1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Emptry string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del opertion for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /** 479 * spi_alloc_device - Allocate a new SPI device 480 * @ctlr: Controller to which device is connected 481 * Context: can sleep 482 * 483 * Allows a driver to allocate and initialize a spi_device without 484 * registering it immediately. This allows a driver to directly 485 * fill the spi_device with device parameters before calling 486 * spi_add_device() on it. 487 * 488 * Caller is responsible to call spi_add_device() on the returned 489 * spi_device structure to add it to the SPI controller. If the caller 490 * needs to discard the spi_device without adding it, then it should 491 * call spi_dev_put() on it. 492 * 493 * Return: a pointer to the new device, or NULL. 494 */ 495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 496 { 497 struct spi_device *spi; 498 499 if (!spi_controller_get(ctlr)) 500 return NULL; 501 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 503 if (!spi) { 504 spi_controller_put(ctlr); 505 return NULL; 506 } 507 508 spi->master = spi->controller = ctlr; 509 spi->dev.parent = &ctlr->dev; 510 spi->dev.bus = &spi_bus_type; 511 spi->dev.release = spidev_release; 512 spi->cs_gpio = -ENOENT; 513 514 spin_lock_init(&spi->statistics.lock); 515 516 device_initialize(&spi->dev); 517 return spi; 518 } 519 EXPORT_SYMBOL_GPL(spi_alloc_device); 520 521 static void spi_dev_set_name(struct spi_device *spi) 522 { 523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 524 525 if (adev) { 526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 527 return; 528 } 529 530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 531 spi->chip_select); 532 } 533 534 static int spi_dev_check(struct device *dev, void *data) 535 { 536 struct spi_device *spi = to_spi_device(dev); 537 struct spi_device *new_spi = data; 538 539 if (spi->controller == new_spi->controller && 540 spi->chip_select == new_spi->chip_select) 541 return -EBUSY; 542 return 0; 543 } 544 545 /** 546 * spi_add_device - Add spi_device allocated with spi_alloc_device 547 * @spi: spi_device to register 548 * 549 * Companion function to spi_alloc_device. Devices allocated with 550 * spi_alloc_device can be added onto the spi bus with this function. 551 * 552 * Return: 0 on success; negative errno on failure 553 */ 554 int spi_add_device(struct spi_device *spi) 555 { 556 static DEFINE_MUTEX(spi_add_lock); 557 struct spi_controller *ctlr = spi->controller; 558 struct device *dev = ctlr->dev.parent; 559 int status; 560 561 /* Chipselects are numbered 0..max; validate. */ 562 if (spi->chip_select >= ctlr->num_chipselect) { 563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 564 ctlr->num_chipselect); 565 return -EINVAL; 566 } 567 568 /* Set the bus ID string */ 569 spi_dev_set_name(spi); 570 571 /* We need to make sure there's no other device with this 572 * chipselect **BEFORE** we call setup(), else we'll trash 573 * its configuration. Lock against concurrent add() calls. 574 */ 575 mutex_lock(&spi_add_lock); 576 577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 578 if (status) { 579 dev_err(dev, "chipselect %d already in use\n", 580 spi->chip_select); 581 goto done; 582 } 583 584 /* Descriptors take precedence */ 585 if (ctlr->cs_gpiods) 586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 587 else if (ctlr->cs_gpios) 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 589 590 /* Drivers may modify this initial i/o setup, but will 591 * normally rely on the device being setup. Devices 592 * using SPI_CS_HIGH can't coexist well otherwise... 593 */ 594 status = spi_setup(spi); 595 if (status < 0) { 596 dev_err(dev, "can't setup %s, status %d\n", 597 dev_name(&spi->dev), status); 598 goto done; 599 } 600 601 /* Device may be bound to an active driver when this returns */ 602 status = device_add(&spi->dev); 603 if (status < 0) 604 dev_err(dev, "can't add %s, status %d\n", 605 dev_name(&spi->dev), status); 606 else 607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 608 609 done: 610 mutex_unlock(&spi_add_lock); 611 return status; 612 } 613 EXPORT_SYMBOL_GPL(spi_add_device); 614 615 /** 616 * spi_new_device - instantiate one new SPI device 617 * @ctlr: Controller to which device is connected 618 * @chip: Describes the SPI device 619 * Context: can sleep 620 * 621 * On typical mainboards, this is purely internal; and it's not needed 622 * after board init creates the hard-wired devices. Some development 623 * platforms may not be able to use spi_register_board_info though, and 624 * this is exported so that for example a USB or parport based adapter 625 * driver could add devices (which it would learn about out-of-band). 626 * 627 * Return: the new device, or NULL. 628 */ 629 struct spi_device *spi_new_device(struct spi_controller *ctlr, 630 struct spi_board_info *chip) 631 { 632 struct spi_device *proxy; 633 int status; 634 635 /* NOTE: caller did any chip->bus_num checks necessary. 636 * 637 * Also, unless we change the return value convention to use 638 * error-or-pointer (not NULL-or-pointer), troubleshootability 639 * suggests syslogged diagnostics are best here (ugh). 640 */ 641 642 proxy = spi_alloc_device(ctlr); 643 if (!proxy) 644 return NULL; 645 646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 647 648 proxy->chip_select = chip->chip_select; 649 proxy->max_speed_hz = chip->max_speed_hz; 650 proxy->mode = chip->mode; 651 proxy->irq = chip->irq; 652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 653 proxy->dev.platform_data = (void *) chip->platform_data; 654 proxy->controller_data = chip->controller_data; 655 proxy->controller_state = NULL; 656 657 if (chip->properties) { 658 status = device_add_properties(&proxy->dev, chip->properties); 659 if (status) { 660 dev_err(&ctlr->dev, 661 "failed to add properties to '%s': %d\n", 662 chip->modalias, status); 663 goto err_dev_put; 664 } 665 } 666 667 status = spi_add_device(proxy); 668 if (status < 0) 669 goto err_remove_props; 670 671 return proxy; 672 673 err_remove_props: 674 if (chip->properties) 675 device_remove_properties(&proxy->dev); 676 err_dev_put: 677 spi_dev_put(proxy); 678 return NULL; 679 } 680 EXPORT_SYMBOL_GPL(spi_new_device); 681 682 /** 683 * spi_unregister_device - unregister a single SPI device 684 * @spi: spi_device to unregister 685 * 686 * Start making the passed SPI device vanish. Normally this would be handled 687 * by spi_unregister_controller(). 688 */ 689 void spi_unregister_device(struct spi_device *spi) 690 { 691 if (!spi) 692 return; 693 694 if (spi->dev.of_node) { 695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 696 of_node_put(spi->dev.of_node); 697 } 698 if (ACPI_COMPANION(&spi->dev)) 699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 700 device_unregister(&spi->dev); 701 } 702 EXPORT_SYMBOL_GPL(spi_unregister_device); 703 704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 705 struct spi_board_info *bi) 706 { 707 struct spi_device *dev; 708 709 if (ctlr->bus_num != bi->bus_num) 710 return; 711 712 dev = spi_new_device(ctlr, bi); 713 if (!dev) 714 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 715 bi->modalias); 716 } 717 718 /** 719 * spi_register_board_info - register SPI devices for a given board 720 * @info: array of chip descriptors 721 * @n: how many descriptors are provided 722 * Context: can sleep 723 * 724 * Board-specific early init code calls this (probably during arch_initcall) 725 * with segments of the SPI device table. Any device nodes are created later, 726 * after the relevant parent SPI controller (bus_num) is defined. We keep 727 * this table of devices forever, so that reloading a controller driver will 728 * not make Linux forget about these hard-wired devices. 729 * 730 * Other code can also call this, e.g. a particular add-on board might provide 731 * SPI devices through its expansion connector, so code initializing that board 732 * would naturally declare its SPI devices. 733 * 734 * The board info passed can safely be __initdata ... but be careful of 735 * any embedded pointers (platform_data, etc), they're copied as-is. 736 * Device properties are deep-copied though. 737 * 738 * Return: zero on success, else a negative error code. 739 */ 740 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 741 { 742 struct boardinfo *bi; 743 int i; 744 745 if (!n) 746 return 0; 747 748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 749 if (!bi) 750 return -ENOMEM; 751 752 for (i = 0; i < n; i++, bi++, info++) { 753 struct spi_controller *ctlr; 754 755 memcpy(&bi->board_info, info, sizeof(*info)); 756 if (info->properties) { 757 bi->board_info.properties = 758 property_entries_dup(info->properties); 759 if (IS_ERR(bi->board_info.properties)) 760 return PTR_ERR(bi->board_info.properties); 761 } 762 763 mutex_lock(&board_lock); 764 list_add_tail(&bi->list, &board_list); 765 list_for_each_entry(ctlr, &spi_controller_list, list) 766 spi_match_controller_to_boardinfo(ctlr, 767 &bi->board_info); 768 mutex_unlock(&board_lock); 769 } 770 771 return 0; 772 } 773 774 /*-------------------------------------------------------------------------*/ 775 776 static void spi_set_cs(struct spi_device *spi, bool enable) 777 { 778 if (spi->mode & SPI_CS_HIGH) 779 enable = !enable; 780 781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 782 /* 783 * Honour the SPI_NO_CS flag and invert the enable line, as 784 * active low is default for SPI. Execution paths that handle 785 * polarity inversion in gpiolib (such as device tree) will 786 * enforce active high using the SPI_CS_HIGH resulting in a 787 * double inversion through the code above. 788 */ 789 if (!(spi->mode & SPI_NO_CS)) { 790 if (spi->cs_gpiod) 791 gpiod_set_value_cansleep(spi->cs_gpiod, 792 !enable); 793 else 794 gpio_set_value_cansleep(spi->cs_gpio, !enable); 795 } 796 /* Some SPI masters need both GPIO CS & slave_select */ 797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 798 spi->controller->set_cs) 799 spi->controller->set_cs(spi, !enable); 800 } else if (spi->controller->set_cs) { 801 spi->controller->set_cs(spi, !enable); 802 } 803 } 804 805 #ifdef CONFIG_HAS_DMA 806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 807 struct sg_table *sgt, void *buf, size_t len, 808 enum dma_data_direction dir) 809 { 810 const bool vmalloced_buf = is_vmalloc_addr(buf); 811 unsigned int max_seg_size = dma_get_max_seg_size(dev); 812 #ifdef CONFIG_HIGHMEM 813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 814 (unsigned long)buf < (PKMAP_BASE + 815 (LAST_PKMAP * PAGE_SIZE))); 816 #else 817 const bool kmap_buf = false; 818 #endif 819 int desc_len; 820 int sgs; 821 struct page *vm_page; 822 struct scatterlist *sg; 823 void *sg_buf; 824 size_t min; 825 int i, ret; 826 827 if (vmalloced_buf || kmap_buf) { 828 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 830 } else if (virt_addr_valid(buf)) { 831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 832 sgs = DIV_ROUND_UP(len, desc_len); 833 } else { 834 return -EINVAL; 835 } 836 837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 838 if (ret != 0) 839 return ret; 840 841 sg = &sgt->sgl[0]; 842 for (i = 0; i < sgs; i++) { 843 844 if (vmalloced_buf || kmap_buf) { 845 /* 846 * Next scatterlist entry size is the minimum between 847 * the desc_len and the remaining buffer length that 848 * fits in a page. 849 */ 850 min = min_t(size_t, desc_len, 851 min_t(size_t, len, 852 PAGE_SIZE - offset_in_page(buf))); 853 if (vmalloced_buf) 854 vm_page = vmalloc_to_page(buf); 855 else 856 vm_page = kmap_to_page(buf); 857 if (!vm_page) { 858 sg_free_table(sgt); 859 return -ENOMEM; 860 } 861 sg_set_page(sg, vm_page, 862 min, offset_in_page(buf)); 863 } else { 864 min = min_t(size_t, len, desc_len); 865 sg_buf = buf; 866 sg_set_buf(sg, sg_buf, min); 867 } 868 869 buf += min; 870 len -= min; 871 sg = sg_next(sg); 872 } 873 874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 875 if (!ret) 876 ret = -ENOMEM; 877 if (ret < 0) { 878 sg_free_table(sgt); 879 return ret; 880 } 881 882 sgt->nents = ret; 883 884 return 0; 885 } 886 887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 888 struct sg_table *sgt, enum dma_data_direction dir) 889 { 890 if (sgt->orig_nents) { 891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 892 sg_free_table(sgt); 893 } 894 } 895 896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 897 { 898 struct device *tx_dev, *rx_dev; 899 struct spi_transfer *xfer; 900 int ret; 901 902 if (!ctlr->can_dma) 903 return 0; 904 905 if (ctlr->dma_tx) 906 tx_dev = ctlr->dma_tx->device->dev; 907 else 908 tx_dev = ctlr->dev.parent; 909 910 if (ctlr->dma_rx) 911 rx_dev = ctlr->dma_rx->device->dev; 912 else 913 rx_dev = ctlr->dev.parent; 914 915 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 916 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 917 continue; 918 919 if (xfer->tx_buf != NULL) { 920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 921 (void *)xfer->tx_buf, xfer->len, 922 DMA_TO_DEVICE); 923 if (ret != 0) 924 return ret; 925 } 926 927 if (xfer->rx_buf != NULL) { 928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 929 xfer->rx_buf, xfer->len, 930 DMA_FROM_DEVICE); 931 if (ret != 0) { 932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 933 DMA_TO_DEVICE); 934 return ret; 935 } 936 } 937 } 938 939 ctlr->cur_msg_mapped = true; 940 941 return 0; 942 } 943 944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 945 { 946 struct spi_transfer *xfer; 947 struct device *tx_dev, *rx_dev; 948 949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 950 return 0; 951 952 if (ctlr->dma_tx) 953 tx_dev = ctlr->dma_tx->device->dev; 954 else 955 tx_dev = ctlr->dev.parent; 956 957 if (ctlr->dma_rx) 958 rx_dev = ctlr->dma_rx->device->dev; 959 else 960 rx_dev = ctlr->dev.parent; 961 962 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 963 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 964 continue; 965 966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 968 } 969 970 return 0; 971 } 972 #else /* !CONFIG_HAS_DMA */ 973 static inline int __spi_map_msg(struct spi_controller *ctlr, 974 struct spi_message *msg) 975 { 976 return 0; 977 } 978 979 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 980 struct spi_message *msg) 981 { 982 return 0; 983 } 984 #endif /* !CONFIG_HAS_DMA */ 985 986 static inline int spi_unmap_msg(struct spi_controller *ctlr, 987 struct spi_message *msg) 988 { 989 struct spi_transfer *xfer; 990 991 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 992 /* 993 * Restore the original value of tx_buf or rx_buf if they are 994 * NULL. 995 */ 996 if (xfer->tx_buf == ctlr->dummy_tx) 997 xfer->tx_buf = NULL; 998 if (xfer->rx_buf == ctlr->dummy_rx) 999 xfer->rx_buf = NULL; 1000 } 1001 1002 return __spi_unmap_msg(ctlr, msg); 1003 } 1004 1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1006 { 1007 struct spi_transfer *xfer; 1008 void *tmp; 1009 unsigned int max_tx, max_rx; 1010 1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { 1012 max_tx = 0; 1013 max_rx = 0; 1014 1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1017 !xfer->tx_buf) 1018 max_tx = max(xfer->len, max_tx); 1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1020 !xfer->rx_buf) 1021 max_rx = max(xfer->len, max_rx); 1022 } 1023 1024 if (max_tx) { 1025 tmp = krealloc(ctlr->dummy_tx, max_tx, 1026 GFP_KERNEL | GFP_DMA); 1027 if (!tmp) 1028 return -ENOMEM; 1029 ctlr->dummy_tx = tmp; 1030 memset(tmp, 0, max_tx); 1031 } 1032 1033 if (max_rx) { 1034 tmp = krealloc(ctlr->dummy_rx, max_rx, 1035 GFP_KERNEL | GFP_DMA); 1036 if (!tmp) 1037 return -ENOMEM; 1038 ctlr->dummy_rx = tmp; 1039 } 1040 1041 if (max_tx || max_rx) { 1042 list_for_each_entry(xfer, &msg->transfers, 1043 transfer_list) { 1044 if (!xfer->len) 1045 continue; 1046 if (!xfer->tx_buf) 1047 xfer->tx_buf = ctlr->dummy_tx; 1048 if (!xfer->rx_buf) 1049 xfer->rx_buf = ctlr->dummy_rx; 1050 } 1051 } 1052 } 1053 1054 return __spi_map_msg(ctlr, msg); 1055 } 1056 1057 static int spi_transfer_wait(struct spi_controller *ctlr, 1058 struct spi_message *msg, 1059 struct spi_transfer *xfer) 1060 { 1061 struct spi_statistics *statm = &ctlr->statistics; 1062 struct spi_statistics *stats = &msg->spi->statistics; 1063 unsigned long long ms = 1; 1064 1065 if (spi_controller_is_slave(ctlr)) { 1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1068 return -EINTR; 1069 } 1070 } else { 1071 ms = 8LL * 1000LL * xfer->len; 1072 do_div(ms, xfer->speed_hz); 1073 ms += ms + 200; /* some tolerance */ 1074 1075 if (ms > UINT_MAX) 1076 ms = UINT_MAX; 1077 1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1079 msecs_to_jiffies(ms)); 1080 1081 if (ms == 0) { 1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1084 dev_err(&msg->spi->dev, 1085 "SPI transfer timed out\n"); 1086 return -ETIMEDOUT; 1087 } 1088 } 1089 1090 return 0; 1091 } 1092 1093 static void _spi_transfer_delay_ns(u32 ns) 1094 { 1095 if (!ns) 1096 return; 1097 if (ns <= 1000) { 1098 ndelay(ns); 1099 } else { 1100 u32 us = DIV_ROUND_UP(ns, 1000); 1101 1102 if (us <= 10) 1103 udelay(us); 1104 else 1105 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1106 } 1107 } 1108 1109 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1110 struct spi_transfer *xfer) 1111 { 1112 u32 delay = xfer->cs_change_delay; 1113 u32 unit = xfer->cs_change_delay_unit; 1114 u32 hz; 1115 1116 /* return early on "fast" mode - for everything but USECS */ 1117 if (!delay && unit != SPI_DELAY_UNIT_USECS) 1118 return; 1119 1120 switch (unit) { 1121 case SPI_DELAY_UNIT_USECS: 1122 /* for compatibility use default of 10us */ 1123 if (!delay) 1124 delay = 10000; 1125 else 1126 delay *= 1000; 1127 break; 1128 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1129 break; 1130 case SPI_DELAY_UNIT_SCK: 1131 /* if there is no effective speed know, then approximate 1132 * by underestimating with half the requested hz 1133 */ 1134 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1135 delay *= DIV_ROUND_UP(1000000000, hz); 1136 break; 1137 default: 1138 dev_err_once(&msg->spi->dev, 1139 "Use of unsupported delay unit %i, using default of 10us\n", 1140 xfer->cs_change_delay_unit); 1141 delay = 10000; 1142 } 1143 /* now sleep for the requested amount of time */ 1144 _spi_transfer_delay_ns(delay); 1145 } 1146 1147 /* 1148 * spi_transfer_one_message - Default implementation of transfer_one_message() 1149 * 1150 * This is a standard implementation of transfer_one_message() for 1151 * drivers which implement a transfer_one() operation. It provides 1152 * standard handling of delays and chip select management. 1153 */ 1154 static int spi_transfer_one_message(struct spi_controller *ctlr, 1155 struct spi_message *msg) 1156 { 1157 struct spi_transfer *xfer; 1158 bool keep_cs = false; 1159 int ret = 0; 1160 struct spi_statistics *statm = &ctlr->statistics; 1161 struct spi_statistics *stats = &msg->spi->statistics; 1162 1163 spi_set_cs(msg->spi, true); 1164 1165 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1166 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1167 1168 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1169 trace_spi_transfer_start(msg, xfer); 1170 1171 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1172 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1173 1174 if (xfer->tx_buf || xfer->rx_buf) { 1175 reinit_completion(&ctlr->xfer_completion); 1176 1177 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1178 if (ret < 0) { 1179 SPI_STATISTICS_INCREMENT_FIELD(statm, 1180 errors); 1181 SPI_STATISTICS_INCREMENT_FIELD(stats, 1182 errors); 1183 dev_err(&msg->spi->dev, 1184 "SPI transfer failed: %d\n", ret); 1185 goto out; 1186 } 1187 1188 if (ret > 0) { 1189 ret = spi_transfer_wait(ctlr, msg, xfer); 1190 if (ret < 0) 1191 msg->status = ret; 1192 } 1193 } else { 1194 if (xfer->len) 1195 dev_err(&msg->spi->dev, 1196 "Bufferless transfer has length %u\n", 1197 xfer->len); 1198 } 1199 1200 trace_spi_transfer_stop(msg, xfer); 1201 1202 if (msg->status != -EINPROGRESS) 1203 goto out; 1204 1205 if (xfer->delay_usecs) 1206 _spi_transfer_delay_ns(xfer->delay_usecs * 1000); 1207 1208 if (xfer->cs_change) { 1209 if (list_is_last(&xfer->transfer_list, 1210 &msg->transfers)) { 1211 keep_cs = true; 1212 } else { 1213 spi_set_cs(msg->spi, false); 1214 _spi_transfer_cs_change_delay(msg, xfer); 1215 spi_set_cs(msg->spi, true); 1216 } 1217 } 1218 1219 msg->actual_length += xfer->len; 1220 } 1221 1222 out: 1223 if (ret != 0 || !keep_cs) 1224 spi_set_cs(msg->spi, false); 1225 1226 if (msg->status == -EINPROGRESS) 1227 msg->status = ret; 1228 1229 if (msg->status && ctlr->handle_err) 1230 ctlr->handle_err(ctlr, msg); 1231 1232 spi_res_release(ctlr, msg); 1233 1234 spi_finalize_current_message(ctlr); 1235 1236 return ret; 1237 } 1238 1239 /** 1240 * spi_finalize_current_transfer - report completion of a transfer 1241 * @ctlr: the controller reporting completion 1242 * 1243 * Called by SPI drivers using the core transfer_one_message() 1244 * implementation to notify it that the current interrupt driven 1245 * transfer has finished and the next one may be scheduled. 1246 */ 1247 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1248 { 1249 complete(&ctlr->xfer_completion); 1250 } 1251 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1252 1253 /** 1254 * __spi_pump_messages - function which processes spi message queue 1255 * @ctlr: controller to process queue for 1256 * @in_kthread: true if we are in the context of the message pump thread 1257 * 1258 * This function checks if there is any spi message in the queue that 1259 * needs processing and if so call out to the driver to initialize hardware 1260 * and transfer each message. 1261 * 1262 * Note that it is called both from the kthread itself and also from 1263 * inside spi_sync(); the queue extraction handling at the top of the 1264 * function should deal with this safely. 1265 */ 1266 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1267 { 1268 struct spi_message *msg; 1269 bool was_busy = false; 1270 unsigned long flags; 1271 int ret; 1272 1273 /* Lock queue */ 1274 spin_lock_irqsave(&ctlr->queue_lock, flags); 1275 1276 /* Make sure we are not already running a message */ 1277 if (ctlr->cur_msg) { 1278 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1279 return; 1280 } 1281 1282 /* If another context is idling the device then defer */ 1283 if (ctlr->idling) { 1284 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1285 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1286 return; 1287 } 1288 1289 /* Check if the queue is idle */ 1290 if (list_empty(&ctlr->queue) || !ctlr->running) { 1291 if (!ctlr->busy) { 1292 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1293 return; 1294 } 1295 1296 /* Only do teardown in the thread */ 1297 if (!in_kthread) { 1298 kthread_queue_work(&ctlr->kworker, 1299 &ctlr->pump_messages); 1300 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1301 return; 1302 } 1303 1304 ctlr->busy = false; 1305 ctlr->idling = true; 1306 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1307 1308 kfree(ctlr->dummy_rx); 1309 ctlr->dummy_rx = NULL; 1310 kfree(ctlr->dummy_tx); 1311 ctlr->dummy_tx = NULL; 1312 if (ctlr->unprepare_transfer_hardware && 1313 ctlr->unprepare_transfer_hardware(ctlr)) 1314 dev_err(&ctlr->dev, 1315 "failed to unprepare transfer hardware\n"); 1316 if (ctlr->auto_runtime_pm) { 1317 pm_runtime_mark_last_busy(ctlr->dev.parent); 1318 pm_runtime_put_autosuspend(ctlr->dev.parent); 1319 } 1320 trace_spi_controller_idle(ctlr); 1321 1322 spin_lock_irqsave(&ctlr->queue_lock, flags); 1323 ctlr->idling = false; 1324 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1325 return; 1326 } 1327 1328 /* Extract head of queue */ 1329 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1330 ctlr->cur_msg = msg; 1331 1332 list_del_init(&msg->queue); 1333 if (ctlr->busy) 1334 was_busy = true; 1335 else 1336 ctlr->busy = true; 1337 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1338 1339 mutex_lock(&ctlr->io_mutex); 1340 1341 if (!was_busy && ctlr->auto_runtime_pm) { 1342 ret = pm_runtime_get_sync(ctlr->dev.parent); 1343 if (ret < 0) { 1344 pm_runtime_put_noidle(ctlr->dev.parent); 1345 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1346 ret); 1347 mutex_unlock(&ctlr->io_mutex); 1348 return; 1349 } 1350 } 1351 1352 if (!was_busy) 1353 trace_spi_controller_busy(ctlr); 1354 1355 if (!was_busy && ctlr->prepare_transfer_hardware) { 1356 ret = ctlr->prepare_transfer_hardware(ctlr); 1357 if (ret) { 1358 dev_err(&ctlr->dev, 1359 "failed to prepare transfer hardware: %d\n", 1360 ret); 1361 1362 if (ctlr->auto_runtime_pm) 1363 pm_runtime_put(ctlr->dev.parent); 1364 1365 msg->status = ret; 1366 spi_finalize_current_message(ctlr); 1367 1368 mutex_unlock(&ctlr->io_mutex); 1369 return; 1370 } 1371 } 1372 1373 trace_spi_message_start(msg); 1374 1375 if (ctlr->prepare_message) { 1376 ret = ctlr->prepare_message(ctlr, msg); 1377 if (ret) { 1378 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1379 ret); 1380 msg->status = ret; 1381 spi_finalize_current_message(ctlr); 1382 goto out; 1383 } 1384 ctlr->cur_msg_prepared = true; 1385 } 1386 1387 ret = spi_map_msg(ctlr, msg); 1388 if (ret) { 1389 msg->status = ret; 1390 spi_finalize_current_message(ctlr); 1391 goto out; 1392 } 1393 1394 ret = ctlr->transfer_one_message(ctlr, msg); 1395 if (ret) { 1396 dev_err(&ctlr->dev, 1397 "failed to transfer one message from queue\n"); 1398 goto out; 1399 } 1400 1401 out: 1402 mutex_unlock(&ctlr->io_mutex); 1403 1404 /* Prod the scheduler in case transfer_one() was busy waiting */ 1405 if (!ret) 1406 cond_resched(); 1407 } 1408 1409 /** 1410 * spi_pump_messages - kthread work function which processes spi message queue 1411 * @work: pointer to kthread work struct contained in the controller struct 1412 */ 1413 static void spi_pump_messages(struct kthread_work *work) 1414 { 1415 struct spi_controller *ctlr = 1416 container_of(work, struct spi_controller, pump_messages); 1417 1418 __spi_pump_messages(ctlr, true); 1419 } 1420 1421 /** 1422 * spi_set_thread_rt - set the controller to pump at realtime priority 1423 * @ctlr: controller to boost priority of 1424 * 1425 * This can be called because the controller requested realtime priority 1426 * (by setting the ->rt value before calling spi_register_controller()) or 1427 * because a device on the bus said that its transfers needed realtime 1428 * priority. 