mode - for everything but USECS */ 1183 if (!delay) { 1184 if (unit == SPI_DELAY_UNIT_USECS) 1185 _spi_transfer_delay_ns(10000); 1186 return; 1187 } 1188 1189 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1190 if (ret) { 1191 dev_err_once(&msg->spi->dev, 1192 "Use of unsupported delay unit %i, using default of 10us\n", 1193 unit); 1194 _spi_transfer_delay_ns(10000); 1195 } 1196 } 1197 1198 /* 1199 * spi_transfer_one_message - Default implementation of transfer_one_message() 1200 * 1201 * This is a standard implementation of transfer_one_message() for 1202 * drivers which implement a transfer_one() operation. It provides 1203 * standard handling of delays and chip select management. 1204 */ 1205 static int spi_transfer_one_message(struct spi_controller *ctlr, 1206 struct spi_message *msg) 1207 { 1208 struct spi_transfer *xfer; 1209 bool keep_cs = false; 1210 int ret = 0; 1211 struct spi_statistics *statm = &ctlr->statistics; 1212 struct spi_statistics *stats = &msg->spi->statistics; 1213 1214 spi_set_cs(msg->spi, true); 1215 1216 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1217 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1218 1219 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1220 trace_spi_transfer_start(msg, xfer); 1221 1222 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1223 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1224 1225 if (!ctlr->ptp_sts_supported) { 1226 xfer->ptp_sts_word_pre = 0; 1227 ptp_read_system_prets(xfer->ptp_sts); 1228 } 1229 1230 if (xfer->tx_buf || xfer->rx_buf) { 1231 reinit_completion(&ctlr->xfer_completion); 1232 1233 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1234 if (ret < 0) { 1235 SPI_STATISTICS_INCREMENT_FIELD(statm, 1236 errors); 1237 SPI_STATISTICS_INCREMENT_FIELD(stats, 1238 errors); 1239 dev_err(&msg->spi->dev, 1240 "SPI transfer failed: %d\n", ret); 1241 goto out; 1242 } 1243 1244 if (ret > 0) { 1245 ret = spi_transfer_wait(ctlr, msg, xfer); 1246 if (ret < 0) 1247 msg->status = ret; 1248 } 1249 } else { 1250 if (xfer->len) 1251 dev_err(&msg->spi->dev, 1252 "Bufferless transfer has length %u\n", 1253 xfer->len); 1254 } 1255 1256 if (!ctlr->ptp_sts_supported) { 1257 ptp_read_system_postts(xfer->ptp_sts); 1258 xfer->ptp_sts_word_post = xfer->len; 1259 } 1260 1261 trace_spi_transfer_stop(msg, xfer); 1262 1263 if (msg->status != -EINPROGRESS) 1264 goto out; 1265 1266 spi_transfer_delay_exec(xfer); 1267 1268 if (xfer->cs_change) { 1269 if (list_is_last(&xfer->transfer_list, 1270 &msg->transfers)) { 1271 keep_cs = true; 1272 } else { 1273 spi_set_cs(msg->spi, false); 1274 _spi_transfer_cs_change_delay(msg, xfer); 1275 spi_set_cs(msg->spi, true); 1276 } 1277 } 1278 1279 msg->actual_length += xfer->len; 1280 } 1281 1282 out: 1283 if (ret != 0 || !keep_cs) 1284 spi_set_cs(msg->spi, false); 1285 1286 if (msg->status == -EINPROGRESS) 1287 msg->status = ret; 1288 1289 if (msg->status && ctlr->handle_err) 1290 ctlr->handle_err(ctlr, msg); 1291 1292 spi_res_release(ctlr, msg); 1293 1294 spi_finalize_current_message(ctlr); 1295 1296 return ret; 1297 } 1298 1299 /** 1300 * spi_finalize_current_transfer - report completion of a transfer 1301 * @ctlr: the controller reporting completion 1302 * 1303 * Called by SPI drivers using the core transfer_one_message() 1304 * implementation to notify it that the current interrupt driven 1305 * transfer has finished and the next one may be scheduled. 1306 */ 1307 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1308 { 1309 complete(&ctlr->xfer_completion); 1310 } 1311 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1312 1313 /** 1314 * __spi_pump_messages - function which processes spi message queue 1315 * @ctlr: controller to process queue for 1316 * @in_kthread: true if we are in the context of the message pump thread 1317 * 1318 * This function checks if there is any spi message in the queue that 1319 * needs processing and if so call out to the driver to initialize hardware 1320 * and transfer each message. 1321 * 1322 * Note that it is called both from the kthread itself and also from 1323 * inside spi_sync(); the queue extraction handling at the top of the 1324 * function should deal with this safely. 1325 */ 1326 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1327 { 1328 struct spi_transfer *xfer; 1329 struct spi_message *msg; 1330 bool was_busy = false; 1331 unsigned long flags; 1332 int ret; 1333 1334 /* Lock queue */ 1335 spin_lock_irqsave(&ctlr->queue_lock, flags); 1336 1337 /* Make sure we are not already running a message */ 1338 if (ctlr->cur_msg) { 1339 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1340 return; 1341 } 1342 1343 /* If another context is idling the device then defer */ 1344 if (ctlr->idling) { 1345 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1346 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1347 return; 1348 } 1349 1350 /* Check if the queue is idle */ 1351 if (list_empty(&ctlr->queue) || !ctlr->running) { 1352 if (!ctlr->busy) { 1353 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1354 return; 1355 } 1356 1357 /* Only do teardown in the thread */ 1358 if (!in_kthread) { 1359 kthread_queue_work(&ctlr->kworker, 1360 &ctlr->pump_messages); 1361 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1362 return; 1363 } 1364 1365 ctlr->busy = false; 1366 ctlr->idling = true; 1367 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1368 1369 kfree(ctlr->dummy_rx); 1370 ctlr->dummy_rx = NULL; 1371 kfree(ctlr->dummy_tx); 1372 ctlr->dummy_tx = NULL; 1373 if (ctlr->unprepare_transfer_hardware && 1374 ctlr->unprepare_transfer_hardware(ctlr)) 1375 dev_err(&ctlr->dev, 1376 "failed to unprepare transfer hardware\n"); 1377 if (ctlr->auto_runtime_pm) { 1378 pm_runtime_mark_last_busy(ctlr->dev.parent); 1379 pm_runtime_put_autosuspend(ctlr->dev.parent); 1380 } 1381 trace_spi_controller_idle(ctlr); 1382 1383 spin_lock_irqsave(&ctlr->queue_lock, flags); 1384 ctlr->idling = false; 1385 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1386 return; 1387 } 1388 1389 /* Extract head of queue */ 1390 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1391 ctlr->cur_msg = msg; 1392 1393 list_del_init(&msg->queue); 1394 if (ctlr->busy) 1395 was_busy = true; 1396 else 1397 ctlr->busy = true; 1398 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1399 1400 mutex_lock(&ctlr->io_mutex); 1401 1402 if (!was_busy && ctlr->auto_runtime_pm) { 1403 ret = pm_runtime_get_sync(ctlr->dev.parent); 1404 if (ret < 0) { 1405 pm_runtime_put_noidle(ctlr->dev.parent); 1406 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1407 ret); 1408 mutex_unlock(&ctlr->io_mutex); 1409 return; 1410 } 1411 } 1412 1413 if (!was_busy) 1414 trace_spi_controller_busy(ctlr); 1415 1416 if (!was_busy && ctlr->prepare_transfer_hardware) { 1417 ret = ctlr->prepare_transfer_hardware(ctlr); 1418 if (ret) { 1419 dev_err(&ctlr->dev, 1420 "failed to prepare transfer hardware: %d\n", 1421 ret); 1422 1423 if (ctlr->auto_runtime_pm) 1424 pm_runtime_put(ctlr->dev.parent); 1425 1426 msg->status = ret; 1427 spi_finalize_current_message(ctlr); 1428 1429 mutex_unlock(&ctlr->io_mutex); 1430 return; 1431 } 1432 } 1433 1434 trace_spi_message_start(msg); 1435 1436 if (ctlr->prepare_message) { 1437 ret = ctlr->prepare_message(ctlr, msg); 1438 if (ret) { 1439 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1440 ret); 1441 msg->status = ret; 1442 spi_finalize_current_message(ctlr); 1443 goto out; 1444 } 1445 ctlr->cur_msg_prepared = true; 1446 } 1447 1448 ret = spi_map_msg(ctlr, msg); 1449 if (ret) { 1450 msg->status = ret; 1451 spi_finalize_current_message(ctlr); 1452 goto out; 1453 } 1454 1455 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1456 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1457 xfer->ptp_sts_word_pre = 0; 1458 ptp_read_system_prets(xfer->ptp_sts); 1459 } 1460 } 1461 1462 ret = ctlr->transfer_one_message(ctlr, msg); 1463 if (ret) { 1464 dev_err(&ctlr->dev, 1465 "failed to transfer one message from queue\n"); 1466 goto out; 1467 } 1468 1469 out: 1470 mutex_unlock(&ctlr->io_mutex); 1471 1472 /* Prod the scheduler in case transfer_one() was busy waiting */ 1473 if (!ret) 1474 cond_resched(); 1475 } 1476 1477 /** 1478 * spi_pump_messages - kthread work function which processes spi message queue 1479 * @work: pointer to kthread work struct contained in the controller struct 1480 */ 1481 static void spi_pump_messages(struct kthread_work *work) 1482 { 1483 struct spi_controller *ctlr = 1484 container_of(work, struct spi_controller, pump_messages); 1485 1486 __spi_pump_messages(ctlr, true); 1487 } 1488 1489 /** 1490 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1491 * TX timestamp for the requested byte from the SPI 1492 * transfer. The frequency with which this function 1493 * must be called (once per word, once for the whole 1494 * transfer, once per batch of words etc) is arbitrary 1495 * as long as the @tx buffer offset is greater than or 1496 * equal to the requested byte at the time of the 1497 * call. The timestamp is only taken once, at the 1498 * first such call. It is assumed that the driver 1499 * advances its @tx buffer pointer monotonically. 1500 * @ctlr: Pointer to the spi_controller structure of the driver 1501 * @xfer: Pointer to the transfer being timestamped 1502 * @tx: Pointer to the current word within the xfer->tx_buf that the driver is 1503 * preparing to transmit right now. 1504 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1505 * transfer, for less jitter in time measurement. Only compatible 1506 * with PIO drivers. If true, must follow up with 1507 * spi_take_timestamp_post or otherwise system will crash. 1508 * WARNING: for fully predictable results, the CPU frequency must 1509 * also be under control (governor). 1510 */ 1511 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1512 struct spi_transfer *xfer, 1513 const void *tx, bool irqs_off) 1514 { 1515 u8 bytes_per_word = DIV_ROUND_UP(xfer->bits_per_word, 8); 1516 1517 if (!xfer->ptp_sts) 1518 return; 1519 1520 if (xfer->timestamped_pre) 1521 return; 1522 1523 if (tx < (xfer->tx_buf + xfer->ptp_sts_word_pre * bytes_per_word)) 1524 return; 1525 1526 /* Capture the resolution of the timestamp */ 1527 xfer->ptp_sts_word_pre = (tx - xfer->tx_buf) / bytes_per_word; 1528 1529 xfer->timestamped_pre = true; 1530 1531 if (irqs_off) { 1532 local_irq_save(ctlr->irq_flags); 1533 preempt_disable(); 1534 } 1535 1536 ptp_read_system_prets(xfer->ptp_sts); 1537 } 1538 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1539 1540 /** 1541 * spi_take_timestamp_post - helper for drivers to collect the end of the 1542 * TX timestamp for the requested byte from the SPI 1543 * transfer. Can be called with an arbitrary 1544 * frequency: only the first call where @tx exceeds 1545 * or is equal to the requested word will be 1546 * timestamped. 1547 * @ctlr: Pointer to the spi_controller structure of the driver 1548 * @xfer: Pointer to the transfer being timestamped 1549 * @tx: Pointer to the current word within the xfer->tx_buf that the driver has 1550 * just transmitted. 