1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/pm_domain.h> 24 #include <linux/property.h> 25 #include <linux/export.h> 26 #include <linux/sched/rt.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/ioport.h> 31 #include <linux/acpi.h> 32 #include <linux/highmem.h> 33 #include <linux/idr.h> 34 #include <linux/platform_data/x86/apple.h> 35 #include <linux/ptp_clock_kernel.h> 36 #include <linux/percpu.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 #define spi_pcpu_stats_totalize(ret, in, field) \ 121 do { \ 122 int i; \ 123 ret = 0; \ 124 for_each_possible_cpu(i) { \ 125 const struct spi_statistics *pcpu_stats; \ 126 u64 inc; \ 127 unsigned int start; \ 128 pcpu_stats = per_cpu_ptr(in, i); \ 129 do { \ 130 start = u64_stats_fetch_begin( \ 131 &pcpu_stats->syncp); \ 132 inc = u64_stats_read(&pcpu_stats->field); \ 133 } while (u64_stats_fetch_retry( \ 134 &pcpu_stats->syncp, start)); \ 135 ret += inc; \ 136 } \ 137 } while (0) 138 139 #define SPI_STATISTICS_ATTRS(field, file) \ 140 static ssize_t spi_controller_##field##_show(struct device *dev, \ 141 struct device_attribute *attr, \ 142 char *buf) \ 143 { \ 144 struct spi_controller *ctlr = container_of(dev, \ 145 struct spi_controller, dev); \ 146 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 147 } \ 148 static struct device_attribute dev_attr_spi_controller_##field = { \ 149 .attr = { .name = file, .mode = 0444 }, \ 150 .show = spi_controller_##field##_show, \ 151 }; \ 152 static ssize_t spi_device_##field##_show(struct device *dev, \ 153 struct device_attribute *attr, \ 154 char *buf) \ 155 { \ 156 struct spi_device *spi = to_spi_device(dev); \ 157 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 158 } \ 159 static struct device_attribute dev_attr_spi_device_##field = { \ 160 .attr = { .name = file, .mode = 0444 }, \ 161 .show = spi_device_##field##_show, \ 162 } 163 164 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 166 char *buf) \ 167 { \ 168 ssize_t len; \ 169 u64 val; \ 170 spi_pcpu_stats_totalize(val, stat, field); \ 171 len = sysfs_emit(buf, "%llu\n", val); \ 172 return len; \ 173 } \ 174 SPI_STATISTICS_ATTRS(name, file) 175 176 #define SPI_STATISTICS_SHOW(field) \ 177 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 178 field) 179 180 SPI_STATISTICS_SHOW(messages); 181 SPI_STATISTICS_SHOW(transfers); 182 SPI_STATISTICS_SHOW(errors); 183 SPI_STATISTICS_SHOW(timedout); 184 185 SPI_STATISTICS_SHOW(spi_sync); 186 SPI_STATISTICS_SHOW(spi_sync_immediate); 187 SPI_STATISTICS_SHOW(spi_async); 188 189 SPI_STATISTICS_SHOW(bytes); 190 SPI_STATISTICS_SHOW(bytes_rx); 191 SPI_STATISTICS_SHOW(bytes_tx); 192 193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 194 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 195 "transfer_bytes_histo_" number, \ 196 transfer_bytes_histo[index]) 197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 214 215 SPI_STATISTICS_SHOW(transfers_split_maxsize); 216 217 static struct attribute *spi_dev_attrs[] = { 218 &dev_attr_modalias.attr, 219 &dev_attr_driver_override.attr, 220 NULL, 221 }; 222 223 static const struct attribute_group spi_dev_group = { 224 .attrs = spi_dev_attrs, 225 }; 226 227 static struct attribute *spi_device_statistics_attrs[] = { 228 &dev_attr_spi_device_messages.attr, 229 &dev_attr_spi_device_transfers.attr, 230 &dev_attr_spi_device_errors.attr, 231 &dev_attr_spi_device_timedout.attr, 232 &dev_attr_spi_device_spi_sync.attr, 233 &dev_attr_spi_device_spi_sync_immediate.attr, 234 &dev_attr_spi_device_spi_async.attr, 235 &dev_attr_spi_device_bytes.attr, 236 &dev_attr_spi_device_bytes_rx.attr, 237 &dev_attr_spi_device_bytes_tx.attr, 238 &dev_attr_spi_device_transfer_bytes_histo0.attr, 239 &dev_attr_spi_device_transfer_bytes_histo1.attr, 240 &dev_attr_spi_device_transfer_bytes_histo2.attr, 241 &dev_attr_spi_device_transfer_bytes_histo3.attr, 242 &dev_attr_spi_device_transfer_bytes_histo4.attr, 243 &dev_attr_spi_device_transfer_bytes_histo5.attr, 244 &dev_attr_spi_device_transfer_bytes_histo6.attr, 245 &dev_attr_spi_device_transfer_bytes_histo7.attr, 246 &dev_attr_spi_device_transfer_bytes_histo8.attr, 247 &dev_attr_spi_device_transfer_bytes_histo9.attr, 248 &dev_attr_spi_device_transfer_bytes_histo10.attr, 249 &dev_attr_spi_device_transfer_bytes_histo11.attr, 250 &dev_attr_spi_device_transfer_bytes_histo12.attr, 251 &dev_attr_spi_device_transfer_bytes_histo13.attr, 252 &dev_attr_spi_device_transfer_bytes_histo14.attr, 253 &dev_attr_spi_device_transfer_bytes_histo15.attr, 254 &dev_attr_spi_device_transfer_bytes_histo16.attr, 255 &dev_attr_spi_device_transfers_split_maxsize.attr, 256 NULL, 257 }; 258 259 static const struct attribute_group spi_device_statistics_group = { 260 .name = "statistics", 261 .attrs = spi_device_statistics_attrs, 262 }; 263 264 static const struct attribute_group *spi_dev_groups[] = { 265 &spi_dev_group, 266 &spi_device_statistics_group, 267 NULL, 268 }; 269 270 static struct attribute *spi_controller_statistics_attrs[] = { 271 &dev_attr_spi_controller_messages.attr, 272 &dev_attr_spi_controller_transfers.attr, 273 &dev_attr_spi_controller_errors.attr, 274 &dev_attr_spi_controller_timedout.attr, 275 &dev_attr_spi_controller_spi_sync.attr, 276 &dev_attr_spi_controller_spi_sync_immediate.attr, 277 &dev_attr_spi_controller_spi_async.attr, 278 &dev_attr_spi_controller_bytes.attr, 279 &dev_attr_spi_controller_bytes_rx.attr, 280 &dev_attr_spi_controller_bytes_tx.attr, 281 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 298 &dev_attr_spi_controller_transfers_split_maxsize.attr, 299 NULL, 300 }; 301 302 static const struct attribute_group spi_controller_statistics_group = { 303 .name = "statistics", 304 .attrs = spi_controller_statistics_attrs, 305 }; 306 307 static const struct attribute_group *spi_master_groups[] = { 308 &spi_controller_statistics_group, 309 NULL, 310 }; 311 312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 313 struct spi_transfer *xfer, 314 struct spi_controller *ctlr) 315 { 316 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 317 struct spi_statistics *stats; 318 319 if (l2len < 0) 320 l2len = 0; 321 322 get_cpu(); 323 stats = this_cpu_ptr(pcpu_stats); 324 u64_stats_update_begin(&stats->syncp); 325 326 u64_stats_inc(&stats->transfers); 327 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 328 329 u64_stats_add(&stats->bytes, xfer->len); 330 if ((xfer->tx_buf) && 331 (xfer->tx_buf != ctlr->dummy_tx)) 332 u64_stats_add(&stats->bytes_tx, xfer->len); 333 if ((xfer->rx_buf) && 334 (xfer->rx_buf != ctlr->dummy_rx)) 335 u64_stats_add(&stats->bytes_rx, xfer->len); 336 337 u64_stats_update_end(&stats->syncp); 338 put_cpu(); 339 } 340 341 /* 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 343 * and the sysfs version makes coldplug work too. 344 */ 345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 346 { 347 while (id->name[0]) { 348 if (!strcmp(name, id->name)) 349 return id; 350 id++; 351 } 352 return NULL; 353 } 354 355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 356 { 357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 358 359 return spi_match_id(sdrv->id_table, sdev->modalias); 360 } 361 EXPORT_SYMBOL_GPL(spi_get_device_id); 362 363 const void *spi_get_device_match_data(const struct spi_device *sdev) 364 { 365 const void *match; 366 367 match = device_get_match_data(&sdev->dev); 368 if (match) 369 return match; 370 371 return (const void *)spi_get_device_id(sdev)->driver_data; 372 } 373 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 374 375 static int spi_match_device(struct device *dev, struct device_driver *drv) 376 { 377 const struct spi_device *spi = to_spi_device(dev); 378 const struct spi_driver *sdrv = to_spi_driver(drv); 379 380 /* Check override first, and if set, only use the named driver */ 381 if (spi->driver_override) 382 return strcmp(spi->driver_override, drv->name) == 0; 383 384 /* Attempt an OF style match */ 385 if (of_driver_match_device(dev, drv)) 386 return 1; 387 388 /* Then try ACPI */ 389 if (acpi_driver_match_device(dev, drv)) 390 return 1; 391 392 if (sdrv->id_table) 393 return !!spi_match_id(sdrv->id_table, spi->modalias); 394 395 return strcmp(spi->modalias, drv->name) == 0; 396 } 397 398 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 399 { 400 const struct spi_device *spi = to_spi_device(dev); 401 int rc; 402 403 rc = acpi_device_uevent_modalias(dev, env); 404 if (rc != -ENODEV) 405 return rc; 406 407 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 408 } 409 410 static int spi_probe(struct device *dev) 411 { 412 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 413 struct spi_device *spi = to_spi_device(dev); 414 int ret; 415 416 ret = of_clk_set_defaults(dev->of_node, false); 417 if (ret) 418 return ret; 419 420 if (dev->of_node) { 421 spi->irq = of_irq_get(dev->of_node, 0); 422 if (spi->irq == -EPROBE_DEFER) 423 return -EPROBE_DEFER; 424 if (spi->irq < 0) 425 spi->irq = 0; 426 } 427 428 ret = dev_pm_domain_attach(dev, true); 429 if (ret) 430 return ret; 431 432 if (sdrv->probe) { 433 ret = sdrv->probe(spi); 434 if (ret) 435 dev_pm_domain_detach(dev, true); 436 } 437 438 return ret; 439 } 440 441 static void spi_remove(struct device *dev) 442 { 443 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 444 445 if (sdrv->remove) 446 sdrv->remove(to_spi_device(dev)); 447 448 dev_pm_domain_detach(dev, true); 449 } 450 451 static void spi_shutdown(struct device *dev) 452 { 453 if (dev->driver) { 454 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 455 456 if (sdrv->shutdown) 457 sdrv->shutdown(to_spi_device(dev)); 458 } 459 } 460 461 struct bus_type spi_bus_type = { 462 .name = "spi", 463 .dev_groups = spi_dev_groups, 464 .match = spi_match_device, 465 .uevent = spi_uevent, 466 .probe = spi_probe, 467 .remove = spi_remove, 468 .shutdown = spi_shutdown, 469 }; 470 EXPORT_SYMBOL_GPL(spi_bus_type); 471 472 /** 473 * __spi_register_driver - register a SPI driver 474 * @owner: owner module of the driver to register 475 * @sdrv: the driver to register 476 * Context: can sleep 477 * 478 * Return: zero on success, else a negative error code. 479 */ 480 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 481 { 482 sdrv->driver.owner = owner; 483 sdrv->driver.bus = &spi_bus_type; 484 485 /* 486 * For Really Good Reasons we use spi: modaliases not of: 487 * modaliases for DT so module autoloading won't work if we 488 * don't have a spi_device_id as well as a compatible string. 489 */ 490 if (sdrv->driver.of_match_table) { 491 const struct of_device_id *of_id; 492 493 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 494 of_id++) { 495 const char *of_name; 496 497 /* Strip off any vendor prefix */ 498 of_name = strnchr(of_id->compatible, 499 sizeof(of_id->compatible), ','); 500 if (of_name) 501 of_name++; 502 else 503 of_name = of_id->compatible; 504 505 if (sdrv->id_table) { 506 const struct spi_device_id *spi_id; 507 508 spi_id = spi_match_id(sdrv->id_table, of_name); 509 if (spi_id) 510 continue; 511 } else { 512 if (strcmp(sdrv->driver.name, of_name) == 0) 513 continue; 514 } 515 516 pr_warn("SPI driver %s has no spi_device_id for %s\n", 517 sdrv->driver.name, of_id->compatible); 518 } 519 } 520 521 return driver_register(&sdrv->driver); 522 } 523 EXPORT_SYMBOL_GPL(__spi_register_driver); 524 525 /*-------------------------------------------------------------------------*/ 526 527 /* 528 * SPI devices should normally not be created by SPI device drivers; that 529 * would make them board-specific. Similarly with SPI controller drivers. 530 * Device registration normally goes into like arch/.../mach.../board-YYY.c 531 * with other readonly (flashable) information about mainboard devices. 532 */ 533 534 struct boardinfo { 535 struct list_head list; 536 struct spi_board_info board_info; 537 }; 538 539 static LIST_HEAD(board_list); 540 static LIST_HEAD(spi_controller_list); 541 542 /* 543 * Used to protect add/del operation for board_info list and 544 * spi_controller list, and their matching process also used 545 * to protect object of type struct idr. 546 */ 547 static DEFINE_MUTEX(board_lock); 548 549 /** 550 * spi_alloc_device - Allocate a new SPI device 551 * @ctlr: Controller to which device is connected 552 * Context: can sleep 553 * 554 * Allows a driver to allocate and initialize a spi_device without 555 * registering it immediately. This allows a driver to directly 556 * fill the spi_device with device parameters before calling 557 * spi_add_device() on it. 558 * 559 * Caller is responsible to call spi_add_device() on the returned 560 * spi_device structure to add it to the SPI controller. If the caller 561 * needs to discard the spi_device without adding it, then it should 562 * call spi_dev_put() on it. 563 * 564 * Return: a pointer to the new device, or NULL. 565 */ 566 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 567 { 568 struct spi_device *spi; 569 570 if (!spi_controller_get(ctlr)) 571 return NULL; 572 573 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 574 if (!spi) { 575 spi_controller_put(ctlr); 576 return NULL; 577 } 578 579 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 580 if (!spi->pcpu_statistics) { 581 kfree(spi); 582 spi_controller_put(ctlr); 583 return NULL; 584 } 585 586 spi->master = spi->controller = ctlr; 587 spi->dev.parent = &ctlr->dev; 588 spi->dev.bus = &spi_bus_type; 589 spi->dev.release = spidev_release; 590 spi->mode = ctlr->buswidth_override_bits; 591 592 device_initialize(&spi->dev); 593 return spi; 594 } 595 EXPORT_SYMBOL_GPL(spi_alloc_device); 596 597 static void spi_dev_set_name(struct spi_device *spi) 598 { 599 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 600 601 if (adev) { 602 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 603 return; 604 } 605 606 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 607 spi->chip_select); 608 } 609 610 static int spi_dev_check(struct device *dev, void *data) 611 { 612 struct spi_device *spi = to_spi_device(dev); 613 struct spi_device *new_spi = data; 614 615 if (spi->controller == new_spi->controller && 616 spi->chip_select == new_spi->chip_select) 617 return -EBUSY; 618 return 0; 619 } 620 621 static void spi_cleanup(struct spi_device *spi) 622 { 623 if (spi->controller->cleanup) 624 spi->controller->cleanup(spi); 625 } 626 627 static int __spi_add_device(struct spi_device *spi) 628 { 629 struct spi_controller *ctlr = spi->controller; 630 struct device *dev = ctlr->dev.parent; 631 int status; 632 633 /* 634 * We need to make sure there's no other device with this 635 * chipselect **BEFORE** we call setup(), else we'll trash 636 * its configuration. 637 */ 638 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 639 if (status) { 640 dev_err(dev, "chipselect %d already in use\n", 641 spi->chip_select); 642 return status; 643 } 644 645 /* Controller may unregister concurrently */ 646 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 647 !device_is_registered(&ctlr->dev)) { 648 return -ENODEV; 649 } 650 651 if (ctlr->cs_gpiods) 652 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 653 654 /* 655 * Drivers may modify this initial i/o setup, but will 656 * normally rely on the device being setup. Devices 657 * using SPI_CS_HIGH can't coexist well otherwise... 658 */ 659 status = spi_setup(spi); 660 if (status < 0) { 661 dev_err(dev, "can't setup %s, status %d\n", 662 dev_name(&spi->dev), status); 663 return status; 664 } 665 666 /* Device may be bound to an active driver when this returns */ 667 status = device_add(&spi->dev); 668 if (status < 0) { 669 dev_err(dev, "can't add %s, status %d\n", 670 dev_name(&spi->dev), status); 671 spi_cleanup(spi); 672 } else { 673 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 674 } 675 676 return status; 677 } 678 679 /** 680 * spi_add_device - Add spi_device allocated with spi_alloc_device 681 * @spi: spi_device to register 682 * 683 * Companion function to spi_alloc_device. Devices allocated with 684 * spi_alloc_device can be added onto the spi bus with this function. 