1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 #include <linux/ptp_clock_kernel.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 kfree(spi); 54 } 55 56 static ssize_t 57 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 58 { 59 const struct spi_device *spi = to_spi_device(dev); 60 int len; 61 62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 63 if (len != -ENODEV) 64 return len; 65 66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 67 } 68 static DEVICE_ATTR_RO(modalias); 69 70 static ssize_t driver_override_store(struct device *dev, 71 struct device_attribute *a, 72 const char *buf, size_t count) 73 { 74 struct spi_device *spi = to_spi_device(dev); 75 const char *end = memchr(buf, '\n', count); 76 const size_t len = end ? end - buf : count; 77 const char *driver_override, *old; 78 79 /* We need to keep extra room for a newline when displaying value */ 80 if (len >= (PAGE_SIZE - 1)) 81 return -EINVAL; 82 83 driver_override = kstrndup(buf, len, GFP_KERNEL); 84 if (!driver_override) 85 return -ENOMEM; 86 87 device_lock(dev); 88 old = spi->driver_override; 89 if (len) { 90 spi->driver_override = driver_override; 91 } else { 92 /* Empty string, disable driver override */ 93 spi->driver_override = NULL; 94 kfree(driver_override); 95 } 96 device_unlock(dev); 97 kfree(old); 98 99 return count; 100 } 101 102 static ssize_t driver_override_show(struct device *dev, 103 struct device_attribute *a, char *buf) 104 { 105 const struct spi_device *spi = to_spi_device(dev); 106 ssize_t len; 107 108 device_lock(dev); 109 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 110 device_unlock(dev); 111 return len; 112 } 113 static DEVICE_ATTR_RW(driver_override); 114 115 #define SPI_STATISTICS_ATTRS(field, file) \ 116 static ssize_t spi_controller_##field##_show(struct device *dev, \ 117 struct device_attribute *attr, \ 118 char *buf) \ 119 { \ 120 struct spi_controller *ctlr = container_of(dev, \ 121 struct spi_controller, dev); \ 122 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 123 } \ 124 static struct device_attribute dev_attr_spi_controller_##field = { \ 125 .attr = { .name = file, .mode = 0444 }, \ 126 .show = spi_controller_##field##_show, \ 127 }; \ 128 static ssize_t spi_device_##field##_show(struct device *dev, \ 129 struct device_attribute *attr, \ 130 char *buf) \ 131 { \ 132 struct spi_device *spi = to_spi_device(dev); \ 133 return spi_statistics_##field##_show(&spi->statistics, buf); \ 134 } \ 135 static struct device_attribute dev_attr_spi_device_##field = { \ 136 .attr = { .name = file, .mode = 0444 }, \ 137 .show = spi_device_##field##_show, \ 138 } 139 140 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 141 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 142 char *buf) \ 143 { \ 144 unsigned long flags; \ 145 ssize_t len; \ 146 spin_lock_irqsave(&stat->lock, flags); \ 147 len = sprintf(buf, format_string, stat->field); \ 148 spin_unlock_irqrestore(&stat->lock, flags); \ 149 return len; \ 150 } \ 151 SPI_STATISTICS_ATTRS(name, file) 152 153 #define SPI_STATISTICS_SHOW(field, format_string) \ 154 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 155 field, format_string) 156 157 SPI_STATISTICS_SHOW(messages, "%lu"); 158 SPI_STATISTICS_SHOW(transfers, "%lu"); 159 SPI_STATISTICS_SHOW(errors, "%lu"); 160 SPI_STATISTICS_SHOW(timedout, "%lu"); 161 162 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 163 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 164 SPI_STATISTICS_SHOW(spi_async, "%lu"); 165 166 SPI_STATISTICS_SHOW(bytes, "%llu"); 167 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 168 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 169 170 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 171 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 172 "transfer_bytes_histo_" number, \ 173 transfer_bytes_histo[index], "%lu") 174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 191 192 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 193 194 static struct attribute *spi_dev_attrs[] = { 195 &dev_attr_modalias.attr, 196 &dev_attr_driver_override.attr, 197 NULL, 198 }; 199 200 static const struct attribute_group spi_dev_group = { 201 .attrs = spi_dev_attrs, 202 }; 203 204 static struct attribute *spi_device_statistics_attrs[] = { 205 &dev_attr_spi_device_messages.attr, 206 &dev_attr_spi_device_transfers.attr, 207 &dev_attr_spi_device_errors.attr, 208 &dev_attr_spi_device_timedout.attr, 209 &dev_attr_spi_device_spi_sync.attr, 210 &dev_attr_spi_device_spi_sync_immediate.attr, 211 &dev_attr_spi_device_spi_async.attr, 212 &dev_attr_spi_device_bytes.attr, 213 &dev_attr_spi_device_bytes_rx.attr, 214 &dev_attr_spi_device_bytes_tx.attr, 215 &dev_attr_spi_device_transfer_bytes_histo0.attr, 216 &dev_attr_spi_device_transfer_bytes_histo1.attr, 217 &dev_attr_spi_device_transfer_bytes_histo2.attr, 218 &dev_attr_spi_device_transfer_bytes_histo3.attr, 219 &dev_attr_spi_device_transfer_bytes_histo4.attr, 220 &dev_attr_spi_device_transfer_bytes_histo5.attr, 221 &dev_attr_spi_device_transfer_bytes_histo6.attr, 222 &dev_attr_spi_device_transfer_bytes_histo7.attr, 223 &dev_attr_spi_device_transfer_bytes_histo8.attr, 224 &dev_attr_spi_device_transfer_bytes_histo9.attr, 225 &dev_attr_spi_device_transfer_bytes_histo10.attr, 226 &dev_attr_spi_device_transfer_bytes_histo11.attr, 227 &dev_attr_spi_device_transfer_bytes_histo12.attr, 228 &dev_attr_spi_device_transfer_bytes_histo13.attr, 229 &dev_attr_spi_device_transfer_bytes_histo14.attr, 230 &dev_attr_spi_device_transfer_bytes_histo15.attr, 231 &dev_attr_spi_device_transfer_bytes_histo16.attr, 232 &dev_attr_spi_device_transfers_split_maxsize.attr, 233 NULL, 234 }; 235 236 static const struct attribute_group spi_device_statistics_group = { 237 .name = "statistics", 238 .attrs = spi_device_statistics_attrs, 239 }; 240 241 static const struct attribute_group *spi_dev_groups[] = { 242 &spi_dev_group, 243 &spi_device_statistics_group, 244 NULL, 245 }; 246 247 static struct attribute *spi_controller_statistics_attrs[] = { 248 &dev_attr_spi_controller_messages.attr, 249 &dev_attr_spi_controller_transfers.attr, 250 &dev_attr_spi_controller_errors.attr, 251 &dev_attr_spi_controller_timedout.attr, 252 &dev_attr_spi_controller_spi_sync.attr, 253 &dev_attr_spi_controller_spi_sync_immediate.attr, 254 &dev_attr_spi_controller_spi_async.attr, 255 &dev_attr_spi_controller_bytes.attr, 256 &dev_attr_spi_controller_bytes_rx.attr, 257 &dev_attr_spi_controller_bytes_tx.attr, 258 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 259 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 260 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 275 &dev_attr_spi_controller_transfers_split_maxsize.attr, 276 NULL, 277 }; 278 279 static const struct attribute_group spi_controller_statistics_group = { 280 .name = "statistics", 281 .attrs = spi_controller_statistics_attrs, 282 }; 283 284 static const struct attribute_group *spi_master_groups[] = { 285 &spi_controller_statistics_group, 286 NULL, 287 }; 288 289 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 290 struct spi_transfer *xfer, 291 struct spi_controller *ctlr) 292 { 293 unsigned long flags; 294 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 295 296 if (l2len < 0) 297 l2len = 0; 298 299 spin_lock_irqsave(&stats->lock, flags); 300 301 stats->transfers++; 302 stats->transfer_bytes_histo[l2len]++; 303 304 stats->bytes += xfer->len; 305 if ((xfer->tx_buf) && 306 (xfer->tx_buf != ctlr->dummy_tx)) 307 stats->bytes_tx += xfer->len; 308 if ((xfer->rx_buf) && 309 (xfer->rx_buf != ctlr->dummy_rx)) 310 stats->bytes_rx += xfer->len; 311 312 spin_unlock_irqrestore(&stats->lock, flags); 313 } 314 315 /* 316 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 317 * and the sysfs version makes coldplug work too. 318 */ 319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 320 { 321 while (id->name[0]) { 322 if (!strcmp(name, id->name)) 323 return id; 324 id++; 325 } 326 return NULL; 327 } 328 329 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 330 { 331 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 332 333 return spi_match_id(sdrv->id_table, sdev->modalias); 334 } 335 EXPORT_SYMBOL_GPL(spi_get_device_id); 336 337 static int spi_match_device(struct device *dev, struct device_driver *drv) 338 { 339 const struct spi_device *spi = to_spi_device(dev); 340 const struct spi_driver *sdrv = to_spi_driver(drv); 341 342 /* Check override first, and if set, only use the named driver */ 343 if (spi->driver_override) 344 return strcmp(spi->driver_override, drv->name) == 0; 345 346 /* Attempt an OF style match */ 347 if (of_driver_match_device(dev, drv)) 348 return 1; 349 350 /* Then try ACPI */ 351 if (acpi_driver_match_device(dev, drv)) 352 return 1; 353 354 if (sdrv->id_table) 355 return !!spi_match_id(sdrv->id_table, spi->modalias); 356 357 return strcmp(spi->modalias, drv->name) == 0; 358 } 359 360 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 361 { 362 const struct spi_device *spi = to_spi_device(dev); 363 int rc; 364 365 rc = acpi_device_uevent_modalias(dev, env); 366 if (rc != -ENODEV) 367 return rc; 368 369 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 370 } 371 372 static int spi_probe(struct device *dev) 373 { 374 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 375 struct spi_device *spi = to_spi_device(dev); 376 int ret; 377 378 ret = of_clk_set_defaults(dev->of_node, false); 379 if (ret) 380 return ret; 381 382 if (dev->of_node) { 383 spi->irq = of_irq_get(dev->of_node, 0); 384 if (spi->irq == -EPROBE_DEFER) 385 return -EPROBE_DEFER; 386 if (spi->irq < 0) 387 spi->irq = 0; 388 } 389 390 ret = dev_pm_domain_attach(dev, true); 391 if (ret) 392 return ret; 393 394 if (sdrv->probe) { 395 ret = sdrv->probe(spi); 396 if (ret) 397 dev_pm_domain_detach(dev, true); 398 } 399 400 return ret; 401 } 402 403 static void spi_remove(struct device *dev) 404 { 405 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 406 407 if (sdrv->remove) { 408 int ret; 409 410 ret = sdrv->remove(to_spi_device(dev)); 411 if (ret) 412 dev_warn(dev, 413 "Failed to unbind driver (%pe), ignoring\n", 414 ERR_PTR(ret)); 415 } 416 417 dev_pm_domain_detach(dev, true); 418 } 419 420 static void spi_shutdown(struct device *dev) 421 { 422 if (dev->driver) { 423 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 424 425 if (sdrv->shutdown) 426 sdrv->shutdown(to_spi_device(dev)); 427 } 428 } 429 430 struct bus_type spi_bus_type = { 431 .name = "spi", 432 .dev_groups = spi_dev_groups, 433 .match = spi_match_device, 434 .uevent = spi_uevent, 435 .probe = spi_probe, 436 .remove = spi_remove, 437 .shutdown = spi_shutdown, 438 }; 439 EXPORT_SYMBOL_GPL(spi_bus_type); 440 441 /** 442 * __spi_register_driver - register a SPI driver 443 * @owner: owner module of the driver to register 444 * @sdrv: the driver to register 445 * Context: can sleep 446 * 447 * Return: zero on success, else a negative error code. 448 */ 449 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 450 { 451 sdrv->driver.owner = owner; 452 sdrv->driver.bus = &spi_bus_type; 453 454 /* 455 * For Really Good Reasons we use spi: modaliases not of: 456 * modaliases for DT so module autoloading won't work if we 457 * don't have a spi_device_id as well as a compatible string. 458 */ 459 if (sdrv->driver.of_match_table) { 460 const struct of_device_id *of_id; 461 462 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 463 of_id++) { 464 const char *of_name; 465 466 /* Strip off any vendor prefix */ 467 of_name = strnchr(of_id->compatible, 468 sizeof(of_id->compatible), ','); 469 if (of_name) 470 of_name++; 471 else 472 of_name = of_id->compatible; 473 474 if (sdrv->id_table) { 475 const struct spi_device_id *spi_id; 476 477 spi_id = spi_match_id(sdrv->id_table, of_name); 478 if (spi_id) 479 continue; 480 } else { 481 if (strcmp(sdrv->driver.name, of_name) == 0) 482 continue; 483 } 484 485 pr_warn("SPI driver %s has no spi_device_id for %s\n", 486 sdrv->driver.name, of_id->compatible); 487 } 488 } 489 490 return driver_register(&sdrv->driver); 491 } 492 EXPORT_SYMBOL_GPL(__spi_register_driver); 493 494 /*-------------------------------------------------------------------------*/ 495 496 /* 497 * SPI devices should normally not be created by SPI device drivers; that 498 * would make them board-specific. Similarly with SPI controller drivers. 499 * Device registration normally goes into like arch/.../mach.../board-YYY.c 500 * with other readonly (flashable) information about mainboard devices. 501 */ 502 503 struct boardinfo { 504 struct list_head list; 505 struct spi_board_info board_info; 506 }; 507 508 static LIST_HEAD(board_list); 509 static LIST_HEAD(spi_controller_list); 510 511 /* 512 * Used to protect add/del operation for board_info list and 513 * spi_controller list, and their matching process also used 514 * to protect object of type struct idr. 515 */ 516 static DEFINE_MUTEX(board_lock); 517 518 /** 519 * spi_alloc_device - Allocate a new SPI device 520 * @ctlr: Controller to which device is connected 521 * Context: can sleep 522 * 523 * Allows a driver to allocate and initialize a spi_device without 524 * registering it immediately. This allows a driver to directly 525 * fill the spi_device with device parameters before calling 526 * spi_add_device() on it. 527 * 528 * Caller is responsible to call spi_add_device() on the returned 529 * spi_device structure to add it to the SPI controller. If the caller 530 * needs to discard the spi_device without adding it, then it should 531 * call spi_dev_put() on it. 532 * 533 * Return: a pointer to the new device, or NULL. 534 */ 535 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 536 { 537 struct spi_device *spi; 538 539 if (!spi_controller_get(ctlr)) 540 return NULL; 541 542 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 543 if (!spi) { 544 spi_controller_put(ctlr); 545 return NULL; 546 } 547 548 spi->master = spi->controller = ctlr; 549 spi->dev.parent = &ctlr->dev; 550 spi->dev.bus = &spi_bus_type; 551 spi->dev.release = spidev_release; 552 spi->cs_gpio = -ENOENT; 553 spi->mode = ctlr->buswidth_override_bits; 554 555 spin_lock_init(&spi->statistics.lock); 556 557 device_initialize(&spi->dev); 558 return spi; 559 } 560 EXPORT_SYMBOL_GPL(spi_alloc_device); 561 562 static void spi_dev_set_name(struct spi_device *spi) 563 { 564 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 565 566 if (adev) { 567 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 568 return; 569 } 570 571 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 572 spi->chip_select); 573 } 574 575 static int spi_dev_check(struct device *dev, void *data) 576 { 577 struct spi_device *spi = to_spi_device(dev); 578 struct spi_device *new_spi = data; 579 580 if (spi->controller == new_spi->controller && 581 spi->chip_select == new_spi->chip_select) 582 return -EBUSY; 583 return 0; 584 } 585 586 static void spi_cleanup(struct spi_device *spi) 587 { 588 if (spi->controller->cleanup) 589 spi->controller->cleanup(spi); 590 } 591 592 static int __spi_add_device(struct spi_device *spi) 593 { 594 struct spi_controller *ctlr = spi->controller; 595 struct device *dev = ctlr->dev.parent; 596 int status; 597 598 /* 599 * We need to make sure there's no other device with this 600 * chipselect **BEFORE** we call setup(), else we'll trash 601 * its configuration. 