xref: /openbmc/linux/drivers/spi/spi.c (revision 9efac679)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43 
44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi masters may cleanup for released devices */
49 	if (spi->master->cleanup)
50 		spi->master->cleanup(spi);
51 
52 	spi_master_put(spi->master);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 #define SPI_STATISTICS_ATTRS(field, file)				\
71 static ssize_t spi_master_##field##_show(struct device *dev,		\
72 					 struct device_attribute *attr,	\
73 					 char *buf)			\
74 {									\
75 	struct spi_master *master = container_of(dev,			\
76 						 struct spi_master, dev); \
77 	return spi_statistics_##field##_show(&master->statistics, buf);	\
78 }									\
79 static struct device_attribute dev_attr_spi_master_##field = {		\
80 	.attr = { .name = file, .mode = S_IRUGO },			\
81 	.show = spi_master_##field##_show,				\
82 };									\
83 static ssize_t spi_device_##field##_show(struct device *dev,		\
84 					 struct device_attribute *attr,	\
85 					char *buf)			\
86 {									\
87 	struct spi_device *spi = to_spi_device(dev);			\
88 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
89 }									\
90 static struct device_attribute dev_attr_spi_device_##field = {		\
91 	.attr = { .name = file, .mode = S_IRUGO },			\
92 	.show = spi_device_##field##_show,				\
93 }
94 
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97 					    char *buf)			\
98 {									\
99 	unsigned long flags;						\
100 	ssize_t len;							\
101 	spin_lock_irqsave(&stat->lock, flags);				\
102 	len = sprintf(buf, format_string, stat->field);			\
103 	spin_unlock_irqrestore(&stat->lock, flags);			\
104 	return len;							\
105 }									\
106 SPI_STATISTICS_ATTRS(name, file)
107 
108 #define SPI_STATISTICS_SHOW(field, format_string)			\
109 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
110 				 field, format_string)
111 
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116 
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120 
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124 
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
126 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
127 				 "transfer_bytes_histo_" number,	\
128 				 transfer_bytes_histo[index],  "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146 
147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
148 
149 static struct attribute *spi_dev_attrs[] = {
150 	&dev_attr_modalias.attr,
151 	NULL,
152 };
153 
154 static const struct attribute_group spi_dev_group = {
155 	.attrs  = spi_dev_attrs,
156 };
157 
158 static struct attribute *spi_device_statistics_attrs[] = {
159 	&dev_attr_spi_device_messages.attr,
160 	&dev_attr_spi_device_transfers.attr,
161 	&dev_attr_spi_device_errors.attr,
162 	&dev_attr_spi_device_timedout.attr,
163 	&dev_attr_spi_device_spi_sync.attr,
164 	&dev_attr_spi_device_spi_sync_immediate.attr,
165 	&dev_attr_spi_device_spi_async.attr,
166 	&dev_attr_spi_device_bytes.attr,
167 	&dev_attr_spi_device_bytes_rx.attr,
168 	&dev_attr_spi_device_bytes_tx.attr,
169 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
186 	&dev_attr_spi_device_transfers_split_maxsize.attr,
187 	NULL,
188 };
189 
190 static const struct attribute_group spi_device_statistics_group = {
191 	.name  = "statistics",
192 	.attrs  = spi_device_statistics_attrs,
193 };
194 
195 static const struct attribute_group *spi_dev_groups[] = {
196 	&spi_dev_group,
197 	&spi_device_statistics_group,
198 	NULL,
199 };
200 
201 static struct attribute *spi_master_statistics_attrs[] = {
202 	&dev_attr_spi_master_messages.attr,
203 	&dev_attr_spi_master_transfers.attr,
204 	&dev_attr_spi_master_errors.attr,
205 	&dev_attr_spi_master_timedout.attr,
206 	&dev_attr_spi_master_spi_sync.attr,
207 	&dev_attr_spi_master_spi_sync_immediate.attr,
208 	&dev_attr_spi_master_spi_async.attr,
209 	&dev_attr_spi_master_bytes.attr,
210 	&dev_attr_spi_master_bytes_rx.attr,
211 	&dev_attr_spi_master_bytes_tx.attr,
212 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
226 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
227 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
228 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
229 	&dev_attr_spi_master_transfers_split_maxsize.attr,
230 	NULL,
231 };
232 
233 static const struct attribute_group spi_master_statistics_group = {
234 	.name  = "statistics",
235 	.attrs  = spi_master_statistics_attrs,
236 };
237 
238 static const struct attribute_group *spi_master_groups[] = {
239 	&spi_master_statistics_group,
240 	NULL,
241 };
242 
243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
244 				       struct spi_transfer *xfer,
245 				       struct spi_master *master)
246 {
247 	unsigned long flags;
248 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
249 
250 	if (l2len < 0)
251 		l2len = 0;
252 
253 	spin_lock_irqsave(&stats->lock, flags);
254 
255 	stats->transfers++;
256 	stats->transfer_bytes_histo[l2len]++;
257 
258 	stats->bytes += xfer->len;
259 	if ((xfer->tx_buf) &&
260 	    (xfer->tx_buf != master->dummy_tx))
261 		stats->bytes_tx += xfer->len;
262 	if ((xfer->rx_buf) &&
263 	    (xfer->rx_buf != master->dummy_rx))
264 		stats->bytes_rx += xfer->len;
265 
266 	spin_unlock_irqrestore(&stats->lock, flags);
267 }
268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
269 
270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
271  * and the sysfs version makes coldplug work too.
272  */
273 
274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
275 						const struct spi_device *sdev)
276 {
277 	while (id->name[0]) {
278 		if (!strcmp(sdev->modalias, id->name))
279 			return id;
280 		id++;
281 	}
282 	return NULL;
283 }
284 
285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
286 {
287 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
288 
289 	return spi_match_id(sdrv->id_table, sdev);
290 }
291 EXPORT_SYMBOL_GPL(spi_get_device_id);
292 
293 static int spi_match_device(struct device *dev, struct device_driver *drv)
294 {
295 	const struct spi_device	*spi = to_spi_device(dev);
296 	const struct spi_driver	*sdrv = to_spi_driver(drv);
297 
298 	/* Attempt an OF style match */
299 	if (of_driver_match_device(dev, drv))
300 		return 1;
301 
302 	/* Then try ACPI */
303 	if (acpi_driver_match_device(dev, drv))
304 		return 1;
305 
306 	if (sdrv->id_table)
307 		return !!spi_match_id(sdrv->id_table, spi);
308 
309 	return strcmp(spi->modalias, drv->name) == 0;
310 }
311 
312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
313 {
314 	const struct spi_device		*spi = to_spi_device(dev);
315 	int rc;
316 
317 	rc = acpi_device_uevent_modalias(dev, env);
318 	if (rc != -ENODEV)
319 		return rc;
320 
321 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322 	return 0;
323 }
324 
325 struct bus_type spi_bus_type = {
326 	.name		= "spi",
327 	.dev_groups	= spi_dev_groups,
328 	.match		= spi_match_device,
329 	.uevent		= spi_uevent,
330 };
331 EXPORT_SYMBOL_GPL(spi_bus_type);
332 
333 
334 static int spi_drv_probe(struct device *dev)
335 {
336 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
337 	struct spi_device		*spi = to_spi_device(dev);
338 	int ret;
339 
340 	ret = of_clk_set_defaults(dev->of_node, false);
341 	if (ret)
342 		return ret;
343 
344 	if (dev->of_node) {
345 		spi->irq = of_irq_get(dev->of_node, 0);
346 		if (spi->irq == -EPROBE_DEFER)
347 			return -EPROBE_DEFER;
348 		if (spi->irq < 0)
349 			spi->irq = 0;
350 	}
351 
352 	ret = dev_pm_domain_attach(dev, true);
353 	if (ret != -EPROBE_DEFER) {
354 		ret = sdrv->probe(spi);
355 		if (ret)
356 			dev_pm_domain_detach(dev, true);
357 	}
358 
359 	return ret;
360 }
361 
362 static int spi_drv_remove(struct device *dev)
363 {
364 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
365 	int ret;
366 
367 	ret = sdrv->remove(to_spi_device(dev));
368 	dev_pm_domain_detach(dev, true);
369 
370 	return ret;
371 }
372 
373 static void spi_drv_shutdown(struct device *dev)
374 {
375 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
376 
377 	sdrv->shutdown(to_spi_device(dev));
378 }
379 
380 /**
381  * __spi_register_driver - register a SPI driver
382  * @owner: owner module of the driver to register
383  * @sdrv: the driver to register
384  * Context: can sleep
385  *
386  * Return: zero on success, else a negative error code.
387  */
388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
389 {
390 	sdrv->driver.owner = owner;
391 	sdrv->driver.bus = &spi_bus_type;
392 	if (sdrv->probe)
393 		sdrv->driver.probe = spi_drv_probe;
394 	if (sdrv->remove)
395 		sdrv->driver.remove = spi_drv_remove;
396 	if (sdrv->shutdown)
397 		sdrv->driver.shutdown = spi_drv_shutdown;
398 	return driver_register(&sdrv->driver);
399 }
400 EXPORT_SYMBOL_GPL(__spi_register_driver);
401 
402 /*-------------------------------------------------------------------------*/
403 
404 /* SPI devices should normally not be created by SPI device drivers; that
405  * would make them board-specific.  Similarly with SPI master drivers.
406  * Device registration normally goes into like arch/.../mach.../board-YYY.c
407  * with other readonly (flashable) information about mainboard devices.
408  */
409 
410 struct boardinfo {
411 	struct list_head	list;
412 	struct spi_board_info	board_info;
413 };
414 
415 static LIST_HEAD(board_list);
416 static LIST_HEAD(spi_master_list);
417 
418 /*
419  * Used to protect add/del opertion for board_info list and
420  * spi_master list, and their matching process
421  */
422 static DEFINE_MUTEX(board_lock);
423 
424 /**
425  * spi_alloc_device - Allocate a new SPI device
426  * @master: Controller to which device is connected
427  * Context: can sleep
428  *
429  * Allows a driver to allocate and initialize a spi_device without
430  * registering it immediately.  This allows a driver to directly
431  * fill the spi_device with device parameters before calling
432  * spi_add_device() on it.
433  *
434  * Caller is responsible to call spi_add_device() on the returned
435  * spi_device structure to add it to the SPI master.  If the caller
436  * needs to discard the spi_device without adding it, then it should
437  * call spi_dev_put() on it.
438  *
439  * Return: a pointer to the new device, or NULL.
440  */
441 struct spi_device *spi_alloc_device(struct spi_master *master)
442 {
443 	struct spi_device	*spi;
444 
445 	if (!spi_master_get(master))
446 		return NULL;
447 
448 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
449 	if (!spi) {
450 		spi_master_put(master);
451 		return NULL;
452 	}
453 
454 	spi->master = master;
455 	spi->dev.parent = &master->dev;
456 	spi->dev.bus = &spi_bus_type;
457 	spi->dev.release = spidev_release;
458 	spi->cs_gpio = -ENOENT;
459 
460 	spin_lock_init(&spi->statistics.lock);
461 
462 	device_initialize(&spi->dev);
463 	return spi;
464 }
465 EXPORT_SYMBOL_GPL(spi_alloc_device);
466 
467 static void spi_dev_set_name(struct spi_device *spi)
468 {
469 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
470 
471 	if (adev) {
472 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
473 		return;
474 	}
475 
476 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
477 		     spi->chip_select);
478 }
479 
480 static int spi_dev_check(struct device *dev, void *data)
481 {
482 	struct spi_device *spi = to_spi_device(dev);
483 	struct spi_device *new_spi = data;
484 
485 	if (spi->master == new_spi->master &&
486 	    spi->chip_select == new_spi->chip_select)
487 		return -EBUSY;
488 	return 0;
489 }
490 
491 /**
492  * spi_add_device - Add spi_device allocated with spi_alloc_device
493  * @spi: spi_device to register
494  *
495  * Companion function to spi_alloc_device.  Devices allocated with
496  * spi_alloc_device can be added onto the spi bus with this function.
497  *
498  * Return: 0 on success; negative errno on failure
499  */
500 int spi_add_device(struct spi_device *spi)
501 {
502 	static DEFINE_MUTEX(spi_add_lock);
503 	struct spi_master *master = spi->master;
504 	struct device *dev = master->dev.parent;
505 	int status;
506 
507 	/* Chipselects are numbered 0..max; validate. */
508 	if (spi->chip_select >= master->num_chipselect) {
509 		dev_err(dev, "cs%d >= max %d\n",
510 			spi->chip_select,
511 			master->num_chipselect);
512 		return -EINVAL;
513 	}
514 
515 	/* Set the bus ID string */
516 	spi_dev_set_name(spi);
517 
518 	/* We need to make sure there's no other device with this
519 	 * chipselect **BEFORE** we call setup(), else we'll trash
520 	 * its configuration.  Lock against concurrent add() calls.
