1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del operation for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /* 479 * Prevents addition of devices with same chip select and 480 * addition of devices below an unregistering controller. 481 */ 482 static DEFINE_MUTEX(spi_add_lock); 483 484 /** 485 * spi_alloc_device - Allocate a new SPI device 486 * @ctlr: Controller to which device is connected 487 * Context: can sleep 488 * 489 * Allows a driver to allocate and initialize a spi_device without 490 * registering it immediately. This allows a driver to directly 491 * fill the spi_device with device parameters before calling 492 * spi_add_device() on it. 493 * 494 * Caller is responsible to call spi_add_device() on the returned 495 * spi_device structure to add it to the SPI controller. If the caller 496 * needs to discard the spi_device without adding it, then it should 497 * call spi_dev_put() on it. 498 * 499 * Return: a pointer to the new device, or NULL. 500 */ 501 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 502 { 503 struct spi_device *spi; 504 505 if (!spi_controller_get(ctlr)) 506 return NULL; 507 508 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 509 if (!spi) { 510 spi_controller_put(ctlr); 511 return NULL; 512 } 513 514 spi->master = spi->controller = ctlr; 515 spi->dev.parent = &ctlr->dev; 516 spi->dev.bus = &spi_bus_type; 517 spi->dev.release = spidev_release; 518 spi->cs_gpio = -ENOENT; 519 spi->mode = ctlr->buswidth_override_bits; 520 521 spin_lock_init(&spi->statistics.lock); 522 523 device_initialize(&spi->dev); 524 return spi; 525 } 526 EXPORT_SYMBOL_GPL(spi_alloc_device); 527 528 static void spi_dev_set_name(struct spi_device *spi) 529 { 530 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 531 532 if (adev) { 533 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 534 return; 535 } 536 537 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 538 spi->chip_select); 539 } 540 541 static int spi_dev_check(struct device *dev, void *data) 542 { 543 struct spi_device *spi = to_spi_device(dev); 544 struct spi_device *new_spi = data; 545 546 if (spi->controller == new_spi->controller && 547 spi->chip_select == new_spi->chip_select) 548 return -EBUSY; 549 return 0; 550 } 551 552 /** 553 * spi_add_device - Add spi_device allocated with spi_alloc_device 554 * @spi: spi_device to register 555 * 556 * Companion function to spi_alloc_device. Devices allocated with 557 * spi_alloc_device can be added onto the spi bus with this function. 558 * 559 * Return: 0 on success; negative errno on failure 560 */ 561 int spi_add_device(struct spi_device *spi) 562 { 563 struct spi_controller *ctlr = spi->controller; 564 struct device *dev = ctlr->dev.parent; 565 int status; 566 567 /* Chipselects are numbered 0..max; validate. */ 568 if (spi->chip_select >= ctlr->num_chipselect) { 569 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 570 ctlr->num_chipselect); 571 return -EINVAL; 572 } 573 574 /* Set the bus ID string */ 575 spi_dev_set_name(spi); 576 577 /* We need to make sure there's no other device with this 578 * chipselect **BEFORE** we call setup(), else we'll trash 579 * its configuration. Lock against concurrent add() calls. 580 */ 581 mutex_lock(&spi_add_lock); 582 583 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 584 if (status) { 585 dev_err(dev, "chipselect %d already in use\n", 586 spi->chip_select); 587 goto done; 588 } 589 590 /* Controller may unregister concurrently */ 591 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 592 !device_is_registered(&ctlr->dev)) { 593 status = -ENODEV; 594 goto done; 595 } 596 597 /* Descriptors take precedence */ 598 if (ctlr->cs_gpiods) 599 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 600 else if (ctlr->cs_gpios) 601 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 602 603 /* Drivers may modify this initial i/o setup, but will 604 * normally rely on the device being setup. Devices 605 * using SPI_CS_HIGH can't coexist well otherwise... 606 */ 607 status = spi_setup(spi); 608 if (status < 0) { 609 dev_err(dev, "can't setup %s, status %d\n", 610 dev_name(&spi->dev), status); 611 goto done; 612 } 613 614 /* Device may be bound to an active driver when this returns */ 615 status = device_add(&spi->dev); 616 if (status < 0) 617 dev_err(dev, "can't add %s, status %d\n", 618 dev_name(&spi->dev), status); 619 else 620 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 621 622 done: 623 mutex_unlock(&spi_add_lock); 624 return status; 625 } 626 EXPORT_SYMBOL_GPL(spi_add_device); 627 628 /** 629 * spi_new_device - instantiate one new SPI device 630 * @ctlr: Controller to which device is connected 631 * @chip: Describes the SPI device 632 * Context: can sleep 633 * 634 * On typical mainboards, this is purely internal; and it's not needed 635 * after board init creates the hard-wired devices. Some development 636 * platforms may not be able to use spi_register_board_info though, and 637 * this is exported so that for example a USB or parport based adapter 638 * driver could add devices (which it would learn about out-of-band). 639 * 640 * Return: the new device, or NULL. 641 */ 642 struct spi_device *spi_new_device(struct spi_controller *ctlr, 643 struct spi_board_info *chip) 644 { 645 struct spi_device *proxy; 646 int status; 647 648 /* NOTE: caller did any chip->bus_num checks necessary. 649 * 650 * Also, unless we change the return value convention to use 651 * error-or-pointer (not NULL-or-pointer), troubleshootability 652 * suggests syslogged diagnostics are best here (ugh). 653 */ 654 655 proxy = spi_alloc_device(ctlr); 656 if (!proxy) 657 return NULL; 658 659 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 660 661 proxy->chip_select = chip->chip_select; 662 proxy->max_speed_hz = chip->max_speed_hz; 663 proxy->mode = chip->mode; 664 proxy->irq = chip->irq; 665 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 666 proxy->dev.platform_data = (void *) chip->platform_data; 667 proxy->controller_data = chip->controller_data; 668 proxy->controller_state = NULL; 669 670 if (chip->properties) { 671 status = device_add_properties(&proxy->dev, chip->properties); 672 if (status) { 673 dev_err(&ctlr->dev, 674 "failed to add properties to '%s': %d\n", 675 chip->modalias, status); 676 goto err_dev_put; 677 } 678 } 679 680 status = spi_add_device(proxy); 681 if (status < 0) 682 goto err_remove_props; 683 684 return proxy; 685 686 err_remove_props: 687 if (chip->properties) 688 device_remove_properties(&proxy->dev); 689 err_dev_put: 690 spi_dev_put(proxy); 691 return NULL; 692 } 693 EXPORT_SYMBOL_GPL(spi_new_device); 694 695 /** 696 * spi_unregister_device - unregister a single SPI device 697 * @spi: spi_device to unregister 698 * 699 * Start making the passed SPI device vanish. Normally this would be handled 700 * by spi_unregister_controller(). 701 */ 702 void spi_unregister_device(struct spi_device *spi) 703 { 704 if (!spi) 705 return; 706 707 if (spi->dev.of_node) { 708 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 709 of_node_put(spi->dev.of_node); 710 } 711 if (ACPI_COMPANION(&spi->dev)) 712 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 713 device_unregister(&spi->dev); 714 } 715 EXPORT_SYMBOL_GPL(spi_unregister_device); 716 717 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 718 struct spi_board_info *bi) 719 { 720 struct spi_device *dev; 721 722 if (ctlr->bus_num != bi->bus_num) 723 return; 724 725 dev = spi_new_device(ctlr, bi); 726 if (!dev) 727 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 728 bi->modalias); 729 } 730 731 /** 732 * spi_register_board_info - register SPI devices for a given board 733 * @info: array of chip descriptors 734 * @n: how many descriptors are provided 735 * Context: can sleep 736 * 737 * Board-specific early init code calls this (probably during arch_initcall) 738 * with segments of the SPI device table. Any device nodes are created later, 739 * after the relevant parent SPI controller (bus_num) is defined. We keep 740 * this table of devices forever, so that reloading a controller driver will 741 * not make Linux forget about these hard-wired devices. 742 * 743 * Other code can also call this, e.g. a particular add-on board might provide 744 * SPI devices through its expansion connector, so code initializing that board 745 * would naturally declare its SPI devices. 746 * 747 * The board info passed can safely be __initdata ... but be careful of 748 * any embedded pointers (platform_data, etc), they're copied as-is. 749 * Device properties are deep-copied though. 750 * 751 * Return: zero on success, else a negative error code. 752 */ 753 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 754 { 755 struct boardinfo *bi; 756 int i; 757 758 if (!n) 759 return 0; 760 761 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 762 if (!bi) 763 return -ENOMEM; 764 765 for (i = 0; i < n; i++, bi++, info++) { 766 struct spi_controller *ctlr; 767 768 memcpy(&bi->board_info, info, sizeof(*info)); 769 if (info->properties) { 770 bi->board_info.properties = 771 property_entries_dup(info->properties); 772 if (IS_ERR(bi->board_info.properties)) 773 return PTR_ERR(bi->board_info.properties); 774 } 775 776 mutex_lock(&board_lock); 777 list_add_tail(&bi->list, &board_list); 778 list_for_each_entry(ctlr, &spi_controller_list, list) 779 spi_match_controller_to_boardinfo(ctlr, 780 &bi->board_info); 781 mutex_unlock(&board_lock); 782 } 783 784 return 0; 785 } 786 787 /*-------------------------------------------------------------------------*/ 788 789 static void spi_set_cs(struct spi_device *spi, bool enable) 790 { 791 bool enable1 = enable; 792 793 /* 794 * Avoid calling into the driver (or doing delays) if the chip select 795 * isn't actually changing from the last time this was called. 796 */ 797 if ((spi->controller->last_cs_enable == enable) && 798 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 799 return; 800 801 spi->controller->last_cs_enable = enable; 802 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 803 804 if (!spi->controller->set_cs_timing) { 805 if (enable1) 806 spi_delay_exec(&spi->controller->cs_setup, NULL); 807 else 808 spi_delay_exec(&spi->controller->cs_hold, NULL); 809 } 810 811 if (spi->mode & SPI_CS_HIGH) 812 enable = !enable; 813 814 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 815 if (!(spi->mode & SPI_NO_CS)) { 816 if (spi->cs_gpiod) 817 /* polarity handled by gpiolib */ 818 gpiod_set_value_cansleep(spi->cs_gpiod, 819 enable1); 820 else 821 /* 822 * invert the enable line, as active low is 823 * default for SPI. 824 */ 825 gpio_set_value_cansleep(spi->cs_gpio, !enable); 826 } 827 /* Some SPI masters need both GPIO CS & slave_select */ 828 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 829 spi->controller->set_cs) 830 spi->controller->set_cs(spi, !enable); 831 } else if (spi->controller->set_cs) { 832 spi->controller->set_cs(spi, !enable); 833 } 834 835 if (!spi->controller->set_cs_timing) { 836 if (!enable1) 837 spi_delay_exec(&spi->controller->cs_inactive, NULL); 838 } 839 } 840 841 #ifdef CONFIG_HAS_DMA 842 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 843 struct sg_table *sgt, void *buf, size_t len, 844 enum dma_data_direction dir) 845 { 846 const bool vmalloced_buf = is_vmalloc_addr(buf); 847 unsigned int max_seg_size = dma_get_max_seg_size(dev); 848 #ifdef CONFIG_HIGHMEM 849 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 850 (unsigned long)buf < (PKMAP_BASE + 851 (LAST_PKMAP * PAGE_SIZE))); 852 #else 853 const bool kmap_buf = false; 854 #endif 855 int desc_len; 856 int sgs; 857 struct page *vm_page; 858 struct scatterlist *sg; 859 void *sg_buf; 860 size_t min; 861 int i, ret; 862 863 if (vmalloced_buf || kmap_buf) { 864 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 865 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 866 } else if (virt_addr_valid(buf)) { 867 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 868 sgs = DIV_ROUND_UP(len, desc_len); 869 } else { 870 return -EINVAL; 871 } 872 873 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 874 if (ret != 0) 875 return ret; 876 877 sg = &sgt->sgl[0]; 878 for (i = 0; i < sgs; i++) { 879 880 if (vmalloced_buf || kmap_buf) { 881 /* 882 * Next scatterlist entry size is the minimum between 883 * the desc_len and the remaining buffer length that 884 * fits in a page. 885 */ 886 min = min_t(size_t, desc_len, 887 min_t(size_t, len, 888 PAGE_SIZE - offset_in_page(buf))); 889 if (vmalloced_buf) 890 vm_page = vmalloc_to_page(buf); 891 else 892 vm_page = kmap_to_page(buf); 893 if (!vm_page) { 894 sg_free_table(sgt); 895 return -ENOMEM; 896 } 897 sg_set_page(sg, vm_page, 898 min, offset_in_page(buf)); 899 } else { 900 min = min_t(size_t, len, desc_len); 901 sg_buf = buf; 902 sg_set_buf(sg, sg_buf, min); 903 } 904 905 buf += min; 906 len -= min; 907 sg = sg_next(sg); 908 } 909 910 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 911 if (!ret) 912 ret = -ENOMEM; 913 if (ret < 0) { 914 sg_free_table(sgt); 915 return ret; 916 } 917 918 sgt->nents = ret; 919 920 return 0; 921 } 922 923 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 924 struct sg_table *sgt, enum dma_data_direction dir) 925 { 926 if (sgt->orig_nents) { 927 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 928 sg_free_table(sgt); 929 } 930 } 931 932 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 933 { 934 struct device *tx_dev, *rx_dev; 935 struct spi_transfer *xfer; 936 int ret; 937 938 if (!ctlr->can_dma) 939 return 0; 940 941 if (ctlr->dma_tx) 942 tx_dev = ctlr->dma_tx->device->dev; 943 else 944 tx_dev = ctlr->dev.parent; 945 946 if (ctlr->dma_rx) 947 rx_dev = ctlr->dma_rx->device->dev; 948 else 949 rx_dev = ctlr->dev.parent; 950 951 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 952 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 953 continue; 954 955 if (xfer->tx_buf != NULL) { 956 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 957 (void *)xfer->tx_buf, xfer->len, 958 DMA_TO_DEVICE); 959 if (ret != 0) 960 return ret; 961 } 962 963 if (xfer->rx_buf != NULL) { 964 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 965 xfer->rx_buf, xfer->len, 966 DMA_FROM_DEVICE); 967 if (ret != 0) { 968 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 969 DMA_TO_DEVICE); 970 return ret; 971 } 972 } 973 } 974 975 ctlr->cur_msg_mapped = true; 976 977 return 0; 978 } 979 980 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 981 { 982 struct spi_transfer *xfer; 983 struct device *tx_dev, *rx_dev; 984 985 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 986 return 0; 987 988 if (ctlr->dma_tx) 989 tx_dev = ctlr->dma_tx->device->dev; 990 else 991 tx_dev = ctlr->dev.parent; 992 993 if (ctlr->dma_rx) 994 rx_dev = ctlr->dma_rx->device->dev; 995 else 996 rx_dev = ctlr->dev.parent; 997 998 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 999 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1000 continue; 1001 1002 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1003 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1004 } 1005 1006 ctlr->cur_msg_mapped = false; 1007 1008 return 0; 1009 } 1010 #else /* !CONFIG_HAS_DMA */ 1011 static inline int __spi_map_msg(struct spi_controller *ctlr, 1012 struct spi_message *msg) 1013 { 1014 return 0; 1015 } 1016 1017 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1018 struct spi_message *msg) 1019 { 1020 return 0; 1021 } 1022 #endif /* !CONFIG_HAS_DMA */ 1023 1024 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1025 struct spi_message *msg) 1026 { 1027 struct spi_transfer *xfer; 1028 1029 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1030 /* 1031 * Restore the original value of tx_buf or rx_buf if they are 1032 * NULL. 1033 */ 1034 if (xfer->tx_buf == ctlr->dummy_tx) 1035 xfer->tx_buf = NULL; 1036 if (xfer->rx_buf == ctlr->dummy_rx) 1037 xfer->rx_buf = NULL; 1038 } 1039 1040 return __spi_unmap_msg(ctlr, msg); 1041 } 1042 1043 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1044 { 1045 struct spi_transfer *xfer; 1046 void *tmp; 1047 unsigned int max_tx, max_rx; 1048 1049 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1050 && !(msg->spi->mode & SPI_3WIRE)) { 1051 max_tx = 0; 1052 max_rx = 0; 1053 1054 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1055 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1056 !xfer->tx_buf) 1057 max_tx = max(xfer->len, max_tx); 1058 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1059 !xfer->rx_buf) 1060 max_rx = max(xfer->len, max_rx); 1061 } 1062 1063 if (max_tx) { 1064 tmp = krealloc(ctlr->dummy_tx, max_tx, 1065 GFP_KERNEL | GFP_DMA); 1066 if (!tmp) 1067 return -ENOMEM; 1068 ctlr->dummy_tx = tmp; 1069 memset(tmp, 0, max_tx); 1070 } 1071 1072 if (max_rx) { 1073 tmp = krealloc(ctlr->dummy_rx, max_rx, 1074 GFP_KERNEL | GFP_DMA); 1075 if (!tmp) 1076 return -ENOMEM; 1077 ctlr->dummy_rx = tmp; 1078 } 1079 1080 if (max_tx || max_rx) { 1081 list_for_each_entry(xfer, &msg->transfers, 1082 transfer_list) { 1083 if (!xfer->len) 1084 continue; 1085 if (!xfer->tx_buf) 1086 xfer->tx_buf = ctlr->dummy_tx; 1087 if (!xfer->rx_buf) 1088 xfer->rx_buf = ctlr->dummy_rx; 1089 } 1090 } 1091 } 1092 1093 return __spi_map_msg(ctlr, msg); 1094 } 1095 1096 static int spi_transfer_wait(struct spi_controller *ctlr, 1097 struct spi_message *msg, 1098 struct spi_transfer *xfer) 1099 { 1100 struct spi_statistics *statm = &ctlr->statistics; 1101 struct spi_statistics *stats = &msg->spi->statistics; 1102 unsigned long long ms; 1103 1104 if (spi_controller_is_slave(ctlr)) { 1105 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1106 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1107 return -EINTR; 1108 } 1109 } else { 1110 ms = 8LL * 1000LL * xfer->len; 1111 do_div(ms, xfer->speed_hz); 1112 ms += ms + 200; /* some tolerance */ 1113 1114 if (ms > UINT_MAX) 1115 ms = UINT_MAX; 1116 1117 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1118 msecs_to_jiffies(ms)); 1119 1120 if (ms == 0) { 1121 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1122 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1123 dev_err(&msg->spi->dev, 1124 "SPI transfer timed out\n"); 1125 return -ETIMEDOUT; 1126 } 1127 } 1128 1129 return 0; 1130 } 1131 1132 static void _spi_transfer_delay_ns(u32 ns) 1133 { 1134 if (!ns) 1135 return; 1136 if (ns <= 1000) { 1137 ndelay(ns); 1138 } else { 1139 u32 us = DIV_ROUND_UP(ns, 1000); 1140 1141 if (us <= 10) 1142 udelay(us); 1143 else 1144 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1145 } 1146 } 1147 1148 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1149 { 1150 u32 delay = _delay->value; 1151 u32 unit = _delay->unit; 1152 u32 hz; 1153 1154 if (!delay) 1155 return 0; 1156 1157 switch (unit) { 1158 case SPI_DELAY_UNIT_USECS: 1159 delay *= 1000; 1160 break; 1161 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1162 break; 1163 case SPI_DELAY_UNIT_SCK: 1164 /* clock cycles need to be obtained from spi_transfer */ 1165 if (!xfer) 1166 return -EINVAL; 1167 /* if there is no effective speed know, then approximate 1168 * by underestimating with half the requested hz 1169 */ 1170 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1171 if (!hz) 1172 return -EINVAL; 1173 delay *= DIV_ROUND_UP(1000000000, hz); 1174 break; 1175 default: 1176 return -EINVAL; 1177 } 1178 1179 return delay; 1180 } 1181 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1182 1183 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1184 { 1185 int delay; 1186 1187 might_sleep(); 1188 1189 if (!_delay) 1190 return -EINVAL; 1191 1192 delay = spi_delay_to_ns(_delay, xfer); 1193 if (delay < 0) 1194 return delay; 1195 1196 _spi_transfer_delay_ns(delay); 1197 1198 return 0; 1199 } 1200 EXPORT_SYMBOL_GPL(spi_delay_exec); 1201 1202 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1203 struct spi_transfer *xfer) 1204 { 1205 u32 delay = xfer->cs_change_delay.value; 1206 u32 unit = xfer->cs_change_delay.unit; 1207 int ret; 1208 1209 /* return early on "fast" mode - for everything but USECS */ 1210 if (!delay) { 1211 if (unit == SPI_DELAY_UNIT_USECS) 1212 _spi_transfer_delay_ns(10000); 1213 return; 1214 } 1215 1216 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1217 if (ret) { 1218 dev_err_once(&msg->spi->dev, 1219 "Use of unsupported delay unit %i, using default of 10us\n", 1220 unit); 1221 _spi_transfer_delay_ns(10000); 1222 } 1223 } 1224 1225 /* 1226 * spi_transfer_one_message - Default implementation of transfer_one_message() 1227 * 1228 * This is a standard implementation of transfer_one_message() for 1229 * drivers which implement a transfer_one() operation. It provides 1230 * standard handling of delays and chip select management. 1231 */ 1232 static int spi_transfer_one_message(struct spi_controller *ctlr, 1233 struct spi_message *msg) 1234 { 1235 struct spi_transfer *xfer; 1236 bool keep_cs = false; 1237 int ret = 0; 1238 struct spi_statistics *statm = &ctlr->statistics; 1239 struct spi_statistics *stats = &msg->spi->statistics; 1240 1241 spi_set_cs(msg->spi, true); 1242 1243 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1244 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1245 1246 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1247 trace_spi_transfer_start(msg, xfer); 1248 1249 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1250 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1251 1252 if (!ctlr->ptp_sts_supported) { 1253 xfer->ptp_sts_word_pre = 0; 1254 ptp_read_system_prets(xfer->ptp_sts); 1255 } 1256 1257 if (xfer->tx_buf || xfer->rx_buf) { 1258 reinit_completion(&ctlr->xfer_completion); 1259 1260 fallback_pio: 1261 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1262 if (ret < 0) { 1263 if (ctlr->cur_msg_mapped && 1264 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1265 __spi_unmap_msg(ctlr, msg); 1266 ctlr->fallback = true; 1267 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1268 goto fallback_pio; 1269 } 1270 1271 SPI_STATISTICS_INCREMENT_FIELD(statm, 1272 errors); 1273 SPI_STATISTICS_INCREMENT_FIELD(stats, 1274 errors); 1275 dev_err(&msg->spi->dev, 1276 "SPI transfer failed: %d\n", ret); 1277 goto out; 1278 } 1279 1280 if (ret > 0) { 1281 ret = spi_transfer_wait(ctlr, msg, xfer); 1282 if (ret < 0) 1283 msg->status = ret; 1284 } 1285 } else { 1286 if (xfer->len) 1287 dev_err(&msg->spi->dev, 1288 "Bufferless transfer has length %u\n", 1289 xfer->len); 1290 } 1291 1292 if (!ctlr->ptp_sts_supported) { 1293 ptp_read_system_postts(xfer->ptp_sts); 1294 xfer->ptp_sts_word_post = xfer->len; 1295 } 1296 1297 trace_spi_transfer_stop(msg, xfer); 1298 1299 if (msg->status != -EINPROGRESS) 1300 goto out; 1301 1302 spi_transfer_delay_exec(xfer); 1303 1304 if (xfer->cs_change) { 1305 if (list_is_last(&xfer->transfer_list, 1306 &msg->transfers)) { 1307 keep_cs = true; 1308 } else { 1309 spi_set_cs(msg->spi, false); 1310 _spi_transfer_cs_change_delay(msg, xfer); 1311 spi_set_cs(msg->spi, true); 1312 } 1313 } 1314 1315 msg->actual_length += xfer->len; 1316 } 1317 1318 out: 1319 if (ret != 0 || !keep_cs) 1320 spi_set_cs(msg->spi, false); 1321 1322 if (msg->status == -EINPROGRESS) 1323 msg->status = ret; 1324 1325 if (msg->status && ctlr->handle_err) 1326 ctlr->handle_err(ctlr, msg); 1327 1328 spi_finalize_current_message(ctlr); 1329 1330 return ret; 1331 } 1332 1333 /** 1334 * spi_finalize_current_transfer - report completion of a transfer 1335 * @ctlr: the controller reporting completion 1336 * 1337 * Called by SPI drivers using the core transfer_one_message() 1338 * implementation to notify it that the current interrupt driven 1339 * transfer has finished and the next one may be scheduled. 1340 */ 1341 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1342 { 1343 complete(&ctlr->xfer_completion); 1344 } 1345 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1346 1347 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1348 { 1349 if (ctlr->auto_runtime_pm) { 1350 pm_runtime_mark_last_busy(ctlr->dev.parent); 1351 pm_runtime_put_autosuspend(ctlr->dev.parent); 1352 } 1353 } 1354 1355 /** 1356 * __spi_pump_messages - function which processes spi message queue 1357 * @ctlr: controller to process queue for 1358 * @in_kthread: true if we are in the context of the message pump thread 1359 * 1360 * This function checks if there is any spi message in the queue that 1361 * needs processing and if so call out to the driver to initialize hardware 1362 * and transfer each message. 1363 * 1364 * Note that it is called both from the kthread itself and also from 1365 * inside spi_sync(); the queue extraction handling at the top of the 1366 * function should deal with this safely. 1367 */ 1368 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1369 { 1370 struct spi_transfer *xfer; 1371 struct spi_message *msg; 1372 bool was_busy = false; 1373 unsigned long flags; 1374 int ret; 1375 1376 /* Lock queue */ 1377 spin_lock_irqsave(&ctlr->queue_lock, flags); 1378 1379 /* Make sure we are not already running a message */ 1380 if (ctlr->cur_msg) { 1381 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1382 return; 1383 } 1384 1385 /* If another context is idling the device then defer */ 1386 if (ctlr->idling) { 1387 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1388 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1389 return; 1390 } 1391 1392 /* Check if the queue is idle */ 1393 if (list_empty(&ctlr->queue) || !ctlr->running) { 1394 if (!ctlr->busy) { 1395 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1396 return; 1397 } 1398 1399 /* Defer any non-atomic teardown to the thread */ 1400 if (!in_kthread) { 1401 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1402 !ctlr->unprepare_transfer_hardware) { 1403 spi_idle_runtime_pm(ctlr); 1404 ctlr->busy = false; 1405 trace_spi_controller_idle(ctlr); 1406 } else { 1407 kthread_queue_work(ctlr->kworker, 1408 &ctlr->pump_messages); 1409 } 1410 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1411 return; 1412 } 1413 1414 ctlr->busy = false; 1415 ctlr->idling = true; 1416 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1417 1418 kfree(ctlr->dummy_rx); 1419 ctlr->dummy_rx = NULL; 1420 kfree(ctlr->dummy_tx); 1421 ctlr->dummy_tx = NULL; 1422 if (ctlr->unprepare_transfer_hardware && 1423 ctlr->unprepare_transfer_hardware(ctlr)) 1424 dev_err(&ctlr->dev, 1425 "failed to unprepare transfer hardware\n"); 1426 spi_idle_runtime_pm(ctlr); 1427 trace_spi_controller_idle(ctlr); 1428 1429 spin_lock_irqsave(&ctlr->queue_lock, flags); 1430 ctlr->idling = false; 1431 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1432 return; 1433 } 1434 1435 /* Extract head of queue */ 1436 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1437 ctlr->cur_msg = msg; 1438 1439 list_del_init(&msg->queue); 1440 if (ctlr->busy) 1441 was_busy = true; 1442 else 1443 ctlr->busy = true; 1444 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1445 1446 mutex_lock(&ctlr->io_mutex); 1447 1448 if (!was_busy && ctlr->auto_runtime_pm) { 1449 ret = pm_runtime_get_sync(ctlr->dev.parent); 1450 if (ret < 0) { 1451 pm_runtime_put_noidle(ctlr->dev.parent); 1452 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1453 ret); 1454 mutex_unlock(&ctlr->io_mutex); 1455 return; 1456 } 1457 } 1458 1459 if (!was_busy) 1460 trace_spi_controller_busy(ctlr); 1461 1462 if (!was_busy && ctlr->prepare_transfer_hardware) { 1463 ret = ctlr->prepare_transfer_hardware(ctlr); 1464 if (ret) { 1465 dev_err(&ctlr->dev, 1466 "failed to prepare transfer hardware: %d\n", 1467 ret); 1468 1469 if (ctlr->auto_runtime_pm) 1470 pm_runtime_put(ctlr->dev.parent); 1471 1472 msg->status = ret; 1473 spi_finalize_current_message(ctlr); 1474 1475 mutex_unlock(&ctlr->io_mutex); 1476 return; 1477 } 1478 } 1479 1480 trace_spi_message_start(msg); 1481 1482 if (ctlr->prepare_message) { 1483 ret = ctlr->prepare_message(ctlr, msg); 1484 if (ret) { 1485 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1486 ret); 1487 msg->status = ret; 1488 spi_finalize_current_message(ctlr); 1489 goto out; 1490 } 1491 ctlr->cur_msg_prepared = true; 1492 } 1493 1494 ret = spi_map_msg(ctlr, msg); 1495 if (ret) { 1496 msg->status = ret; 1497 spi_finalize_current_message(ctlr); 1498 goto out; 1499 } 1500 1501 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1502 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1503 xfer->ptp_sts_word_pre = 0; 1504 ptp_read_system_prets(xfer->ptp_sts); 1505 } 1506 } 1507 1508 ret = ctlr->transfer_one_message(ctlr, msg); 1509 if (ret) { 1510 dev_err(&ctlr->dev, 1511 "failed to transfer one message from queue\n"); 1512 goto out; 1513 } 1514 1515 out: 1516 mutex_unlock(&ctlr->io_mutex); 1517 1518 /* Prod the scheduler in case transfer_one() was busy waiting */ 1519 if (!ret) 1520 cond_resched(); 1521 } 1522 1523 /** 1524 * spi_pump_messages - kthread work function which processes spi message queue 1525 * @work: pointer to kthread work struct contained in the controller struct 1526 */ 1527 static void spi_pump_messages(struct kthread_work *work) 1528 { 1529 struct spi_controller *ctlr = 1530 container_of(work, struct spi_controller, pump_messages); 1531 1532 __spi_pump_messages(ctlr, true); 1533 } 1534 1535 /** 1536 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1537 * TX timestamp for the requested byte from the SPI 1538 * transfer. The frequency with which this function 1539 * must be called (once per word, once for the whole 1540 * transfer, once per batch of words etc) is arbitrary 1541 * as long as the @tx buffer offset is greater than or 1542 * equal to the requested byte at the time of the 1543 * call. The timestamp is only taken once, at the 1544 * first such call. It is assumed that the driver 1545 * advances its @tx buffer pointer monotonically. 