1551 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1552 */ 1553 void spi_take_timestamp_post(struct spi_controller *ctlr, 1554 struct spi_transfer *xfer, 1555 const void *tx, bool irqs_off) 1556 { 1557 u8 bytes_per_word = DIV_ROUND_UP(xfer->bits_per_word, 8); 1558 1559 if (!xfer->ptp_sts) 1560 return; 1561 1562 if (xfer->timestamped_post) 1563 return; 1564 1565 if (tx < (xfer->tx_buf + xfer->ptp_sts_word_post * bytes_per_word)) 1566 return; 1567 1568 ptp_read_system_postts(xfer->ptp_sts); 1569 1570 if (irqs_off) { 1571 local_irq_restore(ctlr->irq_flags); 1572 preempt_enable(); 1573 } 1574 1575 /* Capture the resolution of the timestamp */ 1576 xfer->ptp_sts_word_post = (tx - xfer->tx_buf) / bytes_per_word; 1577 1578 xfer->timestamped_post = true; 1579 } 1580 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1581 1582 /** 1583 * spi_set_thread_rt - set the controller to pump at realtime priority 1584 * @ctlr: controller to boost priority of 1585 * 1586 * This can be called because the controller requested realtime priority 1587 * (by setting the ->rt value before calling spi_register_controller()) or 1588 * because a device on the bus said that its transfers needed realtime 1589 * priority. 1590 * 1591 * NOTE: at the moment if any device on a bus says it needs realtime then 1592 * the thread will be at realtime priority for all transfers on that 1593 * controller. If this eventually becomes a problem we may see if we can 1594 * find a way to boost the priority only temporarily during relevant 1595 * transfers. 1596 */ 1597 static void spi_set_thread_rt(struct spi_controller *ctlr) 1598 { 1599 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 }; 1600 1601 dev_info(&ctlr->dev, 1602 "will run message pump with realtime priority\n"); 1603 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); 1604 } 1605 1606 static int spi_init_queue(struct spi_controller *ctlr) 1607 { 1608 ctlr->running = false; 1609 ctlr->busy = false; 1610 1611 kthread_init_worker(&ctlr->kworker); 1612 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, 1613 "%s", dev_name(&ctlr->dev)); 1614 if (IS_ERR(ctlr->kworker_task)) { 1615 dev_err(&ctlr->dev, "failed to create message pump task\n"); 1616 return PTR_ERR(ctlr->kworker_task); 1617 } 1618 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1619 1620 /* 1621 * Controller config will indicate if this controller should run the 1622 * message pump with high (realtime) priority to reduce the transfer 1623 * latency on the bus by minimising the delay between a transfer 1624 * request and the scheduling of the message pump thread. Without this 1625 * setting the message pump thread will remain at default priority. 1626 */ 1627 if (ctlr->rt) 1628 spi_set_thread_rt(ctlr); 1629 1630 return 0; 1631 } 1632 1633 /** 1634 * spi_get_next_queued_message() - called by driver to check for queued 1635 * messages 1636 * @ctlr: the controller to check for queued messages 1637 * 1638 * If there are more messages in the queue, the next message is returned from 1639 * this call. 1640 * 1641 * Return: the next message in the queue, else NULL if the queue is empty. 1642 */ 1643 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1644 { 1645 struct spi_message *next; 1646 unsigned long flags; 1647 1648 /* get a pointer to the next message, if any */ 1649 spin_lock_irqsave(&ctlr->queue_lock, flags); 1650 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1651 queue); 1652 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1653 1654 return next; 1655 } 1656 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1657 1658 /** 1659 * spi_finalize_current_message() - the current message is complete 1660 * @ctlr: the controller to return the message to 1661 * 1662 * Called by the driver to notify the core that the message in the front of the 1663 * queue is complete and can be removed from the queue. 1664 */ 1665 void spi_finalize_current_message(struct spi_controller *ctlr) 1666 { 1667 struct spi_transfer *xfer; 1668 struct spi_message *mesg; 1669 unsigned long flags; 1670 int ret; 1671 1672 spin_lock_irqsave(&ctlr->queue_lock, flags); 1673 mesg = ctlr->cur_msg; 1674 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1675 1676 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1677 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1678 ptp_read_system_postts(xfer->ptp_sts); 1679 xfer->ptp_sts_word_post = xfer->len; 1680 } 1681 } 1682 1683 spi_unmap_msg(ctlr, mesg); 1684 1685 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1686 ret = ctlr->unprepare_message(ctlr, mesg); 1687 if (ret) { 1688 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1689 ret); 1690 } 1691 } 1692 1693 spin_lock_irqsave(&ctlr->queue_lock, flags); 1694 ctlr->cur_msg = NULL; 1695 ctlr->cur_msg_prepared = false; 1696 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1697 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1698 1699 trace_spi_message_done(mesg); 1700 1701 mesg->state = NULL; 1702 if (mesg->complete) 1703 mesg->complete(mesg->context); 1704 } 1705 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1706 1707 static int spi_start_queue(struct spi_controller *ctlr) 1708 { 1709 unsigned long flags; 1710 1711 spin_lock_irqsave(&ctlr->queue_lock, flags); 1712 1713 if (ctlr->running || ctlr->busy) { 1714 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1715 return -EBUSY; 1716 } 1717 1718 ctlr->running = true; 1719 ctlr->cur_msg = NULL; 1720 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1721 1722 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1723 1724 return 0; 1725 } 1726 1727 static int spi_stop_queue(struct spi_controller *ctlr) 1728 { 1729 unsigned long flags; 1730 unsigned limit = 500; 1731 int ret = 0; 1732 1733 spin_lock_irqsave(&ctlr->queue_lock, flags); 1734 1735 /* 1736 * This is a bit lame, but is optimized for the common execution path. 1737 * A wait_queue on the ctlr->busy could be used, but then the common 1738 * execution path (pump_messages) would be required to call wake_up or 1739 * friends on every SPI message. Do this instead. 1740 */ 1741 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1742 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1743 usleep_range(10000, 11000); 1744 spin_lock_irqsave(&ctlr->queue_lock, flags); 1745 } 1746 1747 if (!list_empty(&ctlr->queue) || ctlr->busy) 1748 ret = -EBUSY; 1749 else 1750 ctlr->running = false; 1751 1752 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1753 1754 if (ret) { 1755 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1756 return ret; 1757 } 1758 return ret; 1759 } 1760 1761 static int spi_destroy_queue(struct spi_controller *ctlr) 1762 { 1763 int ret; 1764 1765 ret = spi_stop_queue(ctlr); 1766 1767 /* 1768 * kthread_flush_worker will block until all work is done. 1769 * If the reason that stop_queue timed out is that the work will never 1770 * finish, then it does no good to call flush/stop thread, so 1771 * return anyway. 1772 */ 1773 if (ret) { 1774 dev_err(&ctlr->dev, "problem destroying queue\n"); 1775 return ret; 1776 } 1777 1778 kthread_flush_worker(&ctlr->kworker); 1779 kthread_stop(ctlr->kworker_task); 1780 1781 return 0; 1782 } 1783 1784 static int __spi_queued_transfer(struct spi_device *spi, 1785 struct spi_message *msg, 1786 bool need_pump) 1787 { 1788 struct spi_controller *ctlr = spi->controller; 1789 unsigned long flags; 1790 1791 spin_lock_irqsave(&ctlr->queue_lock, flags); 1792 1793 if (!ctlr->running) { 1794 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1795 return -ESHUTDOWN; 1796 } 1797 msg->actual_length = 0; 1798 msg->status = -EINPROGRESS; 1799 1800 list_add_tail(&msg->queue, &ctlr->queue); 1801 if (!ctlr->busy && need_pump) 1802 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1803 1804 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1805 return 0; 1806 } 1807 1808 /** 1809 * spi_queued_transfer - transfer function for queued transfers 1810 * @spi: spi device which is requesting transfer 1811 * @msg: spi message which is to handled is queued to driver queue 1812 * 1813 * Return: zero on success, else a negative error code. 1814 */ 1815 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1816 { 1817 return __spi_queued_transfer(spi, msg, true); 1818 } 1819 1820 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1821 { 1822 int ret; 1823 1824 ctlr->transfer = spi_queued_transfer; 1825 if (!ctlr->transfer_one_message) 1826 ctlr->transfer_one_message = spi_transfer_one_message; 1827 1828 /* Initialize and start queue */ 1829 ret = spi_init_queue(ctlr); 1830 if (ret) { 1831 dev_err(&ctlr->dev, "problem initializing queue\n"); 1832 goto err_init_queue; 1833 } 1834 ctlr->queued = true; 1835 ret = spi_start_queue(ctlr); 1836 if (ret) { 1837 dev_err(&ctlr->dev, "problem starting queue\n"); 1838 goto err_start_queue; 1839 } 1840 1841 return 0; 1842 1843 err_start_queue: 1844 spi_destroy_queue(ctlr); 1845 err_init_queue: 1846 return ret; 1847 } 1848 1849 /** 1850 * spi_flush_queue - Send all pending messages in the queue from the callers' 1851 * context 1852 * @ctlr: controller to process queue for 1853 * 1854 * This should be used when one wants to ensure all pending messages have been 1855 * sent before doing something. Is used by the spi-mem code to make sure SPI 1856 * memory operations do not preempt regular SPI transfers that have been queued 1857 * before the spi-mem operation. 1858 */ 1859 void spi_flush_queue(struct spi_controller *ctlr) 1860 { 1861 if (ctlr->transfer == spi_queued_transfer) 1862 __spi_pump_messages(ctlr, false); 1863 } 1864 1865 /*-------------------------------------------------------------------------*/ 1866 1867 #if defined(CONFIG_OF) 1868 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1869 struct device_node *nc) 1870 { 1871 u32 value; 1872 int rc; 1873 1874 /* Mode (clock phase/polarity/etc.) */ 1875 if (of_property_read_bool(nc, "spi-cpha")) 1876 spi->mode |= SPI_CPHA; 1877 if (of_property_read_bool(nc, "spi-cpol")) 1878 spi->mode |= SPI_CPOL; 1879 if (of_property_read_bool(nc, "spi-3wire")) 1880 spi->mode |= SPI_3WIRE; 1881 if (of_property_read_bool(nc, "spi-lsb-first")) 1882 spi->mode |= SPI_LSB_FIRST; 1883 if (of_property_read_bool(nc, "spi-cs-high")) 1884 spi->mode |= SPI_CS_HIGH; 1885 1886 /* Device DUAL/QUAD mode */ 1887 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1888 switch (value) { 1889 case 1: 1890 break; 1891 case 2: 1892 spi->mode |= SPI_TX_DUAL; 1893 break; 1894 case 4: 1895 spi->mode |= SPI_TX_QUAD; 1896 break; 1897 case 8: 1898 spi->mode |= SPI_TX_OCTAL; 1899 break; 1900 default: 1901 dev_warn(&ctlr->dev, 1902 "spi-tx-bus-width %d not supported\n", 1903 value); 1904 break; 1905 } 1906 } 1907 1908 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1909 switch (value) { 1910 case 1: 1911 break; 1912 case 2: 1913 spi->mode |= SPI_RX_DUAL; 1914 break; 1915 case 4: 1916 spi->mode |= SPI_RX_QUAD; 1917 break; 1918 case 8: 1919 spi->mode |= SPI_RX_OCTAL; 1920 break; 1921 default: 1922 dev_warn(&ctlr->dev, 1923 "spi-rx-bus-width %d not supported\n", 1924 value); 1925 break; 1926 } 1927 } 1928 1929 if (spi_controller_is_slave(ctlr)) { 1930 if (!of_node_name_eq(nc, "slave")) { 1931 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1932 nc); 1933 return -EINVAL; 