1429 * 1430 * NOTE: at the moment if any device on a bus says it needs realtime then 1431 * the thread will be at realtime priority for all transfers on that 1432 * controller. If this eventually becomes a problem we may see if we can 1433 * find a way to boost the priority only temporarily during relevant 1434 * transfers. 1435 */ 1436 static void spi_set_thread_rt(struct spi_controller *ctlr) 1437 { 1438 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 }; 1439 1440 dev_info(&ctlr->dev, 1441 "will run message pump with realtime priority\n"); 1442 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); 1443 } 1444 1445 static int spi_init_queue(struct spi_controller *ctlr) 1446 { 1447 ctlr->running = false; 1448 ctlr->busy = false; 1449 1450 kthread_init_worker(&ctlr->kworker); 1451 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, 1452 "%s", dev_name(&ctlr->dev)); 1453 if (IS_ERR(ctlr->kworker_task)) { 1454 dev_err(&ctlr->dev, "failed to create message pump task\n"); 1455 return PTR_ERR(ctlr->kworker_task); 1456 } 1457 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1458 1459 /* 1460 * Controller config will indicate if this controller should run the 1461 * message pump with high (realtime) priority to reduce the transfer 1462 * latency on the bus by minimising the delay between a transfer 1463 * request and the scheduling of the message pump thread. Without this 1464 * setting the message pump thread will remain at default priority. 1465 */ 1466 if (ctlr->rt) 1467 spi_set_thread_rt(ctlr); 1468 1469 return 0; 1470 } 1471 1472 /** 1473 * spi_get_next_queued_message() - called by driver to check for queued 1474 * messages 1475 * @ctlr: the controller to check for queued messages 1476 * 1477 * If there are more messages in the queue, the next message is returned from 1478 * this call. 1479 * 1480 * Return: the next message in the queue, else NULL if the queue is empty. 1481 */ 1482 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1483 { 1484 struct spi_message *next; 1485 unsigned long flags; 1486 1487 /* get a pointer to the next message, if any */ 1488 spin_lock_irqsave(&ctlr->queue_lock, flags); 1489 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1490 queue); 1491 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1492 1493 return next; 1494 } 1495 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1496 1497 /** 1498 * spi_finalize_current_message() - the current message is complete 1499 * @ctlr: the controller to return the message to 1500 * 1501 * Called by the driver to notify the core that the message in the front of the 1502 * queue is complete and can be removed from the queue. 1503 */ 1504 void spi_finalize_current_message(struct spi_controller *ctlr) 1505 { 1506 struct spi_message *mesg; 1507 unsigned long flags; 1508 int ret; 1509 1510 spin_lock_irqsave(&ctlr->queue_lock, flags); 1511 mesg = ctlr->cur_msg; 1512 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1513 1514 spi_unmap_msg(ctlr, mesg); 1515 1516 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1517 ret = ctlr->unprepare_message(ctlr, mesg); 1518 if (ret) { 1519 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1520 ret); 1521 } 1522 } 1523 1524 spin_lock_irqsave(&ctlr->queue_lock, flags); 1525 ctlr->cur_msg = NULL; 1526 ctlr->cur_msg_prepared = false; 1527 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1528 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1529 1530 trace_spi_message_done(mesg); 1531 1532 mesg->state = NULL; 1533 if (mesg->complete) 1534 mesg->complete(mesg->context); 1535 } 1536 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1537 1538 static int spi_start_queue(struct spi_controller *ctlr) 1539 { 1540 unsigned long flags; 1541 1542 spin_lock_irqsave(&ctlr->queue_lock, flags); 1543 1544 if (ctlr->running || ctlr->busy) { 1545 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1546 return -EBUSY; 1547 } 1548 1549 ctlr->running = true; 1550 ctlr->cur_msg = NULL; 1551 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1552 1553 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1554 1555 return 0; 1556 } 1557 1558 static int spi_stop_queue(struct spi_controller *ctlr) 1559 { 1560 unsigned long flags; 1561 unsigned limit = 500; 1562 int ret = 0; 1563 1564 spin_lock_irqsave(&ctlr->queue_lock, flags); 1565 1566 /* 1567 * This is a bit lame, but is optimized for the common execution path. 1568 * A wait_queue on the ctlr->busy could be used, but then the common 1569 * execution path (pump_messages) would be required to call wake_up or 1570 * friends on every SPI message. Do this instead. 1571 */ 1572 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1573 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1574 usleep_range(10000, 11000); 1575 spin_lock_irqsave(&ctlr->queue_lock, flags); 1576 } 1577 1578 if (!list_empty(&ctlr->queue) || ctlr->busy) 1579 ret = -EBUSY; 1580 else 1581 ctlr->running = false; 1582 1583 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1584 1585 if (ret) { 1586 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1587 return ret; 1588 } 1589 return ret; 1590 } 1591 1592 static int spi_destroy_queue(struct spi_controller *ctlr) 1593 { 1594 int ret; 1595 1596 ret = spi_stop_queue(ctlr); 1597 1598 /* 1599 * kthread_flush_worker will block until all work is done. 1600 * If the reason that stop_queue timed out is that the work will never 1601 * finish, then it does no good to call flush/stop thread, so 1602 * return anyway. 1603 */ 1604 if (ret) { 1605 dev_err(&ctlr->dev, "problem destroying queue\n"); 1606 return ret; 1607 } 1608 1609 kthread_flush_worker(&ctlr->kworker); 1610 kthread_stop(ctlr->kworker_task); 1611 1612 return 0; 1613 } 1614 1615 static int __spi_queued_transfer(struct spi_device *spi, 1616 struct spi_message *msg, 1617 bool need_pump) 1618 { 1619 struct spi_controller *ctlr = spi->controller; 1620 unsigned long flags; 1621 1622 spin_lock_irqsave(&ctlr->queue_lock, flags); 1623 1624 if (!ctlr->running) { 1625 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1626 return -ESHUTDOWN; 1627 } 1628 msg->actual_length = 0; 1629 msg->status = -EINPROGRESS; 1630 1631 list_add_tail(&msg->queue, &ctlr->queue); 1632 if (!ctlr->busy && need_pump) 1633 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1634 1635 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1636 return 0; 1637 } 1638 1639 /** 1640 * spi_queued_transfer - transfer function for queued transfers 1641 * @spi: spi device which is requesting transfer 1642 * @msg: spi message which is to handled is queued to driver queue 1643 * 1644 * Return: zero on success, else a negative error code. 1645 */ 1646 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1647 { 1648 return __spi_queued_transfer(spi, msg, true); 1649 } 1650 1651 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1652 { 1653 int ret; 1654 1655 ctlr->transfer = spi_queued_transfer; 1656 if (!ctlr->transfer_one_message) 1657 ctlr->transfer_one_message = spi_transfer_one_message; 1658 1659 /* Initialize and start queue */ 1660 ret = spi_init_queue(ctlr); 1661 if (ret) { 1662 dev_err(&ctlr->dev, "problem initializing queue\n"); 1663 goto err_init_queue; 1664 } 1665 ctlr->queued = true; 1666 ret = spi_start_queue(ctlr); 1667 if (ret) { 1668 dev_err(&ctlr->dev, "problem starting queue\n"); 1669 goto err_start_queue; 1670 } 1671 1672 return 0; 1673 1674 err_start_queue: 1675 spi_destroy_queue(ctlr); 1676 err_init_queue: 1677 return ret; 1678 } 1679 1680 /** 1681 * spi_flush_queue - Send all pending messages in the queue from the callers' 1682 * context 1683 * @ctlr: controller to process queue for 1684 * 1685 * This should be used when one wants to ensure all pending messages have been 1686 * sent before doing something. Is used by the spi-mem code to make sure SPI 1687 * memory operations do not preempt regular SPI transfers that have been queued 1688 * before the spi-mem operation. 1689 */ 1690 void spi_flush_queue(struct spi_controller *ctlr) 1691 { 1692 if (ctlr->transfer == spi_queued_transfer) 1693 __spi_pump_messages(ctlr, false); 1694 } 1695 1696 /*-------------------------------------------------------------------------*/ 1697 1698 #if defined(CONFIG_OF) 1699 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1700 struct device_node *nc) 1701 { 1702 u32 value; 1703 int rc; 1704 1705 /* Mode (clock phase/polarity/etc.) */ 1706 if (of_property_read_bool(nc, "spi-cpha")) 1707 spi->mode |= SPI_CPHA; 1708 if (of_property_read_bool(nc, "spi-cpol")) 1709 spi->mode |= SPI_CPOL; 1710 if (of_property_read_bool(nc, "spi-3wire")) 1711 spi->mode |= SPI_3WIRE; 1712 if (of_property_read_bool(nc, "spi-lsb-first")) 1713 spi->mode |= SPI_LSB_FIRST; 1714 1715 /* 1716 * For descriptors associated with the device, polarity inversion is 1717 * handled in the gpiolib, so all chip selects are "active high" in 1718 * the logical sense, the gpiolib will invert the line if need be. 1719 */ 1720 if (ctlr->use_gpio_descriptors) 1721 spi->mode |= SPI_CS_HIGH; 1722 else if (of_property_read_bool(nc, "spi-cs-high")) 1723 spi->mode |= SPI_CS_HIGH; 1724 1725 /* Device DUAL/QUAD mode */ 1726 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1727 switch (value) { 1728 case 1: 1729 break; 1730 case 2: 1731 spi->mode |= SPI_TX_DUAL; 1732 break; 1733 case 4: 1734 spi->mode |= SPI_TX_QUAD; 1735 break; 1736 case 8: 1737 spi->mode |= SPI_TX_OCTAL; 1738 break; 1739 default: 1740 dev_warn(&ctlr->dev, 1741 "spi-tx-bus-width %d not supported\n", 1742 value); 1743 break; 1744 } 1745 } 1746 1747 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1748 switch (value) { 1749 case 1: 1750 break; 1751 case 2: 1752 spi->mode |= SPI_RX_DUAL; 1753 break; 1754 case 4: 1755 spi->mode |= SPI_RX_QUAD; 1756 break; 1757 case 8: 1758 spi->mode |= SPI_RX_OCTAL; 1759 break; 1760 default: 1761 dev_warn(&ctlr->dev, 1762 "spi-rx-bus-width %d not supported\n", 1763 value); 1764 break; 1765 } 1766 } 1767 1768 if (spi_controller_is_slave(ctlr)) { 1769 if (!of_node_name_eq(nc, "slave")) { 1770 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1771 nc); 1772 return -EINVAL; 1773 } 1774 return 0; 1775 } 1776 1777 /* Device address */ 1778 rc = of_property_read_u32(nc, "reg", &value); 1779 if (rc) { 1780 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1781 nc, rc); 1782 return rc; 1783 } 1784 spi->chip_select = value; 1785 1786 /* Device speed */ 1787 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1788 if (rc) { 1789 dev_err(&ctlr->dev, 1790 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); 1791 return rc; 1792 } 1793 spi->max_speed_hz = value; 1794 1795 return 0; 1796 } 1797 1798 static struct spi_device * 1799 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1800 { 1801 struct spi_device *spi; 1802 int rc; 1803 1804 /* Alloc an spi_device */ 1805 spi = spi_alloc_device(ctlr); 1806 if (!spi) { 1807 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 1808 rc = -ENOMEM; 1809 goto err_out; 1810 } 1811 1812 /* Select device driver */ 1813 rc = of_modalias_node(nc, spi->modalias, 1814 sizeof(spi->modalias)); 1815 if (rc < 0) { 1816 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 1817 goto err_out; 1818 } 1819 1820 rc = of_spi_parse_dt(ctlr, spi, nc); 1821 if (rc) 1822 goto err_out; 1823 1824 /* Store a pointer to the node in the device structure */ 1825 of_node_get(nc); 1826 spi->dev.of_node = nc; 1827 1828 /* Register the new device */ 1829 rc = spi_add_device(spi); 1830 if (rc) { 1831 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 1832 goto err_of_node_put; 1833 } 1834 1835 return spi; 1836 1837 err_of_node_put: 1838 of_node_put(nc); 1839 err_out: 1840 spi_dev_put(spi); 1841 return ERR_PTR(rc); 1842 } 1843 1844 /** 1845 * of_register_spi_devices() - Register child devices onto the SPI bus 1846 * @ctlr: Pointer to spi_controller device 1847 * 1848 * Registers an spi_device for each child node of controller node which 1849 * represents a valid SPI slave. 