685 * 686 * Return: 0 on success; negative errno on failure 687 */ 688 int spi_add_device(struct spi_device *spi) 689 { 690 struct spi_controller *ctlr = spi->controller; 691 struct device *dev = ctlr->dev.parent; 692 int status; 693 694 /* Chipselects are numbered 0..max; validate. */ 695 if (spi->chip_select >= ctlr->num_chipselect) { 696 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 697 ctlr->num_chipselect); 698 return -EINVAL; 699 } 700 701 /* Set the bus ID string */ 702 spi_dev_set_name(spi); 703 704 mutex_lock(&ctlr->add_lock); 705 status = __spi_add_device(spi); 706 mutex_unlock(&ctlr->add_lock); 707 return status; 708 } 709 EXPORT_SYMBOL_GPL(spi_add_device); 710 711 static int spi_add_device_locked(struct spi_device *spi) 712 { 713 struct spi_controller *ctlr = spi->controller; 714 struct device *dev = ctlr->dev.parent; 715 716 /* Chipselects are numbered 0..max; validate. */ 717 if (spi->chip_select >= ctlr->num_chipselect) { 718 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 719 ctlr->num_chipselect); 720 return -EINVAL; 721 } 722 723 /* Set the bus ID string */ 724 spi_dev_set_name(spi); 725 726 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 727 return __spi_add_device(spi); 728 } 729 730 /** 731 * spi_new_device - instantiate one new SPI device 732 * @ctlr: Controller to which device is connected 733 * @chip: Describes the SPI device 734 * Context: can sleep 735 * 736 * On typical mainboards, this is purely internal; and it's not needed 737 * after board init creates the hard-wired devices. Some development 738 * platforms may not be able to use spi_register_board_info though, and 739 * this is exported so that for example a USB or parport based adapter 740 * driver could add devices (which it would learn about out-of-band). 741 * 742 * Return: the new device, or NULL. 743 */ 744 struct spi_device *spi_new_device(struct spi_controller *ctlr, 745 struct spi_board_info *chip) 746 { 747 struct spi_device *proxy; 748 int status; 749 750 /* 751 * NOTE: caller did any chip->bus_num checks necessary. 752 * 753 * Also, unless we change the return value convention to use 754 * error-or-pointer (not NULL-or-pointer), troubleshootability 755 * suggests syslogged diagnostics are best here (ugh). 756 */ 757 758 proxy = spi_alloc_device(ctlr); 759 if (!proxy) 760 return NULL; 761 762 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 763 764 proxy->chip_select = chip->chip_select; 765 proxy->max_speed_hz = chip->max_speed_hz; 766 proxy->mode = chip->mode; 767 proxy->irq = chip->irq; 768 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 769 proxy->dev.platform_data = (void *) chip->platform_data; 770 proxy->controller_data = chip->controller_data; 771 proxy->controller_state = NULL; 772 773 if (chip->swnode) { 774 status = device_add_software_node(&proxy->dev, chip->swnode); 775 if (status) { 776 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 777 chip->modalias, status); 778 goto err_dev_put; 779 } 780 } 781 782 status = spi_add_device(proxy); 783 if (status < 0) 784 goto err_dev_put; 785 786 return proxy; 787 788 err_dev_put: 789 device_remove_software_node(&proxy->dev); 790 spi_dev_put(proxy); 791 return NULL; 792 } 793 EXPORT_SYMBOL_GPL(spi_new_device); 794 795 /** 796 * spi_unregister_device - unregister a single SPI device 797 * @spi: spi_device to unregister 798 * 799 * Start making the passed SPI device vanish. Normally this would be handled 800 * by spi_unregister_controller(). 801 */ 802 void spi_unregister_device(struct spi_device *spi) 803 { 804 if (!spi) 805 return; 806 807 if (spi->dev.of_node) { 808 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 809 of_node_put(spi->dev.of_node); 810 } 811 if (ACPI_COMPANION(&spi->dev)) 812 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 813 device_remove_software_node(&spi->dev); 814 device_del(&spi->dev); 815 spi_cleanup(spi); 816 put_device(&spi->dev); 817 } 818 EXPORT_SYMBOL_GPL(spi_unregister_device); 819 820 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 821 struct spi_board_info *bi) 822 { 823 struct spi_device *dev; 824 825 if (ctlr->bus_num != bi->bus_num) 826 return; 827 828 dev = spi_new_device(ctlr, bi); 829 if (!dev) 830 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 831 bi->modalias); 832 } 833 834 /** 835 * spi_register_board_info - register SPI devices for a given board 836 * @info: array of chip descriptors 837 * @n: how many descriptors are provided 838 * Context: can sleep 839 * 840 * Board-specific early init code calls this (probably during arch_initcall) 841 * with segments of the SPI device table. Any device nodes are created later, 842 * after the relevant parent SPI controller (bus_num) is defined. We keep 843 * this table of devices forever, so that reloading a controller driver will 844 * not make Linux forget about these hard-wired devices. 845 * 846 * Other code can also call this, e.g. a particular add-on board might provide 847 * SPI devices through its expansion connector, so code initializing that board 848 * would naturally declare its SPI devices. 849 * 850 * The board info passed can safely be __initdata ... but be careful of 851 * any embedded pointers (platform_data, etc), they're copied as-is. 852 * 853 * Return: zero on success, else a negative error code. 854 */ 855 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 856 { 857 struct boardinfo *bi; 858 int i; 859 860 if (!n) 861 return 0; 862 863 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 864 if (!bi) 865 return -ENOMEM; 866 867 for (i = 0; i < n; i++, bi++, info++) { 868 struct spi_controller *ctlr; 869 870 memcpy(&bi->board_info, info, sizeof(*info)); 871 872 mutex_lock(&board_lock); 873 list_add_tail(&bi->list, &board_list); 874 list_for_each_entry(ctlr, &spi_controller_list, list) 875 spi_match_controller_to_boardinfo(ctlr, 876 &bi->board_info); 877 mutex_unlock(&board_lock); 878 } 879 880 return 0; 881 } 882 883 /*-------------------------------------------------------------------------*/ 884 885 /* Core methods for SPI resource management */ 886 887 /** 888 * spi_res_alloc - allocate a spi resource that is life-cycle managed 889 * during the processing of a spi_message while using 890 * spi_transfer_one 891 * @spi: the spi device for which we allocate memory 892 * @release: the release code to execute for this resource 893 * @size: size to alloc and return 894 * @gfp: GFP allocation flags 895 * 896 * Return: the pointer to the allocated data 897 * 898 * This may get enhanced in the future to allocate from a memory pool 899 * of the @spi_device or @spi_controller to avoid repeated allocations. 900 */ 901 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 902 size_t size, gfp_t gfp) 903 { 904 struct spi_res *sres; 905 906 sres = kzalloc(sizeof(*sres) + size, gfp); 907 if (!sres) 908 return NULL; 909 910 INIT_LIST_HEAD(&sres->entry); 911 sres->release = release; 912 913 return sres->data; 914 } 915 916 /** 917 * spi_res_free - free an spi resource 918 * @res: pointer to the custom data of a resource 919 */ 920 static void spi_res_free(void *res) 921 { 922 struct spi_res *sres = container_of(res, struct spi_res, data); 923 924 if (!res) 925 return; 926 927 WARN_ON(!list_empty(&sres->entry)); 928 kfree(sres); 929 } 930 931 /** 932 * spi_res_add - add a spi_res to the spi_message 933 * @message: the spi message 934 * @res: the spi_resource 935 */ 936 static void spi_res_add(struct spi_message *message, void *res) 937 { 938 struct spi_res *sres = container_of(res, struct spi_res, data); 939 940 WARN_ON(!list_empty(&sres->entry)); 941 list_add_tail(&sres->entry, &message->resources); 942 } 943 944 /** 945 * spi_res_release - release all spi resources for this message 946 * @ctlr: the @spi_controller 947 * @message: the @spi_message 948 */ 949 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 950 { 951 struct spi_res *res, *tmp; 952 953 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 954 if (res->release) 955 res->release(ctlr, message, res->data); 956 957 list_del(&res->entry); 958 959 kfree(res); 960 } 961 } 962 963 /*-------------------------------------------------------------------------*/ 964 965 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 966 { 967 bool activate = enable; 968 969 /* 970 * Avoid calling into the driver (or doing delays) if the chip select 971 * isn't actually changing from the last time this was called. 972 */ 973 if (!force && ((enable && spi->controller->last_cs == spi->chip_select) || 974 (!enable && spi->controller->last_cs != spi->chip_select)) && 975 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 976 return; 977 978 trace_spi_set_cs(spi, activate); 979 980 spi->controller->last_cs = enable ? spi->chip_select : -1; 981 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 982 983 if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) { 984 spi_delay_exec(&spi->cs_hold, NULL); 985 } 986 987 if (spi->mode & SPI_CS_HIGH) 988 enable = !enable; 989 990 if (spi->cs_gpiod) { 991 if (!(spi->mode & SPI_NO_CS)) { 992 /* 993 * Historically ACPI has no means of the GPIO polarity and 994 * thus the SPISerialBus() resource defines it on the per-chip 995 * basis. In order to avoid a chain of negations, the GPIO 996 * polarity is considered being Active High. Even for the cases 997 * when _DSD() is involved (in the updated versions of ACPI) 998 * the GPIO CS polarity must be defined Active High to avoid 999 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1000 * into account. 1001 */ 1002 if (has_acpi_companion(&spi->dev)) 1003 gpiod_set_value_cansleep(spi->cs_gpiod, !enable); 1004 else 1005 /* Polarity handled by GPIO library */ 1006 gpiod_set_value_cansleep(spi->cs_gpiod, activate); 1007 } 1008 /* Some SPI masters need both GPIO CS & slave_select */ 1009 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 1010 spi->controller->set_cs) 1011 spi->controller->set_cs(spi, !enable); 1012 } else if (spi->controller->set_cs) { 1013 spi->controller->set_cs(spi, !enable); 1014 } 1015 1016 if (spi->cs_gpiod || !spi->controller->set_cs_timing) { 1017 if (activate) 1018 spi_delay_exec(&spi->cs_setup, NULL); 1019 else 1020 spi_delay_exec(&spi->cs_inactive, NULL); 1021 } 1022 } 1023 1024 #ifdef CONFIG_HAS_DMA 1025 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1026 struct sg_table *sgt, void *buf, size_t len, 1027 enum dma_data_direction dir, unsigned long attrs) 1028 { 1029 const bool vmalloced_buf = is_vmalloc_addr(buf); 1030 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1031 #ifdef CONFIG_HIGHMEM 1032 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1033 (unsigned long)buf < (PKMAP_BASE + 1034 (LAST_PKMAP * PAGE_SIZE))); 1035 #else 1036 const bool kmap_buf = false; 1037 #endif 1038 int desc_len; 1039 int sgs; 1040 struct page *vm_page; 1041 struct scatterlist *sg; 1042 void *sg_buf; 1043 size_t min; 1044 int i, ret; 1045 1046 if (vmalloced_buf || kmap_buf) { 1047 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1048 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1049 } else if (virt_addr_valid(buf)) { 1050 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1051 sgs = DIV_ROUND_UP(len, desc_len); 1052 } else { 1053 return -EINVAL; 1054 } 1055 1056 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1057 if (ret != 0) 1058 return ret; 1059 1060 sg = &sgt->sgl[0]; 1061 for (i = 0; i < sgs; i++) { 1062 1063 if (vmalloced_buf || kmap_buf) { 1064 /* 1065 * Next scatterlist entry size is the minimum between 1066 * the desc_len and the remaining buffer length that 1067 * fits in a page. 1068 */ 1069 min = min_t(size_t, desc_len, 1070 min_t(size_t, len, 1071 PAGE_SIZE - offset_in_page(buf))); 1072 if (vmalloced_buf) 1073 vm_page = vmalloc_to_page(buf); 1074 else 1075 vm_page = kmap_to_page(buf); 1076 if (!vm_page) { 1077 sg_free_table(sgt); 1078 return -ENOMEM; 1079 } 1080 sg_set_page(sg, vm_page, 1081 min, offset_in_page(buf)); 1082 } else { 1083 min = min_t(size_t, len, desc_len); 1084 sg_buf = buf; 1085 sg_set_buf(sg, sg_buf, min); 1086 } 1087 1088 buf += min; 1089 len -= min; 1090 sg = sg_next(sg); 1091 } 1092 1093 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1094 if (ret < 0) { 1095 sg_free_table(sgt); 1096 return ret; 1097 } 1098 1099 return 0; 1100 } 1101 1102 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1103 struct sg_table *sgt, void *buf, size_t len, 1104 enum dma_data_direction dir) 1105 { 1106 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1107 } 1108 1109 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1110 struct device *dev, struct sg_table *sgt, 1111 enum dma_data_direction dir, 1112 unsigned long attrs) 1113 { 1114 if (sgt->orig_nents) { 1115 dma_unmap_sgtable(dev, sgt, dir, attrs); 1116 sg_free_table(sgt); 1117 sgt->orig_nents = 0; 1118 sgt->nents = 0; 1119 } 1120 } 1121 1122 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1123 struct sg_table *sgt, enum dma_data_direction dir) 1124 { 1125 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1126 } 1127 1128 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1129 { 1130 struct device *tx_dev, *rx_dev; 1131 struct spi_transfer *xfer; 1132 int ret; 1133 1134 if (!ctlr->can_dma) 1135 return 0; 1136 1137 if (ctlr->dma_tx) 1138 tx_dev = ctlr->dma_tx->device->dev; 1139 else if (ctlr->dma_map_dev) 1140 tx_dev = ctlr->dma_map_dev; 1141 else 1142 tx_dev = ctlr->dev.parent; 1143 1144 if (ctlr->dma_rx) 1145 rx_dev = ctlr->dma_rx->device->dev; 1146 else if (ctlr->dma_map_dev) 1147 rx_dev = ctlr->dma_map_dev; 1148 else 1149 rx_dev = ctlr->dev.parent; 1150 1151 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1152 /* The sync is done before each transfer. */ 1153 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1154 1155 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1156 continue; 1157 1158 if (xfer->tx_buf != NULL) { 1159 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1160 (void *)xfer->tx_buf, 1161 xfer->len, DMA_TO_DEVICE, 1162 attrs); 1163 if (ret != 0) 1164 return ret; 1165 } 1166 1167 if (xfer->rx_buf != NULL) { 1168 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1169 xfer->rx_buf, xfer->len, 1170 DMA_FROM_DEVICE, attrs); 1171 if (ret != 0) { 1172 spi_unmap_buf_attrs(ctlr, tx_dev, 1173 &xfer->tx_sg, DMA_TO_DEVICE, 1174 attrs); 1175 1176 return ret; 1177 } 1178 } 1179 } 1180 1181 ctlr->cur_rx_dma_dev = rx_dev; 1182 ctlr->cur_tx_dma_dev = tx_dev; 1183 ctlr->cur_msg_mapped = true; 1184 1185 return 0; 1186 } 1187 1188 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1189 { 1190 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1191 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1192 struct spi_transfer *xfer; 1193 1194 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1195 return 0; 1196 1197 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1198 /* The sync has already been done after each transfer. */ 1199 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1200 1201 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1202 continue; 1203 1204 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1205 DMA_FROM_DEVICE, attrs); 1206 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1207 DMA_TO_DEVICE, attrs); 1208 } 1209 1210 ctlr->cur_msg_mapped = false; 1211 1212 return 0; 1213 } 1214 1215 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1216 struct spi_transfer *xfer) 1217 { 1218 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1219 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1220 1221 if (!ctlr->cur_msg_mapped) 1222 return; 1223 1224 if (xfer->tx_sg.orig_nents) 1225 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1226 if (xfer->rx_sg.orig_nents) 1227 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1228 } 1229 1230 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1231 struct spi_transfer *xfer) 1232 { 1233 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1234 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1235 1236 if (!ctlr->cur_msg_mapped) 1237 return; 1238 1239 if (xfer->rx_sg.orig_nents) 1240 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1241 if (xfer->tx_sg.orig_nents) 1242 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1243 } 1244 #else /* !CONFIG_HAS_DMA */ 1245 static inline int __spi_map_msg(struct spi_controller *ctlr, 1246 struct spi_message *msg) 1247 { 1248 return 0; 1249 } 1250 1251 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1252 struct spi_message *msg) 1253 { 1254 return 0; 1255 } 1256 1257 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1258 struct spi_transfer *xfer) 1259 { 1260 } 1261 1262 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1263 struct spi_transfer *xfer) 1264 { 1265 } 1266 #endif /* !CONFIG_HAS_DMA */ 1267 1268 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1269 struct spi_message *msg) 1270 { 1271 struct spi_transfer *xfer; 1272 1273 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1274 /* 1275 * Restore the original value of tx_buf or rx_buf if they are 1276 * NULL. 1277 */ 1278 if (xfer->tx_buf == ctlr->dummy_tx) 1279 xfer->tx_buf = NULL; 1280 if (xfer->rx_buf == ctlr->dummy_rx) 1281 xfer->rx_buf = NULL; 1282 } 1283 1284 return __spi_unmap_msg(ctlr, msg); 1285 } 1286 1287 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1288 { 1289 struct spi_transfer *xfer; 1290 void *tmp; 1291 unsigned int max_tx, max_rx; 1292 1293 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1294 && !