1934 } 1935 return 0; 1936 } 1937 1938 /* Device address */ 1939 rc = of_property_read_u32(nc, "reg", &value); 1940 if (rc) { 1941 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1942 nc, rc); 1943 return rc; 1944 } 1945 spi->chip_select = value; 1946 1947 /* 1948 * For descriptors associated with the device, polarity inversion is 1949 * handled in the gpiolib, so all gpio chip selects are "active high" 1950 * in the logical sense, the gpiolib will invert the line if need be. 1951 */ 1952 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods && 1953 ctlr->cs_gpiods[spi->chip_select]) 1954 spi->mode |= SPI_CS_HIGH; 1955 1956 /* Device speed */ 1957 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1958 if (rc) { 1959 dev_err(&ctlr->dev, 1960 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); 1961 return rc; 1962 } 1963 spi->max_speed_hz = value; 1964 1965 return 0; 1966 } 1967 1968 static struct spi_device * 1969 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1970 { 1971 struct spi_device *spi; 1972 int rc; 1973 1974 /* Alloc an spi_device */ 1975 spi = spi_alloc_device(ctlr); 1976 if (!spi) { 1977 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 1978 rc = -ENOMEM; 1979 goto err_out; 1980 } 1981 1982 /* Select device driver */ 1983 rc = of_modalias_node(nc, spi->modalias, 1984 sizeof(spi->modalias)); 1985 if (rc < 0) { 1986 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 1987 goto err_out; 1988 } 1989 1990 rc = of_spi_parse_dt(ctlr, spi, nc); 1991 if (rc) 1992 goto err_out; 1993 1994 /* Store a pointer to the node in the device structure */ 1995 of_node_get(nc); 1996 spi->dev.of_node = nc; 1997 1998 /* Register the new device */ 1999 rc = spi_add_device(spi); 2000 if (rc) { 2001 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2002 goto err_of_node_put; 2003 } 2004 2005 return spi; 2006 2007 err_of_node_put: 2008 of_node_put(nc); 2009 err_out: 2010 spi_dev_put(spi); 2011 return ERR_PTR(rc); 2012 } 2013 2014 /** 2015 * of_register_spi_devices() - Register child devices onto the SPI bus 2016 * @ctlr: Pointer to spi_controller device 2017 * 2018 * Registers an spi_device for each child node of controller node which 2019 * represents a valid SPI slave. 2020 */ 2021 static void of_register_spi_devices(struct spi_controller *ctlr) 2022 { 2023 struct spi_device *spi; 2024 struct device_node *nc; 2025 2026 if (!ctlr->dev.of_node) 2027 return; 2028 2029 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2030 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2031 continue; 2032 spi = of_register_spi_device(ctlr, nc); 2033 if (IS_ERR(spi)) { 2034 dev_warn(&ctlr->dev, 2035 "Failed to create SPI device for %pOF\n", nc); 2036 of_node_clear_flag(nc, OF_POPULATED); 2037 } 2038 } 2039 } 2040 #else 2041 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2042 #endif 2043 2044 #ifdef CONFIG_ACPI 2045 struct acpi_spi_lookup { 2046 struct spi_controller *ctlr; 2047 u32 max_speed_hz; 2048 u32 mode; 2049 int irq; 2050 u8 bits_per_word; 2051 u8 chip_select; 2052 }; 2053 2054 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2055 struct acpi_spi_lookup *lookup) 2056 { 2057 const union acpi_object *obj; 2058 2059 if (!x86_apple_machine) 2060 return; 2061 2062 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2063 && obj->buffer.length >= 4) 2064 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2065 2066 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2067 && obj->buffer.length == 8) 2068 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2069 2070 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2071 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2072 lookup->mode |= SPI_LSB_FIRST; 2073 2074 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2075 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2076 lookup->mode |= SPI_CPOL; 2077 2078 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2079 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2080 lookup->mode |= SPI_CPHA; 2081 } 2082 2083 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2084 { 2085 struct acpi_spi_lookup *lookup = data; 2086 struct spi_controller *ctlr = lookup->ctlr; 2087 2088 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2089 struct acpi_resource_spi_serialbus *sb; 2090 acpi_handle parent_handle; 2091 acpi_status status; 2092 2093 sb = &ares->data.spi_serial_bus; 2094 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2095 2096 status = acpi_get_handle(NULL, 2097 sb->resource_source.string_ptr, 2098 &parent_handle); 2099 2100 if (ACPI_FAILURE(status) || 2101 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2102 return -ENODEV; 2103 2104 /* 2105 * ACPI DeviceSelection numbering is handled by the 2106 * host controller driver in Windows and can vary 2107 * from driver to driver. In Linux we always expect 2108 * 0 .. max - 1 so we need to ask the driver to 2109 * translate between the two schemes. 2110 */ 2111 if (ctlr->fw_translate_cs) { 2112 int cs = ctlr->fw_translate_cs(ctlr, 2113 sb->device_selection); 2114 if (cs < 0) 2115 return cs; 2116 lookup->chip_select = cs; 2117 } else { 2118 lookup->chip_select = sb->device_selection; 2119 } 2120 2121 lookup->max_speed_hz = sb->connection_speed; 2122 2123 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2124 lookup->mode |= SPI_CPHA; 2125 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2126 lookup->mode |= SPI_CPOL; 2127 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2128 lookup->mode |= SPI_CS_HIGH; 2129 } 2130 } else if (lookup->irq < 0) { 2131 struct resource r; 2132 2133 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2134 lookup->irq = r.start; 2135 } 2136 2137 /* Always tell the ACPI core to skip this resource */ 2138 return 1; 2139 } 2140 2141 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2142 struct acpi_device *adev) 2143 { 2144 acpi_handle parent_handle = NULL; 2145 struct list_head resource_list; 2146 struct acpi_spi_lookup lookup = {}; 2147 struct spi_device *spi; 2148 int ret; 2149 2150 if (acpi_bus_get_status(adev) || !adev->status.present || 2151 acpi_device_enumerated(adev)) 2152 return AE_OK; 2153 2154 lookup.ctlr = ctlr; 2155 lookup.irq = -1; 2156 2157 INIT_LIST_HEAD(&resource_list); 2158 ret = acpi_dev_get_resources(adev, &resource_list, 2159 acpi_spi_add_resource, &lookup); 2160 acpi_dev_free_resource_list(&resource_list); 2161 2162 if (ret < 0) 2163 /* found SPI in _CRS but it points to another controller */ 2164 return AE_OK; 2165 2166 if (!lookup.max_speed_hz && 2167 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 2168 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2169 /* Apple does not use _CRS but nested devices for SPI slaves */ 2170 acpi_spi_parse_apple_properties(adev, &lookup); 2171 } 2172 2173 if (!lookup.max_speed_hz) 2174 return AE_OK; 2175 2176 spi = spi_alloc_device(ctlr); 2177 if (!spi) { 2178 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2179 dev_name(&adev->dev)); 2180 return AE_NO_MEMORY; 2181 } 2182 2183 ACPI_COMPANION_SET(&spi->dev, adev); 2184 spi->max_speed_hz = lookup.max_speed_hz; 2185 spi->mode = lookup.mode; 2186 spi->irq = lookup.irq; 2187 spi->bits_per_word = lookup.bits_per_word; 2188 spi->chip_select = lookup.chip_select; 2189 2190 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2191 sizeof(spi->modalias)); 2192 2193 if (spi->irq < 0) 2194 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2195 2196 acpi_device_set_enumerated(adev); 2197 2198 adev->power.flags.ignore_parent = true; 2199 if (spi_add_device(spi)) { 2200 adev->power.flags.ignore_parent = false; 2201 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2202 dev_name(&adev->dev)); 2203 spi_dev_put(spi); 2204 } 2205 2206 return AE_OK; 2207 } 2208 2209 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2210 void *data, void **return_value) 2211 { 2212 struct spi_controller *ctlr = data; 2213 struct acpi_device *adev; 2214 2215 if (acpi_bus_get_device(handle, &adev)) 2216 return AE_OK; 2217 2218 return acpi_register_spi_device(ctlr, adev); 2219 } 2220 2221 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2222 2223 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2224 { 2225 acpi_status status; 2226 acpi_handle handle; 2227 2228 handle = ACPI_HANDLE(ctlr->dev.parent); 2229 if (!handle) 2230 return; 2231 2232 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2233 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2234 acpi_spi_add_device, NULL, ctlr, NULL); 2235 if (ACPI_FAILURE(status)) 2236 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2237 } 2238 #else 2239 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2240 #endif /* CONFIG_ACPI */ 2241 2242 static void spi_controller_release(struct device *dev) 2243 { 2244 struct spi_controller *ctlr; 2245 2246 ctlr = container_of(dev, struct spi_controller, dev); 2247 kfree(ctlr); 2248 } 2249 2250 static struct class spi_master_class = { 2251 .name = "spi_master", 2252 .owner = THIS_MODULE, 2253 .dev_release = spi_controller_release, 2254 .dev_groups = spi_master_groups, 2255 }; 2256 2257 #ifdef CONFIG_SPI_SLAVE 2258 /** 2259 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2260 * controller 2261 * @spi: device used for the current transfer 2262 */ 2263 int spi_slave_abort(struct spi_device *spi) 2264 { 2265 struct spi_controller *ctlr = spi->controller; 2266 2267 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2268 return ctlr->slave_abort(ctlr); 2269 2270 return -ENOTSUPP; 2271 } 2272 EXPORT_SYMBOL_GPL(spi_slave_abort); 2273 2274 static int match_true(struct device *dev, void *data) 2275 { 2276 return 1; 2277 } 2278 2279 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2280 char *buf) 2281 { 2282 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2283 dev); 2284 struct device *child; 2285 2286 child = device_find_child(&ctlr->dev, NULL, match_true); 2287 return sprintf(buf, "%s\n", 2288 child ? to_spi_device(child)->modalias : NULL); 2289 } 2290 2291 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2292 const char *buf, size_t count) 2293 { 2294 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2295 dev); 2296 struct spi_device *spi; 2297 struct device *child; 2298 char name[32]; 2299 int rc; 2300 2301 rc = sscanf(buf, "%31s", name); 2302 if (rc != 1 || !name[0]) 2303 return -EINVAL; 2304 2305 child = device_find_child(&ctlr->dev, NULL, match_true); 2306 if (child) { 2307 /* Remove registered slave */ 2308 device_unregister(child); 2309 put_device(child); 2310 } 2311 2312 if (strcmp(name, "(null)")) { 2313 /* Register new slave */ 2314 spi = spi_alloc_device(ctlr); 2315 if (!spi) 2316 return -ENOMEM; 2317 2318 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2319 2320 rc = spi_add_device(spi); 2321 if (rc) { 2322 spi_dev_put(spi); 2323 return rc; 2324 } 2325 } 2326 2327 return count; 2328 } 2329 2330 static DEVICE_ATTR_RW(slave); 2331 2332 static struct attribute *spi_slave_attrs[] = { 2333 &dev_attr_slave.attr, 2334 NULL, 2335 }; 2336 2337 static const struct attribute_group spi_slave_group = { 2338 .attrs = spi_slave_attrs, 2339 }; 2340 2341 static const struct attribute_group *spi_slave_groups[] = { 2342 &spi_controller_statistics_group, 2343 &spi_slave_group, 2344 NULL, 2345 }; 2346 2347 static struct class spi_slave_class = { 2348 .name = "spi_slave", 2349 .owner = THIS_MODULE, 2350 .dev_release = spi_controller_release, 2351 .dev_groups = spi_slave_groups, 2352 }; 2353 #else 2354 extern struct class spi_slave_class; /* dummy */ 2355 #endif 2356 2357 /** 2358 * __spi_alloc_controller - allocate an SPI master or slave controller 2359 * @dev: the controller, possibly using the platform_bus 2360 * @size: how much zeroed driver-private data to allocate; the pointer to this 2361 * memory is in the driver_data field of the returned device, accessible 2362 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2363 * drivers granting DMA access to portions of their private data need to 2364 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2365 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2366 * slave (true) controller 2367 * Context: can sleep 2368 * 2369 * This call is used only by SPI controller drivers, which are the 2370 * only ones directly touching chip registers. It's how they allocate 2371 * an spi_controller structure, prior to calling spi_register_controller(). 