1850 */ 1851 static void of_register_spi_devices(struct spi_controller *ctlr) 1852 { 1853 struct spi_device *spi; 1854 struct device_node *nc; 1855 1856 if (!ctlr->dev.of_node) 1857 return; 1858 1859 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 1860 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 1861 continue; 1862 spi = of_register_spi_device(ctlr, nc); 1863 if (IS_ERR(spi)) { 1864 dev_warn(&ctlr->dev, 1865 "Failed to create SPI device for %pOF\n", nc); 1866 of_node_clear_flag(nc, OF_POPULATED); 1867 } 1868 } 1869 } 1870 #else 1871 static void of_register_spi_devices(struct spi_controller *ctlr) { } 1872 #endif 1873 1874 #ifdef CONFIG_ACPI 1875 struct acpi_spi_lookup { 1876 struct spi_controller *ctlr; 1877 u32 max_speed_hz; 1878 u32 mode; 1879 int irq; 1880 u8 bits_per_word; 1881 u8 chip_select; 1882 }; 1883 1884 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 1885 struct acpi_spi_lookup *lookup) 1886 { 1887 const union acpi_object *obj; 1888 1889 if (!x86_apple_machine) 1890 return; 1891 1892 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 1893 && obj->buffer.length >= 4) 1894 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 1895 1896 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 1897 && obj->buffer.length == 8) 1898 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 1899 1900 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 1901 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 1902 lookup->mode |= SPI_LSB_FIRST; 1903 1904 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 1905 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1906 lookup->mode |= SPI_CPOL; 1907 1908 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 1909 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1910 lookup->mode |= SPI_CPHA; 1911 } 1912 1913 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1914 { 1915 struct acpi_spi_lookup *lookup = data; 1916 struct spi_controller *ctlr = lookup->ctlr; 1917 1918 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1919 struct acpi_resource_spi_serialbus *sb; 1920 acpi_handle parent_handle; 1921 acpi_status status; 1922 1923 sb = &ares->data.spi_serial_bus; 1924 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1925 1926 status = acpi_get_handle(NULL, 1927 sb->resource_source.string_ptr, 1928 &parent_handle); 1929 1930 if (ACPI_FAILURE(status) || 1931 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 1932 return -ENODEV; 1933 1934 /* 1935 * ACPI DeviceSelection numbering is handled by the 1936 * host controller driver in Windows and can vary 1937 * from driver to driver. In Linux we always expect 1938 * 0 .. max - 1 so we need to ask the driver to 1939 * translate between the two schemes. 1940 */ 1941 if (ctlr->fw_translate_cs) { 1942 int cs = ctlr->fw_translate_cs(ctlr, 1943 sb->device_selection); 1944 if (cs < 0) 1945 return cs; 1946 lookup->chip_select = cs; 1947 } else { 1948 lookup->chip_select = sb->device_selection; 1949 } 1950 1951 lookup->max_speed_hz = sb->connection_speed; 1952 1953 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1954 lookup->mode |= SPI_CPHA; 1955 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1956 lookup->mode |= SPI_CPOL; 1957 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1958 lookup->mode |= SPI_CS_HIGH; 1959 } 1960 } else if (lookup->irq < 0) { 1961 struct resource r; 1962 1963 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1964 lookup->irq = r.start; 1965 } 1966 1967 /* Always tell the ACPI core to skip this resource */ 1968 return 1; 1969 } 1970 1971 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 1972 struct acpi_device *adev) 1973 { 1974 acpi_handle parent_handle = NULL; 1975 struct list_head resource_list; 1976 struct acpi_spi_lookup lookup = {}; 1977 struct spi_device *spi; 1978 int ret; 1979 1980 if (acpi_bus_get_status(adev) || !adev->status.present || 1981 acpi_device_enumerated(adev)) 1982 return AE_OK; 1983 1984 lookup.ctlr = ctlr; 1985 lookup.irq = -1; 1986 1987 INIT_LIST_HEAD(&resource_list); 1988 ret = acpi_dev_get_resources(adev, &resource_list, 1989 acpi_spi_add_resource, &lookup); 1990 acpi_dev_free_resource_list(&resource_list); 1991 1992 if (ret < 0) 1993 /* found SPI in _CRS but it points to another controller */ 1994 return AE_OK; 1995 1996 if (!lookup.max_speed_hz && 1997 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 1998 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 1999 /* Apple does not use _CRS but nested devices for SPI slaves */ 2000 acpi_spi_parse_apple_properties(adev, &lookup); 2001 } 2002 2003 if (!lookup.max_speed_hz) 2004 return AE_OK; 2005 2006 spi = spi_alloc_device(ctlr); 2007 if (!spi) { 2008 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2009 dev_name(&adev->dev)); 2010 return AE_NO_MEMORY; 2011 } 2012 2013 ACPI_COMPANION_SET(&spi->dev, adev); 2014 spi->max_speed_hz = lookup.max_speed_hz; 2015 spi->mode = lookup.mode; 2016 spi->irq = lookup.irq; 2017 spi->bits_per_word = lookup.bits_per_word; 2018 spi->chip_select = lookup.chip_select; 2019 2020 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2021 sizeof(spi->modalias)); 2022 2023 if (spi->irq < 0) 2024 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2025 2026 acpi_device_set_enumerated(adev); 2027 2028 adev->power.flags.ignore_parent = true; 2029 if (spi_add_device(spi)) { 2030 adev->power.flags.ignore_parent = false; 2031 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2032 dev_name(&adev->dev)); 2033 spi_dev_put(spi); 2034 } 2035 2036 return AE_OK; 2037 } 2038 2039 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2040 void *data, void **return_value) 2041 { 2042 struct spi_controller *ctlr = data; 2043 struct acpi_device *adev; 2044 2045 if (acpi_bus_get_device(handle, &adev)) 2046 return AE_OK; 2047 2048 return acpi_register_spi_device(ctlr, adev); 2049 } 2050 2051 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2052 2053 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2054 { 2055 acpi_status status; 2056 acpi_handle handle; 2057 2058 handle = ACPI_HANDLE(ctlr->dev.parent); 2059 if (!handle) 2060 return; 2061 2062 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2063 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2064 acpi_spi_add_device, NULL, ctlr, NULL); 2065 if (ACPI_FAILURE(status)) 2066 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2067 } 2068 #else 2069 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2070 #endif /* CONFIG_ACPI */ 2071 2072 static void spi_controller_release(struct device *dev) 2073 { 2074 struct spi_controller *ctlr; 2075 2076 ctlr = container_of(dev, struct spi_controller, dev); 2077 kfree(ctlr); 2078 } 2079 2080 static struct class spi_master_class = { 2081 .name = "spi_master", 2082 .owner = THIS_MODULE, 2083 .dev_release = spi_controller_release, 2084 .dev_groups = spi_master_groups, 2085 }; 2086 2087 #ifdef CONFIG_SPI_SLAVE 2088 /** 2089 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2090 * controller 2091 * @spi: device used for the current transfer 2092 */ 2093 int spi_slave_abort(struct spi_device *spi) 2094 { 2095 struct spi_controller *ctlr = spi->controller; 2096 2097 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2098 return ctlr->slave_abort(ctlr); 2099 2100 return -ENOTSUPP; 2101 } 2102 EXPORT_SYMBOL_GPL(spi_slave_abort); 2103 2104 static int match_true(struct device *dev, void *data) 2105 { 2106 return 1; 2107 } 2108 2109 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2110 char *buf) 2111 { 2112 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2113 dev); 2114 struct device *child; 2115 2116 child = device_find_child(&ctlr->dev, NULL, match_true); 2117 return sprintf(buf, "%s\n", 2118 child ? to_spi_device(child)->modalias : NULL); 2119 } 2120 2121 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2122 const char *buf, size_t count) 2123 { 2124 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2125 dev); 2126 struct spi_device *spi; 2127 struct device *child; 2128 char name[32]; 2129 int rc; 2130 2131 rc = sscanf(buf, "%31s", name); 2132 if (rc != 1 || !name[0]) 2133 return -EINVAL; 2134 2135 child = device_find_child(&ctlr->dev, NULL, match_true); 2136 if (child) { 2137 /* Remove registered slave */ 2138 device_unregister(child); 2139 put_device(child); 2140 } 2141 2142 if (strcmp(name, "(null)")) { 2143 /* Register new slave */ 2144 spi = spi_alloc_device(ctlr); 2145 if (!spi) 2146 return -ENOMEM; 2147 2148 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2149 2150 rc = spi_add_device(spi); 2151 if (rc) { 2152 spi_dev_put(spi); 2153 return rc; 2154 } 2155 } 2156 2157 return count; 2158 } 2159 2160 static DEVICE_ATTR_RW(slave); 2161 2162 static struct attribute *spi_slave_attrs[] = { 2163 &dev_attr_slave.attr, 2164 NULL, 2165 }; 2166 2167 static const struct attribute_group spi_slave_group = { 2168 .attrs = spi_slave_attrs, 2169 }; 2170 2171 static const struct attribute_group *spi_slave_groups[] = { 2172 &spi_controller_statistics_group, 2173 &spi_slave_group, 2174 NULL, 2175 }; 2176 2177 static struct class spi_slave_class = { 2178 .name = "spi_slave", 2179 .owner = THIS_MODULE, 2180 .dev_release = spi_controller_release, 2181 .dev_groups = spi_slave_groups, 2182 }; 2183 #else 2184 extern struct class spi_slave_class; /* dummy */ 2185 #endif 2186 2187 /** 2188 * __spi_alloc_controller - allocate an SPI master or slave controller 2189 * @dev: the controller, possibly using the platform_bus 2190 * @size: how much zeroed driver-private data to allocate; the pointer to this 2191 * memory is in the driver_data field of the returned device, accessible 2192 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2193 * drivers granting DMA access to portions of their private data need to 2194 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2195 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2196 * slave (true) controller 2197 * Context: can sleep 2198 * 2199 * This call is used only by SPI controller drivers, which are the 2200 * only ones directly touching chip registers. It's how they allocate 2201 * an spi_controller structure, prior to calling spi_register_controller(). 2202 * 2203 * This must be called from context that can sleep. 