1546 * @ctlr: Pointer to the spi_controller structure of the driver 1547 * @xfer: Pointer to the transfer being timestamped 1548 * @progress: How many words (not bytes) have been transferred so far 1549 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1550 * transfer, for less jitter in time measurement. Only compatible 1551 * with PIO drivers. If true, must follow up with 1552 * spi_take_timestamp_post or otherwise system will crash. 1553 * WARNING: for fully predictable results, the CPU frequency must 1554 * also be under control (governor). 1555 */ 1556 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1557 struct spi_transfer *xfer, 1558 size_t progress, bool irqs_off) 1559 { 1560 if (!xfer->ptp_sts) 1561 return; 1562 1563 if (xfer->timestamped) 1564 return; 1565 1566 if (progress > xfer->ptp_sts_word_pre) 1567 return; 1568 1569 /* Capture the resolution of the timestamp */ 1570 xfer->ptp_sts_word_pre = progress; 1571 1572 if (irqs_off) { 1573 local_irq_save(ctlr->irq_flags); 1574 preempt_disable(); 1575 } 1576 1577 ptp_read_system_prets(xfer->ptp_sts); 1578 } 1579 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1580 1581 /** 1582 * spi_take_timestamp_post - helper for drivers to collect the end of the 1583 * TX timestamp for the requested byte from the SPI 1584 * transfer. Can be called with an arbitrary 1585 * frequency: only the first call where @tx exceeds 1586 * or is equal to the requested word will be 1587 * timestamped. 1588 * @ctlr: Pointer to the spi_controller structure of the driver 1589 * @xfer: Pointer to the transfer being timestamped 1590 * @progress: How many words (not bytes) have been transferred so far 1591 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1592 */ 1593 void spi_take_timestamp_post(struct spi_controller *ctlr, 1594 struct spi_transfer *xfer, 1595 size_t progress, bool irqs_off) 1596 { 1597 if (!xfer->ptp_sts) 1598 return; 1599 1600 if (xfer->timestamped) 1601 return; 1602 1603 if (progress < xfer->ptp_sts_word_post) 1604 return; 1605 1606 ptp_read_system_postts(xfer->ptp_sts); 1607 1608 if (irqs_off) { 1609 local_irq_restore(ctlr->irq_flags); 1610 preempt_enable(); 1611 } 1612 1613 /* Capture the resolution of the timestamp */ 1614 xfer->ptp_sts_word_post = progress; 1615 1616 xfer->timestamped = true; 1617 } 1618 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1619 1620 /** 1621 * spi_set_thread_rt - set the controller to pump at realtime priority 1622 * @ctlr: controller to boost priority of 1623 * 1624 * This can be called because the controller requested realtime priority 1625 * (by setting the ->rt value before calling spi_register_controller()) or 1626 * because a device on the bus said that its transfers needed realtime 1627 * priority. 1628 * 1629 * NOTE: at the moment if any device on a bus says it needs realtime then 1630 * the thread will be at realtime priority for all transfers on that 1631 * controller. If this eventually becomes a problem we may see if we can 1632 * find a way to boost the priority only temporarily during relevant 1633 * transfers. 1634 */ 1635 static void spi_set_thread_rt(struct spi_controller *ctlr) 1636 { 1637 dev_info(&ctlr->dev, 1638 "will run message pump with realtime priority\n"); 1639 sched_set_fifo(ctlr->kworker->task); 1640 } 1641 1642 static int spi_init_queue(struct spi_controller *ctlr) 1643 { 1644 ctlr->running = false; 1645 ctlr->busy = false; 1646 1647 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1648 if (IS_ERR(ctlr->kworker)) { 1649 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1650 return PTR_ERR(ctlr->kworker); 1651 } 1652 1653 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1654 1655 /* 1656 * Controller config will indicate if this controller should run the 1657 * message pump with high (realtime) priority to reduce the transfer 1658 * latency on the bus by minimising the delay between a transfer 1659 * request and the scheduling of the message pump thread. Without this 1660 * setting the message pump thread will remain at default priority. 1661 */ 1662 if (ctlr->rt) 1663 spi_set_thread_rt(ctlr); 1664 1665 return 0; 1666 } 1667 1668 /** 1669 * spi_get_next_queued_message() - called by driver to check for queued 1670 * messages 1671 * @ctlr: the controller to check for queued messages 1672 * 1673 * If there are more messages in the queue, the next message is returned from 1674 * this call. 1675 * 1676 * Return: the next message in the queue, else NULL if the queue is empty. 1677 */ 1678 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1679 { 1680 struct spi_message *next; 1681 unsigned long flags; 1682 1683 /* get a pointer to the next message, if any */ 1684 spin_lock_irqsave(&ctlr->queue_lock, flags); 1685 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1686 queue); 1687 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1688 1689 return next; 1690 } 1691 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1692 1693 /** 1694 * spi_finalize_current_message() - the current message is complete 1695 * @ctlr: the controller to return the message to 1696 * 1697 * Called by the driver to notify the core that the message in the front of the 1698 * queue is complete and can be removed from the queue. 1699 */ 1700 void spi_finalize_current_message(struct spi_controller *ctlr) 1701 { 1702 struct spi_transfer *xfer; 1703 struct spi_message *mesg; 1704 unsigned long flags; 1705 int ret; 1706 1707 spin_lock_irqsave(&ctlr->queue_lock, flags); 1708 mesg = ctlr->cur_msg; 1709 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1710 1711 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1712 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1713 ptp_read_system_postts(xfer->ptp_sts); 1714 xfer->ptp_sts_word_post = xfer->len; 1715 } 1716 } 1717 1718 if (unlikely(ctlr->ptp_sts_supported)) 1719 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1720 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1721 1722 spi_unmap_msg(ctlr, mesg); 1723 1724 /* In the prepare_messages callback the spi bus has the opportunity to 1725 * split a transfer to smaller chunks. 1726 * Release splited transfers here since spi_map_msg is done on the 1727 * splited transfers. 1728 */ 1729 spi_res_release(ctlr, mesg); 1730 1731 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1732 ret = ctlr->unprepare_message(ctlr, mesg); 1733 if (ret) { 1734 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1735 ret); 1736 } 1737 } 1738 1739 spin_lock_irqsave(&ctlr->queue_lock, flags); 1740 ctlr->cur_msg = NULL; 1741 ctlr->cur_msg_prepared = false; 1742 ctlr->fallback = false; 1743 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1744 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1745 1746 trace_spi_message_done(mesg); 1747 1748 mesg->state = NULL; 1749 if (mesg->complete) 1750 mesg->complete(mesg->context); 1751 } 1752 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1753 1754 static int spi_start_queue(struct spi_controller *ctlr) 1755 { 1756 unsigned long flags; 1757 1758 spin_lock_irqsave(&ctlr->queue_lock, flags); 1759 1760 if (ctlr->running || ctlr->busy) { 1761 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1762 return -EBUSY; 1763 } 1764 1765 ctlr->running = true; 1766 ctlr->cur_msg = NULL; 1767 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1768 1769 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1770 1771 return 0; 1772 } 1773 1774 static int spi_stop_queue(struct spi_controller *ctlr) 1775 { 1776 unsigned long flags; 1777 unsigned limit = 500; 1778 int ret = 0; 1779 1780 spin_lock_irqsave(&ctlr->queue_lock, flags); 1781 1782 /* 1783 * This is a bit lame, but is optimized for the common execution path. 1784 * A wait_queue on the ctlr->busy could be used, but then the common 1785 * execution path (pump_messages) would be required to call wake_up or 1786 * friends on every SPI message. Do this instead. 1787 */ 1788 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1789 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1790 usleep_range(10000, 11000); 1791 spin_lock_irqsave(&ctlr->queue_lock, flags); 1792 } 1793 1794 if (!list_empty(&ctlr->queue) || ctlr->busy) 1795 ret = -EBUSY; 1796 else 1797 ctlr->running = false; 1798 1799 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1800 1801 if (ret) { 1802 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1803 return ret; 1804 } 1805 return ret; 1806 } 1807 1808 static int spi_destroy_queue(struct spi_controller *ctlr) 1809 { 1810 int ret; 1811 1812 ret = spi_stop_queue(ctlr); 1813 1814 /* 1815 * kthread_flush_worker will block until all work is done. 1816 * If the reason that stop_queue timed out is that the work will never 1817 * finish, then it does no good to call flush/stop thread, so 1818 * return anyway. 1819 */ 1820 if (ret) { 1821 dev_err(&ctlr->dev, "problem destroying queue\n"); 1822 return ret; 1823 } 1824 1825 kthread_destroy_worker(ctlr->kworker); 1826 1827 return 0; 1828 } 1829 1830 static int __spi_queued_transfer(struct spi_device *spi, 1831 struct spi_message *msg, 1832 bool need_pump) 1833 { 1834 struct spi_controller *ctlr = spi->controller; 1835 unsigned long flags; 1836 1837 spin_lock_irqsave(&ctlr->queue_lock, flags); 1838 1839 if (!ctlr->running) { 1840 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1841 return -ESHUTDOWN; 1842 } 1843 msg->actual_length = 0; 1844 msg->status = -EINPROGRESS; 1845 1846 list_add_tail(&msg->queue, &ctlr->queue); 1847 if (!ctlr->busy && need_pump) 1848 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1849 1850 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1851 return 0; 1852 } 1853 1854 /** 1855 * spi_queued_transfer - transfer function for queued transfers 1856 * @spi: spi device which is requesting transfer 1857 * @msg: spi message which is to handled is queued to driver queue 1858 * 1859 * Return: zero on success, else a negative error code. 1860 */ 1861 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1862 { 1863 return __spi_queued_transfer(spi, msg, true); 1864 } 1865 1866 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1867 { 1868 int ret; 1869 1870 ctlr->transfer = spi_queued_transfer; 1871 if (!ctlr->transfer_one_message) 1872 ctlr->transfer_one_message = spi_transfer_one_message; 1873 1874 /* Initialize and start queue */ 1875 ret = spi_init_queue(ctlr); 1876 if (ret) { 1877 dev_err(&ctlr->dev, "problem initializing queue\n"); 1878 goto err_init_queue; 1879 } 1880 ctlr->queued = true; 1881 ret = spi_start_queue(ctlr); 1882 if (ret) { 1883 dev_err(&ctlr->dev, "problem starting queue\n"); 1884 goto err_start_queue; 1885 } 1886 1887 return 0; 1888 1889 err_start_queue: 1890 spi_destroy_queue(ctlr); 1891 err_init_queue: 1892 return ret; 1893 } 1894 1895 /** 1896 * spi_flush_queue - Send all pending messages in the queue from the callers' 1897 * context 1898 * @ctlr: controller to process queue for 1899 * 1900 * This should be used when one wants to ensure all pending messages have been 1901 * sent before doing something. Is used by the spi-mem code to make sure SPI 1902 * memory operations do not preempt regular SPI transfers that have been queued 1903 * before the spi-mem operation. 