521 	 */
522 	mutex_lock(&spi_add_lock);
523 
524 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
525 	if (status) {
526 		dev_err(dev, "chipselect %d already in use\n",
527 				spi->chip_select);
528 		goto done;
529 	}
530 
531 	if (master->cs_gpios)
532 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
533 
534 	/* Drivers may modify this initial i/o setup, but will
535 	 * normally rely on the device being setup.  Devices
536 	 * using SPI_CS_HIGH can't coexist well otherwise...
537 	 */
538 	status = spi_setup(spi);
539 	if (status < 0) {
540 		dev_err(dev, "can't setup %s, status %d\n",
541 				dev_name(&spi->dev), status);
542 		goto done;
543 	}
544 
545 	/* Device may be bound to an active driver when this returns */
546 	status = device_add(&spi->dev);
547 	if (status < 0)
548 		dev_err(dev, "can't add %s, status %d\n",
549 				dev_name(&spi->dev), status);
550 	else
551 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
552 
553 done:
554 	mutex_unlock(&spi_add_lock);
555 	return status;
556 }
557 EXPORT_SYMBOL_GPL(spi_add_device);
558 
559 /**
560  * spi_new_device - instantiate one new SPI device
561  * @master: Controller to which device is connected
562  * @chip: Describes the SPI device
563  * Context: can sleep
564  *
565  * On typical mainboards, this is purely internal; and it's not needed
566  * after board init creates the hard-wired devices.  Some development
567  * platforms may not be able to use spi_register_board_info though, and
568  * this is exported so that for example a USB or parport based adapter
569  * driver could add devices (which it would learn about out-of-band).
570  *
571  * Return: the new device, or NULL.
572  */
573 struct spi_device *spi_new_device(struct spi_master *master,
574 				  struct spi_board_info *chip)
575 {
576 	struct spi_device	*proxy;
577 	int			status;
578 
579 	/* NOTE:  caller did any chip->bus_num checks necessary.
580 	 *
581 	 * Also, unless we change the return value convention to use
582 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
583 	 * suggests syslogged diagnostics are best here (ugh).
584 	 */
585 
586 	proxy = spi_alloc_device(master);
587 	if (!proxy)
588 		return NULL;
589 
590 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
591 
592 	proxy->chip_select = chip->chip_select;
593 	proxy->max_speed_hz = chip->max_speed_hz;
594 	proxy->mode = chip->mode;
595 	proxy->irq = chip->irq;
596 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
597 	proxy->dev.platform_data = (void *) chip->platform_data;
598 	proxy->controller_data = chip->controller_data;
599 	proxy->controller_state = NULL;
600 
601 	status = spi_add_device(proxy);
602 	if (status < 0) {
603 		spi_dev_put(proxy);
604 		return NULL;
605 	}
606 
607 	return proxy;
608 }
609 EXPORT_SYMBOL_GPL(spi_new_device);
610 
611 /**
612  * spi_unregister_device - unregister a single SPI device
613  * @spi: spi_device to unregister
614  *
615  * Start making the passed SPI device vanish. Normally this would be handled
616  * by spi_unregister_master().
617  */
618 void spi_unregister_device(struct spi_device *spi)
619 {
620 	if (!spi)
621 		return;
622 
623 	if (spi->dev.of_node)
624 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
625 	if (ACPI_COMPANION(&spi->dev))
626 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
627 	device_unregister(&spi->dev);
628 }
629 EXPORT_SYMBOL_GPL(spi_unregister_device);
630 
631 static void spi_match_master_to_boardinfo(struct spi_master *master,
632 				struct spi_board_info *bi)
633 {
634 	struct spi_device *dev;
635 
636 	if (master->bus_num != bi->bus_num)
637 		return;
638 
639 	dev = spi_new_device(master, bi);
640 	if (!dev)
641 		dev_err(master->dev.parent, "can't create new device for %s\n",
642 			bi->modalias);
643 }
644 
645 /**
646  * spi_register_board_info - register SPI devices for a given board
647  * @info: array of chip descriptors
648  * @n: how many descriptors are provided
649  * Context: can sleep
650  *
651  * Board-specific early init code calls this (probably during arch_initcall)
652  * with segments of the SPI device table.  Any device nodes are created later,
653  * after the relevant parent SPI controller (bus_num) is defined.  We keep
654  * this table of devices forever, so that reloading a controller driver will
655  * not make Linux forget about these hard-wired devices.
656  *
657  * Other code can also call this, e.g. a particular add-on board might provide
658  * SPI devices through its expansion connector, so code initializing that board
659  * would naturally declare its SPI devices.
660  *
661  * The board info passed can safely be __initdata ... but be careful of
662  * any embedded pointers (platform_data, etc), they're copied as-is.
663  *
664  * Return: zero on success, else a negative error code.
665  */
666 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
667 {
668 	struct boardinfo *bi;
669 	int i;
670 
671 	if (!n)
672 		return -EINVAL;
673 
674 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
675 	if (!bi)
676 		return -ENOMEM;
677 
678 	for (i = 0; i < n; i++, bi++, info++) {
679 		struct spi_master *master;
680 
681 		memcpy(&bi->board_info, info, sizeof(*info));
682 		mutex_lock(&board_lock);
683 		list_add_tail(&bi->list, &board_list);
684 		list_for_each_entry(master, &spi_master_list, list)
685 			spi_match_master_to_boardinfo(master, &bi->board_info);
686 		mutex_unlock(&board_lock);
687 	}
688 
689 	return 0;
690 }
691 
692 /*-------------------------------------------------------------------------*/
693 
694 static void spi_set_cs(struct spi_device *spi, bool enable)
695 {
696 	if (spi->mode & SPI_CS_HIGH)
697 		enable = !enable;
698 
699 	if (gpio_is_valid(spi->cs_gpio))
700 		gpio_set_value(spi->cs_gpio, !enable);
701 	else if (spi->master->set_cs)
702 		spi->master->set_cs(spi, !enable);
703 }
704 
705 #ifdef CONFIG_HAS_DMA
706 static int spi_map_buf(struct spi_master *master, struct device *dev,
707 		       struct sg_table *sgt, void *buf, size_t len,
708 		       enum dma_data_direction dir)
709 {
710 	const bool vmalloced_buf = is_vmalloc_addr(buf);
711 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
712 	int desc_len;
713 	int sgs;
714 	struct page *vm_page;
715 	void *sg_buf;
716 	size_t min;
717 	int i, ret;
718 
719 	if (vmalloced_buf) {
720 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
721 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
722 	} else if (virt_addr_valid(buf)) {
723 		desc_len = min_t(int, max_seg_size, master->max_dma_len);
724 		sgs = DIV_ROUND_UP(len, desc_len);
725 	} else {
726 		return -EINVAL;
727 	}
728 
729 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
730 	if (ret != 0)
731 		return ret;
732 
733 	for (i = 0; i < sgs; i++) {
734 
735 		if (vmalloced_buf) {
736 			min = min_t(size_t,
737 				    len, desc_len - offset_in_page(buf));
738 			vm_page = vmalloc_to_page(buf);
739 			if (!vm_page) {
740 				sg_free_table(sgt);
741 				return -ENOMEM;
742 			}
743 			sg_set_page(&sgt->sgl[i], vm_page,
744 				    min, offset_in_page(buf));
745 		} else {
746 			min = min_t(size_t, len, desc_len);
747 			sg_buf = buf;
748 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
749 		}
750 
751 		buf += min;
752 		len -= min;
753 	}
754 
755 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
756 	if (!ret)
757 		ret = -ENOMEM;
758 	if (ret < 0) {
759 		sg_free_table(sgt);
760 		return ret;
761 	}
762 
763 	sgt->nents = ret;
764 
765 	return 0;
766 }
767 
768 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
769 			  struct sg_table *sgt, enum dma_data_direction dir)
770 {
771 	if (sgt->orig_nents) {
772 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
773 		sg_free_table(sgt);
774 	}
775 }
776 
777 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
778 {
779 	struct device *tx_dev, *rx_dev;
780 	struct spi_transfer *xfer;
781 	int ret;
782 
783 	if (!master->can_dma)
784 		return 0;
785 
786 	if (master->dma_tx)
787 		tx_dev = master->dma_tx->device->dev;
788 	else
789 		tx_dev = &master->dev;
790 
791 	if (master->dma_rx)
792 		rx_dev = master->dma_rx->device->dev;
793 	else
794 		rx_dev = &master->dev;
795 
796 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
797 		if (!master->can_dma(master, msg->spi, xfer))
798 			continue;
799 
800 		if (xfer->tx_buf != NULL) {
801 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
802 					  (void *)xfer->tx_buf, xfer->len,
803 					  DMA_TO_DEVICE);
804 			if (ret != 0)
805 				return ret;
806 		}
807 
808 		if (xfer->rx_buf != NULL) {
809 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
810 					  xfer->rx_buf, xfer->len,
811 					  DMA_FROM_DEVICE);
812 			if (ret != 0) {
813 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
814 					      DMA_TO_DEVICE);
815 				return ret;
816 			}
817 		}
818 	}
819 
820 	master->cur_msg_mapped = true;
821 
822 	return 0;
823 }
824 
825 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
826 {
827 	struct spi_transfer *xfer;
828 	struct device *tx_dev, *rx_dev;
829 
830 	if (!master->cur_msg_mapped || !master->can_dma)
831 		return 0;
832 
833 	if (master->dma_tx)
834 		tx_dev = master->dma_tx->device->dev;
835 	else
836 		tx_dev = &master->dev;
837 
838 	if (master->dma_rx)
839 		rx_dev = master->dma_rx->device->dev;
840 	else
841 		rx_dev = &master->dev;
842 
843 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
844 		if (!master->can_dma(master, msg->spi, xfer))
845 			continue;
846 
847 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
848 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
849 	}
850 
851 	return 0;
852 }
853 #else /* !CONFIG_HAS_DMA */
854 static inline int spi_map_buf(struct spi_master *master,
855 			      struct device *dev, struct sg_table *sgt,
856 			      void *buf, size_t len,
857 			      enum dma_data_direction dir)
858 {
859 	return -EINVAL;
860 }
861 
862 static inline void spi_unmap_buf(struct spi_master *master,
863 				 struct device *dev, struct sg_table *sgt,
864 				 enum dma_data_direction dir)
865 {
866 }
867 
868 static inline int __spi_map_msg(struct spi_master *master,
869 				struct spi_message *msg)
870 {
871 	return 0;
872 }
873 
874 static inline int __spi_unmap_msg(struct spi_master *master,
875 				  struct spi_message *msg)
876 {
877 	return 0;
878 }
879 #endif /* !CONFIG_HAS_DMA */
880 
881 static inline int spi_unmap_msg(struct spi_master *master,
882 				struct spi_message *msg)
883 {
884 	struct spi_transfer *xfer;
885 
886 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
887 		/*
888 		 * Restore the original value of tx_buf or rx_buf if they are
889 		 * NULL.
890 		 */
891 		if (xfer->tx_buf == master->dummy_tx)
892 			xfer->tx_buf = NULL;
893 		if (xfer->rx_buf == master->dummy_rx)
894 			xfer->rx_buf = NULL;
895 	}
896 
897 	return __spi_unmap_msg(master, msg);
898 }
899 
900 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
901 {
902 	struct spi_transfer *xfer;
903 	void *tmp;
904 	unsigned int max_tx, max_rx;
905 
906 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
907 		max_tx = 0;
908 		max_rx = 0;
909 
910 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
911 			if ((master->flags & SPI_MASTER_MUST_TX) &&
912 			    !xfer->tx_buf)
913 				max_tx = max(xfer->len, max_tx);
914 			if ((master->flags & SPI_MASTER_MUST_RX) &&
915 			    !xfer->rx_buf)
916 				max_rx = max(xfer->len, max_rx);
917 		}
918 
919 		if (max_tx) {
920 			tmp = krealloc(master->dummy_tx, max_tx,
921 				       GFP_KERNEL | GFP_DMA);
922 			if (!tmp)
923 				return -ENOMEM;
924 			master->dummy_tx = tmp;
925 			memset(tmp, 0, max_tx);
926 		}
927 
928 		if (max_rx) {
929 			tmp = krealloc(master->dummy_rx, max_rx,
930 				       GFP_KERNEL | GFP_DMA);
931 			if (!tmp)
932 				return -ENOMEM;
933 			master->dummy_rx = tmp;
934 		}
935 
936 		if (max_tx || max_rx) {
937 			list_for_each_entry(xfer, &msg->transfers,
938 					    transfer_list) {
939 				if (!xfer->tx_buf)
940 					xfer->tx_buf = master->dummy_tx;
941 				if (!xfer->rx_buf)
942 					xfer->rx_buf = master->dummy_rx;
943 			}
944 		}
945 	}
946 
947 	return __spi_map_msg(master, msg);
948 }
949 
950 /*
951  * spi_transfer_one_message - Default implementation of transfer_one_message()
952  *
953  * This is a standard implementation of transfer_one_message() for
954  * drivers which implement a transfer_one() operation.  It provides
955  * standard handling of delays and chip select management.