2204 * 2205 * The caller is responsible for assigning the bus number and initializing the 2206 * controller's methods before calling spi_register_controller(); and (after 2207 * errors adding the device) calling spi_controller_put() to prevent a memory 2208 * leak. 2209 * 2210 * Return: the SPI controller structure on success, else NULL. 2211 */ 2212 struct spi_controller *__spi_alloc_controller(struct device *dev, 2213 unsigned int size, bool slave) 2214 { 2215 struct spi_controller *ctlr; 2216 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2217 2218 if (!dev) 2219 return NULL; 2220 2221 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2222 if (!ctlr) 2223 return NULL; 2224 2225 device_initialize(&ctlr->dev); 2226 ctlr->bus_num = -1; 2227 ctlr->num_chipselect = 1; 2228 ctlr->slave = slave; 2229 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2230 ctlr->dev.class = &spi_slave_class; 2231 else 2232 ctlr->dev.class = &spi_master_class; 2233 ctlr->dev.parent = dev; 2234 pm_suspend_ignore_children(&ctlr->dev, true); 2235 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2236 2237 return ctlr; 2238 } 2239 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2240 2241 #ifdef CONFIG_OF 2242 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2243 { 2244 int nb, i, *cs; 2245 struct device_node *np = ctlr->dev.of_node; 2246 2247 if (!np) 2248 return 0; 2249 2250 nb = of_gpio_named_count(np, "cs-gpios"); 2251 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2252 2253 /* Return error only for an incorrectly formed cs-gpios property */ 2254 if (nb == 0 || nb == -ENOENT) 2255 return 0; 2256 else if (nb < 0) 2257 return nb; 2258 2259 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2260 GFP_KERNEL); 2261 ctlr->cs_gpios = cs; 2262 2263 if (!ctlr->cs_gpios) 2264 return -ENOMEM; 2265 2266 for (i = 0; i < ctlr->num_chipselect; i++) 2267 cs[i] = -ENOENT; 2268 2269 for (i = 0; i < nb; i++) 2270 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2271 2272 return 0; 2273 } 2274 #else 2275 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2276 { 2277 return 0; 2278 } 2279 #endif 2280 2281 /** 2282 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2283 * @ctlr: The SPI master to grab GPIO descriptors for 2284 */ 2285 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2286 { 2287 int nb, i; 2288 struct gpio_desc **cs; 2289 struct device *dev = &ctlr->dev; 2290 2291 nb = gpiod_count(dev, "cs"); 2292 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2293 2294 /* No GPIOs at all is fine, else return the error */ 2295 if (nb == 0 || nb == -ENOENT) 2296 return 0; 2297 else if (nb < 0) 2298 return nb; 2299 2300 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2301 GFP_KERNEL); 2302 if (!cs) 2303 return -ENOMEM; 2304 ctlr->cs_gpiods = cs; 2305 2306 for (i = 0; i < nb; i++) { 2307 /* 2308 * Most chipselects are active low, the inverted 2309 * semantics are handled by special quirks in gpiolib, 2310 * so initializing them GPIOD_OUT_LOW here means 2311 * "unasserted", in most cases this will drive the physical 2312 * line high. 2313 */ 2314 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2315 GPIOD_OUT_LOW); 2316 if (IS_ERR(cs[i])) 2317 return PTR_ERR(cs[i]); 2318 2319 if (cs[i]) { 2320 /* 2321 * If we find a CS GPIO, name it after the device and 2322 * chip select line. 2323 */ 2324 char *gpioname; 2325 2326 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2327 dev_name(dev), i); 2328 if (!gpioname) 2329 return -ENOMEM; 2330 gpiod_set_consumer_name(cs[i], gpioname); 2331 } 2332 } 2333 2334 return 0; 2335 } 2336 2337 static int spi_controller_check_ops(struct spi_controller *ctlr) 2338 { 2339 /* 2340 * The controller may implement only the high-level SPI-memory like 2341 * operations if it does not support regular SPI transfers, and this is 2342 * valid use case. 2343 * If ->mem_ops is NULL, we request that at least one of the 2344 * ->transfer_xxx() method be implemented. 2345 */ 2346 if (ctlr->mem_ops) { 2347 if (!ctlr->mem_ops->exec_op) 2348 return -EINVAL; 2349 } else if (!ctlr->transfer && !ctlr->transfer_one && 2350 !ctlr->transfer_one_message) { 2351 return -EINVAL; 2352 } 2353 2354 return 0; 2355 } 2356 2357 /** 2358 * spi_register_controller - register SPI master or slave controller 2359 * @ctlr: initialized master, originally from spi_alloc_master() or 2360 * spi_alloc_slave() 2361 * Context: can sleep 2362 * 2363 * SPI controllers connect to their drivers using some non-SPI bus, 2364 * such as the platform bus. The final stage of probe() in that code 2365 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2366 * 2367 * SPI controllers use board specific (often SOC specific) bus numbers, 2368 * and board-specific addressing for SPI devices combines those numbers 2369 * with chip select numbers. Since SPI does not directly support dynamic 2370 * device identification, boards need configuration tables telling which 2371 * chip is at which address. 2372 * 2373 * This must be called from context that can sleep. It returns zero on 2374 * success, else a negative error code (dropping the controller's refcount). 2375 * After a successful return, the caller is responsible for calling 2376 * spi_unregister_controller(). 2377 * 2378 * Return: zero on success, else a negative error code. 2379 */ 2380 int spi_register_controller(struct spi_controller *ctlr) 2381 { 2382 struct device *dev = ctlr->dev.parent; 2383 struct boardinfo *bi; 2384 int status; 2385 int id, first_dynamic; 2386 2387 if (!dev) 2388 return -ENODEV; 2389 2390 /* 2391 * Make sure all necessary hooks are implemented before registering 2392 * the SPI controller. 2393 */ 2394 status = spi_controller_check_ops(ctlr); 2395 if (status) 2396 return status; 2397 2398 if (ctlr->bus_num >= 0) { 2399 /* devices with a fixed bus num must check-in with the num */ 2400 mutex_lock(&board_lock); 2401 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2402 ctlr->bus_num + 1, GFP_KERNEL); 2403 mutex_unlock(&board_lock); 2404 if (WARN(id < 0, "couldn't get idr")) 2405 return id == -ENOSPC ? -EBUSY : id; 2406 ctlr->bus_num = id; 2407 } else if (ctlr->dev.of_node) { 2408 /* allocate dynamic bus number using Linux idr */ 2409 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2410 if (id >= 0) { 2411 ctlr->bus_num = id; 2412 mutex_lock(&board_lock); 2413 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2414 ctlr->bus_num + 1, GFP_KERNEL); 2415 mutex_unlock(&board_lock); 2416 if (WARN(id < 0, "couldn't get idr")) 2417 return id == -ENOSPC ? -EBUSY : id; 2418 } 2419 } 2420 if (ctlr->bus_num < 0) { 2421 first_dynamic = of_alias_get_highest_id("spi"); 2422 if (first_dynamic < 0) 2423 first_dynamic = 0; 2424 else 2425 first_dynamic++; 2426 2427 mutex_lock(&board_lock); 2428 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2429 0, GFP_KERNEL); 2430 mutex_unlock(&board_lock); 2431 if (WARN(id < 0, "couldn't get idr")) 2432 return id; 2433 ctlr->bus_num = id; 2434 } 2435 INIT_LIST_HEAD(&ctlr->queue); 2436 spin_lock_init(&ctlr->queue_lock); 2437 spin_lock_init(&ctlr->bus_lock_spinlock); 2438 mutex_init(&ctlr->bus_lock_mutex); 2439 mutex_init(&ctlr->io_mutex); 2440 ctlr->bus_lock_flag = 0; 2441 init_completion(&ctlr->xfer_completion); 2442 if (!ctlr->max_dma_len) 2443 ctlr->max_dma_len = INT_MAX; 2444 2445 /* register the device, then userspace will see it. 2446 * registration fails if the bus ID is in use. 2447 */ 2448 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2449 2450 if (!spi_controller_is_slave(ctlr)) { 2451 if (ctlr->use_gpio_descriptors) { 2452 status = spi_get_gpio_descs(ctlr); 2453 if (status) 2454 return status; 2455 /* 2456 * A controller using GPIO descriptors always 2457 * supports SPI_CS_HIGH if need be. 2458 */ 2459 ctlr->mode_bits |= SPI_CS_HIGH; 2460 } else { 2461 /* Legacy code path for GPIOs from DT */ 2462 status = of_spi_get_gpio_numbers(ctlr); 2463 if (status) 2464 return status; 2465 } 2466 } 2467 2468 /* 2469 * Even if it's just one always-selected device, there must 2470 * be at least one chipselect. 2471 */ 2472 if (!ctlr->num_chipselect) 2473 return -EINVAL; 2474 2475 status = device_add(&ctlr->dev); 2476 if (status < 0) { 2477 /* free bus id */ 2478 mutex_lock(&board_lock); 2479 idr_remove(&spi_master_idr, ctlr->bus_num); 2480 mutex_unlock(&board_lock); 2481 goto done; 2482 } 2483 dev_dbg(dev, "registered %s %s\n", 2484 spi_controller_is_slave(ctlr) ? "slave" : "master", 2485 dev_name(&ctlr->dev)); 2486 2487 /* 2488 * If we're using a queued driver, start the queue. Note that we don't 2489 * need the queueing logic if the driver is only supporting high-level 2490 * memory operations. 2491 */ 2492 if (ctlr->transfer) { 2493 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2494 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2495 status = spi_controller_initialize_queue(ctlr); 2496 if (status) { 2497 device_del(&ctlr->dev); 2498 /* free bus id */ 2499 mutex_lock(&board_lock); 2500 idr_remove(&spi_master_idr, ctlr->bus_num); 2501 mutex_unlock(&board_lock); 2502 goto done; 2503 } 2504 } 2505 /* add statistics */ 2506 spin_lock_init(&ctlr->statistics.lock); 2507 2508 mutex_lock(&board_lock); 2509 list_add_tail(&ctlr->list, &spi_controller_list); 2510 list_for_each_entry(bi, &board_list, list) 2511 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2512 mutex_unlock(&board_lock); 2513 2514 /* Register devices from the device tree and ACPI */ 2515 of_register_spi_devices(ctlr); 2516 acpi_register_spi_devices(ctlr); 2517 done: 2518 return status; 2519 } 2520 EXPORT_SYMBOL_GPL(spi_register_controller); 2521 2522 static void devm_spi_unregister(struct device *dev, void *res) 2523 { 2524 spi_unregister_controller(*(struct spi_controller **)res); 2525 } 2526 2527 /** 2528 * devm_spi_register_controller - register managed SPI master or slave 2529 * controller 2530 * @dev: device managing SPI controller 2531 * @ctlr: initialized controller, originally from spi_alloc_master() or 2532 * spi_alloc_slave() 2533 * Context: can sleep 2534 * 2535 * Register a SPI device as with spi_register_controller() which will 2536 * automatically be unregistered and freed. 2537 * 2538 * Return: zero on success, else a negative error code. 2539 */ 2540 int devm_spi_register_controller(struct device *dev, 2541 struct spi_controller *ctlr) 2542 { 2543 struct spi_controller **ptr; 2544 int ret; 2545 2546 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2547 if (!ptr) 2548 return -ENOMEM; 2549 2550 ret = spi_register_controller(ctlr); 2551 if (!ret) { 2552 *ptr = ctlr; 2553 devres_add(dev, ptr); 2554 } else { 2555 devres_free(ptr); 2556 } 2557 2558 return ret; 2559 } 2560 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2561 2562 static int __unregister(struct device *dev, void *null) 2563 { 2564 spi_unregister_device(to_spi_device(dev)); 2565 return 0; 2566 } 2567 2568 /** 2569 * spi_unregister_controller - unregister SPI master or slave controller 2570 * @ctlr: the controller being unregistered 2571 * Context: can sleep 2572 * 2573 * This call is used only by SPI controller drivers, which are the 2574 * only ones directly touching chip registers. 2575 * 2576 * This must be called from context that can sleep. 2577 * 2578 * Note that this function also drops a reference to the controller. 2579 */ 2580 void spi_unregister_controller(struct spi_controller *ctlr) 2581 { 2582 struct spi_controller *found; 2583 int id = ctlr->bus_num; 2584 2585 /* First make sure that this controller was ever added */ 2586 mutex_lock(&board_lock); 2587 found = idr_find(&spi_master_idr, id); 2588 mutex_unlock(&board_lock); 2589 if (ctlr->queued) { 2590 if (spi_destroy_queue(ctlr)) 2591 dev_err(&ctlr->dev, "queue remove failed\n"); 2592 } 2593 mutex_lock(&board_lock); 2594 list_del(&ctlr->list); 2595 mutex_unlock(&board_lock); 2596 2597 device_for_each_child(&ctlr->dev, NULL, __unregister); 2598 device_unregister(&ctlr->dev); 2599 /* free bus id */ 2600 mutex_lock(&board_lock); 2601 if (found == ctlr) 2602 idr_remove(&spi_master_idr, id); 2603 mutex_unlock(&board_lock); 2604 } 2605 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2606 2607 int spi_controller_suspend(struct spi_controller *ctlr) 2608 { 2609 int ret; 2610 2611 /* Basically no-ops for non-queued controllers */ 2612 if (!ctlr->queued) 2613 return 0; 2614 2615 ret = spi_stop_queue(ctlr); 2616 if (ret) 2617 dev_err(&ctlr->dev, "queue stop failed\n"); 2618 2619 return ret; 2620 } 2621 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2622 2623 int spi_controller_resume(struct spi_controller *ctlr) 2624 { 2625 int ret; 2626 2627 if (!ctlr->queued) 2628 return 0; 2629 2630 ret = spi_start_queue(ctlr); 2631 if (ret) 2632 dev_err(&ctlr->dev, "queue restart failed\n"); 2633 2634 return ret; 2635 } 2636 EXPORT_SYMBOL_GPL(spi_controller_resume); 2637 2638 static int __spi_controller_match(struct device *dev, const void *data) 2639 { 2640 struct spi_controller *ctlr; 2641 const u16 *bus_num = data; 2642 2643 ctlr = container_of(dev, struct spi_controller, dev); 2644 return ctlr->bus_num == *bus_num; 2645 } 2646 2647 /** 2648 * spi_busnum_to_master - look up master associated with bus_num 2649 * @bus_num: the master's bus number 2650 * Context: can sleep 2651 * 2652 * This call may be used with devices that are registered after 2653 * arch init time. It returns a refcounted pointer to the relevant 2654 * spi_controller (which the caller must release), or NULL if there is 2655 * no such master registered. 2656 * 2657 * Return: the SPI master structure on success, else NULL. 2658 */ 2659 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2660 { 2661 struct device *dev; 2662 struct spi_controller *ctlr = NULL; 2663 2664 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2665 __spi_controller_match); 2666 if (dev) 2667 ctlr = container_of(dev, struct spi_controller, dev); 2668 /* reference got in class_find_device */ 2669 return ctlr; 2670 } 2671 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2672 2673 /*-------------------------------------------------------------------------*/ 2674 2675 /* Core methods for SPI resource management */ 2676 2677 /** 2678 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2679 * during the processing of a spi_message while using 2680 * spi_transfer_one 2681 * @spi: the spi device for which we allocate memory 2682 * @release: the release code to execute for this resource 2683 * @size: size to alloc and return 2684 * @gfp: GFP allocation flags 2685 * 2686 * Return: the pointer to the allocated data 2687 * 2688 * This may get enhanced in the future to allocate from a memory pool 2689 * of the @spi_device or @spi_controller to avoid repeated allocations. 