2372 * 2373 * This must be called from context that can sleep. 2374 * 2375 * The caller is responsible for assigning the bus number and initializing the 2376 * controller's methods before calling spi_register_controller(); and (after 2377 * errors adding the device) calling spi_controller_put() to prevent a memory 2378 * leak. 2379 * 2380 * Return: the SPI controller structure on success, else NULL. 2381 */ 2382 struct spi_controller *__spi_alloc_controller(struct device *dev, 2383 unsigned int size, bool slave) 2384 { 2385 struct spi_controller *ctlr; 2386 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2387 2388 if (!dev) 2389 return NULL; 2390 2391 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2392 if (!ctlr) 2393 return NULL; 2394 2395 device_initialize(&ctlr->dev); 2396 ctlr->bus_num = -1; 2397 ctlr->num_chipselect = 1; 2398 ctlr->slave = slave; 2399 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2400 ctlr->dev.class = &spi_slave_class; 2401 else 2402 ctlr->dev.class = &spi_master_class; 2403 ctlr->dev.parent = dev; 2404 pm_suspend_ignore_children(&ctlr->dev, true); 2405 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2406 2407 return ctlr; 2408 } 2409 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2410 2411 #ifdef CONFIG_OF 2412 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2413 { 2414 int nb, i, *cs; 2415 struct device_node *np = ctlr->dev.of_node; 2416 2417 if (!np) 2418 return 0; 2419 2420 nb = of_gpio_named_count(np, "cs-gpios"); 2421 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2422 2423 /* Return error only for an incorrectly formed cs-gpios property */ 2424 if (nb == 0 || nb == -ENOENT) 2425 return 0; 2426 else if (nb < 0) 2427 return nb; 2428 2429 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2430 GFP_KERNEL); 2431 ctlr->cs_gpios = cs; 2432 2433 if (!ctlr->cs_gpios) 2434 return -ENOMEM; 2435 2436 for (i = 0; i < ctlr->num_chipselect; i++) 2437 cs[i] = -ENOENT; 2438 2439 for (i = 0; i < nb; i++) 2440 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2441 2442 return 0; 2443 } 2444 #else 2445 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2446 { 2447 return 0; 2448 } 2449 #endif 2450 2451 /** 2452 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2453 * @ctlr: The SPI master to grab GPIO descriptors for 2454 */ 2455 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2456 { 2457 int nb, i; 2458 struct gpio_desc **cs; 2459 struct device *dev = &ctlr->dev; 2460 2461 nb = gpiod_count(dev, "cs"); 2462 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2463 2464 /* No GPIOs at all is fine, else return the error */ 2465 if (nb == 0 || nb == -ENOENT) 2466 return 0; 2467 else if (nb < 0) 2468 return nb; 2469 2470 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2471 GFP_KERNEL); 2472 if (!cs) 2473 return -ENOMEM; 2474 ctlr->cs_gpiods = cs; 2475 2476 for (i = 0; i < nb; i++) { 2477 /* 2478 * Most chipselects are active low, the inverted 2479 * semantics are handled by special quirks in gpiolib, 2480 * so initializing them GPIOD_OUT_LOW here means 2481 * "unasserted", in most cases this will drive the physical 2482 * line high. 2483 */ 2484 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2485 GPIOD_OUT_LOW); 2486 if (IS_ERR(cs[i])) 2487 return PTR_ERR(cs[i]); 2488 2489 if (cs[i]) { 2490 /* 2491 * If we find a CS GPIO, name it after the device and 2492 * chip select line. 2493 */ 2494 char *gpioname; 2495 2496 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2497 dev_name(dev), i); 2498 if (!gpioname) 2499 return -ENOMEM; 2500 gpiod_set_consumer_name(cs[i], gpioname); 2501 } 2502 } 2503 2504 return 0; 2505 } 2506 2507 static int spi_controller_check_ops(struct spi_controller *ctlr) 2508 { 2509 /* 2510 * The controller may implement only the high-level SPI-memory like 2511 * operations if it does not support regular SPI transfers, and this is 2512 * valid use case. 2513 * If ->mem_ops is NULL, we request that at least one of the 2514 * ->transfer_xxx() method be implemented. 2515 */ 2516 if (ctlr->mem_ops) { 2517 if (!ctlr->mem_ops->exec_op) 2518 return -EINVAL; 2519 } else if (!ctlr->transfer && !ctlr->transfer_one && 2520 !ctlr->transfer_one_message) { 2521 return -EINVAL; 2522 } 2523 2524 return 0; 2525 } 2526 2527 /** 2528 * spi_register_controller - register SPI master or slave controller 2529 * @ctlr: initialized master, originally from spi_alloc_master() or 2530 * spi_alloc_slave() 2531 * Context: can sleep 2532 * 2533 * SPI controllers connect to their drivers using some non-SPI bus, 2534 * such as the platform bus. The final stage of probe() in that code 2535 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2536 * 2537 * SPI controllers use board specific (often SOC specific) bus numbers, 2538 * and board-specific addressing for SPI devices combines those numbers 2539 * with chip select numbers. Since SPI does not directly support dynamic 2540 * device identification, boards need configuration tables telling which 2541 * chip is at which address. 2542 * 2543 * This must be called from context that can sleep. It returns zero on 2544 * success, else a negative error code (dropping the controller's refcount). 2545 * After a successful return, the caller is responsible for calling 2546 * spi_unregister_controller(). 2547 * 2548 * Return: zero on success, else a negative error code. 2549 */ 2550 int spi_register_controller(struct spi_controller *ctlr) 2551 { 2552 struct device *dev = ctlr->dev.parent; 2553 struct boardinfo *bi; 2554 int status; 2555 int id, first_dynamic; 2556 2557 if (!dev) 2558 return -ENODEV; 2559 2560 /* 2561 * Make sure all necessary hooks are implemented before registering 2562 * the SPI controller. 2563 */ 2564 status = spi_controller_check_ops(ctlr); 2565 if (status) 2566 return status; 2567 2568 if (ctlr->bus_num >= 0) { 2569 /* devices with a fixed bus num must check-in with the num */ 2570 mutex_lock(&board_lock); 2571 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2572 ctlr->bus_num + 1, GFP_KERNEL); 2573 mutex_unlock(&board_lock); 2574 if (WARN(id < 0, "couldn't get idr")) 2575 return id == -ENOSPC ? -EBUSY : id; 2576 ctlr->bus_num = id; 2577 } else if (ctlr->dev.of_node) { 2578 /* allocate dynamic bus number using Linux idr */ 2579 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2580 if (id >= 0) { 2581 ctlr->bus_num = id; 2582 mutex_lock(&board_lock); 2583 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2584 ctlr->bus_num + 1, GFP_KERNEL); 2585 mutex_unlock(&board_lock); 2586 if (WARN(id < 0, "couldn't get idr")) 2587 return id == -ENOSPC ? -EBUSY : id; 2588 } 2589 } 2590 if (ctlr->bus_num < 0) { 2591 first_dynamic = of_alias_get_highest_id("spi"); 2592 if (first_dynamic < 0) 2593 first_dynamic = 0; 2594 else 2595 first_dynamic++; 2596 2597 mutex_lock(&board_lock); 2598 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2599 0, GFP_KERNEL); 2600 mutex_unlock(&board_lock); 2601 if (WARN(id < 0, "couldn't get idr")) 2602 return id; 2603 ctlr->bus_num = id; 2604 } 2605 INIT_LIST_HEAD(&ctlr->queue); 2606 spin_lock_init(&ctlr->queue_lock); 2607 spin_lock_init(&ctlr->bus_lock_spinlock); 2608 mutex_init(&ctlr->bus_lock_mutex); 2609 mutex_init(&ctlr->io_mutex); 2610 ctlr->bus_lock_flag = 0; 2611 init_completion(&ctlr->xfer_completion); 2612 if (!ctlr->max_dma_len) 2613 ctlr->max_dma_len = INT_MAX; 2614 2615 /* register the device, then userspace will see it. 2616 * registration fails if the bus ID is in use. 2617 */ 2618 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2619 2620 if (!spi_controller_is_slave(ctlr)) { 2621 if (ctlr->use_gpio_descriptors) { 2622 status = spi_get_gpio_descs(ctlr); 2623 if (status) 2624 return status; 2625 /* 2626 * A controller using GPIO descriptors always 2627 * supports SPI_CS_HIGH if need be. 2628 */ 2629 ctlr->mode_bits |= SPI_CS_HIGH; 2630 } else { 2631 /* Legacy code path for GPIOs from DT */ 2632 status = of_spi_get_gpio_numbers(ctlr); 2633 if (status) 2634 return status; 2635 } 2636 } 2637 2638 /* 2639 * Even if it's just one always-selected device, there must 2640 * be at least one chipselect. 2641 */ 2642 if (!ctlr->num_chipselect) 2643 return -EINVAL; 2644 2645 status = device_add(&ctlr->dev); 2646 if (status < 0) { 2647 /* free bus id */ 2648 mutex_lock(&board_lock); 2649 idr_remove(&spi_master_idr, ctlr->bus_num); 2650 mutex_unlock(&board_lock); 2651 goto done; 2652 } 2653 dev_dbg(dev, "registered %s %s\n", 2654 spi_controller_is_slave(ctlr) ? "slave" : "master", 2655 dev_name(&ctlr->dev)); 2656 2657 /* 2658 * If we're using a queued driver, start the queue. Note that we don't 2659 * need the queueing logic if the driver is only supporting high-level 2660 * memory operations. 2661 */ 2662 if (ctlr->transfer) { 2663 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2664 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2665 status = spi_controller_initialize_queue(ctlr); 2666 if (status) { 2667 device_del(&ctlr->dev); 2668 /* free bus id */ 2669 mutex_lock(&board_lock); 2670 idr_remove(&spi_master_idr, ctlr->bus_num); 2671 mutex_unlock(&board_lock); 2672 goto done; 2673 } 2674 } 2675 /* add statistics */ 2676 spin_lock_init(&ctlr->statistics.lock); 2677 2678 mutex_lock(&board_lock); 2679 list_add_tail(&ctlr->list, &spi_controller_list); 2680 list_for_each_entry(bi, &board_list, list) 2681 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2682 mutex_unlock(&board_lock); 2683 2684 /* Register devices from the device tree and ACPI */ 2685 of_register_spi_devices(ctlr); 2686 acpi_register_spi_devices(ctlr); 2687 done: 2688 return status; 2689 } 2690 EXPORT_SYMBOL_GPL(spi_register_controller); 2691 2692 static void devm_spi_unregister(struct device *dev, void *res) 2693 { 2694 spi_unregister_controller(*(struct spi_controller **)res); 2695 } 2696 2697 /** 2698 * devm_spi_register_controller - register managed SPI master or slave 2699 * controller 2700 * @dev: device managing SPI controller 2701 * @ctlr: initialized controller, originally from spi_alloc_master() or 2702 * spi_alloc_slave() 2703 * Context: can sleep 2704 * 2705 * Register a SPI device as with spi_register_controller() which will 2706 * automatically be unregistered and freed. 