956  */
957 static int spi_transfer_one_message(struct spi_master *master,
958 				    struct spi_message *msg)
959 {
960 	struct spi_transfer *xfer;
961 	bool keep_cs = false;
962 	int ret = 0;
963 	unsigned long long ms = 1;
964 	struct spi_statistics *statm = &master->statistics;
965 	struct spi_statistics *stats = &msg->spi->statistics;
966 
967 	spi_set_cs(msg->spi, true);
968 
969 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
970 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
971 
972 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
973 		trace_spi_transfer_start(msg, xfer);
974 
975 		spi_statistics_add_transfer_stats(statm, xfer, master);
976 		spi_statistics_add_transfer_stats(stats, xfer, master);
977 
978 		if (xfer->tx_buf || xfer->rx_buf) {
979 			reinit_completion(&master->xfer_completion);
980 
981 			ret = master->transfer_one(master, msg->spi, xfer);
982 			if (ret < 0) {
983 				SPI_STATISTICS_INCREMENT_FIELD(statm,
984 							       errors);
985 				SPI_STATISTICS_INCREMENT_FIELD(stats,
986 							       errors);
987 				dev_err(&msg->spi->dev,
988 					"SPI transfer failed: %d\n", ret);
989 				goto out;
990 			}
991 
992 			if (ret > 0) {
993 				ret = 0;
994 				ms = 8LL * 1000LL * xfer->len;
995 				do_div(ms, xfer->speed_hz);
996 				ms += ms + 100; /* some tolerance */
997 
998 				if (ms > UINT_MAX)
999 					ms = UINT_MAX;
1000 
1001 				ms = wait_for_completion_timeout(&master->xfer_completion,
1002 								 msecs_to_jiffies(ms));
1003 			}
1004 
1005 			if (ms == 0) {
1006 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1007 							       timedout);
1008 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1009 							       timedout);
1010 				dev_err(&msg->spi->dev,
1011 					"SPI transfer timed out\n");
1012 				msg->status = -ETIMEDOUT;
1013 			}
1014 		} else {
1015 			if (xfer->len)
1016 				dev_err(&msg->spi->dev,
1017 					"Bufferless transfer has length %u\n",
1018 					xfer->len);
1019 		}
1020 
1021 		trace_spi_transfer_stop(msg, xfer);
1022 
1023 		if (msg->status != -EINPROGRESS)
1024 			goto out;
1025 
1026 		if (xfer->delay_usecs)
1027 			udelay(xfer->delay_usecs);
1028 
1029 		if (xfer->cs_change) {
1030 			if (list_is_last(&xfer->transfer_list,
1031 					 &msg->transfers)) {
1032 				keep_cs = true;
1033 			} else {
1034 				spi_set_cs(msg->spi, false);
1035 				udelay(10);
1036 				spi_set_cs(msg->spi, true);
1037 			}
1038 		}
1039 
1040 		msg->actual_length += xfer->len;
1041 	}
1042 
1043 out:
1044 	if (ret != 0 || !keep_cs)
1045 		spi_set_cs(msg->spi, false);
1046 
1047 	if (msg->status == -EINPROGRESS)
1048 		msg->status = ret;
1049 
1050 	if (msg->status && master->handle_err)
1051 		master->handle_err(master, msg);
1052 
1053 	spi_res_release(master, msg);
1054 
1055 	spi_finalize_current_message(master);
1056 
1057 	return ret;
1058 }
1059 
1060 /**
1061  * spi_finalize_current_transfer - report completion of a transfer
1062  * @master: the master reporting completion
1063  *
1064  * Called by SPI drivers using the core transfer_one_message()
1065  * implementation to notify it that the current interrupt driven
1066  * transfer has finished and the next one may be scheduled.
1067  */
1068 void spi_finalize_current_transfer(struct spi_master *master)
1069 {
1070 	complete(&master->xfer_completion);
1071 }
1072 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1073 
1074 /**
1075  * __spi_pump_messages - function which processes spi message queue
1076  * @master: master to process queue for
1077  * @in_kthread: true if we are in the context of the message pump thread
1078  *
1079  * This function checks if there is any spi message in the queue that
1080  * needs processing and if so call out to the driver to initialize hardware
1081  * and transfer each message.
1082  *
1083  * Note that it is called both from the kthread itself and also from
1084  * inside spi_sync(); the queue extraction handling at the top of the
1085  * function should deal with this safely.
1086  */
1087 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1088 {
1089 	unsigned long flags;
1090 	bool was_busy = false;
1091 	int ret;
1092 
1093 	/* Lock queue */
1094 	spin_lock_irqsave(&master->queue_lock, flags);
1095 
1096 	/* Make sure we are not already running a message */
1097 	if (master->cur_msg) {
1098 		spin_unlock_irqrestore(&master->queue_lock, flags);
1099 		return;
1100 	}
1101 
1102 	/* If another context is idling the device then defer */
1103 	if (master->idling) {
1104 		queue_kthread_work(&master->kworker, &master->pump_messages);
1105 		spin_unlock_irqrestore(&master->queue_lock, flags);
1106 		return;
1107 	}
1108 
1109 	/* Check if the queue is idle */
1110 	if (list_empty(&master->queue) || !master->running) {
1111 		if (!master->busy) {
1112 			spin_unlock_irqrestore(&master->queue_lock, flags);
1113 			return;
1114 		}
1115 
1116 		/* Only do teardown in the thread */
1117 		if (!in_kthread) {
1118 			queue_kthread_work(&master->kworker,
1119 					   &master->pump_messages);
1120 			spin_unlock_irqrestore(&master->queue_lock, flags);
1121 			return;
1122 		}
1123 
1124 		master->busy = false;
1125 		master->idling = true;
1126 		spin_unlock_irqrestore(&master->queue_lock, flags);
1127 
1128 		kfree(master->dummy_rx);
1129 		master->dummy_rx = NULL;
1130 		kfree(master->dummy_tx);
1131 		master->dummy_tx = NULL;
1132 		if (master->unprepare_transfer_hardware &&
1133 		    master->unprepare_transfer_hardware(master))
1134 			dev_err(&master->dev,
1135 				"failed to unprepare transfer hardware\n");
1136 		if (master->auto_runtime_pm) {
1137 			pm_runtime_mark_last_busy(master->dev.parent);
1138 			pm_runtime_put_autosuspend(master->dev.parent);
1139 		}
1140 		trace_spi_master_idle(master);
1141 
1142 		spin_lock_irqsave(&master->queue_lock, flags);
1143 		master->idling = false;
1144 		spin_unlock_irqrestore(&master->queue_lock, flags);
1145 		return;
1146 	}
1147 
1148 	/* Extract head of queue */
1149 	master->cur_msg =
1150 		list_first_entry(&master->queue, struct spi_message, queue);
1151 
1152 	list_del_init(&master->cur_msg->queue);
1153 	if (master->busy)
1154 		was_busy = true;
1155 	else
1156 		master->busy = true;
1157 	spin_unlock_irqrestore(&master->queue_lock, flags);
1158 
1159 	mutex_lock(&master->io_mutex);
1160 
1161 	if (!was_busy && master->auto_runtime_pm) {
1162 		ret = pm_runtime_get_sync(master->dev.parent);
1163 		if (ret < 0) {
1164 			dev_err(&master->dev, "Failed to power device: %d\n",
1165 				ret);
1166 			mutex_unlock(&master->io_mutex);
1167 			return;
1168 		}
1169 	}
1170 
1171 	if (!was_busy)
1172 		trace_spi_master_busy(master);
1173 
1174 	if (!was_busy && master->prepare_transfer_hardware) {
1175 		ret = master->prepare_transfer_hardware(master);
1176 		if (ret) {
1177 			dev_err(&master->dev,
1178 				"failed to prepare transfer hardware\n");
1179 
1180 			if (master->auto_runtime_pm)
1181 				pm_runtime_put(master->dev.parent);
1182 			mutex_unlock(&master->io_mutex);
1183 			return;
1184 		}
1185 	}
1186 
1187 	trace_spi_message_start(master->cur_msg);
1188 
1189 	if (master->prepare_message) {
1190 		ret = master->prepare_message(master, master->cur_msg);
1191 		if (ret) {
1192 			dev_err(&master->dev,
1193 				"failed to prepare message: %d\n", ret);
1194 			master->cur_msg->status = ret;
1195 			spi_finalize_current_message(master);
1196 			goto out;
1197 		}
1198 		master->cur_msg_prepared = true;
1199 	}
1200 
1201 	ret = spi_map_msg(master, master->cur_msg);
1202 	if (ret) {
1203 		master->cur_msg->status = ret;
1204 		spi_finalize_current_message(master);
1205 		goto out;
1206 	}
1207 
1208 	ret = master->transfer_one_message(master, master->cur_msg);
1209 	if (ret) {
1210 		dev_err(&master->dev,
1211 			"failed to transfer one message from queue\n");
1212 		goto out;
1213 	}
1214 
1215 out:
1216 	mutex_unlock(&master->io_mutex);
1217 
1218 	/* Prod the scheduler in case transfer_one() was busy waiting */
1219 	if (!ret)
1220 		cond_resched();
1221 }
1222 
1223 /**
1224  * spi_pump_messages - kthread work function which processes spi message queue
1225  * @work: pointer to kthread work struct contained in the master struct
1226  */
1227 static void spi_pump_messages(struct kthread_work *work)
1228 {
1229 	struct spi_master *master =
1230 		container_of(work, struct spi_master, pump_messages);
1231 
1232 	__spi_pump_messages(master, true);
1233 }
1234 
1235 static int spi_init_queue(struct spi_master *master)
1236 {
1237 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1238 
1239 	master->running = false;
1240 	master->busy = false;
1241 
1242 	init_kthread_worker(&master->kworker);
1243 	master->kworker_task = kthread_run(kthread_worker_fn,
1244 					   &master->kworker, "%s",
1245 					   dev_name(&master->dev));
1246 	if (IS_ERR(master->kworker_task)) {
1247 		dev_err(&master->dev, "failed to create message pump task\n");
1248 		return PTR_ERR(master->kworker_task);
1249 	}
1250 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1251 
1252 	/*
1253 	 * Master config will indicate if this controller should run the
1254 	 * message pump with high (realtime) priority to reduce the transfer
1255 	 * latency on the bus by minimising the delay between a transfer
1256 	 * request and the scheduling of the message pump thread. Without this
1257 	 * setting the message pump thread will remain at default priority.
1258 	 */
1259 	if (master->rt) {
1260 		dev_info(&master->dev,
1261 			"will run message pump with realtime priority\n");
1262 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 /**
1269  * spi_get_next_queued_message() - called by driver to check for queued
1270  * messages
1271  * @master: the master to check for queued messages
1272  *
1273  * If there are more messages in the queue, the next message is returned from
1274  * this call.
1275  *
1276  * Return: the next message in the queue, else NULL if the queue is empty.
1277  */
1278 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1279 {
1280 	struct spi_message *next;
1281 	unsigned long flags;
1282 
1283 	/* get a pointer to the next message, if any */
1284 	spin_lock_irqsave(&master->queue_lock, flags);
1285 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1286 					queue);
1287 	spin_unlock_irqrestore(&master->queue_lock, flags);
1288 
1289 	return next;
1290 }
1291 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1292 
1293 /**
1294  * spi_finalize_current_message() - the current message is complete
1295  * @master: the master to return the message to
1296  *
1297  * Called by the driver to notify the core that the message in the front of the
1298  * queue is complete and can be removed from the queue.