(msg->spi->mode & SPI_3WIRE)) { 1295 max_tx = 0; 1296 max_rx = 0; 1297 1298 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1299 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1300 !xfer->tx_buf) 1301 max_tx = max(xfer->len, max_tx); 1302 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1303 !xfer->rx_buf) 1304 max_rx = max(xfer->len, max_rx); 1305 } 1306 1307 if (max_tx) { 1308 tmp = krealloc(ctlr->dummy_tx, max_tx, 1309 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1310 if (!tmp) 1311 return -ENOMEM; 1312 ctlr->dummy_tx = tmp; 1313 } 1314 1315 if (max_rx) { 1316 tmp = krealloc(ctlr->dummy_rx, max_rx, 1317 GFP_KERNEL | GFP_DMA); 1318 if (!tmp) 1319 return -ENOMEM; 1320 ctlr->dummy_rx = tmp; 1321 } 1322 1323 if (max_tx || max_rx) { 1324 list_for_each_entry(xfer, &msg->transfers, 1325 transfer_list) { 1326 if (!xfer->len) 1327 continue; 1328 if (!xfer->tx_buf) 1329 xfer->tx_buf = ctlr->dummy_tx; 1330 if (!xfer->rx_buf) 1331 xfer->rx_buf = ctlr->dummy_rx; 1332 } 1333 } 1334 } 1335 1336 return __spi_map_msg(ctlr, msg); 1337 } 1338 1339 static int spi_transfer_wait(struct spi_controller *ctlr, 1340 struct spi_message *msg, 1341 struct spi_transfer *xfer) 1342 { 1343 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1344 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1345 u32 speed_hz = xfer->speed_hz; 1346 unsigned long long ms; 1347 1348 if (spi_controller_is_slave(ctlr)) { 1349 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1350 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1351 return -EINTR; 1352 } 1353 } else { 1354 if (!speed_hz) 1355 speed_hz = 100000; 1356 1357 /* 1358 * For each byte we wait for 8 cycles of the SPI clock. 1359 * Since speed is defined in Hz and we want milliseconds, 1360 * use respective multiplier, but before the division, 1361 * otherwise we may get 0 for short transfers. 1362 */ 1363 ms = 8LL * MSEC_PER_SEC * xfer->len; 1364 do_div(ms, speed_hz); 1365 1366 /* 1367 * Increase it twice and add 200 ms tolerance, use 1368 * predefined maximum in case of overflow. 1369 */ 1370 ms += ms + 200; 1371 if (ms > UINT_MAX) 1372 ms = UINT_MAX; 1373 1374 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1375 msecs_to_jiffies(ms)); 1376 1377 if (ms == 0) { 1378 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1379 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1380 dev_err(&msg->spi->dev, 1381 "SPI transfer timed out\n"); 1382 return -ETIMEDOUT; 1383 } 1384 } 1385 1386 return 0; 1387 } 1388 1389 static void _spi_transfer_delay_ns(u32 ns) 1390 { 1391 if (!ns) 1392 return; 1393 if (ns <= NSEC_PER_USEC) { 1394 ndelay(ns); 1395 } else { 1396 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1397 1398 if (us <= 10) 1399 udelay(us); 1400 else 1401 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1402 } 1403 } 1404 1405 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1406 { 1407 u32 delay = _delay->value; 1408 u32 unit = _delay->unit; 1409 u32 hz; 1410 1411 if (!delay) 1412 return 0; 1413 1414 switch (unit) { 1415 case SPI_DELAY_UNIT_USECS: 1416 delay *= NSEC_PER_USEC; 1417 break; 1418 case SPI_DELAY_UNIT_NSECS: 1419 /* Nothing to do here */ 1420 break; 1421 case SPI_DELAY_UNIT_SCK: 1422 /* Clock cycles need to be obtained from spi_transfer */ 1423 if (!xfer) 1424 return -EINVAL; 1425 /* 1426 * If there is unknown effective speed, approximate it 1427 * by underestimating with half of the requested hz. 1428 */ 1429 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1430 if (!hz) 1431 return -EINVAL; 1432 1433 /* Convert delay to nanoseconds */ 1434 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1435 break; 1436 default: 1437 return -EINVAL; 1438 } 1439 1440 return delay; 1441 } 1442 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1443 1444 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1445 { 1446 int delay; 1447 1448 might_sleep(); 1449 1450 if (!_delay) 1451 return -EINVAL; 1452 1453 delay = spi_delay_to_ns(_delay, xfer); 1454 if (delay < 0) 1455 return delay; 1456 1457 _spi_transfer_delay_ns(delay); 1458 1459 return 0; 1460 } 1461 EXPORT_SYMBOL_GPL(spi_delay_exec); 1462 1463 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1464 struct spi_transfer *xfer) 1465 { 1466 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1467 u32 delay = xfer->cs_change_delay.value; 1468 u32 unit = xfer->cs_change_delay.unit; 1469 int ret; 1470 1471 /* Return early on "fast" mode - for everything but USECS */ 1472 if (!delay) { 1473 if (unit == SPI_DELAY_UNIT_USECS) 1474 _spi_transfer_delay_ns(default_delay_ns); 1475 return; 1476 } 1477 1478 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1479 if (ret) { 1480 dev_err_once(&msg->spi->dev, 1481 "Use of unsupported delay unit %i, using default of %luus\n", 1482 unit, default_delay_ns / NSEC_PER_USEC); 1483 _spi_transfer_delay_ns(default_delay_ns); 1484 } 1485 } 1486 1487 /* 1488 * spi_transfer_one_message - Default implementation of transfer_one_message() 1489 * 1490 * This is a standard implementation of transfer_one_message() for 1491 * drivers which implement a transfer_one() operation. It provides 1492 * standard handling of delays and chip select management. 1493 */ 1494 static int spi_transfer_one_message(struct spi_controller *ctlr, 1495 struct spi_message *msg) 1496 { 1497 struct spi_transfer *xfer; 1498 bool keep_cs = false; 1499 int ret = 0; 1500 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1501 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1502 1503 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1504 spi_set_cs(msg->spi, !xfer->cs_off, false); 1505 1506 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1507 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1508 1509 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1510 trace_spi_transfer_start(msg, xfer); 1511 1512 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1513 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1514 1515 if (!ctlr->ptp_sts_supported) { 1516 xfer->ptp_sts_word_pre = 0; 1517 ptp_read_system_prets(xfer->ptp_sts); 1518 } 1519 1520 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1521 reinit_completion(&ctlr->xfer_completion); 1522 1523 fallback_pio: 1524 spi_dma_sync_for_device(ctlr, xfer); 1525 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1526 if (ret < 0) { 1527 spi_dma_sync_for_cpu(ctlr, xfer); 1528 1529 if (ctlr->cur_msg_mapped && 1530 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1531 __spi_unmap_msg(ctlr, msg); 1532 ctlr->fallback = true; 1533 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1534 goto fallback_pio; 1535 } 1536 1537 SPI_STATISTICS_INCREMENT_FIELD(statm, 1538 errors); 1539 SPI_STATISTICS_INCREMENT_FIELD(stats, 1540 errors); 1541 dev_err(&msg->spi->dev, 1542 "SPI transfer failed: %d\n", ret); 1543 goto out; 1544 } 1545 1546 if (ret > 0) { 1547 ret = spi_transfer_wait(ctlr, msg, xfer); 1548 if (ret < 0) 1549 msg->status = ret; 1550 } 1551 1552 spi_dma_sync_for_cpu(ctlr, xfer); 1553 } else { 1554 if (xfer->len) 1555 dev_err(&msg->spi->dev, 1556 "Bufferless transfer has length %u\n", 1557 xfer->len); 1558 } 1559 1560 if (!ctlr->ptp_sts_supported) { 1561 ptp_read_system_postts(xfer->ptp_sts); 1562 xfer->ptp_sts_word_post = xfer->len; 1563 } 1564 1565 trace_spi_transfer_stop(msg, xfer); 1566 1567 if (msg->status != -EINPROGRESS) 1568 goto out; 1569 1570 spi_transfer_delay_exec(xfer); 1571 1572 if (xfer->cs_change) { 1573 if (list_is_last(&xfer->transfer_list, 1574 &msg->transfers)) { 1575 keep_cs = true; 1576 } else { 1577 if (!xfer->cs_off) 1578 spi_set_cs(msg->spi, false, false); 1579 _spi_transfer_cs_change_delay(msg, xfer); 1580 if (!list_next_entry(xfer, transfer_list)->cs_off) 1581 spi_set_cs(msg->spi, true, false); 1582 } 1583 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1584 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1585 spi_set_cs(msg->spi, xfer->cs_off, false); 1586 } 1587 1588 msg->actual_length += xfer->len; 1589 } 1590 1591 out: 1592 if (ret != 0 || !keep_cs) 1593 spi_set_cs(msg->spi, false, false); 1594 1595 if (msg->status == -EINPROGRESS) 1596 msg->status = ret; 1597 1598 if (msg->status && ctlr->handle_err) 1599 ctlr->handle_err(ctlr, msg); 1600 1601 spi_finalize_current_message(ctlr); 1602 1603 return ret; 1604 } 1605 1606 /** 1607 * spi_finalize_current_transfer - report completion of a transfer 1608 * @ctlr: the controller reporting completion 1609 * 1610 * Called by SPI drivers using the core transfer_one_message() 1611 * implementation to notify it that the current interrupt driven 1612 * transfer has finished and the next one may be scheduled. 1613 */ 1614 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1615 { 1616 complete(&ctlr->xfer_completion); 1617 } 1618 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1619 1620 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1621 { 1622 if (ctlr->auto_runtime_pm) { 1623 pm_runtime_mark_last_busy(ctlr->dev.parent); 1624 pm_runtime_put_autosuspend(ctlr->dev.parent); 1625 } 1626 } 1627 1628 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1629 struct spi_message *msg, bool was_busy) 1630 { 1631 struct spi_transfer *xfer; 1632 int ret; 1633 1634 if (!was_busy && ctlr->auto_runtime_pm) { 1635 ret = pm_runtime_get_sync(ctlr->dev.parent); 1636 if (ret < 0) { 1637 pm_runtime_put_noidle(ctlr->dev.parent); 1638 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1639 ret); 1640 return ret; 1641 } 1642 } 1643 1644 if (!was_busy) 1645 trace_spi_controller_busy(ctlr); 1646 1647 if (!was_busy && ctlr->prepare_transfer_hardware) { 1648 ret = ctlr->prepare_transfer_hardware(ctlr); 1649 if (ret) { 1650 dev_err(&ctlr->dev, 1651 "failed to prepare transfer hardware: %d\n", 1652 ret); 1653 1654 if (ctlr->auto_runtime_pm) 1655 pm_runtime_put(ctlr->dev.parent); 1656 1657 msg->status = ret; 1658 spi_finalize_current_message(ctlr); 1659 1660 return ret; 1661 } 1662 } 1663 1664 trace_spi_message_start(msg); 1665 1666 ret = spi_split_transfers_maxsize(ctlr, msg, 1667 spi_max_transfer_size(msg->spi), 1668 GFP_KERNEL | GFP_DMA); 1669 if (ret) { 1670 msg->status = ret; 1671 spi_finalize_current_message(ctlr); 1672 return ret; 1673 } 1674 1675 if (ctlr->prepare_message) { 1676 ret = ctlr->prepare_message(ctlr, msg); 1677 if (ret) { 1678 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1679 ret); 1680 msg->status = ret; 1681 spi_finalize_current_message(ctlr); 1682 return ret; 1683 } 1684 msg->prepared = true; 1685 } 1686 1687 ret = spi_map_msg(ctlr, msg); 1688 if (ret) { 1689 msg->status = ret; 1690 spi_finalize_current_message(ctlr); 1691 return ret; 1692 } 1693 1694 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1695 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1696 xfer->ptp_sts_word_pre = 0; 1697 ptp_read_system_prets(xfer->ptp_sts); 1698 } 1699 } 1700 1701 /* 1702 * Drivers implementation of transfer_one_message() must arrange for 1703 * spi_finalize_current_message() to get called. Most drivers will do 1704 * this in the calling context, but some don't. For those cases, a 1705 * completion is used to guarantee that this function does not return 1706 * until spi_finalize_current_message() is done accessing 1707 * ctlr->cur_msg. 1708 * Use of the following two flags enable to opportunistically skip the 1709 * use of the completion since its use involves expensive spin locks. 1710 * In case of a race with the context that calls 1711 * spi_finalize_current_message() the completion will always be used, 1712 * due to strict ordering of these flags using barriers. 1713 */ 1714 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1715 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1716 reinit_completion(&ctlr->cur_msg_completion); 1717 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1718 1719 ret = ctlr->transfer_one_message(ctlr, msg); 1720 if (ret) { 1721 dev_err(&ctlr->dev, 1722 "failed to transfer one message from queue\n"); 1723 return ret; 1724 } 1725 1726 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1727 smp_mb(); /* See spi_finalize_current_message()... */ 1728 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1729 wait_for_completion(&ctlr->cur_msg_completion); 1730 1731 return 0; 1732 } 1733 1734 /** 1735 * __spi_pump_messages - function which processes spi message queue 1736 * @ctlr: controller to process queue for 1737 * @in_kthread: true if we are in the context of the message pump thread 1738 * 1739 * This function checks if there is any spi message in the queue that 1740 * needs processing and if so call out to the driver to initialize hardware 1741 * and transfer each message. 1742 * 1743 * Note that it is called both from the kthread itself and also from 1744 * inside spi_sync(); the queue extraction handling at the top of the 1745 * function should deal with this safely. 1746 */ 1747 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1748 { 1749 struct spi_message *msg; 1750 bool was_busy = false; 1751 unsigned long flags; 1752 int ret; 1753 1754 /* Take the IO mutex */ 1755 mutex_lock(&ctlr->io_mutex); 1756 1757 /* Lock queue */ 1758 spin_lock_irqsave(&ctlr->queue_lock, flags); 1759 1760 /* Make sure we are not already running a message */ 1761 if (ctlr->cur_msg) 1762 goto out_unlock; 1763 1764 /* Check if the queue is idle */ 1765 if (list_empty(&ctlr->queue) || !ctlr->running) { 1766 if (!ctlr->busy) 1767 goto out_unlock; 1768 1769 /* Defer any non-atomic teardown to the thread */ 1770 if (!in_kthread) { 1771 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1772 !ctlr->unprepare_transfer_hardware) { 1773 spi_idle_runtime_pm(ctlr); 1774 ctlr->busy = false; 1775 ctlr->queue_empty = true; 1776 trace_spi_controller_idle(ctlr); 1777 } else { 1778 kthread_queue_work(ctlr->kworker, 1779 &ctlr->pump_messages); 1780 } 1781 goto out_unlock; 1782 } 1783 1784 ctlr->busy = false; 1785 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1786 1787 kfree(ctlr->dummy_rx); 1788 ctlr->dummy_rx = NULL; 1789 kfree(ctlr->dummy_tx); 1790 ctlr->dummy_tx = NULL; 1791 if (ctlr->unprepare_transfer_hardware && 1792 ctlr->unprepare_transfer_hardware(ctlr)) 1793 dev_err(&ctlr->dev, 1794 "failed to unprepare transfer hardware\n"); 1795 spi_idle_runtime_pm(ctlr); 1796 trace_spi_controller_idle(ctlr); 1797 1798 spin_lock_irqsave(&ctlr->queue_lock, flags); 1799 ctlr->queue_empty = true; 1800 goto out_unlock; 1801 } 1802 1803 /* Extract head of queue */ 1804 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1805 ctlr->cur_msg = msg; 1806 1807 list_del_init(&msg->queue); 1808 if (ctlr->busy) 1809 was_busy = true; 1810 else 1811 ctlr->busy = true; 1812 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1813 1814 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1815 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1816 1817 ctlr->cur_msg = NULL; 1818 ctlr->fallback = false; 1819 1820 mutex_unlock(&ctlr->io_mutex); 1821 1822 /* Prod the scheduler in case transfer_one() was busy waiting */ 1823 if (!ret) 1824 cond_resched(); 1825 return; 1826 1827 out_unlock: 1828 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1829 mutex_unlock(&ctlr->io_mutex); 1830 } 1831 1832 /** 1833 * spi_pump_messages - kthread work function which processes spi message queue 1834 * @work: pointer to kthread work struct contained in the controller struct 1835 */ 1836 static void spi_pump_messages(struct kthread_work *work) 1837 { 1838 struct spi_controller *ctlr = 1839 container_of(work, struct spi_controller, pump_messages); 1840 1841 __spi_pump_messages(ctlr, true); 1842 } 1843 1844 /** 1845 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1846 * @ctlr: Pointer to the spi_controller structure of the driver 1847 * @xfer: Pointer to the transfer being timestamped 1848 * @progress: How many words (not bytes) have been transferred so far 1849 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1850 * transfer, for less jitter in time measurement. Only compatible 1851 * with PIO drivers. If true, must follow up with 1852 * spi_take_timestamp_post or otherwise system will crash. 1853 * WARNING: for fully predictable results, the CPU frequency must 1854 * also be under control (governor). 