2707 * 2708 * Return: zero on success, else a negative error code. 2709 */ 2710 int devm_spi_register_controller(struct device *dev, 2711 struct spi_controller *ctlr) 2712 { 2713 struct spi_controller **ptr; 2714 int ret; 2715 2716 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2717 if (!ptr) 2718 return -ENOMEM; 2719 2720 ret = spi_register_controller(ctlr); 2721 if (!ret) { 2722 *ptr = ctlr; 2723 devres_add(dev, ptr); 2724 } else { 2725 devres_free(ptr); 2726 } 2727 2728 return ret; 2729 } 2730 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2731 2732 static int __unregister(struct device *dev, void *null) 2733 { 2734 spi_unregister_device(to_spi_device(dev)); 2735 return 0; 2736 } 2737 2738 /** 2739 * spi_unregister_controller - unregister SPI master or slave controller 2740 * @ctlr: the controller being unregistered 2741 * Context: can sleep 2742 * 2743 * This call is used only by SPI controller drivers, which are the 2744 * only ones directly touching chip registers. 2745 * 2746 * This must be called from context that can sleep. 2747 * 2748 * Note that this function also drops a reference to the controller. 2749 */ 2750 void spi_unregister_controller(struct spi_controller *ctlr) 2751 { 2752 struct spi_controller *found; 2753 int id = ctlr->bus_num; 2754 2755 /* First make sure that this controller was ever added */ 2756 mutex_lock(&board_lock); 2757 found = idr_find(&spi_master_idr, id); 2758 mutex_unlock(&board_lock); 2759 if (ctlr->queued) { 2760 if (spi_destroy_queue(ctlr)) 2761 dev_err(&ctlr->dev, "queue remove failed\n"); 2762 } 2763 mutex_lock(&board_lock); 2764 list_del(&ctlr->list); 2765 mutex_unlock(&board_lock); 2766 2767 device_for_each_child(&ctlr->dev, NULL, __unregister); 2768 device_unregister(&ctlr->dev); 2769 /* free bus id */ 2770 mutex_lock(&board_lock); 2771 if (found == ctlr) 2772 idr_remove(&spi_master_idr, id); 2773 mutex_unlock(&board_lock); 2774 } 2775 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2776 2777 int spi_controller_suspend(struct spi_controller *ctlr) 2778 { 2779 int ret; 2780 2781 /* Basically no-ops for non-queued controllers */ 2782 if (!ctlr->queued) 2783 return 0; 2784 2785 ret = spi_stop_queue(ctlr); 2786 if (ret) 2787 dev_err(&ctlr->dev, "queue stop failed\n"); 2788 2789 return ret; 2790 } 2791 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2792 2793 int spi_controller_resume(struct spi_controller *ctlr) 2794 { 2795 int ret; 2796 2797 if (!ctlr->queued) 2798 return 0; 2799 2800 ret = spi_start_queue(ctlr); 2801 if (ret) 2802 dev_err(&ctlr->dev, "queue restart failed\n"); 2803 2804 return ret; 2805 } 2806 EXPORT_SYMBOL_GPL(spi_controller_resume); 2807 2808 static int __spi_controller_match(struct device *dev, const void *data) 2809 { 2810 struct spi_controller *ctlr; 2811 const u16 *bus_num = data; 2812 2813 ctlr = container_of(dev, struct spi_controller, dev); 2814 return ctlr->bus_num == *bus_num; 2815 } 2816 2817 /** 2818 * spi_busnum_to_master - look up master associated with bus_num 2819 * @bus_num: the master's bus number 2820 * Context: can sleep 2821 * 2822 * This call may be used with devices that are registered after 2823 * arch init time. It returns a refcounted pointer to the relevant 2824 * spi_controller (which the caller must release), or NULL if there is 2825 * no such master registered. 2826 * 2827 * Return: the SPI master structure on success, else NULL. 2828 */ 2829 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2830 { 2831 struct device *dev; 2832 struct spi_controller *ctlr = NULL; 2833 2834 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2835 __spi_controller_match); 2836 if (dev) 2837 ctlr = container_of(dev, struct spi_controller, dev); 2838 /* reference got in class_find_device */ 2839 return ctlr; 2840 } 2841 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2842 2843 /*-------------------------------------------------------------------------*/ 2844 2845 /* Core methods for SPI resource management */ 2846 2847 /** 2848 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2849 * during the processing of a spi_message while using 2850 * spi_transfer_one 2851 * @spi: the spi device for which we allocate memory 2852 * @release: the release code to execute for this resource 2853 * @size: size to alloc and return 2854 * @gfp: GFP allocation flags 2855 * 2856 * Return: the pointer to the allocated data 2857 * 2858 * This may get enhanced in the future to allocate from a memory pool 2859 * of the @spi_device or @spi_controller to avoid repeated allocations. 2860 */ 2861 void *spi_res_alloc(struct spi_device *spi, 2862 spi_res_release_t release, 2863 size_t size, gfp_t gfp) 2864 { 2865 struct spi_res *sres; 2866 2867 sres = kzalloc(sizeof(*sres) + size, gfp); 2868 if (!sres) 2869 return NULL; 2870 2871 INIT_LIST_HEAD(&sres->entry); 2872 sres->release = release; 2873 2874 return sres->data; 2875 } 2876 EXPORT_SYMBOL_GPL(spi_res_alloc); 2877 2878 /** 2879 * spi_res_free - free an spi resource 2880 * @res: pointer to the custom data of a resource 2881 * 2882 */ 2883 void spi_res_free(void *res) 2884 { 2885 struct spi_res *sres = container_of(res, struct spi_res, data); 2886 2887 if (!res) 2888 return; 2889 2890 WARN_ON(!list_empty(&sres->entry)); 2891 kfree(sres); 2892 } 2893 EXPORT_SYMBOL_GPL(spi_res_free); 2894 2895 /** 2896 * spi_res_add - add a spi_res to the spi_message 2897 * @message: the spi message 2898 * @res: the spi_resource 2899 */ 2900 void spi_res_add(struct spi_message *message, void *res) 2901 { 2902 struct spi_res *sres = container_of(res, struct spi_res, data); 2903 2904 WARN_ON(!list_empty(&sres->entry)); 2905 list_add_tail(&sres->entry, &message->resources); 2906 } 2907 EXPORT_SYMBOL_GPL(spi_res_add); 2908 2909 /** 2910 * spi_res_release - release all spi resources for this message 2911 * @ctlr: the @spi_controller 2912 * @message: the @spi_message 2913 */ 2914 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2915 { 2916 struct spi_res *res, *tmp; 2917 2918 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 2919 if (res->release) 2920 res->release(ctlr, message, res->data); 2921 2922 list_del(&res->entry); 2923 2924 kfree(res); 2925 } 2926 } 2927 EXPORT_SYMBOL_GPL(spi_res_release); 2928 2929 /*-------------------------------------------------------------------------*/ 2930 2931 /* Core methods for spi_message alterations */ 2932 2933 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2934 struct spi_message *msg, 2935 void *res) 2936 { 2937 struct spi_replaced_transfers *rxfer = res; 2938 size_t i; 2939 2940 /* call extra callback if requested */ 2941 if (rxfer->release) 2942 rxfer->release(ctlr, msg, res); 2943 2944 /* insert replaced transfers back into the message */ 2945 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2946 2947 /* remove the formerly inserted entries */ 2948 for (i = 0; i < rxfer->inserted; i++) 2949 list_del(&rxfer->inserted_transfers[i].transfer_list); 2950 } 2951 2952 /** 2953 * spi_replace_transfers - replace transfers with several transfers 2954 * and register change with spi_message.resources 2955 * @msg: the spi_message we work upon 2956 * @xfer_first: the first spi_transfer we want to replace 2957 * @remove: number of transfers to remove 2958 * @insert: the number of transfers we want to insert instead 2959 * @release: extra release code necessary in some circumstances 2960 * @extradatasize: extra data to allocate (with alignment guarantees 2961 * of struct @spi_transfer) 2962 * @gfp: gfp flags 2963 * 2964 * Returns: pointer to @spi_replaced_transfers, 2965 * PTR_ERR(...) in case of errors. 2966 */ 2967 struct spi_replaced_transfers *spi_replace_transfers( 2968 struct spi_message *msg, 2969 struct spi_transfer *xfer_first, 2970 size_t remove, 2971 size_t insert, 2972 spi_replaced_release_t release, 2973 size_t extradatasize, 2974 gfp_t gfp) 2975 { 2976 struct spi_replaced_transfers *rxfer; 2977 struct spi_transfer *xfer; 2978 size_t i; 2979 2980 /* allocate the structure using spi_res */ 2981 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2982 struct_size(rxfer, inserted_transfers, insert) 2983 + extradatasize, 2984 gfp); 2985 if (!rxfer) 2986 return ERR_PTR(-ENOMEM); 2987 2988 /* the release code to invoke before running the generic release */ 2989 rxfer->release = release; 2990 2991 /* assign extradata */ 2992 if (extradatasize) 2993 rxfer->extradata = 2994 &rxfer->inserted_transfers[insert]; 2995 2996 /* init the replaced_transfers list */ 2997 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2998 2999 /* assign the list_entry after which we should reinsert 3000 * the @replaced_transfers - it may be spi_message.messages! 3001 */ 3002 rxfer->replaced_after = xfer_first->transfer_list.prev; 3003 3004 /* remove the requested number of transfers */ 3005 for (i = 0; i < remove; i++) { 3006 /* if the entry after replaced_after it is msg->transfers 3007 * then we have been requested to remove more transfers 3008 * than are in the list 3009 */ 3010 if (rxfer->replaced_after->next == &msg->transfers) { 3011 dev_err(&msg->spi->dev, 3012 "requested to remove more spi_transfers than are available\n"); 3013 /* insert replaced transfers back into the message */ 3014 list_splice(&rxfer->replaced_transfers, 3015 rxfer->replaced_after); 3016 3017 /* free the spi_replace_transfer structure */ 3018 spi_res_free(rxfer); 3019 3020 /* and return with an error */ 3021 return ERR_PTR(-EINVAL); 3022 } 3023 3024 /* remove the entry after replaced_after from list of 3025 * transfers and add it to list of replaced_transfers 3026 */ 3027 list_move_tail(rxfer->replaced_after->next, 3028 &rxfer->replaced_transfers); 3029 } 3030 3031 /* create copy of the given xfer with identical settings 3032 * based on the first transfer to get removed 3033 */ 3034 for (i = 0; i < insert; i++) { 3035 /* we need to run in reverse order */ 3036 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3037 3038 /* copy all spi_transfer data */ 3039 memcpy(xfer, xfer_first, sizeof(*xfer)); 3040 3041 /* add to list */ 3042 list_add(&xfer->transfer_list, rxfer->replaced_after); 3043 3044 /* clear cs_change and delay for all but the last */ 3045 if (i) { 3046 xfer->cs_change = false; 3047 xfer->delay_usecs = 0; 3048 xfer->delay.value = 0; 3049 } 3050 } 3051 3052 /* set up inserted */ 3053 rxfer->inserted = insert; 3054 3055 /* and register it with spi_res/spi_message */ 3056 spi_res_add(msg, rxfer); 3057 3058 return rxfer; 3059 } 3060 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3061 3062 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3063 struct spi_message *msg, 3064 struct spi_transfer **xferp, 3065 size_t maxsize, 3066 gfp_t gfp) 3067 { 3068 struct spi_transfer *xfer = *xferp, *xfers; 3069 struct spi_replaced_transfers *srt; 3070 size_t offset; 3071 size_t count, i; 3072 3073 /* calculate how many we have to replace */ 3074 count = DIV_ROUND_UP(xfer->len, maxsize); 3075 3076 /* create replacement */ 3077 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3078 if (IS_ERR(srt)) 3079 return PTR_ERR(srt); 3080 xfers = srt->inserted_transfers; 3081 3082 /* now handle each of those newly inserted spi_transfers 3083 * note that the replacements spi_transfers all are preset 3084 * to the same values as *xferp, so tx_buf, rx_buf and len 3085 * are all identical (as well as most others) 3086 * so we just have to fix up len and the pointers. 