602 */ 603 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 604 if (status) { 605 dev_err(dev, "chipselect %d already in use\n", 606 spi->chip_select); 607 return status; 608 } 609 610 /* Controller may unregister concurrently */ 611 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 612 !device_is_registered(&ctlr->dev)) { 613 return -ENODEV; 614 } 615 616 /* Descriptors take precedence */ 617 if (ctlr->cs_gpiods) 618 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 619 else if (ctlr->cs_gpios) 620 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 621 622 /* 623 * Drivers may modify this initial i/o setup, but will 624 * normally rely on the device being setup. Devices 625 * using SPI_CS_HIGH can't coexist well otherwise... 626 */ 627 status = spi_setup(spi); 628 if (status < 0) { 629 dev_err(dev, "can't setup %s, status %d\n", 630 dev_name(&spi->dev), status); 631 return status; 632 } 633 634 /* Device may be bound to an active driver when this returns */ 635 status = device_add(&spi->dev); 636 if (status < 0) { 637 dev_err(dev, "can't add %s, status %d\n", 638 dev_name(&spi->dev), status); 639 spi_cleanup(spi); 640 } else { 641 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 642 } 643 644 return status; 645 } 646 647 /** 648 * spi_add_device - Add spi_device allocated with spi_alloc_device 649 * @spi: spi_device to register 650 * 651 * Companion function to spi_alloc_device. Devices allocated with 652 * spi_alloc_device can be added onto the spi bus with this function. 653 * 654 * Return: 0 on success; negative errno on failure 655 */ 656 int spi_add_device(struct spi_device *spi) 657 { 658 struct spi_controller *ctlr = spi->controller; 659 struct device *dev = ctlr->dev.parent; 660 int status; 661 662 /* Chipselects are numbered 0..max; validate. */ 663 if (spi->chip_select >= ctlr->num_chipselect) { 664 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 665 ctlr->num_chipselect); 666 return -EINVAL; 667 } 668 669 /* Set the bus ID string */ 670 spi_dev_set_name(spi); 671 672 mutex_lock(&ctlr->add_lock); 673 status = __spi_add_device(spi); 674 mutex_unlock(&ctlr->add_lock); 675 return status; 676 } 677 EXPORT_SYMBOL_GPL(spi_add_device); 678 679 static int spi_add_device_locked(struct spi_device *spi) 680 { 681 struct spi_controller *ctlr = spi->controller; 682 struct device *dev = ctlr->dev.parent; 683 684 /* Chipselects are numbered 0..max; validate. */ 685 if (spi->chip_select >= ctlr->num_chipselect) { 686 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 687 ctlr->num_chipselect); 688 return -EINVAL; 689 } 690 691 /* Set the bus ID string */ 692 spi_dev_set_name(spi); 693 694 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 695 return __spi_add_device(spi); 696 } 697 698 /** 699 * spi_new_device - instantiate one new SPI device 700 * @ctlr: Controller to which device is connected 701 * @chip: Describes the SPI device 702 * Context: can sleep 703 * 704 * On typical mainboards, this is purely internal; and it's not needed 705 * after board init creates the hard-wired devices. Some development 706 * platforms may not be able to use spi_register_board_info though, and 707 * this is exported so that for example a USB or parport based adapter 708 * driver could add devices (which it would learn about out-of-band). 709 * 710 * Return: the new device, or NULL. 711 */ 712 struct spi_device *spi_new_device(struct spi_controller *ctlr, 713 struct spi_board_info *chip) 714 { 715 struct spi_device *proxy; 716 int status; 717 718 /* 719 * NOTE: caller did any chip->bus_num checks necessary. 720 * 721 * Also, unless we change the return value convention to use 722 * error-or-pointer (not NULL-or-pointer), troubleshootability 723 * suggests syslogged diagnostics are best here (ugh). 724 */ 725 726 proxy = spi_alloc_device(ctlr); 727 if (!proxy) 728 return NULL; 729 730 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 731 732 proxy->chip_select = chip->chip_select; 733 proxy->max_speed_hz = chip->max_speed_hz; 734 proxy->mode = chip->mode; 735 proxy->irq = chip->irq; 736 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 737 proxy->dev.platform_data = (void *) chip->platform_data; 738 proxy->controller_data = chip->controller_data; 739 proxy->controller_state = NULL; 740 741 if (chip->swnode) { 742 status = device_add_software_node(&proxy->dev, chip->swnode); 743 if (status) { 744 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 745 chip->modalias, status); 746 goto err_dev_put; 747 } 748 } 749 750 status = spi_add_device(proxy); 751 if (status < 0) 752 goto err_dev_put; 753 754 return proxy; 755 756 err_dev_put: 757 device_remove_software_node(&proxy->dev); 758 spi_dev_put(proxy); 759 return NULL; 760 } 761 EXPORT_SYMBOL_GPL(spi_new_device); 762 763 /** 764 * spi_unregister_device - unregister a single SPI device 765 * @spi: spi_device to unregister 766 * 767 * Start making the passed SPI device vanish. Normally this would be handled 768 * by spi_unregister_controller(). 769 */ 770 void spi_unregister_device(struct spi_device *spi) 771 { 772 if (!spi) 773 return; 774 775 if (spi->dev.of_node) { 776 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 777 of_node_put(spi->dev.of_node); 778 } 779 if (ACPI_COMPANION(&spi->dev)) 780 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 781 device_remove_software_node(&spi->dev); 782 device_del(&spi->dev); 783 spi_cleanup(spi); 784 put_device(&spi->dev); 785 } 786 EXPORT_SYMBOL_GPL(spi_unregister_device); 787 788 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 789 struct spi_board_info *bi) 790 { 791 struct spi_device *dev; 792 793 if (ctlr->bus_num != bi->bus_num) 794 return; 795 796 dev = spi_new_device(ctlr, bi); 797 if (!dev) 798 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 799 bi->modalias); 800 } 801 802 /** 803 * spi_register_board_info - register SPI devices for a given board 804 * @info: array of chip descriptors 805 * @n: how many descriptors are provided 806 * Context: can sleep 807 * 808 * Board-specific early init code calls this (probably during arch_initcall) 809 * with segments of the SPI device table. Any device nodes are created later, 810 * after the relevant parent SPI controller (bus_num) is defined. We keep 811 * this table of devices forever, so that reloading a controller driver will 812 * not make Linux forget about these hard-wired devices. 813 * 814 * Other code can also call this, e.g. a particular add-on board might provide 815 * SPI devices through its expansion connector, so code initializing that board 816 * would naturally declare its SPI devices. 817 * 818 * The board info passed can safely be __initdata ... but be careful of 819 * any embedded pointers (platform_data, etc), they're copied as-is. 820 * 821 * Return: zero on success, else a negative error code. 822 */ 823 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 824 { 825 struct boardinfo *bi; 826 int i; 827 828 if (!n) 829 return 0; 830 831 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 832 if (!bi) 833 return -ENOMEM; 834 835 for (i = 0; i < n; i++, bi++, info++) { 836 struct spi_controller *ctlr; 837 838 memcpy(&bi->board_info, info, sizeof(*info)); 839 840 mutex_lock(&board_lock); 841 list_add_tail(&bi->list, &board_list); 842 list_for_each_entry(ctlr, &spi_controller_list, list) 843 spi_match_controller_to_boardinfo(ctlr, 844 &bi->board_info); 845 mutex_unlock(&board_lock); 846 } 847 848 return 0; 849 } 850 851 /*-------------------------------------------------------------------------*/ 852 853 /* Core methods for SPI resource management */ 854 855 /** 856 * spi_res_alloc - allocate a spi resource that is life-cycle managed 857 * during the processing of a spi_message while using 858 * spi_transfer_one 859 * @spi: the spi device for which we allocate memory 860 * @release: the release code to execute for this resource 861 * @size: size to alloc and return 862 * @gfp: GFP allocation flags 863 * 864 * Return: the pointer to the allocated data 865 * 866 * This may get enhanced in the future to allocate from a memory pool 867 * of the @spi_device or @spi_controller to avoid repeated allocations. 868 */ 869 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 870 size_t size, gfp_t gfp) 871 { 872 struct spi_res *sres; 873 874 sres = kzalloc(sizeof(*sres) + size, gfp); 875 if (!sres) 876 return NULL; 877 878 INIT_LIST_HEAD(&sres->entry); 879 sres->release = release; 880 881 return sres->data; 882 } 883 884 /** 885 * spi_res_free - free an spi resource 886 * @res: pointer to the custom data of a resource 887 */ 888 static void spi_res_free(void *res) 889 { 890 struct spi_res *sres = container_of(res, struct spi_res, data); 891 892 if (!res) 893 return; 894 895 WARN_ON(!list_empty(&sres->entry)); 896 kfree(sres); 897 } 898 899 /** 900 * spi_res_add - add a spi_res to the spi_message 901 * @message: the spi message 902 * @res: the spi_resource 903 */ 904 static void spi_res_add(struct spi_message *message, void *res) 905 { 906 struct spi_res *sres = container_of(res, struct spi_res, data); 907 908 WARN_ON(!list_empty(&sres->entry)); 909 list_add_tail(&sres->entry, &message->resources); 910 } 911 912 /** 913 * spi_res_release - release all spi resources for this message 914 * @ctlr: the @spi_controller 915 * @message: the @spi_message 916 */ 917 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 918 { 919 struct spi_res *res, *tmp; 920 921 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 922 if (res->release) 923 res->release(ctlr, message, res->data); 924 925 list_del(&res->entry); 926 927 kfree(res); 928 } 929 } 930 931 /*-------------------------------------------------------------------------*/ 932 933 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 934 { 935 bool activate = enable; 936 937 /* 938 * Avoid calling into the driver (or doing delays) if the chip select 939 * isn't actually changing from the last time this was called. 940 */ 941 if (!force && (spi->controller->last_cs_enable == enable) && 942 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 943 return; 944 945 trace_spi_set_cs(spi, activate); 946 947 spi->controller->last_cs_enable = enable; 948 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 949 950 if ((spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 951 !spi->controller->set_cs_timing) && !activate) { 952 spi_delay_exec(&spi->cs_hold, NULL); 953 } 954 955 if (spi->mode & SPI_CS_HIGH) 956 enable = !enable; 957 958 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 959 if (!(spi->mode & SPI_NO_CS)) { 960 if (spi->cs_gpiod) { 961 /* 962 * Historically ACPI has no means of the GPIO polarity and 963 * thus the SPISerialBus() resource defines it on the per-chip 964 * basis. In order to avoid a chain of negations, the GPIO 965 * polarity is considered being Active High. Even for the cases 966 * when _DSD() is involved (in the updated versions of ACPI) 967 * the GPIO CS polarity must be defined Active High to avoid 968 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 969 * into account. 970 */ 971 if (has_acpi_companion(&spi->dev)) 972 gpiod_set_value_cansleep(spi->cs_gpiod, !enable); 973 else 974 /* Polarity handled by GPIO library */ 975 gpiod_set_value_cansleep(spi->cs_gpiod, activate); 976 } else { 977 /* 978 * Invert the enable line, as active low is 979 * default for SPI. 980 */ 981 gpio_set_value_cansleep(spi->cs_gpio, !enable); 982 } 983 } 984 /* Some SPI masters need both GPIO CS & slave_select */ 985 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 986 spi->controller->set_cs) 987 spi->controller->set_cs(spi, !enable); 988 } else if (spi->controller->set_cs) { 989 spi->controller->set_cs(spi, !enable); 990 } 991 992 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 993 !spi->controller->set_cs_timing) { 994 if (activate) 995 spi_delay_exec(&spi->cs_setup, NULL); 996 else 997 spi_delay_exec(&spi->cs_inactive, NULL); 998 } 999 } 1000 1001 #ifdef CONFIG_HAS_DMA 1002 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1003 struct sg_table *sgt, void *buf, size_t len, 1004 enum dma_data_direction dir) 1005 { 1006 const bool vmalloced_buf = is_vmalloc_addr(buf); 1007 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1008 #ifdef CONFIG_HIGHMEM 1009 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1010 (unsigned long)buf < (PKMAP_BASE + 1011 (LAST_PKMAP * PAGE_SIZE))); 1012 #else 1013 const bool kmap_buf = false; 1014 #endif 1015 int desc_len; 1016 int sgs; 1017 struct page *vm_page; 1018 struct scatterlist *sg; 1019 void *sg_buf; 1020 size_t min; 1021 int i, ret; 1022 1023 if (vmalloced_buf || kmap_buf) { 1024 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 1025 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1026 } else if (virt_addr_valid(buf)) { 1027 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 1028 sgs = DIV_ROUND_UP(len, desc_len); 1029 } else { 1030 return -EINVAL; 1031 } 1032 1033 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1034 if (ret != 0) 1035 return ret; 1036 1037 sg = &sgt->sgl[0]; 1038 for (i = 0; i < sgs; i++) { 1039 1040 if (vmalloced_buf || kmap_buf) { 1041 /* 1042 * Next scatterlist entry size is the minimum between 1043 * the desc_len and the remaining buffer length that 1044 * fits in a page. 1045 */ 1046 min = min_t(size_t, desc_len, 1047 min_t(size_t, len, 1048 PAGE_SIZE - offset_in_page(buf))); 1049 if (vmalloced_buf) 1050 vm_page = vmalloc_to_page(buf); 1051 else 1052 vm_page = kmap_to_page(buf); 1053 if (!vm_page) { 1054 sg_free_table(sgt); 1055 return -ENOMEM; 1056 } 1057 sg_set_page(sg, vm_page, 1058 min, offset_in_page(buf)); 1059 } else { 1060 min = min_t(size_t, len, desc_len); 1061 sg_buf = buf; 1062 sg_set_buf(sg, sg_buf, min); 1063 } 1064 1065 buf += min; 1066 len -= min; 1067 sg = sg_next(sg); 1068 } 1069 1070 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 1071 if (!ret) 1072 ret = -ENOMEM; 1073 if (ret < 0) { 1074 sg_free_table(sgt); 1075 return ret; 1076 } 1077 1078 sgt->nents = ret; 1079 1080 return 0; 1081 } 1082 1083 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1084 struct sg_table *sgt, enum dma_data_direction dir) 1085 { 1086 if (sgt->orig_nents) { 1087 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 1088 sg_free_table(sgt); 1089 } 1090 } 1091 1092 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1093 { 1094 struct device *tx_dev, *rx_dev; 1095 struct spi_transfer *xfer; 1096 int ret; 1097 1098 if (!ctlr->can_dma) 1099 return 0; 1100 1101 if (ctlr->dma_tx) 1102 tx_dev = ctlr->dma_tx->device->dev; 1103 else if (ctlr->dma_map_dev) 1104 tx_dev = ctlr->dma_map_dev; 1105 else 1106 tx_dev = ctlr->dev.parent; 1107 1108 if (ctlr->dma_rx) 1109 rx_dev = ctlr->dma_rx->device->dev; 1110 else if (ctlr->dma_map_dev) 1111 rx_dev = ctlr->dma_map_dev; 1112 else 1113 rx_dev = ctlr->dev.parent; 