1299  */
1300 void spi_finalize_current_message(struct spi_master *master)
1301 {
1302 	struct spi_message *mesg;
1303 	unsigned long flags;
1304 	int ret;
1305 
1306 	spin_lock_irqsave(&master->queue_lock, flags);
1307 	mesg = master->cur_msg;
1308 	spin_unlock_irqrestore(&master->queue_lock, flags);
1309 
1310 	spi_unmap_msg(master, mesg);
1311 
1312 	if (master->cur_msg_prepared && master->unprepare_message) {
1313 		ret = master->unprepare_message(master, mesg);
1314 		if (ret) {
1315 			dev_err(&master->dev,
1316 				"failed to unprepare message: %d\n", ret);
1317 		}
1318 	}
1319 
1320 	spin_lock_irqsave(&master->queue_lock, flags);
1321 	master->cur_msg = NULL;
1322 	master->cur_msg_prepared = false;
1323 	queue_kthread_work(&master->kworker, &master->pump_messages);
1324 	spin_unlock_irqrestore(&master->queue_lock, flags);
1325 
1326 	trace_spi_message_done(mesg);
1327 
1328 	mesg->state = NULL;
1329 	if (mesg->complete)
1330 		mesg->complete(mesg->context);
1331 }
1332 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1333 
1334 static int spi_start_queue(struct spi_master *master)
1335 {
1336 	unsigned long flags;
1337 
1338 	spin_lock_irqsave(&master->queue_lock, flags);
1339 
1340 	if (master->running || master->busy) {
1341 		spin_unlock_irqrestore(&master->queue_lock, flags);
1342 		return -EBUSY;
1343 	}
1344 
1345 	master->running = true;
1346 	master->cur_msg = NULL;
1347 	spin_unlock_irqrestore(&master->queue_lock, flags);
1348 
1349 	queue_kthread_work(&master->kworker, &master->pump_messages);
1350 
1351 	return 0;
1352 }
1353 
1354 static int spi_stop_queue(struct spi_master *master)
1355 {
1356 	unsigned long flags;
1357 	unsigned limit = 500;
1358 	int ret = 0;
1359 
1360 	spin_lock_irqsave(&master->queue_lock, flags);
1361 
1362 	/*
1363 	 * This is a bit lame, but is optimized for the common execution path.
1364 	 * A wait_queue on the master->busy could be used, but then the common
1365 	 * execution path (pump_messages) would be required to call wake_up or
1366 	 * friends on every SPI message. Do this instead.
1367 	 */
1368 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1369 		spin_unlock_irqrestore(&master->queue_lock, flags);
1370 		usleep_range(10000, 11000);
1371 		spin_lock_irqsave(&master->queue_lock, flags);
1372 	}
1373 
1374 	if (!list_empty(&master->queue) || master->busy)
1375 		ret = -EBUSY;
1376 	else
1377 		master->running = false;
1378 
1379 	spin_unlock_irqrestore(&master->queue_lock, flags);
1380 
1381 	if (ret) {
1382 		dev_warn(&master->dev,
1383 			 "could not stop message queue\n");
1384 		return ret;
1385 	}
1386 	return ret;
1387 }
1388 
1389 static int spi_destroy_queue(struct spi_master *master)
1390 {
1391 	int ret;
1392 
1393 	ret = spi_stop_queue(master);
1394 
1395 	/*
1396 	 * flush_kthread_worker will block until all work is done.
1397 	 * If the reason that stop_queue timed out is that the work will never
1398 	 * finish, then it does no good to call flush/stop thread, so
1399 	 * return anyway.
1400 	 */
1401 	if (ret) {
1402 		dev_err(&master->dev, "problem destroying queue\n");
1403 		return ret;
1404 	}
1405 
1406 	flush_kthread_worker(&master->kworker);
1407 	kthread_stop(master->kworker_task);
1408 
1409 	return 0;
1410 }
1411 
1412 static int __spi_queued_transfer(struct spi_device *spi,
1413 				 struct spi_message *msg,
1414 				 bool need_pump)
1415 {
1416 	struct spi_master *master = spi->master;
1417 	unsigned long flags;
1418 
1419 	spin_lock_irqsave(&master->queue_lock, flags);
1420 
1421 	if (!master->running) {
1422 		spin_unlock_irqrestore(&master->queue_lock, flags);
1423 		return -ESHUTDOWN;
1424 	}
1425 	msg->actual_length = 0;
1426 	msg->status = -EINPROGRESS;
1427 
1428 	list_add_tail(&msg->queue, &master->queue);
1429 	if (!master->busy && need_pump)
1430 		queue_kthread_work(&master->kworker, &master->pump_messages);
1431 
1432 	spin_unlock_irqrestore(&master->queue_lock, flags);
1433 	return 0;
1434 }
1435 
1436 /**
1437  * spi_queued_transfer - transfer function for queued transfers
1438  * @spi: spi device which is requesting transfer
1439  * @msg: spi message which is to handled is queued to driver queue
1440  *
1441  * Return: zero on success, else a negative error code.
1442  */
1443 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1444 {
1445 	return __spi_queued_transfer(spi, msg, true);
1446 }
1447 
1448 static int spi_master_initialize_queue(struct spi_master *master)
1449 {
1450 	int ret;
1451 
1452 	master->transfer = spi_queued_transfer;
1453 	if (!master->transfer_one_message)
1454 		master->transfer_one_message = spi_transfer_one_message;
1455 
1456 	/* Initialize and start queue */
1457 	ret = spi_init_queue(master);
1458 	if (ret) {
1459 		dev_err(&master->dev, "problem initializing queue\n");
1460 		goto err_init_queue;
1461 	}
1462 	master->queued = true;
1463 	ret = spi_start_queue(master);
1464 	if (ret) {
1465 		dev_err(&master->dev, "problem starting queue\n");
1466 		goto err_start_queue;
1467 	}
1468 
1469 	return 0;
1470 
1471 err_start_queue:
1472 	spi_destroy_queue(master);
1473 err_init_queue:
1474 	return ret;
1475 }
1476 
1477 /*-------------------------------------------------------------------------*/
1478 
1479 #if defined(CONFIG_OF)
1480 static struct spi_device *
1481 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1482 {
1483 	struct spi_device *spi;
1484 	int rc;
1485 	u32 value;
1486 
1487 	/* Alloc an spi_device */
1488 	spi = spi_alloc_device(master);
1489 	if (!spi) {
1490 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1491 			nc->full_name);
1492 		rc = -ENOMEM;
1493 		goto err_out;
1494 	}
1495 
1496 	/* Select device driver */
1497 	rc = of_modalias_node(nc, spi->modalias,
1498 				sizeof(spi->modalias));
1499 	if (rc < 0) {
1500 		dev_err(&master->dev, "cannot find modalias for %s\n",
1501 			nc->full_name);
1502 		goto err_out;
1503 	}
1504 
1505 	/* Device address */
1506 	rc = of_property_read_u32(nc, "reg", &value);
1507 	if (rc) {
1508 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1509 			nc->full_name, rc);
1510 		goto err_out;
1511 	}
1512 	spi->chip_select = value;
1513 
1514 	/* Mode (clock phase/polarity/etc.) */
1515 	if (of_find_property(nc, "spi-cpha", NULL))
1516 		spi->mode |= SPI_CPHA;
1517 	if (of_find_property(nc, "spi-cpol", NULL))
1518 		spi->mode |= SPI_CPOL;
1519 	if (of_find_property(nc, "spi-cs-high", NULL))
1520 		spi->mode |= SPI_CS_HIGH;
1521 	if (of_find_property(nc, "spi-3wire", NULL))
1522 		spi->mode |= SPI_3WIRE;
1523 	if (of_find_property(nc, "spi-lsb-first", NULL))
1524 		spi->mode |= SPI_LSB_FIRST;
1525 
1526 	/* Device DUAL/QUAD mode */
1527 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1528 		switch (value) {
1529 		case 1:
1530 			break;
1531 		case 2:
1532 			spi->mode |= SPI_TX_DUAL;
1533 			break;
1534 		case 4:
1535 			spi->mode |= SPI_TX_QUAD;
1536 			break;
1537 		default:
1538 			dev_warn(&master->dev,
1539 				"spi-tx-bus-width %d not supported\n",
1540 				value);
1541 			break;
1542 		}
1543 	}
1544 
1545 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1546 		switch (value) {
1547 		case 1:
1548 			break;
1549 		case 2:
1550 			spi->mode |= SPI_RX_DUAL;
1551 			break;
1552 		case 4:
1553 			spi->mode |= SPI_RX_QUAD;
1554 			break;
1555 		default:
1556 			dev_warn(&master->dev,
1557 				"spi-rx-bus-width %d not supported\n",
1558 				value);
1559 			break;
1560 		}
1561 	}
1562 
1563 	/* Device speed */
1564 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1565 	if (rc) {
1566 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1567 			nc->full_name, rc);
1568 		goto err_out;
1569 	}
1570 	spi->max_speed_hz = value;
1571 
1572 	/* Store a pointer to the node in the device structure */
1573 	of_node_get(nc);
1574 	spi->dev.of_node = nc;
1575 
1576 	/* Register the new device */
1577 	rc = spi_add_device(spi);
1578 	if (rc) {
1579 		dev_err(&master->dev, "spi_device register error %s\n",
1580 			nc->full_name);
1581 		goto err_out;
1582 	}
1583 
1584 	return spi;
1585 
1586 err_out:
1587 	spi_dev_put(spi);
1588 	return ERR_PTR(rc);
1589 }
1590 
1591 /**
1592  * of_register_spi_devices() - Register child devices onto the SPI bus
1593  * @master:	Pointer to spi_master device
1594  *
1595  * Registers an spi_device for each child node of master node which has a 'reg'
1596  * property.
1597  */
1598 static void of_register_spi_devices(struct spi_master *master)
1599 {
1600 	struct spi_device *spi;
1601 	struct device_node *nc;
1602 
1603 	if (!master->dev.of_node)
1604 		return;
1605 
1606 	for_each_available_child_of_node(master->dev.of_node, nc) {
1607 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1608 			continue;
1609 		spi = of_register_spi_device(master, nc);
1610 		if (IS_ERR(spi))
1611 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1612 				nc->full_name);
1613 	}
1614 }
1615 #else
1616 static void of_register_spi_devices(struct spi_master *master) { }
1617 #endif
1618 
1619 #ifdef CONFIG_ACPI
1620 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1621 {
1622 	struct spi_device *spi = data;
1623 	struct spi_master *master = spi->master;
1624 
1625 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1626 		struct acpi_resource_spi_serialbus *sb;
1627 
1628 		sb = &ares->data.spi_serial_bus;
1629 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1630 			/*
1631 			 * ACPI DeviceSelection numbering is handled by the
1632 			 * host controller driver in Windows and can vary
1633 			 * from driver to driver. In Linux we always expect
1634 			 * 0 .. max - 1 so we need to ask the driver to
1635 			 * translate between the two schemes.
1636 			 */
1637 			if (master->fw_translate_cs) {
1638 				int cs = master->fw_translate_cs(master,
1639 						sb->device_selection);
1640 				if (cs < 0)
1641 					return cs;
1642 				spi->chip_select = cs;
1643 			} else {
1644 				spi->chip_select = sb->device_selection;
1645 			}
1646 
1647 			spi->max_speed_hz = sb->connection_speed;
1648 
1649 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1650 				spi->mode |= SPI_CPHA;
1651 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1652 				spi->mode |= SPI_CPOL;
1653 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1654 				spi->mode |= SPI_CS_HIGH;
1655 		}
1656 	} else if (spi->irq < 0) {
1657 		struct resource r;
1658 
1659 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1660 			spi->irq = r.start;
1661 	}
1662 
1663 	/* Always tell the ACPI core to skip this resource */
1664 	return 1;
1665 }
1666 
1667 static acpi_status acpi_register_spi_device(struct spi_master *master,
1668 					    struct acpi_device *adev)
1669 {
1670 	struct list_head resource_list;
1671 	struct spi_device *spi;
1672 	int ret;
1673 
1674 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1675 	    acpi_device_enumerated(adev))
1676 		return AE_OK;
1677 
1678 	spi = spi_alloc_device(master);
1679 	if (!spi) {
1680 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1681 			dev_name(&adev->dev));
1682 		return AE_NO_MEMORY;
1683 	}
1684 
1685 	ACPI_COMPANION_SET(&spi->dev, adev);
1686 	spi->irq = -1;
1687 
1688 	INIT_LIST_HEAD(&resource_list);
1689 	ret = acpi_dev_get_resources(adev, &resource_list,
1690 				     acpi_spi_add_resource, spi);
1691 	acpi_dev_free_resource_list(&resource_list);
1692 
1693 	if (ret < 0 || !spi->max_speed_hz) {
1694 		spi_dev_put(spi);
1695 		return AE_OK;
1696 	}
1697 
1698 	if (spi->irq < 0)
1699 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1700 
1701 	acpi_device_set_enumerated(adev);
1702 
1703 	adev->power.flags.ignore_parent = true;
1704 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1705 	if (spi_add_device(spi)) {
1706 		adev->power.flags.ignore_parent = false;
1707 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1708 			dev_name(&adev->dev));
1709 		spi_dev_put(spi);
1710 	}
1711 
1712 	return AE_OK;
1713 }
1714 
1715 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1716 				       void *data, void **return_value)
1717 {
1718 	struct spi_master *master = data;
1719 	struct acpi_device *adev;
1720 
1721 	if (acpi_bus_get_device(handle, &adev))
1722 		return AE_OK;
1723 
1724 	return acpi_register_spi_device(master, adev);
1725 }
1726 
1727 static void acpi_register_spi_devices(struct spi_master *master)
1728 {
1729 	acpi_status status;
1730 	acpi_handle handle;
1731 
1732 	handle = ACPI_HANDLE(master->dev.parent);
1733 	if (!handle)
1734 		return;
1735 
1736 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1737 				     acpi_spi_add_device, NULL,
1738 				     master, NULL);
1739 	if (ACPI_FAILURE(status))
1740 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1741 }
1742 #else
1743 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1744 #endif /* CONFIG_ACPI */
1745 
1746 static void spi_master_release(struct device *dev)
1747 {
1748 	struct spi_master *master;
1749 
1750 	master = container_of(dev, struct spi_master, dev);
1751 	kfree(master);
1752 }
1753 
1754 static struct class spi_master_class = {
1755 	.name		= "spi_master",
1756 	.owner		= THIS_MODULE,
1757 	.dev_release	= spi_master_release,
1758 	.dev_groups	= spi_master_groups,
1759 };
1760 
1761 
1762 /**
1763  * spi_alloc_master - allocate SPI master controller
1764  * @dev: the controller, possibly using the platform_bus
1765  * @size: how much zeroed driver-private data to allocate; the pointer to this
1766  *	memory is in the driver_data field of the returned device,
1767  *	accessible with spi_master_get_devdata().