1904 */ 1905 void spi_flush_queue(struct spi_controller *ctlr) 1906 { 1907 if (ctlr->transfer == spi_queued_transfer) 1908 __spi_pump_messages(ctlr, false); 1909 } 1910 1911 /*-------------------------------------------------------------------------*/ 1912 1913 #if defined(CONFIG_OF) 1914 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1915 struct device_node *nc) 1916 { 1917 u32 value; 1918 int rc; 1919 1920 /* Mode (clock phase/polarity/etc.) */ 1921 if (of_property_read_bool(nc, "spi-cpha")) 1922 spi->mode |= SPI_CPHA; 1923 if (of_property_read_bool(nc, "spi-cpol")) 1924 spi->mode |= SPI_CPOL; 1925 if (of_property_read_bool(nc, "spi-3wire")) 1926 spi->mode |= SPI_3WIRE; 1927 if (of_property_read_bool(nc, "spi-lsb-first")) 1928 spi->mode |= SPI_LSB_FIRST; 1929 if (of_property_read_bool(nc, "spi-cs-high")) 1930 spi->mode |= SPI_CS_HIGH; 1931 1932 /* Device DUAL/QUAD mode */ 1933 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1934 switch (value) { 1935 case 1: 1936 break; 1937 case 2: 1938 spi->mode |= SPI_TX_DUAL; 1939 break; 1940 case 4: 1941 spi->mode |= SPI_TX_QUAD; 1942 break; 1943 case 8: 1944 spi->mode |= SPI_TX_OCTAL; 1945 break; 1946 default: 1947 dev_warn(&ctlr->dev, 1948 "spi-tx-bus-width %d not supported\n", 1949 value); 1950 break; 1951 } 1952 } 1953 1954 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1955 switch (value) { 1956 case 1: 1957 break; 1958 case 2: 1959 spi->mode |= SPI_RX_DUAL; 1960 break; 1961 case 4: 1962 spi->mode |= SPI_RX_QUAD; 1963 break; 1964 case 8: 1965 spi->mode |= SPI_RX_OCTAL; 1966 break; 1967 default: 1968 dev_warn(&ctlr->dev, 1969 "spi-rx-bus-width %d not supported\n", 1970 value); 1971 break; 1972 } 1973 } 1974 1975 if (spi_controller_is_slave(ctlr)) { 1976 if (!of_node_name_eq(nc, "slave")) { 1977 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1978 nc); 1979 return -EINVAL; 1980 } 1981 return 0; 1982 } 1983 1984 /* Device address */ 1985 rc = of_property_read_u32(nc, "reg", &value); 1986 if (rc) { 1987 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1988 nc, rc); 1989 return rc; 1990 } 1991 spi->chip_select = value; 1992 1993 /* Device speed */ 1994 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 1995 spi->max_speed_hz = value; 1996 1997 return 0; 1998 } 1999 2000 static struct spi_device * 2001 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2002 { 2003 struct spi_device *spi; 2004 int rc; 2005 2006 /* Alloc an spi_device */ 2007 spi = spi_alloc_device(ctlr); 2008 if (!spi) { 2009 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2010 rc = -ENOMEM; 2011 goto err_out; 2012 } 2013 2014 /* Select device driver */ 2015 rc = of_modalias_node(nc, spi->modalias, 2016 sizeof(spi->modalias)); 2017 if (rc < 0) { 2018 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2019 goto err_out; 2020 } 2021 2022 rc = of_spi_parse_dt(ctlr, spi, nc); 2023 if (rc) 2024 goto err_out; 2025 2026 /* Store a pointer to the node in the device structure */ 2027 of_node_get(nc); 2028 spi->dev.of_node = nc; 2029 2030 /* Register the new device */ 2031 rc = spi_add_device(spi); 2032 if (rc) { 2033 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2034 goto err_of_node_put; 2035 } 2036 2037 return spi; 2038 2039 err_of_node_put: 2040 of_node_put(nc); 2041 err_out: 2042 spi_dev_put(spi); 2043 return ERR_PTR(rc); 2044 } 2045 2046 /** 2047 * of_register_spi_devices() - Register child devices onto the SPI bus 2048 * @ctlr: Pointer to spi_controller device 2049 * 2050 * Registers an spi_device for each child node of controller node which 2051 * represents a valid SPI slave. 2052 */ 2053 static void of_register_spi_devices(struct spi_controller *ctlr) 2054 { 2055 struct spi_device *spi; 2056 struct device_node *nc; 2057 2058 if (!ctlr->dev.of_node) 2059 return; 2060 2061 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2062 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2063 continue; 2064 spi = of_register_spi_device(ctlr, nc); 2065 if (IS_ERR(spi)) { 2066 dev_warn(&ctlr->dev, 2067 "Failed to create SPI device for %pOF\n", nc); 2068 of_node_clear_flag(nc, OF_POPULATED); 2069 } 2070 } 2071 } 2072 #else 2073 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2074 #endif 2075 2076 #ifdef CONFIG_ACPI 2077 struct acpi_spi_lookup { 2078 struct spi_controller *ctlr; 2079 u32 max_speed_hz; 2080 u32 mode; 2081 int irq; 2082 u8 bits_per_word; 2083 u8 chip_select; 2084 }; 2085 2086 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2087 struct acpi_spi_lookup *lookup) 2088 { 2089 const union acpi_object *obj; 2090 2091 if (!x86_apple_machine) 2092 return; 2093 2094 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2095 && obj->buffer.length >= 4) 2096 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2097 2098 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2099 && obj->buffer.length == 8) 2100 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2101 2102 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2103 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2104 lookup->mode |= SPI_LSB_FIRST; 2105 2106 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2107 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2108 lookup->mode |= SPI_CPOL; 2109 2110 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2111 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2112 lookup->mode |= SPI_CPHA; 2113 } 2114 2115 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2116 { 2117 struct acpi_spi_lookup *lookup = data; 2118 struct spi_controller *ctlr = lookup->ctlr; 2119 2120 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2121 struct acpi_resource_spi_serialbus *sb; 2122 acpi_handle parent_handle; 2123 acpi_status status; 2124 2125 sb = &ares->data.spi_serial_bus; 2126 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2127 2128 status = acpi_get_handle(NULL, 2129 sb->resource_source.string_ptr, 2130 &parent_handle); 2131 2132 if (ACPI_FAILURE(status) || 2133 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2134 return -ENODEV; 2135 2136 /* 2137 * ACPI DeviceSelection numbering is handled by the 2138 * host controller driver in Windows and can vary 2139 * from driver to driver. In Linux we always expect 2140 * 0 .. max - 1 so we need to ask the driver to 2141 * translate between the two schemes. 2142 */ 2143 if (ctlr->fw_translate_cs) { 2144 int cs = ctlr->fw_translate_cs(ctlr, 2145 sb->device_selection); 2146 if (cs < 0) 2147 return cs; 2148 lookup->chip_select = cs; 2149 } else { 2150 lookup->chip_select = sb->device_selection; 2151 } 2152 2153 lookup->max_speed_hz = sb->connection_speed; 2154 lookup->bits_per_word = sb->data_bit_length; 2155 2156 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2157 lookup->mode |= SPI_CPHA; 2158 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2159 lookup->mode |= SPI_CPOL; 2160 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2161 lookup->mode |= SPI_CS_HIGH; 2162 } 2163 } else if (lookup->irq < 0) { 2164 struct resource r; 2165 2166 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2167 lookup->irq = r.start; 2168 } 2169 2170 /* Always tell the ACPI core to skip this resource */ 2171 return 1; 2172 } 2173 2174 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2175 struct acpi_device *adev) 2176 { 2177 acpi_handle parent_handle = NULL; 2178 struct list_head resource_list; 2179 struct acpi_spi_lookup lookup = {}; 2180 struct spi_device *spi; 2181 int ret; 2182 2183 if (acpi_bus_get_status(adev) || !adev->status.present || 2184 acpi_device_enumerated(adev)) 2185 return AE_OK; 2186 2187 lookup.ctlr = ctlr; 2188 lookup.irq = -1; 2189 2190 INIT_LIST_HEAD(&resource_list); 2191 ret = acpi_dev_get_resources(adev, &resource_list, 2192 acpi_spi_add_resource, &lookup); 2193 acpi_dev_free_resource_list(&resource_list); 2194 2195 if (ret < 0) 2196 /* found SPI in _CRS but it points to another controller */ 2197 return AE_OK; 2198 2199 if (!lookup.max_speed_hz && 2200 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 2201 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2202 /* Apple does not use _CRS but nested devices for SPI slaves */ 2203 acpi_spi_parse_apple_properties(adev, &lookup); 2204 } 2205 2206 if (!lookup.max_speed_hz) 2207 return AE_OK; 2208 2209 spi = spi_alloc_device(ctlr); 2210 if (!spi) { 2211 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2212 dev_name(&adev->dev)); 2213 return AE_NO_MEMORY; 2214 } 2215 2216 2217 ACPI_COMPANION_SET(&spi->dev, adev); 2218 spi->max_speed_hz = lookup.max_speed_hz; 2219 spi->mode |= lookup.mode; 2220 spi->irq = lookup.irq; 2221 spi->bits_per_word = lookup.bits_per_word; 2222 spi->chip_select = lookup.chip_select; 2223 2224 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2225 sizeof(spi->modalias)); 2226 2227 if (spi->irq < 0) 2228 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2229 2230 acpi_device_set_enumerated(adev); 2231 2232 adev->power.flags.ignore_parent = true; 2233 if (spi_add_device(spi)) { 2234 adev->power.flags.ignore_parent = false; 2235 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2236 dev_name(&adev->dev)); 2237 spi_dev_put(spi); 2238 } 2239 2240 return AE_OK; 2241 } 2242 2243 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2244 void *data, void **return_value) 2245 { 2246 struct spi_controller *ctlr = data; 2247 struct acpi_device *adev; 2248 2249 if (acpi_bus_get_device(handle, &adev)) 2250 return AE_OK; 2251 2252 return acpi_register_spi_device(ctlr, adev); 2253 } 2254 2255 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2256 2257 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2258 { 2259 acpi_status status; 2260 acpi_handle handle; 2261 2262 handle = ACPI_HANDLE(ctlr->dev.parent); 2263 if (!handle) 2264 return; 2265 2266 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2267 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2268 acpi_spi_add_device, NULL, ctlr, NULL); 2269 if (ACPI_FAILURE(status)) 2270 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2271 } 2272 #else 2273 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2274 #endif /* CONFIG_ACPI */ 2275 2276 static void spi_controller_release(struct device *dev) 2277 { 2278 struct spi_controller *ctlr; 2279 2280 ctlr = container_of(dev, struct spi_controller, dev); 2281 kfree(ctlr); 2282 } 2283 2284 static struct class spi_master_class = { 2285 .name = "spi_master", 2286 .owner = THIS_MODULE, 2287 .dev_release = spi_controller_release, 2288 .dev_groups = spi_master_groups, 2289 }; 2290 2291 #ifdef CONFIG_SPI_SLAVE 2292 /** 2293 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2294 * controller 2295 * @spi: device used for the current transfer 2296 */ 2297 int spi_slave_abort(struct spi_device *spi) 2298 { 2299 struct spi_controller *ctlr = spi->controller; 2300 2301 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2302 return ctlr->slave_abort(ctlr); 2303 2304 return -ENOTSUPP; 2305 } 2306 EXPORT_SYMBOL_GPL(spi_slave_abort); 2307 2308 static int match_true(struct device *dev, void *data) 2309 { 2310 return 1; 2311 } 2312 2313 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2314 char *buf) 2315 { 2316 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2317 dev); 2318 struct device *child; 2319 2320 child = device_find_child(&ctlr->dev, NULL, match_true); 2321 return sprintf(buf, "%s\n", 2322 child ? to_spi_device(child)->modalias : NULL); 2323 } 2324 2325 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2326 const char *buf, size_t count) 2327 { 2328 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2329 dev); 2330 struct spi_device *spi; 2331 struct device *child; 2332 char name[32]; 2333 int rc; 2334 2335 rc = sscanf(buf, "%31s", name); 2336 if (rc != 1 || !name[0]) 2337 return -EINVAL; 2338 2339 child = device_find_child(&ctlr->dev, NULL, match_true); 2340 if (child) { 2341 /* Remove registered slave */ 2342 device_unregister(child); 2343 put_device(child); 2344 } 2345 2346 if (strcmp(name, "(null)")) { 2347 /* Register new slave */ 2348 spi = spi_alloc_device(ctlr); 2349 if (!spi) 2350 return -ENOMEM; 2351 2352 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2353 2354 rc = spi_add_device(spi); 2355 if (rc) { 2356 spi_dev_put(spi); 2357 return rc; 2358 } 2359 } 2360 2361 return count; 2362 } 2363 2364 static DEVICE_ATTR_RW(slave); 2365 2366 static struct attribute *spi_slave_attrs[] = { 2367 &dev_attr_slave.attr, 2368 NULL, 2369 }; 2370 2371 static const struct attribute_group spi_slave_group = { 2372 .attrs = spi_slave_attrs, 2373 }; 2374 2375 static const struct attribute_group *spi_slave_groups[] = { 2376 &spi_controller_statistics_group, 2377 &spi_slave_group, 2378 NULL, 2379 }; 2380 2381 static struct class spi_slave_class = { 2382 .name = "spi_slave", 2383 .owner = THIS_MODULE, 2384 .dev_release = spi_controller_release, 2385 .dev_groups = spi_slave_groups, 2386 }; 2387 #else 2388 extern struct class spi_slave_class; /* dummy */ 2389 #endif 2390 2391 /** 2392 * __spi_alloc_controller - allocate an SPI master or slave controller 2393 * @dev: the controller, possibly using the platform_bus 2394 * @size: how much zeroed driver-private data to allocate; the pointer to this 2395 * memory is in the driver_data field of the returned device, accessible 2396 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2397 * drivers granting DMA access to portions of their private data need to 2398 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2399 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2400 * slave (true) controller 2401 * Context: can sleep 2402 * 2403 * This call is used only by SPI controller drivers, which are the 2404 * only ones directly touching chip registers. It's how they allocate 2405 * an spi_controller structure, prior to calling spi_register_controller(). 2406 * 2407 * This must be called from context that can sleep. 2408 * 2409 * The caller is responsible for assigning the bus number and initializing the 2410 * controller's methods before calling spi_register_controller(); and (after 2411 * errors adding the device) calling spi_controller_put() to prevent a memory 2412 * leak. 2413 * 2414 * Return: the SPI controller structure on success, else NULL. 2415 */ 2416 struct spi_controller *__spi_alloc_controller(struct device *dev, 2417 unsigned int size, bool slave) 2418 { 2419 struct spi_controller *ctlr; 2420 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2421 2422 if (!dev) 2423 return NULL; 2424 2425 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2426 if (!ctlr) 2427 return NULL; 2428 2429 device_initialize(&ctlr->dev); 2430 ctlr->bus_num = -1; 2431 ctlr->num_chipselect = 1; 2432 ctlr->slave = slave; 2433 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2434 ctlr->dev.class = &spi_slave_class; 2435 else 2436 ctlr->dev.class = &spi_master_class; 2437 ctlr->dev.parent = dev; 2438 pm_suspend_ignore_children(&ctlr->dev, true); 2439 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2440 2441 return ctlr; 2442 } 2443 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2444 2445 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2446 { 2447 spi_controller_put(*(struct spi_controller **)ctlr); 2448 } 2449 2450 /** 2451 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2452 * @dev: physical device of SPI controller 2453 * @size: how much zeroed driver-private data to allocate 2454 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2455 * Context: can sleep 2456 * 2457 * Allocate an SPI controller and automatically release a reference on it 2458 * when @dev is unbound from its driver. Drivers are thus relieved from 2459 * having to call spi_controller_put(). 