1114 1115 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1116 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1117 continue; 1118 1119 if (xfer->tx_buf != NULL) { 1120 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 1121 (void *)xfer->tx_buf, xfer->len, 1122 DMA_TO_DEVICE); 1123 if (ret != 0) 1124 return ret; 1125 } 1126 1127 if (xfer->rx_buf != NULL) { 1128 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 1129 xfer->rx_buf, xfer->len, 1130 DMA_FROM_DEVICE); 1131 if (ret != 0) { 1132 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 1133 DMA_TO_DEVICE); 1134 return ret; 1135 } 1136 } 1137 } 1138 1139 ctlr->cur_msg_mapped = true; 1140 1141 return 0; 1142 } 1143 1144 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1145 { 1146 struct spi_transfer *xfer; 1147 struct device *tx_dev, *rx_dev; 1148 1149 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1150 return 0; 1151 1152 if (ctlr->dma_tx) 1153 tx_dev = ctlr->dma_tx->device->dev; 1154 else 1155 tx_dev = ctlr->dev.parent; 1156 1157 if (ctlr->dma_rx) 1158 rx_dev = ctlr->dma_rx->device->dev; 1159 else 1160 rx_dev = ctlr->dev.parent; 1161 1162 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1163 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1164 continue; 1165 1166 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1167 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1168 } 1169 1170 ctlr->cur_msg_mapped = false; 1171 1172 return 0; 1173 } 1174 #else /* !CONFIG_HAS_DMA */ 1175 static inline int __spi_map_msg(struct spi_controller *ctlr, 1176 struct spi_message *msg) 1177 { 1178 return 0; 1179 } 1180 1181 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1182 struct spi_message *msg) 1183 { 1184 return 0; 1185 } 1186 #endif /* !CONFIG_HAS_DMA */ 1187 1188 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1189 struct spi_message *msg) 1190 { 1191 struct spi_transfer *xfer; 1192 1193 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1194 /* 1195 * Restore the original value of tx_buf or rx_buf if they are 1196 * NULL. 1197 */ 1198 if (xfer->tx_buf == ctlr->dummy_tx) 1199 xfer->tx_buf = NULL; 1200 if (xfer->rx_buf == ctlr->dummy_rx) 1201 xfer->rx_buf = NULL; 1202 } 1203 1204 return __spi_unmap_msg(ctlr, msg); 1205 } 1206 1207 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1208 { 1209 struct spi_transfer *xfer; 1210 void *tmp; 1211 unsigned int max_tx, max_rx; 1212 1213 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1214 && !(msg->spi->mode & SPI_3WIRE)) { 1215 max_tx = 0; 1216 max_rx = 0; 1217 1218 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1219 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1220 !xfer->tx_buf) 1221 max_tx = max(xfer->len, max_tx); 1222 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1223 !xfer->rx_buf) 1224 max_rx = max(xfer->len, max_rx); 1225 } 1226 1227 if (max_tx) { 1228 tmp = krealloc(ctlr->dummy_tx, max_tx, 1229 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1230 if (!tmp) 1231 return -ENOMEM; 1232 ctlr->dummy_tx = tmp; 1233 } 1234 1235 if (max_rx) { 1236 tmp = krealloc(ctlr->dummy_rx, max_rx, 1237 GFP_KERNEL | GFP_DMA); 1238 if (!tmp) 1239 return -ENOMEM; 1240 ctlr->dummy_rx = tmp; 1241 } 1242 1243 if (max_tx || max_rx) { 1244 list_for_each_entry(xfer, &msg->transfers, 1245 transfer_list) { 1246 if (!xfer->len) 1247 continue; 1248 if (!xfer->tx_buf) 1249 xfer->tx_buf = ctlr->dummy_tx; 1250 if (!xfer->rx_buf) 1251 xfer->rx_buf = ctlr->dummy_rx; 1252 } 1253 } 1254 } 1255 1256 return __spi_map_msg(ctlr, msg); 1257 } 1258 1259 static int spi_transfer_wait(struct spi_controller *ctlr, 1260 struct spi_message *msg, 1261 struct spi_transfer *xfer) 1262 { 1263 struct spi_statistics *statm = &ctlr->statistics; 1264 struct spi_statistics *stats = &msg->spi->statistics; 1265 u32 speed_hz = xfer->speed_hz; 1266 unsigned long long ms; 1267 1268 if (spi_controller_is_slave(ctlr)) { 1269 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1270 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1271 return -EINTR; 1272 } 1273 } else { 1274 if (!speed_hz) 1275 speed_hz = 100000; 1276 1277 /* 1278 * For each byte we wait for 8 cycles of the SPI clock. 1279 * Since speed is defined in Hz and we want milliseconds, 1280 * use respective multiplier, but before the division, 1281 * otherwise we may get 0 for short transfers. 1282 */ 1283 ms = 8LL * MSEC_PER_SEC * xfer->len; 1284 do_div(ms, speed_hz); 1285 1286 /* 1287 * Increase it twice and add 200 ms tolerance, use 1288 * predefined maximum in case of overflow. 1289 */ 1290 ms += ms + 200; 1291 if (ms > UINT_MAX) 1292 ms = UINT_MAX; 1293 1294 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1295 msecs_to_jiffies(ms)); 1296 1297 if (ms == 0) { 1298 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1299 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1300 dev_err(&msg->spi->dev, 1301 "SPI transfer timed out\n"); 1302 return -ETIMEDOUT; 1303 } 1304 } 1305 1306 return 0; 1307 } 1308 1309 static void _spi_transfer_delay_ns(u32 ns) 1310 { 1311 if (!ns) 1312 return; 1313 if (ns <= NSEC_PER_USEC) { 1314 ndelay(ns); 1315 } else { 1316 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1317 1318 if (us <= 10) 1319 udelay(us); 1320 else 1321 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1322 } 1323 } 1324 1325 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1326 { 1327 u32 delay = _delay->value; 1328 u32 unit = _delay->unit; 1329 u32 hz; 1330 1331 if (!delay) 1332 return 0; 1333 1334 switch (unit) { 1335 case SPI_DELAY_UNIT_USECS: 1336 delay *= NSEC_PER_USEC; 1337 break; 1338 case SPI_DELAY_UNIT_NSECS: 1339 /* Nothing to do here */ 1340 break; 1341 case SPI_DELAY_UNIT_SCK: 1342 /* clock cycles need to be obtained from spi_transfer */ 1343 if (!xfer) 1344 return -EINVAL; 1345 /* 1346 * If there is unknown effective speed, approximate it 1347 * by underestimating with half of the requested hz. 1348 */ 1349 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1350 if (!hz) 1351 return -EINVAL; 1352 1353 /* Convert delay to nanoseconds */ 1354 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1355 break; 1356 default: 1357 return -EINVAL; 1358 } 1359 1360 return delay; 1361 } 1362 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1363 1364 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1365 { 1366 int delay; 1367 1368 might_sleep(); 1369 1370 if (!_delay) 1371 return -EINVAL; 1372 1373 delay = spi_delay_to_ns(_delay, xfer); 1374 if (delay < 0) 1375 return delay; 1376 1377 _spi_transfer_delay_ns(delay); 1378 1379 return 0; 1380 } 1381 EXPORT_SYMBOL_GPL(spi_delay_exec); 1382 1383 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1384 struct spi_transfer *xfer) 1385 { 1386 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1387 u32 delay = xfer->cs_change_delay.value; 1388 u32 unit = xfer->cs_change_delay.unit; 1389 int ret; 1390 1391 /* return early on "fast" mode - for everything but USECS */ 1392 if (!delay) { 1393 if (unit == SPI_DELAY_UNIT_USECS) 1394 _spi_transfer_delay_ns(default_delay_ns); 1395 return; 1396 } 1397 1398 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1399 if (ret) { 1400 dev_err_once(&msg->spi->dev, 1401 "Use of unsupported delay unit %i, using default of %luus\n", 1402 unit, default_delay_ns / NSEC_PER_USEC); 1403 _spi_transfer_delay_ns(default_delay_ns); 1404 } 1405 } 1406 1407 /* 1408 * spi_transfer_one_message - Default implementation of transfer_one_message() 1409 * 1410 * This is a standard implementation of transfer_one_message() for 1411 * drivers which implement a transfer_one() operation. It provides 1412 * standard handling of delays and chip select management. 1413 */ 1414 static int spi_transfer_one_message(struct spi_controller *ctlr, 1415 struct spi_message *msg) 1416 { 1417 struct spi_transfer *xfer; 1418 bool keep_cs = false; 1419 int ret = 0; 1420 struct spi_statistics *statm = &ctlr->statistics; 1421 struct spi_statistics *stats = &msg->spi->statistics; 1422 1423 spi_set_cs(msg->spi, true, false); 1424 1425 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1426 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1427 1428 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1429 trace_spi_transfer_start(msg, xfer); 1430 1431 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1432 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1433 1434 if (!ctlr->ptp_sts_supported) { 1435 xfer->ptp_sts_word_pre = 0; 1436 ptp_read_system_prets(xfer->ptp_sts); 1437 } 1438 1439 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1440 reinit_completion(&ctlr->xfer_completion); 1441 1442 fallback_pio: 1443 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1444 if (ret < 0) { 1445 if (ctlr->cur_msg_mapped && 1446 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1447 __spi_unmap_msg(ctlr, msg); 1448 ctlr->fallback = true; 1449 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1450 goto fallback_pio; 1451 } 1452 1453 SPI_STATISTICS_INCREMENT_FIELD(statm, 1454 errors); 1455 SPI_STATISTICS_INCREMENT_FIELD(stats, 1456 errors); 1457 dev_err(&msg->spi->dev, 1458 "SPI transfer failed: %d\n", ret); 1459 goto out; 1460 } 1461 1462 if (ret > 0) { 1463 ret = spi_transfer_wait(ctlr, msg, xfer); 1464 if (ret < 0) 1465 msg->status = ret; 1466 } 1467 } else { 1468 if (xfer->len) 1469 dev_err(&msg->spi->dev, 1470 "Bufferless transfer has length %u\n", 1471 xfer->len); 1472 } 1473 1474 if (!ctlr->ptp_sts_supported) { 1475 ptp_read_system_postts(xfer->ptp_sts); 1476 xfer->ptp_sts_word_post = xfer->len; 1477 } 1478 1479 trace_spi_transfer_stop(msg, xfer); 1480 1481 if (msg->status != -EINPROGRESS) 1482 goto out; 1483 1484 spi_transfer_delay_exec(xfer); 1485 1486 if (xfer->cs_change) { 1487 if (list_is_last(&xfer->transfer_list, 1488 &msg->transfers)) { 1489 keep_cs = true; 1490 } else { 1491 spi_set_cs(msg->spi, false, false); 1492 _spi_transfer_cs_change_delay(msg, xfer); 1493 spi_set_cs(msg->spi, true, false); 1494 } 1495 } 1496 1497 msg->actual_length += xfer->len; 1498 } 1499 1500 out: 1501 if (ret != 0 || !keep_cs) 1502 spi_set_cs(msg->spi, false, false); 1503 1504 if (msg->status == -EINPROGRESS) 1505 msg->status = ret; 1506 1507 if (msg->status && ctlr->handle_err) 1508 ctlr->handle_err(ctlr, msg); 1509 1510 spi_finalize_current_message(ctlr); 1511 1512 return ret; 1513 } 1514 1515 /** 1516 * spi_finalize_current_transfer - report completion of a transfer 1517 * @ctlr: the controller reporting completion 1518 * 1519 * Called by SPI drivers using the core transfer_one_message() 1520 * implementation to notify it that the current interrupt driven 1521 * transfer has finished and the next one may be scheduled. 1522 */ 1523 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1524 { 1525 complete(&ctlr->xfer_completion); 1526 } 1527 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1528 1529 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1530 { 1531 if (ctlr->auto_runtime_pm) { 1532 pm_runtime_mark_last_busy(ctlr->dev.parent); 1533 pm_runtime_put_autosuspend(ctlr->dev.parent); 1534 } 1535 } 1536 1537 /** 1538 * __spi_pump_messages - function which processes spi message queue 1539 * @ctlr: controller to process queue for 1540 * @in_kthread: true if we are in the context of the message pump thread 1541 * 1542 * This function checks if there is any spi message in the queue that 1543 * needs processing and if so call out to the driver to initialize hardware 1544 * and transfer each message. 1545 * 1546 * Note that it is called both from the kthread itself and also from 1547 * inside spi_sync(); the queue extraction handling at the top of the 1548 * function should deal with this safely. 1549 */ 1550 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1551 { 1552 struct spi_transfer *xfer; 1553 struct spi_message *msg; 1554 bool was_busy = false; 1555 unsigned long flags; 1556 int ret; 1557 1558 /* Lock queue */ 1559 spin_lock_irqsave(&ctlr->queue_lock, flags); 1560 1561 /* Make sure we are not already running a message */ 1562 if (ctlr->cur_msg) { 1563 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1564 return; 1565 } 1566 1567 /* If another context is idling the device then defer */ 1568 if (ctlr->idling) { 1569 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1570 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1571 return; 1572 } 1573 1574 /* Check if the queue is idle */ 1575 if (list_empty(&ctlr->queue) || !ctlr->running) { 1576 if (!ctlr->busy) { 1577 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1578 return; 1579 } 1580 1581 /* Defer any non-atomic teardown to the thread */ 1582 if (!in_kthread) { 1583 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1584 !ctlr->unprepare_transfer_hardware) { 1585 spi_idle_runtime_pm(ctlr); 1586 ctlr->busy = false; 1587 trace_spi_controller_idle(ctlr); 1588 } else { 1589 kthread_queue_work(ctlr->kworker, 1590 &ctlr->pump_messages); 1591 } 1592 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1593 return; 1594 } 1595 1596 ctlr->busy = false; 1597 ctlr->idling = true; 1598 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1599 1600 kfree(ctlr->dummy_rx); 1601 ctlr->dummy_rx = NULL; 1602 kfree(ctlr->dummy_tx); 1603 ctlr->dummy_tx = NULL; 1604 if (ctlr->unprepare_transfer_hardware && 1605 ctlr->unprepare_transfer_hardware(ctlr)) 1606 dev_err(&ctlr->dev, 1607 "failed to unprepare transfer hardware\n"); 1608 spi_idle_runtime_pm(ctlr); 1609 trace_spi_controller_idle(ctlr); 1610 1611 spin_lock_irqsave(&ctlr->queue_lock, flags); 1612 ctlr->idling = false; 1613 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1614 return; 1615 } 1616 1617 /* Extract head of queue */ 1618 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1619 ctlr->cur_msg = msg; 1620 1621 list_del_init(&msg->queue); 1622 if (ctlr->busy) 1623 was_busy = true; 1624 else 1625 ctlr->busy = true; 1626 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1627 1628 mutex_lock(&ctlr->io_mutex); 1629 1630 if (!was_busy && ctlr->auto_runtime_pm) { 1631 ret = pm_runtime_get_sync(ctlr->dev.parent); 1632 if (ret < 0) { 1633 pm_runtime_put_noidle(ctlr->dev.parent); 1634 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1635 ret); 1636 mutex_unlock(&ctlr->io_mutex); 1637 return; 1638 } 1639 } 1640 1641 if (!was_busy) 1642 trace_spi_controller_busy(ctlr); 1643 1644 if (!was_busy && ctlr->prepare_transfer_hardware) { 1645 ret = ctlr->prepare_transfer_hardware(ctlr); 1646 if (ret) { 1647 dev_err(&ctlr->dev, 1648 "failed to prepare transfer hardware: %d\n", 1649 ret); 1650 1651 if (ctlr->auto_runtime_pm) 1652 pm_runtime_put(ctlr->dev.parent); 1653 1654 msg->status = ret; 1655 spi_finalize_current_message(ctlr); 1656 1657 mutex_unlock(&ctlr->io_mutex); 1658 return; 1659 } 1660 } 1661 1662 trace_spi_message_start(msg); 1663 1664 if (ctlr->prepare_message) { 1665 ret = ctlr->prepare_message(ctlr, msg); 1666 if (ret) { 1667 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1668 ret); 1669 msg->status = ret; 1670 spi_finalize_current_message(ctlr); 1671 goto out; 1672 } 1673 ctlr->cur_msg_prepared = true; 1674 } 1675 1676 ret = spi_map_msg(ctlr, msg); 1677 if (ret) { 1678 msg->status = ret; 1679 spi_finalize_current_message(ctlr); 1680 goto out; 1681 } 1682 1683 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1684 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1685 xfer->ptp_sts_word_pre = 0; 1686 ptp_read_system_prets(xfer->ptp_sts); 1687 } 1688 } 1689 1690 ret = ctlr->transfer_one_message(ctlr, msg); 1691 if (ret) { 1692 dev_err(&ctlr->dev, 1693 "failed to transfer one message from queue\n"); 1694 goto out; 1695 } 1696 1697 out: 1698 mutex_unlock(&ctlr->io_mutex); 1699 1700 /* Prod the scheduler in case transfer_one() was busy waiting */ 1701 if (!ret) 1702 cond_resched(); 1703 } 1704 1705 /** 1706 * spi_pump_messages - kthread work function which processes spi message queue 1707 * @work: pointer to kthread work struct contained in the controller struct 1708 */ 1709 static void spi_pump_messages(struct kthread_work *work) 1710 { 1711 struct spi_controller *ctlr = 1712 container_of(work, struct spi_controller, pump_messages); 1713 1714 __spi_pump_messages(ctlr, true); 1715 } 1716 1717 /** 1718 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1719 * @ctlr: Pointer to the spi_controller structure of the driver 1720 * @xfer: Pointer to the transfer being timestamped 1721 * @progress: How many words (not bytes) have been transferred so far 1722 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1723 * transfer, for less jitter in time measurement. Only compatible 1724 * with PIO drivers. If true, must follow up with 1725 * spi_take_timestamp_post or otherwise system will crash. 