1768  * Context: can sleep
1769  *
1770  * This call is used only by SPI master controller drivers, which are the
1771  * only ones directly touching chip registers.  It's how they allocate
1772  * an spi_master structure, prior to calling spi_register_master().
1773  *
1774  * This must be called from context that can sleep.
1775  *
1776  * The caller is responsible for assigning the bus number and initializing
1777  * the master's methods before calling spi_register_master(); and (after errors
1778  * adding the device) calling spi_master_put() to prevent a memory leak.
1779  *
1780  * Return: the SPI master structure on success, else NULL.
1781  */
1782 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1783 {
1784 	struct spi_master	*master;
1785 
1786 	if (!dev)
1787 		return NULL;
1788 
1789 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1790 	if (!master)
1791 		return NULL;
1792 
1793 	device_initialize(&master->dev);
1794 	master->bus_num = -1;
1795 	master->num_chipselect = 1;
1796 	master->dev.class = &spi_master_class;
1797 	master->dev.parent = dev;
1798 	pm_suspend_ignore_children(&master->dev, true);
1799 	spi_master_set_devdata(master, &master[1]);
1800 
1801 	return master;
1802 }
1803 EXPORT_SYMBOL_GPL(spi_alloc_master);
1804 
1805 #ifdef CONFIG_OF
1806 static int of_spi_register_master(struct spi_master *master)
1807 {
1808 	int nb, i, *cs;
1809 	struct device_node *np = master->dev.of_node;
1810 
1811 	if (!np)
1812 		return 0;
1813 
1814 	nb = of_gpio_named_count(np, "cs-gpios");
1815 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1816 
1817 	/* Return error only for an incorrectly formed cs-gpios property */
1818 	if (nb == 0 || nb == -ENOENT)
1819 		return 0;
1820 	else if (nb < 0)
1821 		return nb;
1822 
1823 	cs = devm_kzalloc(&master->dev,
1824 			  sizeof(int) * master->num_chipselect,
1825 			  GFP_KERNEL);
1826 	master->cs_gpios = cs;
1827 
1828 	if (!master->cs_gpios)
1829 		return -ENOMEM;
1830 
1831 	for (i = 0; i < master->num_chipselect; i++)
1832 		cs[i] = -ENOENT;
1833 
1834 	for (i = 0; i < nb; i++)
1835 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1836 
1837 	return 0;
1838 }
1839 #else
1840 static int of_spi_register_master(struct spi_master *master)
1841 {
1842 	return 0;
1843 }
1844 #endif
1845 
1846 /**
1847  * spi_register_master - register SPI master controller
1848  * @master: initialized master, originally from spi_alloc_master()
1849  * Context: can sleep
1850  *
1851  * SPI master controllers connect to their drivers using some non-SPI bus,
1852  * such as the platform bus.  The final stage of probe() in that code
1853  * includes calling spi_register_master() to hook up to this SPI bus glue.
1854  *
1855  * SPI controllers use board specific (often SOC specific) bus numbers,
1856  * and board-specific addressing for SPI devices combines those numbers
1857  * with chip select numbers.  Since SPI does not directly support dynamic
1858  * device identification, boards need configuration tables telling which
1859  * chip is at which address.
1860  *
1861  * This must be called from context that can sleep.  It returns zero on
1862  * success, else a negative error code (dropping the master's refcount).
1863  * After a successful return, the caller is responsible for calling
1864  * spi_unregister_master().
1865  *
1866  * Return: zero on success, else a negative error code.
1867  */
1868 int spi_register_master(struct spi_master *master)
1869 {
1870 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1871 	struct device		*dev = master->dev.parent;
1872 	struct boardinfo	*bi;
1873 	int			status = -ENODEV;
1874 	int			dynamic = 0;
1875 
1876 	if (!dev)
1877 		return -ENODEV;
1878 
1879 	status = of_spi_register_master(master);
1880 	if (status)
1881 		return status;
1882 
1883 	/* even if it's just one always-selected device, there must
1884 	 * be at least one chipselect
1885 	 */
1886 	if (master->num_chipselect == 0)
1887 		return -EINVAL;
1888 
1889 	if ((master->bus_num < 0) && master->dev.of_node)
1890 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1891 
1892 	/* convention:  dynamically assigned bus IDs count down from the max */
1893 	if (master->bus_num < 0) {
1894 		/* FIXME switch to an IDR based scheme, something like
1895 		 * I2C now uses, so we can't run out of "dynamic" IDs
1896 		 */
1897 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1898 		dynamic = 1;
1899 	}
1900 
1901 	INIT_LIST_HEAD(&master->queue);
1902 	spin_lock_init(&master->queue_lock);
1903 	spin_lock_init(&master->bus_lock_spinlock);
1904 	mutex_init(&master->bus_lock_mutex);
1905 	mutex_init(&master->io_mutex);
1906 	master->bus_lock_flag = 0;
1907 	init_completion(&master->xfer_completion);
1908 	if (!master->max_dma_len)
1909 		master->max_dma_len = INT_MAX;
1910 
1911 	/* register the device, then userspace will see it.
1912 	 * registration fails if the bus ID is in use.
1913 	 */
1914 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1915 	status = device_add(&master->dev);
1916 	if (status < 0)
1917 		goto done;
1918 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1919 			dynamic ? " (dynamic)" : "");
1920 
1921 	/* If we're using a queued driver, start the queue */
1922 	if (master->transfer)
1923 		dev_info(dev, "master is unqueued, this is deprecated\n");
1924 	else {
1925 		status = spi_master_initialize_queue(master);
1926 		if (status) {
1927 			device_del(&master->dev);
1928 			goto done;
1929 		}
1930 	}
1931 	/* add statistics */
1932 	spin_lock_init(&master->statistics.lock);
1933 
1934 	mutex_lock(&board_lock);
1935 	list_add_tail(&master->list, &spi_master_list);
1936 	list_for_each_entry(bi, &board_list, list)
1937 		spi_match_master_to_boardinfo(master, &bi->board_info);
1938 	mutex_unlock(&board_lock);
1939 
1940 	/* Register devices from the device tree and ACPI */
1941 	of_register_spi_devices(master);
1942 	acpi_register_spi_devices(master);
1943 done:
1944 	return status;
1945 }
1946 EXPORT_SYMBOL_GPL(spi_register_master);
1947 
1948 static void devm_spi_unregister(struct device *dev, void *res)
1949 {
1950 	spi_unregister_master(*(struct spi_master **)res);
1951 }
1952 
1953 /**
1954  * dev_spi_register_master - register managed SPI master controller
1955  * @dev:    device managing SPI master
1956  * @master: initialized master, originally from spi_alloc_master()
1957  * Context: can sleep
1958  *
1959  * Register a SPI device as with spi_register_master() which will
1960  * automatically be unregister
1961  *
1962  * Return: zero on success, else a negative error code.
1963  */
1964 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1965 {
1966 	struct spi_master **ptr;
1967 	int ret;
1968 
1969 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1970 	if (!ptr)
1971 		return -ENOMEM;
1972 
1973 	ret = spi_register_master(master);
1974 	if (!ret) {
1975 		*ptr = master;
1976 		devres_add(dev, ptr);
1977 	} else {
1978 		devres_free(ptr);
1979 	}
1980 
1981 	return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1984 
1985 static int __unregister(struct device *dev, void *null)
1986 {
1987 	spi_unregister_device(to_spi_device(dev));
1988 	return 0;
1989 }
1990 
1991 /**
1992  * spi_unregister_master - unregister SPI master controller
1993  * @master: the master being unregistered
1994  * Context: can sleep
1995  *
1996  * This call is used only by SPI master controller drivers, which are the
1997  * only ones directly touching chip registers.
1998  *
1999  * This must be called from context that can sleep.
2000  */
2001 void spi_unregister_master(struct spi_master *master)
2002 {
2003 	int dummy;
2004 
2005 	if (master->queued) {
2006 		if (spi_destroy_queue(master))
2007 			dev_err(&master->dev, "queue remove failed\n");
2008 	}
2009 
2010 	mutex_lock(&board_lock);
2011 	list_del(&master->list);
2012 	mutex_unlock(&board_lock);
2013 
2014 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
2015 	device_unregister(&master->dev);
2016 }
2017 EXPORT_SYMBOL_GPL(spi_unregister_master);
2018 
2019 int spi_master_suspend(struct spi_master *master)
2020 {
2021 	int ret;
2022 
2023 	/* Basically no-ops for non-queued masters */
2024 	if (!master->queued)
2025 		return 0;
2026 
2027 	ret = spi_stop_queue(master);
2028 	if (ret)
2029 		dev_err(&master->dev, "queue stop failed\n");
2030 
2031 	return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(spi_master_suspend);
2034 
2035 int spi_master_resume(struct spi_master *master)
2036 {
2037 	int ret;
2038 
2039 	if (!master->queued)
2040 		return 0;
2041 
2042 	ret = spi_start_queue(master);
2043 	if (ret)
2044 		dev_err(&master->dev, "queue restart failed\n");
2045 
2046 	return ret;
2047 }
2048 EXPORT_SYMBOL_GPL(spi_master_resume);
2049 
2050 static int __spi_master_match(struct device *dev, const void *data)
2051 {
2052 	struct spi_master *m;
2053 	const u16 *bus_num = data;
2054 
2055 	m = container_of(dev, struct spi_master, dev);
2056 	return m->bus_num == *bus_num;
2057 }
2058 
2059 /**
2060  * spi_busnum_to_master - look up master associated with bus_num
2061  * @bus_num: the master's bus number
2062  * Context: can sleep
2063  *
2064  * This call may be used with devices that are registered after
2065  * arch init time.  It returns a refcounted pointer to the relevant
2066  * spi_master (which the caller must release), or NULL if there is
2067  * no such master registered.
2068  *
2069  * Return: the SPI master structure on success, else NULL.
2070  */
2071 struct spi_master *spi_busnum_to_master(u16 bus_num)
2072 {
2073 	struct device		*dev;
2074 	struct spi_master	*master = NULL;
2075 
2076 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2077 				__spi_master_match);
2078 	if (dev)
2079 		master = container_of(dev, struct spi_master, dev);
2080 	/* reference got in class_find_device */
2081 	return master;
2082 }
2083 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2084 
2085 /*-------------------------------------------------------------------------*/
2086 
2087 /* Core methods for SPI resource management */
2088 
2089 /**
2090  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2091  *                 during the processing of a spi_message while using
2092  *                 spi_transfer_one
2093  * @spi:     the spi device for which we allocate memory
2094  * @release: the release code to execute for this resource
2095  * @size:    size to alloc and return
2096  * @gfp:     GFP allocation flags
2097  *
2098  * Return: the pointer to the allocated data
2099  *
2100  * This may get enhanced in the future to allocate from a memory pool
2101  * of the @spi_device or @spi_master to avoid repeated allocations.