1855 * 1856 * This is a helper for drivers to collect the beginning of the TX timestamp 1857 * for the requested byte from the SPI transfer. The frequency with which this 1858 * function must be called (once per word, once for the whole transfer, once 1859 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1860 * greater than or equal to the requested byte at the time of the call. The 1861 * timestamp is only taken once, at the first such call. It is assumed that 1862 * the driver advances its @tx buffer pointer monotonically. 1863 */ 1864 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1865 struct spi_transfer *xfer, 1866 size_t progress, bool irqs_off) 1867 { 1868 if (!xfer->ptp_sts) 1869 return; 1870 1871 if (xfer->timestamped) 1872 return; 1873 1874 if (progress > xfer->ptp_sts_word_pre) 1875 return; 1876 1877 /* Capture the resolution of the timestamp */ 1878 xfer->ptp_sts_word_pre = progress; 1879 1880 if (irqs_off) { 1881 local_irq_save(ctlr->irq_flags); 1882 preempt_disable(); 1883 } 1884 1885 ptp_read_system_prets(xfer->ptp_sts); 1886 } 1887 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1888 1889 /** 1890 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1891 * @ctlr: Pointer to the spi_controller structure of the driver 1892 * @xfer: Pointer to the transfer being timestamped 1893 * @progress: How many words (not bytes) have been transferred so far 1894 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1895 * 1896 * This is a helper for drivers to collect the end of the TX timestamp for 1897 * the requested byte from the SPI transfer. Can be called with an arbitrary 1898 * frequency: only the first call where @tx exceeds or is equal to the 1899 * requested word will be timestamped. 1900 */ 1901 void spi_take_timestamp_post(struct spi_controller *ctlr, 1902 struct spi_transfer *xfer, 1903 size_t progress, bool irqs_off) 1904 { 1905 if (!xfer->ptp_sts) 1906 return; 1907 1908 if (xfer->timestamped) 1909 return; 1910 1911 if (progress < xfer->ptp_sts_word_post) 1912 return; 1913 1914 ptp_read_system_postts(xfer->ptp_sts); 1915 1916 if (irqs_off) { 1917 local_irq_restore(ctlr->irq_flags); 1918 preempt_enable(); 1919 } 1920 1921 /* Capture the resolution of the timestamp */ 1922 xfer->ptp_sts_word_post = progress; 1923 1924 xfer->timestamped = true; 1925 } 1926 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1927 1928 /** 1929 * spi_set_thread_rt - set the controller to pump at realtime priority 1930 * @ctlr: controller to boost priority of 1931 * 1932 * This can be called because the controller requested realtime priority 1933 * (by setting the ->rt value before calling spi_register_controller()) or 1934 * because a device on the bus said that its transfers needed realtime 1935 * priority. 1936 * 1937 * NOTE: at the moment if any device on a bus says it needs realtime then 1938 * the thread will be at realtime priority for all transfers on that 1939 * controller. If this eventually becomes a problem we may see if we can 1940 * find a way to boost the priority only temporarily during relevant 1941 * transfers. 1942 */ 1943 static void spi_set_thread_rt(struct spi_controller *ctlr) 1944 { 1945 dev_info(&ctlr->dev, 1946 "will run message pump with realtime priority\n"); 1947 sched_set_fifo(ctlr->kworker->task); 1948 } 1949 1950 static int spi_init_queue(struct spi_controller *ctlr) 1951 { 1952 ctlr->running = false; 1953 ctlr->busy = false; 1954 ctlr->queue_empty = true; 1955 1956 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1957 if (IS_ERR(ctlr->kworker)) { 1958 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1959 return PTR_ERR(ctlr->kworker); 1960 } 1961 1962 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1963 1964 /* 1965 * Controller config will indicate if this controller should run the 1966 * message pump with high (realtime) priority to reduce the transfer 1967 * latency on the bus by minimising the delay between a transfer 1968 * request and the scheduling of the message pump thread. Without this 1969 * setting the message pump thread will remain at default priority. 1970 */ 1971 if (ctlr->rt) 1972 spi_set_thread_rt(ctlr); 1973 1974 return 0; 1975 } 1976 1977 /** 1978 * spi_get_next_queued_message() - called by driver to check for queued 1979 * messages 1980 * @ctlr: the controller to check for queued messages 1981 * 1982 * If there are more messages in the queue, the next message is returned from 1983 * this call. 1984 * 1985 * Return: the next message in the queue, else NULL if the queue is empty. 1986 */ 1987 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1988 { 1989 struct spi_message *next; 1990 unsigned long flags; 1991 1992 /* Get a pointer to the next message, if any */ 1993 spin_lock_irqsave(&ctlr->queue_lock, flags); 1994 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1995 queue); 1996 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1997 1998 return next; 1999 } 2000 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2001 2002 /** 2003 * spi_finalize_current_message() - the current message is complete 2004 * @ctlr: the controller to return the message to 2005 * 2006 * Called by the driver to notify the core that the message in the front of the 2007 * queue is complete and can be removed from the queue. 2008 */ 2009 void spi_finalize_current_message(struct spi_controller *ctlr) 2010 { 2011 struct spi_transfer *xfer; 2012 struct spi_message *mesg; 2013 int ret; 2014 2015 mesg = ctlr->cur_msg; 2016 2017 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2018 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2019 ptp_read_system_postts(xfer->ptp_sts); 2020 xfer->ptp_sts_word_post = xfer->len; 2021 } 2022 } 2023 2024 if (unlikely(ctlr->ptp_sts_supported)) 2025 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2026 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2027 2028 spi_unmap_msg(ctlr, mesg); 2029 2030 /* 2031 * In the prepare_messages callback the SPI bus has the opportunity 2032 * to split a transfer to smaller chunks. 2033 * 2034 * Release the split transfers here since spi_map_msg() is done on 2035 * the split transfers. 2036 */ 2037 spi_res_release(ctlr, mesg); 2038 2039 if (mesg->prepared && ctlr->unprepare_message) { 2040 ret = ctlr->unprepare_message(ctlr, mesg); 2041 if (ret) { 2042 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2043 ret); 2044 } 2045 } 2046 2047 mesg->prepared = false; 2048 2049 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2050 smp_mb(); /* See __spi_pump_transfer_message()... */ 2051 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2052 complete(&ctlr->cur_msg_completion); 2053 2054 trace_spi_message_done(mesg); 2055 2056 mesg->state = NULL; 2057 if (mesg->complete) 2058 mesg->complete(mesg->context); 2059 } 2060 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2061 2062 static int spi_start_queue(struct spi_controller *ctlr) 2063 { 2064 unsigned long flags; 2065 2066 spin_lock_irqsave(&ctlr->queue_lock, flags); 2067 2068 if (ctlr->running || ctlr->busy) { 2069 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2070 return -EBUSY; 2071 } 2072 2073 ctlr->running = true; 2074 ctlr->cur_msg = NULL; 2075 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2076 2077 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2078 2079 return 0; 2080 } 2081 2082 static int spi_stop_queue(struct spi_controller *ctlr) 2083 { 2084 unsigned long flags; 2085 unsigned limit = 500; 2086 int ret = 0; 2087 2088 spin_lock_irqsave(&ctlr->queue_lock, flags); 2089 2090 /* 2091 * This is a bit lame, but is optimized for the common execution path. 2092 * A wait_queue on the ctlr->busy could be used, but then the common 2093 * execution path (pump_messages) would be required to call wake_up or 2094 * friends on every SPI message. Do this instead. 2095 */ 2096 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2097 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2098 usleep_range(10000, 11000); 2099 spin_lock_irqsave(&ctlr->queue_lock, flags); 2100 } 2101 2102 if (!list_empty(&ctlr->queue) || ctlr->busy) 2103 ret = -EBUSY; 2104 else 2105 ctlr->running = false; 2106 2107 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2108 2109 if (ret) { 2110 dev_warn(&ctlr->dev, "could not stop message queue\n"); 2111 return ret; 2112 } 2113 return ret; 2114 } 2115 2116 static int spi_destroy_queue(struct spi_controller *ctlr) 2117 { 2118 int ret; 2119 2120 ret = spi_stop_queue(ctlr); 2121 2122 /* 2123 * kthread_flush_worker will block until all work is done. 2124 * If the reason that stop_queue timed out is that the work will never 2125 * finish, then it does no good to call flush/stop thread, so 2126 * return anyway. 2127 */ 2128 if (ret) { 2129 dev_err(&ctlr->dev, "problem destroying queue\n"); 2130 return ret; 2131 } 2132 2133 kthread_destroy_worker(ctlr->kworker); 2134 2135 return 0; 2136 } 2137 2138 static int __spi_queued_transfer(struct spi_device *spi, 2139 struct spi_message *msg, 2140 bool need_pump) 2141 { 2142 struct spi_controller *ctlr = spi->controller; 2143 unsigned long flags; 2144 2145 spin_lock_irqsave(&ctlr->queue_lock, flags); 2146 2147 if (!ctlr->running) { 2148 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2149 return -ESHUTDOWN; 2150 } 2151 msg->actual_length = 0; 2152 msg->status = -EINPROGRESS; 2153 2154 list_add_tail(&msg->queue, &ctlr->queue); 2155 ctlr->queue_empty = false; 2156 if (!ctlr->busy && need_pump) 2157 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2158 2159 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2160 return 0; 2161 } 2162 2163 /** 2164 * spi_queued_transfer - transfer function for queued transfers 2165 * @spi: spi device which is requesting transfer 2166 * @msg: spi message which is to handled is queued to driver queue 2167 * 2168 * Return: zero on success, else a negative error code. 2169 */ 2170 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2171 { 2172 return __spi_queued_transfer(spi, msg, true); 2173 } 2174 2175 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2176 { 2177 int ret; 2178 2179 ctlr->transfer = spi_queued_transfer; 2180 if (!ctlr->transfer_one_message) 2181 ctlr->transfer_one_message = spi_transfer_one_message; 2182 2183 /* Initialize and start queue */ 2184 ret = spi_init_queue(ctlr); 2185 if (ret) { 2186 dev_err(&ctlr->dev, "problem initializing queue\n"); 2187 goto err_init_queue; 2188 } 2189 ctlr->queued = true; 2190 ret = spi_start_queue(ctlr); 2191 if (ret) { 2192 dev_err(&ctlr->dev, "problem starting queue\n"); 2193 goto err_start_queue; 2194 } 2195 2196 return 0; 2197 2198 err_start_queue: 2199 spi_destroy_queue(ctlr); 2200 err_init_queue: 2201 return ret; 2202 } 2203 2204 /** 2205 * spi_flush_queue - Send all pending messages in the queue from the callers' 2206 * context 2207 * @ctlr: controller to process queue for 2208 * 2209 * This should be used when one wants to ensure all pending messages have been 2210 * sent before doing something. Is used by the spi-mem code to make sure SPI 2211 * memory operations do not preempt regular SPI transfers that have been queued 2212 * before the spi-mem operation. 2213 */ 2214 void spi_flush_queue(struct spi_controller *ctlr) 2215 { 2216 if (ctlr->transfer == spi_queued_transfer) 2217 __spi_pump_messages(ctlr, false); 2218 } 2219 2220 /*-------------------------------------------------------------------------*/ 2221 2222 #if defined(CONFIG_OF) 2223 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2224 struct device_node *nc) 2225 { 2226 u32 value; 2227 u16 cs_setup; 2228 int rc; 2229 2230 /* Mode (clock phase/polarity/etc.) */ 2231 if (of_property_read_bool(nc, "spi-cpha")) 2232 spi->mode |= SPI_CPHA; 2233 if (of_property_read_bool(nc, "spi-cpol")) 2234 spi->mode |= SPI_CPOL; 2235 if (of_property_read_bool(nc, "spi-3wire")) 2236 spi->mode |= SPI_3WIRE; 2237 if (of_property_read_bool(nc, "spi-lsb-first")) 2238 spi->mode |= SPI_LSB_FIRST; 2239 if (of_property_read_bool(nc, "spi-cs-high")) 2240 spi->mode |= SPI_CS_HIGH; 2241 2242 /* Device DUAL/QUAD mode */ 2243 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2244 switch (value) { 2245 case 0: 2246 spi->mode |= SPI_NO_TX; 2247 break; 2248 case 1: 2249 break; 2250 case 2: 2251 spi->mode |= SPI_TX_DUAL; 2252 break; 2253 case 4: 2254 spi->mode |= SPI_TX_QUAD; 2255 break; 2256 case 8: 2257 spi->mode |= SPI_TX_OCTAL; 2258 break; 2259 default: 2260 dev_warn(&ctlr->dev, 2261 "spi-tx-bus-width %d not supported\n", 2262 value); 2263 break; 2264 } 2265 } 2266 2267 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2268 switch (value) { 2269 case 0: 2270 spi->mode |= SPI_NO_RX; 2271 break; 2272 case 1: 2273 break; 2274 case 2: 2275 spi->mode |= SPI_RX_DUAL; 2276 break; 2277 case 4: 2278 spi->mode |= SPI_RX_QUAD; 2279 break; 2280 case 8: 2281 spi->mode |= SPI_RX_OCTAL; 2282 break; 2283 default: 2284 dev_warn(&ctlr->dev, 2285 "spi-rx-bus-width %d not supported\n", 2286 value); 2287 break; 2288 } 2289 } 2290 2291 if (spi_controller_is_slave(ctlr)) { 2292 if (!of_node_name_eq(nc, "slave")) { 2293 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2294 nc); 2295 return -EINVAL; 2296 } 2297 return 0; 2298 } 2299 2300 /* Device address */ 2301 rc = of_property_read_u32(nc, "reg", &value); 2302 if (rc) { 2303 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2304 nc, rc); 2305 return rc; 2306 } 2307 spi->chip_select = value; 2308 2309 /* Device speed */ 2310 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2311 spi->max_speed_hz = value; 2312 2313 if (!of_property_read_u16(nc, "spi-cs-setup-delay-ns", &cs_setup)) { 2314 spi->cs_setup.value = cs_setup; 2315 spi->cs_setup.unit = SPI_DELAY_UNIT_NSECS; 2316 } 2317 2318 return 0; 2319 } 2320 2321 static struct spi_device * 2322 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2323 { 2324 struct spi_device *spi; 2325 int rc; 2326 2327 /* Alloc an spi_device */ 2328 spi = spi_alloc_device(ctlr); 2329 if (!spi) { 2330 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2331 rc = -ENOMEM; 2332 goto err_out; 2333 } 2334 2335 /* Select device driver */ 2336 rc = of_modalias_node(nc, spi->modalias, 2337 sizeof(spi->modalias)); 2338 if (rc < 0) { 2339 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2340 goto err_out; 2341 } 2342 2343 rc = of_spi_parse_dt(ctlr, spi, nc); 2344 if (rc) 2345 goto err_out; 2346 2347 /* Store a pointer to the node in the device structure */ 2348 of_node_get(nc); 2349 spi->dev.of_node = nc; 2350 spi->dev.fwnode = of_fwnode_handle(nc); 2351 2352 /* Register the new device */ 2353 rc = spi_add_device(spi); 2354 if (rc) { 2355 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2356 goto err_of_node_put; 2357 } 2358 2359 return spi; 2360 2361 err_of_node_put: 2362 of_node_put(nc); 2363 err_out: 2364 spi_dev_put(spi); 2365 return ERR_PTR(rc); 2366 } 2367 2368 /** 2369 * of_register_spi_devices() - Register child devices onto the SPI bus 2370 * @ctlr: Pointer to spi_controller device 2371 * 2372 * Registers an spi_device for each child node of controller node which 2373 * represents a valid SPI slave. 2374 */ 2375 static void of_register_spi_devices(struct spi_controller *ctlr) 2376 { 2377 struct spi_device *spi; 2378 struct device_node *nc; 2379 2380 if (!ctlr->dev.of_node) 2381 return; 2382 2383 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2384 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2385 continue; 2386 spi = of_register_spi_device(ctlr, nc); 2387 if (IS_ERR(spi)) { 2388 dev_warn(&ctlr->dev, 2389 "Failed to create SPI device for %pOF\n", nc); 2390 of_node_clear_flag(nc, OF_POPULATED); 2391 } 2392 } 2393 } 2394 #else 2395 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2396 #endif 2397 2398 /** 2399 * spi_new_ancillary_device() - Register ancillary SPI device 2400 * @spi: Pointer to the main SPI device registering the ancillary device 2401 * @chip_select: Chip Select of the ancillary device 2402 * 2403 * Register an ancillary SPI device; for example some chips have a chip-select 2404 * for normal device usage and another one for setup/firmware upload. 2405 * 2406 * This may only be called from main SPI device's probe routine. 