1726 * WARNING: for fully predictable results, the CPU frequency must 1727 * also be under control (governor). 1728 * 1729 * This is a helper for drivers to collect the beginning of the TX timestamp 1730 * for the requested byte from the SPI transfer. The frequency with which this 1731 * function must be called (once per word, once for the whole transfer, once 1732 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1733 * greater than or equal to the requested byte at the time of the call. The 1734 * timestamp is only taken once, at the first such call. It is assumed that 1735 * the driver advances its @tx buffer pointer monotonically. 1736 */ 1737 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1738 struct spi_transfer *xfer, 1739 size_t progress, bool irqs_off) 1740 { 1741 if (!xfer->ptp_sts) 1742 return; 1743 1744 if (xfer->timestamped) 1745 return; 1746 1747 if (progress > xfer->ptp_sts_word_pre) 1748 return; 1749 1750 /* Capture the resolution of the timestamp */ 1751 xfer->ptp_sts_word_pre = progress; 1752 1753 if (irqs_off) { 1754 local_irq_save(ctlr->irq_flags); 1755 preempt_disable(); 1756 } 1757 1758 ptp_read_system_prets(xfer->ptp_sts); 1759 } 1760 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1761 1762 /** 1763 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1764 * @ctlr: Pointer to the spi_controller structure of the driver 1765 * @xfer: Pointer to the transfer being timestamped 1766 * @progress: How many words (not bytes) have been transferred so far 1767 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1768 * 1769 * This is a helper for drivers to collect the end of the TX timestamp for 1770 * the requested byte from the SPI transfer. Can be called with an arbitrary 1771 * frequency: only the first call where @tx exceeds or is equal to the 1772 * requested word will be timestamped. 1773 */ 1774 void spi_take_timestamp_post(struct spi_controller *ctlr, 1775 struct spi_transfer *xfer, 1776 size_t progress, bool irqs_off) 1777 { 1778 if (!xfer->ptp_sts) 1779 return; 1780 1781 if (xfer->timestamped) 1782 return; 1783 1784 if (progress < xfer->ptp_sts_word_post) 1785 return; 1786 1787 ptp_read_system_postts(xfer->ptp_sts); 1788 1789 if (irqs_off) { 1790 local_irq_restore(ctlr->irq_flags); 1791 preempt_enable(); 1792 } 1793 1794 /* Capture the resolution of the timestamp */ 1795 xfer->ptp_sts_word_post = progress; 1796 1797 xfer->timestamped = true; 1798 } 1799 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1800 1801 /** 1802 * spi_set_thread_rt - set the controller to pump at realtime priority 1803 * @ctlr: controller to boost priority of 1804 * 1805 * This can be called because the controller requested realtime priority 1806 * (by setting the ->rt value before calling spi_register_controller()) or 1807 * because a device on the bus said that its transfers needed realtime 1808 * priority. 1809 * 1810 * NOTE: at the moment if any device on a bus says it needs realtime then 1811 * the thread will be at realtime priority for all transfers on that 1812 * controller. If this eventually becomes a problem we may see if we can 1813 * find a way to boost the priority only temporarily during relevant 1814 * transfers. 1815 */ 1816 static void spi_set_thread_rt(struct spi_controller *ctlr) 1817 { 1818 dev_info(&ctlr->dev, 1819 "will run message pump with realtime priority\n"); 1820 sched_set_fifo(ctlr->kworker->task); 1821 } 1822 1823 static int spi_init_queue(struct spi_controller *ctlr) 1824 { 1825 ctlr->running = false; 1826 ctlr->busy = false; 1827 1828 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1829 if (IS_ERR(ctlr->kworker)) { 1830 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1831 return PTR_ERR(ctlr->kworker); 1832 } 1833 1834 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1835 1836 /* 1837 * Controller config will indicate if this controller should run the 1838 * message pump with high (realtime) priority to reduce the transfer 1839 * latency on the bus by minimising the delay between a transfer 1840 * request and the scheduling of the message pump thread. Without this 1841 * setting the message pump thread will remain at default priority. 1842 */ 1843 if (ctlr->rt) 1844 spi_set_thread_rt(ctlr); 1845 1846 return 0; 1847 } 1848 1849 /** 1850 * spi_get_next_queued_message() - called by driver to check for queued 1851 * messages 1852 * @ctlr: the controller to check for queued messages 1853 * 1854 * If there are more messages in the queue, the next message is returned from 1855 * this call. 1856 * 1857 * Return: the next message in the queue, else NULL if the queue is empty. 1858 */ 1859 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1860 { 1861 struct spi_message *next; 1862 unsigned long flags; 1863 1864 /* get a pointer to the next message, if any */ 1865 spin_lock_irqsave(&ctlr->queue_lock, flags); 1866 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1867 queue); 1868 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1869 1870 return next; 1871 } 1872 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1873 1874 /** 1875 * spi_finalize_current_message() - the current message is complete 1876 * @ctlr: the controller to return the message to 1877 * 1878 * Called by the driver to notify the core that the message in the front of the 1879 * queue is complete and can be removed from the queue. 1880 */ 1881 void spi_finalize_current_message(struct spi_controller *ctlr) 1882 { 1883 struct spi_transfer *xfer; 1884 struct spi_message *mesg; 1885 unsigned long flags; 1886 int ret; 1887 1888 spin_lock_irqsave(&ctlr->queue_lock, flags); 1889 mesg = ctlr->cur_msg; 1890 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1891 1892 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1893 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1894 ptp_read_system_postts(xfer->ptp_sts); 1895 xfer->ptp_sts_word_post = xfer->len; 1896 } 1897 } 1898 1899 if (unlikely(ctlr->ptp_sts_supported)) 1900 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1901 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1902 1903 spi_unmap_msg(ctlr, mesg); 1904 1905 /* 1906 * In the prepare_messages callback the SPI bus has the opportunity 1907 * to split a transfer to smaller chunks. 1908 * 1909 * Release the split transfers here since spi_map_msg() is done on 1910 * the split transfers. 1911 */ 1912 spi_res_release(ctlr, mesg); 1913 1914 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1915 ret = ctlr->unprepare_message(ctlr, mesg); 1916 if (ret) { 1917 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1918 ret); 1919 } 1920 } 1921 1922 spin_lock_irqsave(&ctlr->queue_lock, flags); 1923 ctlr->cur_msg = NULL; 1924 ctlr->cur_msg_prepared = false; 1925 ctlr->fallback = false; 1926 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1927 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1928 1929 trace_spi_message_done(mesg); 1930 1931 mesg->state = NULL; 1932 if (mesg->complete) 1933 mesg->complete(mesg->context); 1934 } 1935 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1936 1937 static int spi_start_queue(struct spi_controller *ctlr) 1938 { 1939 unsigned long flags; 1940 1941 spin_lock_irqsave(&ctlr->queue_lock, flags); 1942 1943 if (ctlr->running || ctlr->busy) { 1944 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1945 return -EBUSY; 1946 } 1947 1948 ctlr->running = true; 1949 ctlr->cur_msg = NULL; 1950 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1951 1952 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1953 1954 return 0; 1955 } 1956 1957 static int spi_stop_queue(struct spi_controller *ctlr) 1958 { 1959 unsigned long flags; 1960 unsigned limit = 500; 1961 int ret = 0; 1962 1963 spin_lock_irqsave(&ctlr->queue_lock, flags); 1964 1965 /* 1966 * This is a bit lame, but is optimized for the common execution path. 1967 * A wait_queue on the ctlr->busy could be used, but then the common 1968 * execution path (pump_messages) would be required to call wake_up or 1969 * friends on every SPI message. Do this instead. 1970 */ 1971 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1972 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1973 usleep_range(10000, 11000); 1974 spin_lock_irqsave(&ctlr->queue_lock, flags); 1975 } 1976 1977 if (!list_empty(&ctlr->queue) || ctlr->busy) 1978 ret = -EBUSY; 1979 else 1980 ctlr->running = false; 1981 1982 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1983 1984 if (ret) { 1985 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1986 return ret; 1987 } 1988 return ret; 1989 } 1990 1991 static int spi_destroy_queue(struct spi_controller *ctlr) 1992 { 1993 int ret; 1994 1995 ret = spi_stop_queue(ctlr); 1996 1997 /* 1998 * kthread_flush_worker will block until all work is done. 1999 * If the reason that stop_queue timed out is that the work will never 2000 * finish, then it does no good to call flush/stop thread, so 2001 * return anyway. 2002 */ 2003 if (ret) { 2004 dev_err(&ctlr->dev, "problem destroying queue\n"); 2005 return ret; 2006 } 2007 2008 kthread_destroy_worker(ctlr->kworker); 2009 2010 return 0; 2011 } 2012 2013 static int __spi_queued_transfer(struct spi_device *spi, 2014 struct spi_message *msg, 2015 bool need_pump) 2016 { 2017 struct spi_controller *ctlr = spi->controller; 2018 unsigned long flags; 2019 2020 spin_lock_irqsave(&ctlr->queue_lock, flags); 2021 2022 if (!ctlr->running) { 2023 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2024 return -ESHUTDOWN; 2025 } 2026 msg->actual_length = 0; 2027 msg->status = -EINPROGRESS; 2028 2029 list_add_tail(&msg->queue, &ctlr->queue); 2030 if (!ctlr->busy && need_pump) 2031 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2032 2033 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2034 return 0; 2035 } 2036 2037 /** 2038 * spi_queued_transfer - transfer function for queued transfers 2039 * @spi: spi device which is requesting transfer 2040 * @msg: spi message which is to handled is queued to driver queue 2041 * 2042 * Return: zero on success, else a negative error code. 2043 */ 2044 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2045 { 2046 return __spi_queued_transfer(spi, msg, true); 2047 } 2048 2049 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2050 { 2051 int ret; 2052 2053 ctlr->transfer = spi_queued_transfer; 2054 if (!ctlr->transfer_one_message) 2055 ctlr->transfer_one_message = spi_transfer_one_message; 2056 2057 /* Initialize and start queue */ 2058 ret = spi_init_queue(ctlr); 2059 if (ret) { 2060 dev_err(&ctlr->dev, "problem initializing queue\n"); 2061 goto err_init_queue; 2062 } 2063 ctlr->queued = true; 2064 ret = spi_start_queue(ctlr); 2065 if (ret) { 2066 dev_err(&ctlr->dev, "problem starting queue\n"); 2067 goto err_start_queue; 2068 } 2069 2070 return 0; 2071 2072 err_start_queue: 2073 spi_destroy_queue(ctlr); 2074 err_init_queue: 2075 return ret; 2076 } 2077 2078 /** 2079 * spi_flush_queue - Send all pending messages in the queue from the callers' 2080 * context 2081 * @ctlr: controller to process queue for 2082 * 2083 * This should be used when one wants to ensure all pending messages have been 2084 * sent before doing something. Is used by the spi-mem code to make sure SPI 2085 * memory operations do not preempt regular SPI transfers that have been queued 2086 * before the spi-mem operation. 2087 */ 2088 void spi_flush_queue(struct spi_controller *ctlr) 2089 { 2090 if (ctlr->transfer == spi_queued_transfer) 2091 __spi_pump_messages(ctlr, false); 2092 } 2093 2094 /*-------------------------------------------------------------------------*/ 2095 2096 #if defined(CONFIG_OF) 2097 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2098 struct device_node *nc) 2099 { 2100 u32 value; 2101 int rc; 2102 2103 /* Mode (clock phase/polarity/etc.) */ 2104 if (of_property_read_bool(nc, "spi-cpha")) 2105 spi->mode |= SPI_CPHA; 2106 if (of_property_read_bool(nc, "spi-cpol")) 2107 spi->mode |= SPI_CPOL; 2108 if (of_property_read_bool(nc, "spi-3wire")) 2109 spi->mode |= SPI_3WIRE; 2110 if (of_property_read_bool(nc, "spi-lsb-first")) 2111 spi->mode |= SPI_LSB_FIRST; 2112 if (of_property_read_bool(nc, "spi-cs-high")) 2113 spi->mode |= SPI_CS_HIGH; 2114 2115 /* Device DUAL/QUAD mode */ 2116 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2117 switch (value) { 2118 case 0: 2119 spi->mode |= SPI_NO_TX; 2120 break; 2121 case 1: 2122 break; 2123 case 2: 2124 spi->mode |= SPI_TX_DUAL; 2125 break; 2126 case 4: 2127 spi->mode |= SPI_TX_QUAD; 2128 break; 2129 case 8: 2130 spi->mode |= SPI_TX_OCTAL; 2131 break; 2132 default: 2133 dev_warn(&ctlr->dev, 2134 "spi-tx-bus-width %d not supported\n", 2135 value); 2136 break; 2137 } 2138 } 2139 2140 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2141 switch (value) { 2142 case 0: 2143 spi->mode |= SPI_NO_RX; 2144 break; 2145 case 1: 2146 break; 2147 case 2: 2148 spi->mode |= SPI_RX_DUAL; 2149 break; 2150 case 4: 2151 spi->mode |= SPI_RX_QUAD; 2152 break; 2153 case 8: 2154 spi->mode |= SPI_RX_OCTAL; 2155 break; 2156 default: 2157 dev_warn(&ctlr->dev, 2158 "spi-rx-bus-width %d not supported\n", 2159 value); 2160 break; 2161 } 2162 } 2163 2164 if (spi_controller_is_slave(ctlr)) { 2165 if (!of_node_name_eq(nc, "slave")) { 2166 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2167 nc); 2168 return -EINVAL; 2169 } 2170 return 0; 2171 } 2172 2173 /* Device address */ 2174 rc = of_property_read_u32(nc, "reg", &value); 2175 if (rc) { 2176 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2177 nc, rc); 2178 return rc; 2179 } 2180 spi->chip_select = value; 2181 2182 /* Device speed */ 2183 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2184 spi->max_speed_hz = value; 2185 2186 return 0; 2187 } 2188 2189 static struct spi_device * 2190 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2191 { 2192 struct spi_device *spi; 2193 int rc; 2194 2195 /* Alloc an spi_device */ 2196 spi = spi_alloc_device(ctlr); 2197 if (!spi) { 2198 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2199 rc = -ENOMEM; 2200 goto err_out; 2201 } 2202 2203 /* Select device driver */ 2204 rc = of_modalias_node(nc, spi->modalias, 2205 sizeof(spi->modalias)); 2206 if (rc < 0) { 2207 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2208 goto err_out; 2209 } 2210 2211 rc = of_spi_parse_dt(ctlr, spi, nc); 2212 if (rc) 2213 goto err_out; 2214 2215 /* Store a pointer to the node in the device structure */ 2216 of_node_get(nc); 2217 spi->dev.of_node = nc; 2218 spi->dev.fwnode = of_fwnode_handle(nc); 2219 2220 /* Register the new device */ 2221 rc = spi_add_device(spi); 2222 if (rc) { 2223 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2224 goto err_of_node_put; 2225 } 2226 2227 return spi; 2228 2229 err_of_node_put: 2230 of_node_put(nc); 2231 err_out: 2232 spi_dev_put(spi); 2233 return ERR_PTR(rc); 2234 } 2235 2236 /** 2237 * of_register_spi_devices() - Register child devices onto the SPI bus 2238 * @ctlr: Pointer to spi_controller device 2239 * 2240 * Registers an spi_device for each child node of controller node which 2241 * represents a valid SPI slave. 