3087 * 3088 * this also includes support for the depreciated 3089 * spi_message.is_dma_mapped interface 3090 */ 3091 3092 /* the first transfer just needs the length modified, so we 3093 * run it outside the loop 3094 */ 3095 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3096 3097 /* all the others need rx_buf/tx_buf also set */ 3098 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3099 /* update rx_buf, tx_buf and dma */ 3100 if (xfers[i].rx_buf) 3101 xfers[i].rx_buf += offset; 3102 if (xfers[i].rx_dma) 3103 xfers[i].rx_dma += offset; 3104 if (xfers[i].tx_buf) 3105 xfers[i].tx_buf += offset; 3106 if (xfers[i].tx_dma) 3107 xfers[i].tx_dma += offset; 3108 3109 /* update length */ 3110 xfers[i].len = min(maxsize, xfers[i].len - offset); 3111 } 3112 3113 /* we set up xferp to the last entry we have inserted, 3114 * so that we skip those already split transfers 3115 */ 3116 *xferp = &xfers[count - 1]; 3117 3118 /* increment statistics counters */ 3119 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3120 transfers_split_maxsize); 3121 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3122 transfers_split_maxsize); 3123 3124 return 0; 3125 } 3126 3127 /** 3128 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 3129 * when an individual transfer exceeds a 3130 * certain size 3131 * @ctlr: the @spi_controller for this transfer 3132 * @msg: the @spi_message to transform 3133 * @maxsize: the maximum when to apply this 3134 * @gfp: GFP allocation flags 3135 * 3136 * Return: status of transformation 3137 */ 3138 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3139 struct spi_message *msg, 3140 size_t maxsize, 3141 gfp_t gfp) 3142 { 3143 struct spi_transfer *xfer; 3144 int ret; 3145 3146 /* iterate over the transfer_list, 3147 * but note that xfer is advanced to the last transfer inserted 3148 * to avoid checking sizes again unnecessarily (also xfer does 3149 * potentiall belong to a different list by the time the 3150 * replacement has happened 3151 */ 3152 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3153 if (xfer->len > maxsize) { 3154 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3155 maxsize, gfp); 3156 if (ret) 3157 return ret; 3158 } 3159 } 3160 3161 return 0; 3162 } 3163 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3164 3165 /*-------------------------------------------------------------------------*/ 3166 3167 /* Core methods for SPI controller protocol drivers. Some of the 3168 * other core methods are currently defined as inline functions. 3169 */ 3170 3171 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3172 u8 bits_per_word) 3173 { 3174 if (ctlr->bits_per_word_mask) { 3175 /* Only 32 bits fit in the mask */ 3176 if (bits_per_word > 32) 3177 return -EINVAL; 3178 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3179 return -EINVAL; 3180 } 3181 3182 return 0; 3183 } 3184 3185 /** 3186 * spi_setup - setup SPI mode and clock rate 3187 * @spi: the device whose settings are being modified 3188 * Context: can sleep, and no requests are queued to the device 3189 * 3190 * SPI protocol drivers may need to update the transfer mode if the 3191 * device doesn't work with its default. They may likewise need 3192 * to update clock rates or word sizes from initial values. This function 3193 * changes those settings, and must be called from a context that can sleep. 3194 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3195 * effect the next time the device is selected and data is transferred to 3196 * or from it. When this function returns, the spi device is deselected. 3197 * 3198 * Note that this call will fail if the protocol driver specifies an option 3199 * that the underlying controller or its driver does not support. For 3200 * example, not all hardware supports wire transfers using nine bit words, 3201 * LSB-first wire encoding, or active-high chipselects. 3202 * 3203 * Return: zero on success, else a negative error code. 3204 */ 3205 int spi_setup(struct spi_device *spi) 3206 { 3207 unsigned bad_bits, ugly_bits; 3208 int status; 3209 3210 /* check mode to prevent that DUAL and QUAD set at the same time 3211 */ 3212 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3213 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3214 dev_err(&spi->dev, 3215 "setup: can not select dual and quad at the same time\n"); 3216 return -EINVAL; 3217 } 3218 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3219 */ 3220 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3221 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3222 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3223 return -EINVAL; 3224 /* help drivers fail *cleanly* when they need options 3225 * that aren't supported with their current controller 3226 * SPI_CS_WORD has a fallback software implementation, 3227 * so it is ignored here. 3228 */ 3229 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3230 /* nothing prevents from working with active-high CS in case if it 3231 * is driven by GPIO. 3232 */ 3233 if (gpio_is_valid(spi->cs_gpio)) 3234 bad_bits &= ~SPI_CS_HIGH; 3235 ugly_bits = bad_bits & 3236 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3237 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3238 if (ugly_bits) { 3239 dev_warn(&spi->dev, 3240 "setup: ignoring unsupported mode bits %x\n", 3241 ugly_bits); 3242 spi->mode &= ~ugly_bits; 3243 bad_bits &= ~ugly_bits; 3244 } 3245 if (bad_bits) { 3246 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3247 bad_bits); 3248 return -EINVAL; 3249 } 3250 3251 if (!spi->bits_per_word) 3252 spi->bits_per_word = 8; 3253 3254 status = __spi_validate_bits_per_word(spi->controller, 3255 spi->bits_per_word); 3256 if (status) 3257 return status; 3258 3259 if (!spi->max_speed_hz) 3260 spi->max_speed_hz = spi->controller->max_speed_hz; 3261 3262 if (spi->controller->setup) 3263 status = spi->controller->setup(spi); 3264 3265 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3266 status = pm_runtime_get_sync(spi->controller->dev.parent); 3267 if (status < 0) { 3268 pm_runtime_put_noidle(spi->controller->dev.parent); 3269 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3270 status); 3271 return status; 3272 } 3273 3274 /* 3275 * We do not want to return positive value from pm_runtime_get, 3276 * there are many instances of devices calling spi_setup() and 3277 * checking for a non-zero return value instead of a negative 3278 * return value. 3279 */ 3280 status = 0; 3281 3282 spi_set_cs(spi, false); 3283 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3284 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3285 } else { 3286 spi_set_cs(spi, false); 3287 } 3288 3289 if (spi->rt && !spi->controller->rt) { 3290 spi->controller->rt = true; 3291 spi_set_thread_rt(spi->controller); 3292 } 3293 3294 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3295 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3296 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3297 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3298 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3299 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3300 spi->bits_per_word, spi->max_speed_hz, 3301 status); 3302 3303 return status; 3304 } 3305 EXPORT_SYMBOL_GPL(spi_setup); 3306 3307 /** 3308 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3309 * @spi: the device that requires specific CS timing configuration 3310 * @setup: CS setup time specified via @spi_delay 3311 * @hold: CS hold time specified via @spi_delay 3312 * @inactive: CS inactive delay between transfers specified via @spi_delay 3313 * 3314 * Return: zero on success, else a negative error code. 3315 */ 3316 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3317 struct spi_delay *hold, struct spi_delay *inactive) 3318 { 3319 size_t len; 3320 3321 if (spi->controller->set_cs_timing) 3322 return spi->controller->set_cs_timing(spi, setup, hold, 3323 inactive); 3324 3325 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3326 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3327 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3328 dev_err(&spi->dev, 3329 "Clock-cycle delays for CS not supported in SW mode\n"); 3330 return -ENOTSUPP; 3331 } 3332 3333 len = sizeof(struct spi_delay); 3334 3335 /* copy delays to controller */ 3336 if (setup) 3337 memcpy(&spi->controller->cs_setup, setup, len); 3338 else 3339 memset(&spi->controller->cs_setup, 0, len); 3340 3341 if (hold) 3342 memcpy(&spi->controller->cs_hold, hold, len); 3343 else 3344 memset(&spi->controller->cs_hold, 0, len); 3345 3346 if (inactive) 3347 memcpy(&spi->controller->cs_inactive, inactive, len); 3348 else 3349 memset(&spi->controller->cs_inactive, 0, len); 3350 3351 return 0; 3352 } 3353 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3354 3355 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3356 struct spi_device *spi) 3357 { 3358 int delay1, delay2; 3359 3360 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3361 if (delay1 < 0) 3362 return delay1; 3363 3364 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3365 if (delay2 < 0) 3366 return delay2; 3367 3368 if (delay1 < delay2) 3369 memcpy(&xfer->word_delay, &spi->word_delay, 3370 sizeof(xfer->word_delay)); 3371 3372 return 0; 3373 } 3374 3375 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3376 { 3377 struct spi_controller *ctlr = spi->controller; 3378 struct spi_transfer *xfer; 3379 int w_size; 3380 3381 if (list_empty(&message->transfers)) 3382 return -EINVAL; 3383 3384 /* If an SPI controller does not support toggling the CS line on each 3385 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3386 * for the CS line, we can emulate the CS-per-word hardware function by 3387 * splitting transfers into one-word transfers and ensuring that 3388 * cs_change is set for each transfer. 3389 */ 3390 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3391 spi->cs_gpiod || 3392 gpio_is_valid(spi->cs_gpio))) { 3393 size_t maxsize; 3394 int ret; 3395 3396 maxsize = (spi->bits_per_word + 7) / 8; 3397 3398 /* spi_split_transfers_maxsize() requires message->spi */ 3399 message->spi = spi; 3400 3401 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3402 GFP_KERNEL); 3403 if (ret) 3404 return ret; 3405 3406 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3407 /* don't change cs_change on the last entry in the list */ 3408 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3409 break; 3410 xfer->cs_change = 1; 3411 } 3412 } 3413 3414 /* Half-duplex links include original MicroWire, and ones with 3415 * only one data pin like SPI_3WIRE (switches direction) or where 3416 * either MOSI or MISO is missing. They can also be caused by 3417 * software limitations. 