2407 * 2408 * Return: 0 on success; negative errno on failure 2409 */ 2410 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2411 u8 chip_select) 2412 { 2413 struct spi_device *ancillary; 2414 int rc = 0; 2415 2416 /* Alloc an spi_device */ 2417 ancillary = spi_alloc_device(spi->controller); 2418 if (!ancillary) { 2419 rc = -ENOMEM; 2420 goto err_out; 2421 } 2422 2423 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2424 2425 /* Use provided chip-select for ancillary device */ 2426 ancillary->chip_select = chip_select; 2427 2428 /* Take over SPI mode/speed from SPI main device */ 2429 ancillary->max_speed_hz = spi->max_speed_hz; 2430 ancillary->mode = spi->mode; 2431 2432 /* Register the new device */ 2433 rc = spi_add_device_locked(ancillary); 2434 if (rc) { 2435 dev_err(&spi->dev, "failed to register ancillary device\n"); 2436 goto err_out; 2437 } 2438 2439 return ancillary; 2440 2441 err_out: 2442 spi_dev_put(ancillary); 2443 return ERR_PTR(rc); 2444 } 2445 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2446 2447 #ifdef CONFIG_ACPI 2448 struct acpi_spi_lookup { 2449 struct spi_controller *ctlr; 2450 u32 max_speed_hz; 2451 u32 mode; 2452 int irq; 2453 u8 bits_per_word; 2454 u8 chip_select; 2455 int n; 2456 int index; 2457 }; 2458 2459 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2460 { 2461 struct acpi_resource_spi_serialbus *sb; 2462 int *count = data; 2463 2464 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2465 return 1; 2466 2467 sb = &ares->data.spi_serial_bus; 2468 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2469 return 1; 2470 2471 *count = *count + 1; 2472 2473 return 1; 2474 } 2475 2476 /** 2477 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2478 * @adev: ACPI device 2479 * 2480 * Returns the number of SpiSerialBus resources in the ACPI-device's 2481 * resource-list; or a negative error code. 2482 */ 2483 int acpi_spi_count_resources(struct acpi_device *adev) 2484 { 2485 LIST_HEAD(r); 2486 int count = 0; 2487 int ret; 2488 2489 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2490 if (ret < 0) 2491 return ret; 2492 2493 acpi_dev_free_resource_list(&r); 2494 2495 return count; 2496 } 2497 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2498 2499 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2500 struct acpi_spi_lookup *lookup) 2501 { 2502 const union acpi_object *obj; 2503 2504 if (!x86_apple_machine) 2505 return; 2506 2507 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2508 && obj->buffer.length >= 4) 2509 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2510 2511 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2512 && obj->buffer.length == 8) 2513 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2514 2515 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2516 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2517 lookup->mode |= SPI_LSB_FIRST; 2518 2519 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2520 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2521 lookup->mode |= SPI_CPOL; 2522 2523 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2524 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2525 lookup->mode |= SPI_CPHA; 2526 } 2527 2528 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 2529 2530 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2531 { 2532 struct acpi_spi_lookup *lookup = data; 2533 struct spi_controller *ctlr = lookup->ctlr; 2534 2535 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2536 struct acpi_resource_spi_serialbus *sb; 2537 acpi_handle parent_handle; 2538 acpi_status status; 2539 2540 sb = &ares->data.spi_serial_bus; 2541 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2542 2543 if (lookup->index != -1 && lookup->n++ != lookup->index) 2544 return 1; 2545 2546 status = acpi_get_handle(NULL, 2547 sb->resource_source.string_ptr, 2548 &parent_handle); 2549 2550 if (ACPI_FAILURE(status)) 2551 return -ENODEV; 2552 2553 if (ctlr) { 2554 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2555 return -ENODEV; 2556 } else { 2557 struct acpi_device *adev; 2558 2559 adev = acpi_fetch_acpi_dev(parent_handle); 2560 if (!adev) 2561 return -ENODEV; 2562 2563 ctlr = acpi_spi_find_controller_by_adev(adev); 2564 if (!ctlr) 2565 return -EPROBE_DEFER; 2566 2567 lookup->ctlr = ctlr; 2568 } 2569 2570 /* 2571 * ACPI DeviceSelection numbering is handled by the 2572 * host controller driver in Windows and can vary 2573 * from driver to driver. In Linux we always expect 2574 * 0 .. max - 1 so we need to ask the driver to 2575 * translate between the two schemes. 2576 */ 2577 if (ctlr->fw_translate_cs) { 2578 int cs = ctlr->fw_translate_cs(ctlr, 2579 sb->device_selection); 2580 if (cs < 0) 2581 return cs; 2582 lookup->chip_select = cs; 2583 } else { 2584 lookup->chip_select = sb->device_selection; 2585 } 2586 2587 lookup->max_speed_hz = sb->connection_speed; 2588 lookup->bits_per_word = sb->data_bit_length; 2589 2590 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2591 lookup->mode |= SPI_CPHA; 2592 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2593 lookup->mode |= SPI_CPOL; 2594 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2595 lookup->mode |= SPI_CS_HIGH; 2596 } 2597 } else if (lookup->irq < 0) { 2598 struct resource r; 2599 2600 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2601 lookup->irq = r.start; 2602 } 2603 2604 /* Always tell the ACPI core to skip this resource */ 2605 return 1; 2606 } 2607 2608 /** 2609 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2610 * @ctlr: controller to which the spi device belongs 2611 * @adev: ACPI Device for the spi device 2612 * @index: Index of the spi resource inside the ACPI Node 2613 * 2614 * This should be used to allocate a new spi device from and ACPI Node. 2615 * The caller is responsible for calling spi_add_device to register the spi device. 2616 * 2617 * If ctlr is set to NULL, the Controller for the spi device will be looked up 2618 * using the resource. 2619 * If index is set to -1, index is not used. 2620 * Note: If index is -1, ctlr must be set. 2621 * 2622 * Return: a pointer to the new device, or ERR_PTR on error. 2623 */ 2624 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2625 struct acpi_device *adev, 2626 int index) 2627 { 2628 acpi_handle parent_handle = NULL; 2629 struct list_head resource_list; 2630 struct acpi_spi_lookup lookup = {}; 2631 struct spi_device *spi; 2632 int ret; 2633 2634 if (!ctlr && index == -1) 2635 return ERR_PTR(-EINVAL); 2636 2637 lookup.ctlr = ctlr; 2638 lookup.irq = -1; 2639 lookup.index = index; 2640 lookup.n = 0; 2641 2642 INIT_LIST_HEAD(&resource_list); 2643 ret = acpi_dev_get_resources(adev, &resource_list, 2644 acpi_spi_add_resource, &lookup); 2645 acpi_dev_free_resource_list(&resource_list); 2646 2647 if (ret < 0) 2648 /* Found SPI in _CRS but it points to another controller */ 2649 return ERR_PTR(ret); 2650 2651 if (!lookup.max_speed_hz && 2652 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2653 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2654 /* Apple does not use _CRS but nested devices for SPI slaves */ 2655 acpi_spi_parse_apple_properties(adev, &lookup); 2656 } 2657 2658 if (!lookup.max_speed_hz) 2659 return ERR_PTR(-ENODEV); 2660 2661 spi = spi_alloc_device(lookup.ctlr); 2662 if (!spi) { 2663 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2664 dev_name(&adev->dev)); 2665 return ERR_PTR(-ENOMEM); 2666 } 2667 2668 ACPI_COMPANION_SET(&spi->dev, adev); 2669 spi->max_speed_hz = lookup.max_speed_hz; 2670 spi->mode |= lookup.mode; 2671 spi->irq = lookup.irq; 2672 spi->bits_per_word = lookup.bits_per_word; 2673 spi->chip_select = lookup.chip_select; 2674 2675 return spi; 2676 } 2677 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2678 2679 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2680 struct acpi_device *adev) 2681 { 2682 struct spi_device *spi; 2683 2684 if (acpi_bus_get_status(adev) || !adev->status.present || 2685 acpi_device_enumerated(adev)) 2686 return AE_OK; 2687 2688 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2689 if (IS_ERR(spi)) { 2690 if (PTR_ERR(spi) == -ENOMEM) 2691 return AE_NO_MEMORY; 2692 else 2693 return AE_OK; 2694 } 2695 2696 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2697 sizeof(spi->modalias)); 2698 2699 if (spi->irq < 0) 2700 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2701 2702 acpi_device_set_enumerated(adev); 2703 2704 adev->power.flags.ignore_parent = true; 2705 if (spi_add_device(spi)) { 2706 adev->power.flags.ignore_parent = false; 2707 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2708 dev_name(&adev->dev)); 2709 spi_dev_put(spi); 2710 } 2711 2712 return AE_OK; 2713 } 2714 2715 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2716 void *data, void **return_value) 2717 { 2718 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2719 struct spi_controller *ctlr = data; 2720 2721 if (!adev) 2722 return AE_OK; 2723 2724 return acpi_register_spi_device(ctlr, adev); 2725 } 2726 2727 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2728 2729 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2730 { 2731 acpi_status status; 2732 acpi_handle handle; 2733 2734 handle = ACPI_HANDLE(ctlr->dev.parent); 2735 if (!handle) 2736 return; 2737 2738 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2739 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2740 acpi_spi_add_device, NULL, ctlr, NULL); 2741 if (ACPI_FAILURE(status)) 2742 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2743 } 2744 #else 2745 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2746 #endif /* CONFIG_ACPI */ 2747 2748 static void spi_controller_release(struct device *dev) 2749 { 2750 struct spi_controller *ctlr; 2751 2752 ctlr = container_of(dev, struct spi_controller, dev); 2753 kfree(ctlr); 2754 } 2755 2756 static struct class spi_master_class = { 2757 .name = "spi_master", 2758 .owner = THIS_MODULE, 2759 .dev_release = spi_controller_release, 2760 .dev_groups = spi_master_groups, 2761 }; 2762 2763 #ifdef CONFIG_SPI_SLAVE 2764 /** 2765 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2766 * controller 2767 * @spi: device used for the current transfer 2768 */ 2769 int spi_slave_abort(struct spi_device *spi) 2770 { 2771 struct spi_controller *ctlr = spi->controller; 2772 2773 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2774 return ctlr->slave_abort(ctlr); 2775 2776 return -ENOTSUPP; 2777 } 2778 EXPORT_SYMBOL_GPL(spi_slave_abort); 2779 2780 int spi_target_abort(struct spi_device *spi) 2781 { 2782 struct spi_controller *ctlr = spi->controller; 2783 2784 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2785 return ctlr->target_abort(ctlr); 2786 2787 return -ENOTSUPP; 2788 } 2789 EXPORT_SYMBOL_GPL(spi_target_abort); 2790 2791 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2792 char *buf) 2793 { 2794 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2795 dev); 2796 struct device *child; 2797 2798 child = device_find_any_child(&ctlr->dev); 2799 return sprintf(buf, "%s\n", 2800 child ? to_spi_device(child)->modalias : NULL); 2801 } 2802 2803 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2804 const char *buf, size_t count) 2805 { 2806 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2807 dev); 2808 struct spi_device *spi; 2809 struct device *child; 2810 char name[32]; 2811 int rc; 2812 2813 rc = sscanf(buf, "%31s", name); 2814 if (rc != 1 || !name[0]) 2815 return -EINVAL; 2816 2817 child = device_find_any_child(&ctlr->dev); 2818 if (child) { 2819 /* Remove registered slave */ 2820 device_unregister(child); 2821 put_device(child); 2822 } 2823 2824 if (strcmp(name, "(null)")) { 2825 /* Register new slave */ 2826 spi = spi_alloc_device(ctlr); 2827 if (!spi) 2828 return -ENOMEM; 2829 2830 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2831 2832 rc = spi_add_device(spi); 2833 if (rc) { 2834 spi_dev_put(spi); 2835 return rc; 2836 } 2837 } 2838 2839 return count; 2840 } 2841 2842 static DEVICE_ATTR_RW(slave); 2843 2844 static struct attribute *spi_slave_attrs[] = { 2845 &dev_attr_slave.attr, 2846 NULL, 2847 }; 2848 2849 static const struct attribute_group spi_slave_group = { 2850 .attrs = spi_slave_attrs, 2851 }; 2852 2853 static const struct attribute_group *spi_slave_groups[] = { 2854 &spi_controller_statistics_group, 2855 &spi_slave_group, 2856 NULL, 2857 }; 2858 2859 static struct class spi_slave_class = { 2860 .name = "spi_slave", 2861 .owner = THIS_MODULE, 2862 .dev_release = spi_controller_release, 2863 .dev_groups = spi_slave_groups, 2864 }; 2865 #else 2866 extern struct class spi_slave_class; /* dummy */ 2867 #endif 2868 2869 /** 2870 * __spi_alloc_controller - allocate an SPI master or slave controller 2871 * @dev: the controller, possibly using the platform_bus 2872 * @size: how much zeroed driver-private data to allocate; the pointer to this 2873 * memory is in the driver_data field of the returned device, accessible 2874 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2875 * drivers granting DMA access to portions of their private data need to 2876 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2877 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2878 * slave (true) controller 2879 * Context: can sleep 2880 * 2881 * This call is used only by SPI controller drivers, which are the 2882 * only ones directly touching chip registers. It's how they allocate 2883 * an spi_controller structure, prior to calling spi_register_controller(). 2884 * 2885 * This must be called from context that can sleep. 2886 * 2887 * The caller is responsible for assigning the bus number and initializing the 2888 * controller's methods before calling spi_register_controller(); and (after 2889 * errors adding the device) calling spi_controller_put() to prevent a memory 2890 * leak. 2891 * 2892 * Return: the SPI controller structure on success, else NULL. 2893 */ 2894 struct spi_controller *__spi_alloc_controller(struct device *dev, 2895 unsigned int size, bool slave) 2896 { 2897 struct spi_controller *ctlr; 2898 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2899 2900 if (!dev) 2901 return NULL; 2902 2903 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2904 if (!ctlr) 2905 return NULL; 2906 2907 device_initialize(&ctlr->dev); 2908 INIT_LIST_HEAD(&ctlr->queue); 2909 spin_lock_init(&ctlr->queue_lock); 2910 spin_lock_init(&ctlr->bus_lock_spinlock); 2911 mutex_init(&ctlr->bus_lock_mutex); 2912 mutex_init(&ctlr->io_mutex); 2913 mutex_init(&ctlr->add_lock); 2914 ctlr->bus_num = -1; 2915 ctlr->num_chipselect = 1; 2916 ctlr->slave = slave; 2917 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2918 ctlr->dev.class = &spi_slave_class; 2919 else 2920 ctlr->dev.class = &spi_master_class; 2921 ctlr->dev.parent = dev; 2922 pm_suspend_ignore_children(&ctlr->dev, true); 2923 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2924 2925 return ctlr; 2926 } 2927 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2928 2929 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2930 { 2931 spi_controller_put(*(struct spi_controller **)ctlr); 2932 } 2933 2934 /** 2935 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2936 * @dev: physical device of SPI controller 2937 * @size: how much zeroed driver-private data to allocate 2938 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2939 * Context: can sleep 2940 * 2941 * Allocate an SPI controller and automatically release a reference on it 2942 * when @dev is unbound from its driver. Drivers are thus relieved from 2943 * having to call spi_controller_put(). 2944 * 2945 * The arguments to this function are identical to __spi_alloc_controller(). 