2242 */ 2243 static void of_register_spi_devices(struct spi_controller *ctlr) 2244 { 2245 struct spi_device *spi; 2246 struct device_node *nc; 2247 2248 if (!ctlr->dev.of_node) 2249 return; 2250 2251 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2252 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2253 continue; 2254 spi = of_register_spi_device(ctlr, nc); 2255 if (IS_ERR(spi)) { 2256 dev_warn(&ctlr->dev, 2257 "Failed to create SPI device for %pOF\n", nc); 2258 of_node_clear_flag(nc, OF_POPULATED); 2259 } 2260 } 2261 } 2262 #else 2263 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2264 #endif 2265 2266 /** 2267 * spi_new_ancillary_device() - Register ancillary SPI device 2268 * @spi: Pointer to the main SPI device registering the ancillary device 2269 * @chip_select: Chip Select of the ancillary device 2270 * 2271 * Register an ancillary SPI device; for example some chips have a chip-select 2272 * for normal device usage and another one for setup/firmware upload. 2273 * 2274 * This may only be called from main SPI device's probe routine. 2275 * 2276 * Return: 0 on success; negative errno on failure 2277 */ 2278 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2279 u8 chip_select) 2280 { 2281 struct spi_device *ancillary; 2282 int rc = 0; 2283 2284 /* Alloc an spi_device */ 2285 ancillary = spi_alloc_device(spi->controller); 2286 if (!ancillary) { 2287 rc = -ENOMEM; 2288 goto err_out; 2289 } 2290 2291 strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2292 2293 /* Use provided chip-select for ancillary device */ 2294 ancillary->chip_select = chip_select; 2295 2296 /* Take over SPI mode/speed from SPI main device */ 2297 ancillary->max_speed_hz = spi->max_speed_hz; 2298 ancillary->mode = spi->mode; 2299 2300 /* Register the new device */ 2301 rc = spi_add_device_locked(ancillary); 2302 if (rc) { 2303 dev_err(&spi->dev, "failed to register ancillary device\n"); 2304 goto err_out; 2305 } 2306 2307 return ancillary; 2308 2309 err_out: 2310 spi_dev_put(ancillary); 2311 return ERR_PTR(rc); 2312 } 2313 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2314 2315 #ifdef CONFIG_ACPI 2316 struct acpi_spi_lookup { 2317 struct spi_controller *ctlr; 2318 u32 max_speed_hz; 2319 u32 mode; 2320 int irq; 2321 u8 bits_per_word; 2322 u8 chip_select; 2323 int n; 2324 int index; 2325 }; 2326 2327 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2328 { 2329 struct acpi_resource_spi_serialbus *sb; 2330 int *count = data; 2331 2332 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2333 return 1; 2334 2335 sb = &ares->data.spi_serial_bus; 2336 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2337 return 1; 2338 2339 *count = *count + 1; 2340 2341 return 1; 2342 } 2343 2344 /** 2345 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2346 * @adev: ACPI device 2347 * 2348 * Returns the number of SpiSerialBus resources in the ACPI-device's 2349 * resource-list; or a negative error code. 2350 */ 2351 int acpi_spi_count_resources(struct acpi_device *adev) 2352 { 2353 LIST_HEAD(r); 2354 int count = 0; 2355 int ret; 2356 2357 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2358 if (ret < 0) 2359 return ret; 2360 2361 acpi_dev_free_resource_list(&r); 2362 2363 return count; 2364 } 2365 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2366 2367 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2368 struct acpi_spi_lookup *lookup) 2369 { 2370 const union acpi_object *obj; 2371 2372 if (!x86_apple_machine) 2373 return; 2374 2375 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2376 && obj->buffer.length >= 4) 2377 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2378 2379 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2380 && obj->buffer.length == 8) 2381 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2382 2383 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2384 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2385 lookup->mode |= SPI_LSB_FIRST; 2386 2387 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2388 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2389 lookup->mode |= SPI_CPOL; 2390 2391 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2392 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2393 lookup->mode |= SPI_CPHA; 2394 } 2395 2396 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 2397 2398 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2399 { 2400 struct acpi_spi_lookup *lookup = data; 2401 struct spi_controller *ctlr = lookup->ctlr; 2402 2403 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2404 struct acpi_resource_spi_serialbus *sb; 2405 acpi_handle parent_handle; 2406 acpi_status status; 2407 2408 sb = &ares->data.spi_serial_bus; 2409 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2410 2411 if (lookup->index != -1 && lookup->n++ != lookup->index) 2412 return 1; 2413 2414 if (lookup->index == -1 && !ctlr) 2415 return -ENODEV; 2416 2417 status = acpi_get_handle(NULL, 2418 sb->resource_source.string_ptr, 2419 &parent_handle); 2420 2421 if (ACPI_FAILURE(status)) 2422 return -ENODEV; 2423 2424 if (ctlr) { 2425 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2426 return -ENODEV; 2427 } else { 2428 struct acpi_device *adev; 2429 2430 if (acpi_bus_get_device(parent_handle, &adev)) 2431 return -ENODEV; 2432 2433 ctlr = acpi_spi_find_controller_by_adev(adev); 2434 if (!ctlr) 2435 return -ENODEV; 2436 2437 lookup->ctlr = ctlr; 2438 } 2439 2440 /* 2441 * ACPI DeviceSelection numbering is handled by the 2442 * host controller driver in Windows and can vary 2443 * from driver to driver. In Linux we always expect 2444 * 0 .. max - 1 so we need to ask the driver to 2445 * translate between the two schemes. 2446 */ 2447 if (ctlr->fw_translate_cs) { 2448 int cs = ctlr->fw_translate_cs(ctlr, 2449 sb->device_selection); 2450 if (cs < 0) 2451 return cs; 2452 lookup->chip_select = cs; 2453 } else { 2454 lookup->chip_select = sb->device_selection; 2455 } 2456 2457 lookup->max_speed_hz = sb->connection_speed; 2458 lookup->bits_per_word = sb->data_bit_length; 2459 2460 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2461 lookup->mode |= SPI_CPHA; 2462 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2463 lookup->mode |= SPI_CPOL; 2464 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2465 lookup->mode |= SPI_CS_HIGH; 2466 } 2467 } else if (lookup->irq < 0) { 2468 struct resource r; 2469 2470 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2471 lookup->irq = r.start; 2472 } 2473 2474 /* Always tell the ACPI core to skip this resource */ 2475 return 1; 2476 } 2477 2478 /** 2479 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2480 * @ctlr: controller to which the spi device belongs 2481 * @adev: ACPI Device for the spi device 2482 * @index: Index of the spi resource inside the ACPI Node 2483 * 2484 * This should be used to allocate a new spi device from and ACPI Node. 2485 * The caller is responsible for calling spi_add_device to register the spi device. 2486 * 2487 * If ctlr is set to NULL, the Controller for the spi device will be looked up 2488 * using the resource. 2489 * If index is set to -1, index is not used. 2490 * Note: If index is -1, ctlr must be set. 2491 * 2492 * Return: a pointer to the new device, or ERR_PTR on error. 2493 */ 2494 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2495 struct acpi_device *adev, 2496 int index) 2497 { 2498 acpi_handle parent_handle = NULL; 2499 struct list_head resource_list; 2500 struct acpi_spi_lookup lookup = {}; 2501 struct spi_device *spi; 2502 int ret; 2503 2504 if (!ctlr && index == -1) 2505 return ERR_PTR(-EINVAL); 2506 2507 lookup.ctlr = ctlr; 2508 lookup.irq = -1; 2509 lookup.index = index; 2510 lookup.n = 0; 2511 2512 INIT_LIST_HEAD(&resource_list); 2513 ret = acpi_dev_get_resources(adev, &resource_list, 2514 acpi_spi_add_resource, &lookup); 2515 acpi_dev_free_resource_list(&resource_list); 2516 2517 if (ret < 0) 2518 /* found SPI in _CRS but it points to another controller */ 2519 return ERR_PTR(-ENODEV); 2520 2521 if (!lookup.max_speed_hz && 2522 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2523 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2524 /* Apple does not use _CRS but nested devices for SPI slaves */ 2525 acpi_spi_parse_apple_properties(adev, &lookup); 2526 } 2527 2528 if (!lookup.max_speed_hz) 2529 return ERR_PTR(-ENODEV); 2530 2531 spi = spi_alloc_device(lookup.ctlr); 2532 if (!spi) { 2533 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2534 dev_name(&adev->dev)); 2535 return ERR_PTR(-ENOMEM); 2536 } 2537 2538 ACPI_COMPANION_SET(&spi->dev, adev); 2539 spi->max_speed_hz = lookup.max_speed_hz; 2540 spi->mode |= lookup.mode; 2541 spi->irq = lookup.irq; 2542 spi->bits_per_word = lookup.bits_per_word; 2543 spi->chip_select = lookup.chip_select; 2544 2545 return spi; 2546 } 2547 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2548 2549 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2550 struct acpi_device *adev) 2551 { 2552 struct spi_device *spi; 2553 2554 if (acpi_bus_get_status(adev) || !adev->status.present || 2555 acpi_device_enumerated(adev)) 2556 return AE_OK; 2557 2558 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2559 if (IS_ERR(spi)) { 2560 if (PTR_ERR(spi) == -ENOMEM) 2561 return AE_NO_MEMORY; 2562 else 2563 return AE_OK; 2564 } 2565 2566 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2567 sizeof(spi->modalias)); 2568 2569 if (spi->irq < 0) 2570 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2571 2572 acpi_device_set_enumerated(adev); 2573 2574 adev->power.flags.ignore_parent = true; 2575 if (spi_add_device(spi)) { 2576 adev->power.flags.ignore_parent = false; 2577 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2578 dev_name(&adev->dev)); 2579 spi_dev_put(spi); 2580 } 2581 2582 return AE_OK; 2583 } 2584 2585 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2586 void *data, void **return_value) 2587 { 2588 struct spi_controller *ctlr = data; 2589 struct acpi_device *adev; 2590 2591 if (acpi_bus_get_device(handle, &adev)) 2592 return AE_OK; 2593 2594 return acpi_register_spi_device(ctlr, adev); 2595 } 2596 2597 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2598 2599 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2600 { 2601 acpi_status status; 2602 acpi_handle handle; 2603 2604 handle = ACPI_HANDLE(ctlr->dev.parent); 2605 if (!handle) 2606 return; 2607 2608 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2609 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2610 acpi_spi_add_device, NULL, ctlr, NULL); 2611 if (ACPI_FAILURE(status)) 2612 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2613 } 2614 #else 2615 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2616 #endif /* CONFIG_ACPI */ 2617 2618 static void spi_controller_release(struct device *dev) 2619 { 2620 struct spi_controller *ctlr; 2621 2622 ctlr = container_of(dev, struct spi_controller, dev); 2623 kfree(ctlr); 2624 } 2625 2626 static struct class spi_master_class = { 2627 .name = "spi_master", 2628 .owner = THIS_MODULE, 2629 .dev_release = spi_controller_release, 2630 .dev_groups = spi_master_groups, 2631 }; 2632 2633 #ifdef CONFIG_SPI_SLAVE 2634 /** 2635 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2636 * controller 2637 * @spi: device used for the current transfer 2638 */ 2639 int spi_slave_abort(struct spi_device *spi) 2640 { 2641 struct spi_controller *ctlr = spi->controller; 2642 2643 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2644 return ctlr->slave_abort(ctlr); 2645 2646 return -ENOTSUPP; 2647 } 2648 EXPORT_SYMBOL_GPL(spi_slave_abort); 2649 2650 static int match_true(struct device *dev, void *data) 2651 { 2652 return 1; 2653 } 2654 2655 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2656 char *buf) 2657 { 2658 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2659 dev); 2660 struct device *child; 2661 2662 child = device_find_child(&ctlr->dev, NULL, match_true); 2663 return sprintf(buf, "%s\n", 2664 child ? to_spi_device(child)->modalias : NULL); 2665 } 2666 2667 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2668 const char *buf, size_t count) 2669 { 2670 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2671 dev); 2672 struct spi_device *spi; 2673 struct device *child; 2674 char name[32]; 2675 int rc; 2676 2677 rc = sscanf(buf, "%31s", name); 2678 if (rc != 1 || !name[0]) 2679 return -EINVAL; 2680 2681 child = device_find_child(&ctlr->dev, NULL, match_true); 2682 if (child) { 2683 /* Remove registered slave */ 2684 device_unregister(child); 2685 put_device(child); 2686 } 2687 2688 if (strcmp(name, "(null)")) { 2689 /* Register new slave */ 2690 spi = spi_alloc_device(ctlr); 2691 if (!spi) 2692 return -ENOMEM; 2693 2694 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2695 2696 rc = spi_add_device(spi); 2697 if (rc) { 2698 spi_dev_put(spi); 2699 return rc; 2700 } 2701 } 2702 2703 return count; 2704 } 2705 2706 static DEVICE_ATTR_RW(slave); 2707 2708 static struct attribute *spi_slave_attrs[] = { 2709 &dev_attr_slave.attr, 2710 NULL, 2711 }; 2712 2713 static const struct attribute_group spi_slave_group = { 2714 .attrs = spi_slave_attrs, 2715 }; 2716 2717 static const struct attribute_group *spi_slave_groups[] = { 2718 &spi_controller_statistics_group, 2719 &spi_slave_group, 2720 NULL, 2721 }; 2722 2723 static struct class spi_slave_class = { 2724 .name = "spi_slave", 2725 .owner = THIS_MODULE, 2726 .dev_release = spi_controller_release, 2727 .dev_groups = spi_slave_groups, 2728 }; 2729 #else 2730 extern struct class spi_slave_class; /* dummy */ 2731 #endif 2732 2733 /** 2734 * __spi_alloc_controller - allocate an SPI master or slave controller 2735 * @dev: the controller, possibly using the platform_bus 2736 * @size: how much zeroed driver-private data to allocate; the pointer to this 2737 * memory is in the driver_data field of the returned device, accessible 2738 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2739 * drivers granting DMA access to portions of their private data need to 2740 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2741 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2742 * slave (true) controller 2743 * Context: can sleep 2744 * 2745 * This call is used only by SPI controller drivers, which are the 2746 * only ones directly touching chip registers. It's how they allocate 2747 * an spi_controller structure, prior to calling spi_register_controller(). 