2460 * 2461 * The arguments to this function are identical to __spi_alloc_controller(). 2462 * 2463 * Return: the SPI controller structure on success, else NULL. 2464 */ 2465 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2466 unsigned int size, 2467 bool slave) 2468 { 2469 struct spi_controller **ptr, *ctlr; 2470 2471 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2472 GFP_KERNEL); 2473 if (!ptr) 2474 return NULL; 2475 2476 ctlr = __spi_alloc_controller(dev, size, slave); 2477 if (ctlr) { 2478 *ptr = ctlr; 2479 devres_add(dev, ptr); 2480 } else { 2481 devres_free(ptr); 2482 } 2483 2484 return ctlr; 2485 } 2486 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2487 2488 #ifdef CONFIG_OF 2489 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2490 { 2491 int nb, i, *cs; 2492 struct device_node *np = ctlr->dev.of_node; 2493 2494 if (!np) 2495 return 0; 2496 2497 nb = of_gpio_named_count(np, "cs-gpios"); 2498 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2499 2500 /* Return error only for an incorrectly formed cs-gpios property */ 2501 if (nb == 0 || nb == -ENOENT) 2502 return 0; 2503 else if (nb < 0) 2504 return nb; 2505 2506 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2507 GFP_KERNEL); 2508 ctlr->cs_gpios = cs; 2509 2510 if (!ctlr->cs_gpios) 2511 return -ENOMEM; 2512 2513 for (i = 0; i < ctlr->num_chipselect; i++) 2514 cs[i] = -ENOENT; 2515 2516 for (i = 0; i < nb; i++) 2517 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2518 2519 return 0; 2520 } 2521 #else 2522 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2523 { 2524 return 0; 2525 } 2526 #endif 2527 2528 /** 2529 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2530 * @ctlr: The SPI master to grab GPIO descriptors for 2531 */ 2532 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2533 { 2534 int nb, i; 2535 struct gpio_desc **cs; 2536 struct device *dev = &ctlr->dev; 2537 unsigned long native_cs_mask = 0; 2538 unsigned int num_cs_gpios = 0; 2539 2540 nb = gpiod_count(dev, "cs"); 2541 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2542 2543 /* No GPIOs at all is fine, else return the error */ 2544 if (nb == 0 || nb == -ENOENT) 2545 return 0; 2546 else if (nb < 0) 2547 return nb; 2548 2549 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2550 GFP_KERNEL); 2551 if (!cs) 2552 return -ENOMEM; 2553 ctlr->cs_gpiods = cs; 2554 2555 for (i = 0; i < nb; i++) { 2556 /* 2557 * Most chipselects are active low, the inverted 2558 * semantics are handled by special quirks in gpiolib, 2559 * so initializing them GPIOD_OUT_LOW here means 2560 * "unasserted", in most cases this will drive the physical 2561 * line high. 2562 */ 2563 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2564 GPIOD_OUT_LOW); 2565 if (IS_ERR(cs[i])) 2566 return PTR_ERR(cs[i]); 2567 2568 if (cs[i]) { 2569 /* 2570 * If we find a CS GPIO, name it after the device and 2571 * chip select line. 2572 */ 2573 char *gpioname; 2574 2575 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2576 dev_name(dev), i); 2577 if (!gpioname) 2578 return -ENOMEM; 2579 gpiod_set_consumer_name(cs[i], gpioname); 2580 num_cs_gpios++; 2581 continue; 2582 } 2583 2584 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2585 dev_err(dev, "Invalid native chip select %d\n", i); 2586 return -EINVAL; 2587 } 2588 native_cs_mask |= BIT(i); 2589 } 2590 2591 ctlr->unused_native_cs = ffz(native_cs_mask); 2592 if (num_cs_gpios && ctlr->max_native_cs && 2593 ctlr->unused_native_cs >= ctlr->max_native_cs) { 2594 dev_err(dev, "No unused native chip select available\n"); 2595 return -EINVAL; 2596 } 2597 2598 return 0; 2599 } 2600 2601 static int spi_controller_check_ops(struct spi_controller *ctlr) 2602 { 2603 /* 2604 * The controller may implement only the high-level SPI-memory like 2605 * operations if it does not support regular SPI transfers, and this is 2606 * valid use case. 2607 * If ->mem_ops is NULL, we request that at least one of the 2608 * ->transfer_xxx() method be implemented. 2609 */ 2610 if (ctlr->mem_ops) { 2611 if (!ctlr->mem_ops->exec_op) 2612 return -EINVAL; 2613 } else if (!ctlr->transfer && !ctlr->transfer_one && 2614 !ctlr->transfer_one_message) { 2615 return -EINVAL; 2616 } 2617 2618 return 0; 2619 } 2620 2621 /** 2622 * spi_register_controller - register SPI master or slave controller 2623 * @ctlr: initialized master, originally from spi_alloc_master() or 2624 * spi_alloc_slave() 2625 * Context: can sleep 2626 * 2627 * SPI controllers connect to their drivers using some non-SPI bus, 2628 * such as the platform bus. The final stage of probe() in that code 2629 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2630 * 2631 * SPI controllers use board specific (often SOC specific) bus numbers, 2632 * and board-specific addressing for SPI devices combines those numbers 2633 * with chip select numbers. Since SPI does not directly support dynamic 2634 * device identification, boards need configuration tables telling which 2635 * chip is at which address. 2636 * 2637 * This must be called from context that can sleep. It returns zero on 2638 * success, else a negative error code (dropping the controller's refcount). 2639 * After a successful return, the caller is responsible for calling 2640 * spi_unregister_controller(). 2641 * 2642 * Return: zero on success, else a negative error code. 2643 */ 2644 int spi_register_controller(struct spi_controller *ctlr) 2645 { 2646 struct device *dev = ctlr->dev.parent; 2647 struct boardinfo *bi; 2648 int status; 2649 int id, first_dynamic; 2650 2651 if (!dev) 2652 return -ENODEV; 2653 2654 /* 2655 * Make sure all necessary hooks are implemented before registering 2656 * the SPI controller. 2657 */ 2658 status = spi_controller_check_ops(ctlr); 2659 if (status) 2660 return status; 2661 2662 if (ctlr->bus_num >= 0) { 2663 /* devices with a fixed bus num must check-in with the num */ 2664 mutex_lock(&board_lock); 2665 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2666 ctlr->bus_num + 1, GFP_KERNEL); 2667 mutex_unlock(&board_lock); 2668 if (WARN(id < 0, "couldn't get idr")) 2669 return id == -ENOSPC ? -EBUSY : id; 2670 ctlr->bus_num = id; 2671 } else if (ctlr->dev.of_node) { 2672 /* allocate dynamic bus number using Linux idr */ 2673 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2674 if (id >= 0) { 2675 ctlr->bus_num = id; 2676 mutex_lock(&board_lock); 2677 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2678 ctlr->bus_num + 1, GFP_KERNEL); 2679 mutex_unlock(&board_lock); 2680 if (WARN(id < 0, "couldn't get idr")) 2681 return id == -ENOSPC ? -EBUSY : id; 2682 } 2683 } 2684 if (ctlr->bus_num < 0) { 2685 first_dynamic = of_alias_get_highest_id("spi"); 2686 if (first_dynamic < 0) 2687 first_dynamic = 0; 2688 else 2689 first_dynamic++; 2690 2691 mutex_lock(&board_lock); 2692 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2693 0, GFP_KERNEL); 2694 mutex_unlock(&board_lock); 2695 if (WARN(id < 0, "couldn't get idr")) 2696 return id; 2697 ctlr->bus_num = id; 2698 } 2699 INIT_LIST_HEAD(&ctlr->queue); 2700 spin_lock_init(&ctlr->queue_lock); 2701 spin_lock_init(&ctlr->bus_lock_spinlock); 2702 mutex_init(&ctlr->bus_lock_mutex); 2703 mutex_init(&ctlr->io_mutex); 2704 ctlr->bus_lock_flag = 0; 2705 init_completion(&ctlr->xfer_completion); 2706 if (!ctlr->max_dma_len) 2707 ctlr->max_dma_len = INT_MAX; 2708 2709 /* register the device, then userspace will see it. 2710 * registration fails if the bus ID is in use. 2711 */ 2712 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2713 2714 if (!spi_controller_is_slave(ctlr)) { 2715 if (ctlr->use_gpio_descriptors) { 2716 status = spi_get_gpio_descs(ctlr); 2717 if (status) 2718 goto free_bus_id; 2719 /* 2720 * A controller using GPIO descriptors always 2721 * supports SPI_CS_HIGH if need be. 2722 */ 2723 ctlr->mode_bits |= SPI_CS_HIGH; 2724 } else { 2725 /* Legacy code path for GPIOs from DT */ 2726 status = of_spi_get_gpio_numbers(ctlr); 2727 if (status) 2728 goto free_bus_id; 2729 } 2730 } 2731 2732 /* 2733 * Even if it's just one always-selected device, there must 2734 * be at least one chipselect. 2735 */ 2736 if (!ctlr->num_chipselect) { 2737 status = -EINVAL; 2738 goto free_bus_id; 2739 } 2740 2741 status = device_add(&ctlr->dev); 2742 if (status < 0) 2743 goto free_bus_id; 2744 dev_dbg(dev, "registered %s %s\n", 2745 spi_controller_is_slave(ctlr) ? "slave" : "master", 2746 dev_name(&ctlr->dev)); 2747 2748 /* 2749 * If we're using a queued driver, start the queue. Note that we don't 2750 * need the queueing logic if the driver is only supporting high-level 2751 * memory operations. 2752 */ 2753 if (ctlr->transfer) { 2754 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2755 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2756 status = spi_controller_initialize_queue(ctlr); 2757 if (status) { 2758 device_del(&ctlr->dev); 2759 goto free_bus_id; 2760 } 2761 } 2762 /* add statistics */ 2763 spin_lock_init(&ctlr->statistics.lock); 2764 2765 mutex_lock(&board_lock); 2766 list_add_tail(&ctlr->list, &spi_controller_list); 2767 list_for_each_entry(bi, &board_list, list) 2768 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2769 mutex_unlock(&board_lock); 2770 2771 /* Register devices from the device tree and ACPI */ 2772 of_register_spi_devices(ctlr); 2773 acpi_register_spi_devices(ctlr); 2774 return status; 2775 2776 free_bus_id: 2777 mutex_lock(&board_lock); 2778 idr_remove(&spi_master_idr, ctlr->bus_num); 2779 mutex_unlock(&board_lock); 2780 return status; 2781 } 2782 EXPORT_SYMBOL_GPL(spi_register_controller); 2783 2784 static void devm_spi_unregister(struct device *dev, void *res) 2785 { 2786 spi_unregister_controller(*(struct spi_controller **)res); 2787 } 2788 2789 /** 2790 * devm_spi_register_controller - register managed SPI master or slave 2791 * controller 2792 * @dev: device managing SPI controller 2793 * @ctlr: initialized controller, originally from spi_alloc_master() or 2794 * spi_alloc_slave() 2795 * Context: can sleep 2796 * 2797 * Register a SPI device as with spi_register_controller() which will 2798 * automatically be unregistered and freed. 2799 * 2800 * Return: zero on success, else a negative error code. 2801 */ 2802 int devm_spi_register_controller(struct device *dev, 2803 struct spi_controller *ctlr) 2804 { 2805 struct spi_controller **ptr; 2806 int ret; 2807 2808 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2809 if (!ptr) 2810 return -ENOMEM; 2811 2812 ret = spi_register_controller(ctlr); 2813 if (!ret) { 2814 *ptr = ctlr; 2815 devres_add(dev, ptr); 2816 } else { 2817 devres_free(ptr); 2818 } 2819 2820 return ret; 2821 } 2822 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2823 2824 static int devm_spi_match_controller(struct device *dev, void *res, void *ctlr) 2825 { 2826 return *(struct spi_controller **)res == ctlr; 2827 } 2828 2829 static int __unregister(struct device *dev, void *null) 2830 { 2831 spi_unregister_device(to_spi_device(dev)); 2832 return 0; 2833 } 2834 2835 /** 2836 * spi_unregister_controller - unregister SPI master or slave controller 2837 * @ctlr: the controller being unregistered 2838 * Context: can sleep 2839 * 2840 * This call is used only by SPI controller drivers, which are the 2841 * only ones directly touching chip registers. 2842 * 2843 * This must be called from context that can sleep. 2844 * 2845 * Note that this function also drops a reference to the controller. 2846 */ 2847 void spi_unregister_controller(struct spi_controller *ctlr) 2848 { 2849 struct spi_controller *found; 2850 int id = ctlr->bus_num; 2851 2852 /* Prevent addition of new devices, unregister existing ones */ 2853 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2854 mutex_lock(&spi_add_lock); 2855 2856 device_for_each_child(&ctlr->dev, NULL, __unregister); 2857 2858 /* First make sure that this controller was ever added */ 2859 mutex_lock(&board_lock); 2860 found = idr_find(&spi_master_idr, id); 2861 mutex_unlock(&board_lock); 2862 if (ctlr->queued) { 2863 if (spi_destroy_queue(ctlr)) 2864 dev_err(&ctlr->dev, "queue remove failed\n"); 2865 } 2866 mutex_lock(&board_lock); 2867 list_del(&ctlr->list); 2868 mutex_unlock(&board_lock); 2869 2870 device_del(&ctlr->dev); 2871 2872 /* Release the last reference on the controller if its driver 2873 * has not yet been converted to devm_spi_alloc_master/slave(). 2874 */ 2875 if (!devres_find(ctlr->dev.parent, devm_spi_release_controller, 2876 devm_spi_match_controller, ctlr)) 2877 put_device(&ctlr->dev); 2878 2879 /* free bus id */ 2880 mutex_lock(&board_lock); 2881 if (found == ctlr) 2882 idr_remove(&spi_master_idr, id); 2883 mutex_unlock(&board_lock); 2884 2885 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2886 mutex_unlock(&spi_add_lock); 2887 } 2888 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2889 2890 int spi_controller_suspend(struct spi_controller *ctlr) 2891 { 2892 int ret; 2893 2894 /* Basically no-ops for non-queued controllers */ 2895 if (!ctlr->queued) 2896 return 0; 2897 2898 ret = spi_stop_queue(ctlr); 2899 if (ret) 2900 dev_err(&ctlr->dev, "queue stop failed\n"); 2901 2902 return ret; 2903 } 2904 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2905 2906 int spi_controller_resume(struct spi_controller *ctlr) 2907 { 2908 int ret; 2909 2910 if (!ctlr->queued) 2911 return 0; 2912 2913 ret = spi_start_queue(ctlr); 2914 if (ret) 2915 dev_err(&ctlr->dev, "queue restart failed\n"); 2916 2917 return ret; 2918 } 2919 EXPORT_SYMBOL_GPL(spi_controller_resume); 2920 2921 static int __spi_controller_match(struct device *dev, const void *data) 2922 { 2923 struct spi_controller *ctlr; 2924 const u16 *bus_num = data; 2925 2926 ctlr = container_of(dev, struct spi_controller, dev); 2927 return ctlr->bus_num == *bus_num; 2928 } 2929 2930 /** 2931 * spi_busnum_to_master - look up master associated with bus_num 2932 * @bus_num: the master's bus number 2933 * Context: can sleep 2934 * 2935 * This call may be used with devices that are registered after 2936 * arch init time. It returns a refcounted pointer to the relevant 2937 * spi_controller (which the caller must release), or NULL if there is 2938 * no such master registered. 