2946 * 2947 * Return: the SPI controller structure on success, else NULL. 2948 */ 2949 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2950 unsigned int size, 2951 bool slave) 2952 { 2953 struct spi_controller **ptr, *ctlr; 2954 2955 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2956 GFP_KERNEL); 2957 if (!ptr) 2958 return NULL; 2959 2960 ctlr = __spi_alloc_controller(dev, size, slave); 2961 if (ctlr) { 2962 ctlr->devm_allocated = true; 2963 *ptr = ctlr; 2964 devres_add(dev, ptr); 2965 } else { 2966 devres_free(ptr); 2967 } 2968 2969 return ctlr; 2970 } 2971 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2972 2973 /** 2974 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2975 * @ctlr: The SPI master to grab GPIO descriptors for 2976 */ 2977 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2978 { 2979 int nb, i; 2980 struct gpio_desc **cs; 2981 struct device *dev = &ctlr->dev; 2982 unsigned long native_cs_mask = 0; 2983 unsigned int num_cs_gpios = 0; 2984 2985 nb = gpiod_count(dev, "cs"); 2986 if (nb < 0) { 2987 /* No GPIOs at all is fine, else return the error */ 2988 if (nb == -ENOENT) 2989 return 0; 2990 return nb; 2991 } 2992 2993 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2994 2995 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2996 GFP_KERNEL); 2997 if (!cs) 2998 return -ENOMEM; 2999 ctlr->cs_gpiods = cs; 3000 3001 for (i = 0; i < nb; i++) { 3002 /* 3003 * Most chipselects are active low, the inverted 3004 * semantics are handled by special quirks in gpiolib, 3005 * so initializing them GPIOD_OUT_LOW here means 3006 * "unasserted", in most cases this will drive the physical 3007 * line high. 3008 */ 3009 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3010 GPIOD_OUT_LOW); 3011 if (IS_ERR(cs[i])) 3012 return PTR_ERR(cs[i]); 3013 3014 if (cs[i]) { 3015 /* 3016 * If we find a CS GPIO, name it after the device and 3017 * chip select line. 3018 */ 3019 char *gpioname; 3020 3021 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3022 dev_name(dev), i); 3023 if (!gpioname) 3024 return -ENOMEM; 3025 gpiod_set_consumer_name(cs[i], gpioname); 3026 num_cs_gpios++; 3027 continue; 3028 } 3029 3030 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3031 dev_err(dev, "Invalid native chip select %d\n", i); 3032 return -EINVAL; 3033 } 3034 native_cs_mask |= BIT(i); 3035 } 3036 3037 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3038 3039 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios && 3040 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3041 dev_err(dev, "No unused native chip select available\n"); 3042 return -EINVAL; 3043 } 3044 3045 return 0; 3046 } 3047 3048 static int spi_controller_check_ops(struct spi_controller *ctlr) 3049 { 3050 /* 3051 * The controller may implement only the high-level SPI-memory like 3052 * operations if it does not support regular SPI transfers, and this is 3053 * valid use case. 3054 * If ->mem_ops is NULL, we request that at least one of the 3055 * ->transfer_xxx() method be implemented. 3056 */ 3057 if (ctlr->mem_ops) { 3058 if (!ctlr->mem_ops->exec_op) 3059 return -EINVAL; 3060 } else if (!ctlr->transfer && !ctlr->transfer_one && 3061 !ctlr->transfer_one_message) { 3062 return -EINVAL; 3063 } 3064 3065 return 0; 3066 } 3067 3068 /** 3069 * spi_register_controller - register SPI master or slave controller 3070 * @ctlr: initialized master, originally from spi_alloc_master() or 3071 * spi_alloc_slave() 3072 * Context: can sleep 3073 * 3074 * SPI controllers connect to their drivers using some non-SPI bus, 3075 * such as the platform bus. The final stage of probe() in that code 3076 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3077 * 3078 * SPI controllers use board specific (often SOC specific) bus numbers, 3079 * and board-specific addressing for SPI devices combines those numbers 3080 * with chip select numbers. Since SPI does not directly support dynamic 3081 * device identification, boards need configuration tables telling which 3082 * chip is at which address. 3083 * 3084 * This must be called from context that can sleep. It returns zero on 3085 * success, else a negative error code (dropping the controller's refcount). 3086 * After a successful return, the caller is responsible for calling 3087 * spi_unregister_controller(). 3088 * 3089 * Return: zero on success, else a negative error code. 3090 */ 3091 int spi_register_controller(struct spi_controller *ctlr) 3092 { 3093 struct device *dev = ctlr->dev.parent; 3094 struct boardinfo *bi; 3095 int status; 3096 int id, first_dynamic; 3097 3098 if (!dev) 3099 return -ENODEV; 3100 3101 /* 3102 * Make sure all necessary hooks are implemented before registering 3103 * the SPI controller. 3104 */ 3105 status = spi_controller_check_ops(ctlr); 3106 if (status) 3107 return status; 3108 3109 if (ctlr->bus_num >= 0) { 3110 /* Devices with a fixed bus num must check-in with the num */ 3111 mutex_lock(&board_lock); 3112 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 3113 ctlr->bus_num + 1, GFP_KERNEL); 3114 mutex_unlock(&board_lock); 3115 if (WARN(id < 0, "couldn't get idr")) 3116 return id == -ENOSPC ? -EBUSY : id; 3117 ctlr->bus_num = id; 3118 } else if (ctlr->dev.of_node) { 3119 /* Allocate dynamic bus number using Linux idr */ 3120 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 3121 if (id >= 0) { 3122 ctlr->bus_num = id; 3123 mutex_lock(&board_lock); 3124 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 3125 ctlr->bus_num + 1, GFP_KERNEL); 3126 mutex_unlock(&board_lock); 3127 if (WARN(id < 0, "couldn't get idr")) 3128 return id == -ENOSPC ? -EBUSY : id; 3129 } 3130 } 3131 if (ctlr->bus_num < 0) { 3132 first_dynamic = of_alias_get_highest_id("spi"); 3133 if (first_dynamic < 0) 3134 first_dynamic = 0; 3135 else 3136 first_dynamic++; 3137 3138 mutex_lock(&board_lock); 3139 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 3140 0, GFP_KERNEL); 3141 mutex_unlock(&board_lock); 3142 if (WARN(id < 0, "couldn't get idr")) 3143 return id; 3144 ctlr->bus_num = id; 3145 } 3146 ctlr->bus_lock_flag = 0; 3147 init_completion(&ctlr->xfer_completion); 3148 init_completion(&ctlr->cur_msg_completion); 3149 if (!ctlr->max_dma_len) 3150 ctlr->max_dma_len = INT_MAX; 3151 3152 /* 3153 * Register the device, then userspace will see it. 3154 * Registration fails if the bus ID is in use. 3155 */ 3156 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3157 3158 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3159 status = spi_get_gpio_descs(ctlr); 3160 if (status) 3161 goto free_bus_id; 3162 /* 3163 * A controller using GPIO descriptors always 3164 * supports SPI_CS_HIGH if need be. 3165 */ 3166 ctlr->mode_bits |= SPI_CS_HIGH; 3167 } 3168 3169 /* 3170 * Even if it's just one always-selected device, there must 3171 * be at least one chipselect. 3172 */ 3173 if (!ctlr->num_chipselect) { 3174 status = -EINVAL; 3175 goto free_bus_id; 3176 } 3177 3178 /* Setting last_cs to -1 means no chip selected */ 3179 ctlr->last_cs = -1; 3180 3181 status = device_add(&ctlr->dev); 3182 if (status < 0) 3183 goto free_bus_id; 3184 dev_dbg(dev, "registered %s %s\n", 3185 spi_controller_is_slave(ctlr) ? "slave" : "master", 3186 dev_name(&ctlr->dev)); 3187 3188 /* 3189 * If we're using a queued driver, start the queue. Note that we don't 3190 * need the queueing logic if the driver is only supporting high-level 3191 * memory operations. 3192 */ 3193 if (ctlr->transfer) { 3194 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3195 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3196 status = spi_controller_initialize_queue(ctlr); 3197 if (status) { 3198 device_del(&ctlr->dev); 3199 goto free_bus_id; 3200 } 3201 } 3202 /* Add statistics */ 3203 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3204 if (!ctlr->pcpu_statistics) { 3205 dev_err(dev, "Error allocating per-cpu statistics\n"); 3206 status = -ENOMEM; 3207 goto destroy_queue; 3208 } 3209 3210 mutex_lock(&board_lock); 3211 list_add_tail(&ctlr->list, &spi_controller_list); 3212 list_for_each_entry(bi, &board_list, list) 3213 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3214 mutex_unlock(&board_lock); 3215 3216 /* Register devices from the device tree and ACPI */ 3217 of_register_spi_devices(ctlr); 3218 acpi_register_spi_devices(ctlr); 3219 return status; 3220 3221 destroy_queue: 3222 spi_destroy_queue(ctlr); 3223 free_bus_id: 3224 mutex_lock(&board_lock); 3225 idr_remove(&spi_master_idr, ctlr->bus_num); 3226 mutex_unlock(&board_lock); 3227 return status; 3228 } 3229 EXPORT_SYMBOL_GPL(spi_register_controller); 3230 3231 static void devm_spi_unregister(struct device *dev, void *res) 3232 { 3233 spi_unregister_controller(*(struct spi_controller **)res); 3234 } 3235 3236 /** 3237 * devm_spi_register_controller - register managed SPI master or slave 3238 * controller 3239 * @dev: device managing SPI controller 3240 * @ctlr: initialized controller, originally from spi_alloc_master() or 3241 * spi_alloc_slave() 3242 * Context: can sleep 3243 * 3244 * Register a SPI device as with spi_register_controller() which will 3245 * automatically be unregistered and freed. 3246 * 3247 * Return: zero on success, else a negative error code. 3248 */ 3249 int devm_spi_register_controller(struct device *dev, 3250 struct spi_controller *ctlr) 3251 { 3252 struct spi_controller **ptr; 3253 int ret; 3254 3255 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3256 if (!ptr) 3257 return -ENOMEM; 3258 3259 ret = spi_register_controller(ctlr); 3260 if (!ret) { 3261 *ptr = ctlr; 3262 devres_add(dev, ptr); 3263 } else { 3264 devres_free(ptr); 3265 } 3266 3267 return ret; 3268 } 3269 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3270 3271 static int __unregister(struct device *dev, void *null) 3272 { 3273 spi_unregister_device(to_spi_device(dev)); 3274 return 0; 3275 } 3276 3277 /** 3278 * spi_unregister_controller - unregister SPI master or slave controller 3279 * @ctlr: the controller being unregistered 3280 * Context: can sleep 3281 * 3282 * This call is used only by SPI controller drivers, which are the 3283 * only ones directly touching chip registers. 3284 * 3285 * This must be called from context that can sleep. 3286 * 3287 * Note that this function also drops a reference to the controller. 3288 */ 3289 void spi_unregister_controller(struct spi_controller *ctlr) 3290 { 3291 struct spi_controller *found; 3292 int id = ctlr->bus_num; 3293 3294 /* Prevent addition of new devices, unregister existing ones */ 3295 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3296 mutex_lock(&ctlr->add_lock); 3297 3298 device_for_each_child(&ctlr->dev, NULL, __unregister); 3299 3300 /* First make sure that this controller was ever added */ 3301 mutex_lock(&board_lock); 3302 found = idr_find(&spi_master_idr, id); 3303 mutex_unlock(&board_lock); 3304 if (ctlr->queued) { 3305 if (spi_destroy_queue(ctlr)) 3306 dev_err(&ctlr->dev, "queue remove failed\n"); 3307 } 3308 mutex_lock(&board_lock); 3309 list_del(&ctlr->list); 3310 mutex_unlock(&board_lock); 3311 3312 device_del(&ctlr->dev); 3313 3314 /* Free bus id */ 3315 mutex_lock(&board_lock); 3316 if (found == ctlr) 3317 idr_remove(&spi_master_idr, id); 3318 mutex_unlock(&board_lock); 3319 3320 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3321 mutex_unlock(&ctlr->add_lock); 3322 3323 /* Release the last reference on the controller if its driver 3324 * has not yet been converted to devm_spi_alloc_master/slave(). 3325 */ 3326 if (!ctlr->devm_allocated) 3327 put_device(&ctlr->dev); 3328 } 3329 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3330 3331 int spi_controller_suspend(struct spi_controller *ctlr) 3332 { 3333 int ret; 3334 3335 /* Basically no-ops for non-queued controllers */ 3336 if (!ctlr->queued) 3337 return 0; 3338 3339 ret = spi_stop_queue(ctlr); 3340 if (ret) 3341 dev_err(&ctlr->dev, "queue stop failed\n"); 3342 3343 return ret; 3344 } 3345 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3346 3347 int spi_controller_resume(struct spi_controller *ctlr) 3348 { 3349 int ret; 3350 3351 if (!ctlr->queued) 3352 return 0; 3353 3354 ret = spi_start_queue(ctlr); 3355 if (ret) 3356 dev_err(&ctlr->dev, "queue restart failed\n"); 3357 3358 return ret; 3359 } 3360 EXPORT_SYMBOL_GPL(spi_controller_resume); 3361 3362 /*-------------------------------------------------------------------------*/ 3363 3364 /* Core methods for spi_message alterations */ 3365 3366 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3367 struct spi_message *msg, 3368 void *res) 3369 { 3370 struct spi_replaced_transfers *rxfer = res; 3371 size_t i; 3372 3373 /* Call extra callback if requested */ 3374 if (rxfer->release) 3375 rxfer->release(ctlr, msg, res); 3376 3377 /* Insert replaced transfers back into the message */ 3378 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3379 3380 /* Remove the formerly inserted entries */ 3381 for (i = 0; i < rxfer->inserted; i++) 3382 list_del(&rxfer->inserted_transfers[i].transfer_list); 3383 } 3384 3385 /** 3386 * spi_replace_transfers - replace transfers with several transfers 3387 * and register change with spi_message.resources 3388 * @msg: the spi_message we work upon 3389 * @xfer_first: the first spi_transfer we want to replace 3390 * @remove: number of transfers to remove 3391 * @insert: the number of transfers we want to insert instead 3392 * @release: extra release code necessary in some circumstances 3393 * @extradatasize: extra data to allocate (with alignment guarantees 3394 * of struct @spi_transfer) 3395 * @gfp: gfp flags 3396 * 3397 * Returns: pointer to @spi_replaced_transfers, 3398 * PTR_ERR(...) in case of errors. 3399 */ 3400 static struct spi_replaced_transfers *spi_replace_transfers( 3401 struct spi_message *msg, 3402 struct spi_transfer *xfer_first, 3403 size_t remove, 3404 size_t insert, 3405 spi_replaced_release_t release, 3406 size_t extradatasize, 3407 gfp_t gfp) 3408 { 3409 struct spi_replaced_transfers *rxfer; 3410 struct spi_transfer *xfer; 3411 size_t i; 3412 3413 /* Allocate the structure using spi_res */ 3414 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3415 struct_size(rxfer, inserted_transfers, insert) 3416 + extradatasize, 3417 gfp); 3418 if (!rxfer) 3419 return ERR_PTR(-ENOMEM); 3420 3421 /* The release code to invoke before running the generic release */ 3422 rxfer->release = release; 3423 3424 /* Assign extradata */ 3425 if (extradatasize) 3426 rxfer->extradata = 3427 &rxfer->inserted_transfers[insert]; 3428 3429 /* Init the replaced_transfers list */ 3430 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3431 3432 /* 3433 * Assign the list_entry after which we should reinsert 3434 * the @replaced_transfers - it may be spi_message.messages! 3435 */ 3436 rxfer->replaced_after = xfer_first->transfer_list.prev; 3437 3438 /* Remove the requested number of transfers */ 3439 for (i = 0; i < remove; i++) { 3440 /* 3441 * If the entry after replaced_after it is msg->transfers 3442 * then we have been requested to remove more transfers 3443 * than are in the list. 3444 */ 3445 if (rxfer->replaced_after->next == &msg->transfers) { 3446 dev_err(&msg->spi->dev, 3447 "requested to remove more spi_transfers than are available\n"); 3448 /* Insert replaced transfers back into the message */ 3449 list_splice(&rxfer->replaced_transfers, 3450 rxfer->replaced_after); 3451 3452 /* Free the spi_replace_transfer structure... */ 3453 spi_res_free(rxfer); 3454 3455 /* ...and return with an error */ 3456 return ERR_PTR(-EINVAL); 3457 } 3458 3459 /* 3460 * Remove the entry after replaced_after from list of 3461 * transfers and add it to list of replaced_transfers. 3462 */ 3463 list_move_tail(rxfer->replaced_after->next, 3464 &rxfer->replaced_transfers); 3465 } 3466 3467 /* 3468 * Create copy of the given xfer with identical settings 3469 * based on the first transfer to get removed. 3470 */ 3471 for (i = 0; i < insert; i++) { 3472 /* We need to run in reverse order */ 3473 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3474 3475 /* Copy all spi_transfer data */ 3476 memcpy(xfer, xfer_first, sizeof(*xfer)); 3477 3478 /* Add to list */ 3479 list_add(&xfer->transfer_list, rxfer->replaced_after); 3480 3481 /* Clear cs_change and delay for all but the last */ 3482 if (i) { 3483 xfer->cs_change = false; 3484 xfer->delay.value = 0; 3485 } 3486 } 3487 3488 /* Set up inserted... */ 3489 rxfer->inserted = insert; 3490 3491 /* ...and register it with spi_res/spi_message */ 3492 spi_res_add(msg, rxfer); 3493 3494 return rxfer; 3495 } 3496 3497 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3498 struct spi_message *msg, 3499 struct spi_transfer **xferp, 3500 size_t maxsize, 3501 gfp_t gfp) 3502 { 3503 struct spi_transfer *xfer = *xferp, *xfers; 3504 struct spi_replaced_transfers *srt; 3505 size_t offset; 3506 size_t count, i; 3507 3508 /* Calculate how many we have to replace */ 3509 count = DIV_ROUND_UP(xfer->len, maxsize); 3510 3511 /* Create replacement */ 3512 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3513 if (IS_ERR(srt)) 3514 return PTR_ERR(srt); 3515 xfers = srt->inserted_transfers; 3516 3517 /* 3518 * Now handle each of those newly inserted spi_transfers. 3519 * Note that the replacements spi_transfers all are preset 3520 * to the same values as *xferp, so tx_buf, rx_buf and len 3521 * are all identical (as well as most others) 3522 * so we just have to fix up len and the pointers. 3523 * 3524 * This also includes support for the depreciated 3525 * spi_message.is_dma_mapped interface. 3526 */ 3527 3528 /* 3529 * The first transfer just needs the length modified, so we 3530 * run it outside the loop. 3531 */ 3532 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3533 3534 /* All the others need rx_buf/tx_buf also set */ 3535 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3536 /* Update rx_buf, tx_buf and dma */ 3537 if (xfers[i].rx_buf) 3538 xfers[i].rx_buf += offset; 3539 if (xfers[i].rx_dma) 3540 xfers[i].rx_dma += offset; 3541 if (xfers[i].tx_buf) 3542 xfers[i].tx_buf += offset; 3543 if (xfers[i].tx_dma) 3544 xfers[i].tx_dma += offset; 3545 3546 /* Update length */ 3547 xfers[i].len = min(maxsize, xfers[i].len - offset); 3548 } 3549 3550 /* 3551 * We set up xferp to the last entry we have inserted, 3552 * so that we skip those already split transfers. 