2748 * 2749 * This must be called from context that can sleep. 2750 * 2751 * The caller is responsible for assigning the bus number and initializing the 2752 * controller's methods before calling spi_register_controller(); and (after 2753 * errors adding the device) calling spi_controller_put() to prevent a memory 2754 * leak. 2755 * 2756 * Return: the SPI controller structure on success, else NULL. 2757 */ 2758 struct spi_controller *__spi_alloc_controller(struct device *dev, 2759 unsigned int size, bool slave) 2760 { 2761 struct spi_controller *ctlr; 2762 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2763 2764 if (!dev) 2765 return NULL; 2766 2767 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2768 if (!ctlr) 2769 return NULL; 2770 2771 device_initialize(&ctlr->dev); 2772 INIT_LIST_HEAD(&ctlr->queue); 2773 spin_lock_init(&ctlr->queue_lock); 2774 spin_lock_init(&ctlr->bus_lock_spinlock); 2775 mutex_init(&ctlr->bus_lock_mutex); 2776 mutex_init(&ctlr->io_mutex); 2777 mutex_init(&ctlr->add_lock); 2778 ctlr->bus_num = -1; 2779 ctlr->num_chipselect = 1; 2780 ctlr->slave = slave; 2781 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2782 ctlr->dev.class = &spi_slave_class; 2783 else 2784 ctlr->dev.class = &spi_master_class; 2785 ctlr->dev.parent = dev; 2786 pm_suspend_ignore_children(&ctlr->dev, true); 2787 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2788 2789 return ctlr; 2790 } 2791 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2792 2793 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2794 { 2795 spi_controller_put(*(struct spi_controller **)ctlr); 2796 } 2797 2798 /** 2799 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2800 * @dev: physical device of SPI controller 2801 * @size: how much zeroed driver-private data to allocate 2802 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2803 * Context: can sleep 2804 * 2805 * Allocate an SPI controller and automatically release a reference on it 2806 * when @dev is unbound from its driver. Drivers are thus relieved from 2807 * having to call spi_controller_put(). 2808 * 2809 * The arguments to this function are identical to __spi_alloc_controller(). 2810 * 2811 * Return: the SPI controller structure on success, else NULL. 2812 */ 2813 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2814 unsigned int size, 2815 bool slave) 2816 { 2817 struct spi_controller **ptr, *ctlr; 2818 2819 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2820 GFP_KERNEL); 2821 if (!ptr) 2822 return NULL; 2823 2824 ctlr = __spi_alloc_controller(dev, size, slave); 2825 if (ctlr) { 2826 ctlr->devm_allocated = true; 2827 *ptr = ctlr; 2828 devres_add(dev, ptr); 2829 } else { 2830 devres_free(ptr); 2831 } 2832 2833 return ctlr; 2834 } 2835 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2836 2837 #ifdef CONFIG_OF 2838 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2839 { 2840 int nb, i, *cs; 2841 struct device_node *np = ctlr->dev.of_node; 2842 2843 if (!np) 2844 return 0; 2845 2846 nb = of_gpio_named_count(np, "cs-gpios"); 2847 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2848 2849 /* Return error only for an incorrectly formed cs-gpios property */ 2850 if (nb == 0 || nb == -ENOENT) 2851 return 0; 2852 else if (nb < 0) 2853 return nb; 2854 2855 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2856 GFP_KERNEL); 2857 ctlr->cs_gpios = cs; 2858 2859 if (!ctlr->cs_gpios) 2860 return -ENOMEM; 2861 2862 for (i = 0; i < ctlr->num_chipselect; i++) 2863 cs[i] = -ENOENT; 2864 2865 for (i = 0; i < nb; i++) 2866 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2867 2868 return 0; 2869 } 2870 #else 2871 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2872 { 2873 return 0; 2874 } 2875 #endif 2876 2877 /** 2878 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2879 * @ctlr: The SPI master to grab GPIO descriptors for 2880 */ 2881 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2882 { 2883 int nb, i; 2884 struct gpio_desc **cs; 2885 struct device *dev = &ctlr->dev; 2886 unsigned long native_cs_mask = 0; 2887 unsigned int num_cs_gpios = 0; 2888 2889 nb = gpiod_count(dev, "cs"); 2890 if (nb < 0) { 2891 /* No GPIOs at all is fine, else return the error */ 2892 if (nb == -ENOENT) 2893 return 0; 2894 return nb; 2895 } 2896 2897 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2898 2899 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2900 GFP_KERNEL); 2901 if (!cs) 2902 return -ENOMEM; 2903 ctlr->cs_gpiods = cs; 2904 2905 for (i = 0; i < nb; i++) { 2906 /* 2907 * Most chipselects are active low, the inverted 2908 * semantics are handled by special quirks in gpiolib, 2909 * so initializing them GPIOD_OUT_LOW here means 2910 * "unasserted", in most cases this will drive the physical 2911 * line high. 2912 */ 2913 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2914 GPIOD_OUT_LOW); 2915 if (IS_ERR(cs[i])) 2916 return PTR_ERR(cs[i]); 2917 2918 if (cs[i]) { 2919 /* 2920 * If we find a CS GPIO, name it after the device and 2921 * chip select line. 2922 */ 2923 char *gpioname; 2924 2925 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2926 dev_name(dev), i); 2927 if (!gpioname) 2928 return -ENOMEM; 2929 gpiod_set_consumer_name(cs[i], gpioname); 2930 num_cs_gpios++; 2931 continue; 2932 } 2933 2934 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2935 dev_err(dev, "Invalid native chip select %d\n", i); 2936 return -EINVAL; 2937 } 2938 native_cs_mask |= BIT(i); 2939 } 2940 2941 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 2942 2943 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios && 2944 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 2945 dev_err(dev, "No unused native chip select available\n"); 2946 return -EINVAL; 2947 } 2948 2949 return 0; 2950 } 2951 2952 static int spi_controller_check_ops(struct spi_controller *ctlr) 2953 { 2954 /* 2955 * The controller may implement only the high-level SPI-memory like 2956 * operations if it does not support regular SPI transfers, and this is 2957 * valid use case. 2958 * If ->mem_ops is NULL, we request that at least one of the 2959 * ->transfer_xxx() method be implemented. 2960 */ 2961 if (ctlr->mem_ops) { 2962 if (!ctlr->mem_ops->exec_op) 2963 return -EINVAL; 2964 } else if (!ctlr->transfer && !ctlr->transfer_one && 2965 !ctlr->transfer_one_message) { 2966 return -EINVAL; 2967 } 2968 2969 return 0; 2970 } 2971 2972 /** 2973 * spi_register_controller - register SPI master or slave controller 2974 * @ctlr: initialized master, originally from spi_alloc_master() or 2975 * spi_alloc_slave() 2976 * Context: can sleep 2977 * 2978 * SPI controllers connect to their drivers using some non-SPI bus, 2979 * such as the platform bus. The final stage of probe() in that code 2980 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2981 * 2982 * SPI controllers use board specific (often SOC specific) bus numbers, 2983 * and board-specific addressing for SPI devices combines those numbers 2984 * with chip select numbers. Since SPI does not directly support dynamic 2985 * device identification, boards need configuration tables telling which 2986 * chip is at which address. 2987 * 2988 * This must be called from context that can sleep. It returns zero on 2989 * success, else a negative error code (dropping the controller's refcount). 2990 * After a successful return, the caller is responsible for calling 2991 * spi_unregister_controller(). 2992 * 2993 * Return: zero on success, else a negative error code. 2994 */ 2995 int spi_register_controller(struct spi_controller *ctlr) 2996 { 2997 struct device *dev = ctlr->dev.parent; 2998 struct boardinfo *bi; 2999 int status; 3000 int id, first_dynamic; 3001 3002 if (!dev) 3003 return -ENODEV; 3004 3005 /* 3006 * Make sure all necessary hooks are implemented before registering 3007 * the SPI controller. 3008 */ 3009 status = spi_controller_check_ops(ctlr); 3010 if (status) 3011 return status; 3012 3013 if (ctlr->bus_num >= 0) { 3014 /* devices with a fixed bus num must check-in with the num */ 3015 mutex_lock(&board_lock); 3016 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 3017 ctlr->bus_num + 1, GFP_KERNEL); 3018 mutex_unlock(&board_lock); 3019 if (WARN(id < 0, "couldn't get idr")) 3020 return id == -ENOSPC ? -EBUSY : id; 3021 ctlr->bus_num = id; 3022 } else if (ctlr->dev.of_node) { 3023 /* allocate dynamic bus number using Linux idr */ 3024 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 3025 if (id >= 0) { 3026 ctlr->bus_num = id; 3027 mutex_lock(&board_lock); 3028 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 3029 ctlr->bus_num + 1, GFP_KERNEL); 3030 mutex_unlock(&board_lock); 3031 if (WARN(id < 0, "couldn't get idr")) 3032 return id == -ENOSPC ? -EBUSY : id; 3033 } 3034 } 3035 if (ctlr->bus_num < 0) { 3036 first_dynamic = of_alias_get_highest_id("spi"); 3037 if (first_dynamic < 0) 3038 first_dynamic = 0; 3039 else 3040 first_dynamic++; 3041 3042 mutex_lock(&board_lock); 3043 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 3044 0, GFP_KERNEL); 3045 mutex_unlock(&board_lock); 3046 if (WARN(id < 0, "couldn't get idr")) 3047 return id; 3048 ctlr->bus_num = id; 3049 } 3050 ctlr->bus_lock_flag = 0; 3051 init_completion(&ctlr->xfer_completion); 3052 if (!ctlr->max_dma_len) 3053 ctlr->max_dma_len = INT_MAX; 3054 3055 /* 3056 * Register the device, then userspace will see it. 3057 * Registration fails if the bus ID is in use. 3058 */ 3059 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3060 3061 if (!spi_controller_is_slave(ctlr)) { 3062 if (ctlr->use_gpio_descriptors) { 3063 status = spi_get_gpio_descs(ctlr); 3064 if (status) 3065 goto free_bus_id; 3066 /* 3067 * A controller using GPIO descriptors always 3068 * supports SPI_CS_HIGH if need be. 3069 */ 3070 ctlr->mode_bits |= SPI_CS_HIGH; 3071 } else { 3072 /* Legacy code path for GPIOs from DT */ 3073 status = of_spi_get_gpio_numbers(ctlr); 3074 if (status) 3075 goto free_bus_id; 3076 } 3077 } 3078 3079 /* 3080 * Even if it's just one always-selected device, there must 3081 * be at least one chipselect. 3082 */ 3083 if (!ctlr->num_chipselect) { 3084 status = -EINVAL; 3085 goto free_bus_id; 3086 } 3087 3088 status = device_add(&ctlr->dev); 3089 if (status < 0) 3090 goto free_bus_id; 3091 dev_dbg(dev, "registered %s %s\n", 3092 spi_controller_is_slave(ctlr) ? "slave" : "master", 3093 dev_name(&ctlr->dev)); 3094 3095 /* 3096 * If we're using a queued driver, start the queue. Note that we don't 3097 * need the queueing logic if the driver is only supporting high-level 3098 * memory operations. 3099 */ 3100 if (ctlr->transfer) { 3101 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3102 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3103 status = spi_controller_initialize_queue(ctlr); 3104 if (status) { 3105 device_del(&ctlr->dev); 3106 goto free_bus_id; 3107 } 3108 } 3109 /* add statistics */ 3110 spin_lock_init(&ctlr->statistics.lock); 3111 3112 mutex_lock(&board_lock); 3113 list_add_tail(&ctlr->list, &spi_controller_list); 3114 list_for_each_entry(bi, &board_list, list) 3115 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3116 mutex_unlock(&board_lock); 3117 3118 /* Register devices from the device tree and ACPI */ 3119 of_register_spi_devices(ctlr); 3120 acpi_register_spi_devices(ctlr); 3121 return status; 3122 3123 free_bus_id: 3124 mutex_lock(&board_lock); 3125 idr_remove(&spi_master_idr, ctlr->bus_num); 3126 mutex_unlock(&board_lock); 3127 return status; 3128 } 3129 EXPORT_SYMBOL_GPL(spi_register_controller); 3130 3131 static void devm_spi_unregister(void *ctlr) 3132 { 3133 spi_unregister_controller(ctlr); 3134 } 3135 3136 /** 3137 * devm_spi_register_controller - register managed SPI master or slave 3138 * controller 3139 * @dev: device managing SPI controller 3140 * @ctlr: initialized controller, originally from spi_alloc_master() or 3141 * spi_alloc_slave() 3142 * Context: can sleep 3143 * 3144 * Register a SPI device as with spi_register_controller() which will 3145 * automatically be unregistered and freed. 3146 * 3147 * Return: zero on success, else a negative error code. 3148 */ 3149 int devm_spi_register_controller(struct device *dev, 3150 struct spi_controller *ctlr) 3151 { 3152 int ret; 3153 3154 ret = spi_register_controller(ctlr); 3155 if (ret) 3156 return ret; 3157 3158 return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr); 3159 } 3160 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3161 3162 static int __unregister(struct device *dev, void *null) 3163 { 3164 spi_unregister_device(to_spi_device(dev)); 3165 return 0; 3166 } 3167 3168 /** 3169 * spi_unregister_controller - unregister SPI master or slave controller 3170 * @ctlr: the controller being unregistered 3171 * Context: can sleep 3172 * 3173 * This call is used only by SPI controller drivers, which are the 3174 * only ones directly touching chip registers. 3175 * 3176 * This must be called from context that can sleep. 3177 * 3178 * Note that this function also drops a reference to the controller. 3179 */ 3180 void spi_unregister_controller(struct spi_controller *ctlr) 3181 { 3182 struct spi_controller *found; 3183 int id = ctlr->bus_num; 3184 3185 /* Prevent addition of new devices, unregister existing ones */ 3186 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3187 mutex_lock(&ctlr->add_lock); 3188 3189 device_for_each_child(&ctlr->dev, NULL, __unregister); 3190 3191 /* First make sure that this controller was ever added */ 3192 mutex_lock(&board_lock); 3193 found = idr_find(&spi_master_idr, id); 3194 mutex_unlock(&board_lock); 3195 if (ctlr->queued) { 3196 if (spi_destroy_queue(ctlr)) 3197 dev_err(&ctlr->dev, "queue remove failed\n"); 3198 } 3199 mutex_lock(&board_lock); 3200 list_del(&ctlr->list); 3201 mutex_unlock(&board_lock); 3202 3203 device_del(&ctlr->dev); 3204 3205 /* free bus id */ 3206 mutex_lock(&board_lock); 3207 if (found == ctlr) 3208 idr_remove(&spi_master_idr, id); 3209 mutex_unlock(&board_lock); 3210 3211 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3212 mutex_unlock(&ctlr->add_lock); 3213 3214 /* Release the last reference on the controller if its driver 3215 * has not yet been converted to devm_spi_alloc_master/slave(). 