2939 * 2940 * Return: the SPI master structure on success, else NULL. 2941 */ 2942 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2943 { 2944 struct device *dev; 2945 struct spi_controller *ctlr = NULL; 2946 2947 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2948 __spi_controller_match); 2949 if (dev) 2950 ctlr = container_of(dev, struct spi_controller, dev); 2951 /* reference got in class_find_device */ 2952 return ctlr; 2953 } 2954 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2955 2956 /*-------------------------------------------------------------------------*/ 2957 2958 /* Core methods for SPI resource management */ 2959 2960 /** 2961 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2962 * during the processing of a spi_message while using 2963 * spi_transfer_one 2964 * @spi: the spi device for which we allocate memory 2965 * @release: the release code to execute for this resource 2966 * @size: size to alloc and return 2967 * @gfp: GFP allocation flags 2968 * 2969 * Return: the pointer to the allocated data 2970 * 2971 * This may get enhanced in the future to allocate from a memory pool 2972 * of the @spi_device or @spi_controller to avoid repeated allocations. 2973 */ 2974 void *spi_res_alloc(struct spi_device *spi, 2975 spi_res_release_t release, 2976 size_t size, gfp_t gfp) 2977 { 2978 struct spi_res *sres; 2979 2980 sres = kzalloc(sizeof(*sres) + size, gfp); 2981 if (!sres) 2982 return NULL; 2983 2984 INIT_LIST_HEAD(&sres->entry); 2985 sres->release = release; 2986 2987 return sres->data; 2988 } 2989 EXPORT_SYMBOL_GPL(spi_res_alloc); 2990 2991 /** 2992 * spi_res_free - free an spi resource 2993 * @res: pointer to the custom data of a resource 2994 * 2995 */ 2996 void spi_res_free(void *res) 2997 { 2998 struct spi_res *sres = container_of(res, struct spi_res, data); 2999 3000 if (!res) 3001 return; 3002 3003 WARN_ON(!list_empty(&sres->entry)); 3004 kfree(sres); 3005 } 3006 EXPORT_SYMBOL_GPL(spi_res_free); 3007 3008 /** 3009 * spi_res_add - add a spi_res to the spi_message 3010 * @message: the spi message 3011 * @res: the spi_resource 3012 */ 3013 void spi_res_add(struct spi_message *message, void *res) 3014 { 3015 struct spi_res *sres = container_of(res, struct spi_res, data); 3016 3017 WARN_ON(!list_empty(&sres->entry)); 3018 list_add_tail(&sres->entry, &message->resources); 3019 } 3020 EXPORT_SYMBOL_GPL(spi_res_add); 3021 3022 /** 3023 * spi_res_release - release all spi resources for this message 3024 * @ctlr: the @spi_controller 3025 * @message: the @spi_message 3026 */ 3027 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 3028 { 3029 struct spi_res *res, *tmp; 3030 3031 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 3032 if (res->release) 3033 res->release(ctlr, message, res->data); 3034 3035 list_del(&res->entry); 3036 3037 kfree(res); 3038 } 3039 } 3040 EXPORT_SYMBOL_GPL(spi_res_release); 3041 3042 /*-------------------------------------------------------------------------*/ 3043 3044 /* Core methods for spi_message alterations */ 3045 3046 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3047 struct spi_message *msg, 3048 void *res) 3049 { 3050 struct spi_replaced_transfers *rxfer = res; 3051 size_t i; 3052 3053 /* call extra callback if requested */ 3054 if (rxfer->release) 3055 rxfer->release(ctlr, msg, res); 3056 3057 /* insert replaced transfers back into the message */ 3058 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3059 3060 /* remove the formerly inserted entries */ 3061 for (i = 0; i < rxfer->inserted; i++) 3062 list_del(&rxfer->inserted_transfers[i].transfer_list); 3063 } 3064 3065 /** 3066 * spi_replace_transfers - replace transfers with several transfers 3067 * and register change with spi_message.resources 3068 * @msg: the spi_message we work upon 3069 * @xfer_first: the first spi_transfer we want to replace 3070 * @remove: number of transfers to remove 3071 * @insert: the number of transfers we want to insert instead 3072 * @release: extra release code necessary in some circumstances 3073 * @extradatasize: extra data to allocate (with alignment guarantees 3074 * of struct @spi_transfer) 3075 * @gfp: gfp flags 3076 * 3077 * Returns: pointer to @spi_replaced_transfers, 3078 * PTR_ERR(...) in case of errors. 3079 */ 3080 struct spi_replaced_transfers *spi_replace_transfers( 3081 struct spi_message *msg, 3082 struct spi_transfer *xfer_first, 3083 size_t remove, 3084 size_t insert, 3085 spi_replaced_release_t release, 3086 size_t extradatasize, 3087 gfp_t gfp) 3088 { 3089 struct spi_replaced_transfers *rxfer; 3090 struct spi_transfer *xfer; 3091 size_t i; 3092 3093 /* allocate the structure using spi_res */ 3094 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3095 struct_size(rxfer, inserted_transfers, insert) 3096 + extradatasize, 3097 gfp); 3098 if (!rxfer) 3099 return ERR_PTR(-ENOMEM); 3100 3101 /* the release code to invoke before running the generic release */ 3102 rxfer->release = release; 3103 3104 /* assign extradata */ 3105 if (extradatasize) 3106 rxfer->extradata = 3107 &rxfer->inserted_transfers[insert]; 3108 3109 /* init the replaced_transfers list */ 3110 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3111 3112 /* assign the list_entry after which we should reinsert 3113 * the @replaced_transfers - it may be spi_message.messages! 3114 */ 3115 rxfer->replaced_after = xfer_first->transfer_list.prev; 3116 3117 /* remove the requested number of transfers */ 3118 for (i = 0; i < remove; i++) { 3119 /* if the entry after replaced_after it is msg->transfers 3120 * then we have been requested to remove more transfers 3121 * than are in the list 3122 */ 3123 if (rxfer->replaced_after->next == &msg->transfers) { 3124 dev_err(&msg->spi->dev, 3125 "requested to remove more spi_transfers than are available\n"); 3126 /* insert replaced transfers back into the message */ 3127 list_splice(&rxfer->replaced_transfers, 3128 rxfer->replaced_after); 3129 3130 /* free the spi_replace_transfer structure */ 3131 spi_res_free(rxfer); 3132 3133 /* and return with an error */ 3134 return ERR_PTR(-EINVAL); 3135 } 3136 3137 /* remove the entry after replaced_after from list of 3138 * transfers and add it to list of replaced_transfers 3139 */ 3140 list_move_tail(rxfer->replaced_after->next, 3141 &rxfer->replaced_transfers); 3142 } 3143 3144 /* create copy of the given xfer with identical settings 3145 * based on the first transfer to get removed 3146 */ 3147 for (i = 0; i < insert; i++) { 3148 /* we need to run in reverse order */ 3149 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3150 3151 /* copy all spi_transfer data */ 3152 memcpy(xfer, xfer_first, sizeof(*xfer)); 3153 3154 /* add to list */ 3155 list_add(&xfer->transfer_list, rxfer->replaced_after); 3156 3157 /* clear cs_change and delay for all but the last */ 3158 if (i) { 3159 xfer->cs_change = false; 3160 xfer->delay_usecs = 0; 3161 xfer->delay.value = 0; 3162 } 3163 } 3164 3165 /* set up inserted */ 3166 rxfer->inserted = insert; 3167 3168 /* and register it with spi_res/spi_message */ 3169 spi_res_add(msg, rxfer); 3170 3171 return rxfer; 3172 } 3173 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3174 3175 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3176 struct spi_message *msg, 3177 struct spi_transfer **xferp, 3178 size_t maxsize, 3179 gfp_t gfp) 3180 { 3181 struct spi_transfer *xfer = *xferp, *xfers; 3182 struct spi_replaced_transfers *srt; 3183 size_t offset; 3184 size_t count, i; 3185 3186 /* calculate how many we have to replace */ 3187 count = DIV_ROUND_UP(xfer->len, maxsize); 3188 3189 /* create replacement */ 3190 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3191 if (IS_ERR(srt)) 3192 return PTR_ERR(srt); 3193 xfers = srt->inserted_transfers; 3194 3195 /* now handle each of those newly inserted spi_transfers 3196 * note that the replacements spi_transfers all are preset 3197 * to the same values as *xferp, so tx_buf, rx_buf and len 3198 * are all identical (as well as most others) 3199 * so we just have to fix up len and the pointers. 3200 * 3201 * this also includes support for the depreciated 3202 * spi_message.is_dma_mapped interface 3203 */ 3204 3205 /* the first transfer just needs the length modified, so we 3206 * run it outside the loop 3207 */ 3208 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3209 3210 /* all the others need rx_buf/tx_buf also set */ 3211 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3212 /* update rx_buf, tx_buf and dma */ 3213 if (xfers[i].rx_buf) 3214 xfers[i].rx_buf += offset; 3215 if (xfers[i].rx_dma) 3216 xfers[i].rx_dma += offset; 3217 if (xfers[i].tx_buf) 3218 xfers[i].tx_buf += offset; 3219 if (xfers[i].tx_dma) 3220 xfers[i].tx_dma += offset; 3221 3222 /* update length */ 3223 xfers[i].len = min(maxsize, xfers[i].len - offset); 3224 } 3225 3226 /* we set up xferp to the last entry we have inserted, 3227 * so that we skip those already split transfers 3228 */ 3229 *xferp = &xfers[count - 1]; 3230 3231 /* increment statistics counters */ 3232 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3233 transfers_split_maxsize); 3234 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3235 transfers_split_maxsize); 3236 3237 return 0; 3238 } 3239 3240 /** 3241 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 3242 * when an individual transfer exceeds a 3243 * certain size 3244 * @ctlr: the @spi_controller for this transfer 3245 * @msg: the @spi_message to transform 3246 * @maxsize: the maximum when to apply this 3247 * @gfp: GFP allocation flags 3248 * 3249 * Return: status of transformation 3250 */ 3251 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3252 struct spi_message *msg, 3253 size_t maxsize, 3254 gfp_t gfp) 3255 { 3256 struct spi_transfer *xfer; 3257 int ret; 3258 3259 /* iterate over the transfer_list, 3260 * but note that xfer is advanced to the last transfer inserted 3261 * to avoid checking sizes again unnecessarily (also xfer does 3262 * potentiall belong to a different list by the time the 3263 * replacement has happened 3264 */ 3265 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3266 if (xfer->len > maxsize) { 3267 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3268 maxsize, gfp); 3269 if (ret) 3270 return ret; 3271 } 3272 } 3273 3274 return 0; 3275 } 3276 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3277 3278 /*-------------------------------------------------------------------------*/ 3279 3280 /* Core methods for SPI controller protocol drivers. Some of the 3281 * other core methods are currently defined as inline functions. 3282 */ 3283 3284 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3285 u8 bits_per_word) 3286 { 3287 if (ctlr->bits_per_word_mask) { 3288 /* Only 32 bits fit in the mask */ 3289 if (bits_per_word > 32) 3290 return -EINVAL; 3291 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3292 return -EINVAL; 3293 } 3294 3295 return 0; 3296 } 3297 3298 /** 3299 * spi_setup - setup SPI mode and clock rate 3300 * @spi: the device whose settings are being modified 3301 * Context: can sleep, and no requests are queued to the device 3302 * 3303 * SPI protocol drivers may need to update the transfer mode if the 3304 * device doesn't work with its default. They may likewise need 3305 * to update clock rates or word sizes from initial values. This function 3306 * changes those settings, and must be called from a context that can sleep. 3307 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3308 * effect the next time the device is selected and data is transferred to 3309 * or from it. When this function returns, the spi device is deselected. 3310 * 3311 * Note that this call will fail if the protocol driver specifies an option 3312 * that the underlying controller or its driver does not support. For 3313 * example, not all hardware supports wire transfers using nine bit words, 3314 * LSB-first wire encoding, or active-high chipselects. 3315 * 3316 * Return: zero on success, else a negative error code. 3317 */ 3318 int spi_setup(struct spi_device *spi) 3319 { 3320 unsigned bad_bits, ugly_bits; 3321 int status; 3322 3323 /* check mode to prevent that DUAL and QUAD set at the same time 3324 */ 3325 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3326 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3327 dev_err(&spi->dev, 3328 "setup: can not select dual and quad at the same time\n"); 3329 return -EINVAL; 3330 } 3331 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3332 */ 3333 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3334 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3335 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3336 return -EINVAL; 3337 /* help drivers fail *cleanly* when they need options 3338 * that aren't supported with their current controller 3339 * SPI_CS_WORD has a fallback software implementation, 3340 * so it is ignored here. 3341 */ 3342 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3343 /* nothing prevents from working with active-high CS in case if it 3344 * is driven by GPIO. 3345 */ 3346 if (gpio_is_valid(spi->cs_gpio)) 3347 bad_bits &= ~SPI_CS_HIGH; 3348 ugly_bits = bad_bits & 3349 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3350 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3351 if (ugly_bits) { 3352 dev_warn(&spi->dev, 3353 "setup: ignoring unsupported mode bits %x\n", 3354 ugly_bits); 3355 spi->mode &= ~ugly_bits; 3356 bad_bits &= ~ugly_bits; 3357 } 3358 if (bad_bits) { 3359 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3360 bad_bits); 3361 return -EINVAL; 3362 } 3363 3364 if (!spi->bits_per_word) 3365 spi->bits_per_word = 8; 3366 3367 status = __spi_validate_bits_per_word(spi->controller, 3368 spi->bits_per_word); 3369 if (status) 3370 return status; 3371 3372 if (!spi->max_speed_hz) 3373 spi->max_speed_hz = spi->controller->max_speed_hz; 3374 3375 mutex_lock(&spi->controller->io_mutex); 3376 3377 if (spi->controller->setup) 3378 status = spi->controller->setup(spi); 3379 3380 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3381 status = pm_runtime_get_sync(spi->controller->dev.parent); 3382 if (status < 0) { 3383 mutex_unlock(&spi->controller->io_mutex); 3384 pm_runtime_put_noidle(spi->controller->dev.parent); 3385 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3386 status); 3387 return status; 3388 } 3389 3390 /* 3391 * We do not want to return positive value from pm_runtime_get, 3392 * there are many instances of devices calling spi_setup() and 3393 * checking for a non-zero return value instead of a negative 3394 * return value. 