2102  */
2103 void *spi_res_alloc(struct spi_device *spi,
2104 		    spi_res_release_t release,
2105 		    size_t size, gfp_t gfp)
2106 {
2107 	struct spi_res *sres;
2108 
2109 	sres = kzalloc(sizeof(*sres) + size, gfp);
2110 	if (!sres)
2111 		return NULL;
2112 
2113 	INIT_LIST_HEAD(&sres->entry);
2114 	sres->release = release;
2115 
2116 	return sres->data;
2117 }
2118 EXPORT_SYMBOL_GPL(spi_res_alloc);
2119 
2120 /**
2121  * spi_res_free - free an spi resource
2122  * @res: pointer to the custom data of a resource
2123  *
2124  */
2125 void spi_res_free(void *res)
2126 {
2127 	struct spi_res *sres = container_of(res, struct spi_res, data);
2128 
2129 	if (!res)
2130 		return;
2131 
2132 	WARN_ON(!list_empty(&sres->entry));
2133 	kfree(sres);
2134 }
2135 EXPORT_SYMBOL_GPL(spi_res_free);
2136 
2137 /**
2138  * spi_res_add - add a spi_res to the spi_message
2139  * @message: the spi message
2140  * @res:     the spi_resource
2141  */
2142 void spi_res_add(struct spi_message *message, void *res)
2143 {
2144 	struct spi_res *sres = container_of(res, struct spi_res, data);
2145 
2146 	WARN_ON(!list_empty(&sres->entry));
2147 	list_add_tail(&sres->entry, &message->resources);
2148 }
2149 EXPORT_SYMBOL_GPL(spi_res_add);
2150 
2151 /**
2152  * spi_res_release - release all spi resources for this message
2153  * @master:  the @spi_master
2154  * @message: the @spi_message
2155  */
2156 void spi_res_release(struct spi_master *master,
2157 		     struct spi_message *message)
2158 {
2159 	struct spi_res *res;
2160 
2161 	while (!list_empty(&message->resources)) {
2162 		res = list_last_entry(&message->resources,
2163 				      struct spi_res, entry);
2164 
2165 		if (res->release)
2166 			res->release(master, message, res->data);
2167 
2168 		list_del(&res->entry);
2169 
2170 		kfree(res);
2171 	}
2172 }
2173 EXPORT_SYMBOL_GPL(spi_res_release);
2174 
2175 /*-------------------------------------------------------------------------*/
2176 
2177 /* Core methods for spi_message alterations */
2178 
2179 static void __spi_replace_transfers_release(struct spi_master *master,
2180 					    struct spi_message *msg,
2181 					    void *res)
2182 {
2183 	struct spi_replaced_transfers *rxfer = res;
2184 	size_t i;
2185 
2186 	/* call extra callback if requested */
2187 	if (rxfer->release)
2188 		rxfer->release(master, msg, res);
2189 
2190 	/* insert replaced transfers back into the message */
2191 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2192 
2193 	/* remove the formerly inserted entries */
2194 	for (i = 0; i < rxfer->inserted; i++)
2195 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2196 }
2197 
2198 /**
2199  * spi_replace_transfers - replace transfers with several transfers
2200  *                         and register change with spi_message.resources
2201  * @msg:           the spi_message we work upon
2202  * @xfer_first:    the first spi_transfer we want to replace
2203  * @remove:        number of transfers to remove
2204  * @insert:        the number of transfers we want to insert instead
2205  * @release:       extra release code necessary in some circumstances
2206  * @extradatasize: extra data to allocate (with alignment guarantees
2207  *                 of struct @spi_transfer)
2208  * @gfp:           gfp flags
2209  *
2210  * Returns: pointer to @spi_replaced_transfers,
2211  *          PTR_ERR(...) in case of errors.
2212  */
2213 struct spi_replaced_transfers *spi_replace_transfers(
2214 	struct spi_message *msg,
2215 	struct spi_transfer *xfer_first,
2216 	size_t remove,
2217 	size_t insert,
2218 	spi_replaced_release_t release,
2219 	size_t extradatasize,
2220 	gfp_t gfp)
2221 {
2222 	struct spi_replaced_transfers *rxfer;
2223 	struct spi_transfer *xfer;
2224 	size_t i;
2225 
2226 	/* allocate the structure using spi_res */
2227 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2228 			      insert * sizeof(struct spi_transfer)
2229 			      + sizeof(struct spi_replaced_transfers)
2230 			      + extradatasize,
2231 			      gfp);
2232 	if (!rxfer)
2233 		return ERR_PTR(-ENOMEM);
2234 
2235 	/* the release code to invoke before running the generic release */
2236 	rxfer->release = release;
2237 
2238 	/* assign extradata */
2239 	if (extradatasize)
2240 		rxfer->extradata =
2241 			&rxfer->inserted_transfers[insert];
2242 
2243 	/* init the replaced_transfers list */
2244 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2245 
2246 	/* assign the list_entry after which we should reinsert
2247 	 * the @replaced_transfers - it may be spi_message.messages!
2248 	 */
2249 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2250 
2251 	/* remove the requested number of transfers */
2252 	for (i = 0; i < remove; i++) {
2253 		/* if the entry after replaced_after it is msg->transfers
2254 		 * then we have been requested to remove more transfers
2255 		 * than are in the list
2256 		 */
2257 		if (rxfer->replaced_after->next == &msg->transfers) {
2258 			dev_err(&msg->spi->dev,
2259 				"requested to remove more spi_transfers than are available\n");
2260 			/* insert replaced transfers back into the message */
2261 			list_splice(&rxfer->replaced_transfers,
2262 				    rxfer->replaced_after);
2263 
2264 			/* free the spi_replace_transfer structure */
2265 			spi_res_free(rxfer);
2266 
2267 			/* and return with an error */
2268 			return ERR_PTR(-EINVAL);
2269 		}
2270 
2271 		/* remove the entry after replaced_after from list of
2272 		 * transfers and add it to list of replaced_transfers
2273 		 */
2274 		list_move_tail(rxfer->replaced_after->next,
2275 			       &rxfer->replaced_transfers);
2276 	}
2277 
2278 	/* create copy of the given xfer with identical settings
2279 	 * based on the first transfer to get removed
2280 	 */
2281 	for (i = 0; i < insert; i++) {
2282 		/* we need to run in reverse order */
2283 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2284 
2285 		/* copy all spi_transfer data */
2286 		memcpy(xfer, xfer_first, sizeof(*xfer));
2287 
2288 		/* add to list */
2289 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2290 
2291 		/* clear cs_change and delay_usecs for all but the last */
2292 		if (i) {
2293 			xfer->cs_change = false;
2294 			xfer->delay_usecs = 0;
2295 		}
2296 	}
2297 
2298 	/* set up inserted */
2299 	rxfer->inserted = insert;
2300 
2301 	/* and register it with spi_res/spi_message */
2302 	spi_res_add(msg, rxfer);
2303 
2304 	return rxfer;
2305 }
2306 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2307 
2308 static int __spi_split_transfer_maxsize(struct spi_master *master,
2309 					struct spi_message *msg,
2310 					struct spi_transfer **xferp,
2311 					size_t maxsize,
2312 					gfp_t gfp)
2313 {
2314 	struct spi_transfer *xfer = *xferp, *xfers;
2315 	struct spi_replaced_transfers *srt;
2316 	size_t offset;
2317 	size_t count, i;
2318 
2319 	/* warn once about this fact that we are splitting a transfer */
2320 	dev_warn_once(&msg->spi->dev,
2321 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2322 		      xfer->len, maxsize);
2323 
2324 	/* calculate how many we have to replace */
2325 	count = DIV_ROUND_UP(xfer->len, maxsize);
2326 
2327 	/* create replacement */
2328 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2329 	if (IS_ERR(srt))
2330 		return PTR_ERR(srt);
2331 	xfers = srt->inserted_transfers;
2332 
2333 	/* now handle each of those newly inserted spi_transfers
2334 	 * note that the replacements spi_transfers all are preset
2335 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2336 	 * are all identical (as well as most others)
2337 	 * so we just have to fix up len and the pointers.
2338 	 *
2339 	 * this also includes support for the depreciated
2340 	 * spi_message.is_dma_mapped interface
2341 	 */
2342 
2343 	/* the first transfer just needs the length modified, so we
2344 	 * run it outside the loop
2345 	 */
2346 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2347 
2348 	/* all the others need rx_buf/tx_buf also set */
2349 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2350 		/* update rx_buf, tx_buf and dma */
2351 		if (xfers[i].rx_buf)
2352 			xfers[i].rx_buf += offset;
2353 		if (xfers[i].rx_dma)
2354 			xfers[i].rx_dma += offset;
2355 		if (xfers[i].tx_buf)
2356 			xfers[i].tx_buf += offset;
2357 		if (xfers[i].tx_dma)
2358 			xfers[i].tx_dma += offset;
2359 
2360 		/* update length */
2361 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2362 	}
2363 
2364 	/* we set up xferp to the last entry we have inserted,
2365 	 * so that we skip those already split transfers
2366 	 */
2367 	*xferp = &xfers[count - 1];
2368 
2369 	/* increment statistics counters */
2370 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2371 				       transfers_split_maxsize);
2372 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2373 				       transfers_split_maxsize);
2374 
2375 	return 0;
2376 }
2377 
2378 /**
2379  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2380  *                              when an individual transfer exceeds a
2381  *                              certain size
2382  * @master:    the @spi_master for this transfer
2383  * @msg:   the @spi_message to transform
2384  * @maxsize:  the maximum when to apply this
2385  * @gfp: GFP allocation flags
2386  *
2387  * Return: status of transformation
2388  */
2389 int spi_split_transfers_maxsize(struct spi_master *master,
2390 				struct spi_message *msg,
2391 				size_t maxsize,
2392 				gfp_t gfp)
2393 {
2394 	struct spi_transfer *xfer;
2395 	int ret;
2396 
2397 	/* iterate over the transfer_list,
2398 	 * but note that xfer is advanced to the last transfer inserted
2399 	 * to avoid checking sizes again unnecessarily (also xfer does
2400 	 * potentiall belong to a different list by the time the
2401 	 * replacement has happened
2402 	 */
2403 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2404 		if (xfer->len > maxsize) {
2405 			ret = __spi_split_transfer_maxsize(
2406 				master, msg, &xfer, maxsize, gfp);
2407 			if (ret)
2408 				return ret;
2409 		}
2410 	}
2411 
2412 	return 0;
2413 }
2414 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2415 
2416 /*-------------------------------------------------------------------------*/
2417 
2418 /* Core methods for SPI master protocol drivers.  Some of the
2419  * other core methods are currently defined as inline functions.
2420  */
2421 
2422 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2423 {
2424 	if (master->bits_per_word_mask) {
2425 		/* Only 32 bits fit in the mask */
2426 		if (bits_per_word > 32)
2427 			return -EINVAL;
2428 		if (!(master->bits_per_word_mask &
2429 				SPI_BPW_MASK(bits_per_word)))
2430 			return -EINVAL;
2431 	}
2432 
2433 	return 0;
2434 }
2435 
2436 /**
2437  * spi_setup - setup SPI mode and clock rate
2438  * @spi: the device whose settings are being modified
2439  * Context: can sleep, and no requests are queued to the device
2440  *
2441  * SPI protocol drivers may need to update the transfer mode if the
2442  * device doesn't work with its default.  They may likewise need
2443  * to update clock rates or word sizes from initial values.  This function
2444  * changes those settings, and must be called from a context that can sleep.
2445  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2446  * effect the next time the device is selected and data is transferred to
2447  * or from it.  When this function returns, the spi device is deselected.
2448  *
2449  * Note that this call will fail if the protocol driver specifies an option
2450  * that the underlying controller or its driver does not support.  For
2451  * example, not all hardware supports wire transfers using nine bit words,
2452  * LSB-first wire encoding, or active-high chipselects.
2453  *
2454  * Return: zero on success, else a negative error code.