3216 */ 3217 if (!ctlr->devm_allocated) 3218 put_device(&ctlr->dev); 3219 } 3220 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3221 3222 int spi_controller_suspend(struct spi_controller *ctlr) 3223 { 3224 int ret; 3225 3226 /* Basically no-ops for non-queued controllers */ 3227 if (!ctlr->queued) 3228 return 0; 3229 3230 ret = spi_stop_queue(ctlr); 3231 if (ret) 3232 dev_err(&ctlr->dev, "queue stop failed\n"); 3233 3234 return ret; 3235 } 3236 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3237 3238 int spi_controller_resume(struct spi_controller *ctlr) 3239 { 3240 int ret; 3241 3242 if (!ctlr->queued) 3243 return 0; 3244 3245 ret = spi_start_queue(ctlr); 3246 if (ret) 3247 dev_err(&ctlr->dev, "queue restart failed\n"); 3248 3249 return ret; 3250 } 3251 EXPORT_SYMBOL_GPL(spi_controller_resume); 3252 3253 /*-------------------------------------------------------------------------*/ 3254 3255 /* Core methods for spi_message alterations */ 3256 3257 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3258 struct spi_message *msg, 3259 void *res) 3260 { 3261 struct spi_replaced_transfers *rxfer = res; 3262 size_t i; 3263 3264 /* call extra callback if requested */ 3265 if (rxfer->release) 3266 rxfer->release(ctlr, msg, res); 3267 3268 /* insert replaced transfers back into the message */ 3269 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3270 3271 /* remove the formerly inserted entries */ 3272 for (i = 0; i < rxfer->inserted; i++) 3273 list_del(&rxfer->inserted_transfers[i].transfer_list); 3274 } 3275 3276 /** 3277 * spi_replace_transfers - replace transfers with several transfers 3278 * and register change with spi_message.resources 3279 * @msg: the spi_message we work upon 3280 * @xfer_first: the first spi_transfer we want to replace 3281 * @remove: number of transfers to remove 3282 * @insert: the number of transfers we want to insert instead 3283 * @release: extra release code necessary in some circumstances 3284 * @extradatasize: extra data to allocate (with alignment guarantees 3285 * of struct @spi_transfer) 3286 * @gfp: gfp flags 3287 * 3288 * Returns: pointer to @spi_replaced_transfers, 3289 * PTR_ERR(...) in case of errors. 3290 */ 3291 static struct spi_replaced_transfers *spi_replace_transfers( 3292 struct spi_message *msg, 3293 struct spi_transfer *xfer_first, 3294 size_t remove, 3295 size_t insert, 3296 spi_replaced_release_t release, 3297 size_t extradatasize, 3298 gfp_t gfp) 3299 { 3300 struct spi_replaced_transfers *rxfer; 3301 struct spi_transfer *xfer; 3302 size_t i; 3303 3304 /* allocate the structure using spi_res */ 3305 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3306 struct_size(rxfer, inserted_transfers, insert) 3307 + extradatasize, 3308 gfp); 3309 if (!rxfer) 3310 return ERR_PTR(-ENOMEM); 3311 3312 /* the release code to invoke before running the generic release */ 3313 rxfer->release = release; 3314 3315 /* assign extradata */ 3316 if (extradatasize) 3317 rxfer->extradata = 3318 &rxfer->inserted_transfers[insert]; 3319 3320 /* init the replaced_transfers list */ 3321 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3322 3323 /* 3324 * Assign the list_entry after which we should reinsert 3325 * the @replaced_transfers - it may be spi_message.messages! 3326 */ 3327 rxfer->replaced_after = xfer_first->transfer_list.prev; 3328 3329 /* remove the requested number of transfers */ 3330 for (i = 0; i < remove; i++) { 3331 /* 3332 * If the entry after replaced_after it is msg->transfers 3333 * then we have been requested to remove more transfers 3334 * than are in the list. 3335 */ 3336 if (rxfer->replaced_after->next == &msg->transfers) { 3337 dev_err(&msg->spi->dev, 3338 "requested to remove more spi_transfers than are available\n"); 3339 /* insert replaced transfers back into the message */ 3340 list_splice(&rxfer->replaced_transfers, 3341 rxfer->replaced_after); 3342 3343 /* free the spi_replace_transfer structure */ 3344 spi_res_free(rxfer); 3345 3346 /* and return with an error */ 3347 return ERR_PTR(-EINVAL); 3348 } 3349 3350 /* 3351 * Remove the entry after replaced_after from list of 3352 * transfers and add it to list of replaced_transfers. 3353 */ 3354 list_move_tail(rxfer->replaced_after->next, 3355 &rxfer->replaced_transfers); 3356 } 3357 3358 /* 3359 * Create copy of the given xfer with identical settings 3360 * based on the first transfer to get removed. 3361 */ 3362 for (i = 0; i < insert; i++) { 3363 /* we need to run in reverse order */ 3364 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3365 3366 /* copy all spi_transfer data */ 3367 memcpy(xfer, xfer_first, sizeof(*xfer)); 3368 3369 /* add to list */ 3370 list_add(&xfer->transfer_list, rxfer->replaced_after); 3371 3372 /* clear cs_change and delay for all but the last */ 3373 if (i) { 3374 xfer->cs_change = false; 3375 xfer->delay.value = 0; 3376 } 3377 } 3378 3379 /* set up inserted */ 3380 rxfer->inserted = insert; 3381 3382 /* and register it with spi_res/spi_message */ 3383 spi_res_add(msg, rxfer); 3384 3385 return rxfer; 3386 } 3387 3388 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3389 struct spi_message *msg, 3390 struct spi_transfer **xferp, 3391 size_t maxsize, 3392 gfp_t gfp) 3393 { 3394 struct spi_transfer *xfer = *xferp, *xfers; 3395 struct spi_replaced_transfers *srt; 3396 size_t offset; 3397 size_t count, i; 3398 3399 /* calculate how many we have to replace */ 3400 count = DIV_ROUND_UP(xfer->len, maxsize); 3401 3402 /* create replacement */ 3403 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3404 if (IS_ERR(srt)) 3405 return PTR_ERR(srt); 3406 xfers = srt->inserted_transfers; 3407 3408 /* 3409 * Now handle each of those newly inserted spi_transfers. 3410 * Note that the replacements spi_transfers all are preset 3411 * to the same values as *xferp, so tx_buf, rx_buf and len 3412 * are all identical (as well as most others) 3413 * so we just have to fix up len and the pointers. 3414 * 3415 * This also includes support for the depreciated 3416 * spi_message.is_dma_mapped interface. 3417 */ 3418 3419 /* 3420 * The first transfer just needs the length modified, so we 3421 * run it outside the loop. 3422 */ 3423 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3424 3425 /* all the others need rx_buf/tx_buf also set */ 3426 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3427 /* update rx_buf, tx_buf and dma */ 3428 if (xfers[i].rx_buf) 3429 xfers[i].rx_buf += offset; 3430 if (xfers[i].rx_dma) 3431 xfers[i].rx_dma += offset; 3432 if (xfers[i].tx_buf) 3433 xfers[i].tx_buf += offset; 3434 if (xfers[i].tx_dma) 3435 xfers[i].tx_dma += offset; 3436 3437 /* update length */ 3438 xfers[i].len = min(maxsize, xfers[i].len - offset); 3439 } 3440 3441 /* 3442 * We set up xferp to the last entry we have inserted, 3443 * so that we skip those already split transfers. 3444 */ 3445 *xferp = &xfers[count - 1]; 3446 3447 /* increment statistics counters */ 3448 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3449 transfers_split_maxsize); 3450 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3451 transfers_split_maxsize); 3452 3453 return 0; 3454 } 3455 3456 /** 3457 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3458 * when an individual transfer exceeds a 3459 * certain size 3460 * @ctlr: the @spi_controller for this transfer 3461 * @msg: the @spi_message to transform 3462 * @maxsize: the maximum when to apply this 3463 * @gfp: GFP allocation flags 3464 * 3465 * Return: status of transformation 3466 */ 3467 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3468 struct spi_message *msg, 3469 size_t maxsize, 3470 gfp_t gfp) 3471 { 3472 struct spi_transfer *xfer; 3473 int ret; 3474 3475 /* 3476 * Iterate over the transfer_list, 3477 * but note that xfer is advanced to the last transfer inserted 3478 * to avoid checking sizes again unnecessarily (also xfer does 3479 * potentially belong to a different list by the time the 3480 * replacement has happened). 3481 */ 3482 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3483 if (xfer->len > maxsize) { 3484 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3485 maxsize, gfp); 3486 if (ret) 3487 return ret; 3488 } 3489 } 3490 3491 return 0; 3492 } 3493 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3494 3495 /*-------------------------------------------------------------------------*/ 3496 3497 /* Core methods for SPI controller protocol drivers. Some of the 3498 * other core methods are currently defined as inline functions. 3499 */ 3500 3501 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3502 u8 bits_per_word) 3503 { 3504 if (ctlr->bits_per_word_mask) { 3505 /* Only 32 bits fit in the mask */ 3506 if (bits_per_word > 32) 3507 return -EINVAL; 3508 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3509 return -EINVAL; 3510 } 3511 3512 return 0; 3513 } 3514 3515 /** 3516 * spi_setup - setup SPI mode and clock rate 3517 * @spi: the device whose settings are being modified 3518 * Context: can sleep, and no requests are queued to the device 3519 * 3520 * SPI protocol drivers may need to update the transfer mode if the 3521 * device doesn't work with its default. They may likewise need 3522 * to update clock rates or word sizes from initial values. This function 3523 * changes those settings, and must be called from a context that can sleep. 3524 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3525 * effect the next time the device is selected and data is transferred to 3526 * or from it. When this function returns, the spi device is deselected. 3527 * 3528 * Note that this call will fail if the protocol driver specifies an option 3529 * that the underlying controller or its driver does not support. For 3530 * example, not all hardware supports wire transfers using nine bit words, 3531 * LSB-first wire encoding, or active-high chipselects. 3532 * 3533 * Return: zero on success, else a negative error code. 3534 */ 3535 int spi_setup(struct spi_device *spi) 3536 { 3537 unsigned bad_bits, ugly_bits; 3538 int status; 3539 3540 /* 3541 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3542 * are set at the same time. 3543 */ 3544 if ((hweight_long(spi->mode & 3545 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3546 (hweight_long(spi->mode & 3547 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3548 dev_err(&spi->dev, 3549 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3550 return -EINVAL; 3551 } 3552 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3553 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3554 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3555 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3556 return -EINVAL; 3557 /* 3558 * Help drivers fail *cleanly* when they need options 3559 * that aren't supported with their current controller. 3560 * SPI_CS_WORD has a fallback software implementation, 3561 * so it is ignored here. 3562 */ 3563 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3564 SPI_NO_TX | SPI_NO_RX); 3565 /* 3566 * Nothing prevents from working with active-high CS in case if it 3567 * is driven by GPIO. 3568 */ 3569 if (gpio_is_valid(spi->cs_gpio)) 3570 bad_bits &= ~SPI_CS_HIGH; 3571 ugly_bits = bad_bits & 3572 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3573 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3574 if (ugly_bits) { 3575 dev_warn(&spi->dev, 3576 "setup: ignoring unsupported mode bits %x\n", 3577 ugly_bits); 3578 spi->mode &= ~ugly_bits; 3579 bad_bits &= ~ugly_bits; 3580 } 3581 if (bad_bits) { 3582 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3583 bad_bits); 3584 return -EINVAL; 3585 } 3586 3587 if (!spi->bits_per_word) 3588 spi->bits_per_word = 8; 3589 3590 status = __spi_validate_bits_per_word(spi->controller, 3591 spi->bits_per_word); 3592 if (status) 3593 return status; 3594 3595 if (spi->controller->max_speed_hz && 3596 (!spi->max_speed_hz || 3597 spi->max_speed_hz > spi->controller->max_speed_hz)) 3598 spi->max_speed_hz = spi->controller->max_speed_hz; 3599 3600 mutex_lock(&spi->controller->io_mutex); 3601 3602 if (spi->controller->setup) { 3603 status = spi->controller->setup(spi); 3604 if (status) { 3605 mutex_unlock(&spi->controller->io_mutex); 3606 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3607 status); 3608 return status; 3609 } 3610 } 3611 3612 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3613 status = pm_runtime_get_sync(spi->controller->dev.parent); 3614 if (status < 0) { 3615 mutex_unlock(&spi->controller->io_mutex); 3616 pm_runtime_put_noidle(spi->controller->dev.parent); 3617 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3618 status); 3619 return status; 3620 } 3621 3622 /* 3623 * We do not want to return positive value from pm_runtime_get, 3624 * there are many instances of devices calling spi_setup() and 3625 * checking for a non-zero return value instead of a negative 3626 * return value. 3627 */ 3628 status = 0; 3629 3630 spi_set_cs(spi, false, true); 3631 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3632 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3633 } else { 3634 spi_set_cs(spi, false, true); 3635 } 3636 3637 mutex_unlock(&spi->controller->io_mutex); 3638 3639 if (spi->rt && !spi->controller->rt) { 3640 spi->controller->rt = true; 3641 spi_set_thread_rt(spi->controller); 3642 } 3643 3644 trace_spi_setup(spi, status); 3645 3646 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3647 spi->mode & SPI_MODE_X_MASK, 3648 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3649 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3650 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3651 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3652 spi->bits_per_word, spi->max_speed_hz, 3653 status); 3654 3655 return status; 3656 } 3657 EXPORT_SYMBOL_GPL(spi_setup); 3658 3659 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3660 struct spi_device *spi) 3661 { 3662 int delay1, delay2; 3663 3664 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3665 if (delay1 < 0) 3666 return delay1; 3667 3668 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3669 if (delay2 < 0) 3670 return delay2; 3671 3672 if (delay1 < delay2) 3673 memcpy(&xfer->word_delay, &spi->word_delay, 3674 sizeof(xfer->word_delay)); 3675 3676 return 0; 3677 } 3678 3679 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3680 { 3681 struct spi_controller *ctlr = spi->controller; 3682 struct spi_transfer *xfer; 3683 int w_size; 3684 3685 if (list_empty(&message->transfers)) 3686 return -EINVAL; 3687 3688 /* 3689 * If an SPI controller does not support toggling the CS line on each 3690 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3691 * for the CS line, we can emulate the CS-per-word hardware function by 3692 * splitting transfers into one-word transfers and ensuring that 3693 * cs_change is set for each transfer. 