2690 */ 2691 void *spi_res_alloc(struct spi_device *spi, 2692 spi_res_release_t release, 2693 size_t size, gfp_t gfp) 2694 { 2695 struct spi_res *sres; 2696 2697 sres = kzalloc(sizeof(*sres) + size, gfp); 2698 if (!sres) 2699 return NULL; 2700 2701 INIT_LIST_HEAD(&sres->entry); 2702 sres->release = release; 2703 2704 return sres->data; 2705 } 2706 EXPORT_SYMBOL_GPL(spi_res_alloc); 2707 2708 /** 2709 * spi_res_free - free an spi resource 2710 * @res: pointer to the custom data of a resource 2711 * 2712 */ 2713 void spi_res_free(void *res) 2714 { 2715 struct spi_res *sres = container_of(res, struct spi_res, data); 2716 2717 if (!res) 2718 return; 2719 2720 WARN_ON(!list_empty(&sres->entry)); 2721 kfree(sres); 2722 } 2723 EXPORT_SYMBOL_GPL(spi_res_free); 2724 2725 /** 2726 * spi_res_add - add a spi_res to the spi_message 2727 * @message: the spi message 2728 * @res: the spi_resource 2729 */ 2730 void spi_res_add(struct spi_message *message, void *res) 2731 { 2732 struct spi_res *sres = container_of(res, struct spi_res, data); 2733 2734 WARN_ON(!list_empty(&sres->entry)); 2735 list_add_tail(&sres->entry, &message->resources); 2736 } 2737 EXPORT_SYMBOL_GPL(spi_res_add); 2738 2739 /** 2740 * spi_res_release - release all spi resources for this message 2741 * @ctlr: the @spi_controller 2742 * @message: the @spi_message 2743 */ 2744 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2745 { 2746 struct spi_res *res, *tmp; 2747 2748 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 2749 if (res->release) 2750 res->release(ctlr, message, res->data); 2751 2752 list_del(&res->entry); 2753 2754 kfree(res); 2755 } 2756 } 2757 EXPORT_SYMBOL_GPL(spi_res_release); 2758 2759 /*-------------------------------------------------------------------------*/ 2760 2761 /* Core methods for spi_message alterations */ 2762 2763 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2764 struct spi_message *msg, 2765 void *res) 2766 { 2767 struct spi_replaced_transfers *rxfer = res; 2768 size_t i; 2769 2770 /* call extra callback if requested */ 2771 if (rxfer->release) 2772 rxfer->release(ctlr, msg, res); 2773 2774 /* insert replaced transfers back into the message */ 2775 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2776 2777 /* remove the formerly inserted entries */ 2778 for (i = 0; i < rxfer->inserted; i++) 2779 list_del(&rxfer->inserted_transfers[i].transfer_list); 2780 } 2781 2782 /** 2783 * spi_replace_transfers - replace transfers with several transfers 2784 * and register change with spi_message.resources 2785 * @msg: the spi_message we work upon 2786 * @xfer_first: the first spi_transfer we want to replace 2787 * @remove: number of transfers to remove 2788 * @insert: the number of transfers we want to insert instead 2789 * @release: extra release code necessary in some circumstances 2790 * @extradatasize: extra data to allocate (with alignment guarantees 2791 * of struct @spi_transfer) 2792 * @gfp: gfp flags 2793 * 2794 * Returns: pointer to @spi_replaced_transfers, 2795 * PTR_ERR(...) in case of errors. 2796 */ 2797 struct spi_replaced_transfers *spi_replace_transfers( 2798 struct spi_message *msg, 2799 struct spi_transfer *xfer_first, 2800 size_t remove, 2801 size_t insert, 2802 spi_replaced_release_t release, 2803 size_t extradatasize, 2804 gfp_t gfp) 2805 { 2806 struct spi_replaced_transfers *rxfer; 2807 struct spi_transfer *xfer; 2808 size_t i; 2809 2810 /* allocate the structure using spi_res */ 2811 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2812 struct_size(rxfer, inserted_transfers, insert) 2813 + extradatasize, 2814 gfp); 2815 if (!rxfer) 2816 return ERR_PTR(-ENOMEM); 2817 2818 /* the release code to invoke before running the generic release */ 2819 rxfer->release = release; 2820 2821 /* assign extradata */ 2822 if (extradatasize) 2823 rxfer->extradata = 2824 &rxfer->inserted_transfers[insert]; 2825 2826 /* init the replaced_transfers list */ 2827 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2828 2829 /* assign the list_entry after which we should reinsert 2830 * the @replaced_transfers - it may be spi_message.messages! 2831 */ 2832 rxfer->replaced_after = xfer_first->transfer_list.prev; 2833 2834 /* remove the requested number of transfers */ 2835 for (i = 0; i < remove; i++) { 2836 /* if the entry after replaced_after it is msg->transfers 2837 * then we have been requested to remove more transfers 2838 * than are in the list 2839 */ 2840 if (rxfer->replaced_after->next == &msg->transfers) { 2841 dev_err(&msg->spi->dev, 2842 "requested to remove more spi_transfers than are available\n"); 2843 /* insert replaced transfers back into the message */ 2844 list_splice(&rxfer->replaced_transfers, 2845 rxfer->replaced_after); 2846 2847 /* free the spi_replace_transfer structure */ 2848 spi_res_free(rxfer); 2849 2850 /* and return with an error */ 2851 return ERR_PTR(-EINVAL); 2852 } 2853 2854 /* remove the entry after replaced_after from list of 2855 * transfers and add it to list of replaced_transfers 2856 */ 2857 list_move_tail(rxfer->replaced_after->next, 2858 &rxfer->replaced_transfers); 2859 } 2860 2861 /* create copy of the given xfer with identical settings 2862 * based on the first transfer to get removed 2863 */ 2864 for (i = 0; i < insert; i++) { 2865 /* we need to run in reverse order */ 2866 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 2867 2868 /* copy all spi_transfer data */ 2869 memcpy(xfer, xfer_first, sizeof(*xfer)); 2870 2871 /* add to list */ 2872 list_add(&xfer->transfer_list, rxfer->replaced_after); 2873 2874 /* clear cs_change and delay_usecs for all but the last */ 2875 if (i) { 2876 xfer->cs_change = false; 2877 xfer->delay_usecs = 0; 2878 } 2879 } 2880 2881 /* set up inserted */ 2882 rxfer->inserted = insert; 2883 2884 /* and register it with spi_res/spi_message */ 2885 spi_res_add(msg, rxfer); 2886 2887 return rxfer; 2888 } 2889 EXPORT_SYMBOL_GPL(spi_replace_transfers); 2890 2891 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 2892 struct spi_message *msg, 2893 struct spi_transfer **xferp, 2894 size_t maxsize, 2895 gfp_t gfp) 2896 { 2897 struct spi_transfer *xfer = *xferp, *xfers; 2898 struct spi_replaced_transfers *srt; 2899 size_t offset; 2900 size_t count, i; 2901 2902 /* calculate how many we have to replace */ 2903 count = DIV_ROUND_UP(xfer->len, maxsize); 2904 2905 /* create replacement */ 2906 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 2907 if (IS_ERR(srt)) 2908 return PTR_ERR(srt); 2909 xfers = srt->inserted_transfers; 2910 2911 /* now handle each of those newly inserted spi_transfers 2912 * note that the replacements spi_transfers all are preset 2913 * to the same values as *xferp, so tx_buf, rx_buf and len 2914 * are all identical (as well as most others) 2915 * so we just have to fix up len and the pointers. 2916 * 2917 * this also includes support for the depreciated 2918 * spi_message.is_dma_mapped interface 2919 */ 2920 2921 /* the first transfer just needs the length modified, so we 2922 * run it outside the loop 2923 */ 2924 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 2925 2926 /* all the others need rx_buf/tx_buf also set */ 2927 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 2928 /* update rx_buf, tx_buf and dma */ 2929 if (xfers[i].rx_buf) 2930 xfers[i].rx_buf += offset; 2931 if (xfers[i].rx_dma) 2932 xfers[i].rx_dma += offset; 2933 if (xfers[i].tx_buf) 2934 xfers[i].tx_buf += offset; 2935 if (xfers[i].tx_dma) 2936 xfers[i].tx_dma += offset; 2937 2938 /* update length */ 2939 xfers[i].len = min(maxsize, xfers[i].len - offset); 2940 } 2941 2942 /* we set up xferp to the last entry we have inserted, 2943 * so that we skip those already split transfers 2944 */ 2945 *xferp = &xfers[count - 1]; 2946 2947 /* increment statistics counters */ 2948 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 2949 transfers_split_maxsize); 2950 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 2951 transfers_split_maxsize); 2952 2953 return 0; 2954 } 2955 2956 /** 2957 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 2958 * when an individual transfer exceeds a 2959 * certain size 2960 * @ctlr: the @spi_controller for this transfer 2961 * @msg: the @spi_message to transform 2962 * @maxsize: the maximum when to apply this 2963 * @gfp: GFP allocation flags 2964 * 2965 * Return: status of transformation 2966 */ 2967 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 2968 struct spi_message *msg, 2969 size_t maxsize, 2970 gfp_t gfp) 2971 { 2972 struct spi_transfer *xfer; 2973 int ret; 2974 2975 /* iterate over the transfer_list, 2976 * but note that xfer is advanced to the last transfer inserted 2977 * to avoid checking sizes again unnecessarily (also xfer does 2978 * potentiall belong to a different list by the time the 2979 * replacement has happened 2980 */ 2981 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 2982 if (xfer->len > maxsize) { 2983 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 2984 maxsize, gfp); 2985 if (ret) 2986 return ret; 2987 } 2988 } 2989 2990 return 0; 2991 } 2992 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 2993 2994 /*-------------------------------------------------------------------------*/ 2995 2996 /* Core methods for SPI controller protocol drivers. Some of the 2997 * other core methods are currently defined as inline functions. 2998 */ 2999 3000 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3001 u8 bits_per_word) 3002 { 3003 if (ctlr->bits_per_word_mask) { 3004 /* Only 32 bits fit in the mask */ 3005 if (bits_per_word > 32) 3006 return -EINVAL; 3007 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3008 return -EINVAL; 3009 } 3010 3011 return 0; 3012 } 3013 3014 /** 3015 * spi_setup - setup SPI mode and clock rate 3016 * @spi: the device whose settings are being modified 3017 * Context: can sleep, and no requests are queued to the device 3018 * 3019 * SPI protocol drivers may need to update the transfer mode if the 3020 * device doesn't work with its default. They may likewise need 3021 * to update clock rates or word sizes from initial values. This function 3022 * changes those settings, and must be called from a context that can sleep. 3023 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3024 * effect the next time the device is selected and data is transferred to 3025 * or from it. When this function returns, the spi device is deselected. 3026 * 3027 * Note that this call will fail if the protocol driver specifies an option 3028 * that the underlying controller or its driver does not support. For 3029 * example, not all hardware supports wire transfers using nine bit words, 3030 * LSB-first wire encoding, or active-high chipselects. 