3395 */ 3396 status = 0; 3397 3398 spi_set_cs(spi, false); 3399 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3400 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3401 } else { 3402 spi_set_cs(spi, false); 3403 } 3404 3405 mutex_unlock(&spi->controller->io_mutex); 3406 3407 if (spi->rt && !spi->controller->rt) { 3408 spi->controller->rt = true; 3409 spi_set_thread_rt(spi->controller); 3410 } 3411 3412 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3413 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3414 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3415 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3416 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3417 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3418 spi->bits_per_word, spi->max_speed_hz, 3419 status); 3420 3421 return status; 3422 } 3423 EXPORT_SYMBOL_GPL(spi_setup); 3424 3425 /** 3426 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3427 * @spi: the device that requires specific CS timing configuration 3428 * @setup: CS setup time specified via @spi_delay 3429 * @hold: CS hold time specified via @spi_delay 3430 * @inactive: CS inactive delay between transfers specified via @spi_delay 3431 * 3432 * Return: zero on success, else a negative error code. 3433 */ 3434 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3435 struct spi_delay *hold, struct spi_delay *inactive) 3436 { 3437 size_t len; 3438 3439 if (spi->controller->set_cs_timing) 3440 return spi->controller->set_cs_timing(spi, setup, hold, 3441 inactive); 3442 3443 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3444 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3445 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3446 dev_err(&spi->dev, 3447 "Clock-cycle delays for CS not supported in SW mode\n"); 3448 return -ENOTSUPP; 3449 } 3450 3451 len = sizeof(struct spi_delay); 3452 3453 /* copy delays to controller */ 3454 if (setup) 3455 memcpy(&spi->controller->cs_setup, setup, len); 3456 else 3457 memset(&spi->controller->cs_setup, 0, len); 3458 3459 if (hold) 3460 memcpy(&spi->controller->cs_hold, hold, len); 3461 else 3462 memset(&spi->controller->cs_hold, 0, len); 3463 3464 if (inactive) 3465 memcpy(&spi->controller->cs_inactive, inactive, len); 3466 else 3467 memset(&spi->controller->cs_inactive, 0, len); 3468 3469 return 0; 3470 } 3471 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3472 3473 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3474 struct spi_device *spi) 3475 { 3476 int delay1, delay2; 3477 3478 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3479 if (delay1 < 0) 3480 return delay1; 3481 3482 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3483 if (delay2 < 0) 3484 return delay2; 3485 3486 if (delay1 < delay2) 3487 memcpy(&xfer->word_delay, &spi->word_delay, 3488 sizeof(xfer->word_delay)); 3489 3490 return 0; 3491 } 3492 3493 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3494 { 3495 struct spi_controller *ctlr = spi->controller; 3496 struct spi_transfer *xfer; 3497 int w_size; 3498 3499 if (list_empty(&message->transfers)) 3500 return -EINVAL; 3501 3502 /* If an SPI controller does not support toggling the CS line on each 3503 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3504 * for the CS line, we can emulate the CS-per-word hardware function by 3505 * splitting transfers into one-word transfers and ensuring that 3506 * cs_change is set for each transfer. 3507 */ 3508 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3509 spi->cs_gpiod || 3510 gpio_is_valid(spi->cs_gpio))) { 3511 size_t maxsize; 3512 int ret; 3513 3514 maxsize = (spi->bits_per_word + 7) / 8; 3515 3516 /* spi_split_transfers_maxsize() requires message->spi */ 3517 message->spi = spi; 3518 3519 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3520 GFP_KERNEL); 3521 if (ret) 3522 return ret; 3523 3524 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3525 /* don't change cs_change on the last entry in the list */ 3526 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3527 break; 3528 xfer->cs_change = 1; 3529 } 3530 } 3531 3532 /* Half-duplex links include original MicroWire, and ones with 3533 * only one data pin like SPI_3WIRE (switches direction) or where 3534 * either MOSI or MISO is missing. They can also be caused by 3535 * software limitations. 3536 */ 3537 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3538 (spi->mode & SPI_3WIRE)) { 3539 unsigned flags = ctlr->flags; 3540 3541 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3542 if (xfer->rx_buf && xfer->tx_buf) 3543 return -EINVAL; 3544 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3545 return -EINVAL; 3546 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3547 return -EINVAL; 3548 } 3549 } 3550 3551 /** 3552 * Set transfer bits_per_word and max speed as spi device default if 3553 * it is not set for this transfer. 3554 * Set transfer tx_nbits and rx_nbits as single transfer default 3555 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3556 * Ensure transfer word_delay is at least as long as that required by 3557 * device itself. 3558 */ 3559 message->frame_length = 0; 3560 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3561 xfer->effective_speed_hz = 0; 3562 message->frame_length += xfer->len; 3563 if (!xfer->bits_per_word) 3564 xfer->bits_per_word = spi->bits_per_word; 3565 3566 if (!xfer->speed_hz) 3567 xfer->speed_hz = spi->max_speed_hz; 3568 3569 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3570 xfer->speed_hz = ctlr->max_speed_hz; 3571 3572 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3573 return -EINVAL; 3574 3575 /* 3576 * SPI transfer length should be multiple of SPI word size 3577 * where SPI word size should be power-of-two multiple 3578 */ 3579 if (xfer->bits_per_word <= 8) 3580 w_size = 1; 3581 else if (xfer->bits_per_word <= 16) 3582 w_size = 2; 3583 else 3584 w_size = 4; 3585 3586 /* No partial transfers accepted */ 3587 if (xfer->len % w_size) 3588 return -EINVAL; 3589 3590 if (xfer->speed_hz && ctlr->min_speed_hz && 3591 xfer->speed_hz < ctlr->min_speed_hz) 3592 return -EINVAL; 3593 3594 if (xfer->tx_buf && !xfer->tx_nbits) 3595 xfer->tx_nbits = SPI_NBITS_SINGLE; 3596 if (xfer->rx_buf && !xfer->rx_nbits) 3597 xfer->rx_nbits = SPI_NBITS_SINGLE; 3598 /* check transfer tx/rx_nbits: 3599 * 1. check the value matches one of single, dual and quad 3600 * 2. check tx/rx_nbits match the mode in spi_device 3601 */ 3602 if (xfer->tx_buf) { 3603 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3604 xfer->tx_nbits != SPI_NBITS_DUAL && 3605 xfer->tx_nbits != SPI_NBITS_QUAD) 3606 return -EINVAL; 3607 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3608 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3609 return -EINVAL; 3610 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3611 !(spi->mode & SPI_TX_QUAD)) 3612 return -EINVAL; 3613 } 3614 /* check transfer rx_nbits */ 3615 if (xfer->rx_buf) { 3616 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3617 xfer->rx_nbits != SPI_NBITS_DUAL && 3618 xfer->rx_nbits != SPI_NBITS_QUAD) 3619 return -EINVAL; 3620 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3621 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3622 return -EINVAL; 3623 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3624 !(spi->mode & SPI_RX_QUAD)) 3625 return -EINVAL; 3626 } 3627 3628 if (_spi_xfer_word_delay_update(xfer, spi)) 3629 return -EINVAL; 3630 } 3631 3632 message->status = -EINPROGRESS; 3633 3634 return 0; 3635 } 3636 3637 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3638 { 3639 struct spi_controller *ctlr = spi->controller; 3640 struct spi_transfer *xfer; 3641 3642 /* 3643 * Some controllers do not support doing regular SPI transfers. Return 3644 * ENOTSUPP when this is the case. 3645 */ 3646 if (!ctlr->transfer) 3647 return -ENOTSUPP; 3648 3649 message->spi = spi; 3650 3651 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3652 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3653 3654 trace_spi_message_submit(message); 3655 3656 if (!ctlr->ptp_sts_supported) { 3657 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3658 xfer->ptp_sts_word_pre = 0; 3659 ptp_read_system_prets(xfer->ptp_sts); 3660 } 3661 } 3662 3663 return ctlr->transfer(spi, message); 3664 } 3665 3666 /** 3667 * spi_async - asynchronous SPI transfer 3668 * @spi: device with which data will be exchanged 3669 * @message: describes the data transfers, including completion callback 3670 * Context: any (irqs may be blocked, etc) 3671 * 3672 * This call may be used in_irq and other contexts which can't sleep, 3673 * as well as from task contexts which can sleep. 3674 * 3675 * The completion callback is invoked in a context which can't sleep. 3676 * Before that invocation, the value of message->status is undefined. 3677 * When the callback is issued, message->status holds either zero (to 3678 * indicate complete success) or a negative error code. After that 3679 * callback returns, the driver which issued the transfer request may 3680 * deallocate the associated memory; it's no longer in use by any SPI 3681 * core or controller driver code. 3682 * 3683 * Note that although all messages to a spi_device are handled in 3684 * FIFO order, messages may go to different devices in other orders. 3685 * Some device might be higher priority, or have various "hard" access 3686 * time requirements, for example. 3687 * 3688 * On detection of any fault during the transfer, processing of 3689 * the entire message is aborted, and the device is deselected. 3690 * Until returning from the associated message completion callback, 3691 * no other spi_message queued to that device will be processed. 3692 * (This rule applies equally to all the synchronous transfer calls, 3693 * which are wrappers around this core asynchronous primitive.) 3694 * 3695 * Return: zero on success, else a negative error code. 3696 */ 3697 int spi_async(struct spi_device *spi, struct spi_message *message) 3698 { 3699 struct spi_controller *ctlr = spi->controller; 3700 int ret; 3701 unsigned long flags; 3702 3703 ret = __spi_validate(spi, message); 3704 if (ret != 0) 3705 return ret; 3706 3707 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3708 3709 if (ctlr->bus_lock_flag) 3710 ret = -EBUSY; 3711 else 3712 ret = __spi_async(spi, message); 3713 3714 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3715 3716 return ret; 3717 } 3718 EXPORT_SYMBOL_GPL(spi_async); 3719 3720 /** 3721 * spi_async_locked - version of spi_async with exclusive bus usage 3722 * @spi: device with which data will be exchanged 3723 * @message: describes the data transfers, including completion callback 3724 * Context: any (irqs may be blocked, etc) 3725 * 3726 * This call may be used in_irq and other contexts which can't sleep, 3727 * as well as from task contexts which can sleep. 3728 * 3729 * The completion callback is invoked in a context which can't sleep. 3730 * Before that invocation, the value of message->status is undefined. 3731 * When the callback is issued, message->status holds either zero (to 3732 * indicate complete success) or a negative error code. After that 3733 * callback returns, the driver which issued the transfer request may 3734 * deallocate the associated memory; it's no longer in use by any SPI 3735 * core or controller driver code. 3736 * 3737 * Note that although all messages to a spi_device are handled in 3738 * FIFO order, messages may go to different devices in other orders. 3739 * Some device might be higher priority, or have various "hard" access 3740 * time requirements, for example. 3741 * 3742 * On detection of any fault during the transfer, processing of 3743 * the entire message is aborted, and the device is deselected. 3744 * Until returning from the associated message completion callback, 3745 * no other spi_message queued to that device will be processed. 3746 * (This rule applies equally to all the synchronous transfer calls, 3747 * which are wrappers around this core asynchronous primitive.) 3748 * 3749 * Return: zero on success, else a negative error code. 3750 */ 3751 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3752 { 3753 struct spi_controller *ctlr = spi->controller; 3754 int ret; 3755 unsigned long flags; 3756 3757 ret = __spi_validate(spi, message); 3758 if (ret != 0) 3759 return ret; 3760 3761 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3762 3763 ret = __spi_async(spi, message); 3764 3765 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3766 3767 return ret; 3768 3769 } 3770 EXPORT_SYMBOL_GPL(spi_async_locked); 3771 3772 /*-------------------------------------------------------------------------*/ 3773 3774 /* Utility methods for SPI protocol drivers, layered on 3775 * top of the core. Some other utility methods are defined as 3776 * inline functions. 