3553 */ 3554 *xferp = &xfers[count - 1]; 3555 3556 /* Increment statistics counters */ 3557 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3558 transfers_split_maxsize); 3559 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3560 transfers_split_maxsize); 3561 3562 return 0; 3563 } 3564 3565 /** 3566 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3567 * when an individual transfer exceeds a 3568 * certain size 3569 * @ctlr: the @spi_controller for this transfer 3570 * @msg: the @spi_message to transform 3571 * @maxsize: the maximum when to apply this 3572 * @gfp: GFP allocation flags 3573 * 3574 * Return: status of transformation 3575 */ 3576 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3577 struct spi_message *msg, 3578 size_t maxsize, 3579 gfp_t gfp) 3580 { 3581 struct spi_transfer *xfer; 3582 int ret; 3583 3584 /* 3585 * Iterate over the transfer_list, 3586 * but note that xfer is advanced to the last transfer inserted 3587 * to avoid checking sizes again unnecessarily (also xfer does 3588 * potentially belong to a different list by the time the 3589 * replacement has happened). 3590 */ 3591 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3592 if (xfer->len > maxsize) { 3593 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3594 maxsize, gfp); 3595 if (ret) 3596 return ret; 3597 } 3598 } 3599 3600 return 0; 3601 } 3602 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3603 3604 /*-------------------------------------------------------------------------*/ 3605 3606 /* Core methods for SPI controller protocol drivers. Some of the 3607 * other core methods are currently defined as inline functions. 3608 */ 3609 3610 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3611 u8 bits_per_word) 3612 { 3613 if (ctlr->bits_per_word_mask) { 3614 /* Only 32 bits fit in the mask */ 3615 if (bits_per_word > 32) 3616 return -EINVAL; 3617 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3618 return -EINVAL; 3619 } 3620 3621 return 0; 3622 } 3623 3624 /** 3625 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3626 * @spi: the device that requires specific CS timing configuration 3627 * 3628 * Return: zero on success, else a negative error code. 3629 */ 3630 static int spi_set_cs_timing(struct spi_device *spi) 3631 { 3632 struct device *parent = spi->controller->dev.parent; 3633 int status = 0; 3634 3635 if (spi->controller->set_cs_timing && !spi->cs_gpiod) { 3636 if (spi->controller->auto_runtime_pm) { 3637 status = pm_runtime_get_sync(parent); 3638 if (status < 0) { 3639 pm_runtime_put_noidle(parent); 3640 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3641 status); 3642 return status; 3643 } 3644 3645 status = spi->controller->set_cs_timing(spi); 3646 pm_runtime_mark_last_busy(parent); 3647 pm_runtime_put_autosuspend(parent); 3648 } else { 3649 status = spi->controller->set_cs_timing(spi); 3650 } 3651 } 3652 return status; 3653 } 3654 3655 /** 3656 * spi_setup - setup SPI mode and clock rate 3657 * @spi: the device whose settings are being modified 3658 * Context: can sleep, and no requests are queued to the device 3659 * 3660 * SPI protocol drivers may need to update the transfer mode if the 3661 * device doesn't work with its default. They may likewise need 3662 * to update clock rates or word sizes from initial values. This function 3663 * changes those settings, and must be called from a context that can sleep. 3664 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3665 * effect the next time the device is selected and data is transferred to 3666 * or from it. When this function returns, the spi device is deselected. 3667 * 3668 * Note that this call will fail if the protocol driver specifies an option 3669 * that the underlying controller or its driver does not support. For 3670 * example, not all hardware supports wire transfers using nine bit words, 3671 * LSB-first wire encoding, or active-high chipselects. 3672 * 3673 * Return: zero on success, else a negative error code. 3674 */ 3675 int spi_setup(struct spi_device *spi) 3676 { 3677 unsigned bad_bits, ugly_bits; 3678 int status = 0; 3679 3680 /* 3681 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3682 * are set at the same time. 3683 */ 3684 if ((hweight_long(spi->mode & 3685 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3686 (hweight_long(spi->mode & 3687 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3688 dev_err(&spi->dev, 3689 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3690 return -EINVAL; 3691 } 3692 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3693 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3694 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3695 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3696 return -EINVAL; 3697 /* 3698 * Help drivers fail *cleanly* when they need options 3699 * that aren't supported with their current controller. 3700 * SPI_CS_WORD has a fallback software implementation, 3701 * so it is ignored here. 3702 */ 3703 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3704 SPI_NO_TX | SPI_NO_RX); 3705 ugly_bits = bad_bits & 3706 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3707 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3708 if (ugly_bits) { 3709 dev_warn(&spi->dev, 3710 "setup: ignoring unsupported mode bits %x\n", 3711 ugly_bits); 3712 spi->mode &= ~ugly_bits; 3713 bad_bits &= ~ugly_bits; 3714 } 3715 if (bad_bits) { 3716 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3717 bad_bits); 3718 return -EINVAL; 3719 } 3720 3721 if (!spi->bits_per_word) { 3722 spi->bits_per_word = 8; 3723 } else { 3724 /* 3725 * Some controllers may not support the default 8 bits-per-word 3726 * so only perform the check when this is explicitly provided. 3727 */ 3728 status = __spi_validate_bits_per_word(spi->controller, 3729 spi->bits_per_word); 3730 if (status) 3731 return status; 3732 } 3733 3734 if (spi->controller->max_speed_hz && 3735 (!spi->max_speed_hz || 3736 spi->max_speed_hz > spi->controller->max_speed_hz)) 3737 spi->max_speed_hz = spi->controller->max_speed_hz; 3738 3739 mutex_lock(&spi->controller->io_mutex); 3740 3741 if (spi->controller->setup) { 3742 status = spi->controller->setup(spi); 3743 if (status) { 3744 mutex_unlock(&spi->controller->io_mutex); 3745 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3746 status); 3747 return status; 3748 } 3749 } 3750 3751 status = spi_set_cs_timing(spi); 3752 if (status) { 3753 mutex_unlock(&spi->controller->io_mutex); 3754 return status; 3755 } 3756 3757 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3758 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3759 if (status < 0) { 3760 mutex_unlock(&spi->controller->io_mutex); 3761 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3762 status); 3763 return status; 3764 } 3765 3766 /* 3767 * We do not want to return positive value from pm_runtime_get, 3768 * there are many instances of devices calling spi_setup() and 3769 * checking for a non-zero return value instead of a negative 3770 * return value. 3771 */ 3772 status = 0; 3773 3774 spi_set_cs(spi, false, true); 3775 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3776 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3777 } else { 3778 spi_set_cs(spi, false, true); 3779 } 3780 3781 mutex_unlock(&spi->controller->io_mutex); 3782 3783 if (spi->rt && !spi->controller->rt) { 3784 spi->controller->rt = true; 3785 spi_set_thread_rt(spi->controller); 3786 } 3787 3788 trace_spi_setup(spi, status); 3789 3790 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3791 spi->mode & SPI_MODE_X_MASK, 3792 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3793 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3794 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3795 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3796 spi->bits_per_word, spi->max_speed_hz, 3797 status); 3798 3799 return status; 3800 } 3801 EXPORT_SYMBOL_GPL(spi_setup); 3802 3803 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3804 struct spi_device *spi) 3805 { 3806 int delay1, delay2; 3807 3808 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3809 if (delay1 < 0) 3810 return delay1; 3811 3812 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3813 if (delay2 < 0) 3814 return delay2; 3815 3816 if (delay1 < delay2) 3817 memcpy(&xfer->word_delay, &spi->word_delay, 3818 sizeof(xfer->word_delay)); 3819 3820 return 0; 3821 } 3822 3823 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3824 { 3825 struct spi_controller *ctlr = spi->controller; 3826 struct spi_transfer *xfer; 3827 int w_size; 3828 3829 if (list_empty(&message->transfers)) 3830 return -EINVAL; 3831 3832 /* 3833 * If an SPI controller does not support toggling the CS line on each 3834 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3835 * for the CS line, we can emulate the CS-per-word hardware function by 3836 * splitting transfers into one-word transfers and ensuring that 3837 * cs_change is set for each transfer. 3838 */ 3839 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3840 spi->cs_gpiod)) { 3841 size_t maxsize; 3842 int ret; 3843 3844 maxsize = (spi->bits_per_word + 7) / 8; 3845 3846 /* spi_split_transfers_maxsize() requires message->spi */ 3847 message->spi = spi; 3848 3849 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3850 GFP_KERNEL); 3851 if (ret) 3852 return ret; 3853 3854 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3855 /* Don't change cs_change on the last entry in the list */ 3856 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3857 break; 3858 xfer->cs_change = 1; 3859 } 3860 } 3861 3862 /* 3863 * Half-duplex links include original MicroWire, and ones with 3864 * only one data pin like SPI_3WIRE (switches direction) or where 3865 * either MOSI or MISO is missing. They can also be caused by 3866 * software limitations. 3867 */ 3868 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3869 (spi->mode & SPI_3WIRE)) { 3870 unsigned flags = ctlr->flags; 3871 3872 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3873 if (xfer->rx_buf && xfer->tx_buf) 3874 return -EINVAL; 3875 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3876 return -EINVAL; 3877 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3878 return -EINVAL; 3879 } 3880 } 3881 3882 /* 3883 * Set transfer bits_per_word and max speed as spi device default if 3884 * it is not set for this transfer. 3885 * Set transfer tx_nbits and rx_nbits as single transfer default 3886 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3887 * Ensure transfer word_delay is at least as long as that required by 3888 * device itself. 3889 */ 3890 message->frame_length = 0; 3891 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3892 xfer->effective_speed_hz = 0; 3893 message->frame_length += xfer->len; 3894 if (!xfer->bits_per_word) 3895 xfer->bits_per_word = spi->bits_per_word; 3896 3897 if (!xfer->speed_hz) 3898 xfer->speed_hz = spi->max_speed_hz; 3899 3900 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3901 xfer->speed_hz = ctlr->max_speed_hz; 3902 3903 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3904 return -EINVAL; 3905 3906 /* 3907 * SPI transfer length should be multiple of SPI word size 3908 * where SPI word size should be power-of-two multiple. 3909 */ 3910 if (xfer->bits_per_word <= 8) 3911 w_size = 1; 3912 else if (xfer->bits_per_word <= 16) 3913 w_size = 2; 3914 else 3915 w_size = 4; 3916 3917 /* No partial transfers accepted */ 3918 if (xfer->len % w_size) 3919 return -EINVAL; 3920 3921 if (xfer->speed_hz && ctlr->min_speed_hz && 3922 xfer->speed_hz < ctlr->min_speed_hz) 3923 return -EINVAL; 3924 3925 if (xfer->tx_buf && !xfer->tx_nbits) 3926 xfer->tx_nbits = SPI_NBITS_SINGLE; 3927 if (xfer->rx_buf && !xfer->rx_nbits) 3928 xfer->rx_nbits = SPI_NBITS_SINGLE; 3929 /* 3930 * Check transfer tx/rx_nbits: 3931 * 1. check the value matches one of single, dual and quad 3932 * 2. check tx/rx_nbits match the mode in spi_device 3933 */ 3934 if (xfer->tx_buf) { 3935 if (spi->mode & SPI_NO_TX) 3936 return -EINVAL; 3937 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3938 xfer->tx_nbits != SPI_NBITS_DUAL && 3939 xfer->tx_nbits != SPI_NBITS_QUAD) 3940 return -EINVAL; 3941 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3942 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3943 return -EINVAL; 3944 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3945 !(spi->mode & SPI_TX_QUAD)) 3946 return -EINVAL; 3947 } 3948 /* Check transfer rx_nbits */ 3949 if (xfer->rx_buf) { 3950 if (spi->mode & SPI_NO_RX) 3951 return -EINVAL; 3952 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3953 xfer->rx_nbits != SPI_NBITS_DUAL && 3954 xfer->rx_nbits != SPI_NBITS_QUAD) 3955 return -EINVAL; 3956 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3957 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3958 return -EINVAL; 3959 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3960 !(spi->mode & SPI_RX_QUAD)) 3961 return -EINVAL; 3962 } 3963 3964 if (_spi_xfer_word_delay_update(xfer, spi)) 3965 return -EINVAL; 3966 } 3967 3968 message->status = -EINPROGRESS; 3969 3970 return 0; 3971 } 3972 3973 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3974 { 3975 struct spi_controller *ctlr = spi->controller; 3976 struct spi_transfer *xfer; 3977 3978 /* 3979 * Some controllers do not support doing regular SPI transfers. Return 3980 * ENOTSUPP when this is the case. 3981 */ 3982 if (!ctlr->transfer) 3983 return -ENOTSUPP; 3984 3985 message->spi = spi; 3986 3987 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 3988 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 3989 3990 trace_spi_message_submit(message); 3991 3992 if (!ctlr->ptp_sts_supported) { 3993 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3994 xfer->ptp_sts_word_pre = 0; 3995 ptp_read_system_prets(xfer->ptp_sts); 3996 } 3997 } 3998 3999 return ctlr->transfer(spi, message); 4000 } 4001 4002 /** 4003 * spi_async - asynchronous SPI transfer 4004 * @spi: device with which data will be exchanged 4005 * @message: describes the data transfers, including completion callback 4006 * Context: any (irqs may be blocked, etc) 4007 * 4008 * This call may be used in_irq and other contexts which can't sleep, 4009 * as well as from task contexts which can sleep. 4010 * 4011 * The completion callback is invoked in a context which can't sleep. 4012 * Before that invocation, the value of message->status is undefined. 4013 * When the callback is issued, message->status holds either zero (to 4014 * indicate complete success) or a negative error code. After that 4015 * callback returns, the driver which issued the transfer request may 4016 * deallocate the associated memory; it's no longer in use by any SPI 4017 * core or controller driver code. 4018 * 4019 * Note that although all messages to a spi_device are handled in 4020 * FIFO order, messages may go to different devices in other orders. 4021 * Some device might be higher priority, or have various "hard" access 4022 * time requirements, for example. 4023 * 4024 * On detection of any fault during the transfer, processing of 4025 * the entire message is aborted, and the device is deselected. 4026 * Until returning from the associated message completion callback, 4027 * no other spi_message queued to that device will be processed. 4028 * (This rule applies equally to all the synchronous transfer calls, 4029 * which are wrappers around this core asynchronous primitive.) 4030 * 4031 * Return: zero on success, else a negative error code. 4032 */ 4033 int spi_async(struct spi_device *spi, struct spi_message *message) 4034 { 4035 struct spi_controller *ctlr = spi->controller; 4036 int ret; 4037 unsigned long flags; 4038 4039 ret = __spi_validate(spi, message); 4040 if (ret != 0) 4041 return ret; 4042 4043 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4044 4045 if (ctlr->bus_lock_flag) 4046 ret = -EBUSY; 4047 else 4048 ret = __spi_async(spi, message); 4049 4050 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4051 4052 return ret; 4053 } 4054 EXPORT_SYMBOL_GPL(spi_async); 4055 4056 /** 4057 * spi_async_locked - version of spi_async with exclusive bus usage 4058 * @spi: device with which data will be exchanged 4059 * @message: describes the data transfers, including completion callback 4060 * Context: any (irqs may be blocked, etc) 4061 * 4062 * This call may be used in_irq and other contexts which can't sleep, 4063 * as well as from task contexts which can sleep. 