2455  */
2456 int spi_setup(struct spi_device *spi)
2457 {
2458 	unsigned	bad_bits, ugly_bits;
2459 	int		status;
2460 
2461 	/* check mode to prevent that DUAL and QUAD set at the same time
2462 	 */
2463 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2464 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2465 		dev_err(&spi->dev,
2466 		"setup: can not select dual and quad at the same time\n");
2467 		return -EINVAL;
2468 	}
2469 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2470 	 */
2471 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2472 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2473 		return -EINVAL;
2474 	/* help drivers fail *cleanly* when they need options
2475 	 * that aren't supported with their current master
2476 	 */
2477 	bad_bits = spi->mode & ~spi->master->mode_bits;
2478 	ugly_bits = bad_bits &
2479 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2480 	if (ugly_bits) {
2481 		dev_warn(&spi->dev,
2482 			 "setup: ignoring unsupported mode bits %x\n",
2483 			 ugly_bits);
2484 		spi->mode &= ~ugly_bits;
2485 		bad_bits &= ~ugly_bits;
2486 	}
2487 	if (bad_bits) {
2488 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2489 			bad_bits);
2490 		return -EINVAL;
2491 	}
2492 
2493 	if (!spi->bits_per_word)
2494 		spi->bits_per_word = 8;
2495 
2496 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2497 	if (status)
2498 		return status;
2499 
2500 	if (!spi->max_speed_hz)
2501 		spi->max_speed_hz = spi->master->max_speed_hz;
2502 
2503 	if (spi->master->setup)
2504 		status = spi->master->setup(spi);
2505 
2506 	spi_set_cs(spi, false);
2507 
2508 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2509 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2510 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2511 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2512 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2513 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2514 			spi->bits_per_word, spi->max_speed_hz,
2515 			status);
2516 
2517 	return status;
2518 }
2519 EXPORT_SYMBOL_GPL(spi_setup);
2520 
2521 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2522 {
2523 	struct spi_master *master = spi->master;
2524 	struct spi_transfer *xfer;
2525 	int w_size;
2526 
2527 	if (list_empty(&message->transfers))
2528 		return -EINVAL;
2529 
2530 	/* Half-duplex links include original MicroWire, and ones with
2531 	 * only one data pin like SPI_3WIRE (switches direction) or where
2532 	 * either MOSI or MISO is missing.  They can also be caused by
2533 	 * software limitations.
2534 	 */
2535 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2536 			|| (spi->mode & SPI_3WIRE)) {
2537 		unsigned flags = master->flags;
2538 
2539 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2540 			if (xfer->rx_buf && xfer->tx_buf)
2541 				return -EINVAL;
2542 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2543 				return -EINVAL;
2544 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2545 				return -EINVAL;
2546 		}
2547 	}
2548 
2549 	/**
2550 	 * Set transfer bits_per_word and max speed as spi device default if
2551 	 * it is not set for this transfer.
2552 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2553 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2554 	 */
2555 	message->frame_length = 0;
2556 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2557 		message->frame_length += xfer->len;
2558 		if (!xfer->bits_per_word)
2559 			xfer->bits_per_word = spi->bits_per_word;
2560 
2561 		if (!xfer->speed_hz)
2562 			xfer->speed_hz = spi->max_speed_hz;
2563 		if (!xfer->speed_hz)
2564 			xfer->speed_hz = master->max_speed_hz;
2565 
2566 		if (master->max_speed_hz &&
2567 		    xfer->speed_hz > master->max_speed_hz)
2568 			xfer->speed_hz = master->max_speed_hz;
2569 
2570 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2571 			return -EINVAL;
2572 
2573 		/*
2574 		 * SPI transfer length should be multiple of SPI word size
2575 		 * where SPI word size should be power-of-two multiple
2576 		 */
2577 		if (xfer->bits_per_word <= 8)
2578 			w_size = 1;
2579 		else if (xfer->bits_per_word <= 16)
2580 			w_size = 2;
2581 		else
2582 			w_size = 4;
2583 
2584 		/* No partial transfers accepted */
2585 		if (xfer->len % w_size)
2586 			return -EINVAL;
2587 
2588 		if (xfer->speed_hz && master->min_speed_hz &&
2589 		    xfer->speed_hz < master->min_speed_hz)
2590 			return -EINVAL;
2591 
2592 		if (xfer->tx_buf && !xfer->tx_nbits)
2593 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2594 		if (xfer->rx_buf && !xfer->rx_nbits)
2595 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2596 		/* check transfer tx/rx_nbits:
2597 		 * 1. check the value matches one of single, dual and quad
2598 		 * 2. check tx/rx_nbits match the mode in spi_device
2599 		 */
2600 		if (xfer->tx_buf) {
2601 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2602 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2603 				xfer->tx_nbits != SPI_NBITS_QUAD)
2604 				return -EINVAL;
2605 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2606 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2607 				return -EINVAL;
2608 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2609 				!(spi->mode & SPI_TX_QUAD))
2610 				return -EINVAL;
2611 		}
2612 		/* check transfer rx_nbits */
2613 		if (xfer->rx_buf) {
2614 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2615 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2616 				xfer->rx_nbits != SPI_NBITS_QUAD)
2617 				return -EINVAL;
2618 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2619 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2620 				return -EINVAL;
2621 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2622 				!(spi->mode & SPI_RX_QUAD))
2623 				return -EINVAL;
2624 		}
2625 	}
2626 
2627 	message->status = -EINPROGRESS;
2628 
2629 	return 0;
2630 }
2631 
2632 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2633 {
2634 	struct spi_master *master = spi->master;
2635 
2636 	message->spi = spi;
2637 
2638 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2639 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2640 
2641 	trace_spi_message_submit(message);
2642 
2643 	return master->transfer(spi, message);
2644 }
2645 
2646 /**
2647  * spi_async - asynchronous SPI transfer
2648  * @spi: device with which data will be exchanged
2649  * @message: describes the data transfers, including completion callback
2650  * Context: any (irqs may be blocked, etc)
2651  *
2652  * This call may be used in_irq and other contexts which can't sleep,
2653  * as well as from task contexts which can sleep.
2654  *
2655  * The completion callback is invoked in a context which can't sleep.
2656  * Before that invocation, the value of message->status is undefined.
2657  * When the callback is issued, message->status holds either zero (to
2658  * indicate complete success) or a negative error code.  After that
2659  * callback returns, the driver which issued the transfer request may
2660  * deallocate the associated memory; it's no longer in use by any SPI
2661  * core or controller driver code.
2662  *
2663  * Note that although all messages to a spi_device are handled in
2664  * FIFO order, messages may go to different devices in other orders.
2665  * Some device might be higher priority, or have various "hard" access
2666  * time requirements, for example.
2667  *
2668  * On detection of any fault during the transfer, processing of
2669  * the entire message is aborted, and the device is deselected.
2670  * Until returning from the associated message completion callback,
2671  * no other spi_message queued to that device will be processed.
2672  * (This rule applies equally to all the synchronous transfer calls,
2673  * which are wrappers around this core asynchronous primitive.)
2674  *
2675  * Return: zero on success, else a negative error code.
2676  */
2677 int spi_async(struct spi_device *spi, struct spi_message *message)
2678 {
2679 	struct spi_master *master = spi->master;
2680 	int ret;
2681 	unsigned long flags;
2682 
2683 	ret = __spi_validate(spi, message);
2684 	if (ret != 0)
2685 		return ret;
2686 
2687 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2688 
2689 	if (master->bus_lock_flag)
2690 		ret = -EBUSY;
2691 	else
2692 		ret = __spi_async(spi, message);
2693 
2694 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2695 
2696 	return ret;
2697 }
2698 EXPORT_SYMBOL_GPL(spi_async);
2699 
2700 /**
2701  * spi_async_locked - version of spi_async with exclusive bus usage
2702  * @spi: device with which data will be exchanged
2703  * @message: describes the data transfers, including completion callback
2704  * Context: any (irqs may be blocked, etc)
2705  *
2706  * This call may be used in_irq and other contexts which can't sleep,
2707  * as well as from task contexts which can sleep.
2708  *
2709  * The completion callback is invoked in a context which can't sleep.
2710  * Before that invocation, the value of message->status is undefined.
2711  * When the callback is issued, message->status holds either zero (to
2712  * indicate complete success) or a negative error code.  After that
2713  * callback returns, the driver which issued the transfer request may
2714  * deallocate the associated memory; it's no longer in use by any SPI
2715  * core or controller driver code.
2716  *
2717  * Note that although all messages to a spi_device are handled in
2718  * FIFO order, messages may go to different devices in other orders.
2719  * Some device might be higher priority, or have various "hard" access
2720  * time requirements, for example.
2721  *
2722  * On detection of any fault during the transfer, processing of
2723  * the entire message is aborted, and the device is deselected.
2724  * Until returning from the associated message completion callback,
2725  * no other spi_message queued to that device will be processed.
2726  * (This rule applies equally to all the synchronous transfer calls,
2727  * which are wrappers around this core asynchronous primitive.)
2728  *
2729  * Return: zero on success, else a negative error code.
2730  */
2731 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2732 {
2733 	struct spi_master *master = spi->master;
2734 	int ret;
2735 	unsigned long flags;
2736 
2737 	ret = __spi_validate(spi, message);
2738 	if (ret != 0)
2739 		return ret;
2740 
2741 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2742 
2743 	ret = __spi_async(spi, message);
2744 
2745 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2746 
2747 	return ret;
2748 
2749 }
2750 EXPORT_SYMBOL_GPL(spi_async_locked);
2751 
2752 
2753 int spi_flash_read(struct spi_device *spi,
2754 		   struct spi_flash_read_message *msg)
2755 
2756 {
2757 	struct spi_master *master = spi->master;
2758 	struct device *rx_dev = NULL;
2759 	int ret;
2760 
2761 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2762 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2763 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2764 		return -EINVAL;
2765 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2766 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2767 	    !(spi->mode & SPI_TX_QUAD))
2768 		return -EINVAL;
2769 	if (msg->data_nbits == SPI_NBITS_DUAL &&
2770 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2771 		return -EINVAL;
2772 	if (msg->data_nbits == SPI_NBITS_QUAD &&
2773 	    !(spi->mode &  SPI_RX_QUAD))
2774 		return -EINVAL;
2775 
2776 	if (master->auto_runtime_pm) {
2777 		ret = pm_runtime_get_sync(master->dev.parent);
2778 		if (ret < 0) {
2779 			dev_err(&master->dev, "Failed to power device: %d\n",
2780 				ret);
2781 			return ret;
2782 		}
2783 	}
2784 
2785 	mutex_lock(&master->bus_lock_mutex);
2786 	mutex_lock(&master->io_mutex);
2787 	if (master->dma_rx) {
2788 		rx_dev = master->dma_rx->device->dev;
2789 		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2790 				  msg->buf, msg->len,
2791 				  DMA_FROM_DEVICE);
2792 		if (!ret)
2793 			msg->cur_msg_mapped = true;
2794 	}
2795 	ret = master->spi_flash_read(spi, msg);
2796 	if (msg->cur_msg_mapped)
2797 		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2798 			      DMA_FROM_DEVICE);
2799 	mutex_unlock(&master->io_mutex);
2800 	mutex_unlock(&master->bus_lock_mutex);
2801 
2802 	if (master->auto_runtime_pm)
2803 		pm_runtime_put(master->dev.parent);
2804 
2805 	return ret;
2806 }
2807 EXPORT_SYMBOL_GPL(spi_flash_read);
2808 
2809 /*-------------------------------------------------------------------------*/
2810 
2811 /* Utility methods for SPI master protocol drivers, layered on
2812  * top of the core.  Some other utility methods are defined as
2813  * inline functions.
2814  */
2815 
2816 static void spi_complete(void *arg)
2817 {
2818 	complete(arg);
2819 }
2820 
2821 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2822 {
2823 	DECLARE_COMPLETION_ONSTACK(done);
2824 	int status;
2825 	struct spi_master *master = spi->master;
2826 	unsigned long flags;
2827 
2828 	status = __spi_validate(spi, message);
2829 	if (status != 0)
2830 		return status;
2831 
2832 	message->complete = spi_complete;
2833 	message->context = &done;
2834 	message->spi = spi;
2835 
2836 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2837 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2838 
2839 	/* If we're not using the legacy transfer method then we will
2840 	 * try to transfer in the calling context so special case.
2841 	 * This code would be less tricky if we could remove the
2842 	 * support for driver implemented message queues.
2843 	 */
2844 	if (master->transfer == spi_queued_transfer) {
2845 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2846 
2847 		trace_spi_message_submit(message);
2848 
2849 		status = __spi_queued_transfer(spi, message, false);
2850 
2851 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2852 	} else {
2853 		status = spi_async_locked(spi, message);
2854 	}
2855 
2856 	if (status == 0) {
2857 		/* Push out the messages in the calling context if we
2858 		 * can.