3418 */ 3419 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3420 (spi->mode & SPI_3WIRE)) { 3421 unsigned flags = ctlr->flags; 3422 3423 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3424 if (xfer->rx_buf && xfer->tx_buf) 3425 return -EINVAL; 3426 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3427 return -EINVAL; 3428 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3429 return -EINVAL; 3430 } 3431 } 3432 3433 /** 3434 * Set transfer bits_per_word and max speed as spi device default if 3435 * it is not set for this transfer. 3436 * Set transfer tx_nbits and rx_nbits as single transfer default 3437 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3438 * Ensure transfer word_delay is at least as long as that required by 3439 * device itself. 3440 */ 3441 message->frame_length = 0; 3442 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3443 xfer->effective_speed_hz = 0; 3444 message->frame_length += xfer->len; 3445 if (!xfer->bits_per_word) 3446 xfer->bits_per_word = spi->bits_per_word; 3447 3448 if (!xfer->speed_hz) 3449 xfer->speed_hz = spi->max_speed_hz; 3450 3451 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3452 xfer->speed_hz = ctlr->max_speed_hz; 3453 3454 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3455 return -EINVAL; 3456 3457 /* 3458 * SPI transfer length should be multiple of SPI word size 3459 * where SPI word size should be power-of-two multiple 3460 */ 3461 if (xfer->bits_per_word <= 8) 3462 w_size = 1; 3463 else if (xfer->bits_per_word <= 16) 3464 w_size = 2; 3465 else 3466 w_size = 4; 3467 3468 /* No partial transfers accepted */ 3469 if (xfer->len % w_size) 3470 return -EINVAL; 3471 3472 if (xfer->speed_hz && ctlr->min_speed_hz && 3473 xfer->speed_hz < ctlr->min_speed_hz) 3474 return -EINVAL; 3475 3476 if (xfer->tx_buf && !xfer->tx_nbits) 3477 xfer->tx_nbits = SPI_NBITS_SINGLE; 3478 if (xfer->rx_buf && !xfer->rx_nbits) 3479 xfer->rx_nbits = SPI_NBITS_SINGLE; 3480 /* check transfer tx/rx_nbits: 3481 * 1. check the value matches one of single, dual and quad 3482 * 2. check tx/rx_nbits match the mode in spi_device 3483 */ 3484 if (xfer->tx_buf) { 3485 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3486 xfer->tx_nbits != SPI_NBITS_DUAL && 3487 xfer->tx_nbits != SPI_NBITS_QUAD) 3488 return -EINVAL; 3489 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3490 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3491 return -EINVAL; 3492 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3493 !(spi->mode & SPI_TX_QUAD)) 3494 return -EINVAL; 3495 } 3496 /* check transfer rx_nbits */ 3497 if (xfer->rx_buf) { 3498 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3499 xfer->rx_nbits != SPI_NBITS_DUAL && 3500 xfer->rx_nbits != SPI_NBITS_QUAD) 3501 return -EINVAL; 3502 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3503 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3504 return -EINVAL; 3505 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3506 !(spi->mode & SPI_RX_QUAD)) 3507 return -EINVAL; 3508 } 3509 3510 if (_spi_xfer_word_delay_update(xfer, spi)) 3511 return -EINVAL; 3512 } 3513 3514 message->status = -EINPROGRESS; 3515 3516 return 0; 3517 } 3518 3519 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3520 { 3521 struct spi_controller *ctlr = spi->controller; 3522 struct spi_transfer *xfer; 3523 3524 /* 3525 * Some controllers do not support doing regular SPI transfers. Return 3526 * ENOTSUPP when this is the case. 3527 */ 3528 if (!ctlr->transfer) 3529 return -ENOTSUPP; 3530 3531 message->spi = spi; 3532 3533 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3534 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3535 3536 trace_spi_message_submit(message); 3537 3538 if (!ctlr->ptp_sts_supported) { 3539 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3540 xfer->ptp_sts_word_pre = 0; 3541 ptp_read_system_prets(xfer->ptp_sts); 3542 } 3543 } 3544 3545 return ctlr->transfer(spi, message); 3546 } 3547 3548 /** 3549 * spi_async - asynchronous SPI transfer 3550 * @spi: device with which data will be exchanged 3551 * @message: describes the data transfers, including completion callback 3552 * Context: any (irqs may be blocked, etc) 3553 * 3554 * This call may be used in_irq and other contexts which can't sleep, 3555 * as well as from task contexts which can sleep. 3556 * 3557 * The completion callback is invoked in a context which can't sleep. 3558 * Before that invocation, the value of message->status is undefined. 3559 * When the callback is issued, message->status holds either zero (to 3560 * indicate complete success) or a negative error code. After that 3561 * callback returns, the driver which issued the transfer request may 3562 * deallocate the associated memory; it's no longer in use by any SPI 3563 * core or controller driver code. 3564 * 3565 * Note that although all messages to a spi_device are handled in 3566 * FIFO order, messages may go to different devices in other orders. 3567 * Some device might be higher priority, or have various "hard" access 3568 * time requirements, for example. 3569 * 3570 * On detection of any fault during the transfer, processing of 3571 * the entire message is aborted, and the device is deselected. 3572 * Until returning from the associated message completion callback, 3573 * no other spi_message queued to that device will be processed. 3574 * (This rule applies equally to all the synchronous transfer calls, 3575 * which are wrappers around this core asynchronous primitive.) 3576 * 3577 * Return: zero on success, else a negative error code. 3578 */ 3579 int spi_async(struct spi_device *spi, struct spi_message *message) 3580 { 3581 struct spi_controller *ctlr = spi->controller; 3582 int ret; 3583 unsigned long flags; 3584 3585 ret = __spi_validate(spi, message); 3586 if (ret != 0) 3587 return ret; 3588 3589 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3590 3591 if (ctlr->bus_lock_flag) 3592 ret = -EBUSY; 3593 else 3594 ret = __spi_async(spi, message); 3595 3596 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3597 3598 return ret; 3599 } 3600 EXPORT_SYMBOL_GPL(spi_async); 3601 3602 /** 3603 * spi_async_locked - version of spi_async with exclusive bus usage 3604 * @spi: device with which data will be exchanged 3605 * @message: describes the data transfers, including completion callback 3606 * Context: any (irqs may be blocked, etc) 3607 * 3608 * This call may be used in_irq and other contexts which can't sleep, 3609 * as well as from task contexts which can sleep. 3610 * 3611 * The completion callback is invoked in a context which can't sleep. 3612 * Before that invocation, the value of message->status is undefined. 3613 * When the callback is issued, message->status holds either zero (to 3614 * indicate complete success) or a negative error code. After that 3615 * callback returns, the driver which issued the transfer request may 3616 * deallocate the associated memory; it's no longer in use by any SPI 3617 * core or controller driver code. 3618 * 3619 * Note that although all messages to a spi_device are handled in 3620 * FIFO order, messages may go to different devices in other orders. 3621 * Some device might be higher priority, or have various "hard" access 3622 * time requirements, for example. 3623 * 3624 * On detection of any fault during the transfer, processing of 3625 * the entire message is aborted, and the device is deselected. 3626 * Until returning from the associated message completion callback, 3627 * no other spi_message queued to that device will be processed. 3628 * (This rule applies equally to all the synchronous transfer calls, 3629 * which are wrappers around this core asynchronous primitive.) 3630 * 3631 * Return: zero on success, else a negative error code. 3632 */ 3633 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3634 { 3635 struct spi_controller *ctlr = spi->controller; 3636 int ret; 3637 unsigned long flags; 3638 3639 ret = __spi_validate(spi, message); 3640 if (ret != 0) 3641 return ret; 3642 3643 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3644 3645 ret = __spi_async(spi, message); 3646 3647 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3648 3649 return ret; 3650 3651 } 3652 EXPORT_SYMBOL_GPL(spi_async_locked); 3653 3654 /*-------------------------------------------------------------------------*/ 3655 3656 /* Utility methods for SPI protocol drivers, layered on 3657 * top of the core. Some other utility methods are defined as 3658 * inline functions. 3659 */ 3660 3661 static void spi_complete(void *arg) 3662 { 3663 complete(arg); 3664 } 3665 3666 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3667 { 3668 DECLARE_COMPLETION_ONSTACK(done); 3669 int status; 3670 struct spi_controller *ctlr = spi->controller; 3671 unsigned long flags; 3672 3673 status = __spi_validate(spi, message); 3674 if (status != 0) 3675 return status; 3676 3677 message->complete = spi_complete; 3678 message->context = &done; 3679 message->spi = spi; 3680 3681 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3682 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3683 3684 /* If we're not using the legacy transfer method then we will 3685 * try to transfer in the calling context so special case. 3686 * This code would be less tricky if we could remove the 3687 * support for driver implemented message queues. 3688 */ 3689 if (ctlr->transfer == spi_queued_transfer) { 3690 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3691 3692 trace_spi_message_submit(message); 3693 3694 status = __spi_queued_transfer(spi, message, false); 3695 3696 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3697 } else { 3698 status = spi_async_locked(spi, message); 3699 } 3700 3701 if (status == 0) { 3702 /* Push out the messages in the calling context if we 3703 * can. 3704 */ 3705 if (ctlr->transfer == spi_queued_transfer) { 3706 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3707 spi_sync_immediate); 3708 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3709 spi_sync_immediate); 3710 __spi_pump_messages(ctlr, false); 3711 } 3712 3713 wait_for_completion(&done); 3714 status = message->status; 3715 } 3716 message->context = NULL; 3717 return status; 3718 } 3719 3720 /** 3721 * spi_sync - blocking/synchronous SPI data transfers 3722 * @spi: device with which data will be exchanged 3723 * @message: describes the data transfers 3724 * Context: can sleep 3725 * 3726 * This call may only be used from a context that may sleep. The sleep 3727 * is non-interruptible, and has no timeout. Low-overhead controller 3728 * drivers may DMA directly into and out of the message buffers. 3729 * 3730 * Note that the SPI device's chip select is active during the message, 3731 * and then is normally disabled between messages. Drivers for some 3732 * frequently-used devices may want to minimize costs of selecting a chip, 3733 * by leaving it selected in anticipation that the next message will go 3734 * to the same chip. (That may increase power usage.) 3735 * 3736 * Also, the caller is guaranteeing that the memory associated with the 3737 * message will not be freed before this call returns. 