3031 * 3032 * Return: zero on success, else a negative error code. 3033 */ 3034 int spi_setup(struct spi_device *spi) 3035 { 3036 unsigned bad_bits, ugly_bits; 3037 int status; 3038 3039 /* check mode to prevent that DUAL and QUAD set at the same time 3040 */ 3041 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3042 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3043 dev_err(&spi->dev, 3044 "setup: can not select dual and quad at the same time\n"); 3045 return -EINVAL; 3046 } 3047 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3048 */ 3049 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3050 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3051 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3052 return -EINVAL; 3053 /* help drivers fail *cleanly* when they need options 3054 * that aren't supported with their current controller 3055 * SPI_CS_WORD has a fallback software implementation, 3056 * so it is ignored here. 3057 */ 3058 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3059 /* nothing prevents from working with active-high CS in case if it 3060 * is driven by GPIO. 3061 */ 3062 if (gpio_is_valid(spi->cs_gpio)) 3063 bad_bits &= ~SPI_CS_HIGH; 3064 ugly_bits = bad_bits & 3065 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3066 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3067 if (ugly_bits) { 3068 dev_warn(&spi->dev, 3069 "setup: ignoring unsupported mode bits %x\n", 3070 ugly_bits); 3071 spi->mode &= ~ugly_bits; 3072 bad_bits &= ~ugly_bits; 3073 } 3074 if (bad_bits) { 3075 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3076 bad_bits); 3077 return -EINVAL; 3078 } 3079 3080 if (!spi->bits_per_word) 3081 spi->bits_per_word = 8; 3082 3083 status = __spi_validate_bits_per_word(spi->controller, 3084 spi->bits_per_word); 3085 if (status) 3086 return status; 3087 3088 if (!spi->max_speed_hz) 3089 spi->max_speed_hz = spi->controller->max_speed_hz; 3090 3091 if (spi->controller->setup) 3092 status = spi->controller->setup(spi); 3093 3094 spi_set_cs(spi, false); 3095 3096 if (spi->rt && !spi->controller->rt) { 3097 spi->controller->rt = true; 3098 spi_set_thread_rt(spi->controller); 3099 } 3100 3101 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3102 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3103 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3104 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3105 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3106 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3107 spi->bits_per_word, spi->max_speed_hz, 3108 status); 3109 3110 return status; 3111 } 3112 EXPORT_SYMBOL_GPL(spi_setup); 3113 3114 /** 3115 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3116 * @spi: the device that requires specific CS timing configuration 3117 * @setup: CS setup time in terms of clock count 3118 * @hold: CS hold time in terms of clock count 3119 * @inactive_dly: CS inactive delay between transfers in terms of clock count 3120 */ 3121 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold, 3122 u8 inactive_dly) 3123 { 3124 if (spi->controller->set_cs_timing) 3125 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly); 3126 } 3127 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3128 3129 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3130 { 3131 struct spi_controller *ctlr = spi->controller; 3132 struct spi_transfer *xfer; 3133 int w_size; 3134 3135 if (list_empty(&message->transfers)) 3136 return -EINVAL; 3137 3138 /* If an SPI controller does not support toggling the CS line on each 3139 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3140 * for the CS line, we can emulate the CS-per-word hardware function by 3141 * splitting transfers into one-word transfers and ensuring that 3142 * cs_change is set for each transfer. 3143 */ 3144 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3145 spi->cs_gpiod || 3146 gpio_is_valid(spi->cs_gpio))) { 3147 size_t maxsize; 3148 int ret; 3149 3150 maxsize = (spi->bits_per_word + 7) / 8; 3151 3152 /* spi_split_transfers_maxsize() requires message->spi */ 3153 message->spi = spi; 3154 3155 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3156 GFP_KERNEL); 3157 if (ret) 3158 return ret; 3159 3160 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3161 /* don't change cs_change on the last entry in the list */ 3162 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3163 break; 3164 xfer->cs_change = 1; 3165 } 3166 } 3167 3168 /* Half-duplex links include original MicroWire, and ones with 3169 * only one data pin like SPI_3WIRE (switches direction) or where 3170 * either MOSI or MISO is missing. They can also be caused by 3171 * software limitations. 3172 */ 3173 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3174 (spi->mode & SPI_3WIRE)) { 3175 unsigned flags = ctlr->flags; 3176 3177 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3178 if (xfer->rx_buf && xfer->tx_buf) 3179 return -EINVAL; 3180 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3181 return -EINVAL; 3182 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3183 return -EINVAL; 3184 } 3185 } 3186 3187 /** 3188 * Set transfer bits_per_word and max speed as spi device default if 3189 * it is not set for this transfer. 3190 * Set transfer tx_nbits and rx_nbits as single transfer default 3191 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3192 * Ensure transfer word_delay is at least as long as that required by 3193 * device itself. 3194 */ 3195 message->frame_length = 0; 3196 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3197 xfer->effective_speed_hz = 0; 3198 message->frame_length += xfer->len; 3199 if (!xfer->bits_per_word) 3200 xfer->bits_per_word = spi->bits_per_word; 3201 3202 if (!xfer->speed_hz) 3203 xfer->speed_hz = spi->max_speed_hz; 3204 3205 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3206 xfer->speed_hz = ctlr->max_speed_hz; 3207 3208 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3209 return -EINVAL; 3210 3211 /* 3212 * SPI transfer length should be multiple of SPI word size 3213 * where SPI word size should be power-of-two multiple 3214 */ 3215 if (xfer->bits_per_word <= 8) 3216 w_size = 1; 3217 else if (xfer->bits_per_word <= 16) 3218 w_size = 2; 3219 else 3220 w_size = 4; 3221 3222 /* No partial transfers accepted */ 3223 if (xfer->len % w_size) 3224 return -EINVAL; 3225 3226 if (xfer->speed_hz && ctlr->min_speed_hz && 3227 xfer->speed_hz < ctlr->min_speed_hz) 3228 return -EINVAL; 3229 3230 if (xfer->tx_buf && !xfer->tx_nbits) 3231 xfer->tx_nbits = SPI_NBITS_SINGLE; 3232 if (xfer->rx_buf && !xfer->rx_nbits) 3233 xfer->rx_nbits = SPI_NBITS_SINGLE; 3234 /* check transfer tx/rx_nbits: 3235 * 1. check the value matches one of single, dual and quad 3236 * 2. check tx/rx_nbits match the mode in spi_device 3237 */ 3238 if (xfer->tx_buf) { 3239 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3240 xfer->tx_nbits != SPI_NBITS_DUAL && 3241 xfer->tx_nbits != SPI_NBITS_QUAD) 3242 return -EINVAL; 3243 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3244 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3245 return -EINVAL; 3246 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3247 !(spi->mode & SPI_TX_QUAD)) 3248 return -EINVAL; 3249 } 3250 /* check transfer rx_nbits */ 3251 if (xfer->rx_buf) { 3252 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3253 xfer->rx_nbits != SPI_NBITS_DUAL && 3254 xfer->rx_nbits != SPI_NBITS_QUAD) 3255 return -EINVAL; 3256 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3257 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3258 return -EINVAL; 3259 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3260 !(spi->mode & SPI_RX_QUAD)) 3261 return -EINVAL; 3262 } 3263 3264 if (xfer->word_delay_usecs < spi->word_delay_usecs) 3265 xfer->word_delay_usecs = spi->word_delay_usecs; 3266 } 3267 3268 message->status = -EINPROGRESS; 3269 3270 return 0; 3271 } 3272 3273 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3274 { 3275 struct spi_controller *ctlr = spi->controller; 3276 3277 /* 3278 * Some controllers do not support doing regular SPI transfers. Return 3279 * ENOTSUPP when this is the case. 3280 */ 3281 if (!ctlr->transfer) 3282 return -ENOTSUPP; 3283 3284 message->spi = spi; 3285 3286 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3287 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3288 3289 trace_spi_message_submit(message); 3290 3291 return ctlr->transfer(spi, message); 3292 } 3293 3294 /** 3295 * spi_async - asynchronous SPI transfer 3296 * @spi: device with which data will be exchanged 3297 * @message: describes the data transfers, including completion callback 3298 * Context: any (irqs may be blocked, etc) 3299 * 3300 * This call may be used in_irq and other contexts which can't sleep, 3301 * as well as from task contexts which can sleep. 3302 * 3303 * The completion callback is invoked in a context which can't sleep. 3304 * Before that invocation, the value of message->status is undefined. 3305 * When the callback is issued, message->status holds either zero (to 3306 * indicate complete success) or a negative error code. After that 3307 * callback returns, the driver which issued the transfer request may 3308 * deallocate the associated memory; it's no longer in use by any SPI 3309 * core or controller driver code. 3310 * 3311 * Note that although all messages to a spi_device are handled in 3312 * FIFO order, messages may go to different devices in other orders. 3313 * Some device might be higher priority, or have various "hard" access 3314 * time requirements, for example. 3315 * 3316 * On detection of any fault during the transfer, processing of 3317 * the entire message is aborted, and the device is deselected. 3318 * Until returning from the associated message completion callback, 3319 * no other spi_message queued to that device will be processed. 3320 * (This rule applies equally to all the synchronous transfer calls, 3321 * which are wrappers around this core asynchronous primitive.) 3322 * 3323 * Return: zero on success, else a negative error code. 3324 */ 3325 int spi_async(struct spi_device *spi, struct spi_message *message) 3326 { 3327 struct spi_controller *ctlr = spi->controller; 3328 int ret; 3329 unsigned long flags; 3330 3331 ret = __spi_validate(spi, message); 3332 if (ret != 0) 3333 return ret; 3334 3335 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3336 3337 if (ctlr->bus_lock_flag) 3338 ret = -EBUSY; 3339 else 3340 ret = __spi_async(spi, message); 3341 3342 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3343 3344 return ret; 3345 } 3346 EXPORT_SYMBOL_GPL(spi_async); 3347 3348 /** 3349 * spi_async_locked - version of spi_async with exclusive bus usage 3350 * @spi: device with which data will be exchanged 3351 * @message: describes the data transfers, including completion callback 3352 * Context: any (irqs may be blocked, etc) 3353 * 3354 * This call may be used in_irq and other contexts which can't sleep, 3355 * as well as from task contexts which can sleep. 3356 * 3357 * The completion callback is invoked in a context which can't sleep. 3358 * Before that invocation, the value of message->status is undefined. 3359 * When the callback is issued, message->status holds either zero (to 3360 * indicate complete success) or a negative error code. After that 3361 * callback returns, the driver which issued the transfer request may 3362 * deallocate the associated memory; it's no longer in use by any SPI 3363 * core or controller driver code. 3364 * 3365 * Note that although all messages to a spi_device are handled in 3366 * FIFO order, messages may go to different devices in other orders. 3367 * Some device might be higher priority, or have various "hard" access 3368 * time requirements, for example. 3369 * 3370 * On detection of any fault during the transfer, processing of 3371 * the entire message is aborted, and the device is deselected. 3372 * Until returning from the associated message completion callback, 3373 * no other spi_message queued to that device will be processed. 3374 * (This rule applies equally to all the synchronous transfer calls, 3375 * which are wrappers around this core asynchronous primitive.) 3376 * 3377 * Return: zero on success, else a negative error code. 3378 */ 3379 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3380 { 3381 struct spi_controller *ctlr = spi->controller; 3382 int ret; 3383 unsigned long flags; 3384 3385 ret = __spi_validate(spi, message); 3386 if (ret != 0) 3387 return ret; 3388 3389 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3390 3391 ret = __spi_async(spi, message); 3392 3393 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3394 3395 return ret; 3396 3397 } 3398 EXPORT_SYMBOL_GPL(spi_async_locked); 3399 3400 /*-------------------------------------------------------------------------*/ 3401 3402 /* Utility methods for SPI protocol drivers, layered on 3403 * top of the core. Some other utility methods are defined as 3404 * inline functions. 3405 */ 3406 3407 static void spi_complete(void *arg) 3408 { 3409 complete(arg); 3410 } 3411 3412 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3413 { 3414 DECLARE_COMPLETION_ONSTACK(done); 3415 int status; 3416 struct spi_controller *ctlr = spi->controller; 3417 unsigned long flags; 3418 3419 status = __spi_validate(spi, message); 3420 if (status != 0) 3421 return status; 3422 3423 message->complete = spi_complete; 3424 message->context = &done; 3425 message->spi = spi; 3426 3427 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3428 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3429 3430 /* If we're not using the legacy transfer method then we will 3431 * try to transfer in the calling context so special case. 3432 * This code would be less tricky if we could remove the 3433 * support for driver implemented message queues. 