4064 * 4065 * The completion callback is invoked in a context which can't sleep. 4066 * Before that invocation, the value of message->status is undefined. 4067 * When the callback is issued, message->status holds either zero (to 4068 * indicate complete success) or a negative error code. After that 4069 * callback returns, the driver which issued the transfer request may 4070 * deallocate the associated memory; it's no longer in use by any SPI 4071 * core or controller driver code. 4072 * 4073 * Note that although all messages to a spi_device are handled in 4074 * FIFO order, messages may go to different devices in other orders. 4075 * Some device might be higher priority, or have various "hard" access 4076 * time requirements, for example. 4077 * 4078 * On detection of any fault during the transfer, processing of 4079 * the entire message is aborted, and the device is deselected. 4080 * Until returning from the associated message completion callback, 4081 * no other spi_message queued to that device will be processed. 4082 * (This rule applies equally to all the synchronous transfer calls, 4083 * which are wrappers around this core asynchronous primitive.) 4084 * 4085 * Return: zero on success, else a negative error code. 4086 */ 4087 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 4088 { 4089 struct spi_controller *ctlr = spi->controller; 4090 int ret; 4091 unsigned long flags; 4092 4093 ret = __spi_validate(spi, message); 4094 if (ret != 0) 4095 return ret; 4096 4097 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4098 4099 ret = __spi_async(spi, message); 4100 4101 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4102 4103 return ret; 4104 4105 } 4106 4107 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4108 { 4109 bool was_busy; 4110 int ret; 4111 4112 mutex_lock(&ctlr->io_mutex); 4113 4114 was_busy = ctlr->busy; 4115 4116 ctlr->cur_msg = msg; 4117 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4118 if (ret) 4119 goto out; 4120 4121 ctlr->cur_msg = NULL; 4122 ctlr->fallback = false; 4123 4124 if (!was_busy) { 4125 kfree(ctlr->dummy_rx); 4126 ctlr->dummy_rx = NULL; 4127 kfree(ctlr->dummy_tx); 4128 ctlr->dummy_tx = NULL; 4129 if (ctlr->unprepare_transfer_hardware && 4130 ctlr->unprepare_transfer_hardware(ctlr)) 4131 dev_err(&ctlr->dev, 4132 "failed to unprepare transfer hardware\n"); 4133 spi_idle_runtime_pm(ctlr); 4134 } 4135 4136 out: 4137 mutex_unlock(&ctlr->io_mutex); 4138 } 4139 4140 /*-------------------------------------------------------------------------*/ 4141 4142 /* 4143 * Utility methods for SPI protocol drivers, layered on 4144 * top of the core. Some other utility methods are defined as 4145 * inline functions. 4146 */ 4147 4148 static void spi_complete(void *arg) 4149 { 4150 complete(arg); 4151 } 4152 4153 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4154 { 4155 DECLARE_COMPLETION_ONSTACK(done); 4156 int status; 4157 struct spi_controller *ctlr = spi->controller; 4158 4159 status = __spi_validate(spi, message); 4160 if (status != 0) 4161 return status; 4162 4163 message->spi = spi; 4164 4165 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4166 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4167 4168 /* 4169 * Checking queue_empty here only guarantees async/sync message 4170 * ordering when coming from the same context. It does not need to 4171 * guard against reentrancy from a different context. The io_mutex 4172 * will catch those cases. 4173 */ 4174 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4175 message->actual_length = 0; 4176 message->status = -EINPROGRESS; 4177 4178 trace_spi_message_submit(message); 4179 4180 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4181 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4182 4183 __spi_transfer_message_noqueue(ctlr, message); 4184 4185 return message->status; 4186 } 4187 4188 /* 4189 * There are messages in the async queue that could have originated 4190 * from the same context, so we need to preserve ordering. 4191 * Therefor we send the message to the async queue and wait until they 4192 * are completed. 4193 */ 4194 message->complete = spi_complete; 4195 message->context = &done; 4196 status = spi_async_locked(spi, message); 4197 if (status == 0) { 4198 wait_for_completion(&done); 4199 status = message->status; 4200 } 4201 message->context = NULL; 4202 4203 return status; 4204 } 4205 4206 /** 4207 * spi_sync - blocking/synchronous SPI data transfers 4208 * @spi: device with which data will be exchanged 4209 * @message: describes the data transfers 4210 * Context: can sleep 4211 * 4212 * This call may only be used from a context that may sleep. The sleep 4213 * is non-interruptible, and has no timeout. Low-overhead controller 4214 * drivers may DMA directly into and out of the message buffers. 4215 * 4216 * Note that the SPI device's chip select is active during the message, 4217 * and then is normally disabled between messages. Drivers for some 4218 * frequently-used devices may want to minimize costs of selecting a chip, 4219 * by leaving it selected in anticipation that the next message will go 4220 * to the same chip. (That may increase power usage.) 4221 * 4222 * Also, the caller is guaranteeing that the memory associated with the 4223 * message will not be freed before this call returns. 4224 * 4225 * Return: zero on success, else a negative error code. 4226 */ 4227 int spi_sync(struct spi_device *spi, struct spi_message *message) 4228 { 4229 int ret; 4230 4231 mutex_lock(&spi->controller->bus_lock_mutex); 4232 ret = __spi_sync(spi, message); 4233 mutex_unlock(&spi->controller->bus_lock_mutex); 4234 4235 return ret; 4236 } 4237 EXPORT_SYMBOL_GPL(spi_sync); 4238 4239 /** 4240 * spi_sync_locked - version of spi_sync with exclusive bus usage 4241 * @spi: device with which data will be exchanged 4242 * @message: describes the data transfers 4243 * Context: can sleep 4244 * 4245 * This call may only be used from a context that may sleep. The sleep 4246 * is non-interruptible, and has no timeout. Low-overhead controller 4247 * drivers may DMA directly into and out of the message buffers. 4248 * 4249 * This call should be used by drivers that require exclusive access to the 4250 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4251 * be released by a spi_bus_unlock call when the exclusive access is over. 4252 * 4253 * Return: zero on success, else a negative error code. 4254 */ 4255 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4256 { 4257 return __spi_sync(spi, message); 4258 } 4259 EXPORT_SYMBOL_GPL(spi_sync_locked); 4260 4261 /** 4262 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4263 * @ctlr: SPI bus master that should be locked for exclusive bus access 4264 * Context: can sleep 4265 * 4266 * This call may only be used from a context that may sleep. The sleep 4267 * is non-interruptible, and has no timeout. 4268 * 4269 * This call should be used by drivers that require exclusive access to the 4270 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4271 * exclusive access is over. Data transfer must be done by spi_sync_locked 4272 * and spi_async_locked calls when the SPI bus lock is held. 4273 * 4274 * Return: always zero. 4275 */ 4276 int spi_bus_lock(struct spi_controller *ctlr) 4277 { 4278 unsigned long flags; 4279 4280 mutex_lock(&ctlr->bus_lock_mutex); 4281 4282 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4283 ctlr->bus_lock_flag = 1; 4284 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4285 4286 /* Mutex remains locked until spi_bus_unlock() is called */ 4287 4288 return 0; 4289 } 4290 EXPORT_SYMBOL_GPL(spi_bus_lock); 4291 4292 /** 4293 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4294 * @ctlr: SPI bus master that was locked for exclusive bus access 4295 * Context: can sleep 4296 * 4297 * This call may only be used from a context that may sleep. The sleep 4298 * is non-interruptible, and has no timeout. 4299 * 4300 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4301 * call. 4302 * 4303 * Return: always zero. 4304 */ 4305 int spi_bus_unlock(struct spi_controller *ctlr) 4306 { 4307 ctlr->bus_lock_flag = 0; 4308 4309 mutex_unlock(&ctlr->bus_lock_mutex); 4310 4311 return 0; 4312 } 4313 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4314 4315 /* Portable code must never pass more than 32 bytes */ 4316 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4317 4318 static u8 *buf; 4319 4320 /** 4321 * spi_write_then_read - SPI synchronous write followed by read 4322 * @spi: device with which data will be exchanged 4323 * @txbuf: data to be written (need not be dma-safe) 4324 * @n_tx: size of txbuf, in bytes 4325 * @rxbuf: buffer into which data will be read (need not be dma-safe) 4326 * @n_rx: size of rxbuf, in bytes 4327 * Context: can sleep 4328 * 4329 * This performs a half duplex MicroWire style transaction with the 4330 * device, sending txbuf and then reading rxbuf. The return value 4331 * is zero for success, else a negative errno status code. 4332 * This call may only be used from a context that may sleep. 4333 * 4334 * Parameters to this routine are always copied using a small buffer. 4335 * Performance-sensitive or bulk transfer code should instead use 4336 * spi_{async,sync}() calls with dma-safe buffers. 4337 * 4338 * Return: zero on success, else a negative error code. 4339 */ 4340 int spi_write_then_read(struct spi_device *spi, 4341 const void *txbuf, unsigned n_tx, 4342 void *rxbuf, unsigned n_rx) 4343 { 4344 static DEFINE_MUTEX(lock); 4345 4346 int status; 4347 struct spi_message message; 4348 struct spi_transfer x[2]; 4349 u8 *local_buf; 4350 4351 /* 4352 * Use preallocated DMA-safe buffer if we can. We can't avoid 4353 * copying here, (as a pure convenience thing), but we can 4354 * keep heap costs out of the hot path unless someone else is 4355 * using the pre-allocated buffer or the transfer is too large. 4356 */ 4357 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4358 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4359 GFP_KERNEL | GFP_DMA); 4360 if (!local_buf) 4361 return -ENOMEM; 4362 } else { 4363 local_buf = buf; 4364 } 4365 4366 spi_message_init(&message); 4367 memset(x, 0, sizeof(x)); 4368 if (n_tx) { 4369 x[0].len = n_tx; 4370 spi_message_add_tail(&x[0], &message); 4371 } 4372 if (n_rx) { 4373 x[1].len = n_rx; 4374 spi_message_add_tail(&x[1], &message); 4375 } 4376 4377 memcpy(local_buf, txbuf, n_tx); 4378 x[0].tx_buf = local_buf; 4379 x[1].rx_buf = local_buf + n_tx; 4380 4381 /* Do the i/o */ 4382 status = spi_sync(spi, &message); 4383 if (status == 0) 4384 memcpy(rxbuf, x[1].rx_buf, n_rx); 4385 4386 if (x[0].tx_buf == buf) 4387 mutex_unlock(&lock); 4388 else 4389 kfree(local_buf); 4390 4391 return status; 4392 } 4393 EXPORT_SYMBOL_GPL(spi_write_then_read); 4394 4395 /*-------------------------------------------------------------------------*/ 4396 4397 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4398 /* Must call put_device() when done with returned spi_device device */ 4399 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4400 { 4401 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4402 4403 return dev ? to_spi_device(dev) : NULL; 4404 } 4405 4406 /* The spi controllers are not using spi_bus, so we find it with another way */ 4407 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4408 { 4409 struct device *dev; 4410 4411 dev = class_find_device_by_of_node(&spi_master_class, node); 4412 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4413 dev = class_find_device_by_of_node(&spi_slave_class, node); 4414 if (!dev) 4415 return NULL; 4416 4417 /* Reference got in class_find_device */ 4418 return container_of(dev, struct spi_controller, dev); 4419 } 4420 4421 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4422 void *arg) 4423 { 4424 struct of_reconfig_data *rd = arg; 4425 struct spi_controller *ctlr; 4426 struct spi_device *spi; 4427 4428 switch (of_reconfig_get_state_change(action, arg)) { 4429 case OF_RECONFIG_CHANGE_ADD: 4430 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4431 if (ctlr == NULL) 4432 return NOTIFY_OK; /* Not for us */ 4433 4434 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4435 put_device(&ctlr->dev); 4436 return NOTIFY_OK; 4437 } 4438 4439 spi = of_register_spi_device(ctlr, rd->dn); 4440 put_device(&ctlr->dev); 4441 4442 if (IS_ERR(spi)) { 4443 pr_err("%s: failed to create for '%pOF'\n", 4444 __func__, rd->dn); 4445 of_node_clear_flag(rd->dn, OF_POPULATED); 4446 return notifier_from_errno(PTR_ERR(spi)); 4447 } 4448 break; 4449 4450 case OF_RECONFIG_CHANGE_REMOVE: 4451 /* Already depopulated? */ 4452 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4453 return NOTIFY_OK; 4454 4455 /* Find our device by node */ 4456 spi = of_find_spi_device_by_node(rd->dn); 4457 if (spi == NULL) 4458 return NOTIFY_OK; /* No? not meant for us */ 4459 4460 /* Unregister takes one ref away */ 4461 spi_unregister_device(spi); 4462 4463 /* And put the reference of the find */ 4464 put_device(&spi->dev); 4465 break; 4466 } 4467 4468 return NOTIFY_OK; 4469 } 4470 4471 static struct notifier_block spi_of_notifier = { 4472 .notifier_call = of_spi_notify, 4473 }; 4474 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4475 extern struct notifier_block spi_of_notifier; 4476 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4477 4478 #if IS_ENABLED(CONFIG_ACPI) 4479 static int spi_acpi_controller_match(struct device *dev, const void *data) 4480 { 4481 return ACPI_COMPANION(dev->parent) == data; 4482 } 4483 4484 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4485 { 4486 struct device *dev; 4487 4488 dev = class_find_device(&spi_master_class, NULL, adev, 4489 spi_acpi_controller_match); 4490 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4491 dev = class_find_device(&spi_slave_class, NULL, adev, 4492 spi_acpi_controller_match); 4493 if (!dev) 4494 return NULL; 4495 4496 return container_of(dev, struct spi_controller, dev); 4497 } 4498 4499 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4500 { 4501 struct device *dev; 4502 4503 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4504 return to_spi_device(dev); 4505 } 4506 4507 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4508 void *arg) 4509 { 4510 struct acpi_device *adev = arg; 4511 struct spi_controller *ctlr; 4512 struct spi_device *spi; 4513 4514 switch (value) { 4515 case ACPI_RECONFIG_DEVICE_ADD: 4516 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4517 if (!ctlr) 4518 break; 4519 4520 acpi_register_spi_device(ctlr, adev); 4521 put_device(&ctlr->dev); 4522 break; 4523 case ACPI_RECONFIG_DEVICE_REMOVE: 4524 if (!acpi_device_enumerated(adev)) 4525 break; 4526 4527 spi = acpi_spi_find_device_by_adev(adev); 4528 if (!spi) 4529 break; 4530 4531 spi_unregister_device(spi); 4532 put_device(&spi->dev); 4533 break; 4534 } 4535 4536 return NOTIFY_OK; 4537 } 4538 4539 static struct notifier_block spi_acpi_notifier = { 4540 .notifier_call = acpi_spi_notify, 4541 }; 4542 #else 4543 extern struct notifier_block spi_acpi_notifier; 4544 #endif 4545 4546 static int __init spi_init(void) 4547 { 4548 int status; 4549 4550 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4551 if (!buf) { 4552 status = -ENOMEM; 4553 goto err0; 4554 } 4555 4556 status = bus_register(&spi_bus_type); 4557 if (status < 0) 4558 goto err1; 4559 4560 status = class_register(&spi_master_class); 4561 if (status < 0) 4562 goto err2; 4563 4564 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4565 status = class_register(&spi_slave_class); 4566 if (status < 0) 4567 goto err3; 4568 } 4569 4570 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4571 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4572 if (IS_ENABLED(CONFIG_ACPI)) 4573 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4574 4575 return 0; 4576 4577 err3: 4578 class_unregister(&spi_master_class); 4579 err2: 4580 bus_unregister(&spi_bus_type); 4581 err1: 4582 kfree(buf); 4583 buf = NULL; 4584 err0: 4585 return status; 4586 } 4587 4588 /* 4589 * A board_info is normally registered in arch_initcall(), 4590 * but even essential drivers wait till later. 4591 * 4592 * REVISIT only boardinfo really needs static linking. The rest (device and 4593 * driver registration) _could_ be dynamically linked (modular) ... Costs 4594 * include needing to have boardinfo data structures be much more public. 4595 */ 4596 postcore_initcall(spi_init); 4597