3738 * 3739 * Return: zero on success, else a negative error code. 3740 */ 3741 int spi_sync(struct spi_device *spi, struct spi_message *message) 3742 { 3743 int ret; 3744 3745 mutex_lock(&spi->controller->bus_lock_mutex); 3746 ret = __spi_sync(spi, message); 3747 mutex_unlock(&spi->controller->bus_lock_mutex); 3748 3749 return ret; 3750 } 3751 EXPORT_SYMBOL_GPL(spi_sync); 3752 3753 /** 3754 * spi_sync_locked - version of spi_sync with exclusive bus usage 3755 * @spi: device with which data will be exchanged 3756 * @message: describes the data transfers 3757 * Context: can sleep 3758 * 3759 * This call may only be used from a context that may sleep. The sleep 3760 * is non-interruptible, and has no timeout. Low-overhead controller 3761 * drivers may DMA directly into and out of the message buffers. 3762 * 3763 * This call should be used by drivers that require exclusive access to the 3764 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3765 * be released by a spi_bus_unlock call when the exclusive access is over. 3766 * 3767 * Return: zero on success, else a negative error code. 3768 */ 3769 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3770 { 3771 return __spi_sync(spi, message); 3772 } 3773 EXPORT_SYMBOL_GPL(spi_sync_locked); 3774 3775 /** 3776 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3777 * @ctlr: SPI bus master that should be locked for exclusive bus access 3778 * Context: can sleep 3779 * 3780 * This call may only be used from a context that may sleep. The sleep 3781 * is non-interruptible, and has no timeout. 3782 * 3783 * This call should be used by drivers that require exclusive access to the 3784 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3785 * exclusive access is over. Data transfer must be done by spi_sync_locked 3786 * and spi_async_locked calls when the SPI bus lock is held. 3787 * 3788 * Return: always zero. 3789 */ 3790 int spi_bus_lock(struct spi_controller *ctlr) 3791 { 3792 unsigned long flags; 3793 3794 mutex_lock(&ctlr->bus_lock_mutex); 3795 3796 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3797 ctlr->bus_lock_flag = 1; 3798 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3799 3800 /* mutex remains locked until spi_bus_unlock is called */ 3801 3802 return 0; 3803 } 3804 EXPORT_SYMBOL_GPL(spi_bus_lock); 3805 3806 /** 3807 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3808 * @ctlr: SPI bus master that was locked for exclusive bus access 3809 * Context: can sleep 3810 * 3811 * This call may only be used from a context that may sleep. The sleep 3812 * is non-interruptible, and has no timeout. 3813 * 3814 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3815 * call. 3816 * 3817 * Return: always zero. 3818 */ 3819 int spi_bus_unlock(struct spi_controller *ctlr) 3820 { 3821 ctlr->bus_lock_flag = 0; 3822 3823 mutex_unlock(&ctlr->bus_lock_mutex); 3824 3825 return 0; 3826 } 3827 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3828 3829 /* portable code must never pass more than 32 bytes */ 3830 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3831 3832 static u8 *buf; 3833 3834 /** 3835 * spi_write_then_read - SPI synchronous write followed by read 3836 * @spi: device with which data will be exchanged 3837 * @txbuf: data to be written (need not be dma-safe) 3838 * @n_tx: size of txbuf, in bytes 3839 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3840 * @n_rx: size of rxbuf, in bytes 3841 * Context: can sleep 3842 * 3843 * This performs a half duplex MicroWire style transaction with the 3844 * device, sending txbuf and then reading rxbuf. The return value 3845 * is zero for success, else a negative errno status code. 3846 * This call may only be used from a context that may sleep. 3847 * 3848 * Parameters to this routine are always copied using a small buffer; 3849 * portable code should never use this for more than 32 bytes. 3850 * Performance-sensitive or bulk transfer code should instead use 3851 * spi_{async,sync}() calls with dma-safe buffers. 3852 * 3853 * Return: zero on success, else a negative error code. 3854 */ 3855 int spi_write_then_read(struct spi_device *spi, 3856 const void *txbuf, unsigned n_tx, 3857 void *rxbuf, unsigned n_rx) 3858 { 3859 static DEFINE_MUTEX(lock); 3860 3861 int status; 3862 struct spi_message message; 3863 struct spi_transfer x[2]; 3864 u8 *local_buf; 3865 3866 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3867 * copying here, (as a pure convenience thing), but we can 3868 * keep heap costs out of the hot path unless someone else is 3869 * using the pre-allocated buffer or the transfer is too large. 3870 */ 3871 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3872 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3873 GFP_KERNEL | GFP_DMA); 3874 if (!local_buf) 3875 return -ENOMEM; 3876 } else { 3877 local_buf = buf; 3878 } 3879 3880 spi_message_init(&message); 3881 memset(x, 0, sizeof(x)); 3882 if (n_tx) { 3883 x[0].len = n_tx; 3884 spi_message_add_tail(&x[0], &message); 3885 } 3886 if (n_rx) { 3887 x[1].len = n_rx; 3888 spi_message_add_tail(&x[1], &message); 3889 } 3890 3891 memcpy(local_buf, txbuf, n_tx); 3892 x[0].tx_buf = local_buf; 3893 x[1].rx_buf = local_buf + n_tx; 3894 3895 /* do the i/o */ 3896 status = spi_sync(spi, &message); 3897 if (status == 0) 3898 memcpy(rxbuf, x[1].rx_buf, n_rx); 3899 3900 if (x[0].tx_buf == buf) 3901 mutex_unlock(&lock); 3902 else 3903 kfree(local_buf); 3904 3905 return status; 3906 } 3907 EXPORT_SYMBOL_GPL(spi_write_then_read); 3908 3909 /*-------------------------------------------------------------------------*/ 3910 3911 #if IS_ENABLED(CONFIG_OF) 3912 /* must call put_device() when done with returned spi_device device */ 3913 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3914 { 3915 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 3916 3917 return dev ? to_spi_device(dev) : NULL; 3918 } 3919 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3920 #endif /* IS_ENABLED(CONFIG_OF) */ 3921 3922 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3923 /* the spi controllers are not using spi_bus, so we find it with another way */ 3924 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3925 { 3926 struct device *dev; 3927 3928 dev = class_find_device_by_of_node(&spi_master_class, node); 3929 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3930 dev = class_find_device_by_of_node(&spi_slave_class, node); 3931 if (!dev) 3932 return NULL; 3933 3934 /* reference got in class_find_device */ 3935 return container_of(dev, struct spi_controller, dev); 3936 } 3937 3938 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3939 void *arg) 3940 { 3941 struct of_reconfig_data *rd = arg; 3942 struct spi_controller *ctlr; 3943 struct spi_device *spi; 3944 3945 switch (of_reconfig_get_state_change(action, arg)) { 3946 case OF_RECONFIG_CHANGE_ADD: 3947 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3948 if (ctlr == NULL) 3949 return NOTIFY_OK; /* not for us */ 3950 3951 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3952 put_device(&ctlr->dev); 3953 return NOTIFY_OK; 3954 } 3955 3956 spi = of_register_spi_device(ctlr, rd->dn); 3957 put_device(&ctlr->dev); 3958 3959 if (IS_ERR(spi)) { 3960 pr_err("%s: failed to create for '%pOF'\n", 3961 __func__, rd->dn); 3962 of_node_clear_flag(rd->dn, OF_POPULATED); 3963 return notifier_from_errno(PTR_ERR(spi)); 3964 } 3965 break; 3966 3967 case OF_RECONFIG_CHANGE_REMOVE: 3968 /* already depopulated? */ 3969 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3970 return NOTIFY_OK; 3971 3972 /* find our device by node */ 3973 spi = of_find_spi_device_by_node(rd->dn); 3974 if (spi == NULL) 3975 return NOTIFY_OK; /* no? not meant for us */ 3976 3977 /* unregister takes one ref away */ 3978 spi_unregister_device(spi); 3979 3980 /* and put the reference of the find */ 3981 put_device(&spi->dev); 3982 break; 3983 } 3984 3985 return NOTIFY_OK; 3986 } 3987 3988 static struct notifier_block spi_of_notifier = { 3989 .notifier_call = of_spi_notify, 3990 }; 3991 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3992 extern struct notifier_block spi_of_notifier; 3993 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3994 3995 #if IS_ENABLED(CONFIG_ACPI) 3996 static int spi_acpi_controller_match(struct device *dev, const void *data) 3997 { 3998 return ACPI_COMPANION(dev->parent) == data; 3999 } 4000 4001 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4002 { 4003 struct device *dev; 4004 4005 dev = class_find_device(&spi_master_class, NULL, adev, 4006 spi_acpi_controller_match); 4007 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4008 dev = class_find_device(&spi_slave_class, NULL, adev, 4009 spi_acpi_controller_match); 4010 if (!dev) 4011 return NULL; 4012 4013 return container_of(dev, struct spi_controller, dev); 4014 } 4015 4016 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4017 { 4018 struct device *dev; 4019 4020 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4021 return dev ? to_spi_device(dev) : NULL; 4022 } 4023 4024 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4025 void *arg) 4026 { 4027 struct acpi_device *adev = arg; 4028 struct spi_controller *ctlr; 4029 struct spi_device *spi; 4030 4031 switch (value) { 4032 case ACPI_RECONFIG_DEVICE_ADD: 4033 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4034 if (!ctlr) 4035 break; 4036 4037 acpi_register_spi_device(ctlr, adev); 4038 put_device(&ctlr->dev); 4039 break; 4040 case ACPI_RECONFIG_DEVICE_REMOVE: 4041 if (!acpi_device_enumerated(adev)) 4042 break; 4043 4044 spi = acpi_spi_find_device_by_adev(adev); 4045 if (!spi) 4046 break; 4047 4048 spi_unregister_device(spi); 4049 put_device(&spi->dev); 4050 break; 4051 } 4052 4053 return NOTIFY_OK; 4054 } 4055 4056 static struct notifier_block spi_acpi_notifier = { 4057 .notifier_call = acpi_spi_notify, 4058 }; 4059 #else 4060 extern struct notifier_block spi_acpi_notifier; 4061 #endif 4062 4063 static int __init spi_init(void) 4064 { 4065 int status; 4066 4067 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4068 if (!buf) { 4069 status = -ENOMEM; 4070 goto err0; 4071 } 4072 4073 status = bus_register(&spi_bus_type); 4074 if (status < 0) 4075 goto err1; 4076 4077 status = class_register(&spi_master_class); 4078 if (status < 0) 4079 goto err2; 4080 4081 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4082 status = class_register(&spi_slave_class); 4083 if (status < 0) 4084 goto err3; 4085 } 4086 4087 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4088 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4089 if (IS_ENABLED(CONFIG_ACPI)) 4090 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4091 4092 return 0; 4093 4094 err3: 4095 class_unregister(&spi_master_class); 4096 err2: 4097 bus_unregister(&spi_bus_type); 4098 err1: 4099 kfree(buf); 4100 buf = NULL; 4101 err0: 4102 return status; 4103 } 4104 4105 /* board_info is normally registered in arch_initcall(), 4106 * but even essential drivers wait till later 4107 * 4108 * REVISIT only boardinfo really needs static linking. the rest (device and 4109 * driver registration) _could_ be dynamically linked (modular) ... costs 4110 * include needing to have boardinfo data structures be much more public. 4111 */ 4112 postcore_initcall(spi_init); 4113