3434 */ 3435 if (ctlr->transfer == spi_queued_transfer) { 3436 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3437 3438 trace_spi_message_submit(message); 3439 3440 status = __spi_queued_transfer(spi, message, false); 3441 3442 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3443 } else { 3444 status = spi_async_locked(spi, message); 3445 } 3446 3447 if (status == 0) { 3448 /* Push out the messages in the calling context if we 3449 * can. 3450 */ 3451 if (ctlr->transfer == spi_queued_transfer) { 3452 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3453 spi_sync_immediate); 3454 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3455 spi_sync_immediate); 3456 __spi_pump_messages(ctlr, false); 3457 } 3458 3459 wait_for_completion(&done); 3460 status = message->status; 3461 } 3462 message->context = NULL; 3463 return status; 3464 } 3465 3466 /** 3467 * spi_sync - blocking/synchronous SPI data transfers 3468 * @spi: device with which data will be exchanged 3469 * @message: describes the data transfers 3470 * Context: can sleep 3471 * 3472 * This call may only be used from a context that may sleep. The sleep 3473 * is non-interruptible, and has no timeout. Low-overhead controller 3474 * drivers may DMA directly into and out of the message buffers. 3475 * 3476 * Note that the SPI device's chip select is active during the message, 3477 * and then is normally disabled between messages. Drivers for some 3478 * frequently-used devices may want to minimize costs of selecting a chip, 3479 * by leaving it selected in anticipation that the next message will go 3480 * to the same chip. (That may increase power usage.) 3481 * 3482 * Also, the caller is guaranteeing that the memory associated with the 3483 * message will not be freed before this call returns. 3484 * 3485 * Return: zero on success, else a negative error code. 3486 */ 3487 int spi_sync(struct spi_device *spi, struct spi_message *message) 3488 { 3489 int ret; 3490 3491 mutex_lock(&spi->controller->bus_lock_mutex); 3492 ret = __spi_sync(spi, message); 3493 mutex_unlock(&spi->controller->bus_lock_mutex); 3494 3495 return ret; 3496 } 3497 EXPORT_SYMBOL_GPL(spi_sync); 3498 3499 /** 3500 * spi_sync_locked - version of spi_sync with exclusive bus usage 3501 * @spi: device with which data will be exchanged 3502 * @message: describes the data transfers 3503 * Context: can sleep 3504 * 3505 * This call may only be used from a context that may sleep. The sleep 3506 * is non-interruptible, and has no timeout. Low-overhead controller 3507 * drivers may DMA directly into and out of the message buffers. 3508 * 3509 * This call should be used by drivers that require exclusive access to the 3510 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3511 * be released by a spi_bus_unlock call when the exclusive access is over. 3512 * 3513 * Return: zero on success, else a negative error code. 3514 */ 3515 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3516 { 3517 return __spi_sync(spi, message); 3518 } 3519 EXPORT_SYMBOL_GPL(spi_sync_locked); 3520 3521 /** 3522 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3523 * @ctlr: SPI bus master that should be locked for exclusive bus access 3524 * Context: can sleep 3525 * 3526 * This call may only be used from a context that may sleep. The sleep 3527 * is non-interruptible, and has no timeout. 3528 * 3529 * This call should be used by drivers that require exclusive access to the 3530 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3531 * exclusive access is over. Data transfer must be done by spi_sync_locked 3532 * and spi_async_locked calls when the SPI bus lock is held. 3533 * 3534 * Return: always zero. 3535 */ 3536 int spi_bus_lock(struct spi_controller *ctlr) 3537 { 3538 unsigned long flags; 3539 3540 mutex_lock(&ctlr->bus_lock_mutex); 3541 3542 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3543 ctlr->bus_lock_flag = 1; 3544 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3545 3546 /* mutex remains locked until spi_bus_unlock is called */ 3547 3548 return 0; 3549 } 3550 EXPORT_SYMBOL_GPL(spi_bus_lock); 3551 3552 /** 3553 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3554 * @ctlr: SPI bus master that was locked for exclusive bus access 3555 * Context: can sleep 3556 * 3557 * This call may only be used from a context that may sleep. The sleep 3558 * is non-interruptible, and has no timeout. 3559 * 3560 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3561 * call. 3562 * 3563 * Return: always zero. 3564 */ 3565 int spi_bus_unlock(struct spi_controller *ctlr) 3566 { 3567 ctlr->bus_lock_flag = 0; 3568 3569 mutex_unlock(&ctlr->bus_lock_mutex); 3570 3571 return 0; 3572 } 3573 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3574 3575 /* portable code must never pass more than 32 bytes */ 3576 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3577 3578 static u8 *buf; 3579 3580 /** 3581 * spi_write_then_read - SPI synchronous write followed by read 3582 * @spi: device with which data will be exchanged 3583 * @txbuf: data to be written (need not be dma-safe) 3584 * @n_tx: size of txbuf, in bytes 3585 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3586 * @n_rx: size of rxbuf, in bytes 3587 * Context: can sleep 3588 * 3589 * This performs a half duplex MicroWire style transaction with the 3590 * device, sending txbuf and then reading rxbuf. The return value 3591 * is zero for success, else a negative errno status code. 3592 * This call may only be used from a context that may sleep. 3593 * 3594 * Parameters to this routine are always copied using a small buffer; 3595 * portable code should never use this for more than 32 bytes. 3596 * Performance-sensitive or bulk transfer code should instead use 3597 * spi_{async,sync}() calls with dma-safe buffers. 3598 * 3599 * Return: zero on success, else a negative error code. 3600 */ 3601 int spi_write_then_read(struct spi_device *spi, 3602 const void *txbuf, unsigned n_tx, 3603 void *rxbuf, unsigned n_rx) 3604 { 3605 static DEFINE_MUTEX(lock); 3606 3607 int status; 3608 struct spi_message message; 3609 struct spi_transfer x[2]; 3610 u8 *local_buf; 3611 3612 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3613 * copying here, (as a pure convenience thing), but we can 3614 * keep heap costs out of the hot path unless someone else is 3615 * using the pre-allocated buffer or the transfer is too large. 3616 */ 3617 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3618 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3619 GFP_KERNEL | GFP_DMA); 3620 if (!local_buf) 3621 return -ENOMEM; 3622 } else { 3623 local_buf = buf; 3624 } 3625 3626 spi_message_init(&message); 3627 memset(x, 0, sizeof(x)); 3628 if (n_tx) { 3629 x[0].len = n_tx; 3630 spi_message_add_tail(&x[0], &message); 3631 } 3632 if (n_rx) { 3633 x[1].len = n_rx; 3634 spi_message_add_tail(&x[1], &message); 3635 } 3636 3637 memcpy(local_buf, txbuf, n_tx); 3638 x[0].tx_buf = local_buf; 3639 x[1].rx_buf = local_buf + n_tx; 3640 3641 /* do the i/o */ 3642 status = spi_sync(spi, &message); 3643 if (status == 0) 3644 memcpy(rxbuf, x[1].rx_buf, n_rx); 3645 3646 if (x[0].tx_buf == buf) 3647 mutex_unlock(&lock); 3648 else 3649 kfree(local_buf); 3650 3651 return status; 3652 } 3653 EXPORT_SYMBOL_GPL(spi_write_then_read); 3654 3655 /*-------------------------------------------------------------------------*/ 3656 3657 #if IS_ENABLED(CONFIG_OF) 3658 /* must call put_device() when done with returned spi_device device */ 3659 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3660 { 3661 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 3662 3663 return dev ? to_spi_device(dev) : NULL; 3664 } 3665 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3666 #endif /* IS_ENABLED(CONFIG_OF) */ 3667 3668 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3669 /* the spi controllers are not using spi_bus, so we find it with another way */ 3670 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3671 { 3672 struct device *dev; 3673 3674 dev = class_find_device_by_of_node(&spi_master_class, node); 3675 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3676 dev = class_find_device_by_of_node(&spi_slave_class, node); 3677 if (!dev) 3678 return NULL; 3679 3680 /* reference got in class_find_device */ 3681 return container_of(dev, struct spi_controller, dev); 3682 } 3683 3684 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3685 void *arg) 3686 { 3687 struct of_reconfig_data *rd = arg; 3688 struct spi_controller *ctlr; 3689 struct spi_device *spi; 3690 3691 switch (of_reconfig_get_state_change(action, arg)) { 3692 case OF_RECONFIG_CHANGE_ADD: 3693 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3694 if (ctlr == NULL) 3695 return NOTIFY_OK; /* not for us */ 3696 3697 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3698 put_device(&ctlr->dev); 3699 return NOTIFY_OK; 3700 } 3701 3702 spi = of_register_spi_device(ctlr, rd->dn); 3703 put_device(&ctlr->dev); 3704 3705 if (IS_ERR(spi)) { 3706 pr_err("%s: failed to create for '%pOF'\n", 3707 __func__, rd->dn); 3708 of_node_clear_flag(rd->dn, OF_POPULATED); 3709 return notifier_from_errno(PTR_ERR(spi)); 3710 } 3711 break; 3712 3713 case OF_RECONFIG_CHANGE_REMOVE: 3714 /* already depopulated? */ 3715 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3716 return NOTIFY_OK; 3717 3718 /* find our device by node */ 3719 spi = of_find_spi_device_by_node(rd->dn); 3720 if (spi == NULL) 3721 return NOTIFY_OK; /* no? not meant for us */ 3722 3723 /* unregister takes one ref away */ 3724 spi_unregister_device(spi); 3725 3726 /* and put the reference of the find */ 3727 put_device(&spi->dev); 3728 break; 3729 } 3730 3731 return NOTIFY_OK; 3732 } 3733 3734 static struct notifier_block spi_of_notifier = { 3735 .notifier_call = of_spi_notify, 3736 }; 3737 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3738 extern struct notifier_block spi_of_notifier; 3739 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3740 3741 #if IS_ENABLED(CONFIG_ACPI) 3742 static int spi_acpi_controller_match(struct device *dev, const void *data) 3743 { 3744 return ACPI_COMPANION(dev->parent) == data; 3745 } 3746 3747 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 3748 { 3749 struct device *dev; 3750 3751 dev = class_find_device(&spi_master_class, NULL, adev, 3752 spi_acpi_controller_match); 3753 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3754 dev = class_find_device(&spi_slave_class, NULL, adev, 3755 spi_acpi_controller_match); 3756 if (!dev) 3757 return NULL; 3758 3759 return container_of(dev, struct spi_controller, dev); 3760 } 3761 3762 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 3763 { 3764 struct device *dev; 3765 3766 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 3767 return dev ? to_spi_device(dev) : NULL; 3768 } 3769 3770 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 3771 void *arg) 3772 { 3773 struct acpi_device *adev = arg; 3774 struct spi_controller *ctlr; 3775 struct spi_device *spi; 3776 3777 switch (value) { 3778 case ACPI_RECONFIG_DEVICE_ADD: 3779 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 3780 if (!ctlr) 3781 break; 3782 3783 acpi_register_spi_device(ctlr, adev); 3784 put_device(&ctlr->dev); 3785 break; 3786 case ACPI_RECONFIG_DEVICE_REMOVE: 3787 if (!acpi_device_enumerated(adev)) 3788 break; 3789 3790 spi = acpi_spi_find_device_by_adev(adev); 3791 if (!spi) 3792 break; 3793 3794 spi_unregister_device(spi); 3795 put_device(&spi->dev); 3796 break; 3797 } 3798 3799 return NOTIFY_OK; 3800 } 3801 3802 static struct notifier_block spi_acpi_notifier = { 3803 .notifier_call = acpi_spi_notify, 3804 }; 3805 #else 3806 extern struct notifier_block spi_acpi_notifier; 3807 #endif 3808 3809 static int __init spi_init(void) 3810 { 3811 int status; 3812 3813 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 3814 if (!buf) { 3815 status = -ENOMEM; 3816 goto err0; 3817 } 3818 3819 status = bus_register(&spi_bus_type); 3820 if (status < 0) 3821 goto err1; 3822 3823 status = class_register(&spi_master_class); 3824 if (status < 0) 3825 goto err2; 3826 3827 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 3828 status = class_register(&spi_slave_class); 3829 if (status < 0) 3830 goto err3; 3831 } 3832 3833 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 3834 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 3835 if (IS_ENABLED(CONFIG_ACPI)) 3836 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 3837 3838 return 0; 3839 3840 err3: 3841 class_unregister(&spi_master_class); 3842 err2: 3843 bus_unregister(&spi_bus_type); 3844 err1: 3845 kfree(buf); 3846 buf = NULL; 3847 err0: 3848 return status; 3849 } 3850 3851 /* board_info is normally registered in arch_initcall(), 3852 * but even essential drivers wait till later 3853 * 3854 * REVISIT only boardinfo really needs static linking. the rest (device and 3855 * driver registration) _could_ be dynamically linked (modular) ... costs 3856 * include needing to have boardinfo data structures be much more public. 3857 */ 3858 postcore_initcall(spi_init); 3859