3777 */ 3778 3779 static void spi_complete(void *arg) 3780 { 3781 complete(arg); 3782 } 3783 3784 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3785 { 3786 DECLARE_COMPLETION_ONSTACK(done); 3787 int status; 3788 struct spi_controller *ctlr = spi->controller; 3789 unsigned long flags; 3790 3791 status = __spi_validate(spi, message); 3792 if (status != 0) 3793 return status; 3794 3795 message->complete = spi_complete; 3796 message->context = &done; 3797 message->spi = spi; 3798 3799 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3800 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3801 3802 /* If we're not using the legacy transfer method then we will 3803 * try to transfer in the calling context so special case. 3804 * This code would be less tricky if we could remove the 3805 * support for driver implemented message queues. 3806 */ 3807 if (ctlr->transfer == spi_queued_transfer) { 3808 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3809 3810 trace_spi_message_submit(message); 3811 3812 status = __spi_queued_transfer(spi, message, false); 3813 3814 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3815 } else { 3816 status = spi_async_locked(spi, message); 3817 } 3818 3819 if (status == 0) { 3820 /* Push out the messages in the calling context if we 3821 * can. 3822 */ 3823 if (ctlr->transfer == spi_queued_transfer) { 3824 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3825 spi_sync_immediate); 3826 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3827 spi_sync_immediate); 3828 __spi_pump_messages(ctlr, false); 3829 } 3830 3831 wait_for_completion(&done); 3832 status = message->status; 3833 } 3834 message->context = NULL; 3835 return status; 3836 } 3837 3838 /** 3839 * spi_sync - blocking/synchronous SPI data transfers 3840 * @spi: device with which data will be exchanged 3841 * @message: describes the data transfers 3842 * Context: can sleep 3843 * 3844 * This call may only be used from a context that may sleep. The sleep 3845 * is non-interruptible, and has no timeout. Low-overhead controller 3846 * drivers may DMA directly into and out of the message buffers. 3847 * 3848 * Note that the SPI device's chip select is active during the message, 3849 * and then is normally disabled between messages. Drivers for some 3850 * frequently-used devices may want to minimize costs of selecting a chip, 3851 * by leaving it selected in anticipation that the next message will go 3852 * to the same chip. (That may increase power usage.) 3853 * 3854 * Also, the caller is guaranteeing that the memory associated with the 3855 * message will not be freed before this call returns. 3856 * 3857 * Return: zero on success, else a negative error code. 3858 */ 3859 int spi_sync(struct spi_device *spi, struct spi_message *message) 3860 { 3861 int ret; 3862 3863 mutex_lock(&spi->controller->bus_lock_mutex); 3864 ret = __spi_sync(spi, message); 3865 mutex_unlock(&spi->controller->bus_lock_mutex); 3866 3867 return ret; 3868 } 3869 EXPORT_SYMBOL_GPL(spi_sync); 3870 3871 /** 3872 * spi_sync_locked - version of spi_sync with exclusive bus usage 3873 * @spi: device with which data will be exchanged 3874 * @message: describes the data transfers 3875 * Context: can sleep 3876 * 3877 * This call may only be used from a context that may sleep. The sleep 3878 * is non-interruptible, and has no timeout. Low-overhead controller 3879 * drivers may DMA directly into and out of the message buffers. 3880 * 3881 * This call should be used by drivers that require exclusive access to the 3882 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3883 * be released by a spi_bus_unlock call when the exclusive access is over. 3884 * 3885 * Return: zero on success, else a negative error code. 3886 */ 3887 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3888 { 3889 return __spi_sync(spi, message); 3890 } 3891 EXPORT_SYMBOL_GPL(spi_sync_locked); 3892 3893 /** 3894 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3895 * @ctlr: SPI bus master that should be locked for exclusive bus access 3896 * Context: can sleep 3897 * 3898 * This call may only be used from a context that may sleep. The sleep 3899 * is non-interruptible, and has no timeout. 3900 * 3901 * This call should be used by drivers that require exclusive access to the 3902 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3903 * exclusive access is over. Data transfer must be done by spi_sync_locked 3904 * and spi_async_locked calls when the SPI bus lock is held. 3905 * 3906 * Return: always zero. 3907 */ 3908 int spi_bus_lock(struct spi_controller *ctlr) 3909 { 3910 unsigned long flags; 3911 3912 mutex_lock(&ctlr->bus_lock_mutex); 3913 3914 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3915 ctlr->bus_lock_flag = 1; 3916 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3917 3918 /* mutex remains locked until spi_bus_unlock is called */ 3919 3920 return 0; 3921 } 3922 EXPORT_SYMBOL_GPL(spi_bus_lock); 3923 3924 /** 3925 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3926 * @ctlr: SPI bus master that was locked for exclusive bus access 3927 * Context: can sleep 3928 * 3929 * This call may only be used from a context that may sleep. The sleep 3930 * is non-interruptible, and has no timeout. 3931 * 3932 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3933 * call. 3934 * 3935 * Return: always zero. 3936 */ 3937 int spi_bus_unlock(struct spi_controller *ctlr) 3938 { 3939 ctlr->bus_lock_flag = 0; 3940 3941 mutex_unlock(&ctlr->bus_lock_mutex); 3942 3943 return 0; 3944 } 3945 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3946 3947 /* portable code must never pass more than 32 bytes */ 3948 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3949 3950 static u8 *buf; 3951 3952 /** 3953 * spi_write_then_read - SPI synchronous write followed by read 3954 * @spi: device with which data will be exchanged 3955 * @txbuf: data to be written (need not be dma-safe) 3956 * @n_tx: size of txbuf, in bytes 3957 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3958 * @n_rx: size of rxbuf, in bytes 3959 * Context: can sleep 3960 * 3961 * This performs a half duplex MicroWire style transaction with the 3962 * device, sending txbuf and then reading rxbuf. The return value 3963 * is zero for success, else a negative errno status code. 3964 * This call may only be used from a context that may sleep. 3965 * 3966 * Parameters to this routine are always copied using a small buffer. 3967 * Performance-sensitive or bulk transfer code should instead use 3968 * spi_{async,sync}() calls with dma-safe buffers. 3969 * 3970 * Return: zero on success, else a negative error code. 3971 */ 3972 int spi_write_then_read(struct spi_device *spi, 3973 const void *txbuf, unsigned n_tx, 3974 void *rxbuf, unsigned n_rx) 3975 { 3976 static DEFINE_MUTEX(lock); 3977 3978 int status; 3979 struct spi_message message; 3980 struct spi_transfer x[2]; 3981 u8 *local_buf; 3982 3983 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3984 * copying here, (as a pure convenience thing), but we can 3985 * keep heap costs out of the hot path unless someone else is 3986 * using the pre-allocated buffer or the transfer is too large. 3987 */ 3988 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3989 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3990 GFP_KERNEL | GFP_DMA); 3991 if (!local_buf) 3992 return -ENOMEM; 3993 } else { 3994 local_buf = buf; 3995 } 3996 3997 spi_message_init(&message); 3998 memset(x, 0, sizeof(x)); 3999 if (n_tx) { 4000 x[0].len = n_tx; 4001 spi_message_add_tail(&x[0], &message); 4002 } 4003 if (n_rx) { 4004 x[1].len = n_rx; 4005 spi_message_add_tail(&x[1], &message); 4006 } 4007 4008 memcpy(local_buf, txbuf, n_tx); 4009 x[0].tx_buf = local_buf; 4010 x[1].rx_buf = local_buf + n_tx; 4011 4012 /* do the i/o */ 4013 status = spi_sync(spi, &message); 4014 if (status == 0) 4015 memcpy(rxbuf, x[1].rx_buf, n_rx); 4016 4017 if (x[0].tx_buf == buf) 4018 mutex_unlock(&lock); 4019 else 4020 kfree(local_buf); 4021 4022 return status; 4023 } 4024 EXPORT_SYMBOL_GPL(spi_write_then_read); 4025 4026 /*-------------------------------------------------------------------------*/ 4027 4028 #if IS_ENABLED(CONFIG_OF) 4029 /* must call put_device() when done with returned spi_device device */ 4030 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4031 { 4032 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4033 4034 return dev ? to_spi_device(dev) : NULL; 4035 } 4036 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 4037 #endif /* IS_ENABLED(CONFIG_OF) */ 4038 4039 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4040 /* the spi controllers are not using spi_bus, so we find it with another way */ 4041 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4042 { 4043 struct device *dev; 4044 4045 dev = class_find_device_by_of_node(&spi_master_class, node); 4046 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4047 dev = class_find_device_by_of_node(&spi_slave_class, node); 4048 if (!dev) 4049 return NULL; 4050 4051 /* reference got in class_find_device */ 4052 return container_of(dev, struct spi_controller, dev); 4053 } 4054 4055 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4056 void *arg) 4057 { 4058 struct of_reconfig_data *rd = arg; 4059 struct spi_controller *ctlr; 4060 struct spi_device *spi; 4061 4062 switch (of_reconfig_get_state_change(action, arg)) { 4063 case OF_RECONFIG_CHANGE_ADD: 4064 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4065 if (ctlr == NULL) 4066 return NOTIFY_OK; /* not for us */ 4067 4068 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4069 put_device(&ctlr->dev); 4070 return NOTIFY_OK; 4071 } 4072 4073 spi = of_register_spi_device(ctlr, rd->dn); 4074 put_device(&ctlr->dev); 4075 4076 if (IS_ERR(spi)) { 4077 pr_err("%s: failed to create for '%pOF'\n", 4078 __func__, rd->dn); 4079 of_node_clear_flag(rd->dn, OF_POPULATED); 4080 return notifier_from_errno(PTR_ERR(spi)); 4081 } 4082 break; 4083 4084 case OF_RECONFIG_CHANGE_REMOVE: 4085 /* already depopulated? */ 4086 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4087 return NOTIFY_OK; 4088 4089 /* find our device by node */ 4090 spi = of_find_spi_device_by_node(rd->dn); 4091 if (spi == NULL) 4092 return NOTIFY_OK; /* no? not meant for us */ 4093 4094 /* unregister takes one ref away */ 4095 spi_unregister_device(spi); 4096 4097 /* and put the reference of the find */ 4098 put_device(&spi->dev); 4099 break; 4100 } 4101 4102 return NOTIFY_OK; 4103 } 4104 4105 static struct notifier_block spi_of_notifier = { 4106 .notifier_call = of_spi_notify, 4107 }; 4108 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4109 extern struct notifier_block spi_of_notifier; 4110 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4111 4112 #if IS_ENABLED(CONFIG_ACPI) 4113 static int spi_acpi_controller_match(struct device *dev, const void *data) 4114 { 4115 return ACPI_COMPANION(dev->parent) == data; 4116 } 4117 4118 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4119 { 4120 struct device *dev; 4121 4122 dev = class_find_device(&spi_master_class, NULL, adev, 4123 spi_acpi_controller_match); 4124 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4125 dev = class_find_device(&spi_slave_class, NULL, adev, 4126 spi_acpi_controller_match); 4127 if (!dev) 4128 return NULL; 4129 4130 return container_of(dev, struct spi_controller, dev); 4131 } 4132 4133 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4134 { 4135 struct device *dev; 4136 4137 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4138 return to_spi_device(dev); 4139 } 4140 4141 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4142 void *arg) 4143 { 4144 struct acpi_device *adev = arg; 4145 struct spi_controller *ctlr; 4146 struct spi_device *spi; 4147 4148 switch (value) { 4149 case ACPI_RECONFIG_DEVICE_ADD: 4150 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4151 if (!ctlr) 4152 break; 4153 4154 acpi_register_spi_device(ctlr, adev); 4155 put_device(&ctlr->dev); 4156 break; 4157 case ACPI_RECONFIG_DEVICE_REMOVE: 4158 if (!acpi_device_enumerated(adev)) 4159 break; 4160 4161 spi = acpi_spi_find_device_by_adev(adev); 4162 if (!spi) 4163 break; 4164 4165 spi_unregister_device(spi); 4166 put_device(&spi->dev); 4167 break; 4168 } 4169 4170 return NOTIFY_OK; 4171 } 4172 4173 static struct notifier_block spi_acpi_notifier = { 4174 .notifier_call = acpi_spi_notify, 4175 }; 4176 #else 4177 extern struct notifier_block spi_acpi_notifier; 4178 #endif 4179 4180 static int __init spi_init(void) 4181 { 4182 int status; 4183 4184 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4185 if (!buf) { 4186 status = -ENOMEM; 4187 goto err0; 4188 } 4189 4190 status = bus_register(&spi_bus_type); 4191 if (status < 0) 4192 goto err1; 4193 4194 status = class_register(&spi_master_class); 4195 if (status < 0) 4196 goto err2; 4197 4198 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4199 status = class_register(&spi_slave_class); 4200 if (status < 0) 4201 goto err3; 4202 } 4203 4204 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4205 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4206 if (IS_ENABLED(CONFIG_ACPI)) 4207 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4208 4209 return 0; 4210 4211 err3: 4212 class_unregister(&spi_master_class); 4213 err2: 4214 bus_unregister(&spi_bus_type); 4215 err1: 4216 kfree(buf); 4217 buf = NULL; 4218 err0: 4219 return status; 4220 } 4221 4222 /* board_info is normally registered in arch_initcall(), 4223 * but even essential drivers wait till later 4224 * 4225 * REVISIT only boardinfo really needs static linking. the rest (device and 4226 * driver registration) _could_ be dynamically linked (modular) ... costs 4227 * include needing to have boardinfo data structures be much more public. 4228 */ 4229 postcore_initcall(spi_init); 4230