2859 		 */
2860 		if (master->transfer == spi_queued_transfer) {
2861 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2862 						       spi_sync_immediate);
2863 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2864 						       spi_sync_immediate);
2865 			__spi_pump_messages(master, false);
2866 		}
2867 
2868 		wait_for_completion(&done);
2869 		status = message->status;
2870 	}
2871 	message->context = NULL;
2872 	return status;
2873 }
2874 
2875 /**
2876  * spi_sync - blocking/synchronous SPI data transfers
2877  * @spi: device with which data will be exchanged
2878  * @message: describes the data transfers
2879  * Context: can sleep
2880  *
2881  * This call may only be used from a context that may sleep.  The sleep
2882  * is non-interruptible, and has no timeout.  Low-overhead controller
2883  * drivers may DMA directly into and out of the message buffers.
2884  *
2885  * Note that the SPI device's chip select is active during the message,
2886  * and then is normally disabled between messages.  Drivers for some
2887  * frequently-used devices may want to minimize costs of selecting a chip,
2888  * by leaving it selected in anticipation that the next message will go
2889  * to the same chip.  (That may increase power usage.)
2890  *
2891  * Also, the caller is guaranteeing that the memory associated with the
2892  * message will not be freed before this call returns.
2893  *
2894  * Return: zero on success, else a negative error code.
2895  */
2896 int spi_sync(struct spi_device *spi, struct spi_message *message)
2897 {
2898 	int ret;
2899 
2900 	mutex_lock(&spi->master->bus_lock_mutex);
2901 	ret = __spi_sync(spi, message);
2902 	mutex_unlock(&spi->master->bus_lock_mutex);
2903 
2904 	return ret;
2905 }
2906 EXPORT_SYMBOL_GPL(spi_sync);
2907 
2908 /**
2909  * spi_sync_locked - version of spi_sync with exclusive bus usage
2910  * @spi: device with which data will be exchanged
2911  * @message: describes the data transfers
2912  * Context: can sleep
2913  *
2914  * This call may only be used from a context that may sleep.  The sleep
2915  * is non-interruptible, and has no timeout.  Low-overhead controller
2916  * drivers may DMA directly into and out of the message buffers.
2917  *
2918  * This call should be used by drivers that require exclusive access to the
2919  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2920  * be released by a spi_bus_unlock call when the exclusive access is over.
2921  *
2922  * Return: zero on success, else a negative error code.
2923  */
2924 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2925 {
2926 	return __spi_sync(spi, message);
2927 }
2928 EXPORT_SYMBOL_GPL(spi_sync_locked);
2929 
2930 /**
2931  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2932  * @master: SPI bus master that should be locked for exclusive bus access
2933  * Context: can sleep
2934  *
2935  * This call may only be used from a context that may sleep.  The sleep
2936  * is non-interruptible, and has no timeout.
2937  *
2938  * This call should be used by drivers that require exclusive access to the
2939  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2940  * exclusive access is over. Data transfer must be done by spi_sync_locked
2941  * and spi_async_locked calls when the SPI bus lock is held.
2942  *
2943  * Return: always zero.
2944  */
2945 int spi_bus_lock(struct spi_master *master)
2946 {
2947 	unsigned long flags;
2948 
2949 	mutex_lock(&master->bus_lock_mutex);
2950 
2951 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2952 	master->bus_lock_flag = 1;
2953 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2954 
2955 	/* mutex remains locked until spi_bus_unlock is called */
2956 
2957 	return 0;
2958 }
2959 EXPORT_SYMBOL_GPL(spi_bus_lock);
2960 
2961 /**
2962  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2963  * @master: SPI bus master that was locked for exclusive bus access
2964  * Context: can sleep
2965  *
2966  * This call may only be used from a context that may sleep.  The sleep
2967  * is non-interruptible, and has no timeout.
2968  *
2969  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2970  * call.
2971  *
2972  * Return: always zero.
2973  */
2974 int spi_bus_unlock(struct spi_master *master)
2975 {
2976 	master->bus_lock_flag = 0;
2977 
2978 	mutex_unlock(&master->bus_lock_mutex);
2979 
2980 	return 0;
2981 }
2982 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2983 
2984 /* portable code must never pass more than 32 bytes */
2985 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2986 
2987 static u8	*buf;
2988 
2989 /**
2990  * spi_write_then_read - SPI synchronous write followed by read
2991  * @spi: device with which data will be exchanged
2992  * @txbuf: data to be written (need not be dma-safe)
2993  * @n_tx: size of txbuf, in bytes
2994  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2995  * @n_rx: size of rxbuf, in bytes
2996  * Context: can sleep
2997  *
2998  * This performs a half duplex MicroWire style transaction with the
2999  * device, sending txbuf and then reading rxbuf.  The return value
3000  * is zero for success, else a negative errno status code.
3001  * This call may only be used from a context that may sleep.
3002  *
3003  * Parameters to this routine are always copied using a small buffer;
3004  * portable code should never use this for more than 32 bytes.
3005  * Performance-sensitive or bulk transfer code should instead use
3006  * spi_{async,sync}() calls with dma-safe buffers.
3007  *
3008  * Return: zero on success, else a negative error code.
3009  */
3010 int spi_write_then_read(struct spi_device *spi,
3011 		const void *txbuf, unsigned n_tx,
3012 		void *rxbuf, unsigned n_rx)
3013 {
3014 	static DEFINE_MUTEX(lock);
3015 
3016 	int			status;
3017 	struct spi_message	message;
3018 	struct spi_transfer	x[2];
3019 	u8			*local_buf;
3020 
3021 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3022 	 * copying here, (as a pure convenience thing), but we can
3023 	 * keep heap costs out of the hot path unless someone else is
3024 	 * using the pre-allocated buffer or the transfer is too large.
3025 	 */
3026 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3027 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3028 				    GFP_KERNEL | GFP_DMA);
3029 		if (!local_buf)
3030 			return -ENOMEM;
3031 	} else {
3032 		local_buf = buf;
3033 	}
3034 
3035 	spi_message_init(&message);
3036 	memset(x, 0, sizeof(x));
3037 	if (n_tx) {
3038 		x[0].len = n_tx;
3039 		spi_message_add_tail(&x[0], &message);
3040 	}
3041 	if (n_rx) {
3042 		x[1].len = n_rx;
3043 		spi_message_add_tail(&x[1], &message);
3044 	}
3045 
3046 	memcpy(local_buf, txbuf, n_tx);
3047 	x[0].tx_buf = local_buf;
3048 	x[1].rx_buf = local_buf + n_tx;
3049 
3050 	/* do the i/o */
3051 	status = spi_sync(spi, &message);
3052 	if (status == 0)
3053 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3054 
3055 	if (x[0].tx_buf == buf)
3056 		mutex_unlock(&lock);
3057 	else
3058 		kfree(local_buf);
3059 
3060 	return status;
3061 }
3062 EXPORT_SYMBOL_GPL(spi_write_then_read);
3063 
3064 /*-------------------------------------------------------------------------*/
3065 
3066 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3067 static int __spi_of_device_match(struct device *dev, void *data)
3068 {
3069 	return dev->of_node == data;
3070 }
3071 
3072 /* must call put_device() when done with returned spi_device device */
3073 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3074 {
3075 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3076 						__spi_of_device_match);
3077 	return dev ? to_spi_device(dev) : NULL;
3078 }
3079 
3080 static int __spi_of_master_match(struct device *dev, const void *data)
3081 {
3082 	return dev->of_node == data;
3083 }
3084 
3085 /* the spi masters are not using spi_bus, so we find it with another way */
3086 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3087 {
3088 	struct device *dev;
3089 
3090 	dev = class_find_device(&spi_master_class, NULL, node,
3091 				__spi_of_master_match);
3092 	if (!dev)
3093 		return NULL;
3094 
3095 	/* reference got in class_find_device */
3096 	return container_of(dev, struct spi_master, dev);
3097 }
3098 
3099 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3100 			 void *arg)
3101 {
3102 	struct of_reconfig_data *rd = arg;
3103 	struct spi_master *master;
3104 	struct spi_device *spi;
3105 
3106 	switch (of_reconfig_get_state_change(action, arg)) {
3107 	case OF_RECONFIG_CHANGE_ADD:
3108 		master = of_find_spi_master_by_node(rd->dn->parent);
3109 		if (master == NULL)
3110 			return NOTIFY_OK;	/* not for us */
3111 
3112 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3113 			put_device(&master->dev);
3114 			return NOTIFY_OK;
3115 		}
3116 
3117 		spi = of_register_spi_device(master, rd->dn);
3118 		put_device(&master->dev);
3119 
3120 		if (IS_ERR(spi)) {
3121 			pr_err("%s: failed to create for '%s'\n",
3122 					__func__, rd->dn->full_name);
3123 			return notifier_from_errno(PTR_ERR(spi));
3124 		}
3125 		break;
3126 
3127 	case OF_RECONFIG_CHANGE_REMOVE:
3128 		/* already depopulated? */
3129 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3130 			return NOTIFY_OK;
3131 
3132 		/* find our device by node */
3133 		spi = of_find_spi_device_by_node(rd->dn);
3134 		if (spi == NULL)
3135 			return NOTIFY_OK;	/* no? not meant for us */
3136 
3137 		/* unregister takes one ref away */
3138 		spi_unregister_device(spi);
3139 
3140 		/* and put the reference of the find */
3141 		put_device(&spi->dev);
3142 		break;
3143 	}
3144 
3145 	return NOTIFY_OK;
3146 }
3147 
3148 static struct notifier_block spi_of_notifier = {
3149 	.notifier_call = of_spi_notify,
3150 };
3151 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3152 extern struct notifier_block spi_of_notifier;
3153 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3154 
3155 #if IS_ENABLED(CONFIG_ACPI)
3156 static int spi_acpi_master_match(struct device *dev, const void *data)
3157 {
3158 	return ACPI_COMPANION(dev->parent) == data;
3159 }
3160 
3161 static int spi_acpi_device_match(struct device *dev, void *data)
3162 {
3163 	return ACPI_COMPANION(dev) == data;
3164 }
3165 
3166 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3167 {
3168 	struct device *dev;
3169 
3170 	dev = class_find_device(&spi_master_class, NULL, adev,
3171 				spi_acpi_master_match);
3172 	if (!dev)
3173 		return NULL;
3174 
3175 	return container_of(dev, struct spi_master, dev);
3176 }
3177 
3178 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3179 {
3180 	struct device *dev;
3181 
3182 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3183 
3184 	return dev ? to_spi_device(dev) : NULL;
3185 }
3186 
3187 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3188 			   void *arg)
3189 {
3190 	struct acpi_device *adev = arg;
3191 	struct spi_master *master;
3192 	struct spi_device *spi;
3193 
3194 	switch (value) {
3195 	case ACPI_RECONFIG_DEVICE_ADD:
3196 		master = acpi_spi_find_master_by_adev(adev->parent);
3197 		if (!master)
3198 			break;
3199 
3200 		acpi_register_spi_device(master, adev);
3201 		put_device(&master->dev);
3202 		break;
3203 	case ACPI_RECONFIG_DEVICE_REMOVE:
3204 		if (!acpi_device_enumerated(adev))
3205 			break;
3206 
3207 		spi = acpi_spi_find_device_by_adev(adev);
3208 		if (!spi)
3209 			break;
3210 
3211 		spi_unregister_device(spi);
3212 		put_device(&spi->dev);
3213 		break;
3214 	}
3215 
3216 	return NOTIFY_OK;
3217 }
3218 
3219 static struct notifier_block spi_acpi_notifier = {
3220 	.notifier_call = acpi_spi_notify,
3221 };
3222 #else
3223 extern struct notifier_block spi_acpi_notifier;
3224 #endif
3225 
3226 static int __init spi_init(void)
3227 {
3228 	int	status;
3229 
3230 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3231 	if (!buf) {
3232 		status = -ENOMEM;
3233 		goto err0;
3234 	}
3235 
3236 	status = bus_register(&spi_bus_type);
3237 	if (status < 0)
3238 		goto err1;
3239 
3240 	status = class_register(&spi_master_class);
3241 	if (status < 0)
3242 		goto err2;
3243 
3244 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3245 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3246 	if (IS_ENABLED(CONFIG_ACPI))
3247 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3248 
3249 	return 0;
3250 
3251 err2:
3252 	bus_unregister(&spi_bus_type);
3253 err1:
3254 	kfree(buf);
3255 	buf = NULL;
3256 err0:
3257 	return status;
3258 }
3259 
3260 /* board_info is normally registered in arch_initcall(),
3261  * but even essential drivers wait till later
3262  *
3263  * REVISIT only boardinfo really needs static linking. the rest (device and
3264  * driver registration) _could_ be dynamically linked (modular) ... costs
3265  * include needing to have boardinfo data structures be much more public.
3266  */
3267 postcore_initcall(spi_init);
3268 
3269