3694 */ 3695 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3696 spi->cs_gpiod || 3697 gpio_is_valid(spi->cs_gpio))) { 3698 size_t maxsize; 3699 int ret; 3700 3701 maxsize = (spi->bits_per_word + 7) / 8; 3702 3703 /* spi_split_transfers_maxsize() requires message->spi */ 3704 message->spi = spi; 3705 3706 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3707 GFP_KERNEL); 3708 if (ret) 3709 return ret; 3710 3711 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3712 /* don't change cs_change on the last entry in the list */ 3713 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3714 break; 3715 xfer->cs_change = 1; 3716 } 3717 } 3718 3719 /* 3720 * Half-duplex links include original MicroWire, and ones with 3721 * only one data pin like SPI_3WIRE (switches direction) or where 3722 * either MOSI or MISO is missing. They can also be caused by 3723 * software limitations. 3724 */ 3725 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3726 (spi->mode & SPI_3WIRE)) { 3727 unsigned flags = ctlr->flags; 3728 3729 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3730 if (xfer->rx_buf && xfer->tx_buf) 3731 return -EINVAL; 3732 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3733 return -EINVAL; 3734 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3735 return -EINVAL; 3736 } 3737 } 3738 3739 /* 3740 * Set transfer bits_per_word and max speed as spi device default if 3741 * it is not set for this transfer. 3742 * Set transfer tx_nbits and rx_nbits as single transfer default 3743 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3744 * Ensure transfer word_delay is at least as long as that required by 3745 * device itself. 3746 */ 3747 message->frame_length = 0; 3748 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3749 xfer->effective_speed_hz = 0; 3750 message->frame_length += xfer->len; 3751 if (!xfer->bits_per_word) 3752 xfer->bits_per_word = spi->bits_per_word; 3753 3754 if (!xfer->speed_hz) 3755 xfer->speed_hz = spi->max_speed_hz; 3756 3757 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3758 xfer->speed_hz = ctlr->max_speed_hz; 3759 3760 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3761 return -EINVAL; 3762 3763 /* 3764 * SPI transfer length should be multiple of SPI word size 3765 * where SPI word size should be power-of-two multiple. 3766 */ 3767 if (xfer->bits_per_word <= 8) 3768 w_size = 1; 3769 else if (xfer->bits_per_word <= 16) 3770 w_size = 2; 3771 else 3772 w_size = 4; 3773 3774 /* No partial transfers accepted */ 3775 if (xfer->len % w_size) 3776 return -EINVAL; 3777 3778 if (xfer->speed_hz && ctlr->min_speed_hz && 3779 xfer->speed_hz < ctlr->min_speed_hz) 3780 return -EINVAL; 3781 3782 if (xfer->tx_buf && !xfer->tx_nbits) 3783 xfer->tx_nbits = SPI_NBITS_SINGLE; 3784 if (xfer->rx_buf && !xfer->rx_nbits) 3785 xfer->rx_nbits = SPI_NBITS_SINGLE; 3786 /* 3787 * Check transfer tx/rx_nbits: 3788 * 1. check the value matches one of single, dual and quad 3789 * 2. check tx/rx_nbits match the mode in spi_device 3790 */ 3791 if (xfer->tx_buf) { 3792 if (spi->mode & SPI_NO_TX) 3793 return -EINVAL; 3794 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3795 xfer->tx_nbits != SPI_NBITS_DUAL && 3796 xfer->tx_nbits != SPI_NBITS_QUAD) 3797 return -EINVAL; 3798 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3799 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3800 return -EINVAL; 3801 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3802 !(spi->mode & SPI_TX_QUAD)) 3803 return -EINVAL; 3804 } 3805 /* check transfer rx_nbits */ 3806 if (xfer->rx_buf) { 3807 if (spi->mode & SPI_NO_RX) 3808 return -EINVAL; 3809 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3810 xfer->rx_nbits != SPI_NBITS_DUAL && 3811 xfer->rx_nbits != SPI_NBITS_QUAD) 3812 return -EINVAL; 3813 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3814 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3815 return -EINVAL; 3816 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3817 !(spi->mode & SPI_RX_QUAD)) 3818 return -EINVAL; 3819 } 3820 3821 if (_spi_xfer_word_delay_update(xfer, spi)) 3822 return -EINVAL; 3823 } 3824 3825 message->status = -EINPROGRESS; 3826 3827 return 0; 3828 } 3829 3830 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3831 { 3832 struct spi_controller *ctlr = spi->controller; 3833 struct spi_transfer *xfer; 3834 3835 /* 3836 * Some controllers do not support doing regular SPI transfers. Return 3837 * ENOTSUPP when this is the case. 3838 */ 3839 if (!ctlr->transfer) 3840 return -ENOTSUPP; 3841 3842 message->spi = spi; 3843 3844 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3845 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3846 3847 trace_spi_message_submit(message); 3848 3849 if (!ctlr->ptp_sts_supported) { 3850 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3851 xfer->ptp_sts_word_pre = 0; 3852 ptp_read_system_prets(xfer->ptp_sts); 3853 } 3854 } 3855 3856 return ctlr->transfer(spi, message); 3857 } 3858 3859 /** 3860 * spi_async - asynchronous SPI transfer 3861 * @spi: device with which data will be exchanged 3862 * @message: describes the data transfers, including completion callback 3863 * Context: any (irqs may be blocked, etc) 3864 * 3865 * This call may be used in_irq and other contexts which can't sleep, 3866 * as well as from task contexts which can sleep. 3867 * 3868 * The completion callback is invoked in a context which can't sleep. 3869 * Before that invocation, the value of message->status is undefined. 3870 * When the callback is issued, message->status holds either zero (to 3871 * indicate complete success) or a negative error code. After that 3872 * callback returns, the driver which issued the transfer request may 3873 * deallocate the associated memory; it's no longer in use by any SPI 3874 * core or controller driver code. 3875 * 3876 * Note that although all messages to a spi_device are handled in 3877 * FIFO order, messages may go to different devices in other orders. 3878 * Some device might be higher priority, or have various "hard" access 3879 * time requirements, for example. 3880 * 3881 * On detection of any fault during the transfer, processing of 3882 * the entire message is aborted, and the device is deselected. 3883 * Until returning from the associated message completion callback, 3884 * no other spi_message queued to that device will be processed. 3885 * (This rule applies equally to all the synchronous transfer calls, 3886 * which are wrappers around this core asynchronous primitive.) 3887 * 3888 * Return: zero on success, else a negative error code. 3889 */ 3890 int spi_async(struct spi_device *spi, struct spi_message *message) 3891 { 3892 struct spi_controller *ctlr = spi->controller; 3893 int ret; 3894 unsigned long flags; 3895 3896 ret = __spi_validate(spi, message); 3897 if (ret != 0) 3898 return ret; 3899 3900 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3901 3902 if (ctlr->bus_lock_flag) 3903 ret = -EBUSY; 3904 else 3905 ret = __spi_async(spi, message); 3906 3907 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3908 3909 return ret; 3910 } 3911 EXPORT_SYMBOL_GPL(spi_async); 3912 3913 /** 3914 * spi_async_locked - version of spi_async with exclusive bus usage 3915 * @spi: device with which data will be exchanged 3916 * @message: describes the data transfers, including completion callback 3917 * Context: any (irqs may be blocked, etc) 3918 * 3919 * This call may be used in_irq and other contexts which can't sleep, 3920 * as well as from task contexts which can sleep. 3921 * 3922 * The completion callback is invoked in a context which can't sleep. 3923 * Before that invocation, the value of message->status is undefined. 3924 * When the callback is issued, message->status holds either zero (to 3925 * indicate complete success) or a negative error code. After that 3926 * callback returns, the driver which issued the transfer request may 3927 * deallocate the associated memory; it's no longer in use by any SPI 3928 * core or controller driver code. 3929 * 3930 * Note that although all messages to a spi_device are handled in 3931 * FIFO order, messages may go to different devices in other orders. 3932 * Some device might be higher priority, or have various "hard" access 3933 * time requirements, for example. 3934 * 3935 * On detection of any fault during the transfer, processing of 3936 * the entire message is aborted, and the device is deselected. 3937 * Until returning from the associated message completion callback, 3938 * no other spi_message queued to that device will be processed. 3939 * (This rule applies equally to all the synchronous transfer calls, 3940 * which are wrappers around this core asynchronous primitive.) 3941 * 3942 * Return: zero on success, else a negative error code. 3943 */ 3944 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3945 { 3946 struct spi_controller *ctlr = spi->controller; 3947 int ret; 3948 unsigned long flags; 3949 3950 ret = __spi_validate(spi, message); 3951 if (ret != 0) 3952 return ret; 3953 3954 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3955 3956 ret = __spi_async(spi, message); 3957 3958 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3959 3960 return ret; 3961 3962 } 3963 3964 /*-------------------------------------------------------------------------*/ 3965 3966 /* 3967 * Utility methods for SPI protocol drivers, layered on 3968 * top of the core. Some other utility methods are defined as 3969 * inline functions. 3970 */ 3971 3972 static void spi_complete(void *arg) 3973 { 3974 complete(arg); 3975 } 3976 3977 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3978 { 3979 DECLARE_COMPLETION_ONSTACK(done); 3980 int status; 3981 struct spi_controller *ctlr = spi->controller; 3982 unsigned long flags; 3983 3984 status = __spi_validate(spi, message); 3985 if (status != 0) 3986 return status; 3987 3988 message->complete = spi_complete; 3989 message->context = &done; 3990 message->spi = spi; 3991 3992 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3993 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3994 3995 /* 3996 * If we're not using the legacy transfer method then we will 3997 * try to transfer in the calling context so special case. 3998 * This code would be less tricky if we could remove the 3999 * support for driver implemented message queues. 4000 */ 4001 if (ctlr->transfer == spi_queued_transfer) { 4002 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4003 4004 trace_spi_message_submit(message); 4005 4006 status = __spi_queued_transfer(spi, message, false); 4007 4008 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4009 } else { 4010 status = spi_async_locked(spi, message); 4011 } 4012 4013 if (status == 0) { 4014 /* Push out the messages in the calling context if we can */ 4015 if (ctlr->transfer == spi_queued_transfer) { 4016 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 4017 spi_sync_immediate); 4018 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 4019 spi_sync_immediate); 4020 __spi_pump_messages(ctlr, false); 4021 } 4022 4023 wait_for_completion(&done); 4024 status = message->status; 4025 } 4026 message->context = NULL; 4027 return status; 4028 } 4029 4030 /** 4031 * spi_sync - blocking/synchronous SPI data transfers 4032 * @spi: device with which data will be exchanged 4033 * @message: describes the data transfers 4034 * Context: can sleep 4035 * 4036 * This call may only be used from a context that may sleep. The sleep 4037 * is non-interruptible, and has no timeout. Low-overhead controller 4038 * drivers may DMA directly into and out of the message buffers. 4039 * 4040 * Note that the SPI device's chip select is active during the message, 4041 * and then is normally disabled between messages. Drivers for some 4042 * frequently-used devices may want to minimize costs of selecting a chip, 4043 * by leaving it selected in anticipation that the next message will go 4044 * to the same chip. (That may increase power usage.) 4045 * 4046 * Also, the caller is guaranteeing that the memory associated with the 4047 * message will not be freed before this call returns. 4048 * 4049 * Return: zero on success, else a negative error code. 4050 */ 4051 int spi_sync(struct spi_device *spi, struct spi_message *message) 4052 { 4053 int ret; 4054 4055 mutex_lock(&spi->controller->bus_lock_mutex); 4056 ret = __spi_sync(spi, message); 4057 mutex_unlock(&spi->controller->bus_lock_mutex); 4058 4059 return ret; 4060 } 4061 EXPORT_SYMBOL_GPL(spi_sync); 4062 4063 /** 4064 * spi_sync_locked - version of spi_sync with exclusive bus usage 4065 * @spi: device with which data will be exchanged 4066 * @message: describes the data transfers 4067 * Context: can sleep 4068 * 4069 * This call may only be used from a context that may sleep. The sleep 4070 * is non-interruptible, and has no timeout. Low-overhead controller 4071 * drivers may DMA directly into and out of the message buffers. 4072 * 4073 * This call should be used by drivers that require exclusive access to the 4074 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4075 * be released by a spi_bus_unlock call when the exclusive access is over. 4076 * 4077 * Return: zero on success, else a negative error code. 4078 */ 4079 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4080 { 4081 return __spi_sync(spi, message); 4082 } 4083 EXPORT_SYMBOL_GPL(spi_sync_locked); 4084 4085 /** 4086 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4087 * @ctlr: SPI bus master that should be locked for exclusive bus access 4088 * Context: can sleep 4089 * 4090 * This call may only be used from a context that may sleep. The sleep 4091 * is non-interruptible, and has no timeout. 4092 * 4093 * This call should be used by drivers that require exclusive access to the 4094 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4095 * exclusive access is over. Data transfer must be done by spi_sync_locked 4096 * and spi_async_locked calls when the SPI bus lock is held. 4097 * 4098 * Return: always zero. 4099 */ 4100 int spi_bus_lock(struct spi_controller *ctlr) 4101 { 4102 unsigned long flags; 4103 4104 mutex_lock(&ctlr->bus_lock_mutex); 4105 4106 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4107 ctlr->bus_lock_flag = 1; 4108 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4109 4110 /* mutex remains locked until spi_bus_unlock is called */ 4111 4112 return 0; 4113 } 4114 EXPORT_SYMBOL_GPL(spi_bus_lock); 4115 4116 /** 4117 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4118 * @ctlr: SPI bus master that was locked for exclusive bus access 4119 * Context: can sleep 4120 * 4121 * This call may only be used from a context that may sleep. The sleep 4122 * is non-interruptible, and has no timeout. 4123 * 4124 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4125 * call. 4126 * 4127 * Return: always zero. 4128 */ 4129 int spi_bus_unlock(struct spi_controller *ctlr) 4130 { 4131 ctlr->bus_lock_flag = 0; 4132 4133 mutex_unlock(&ctlr->bus_lock_mutex); 4134 4135 return 0; 4136 } 4137 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4138 4139 /* portable code must never pass more than 32 bytes */ 4140 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4141 4142 static u8 *buf; 4143 4144 /** 4145 * spi_write_then_read - SPI synchronous write followed by read 4146 * @spi: device with which data will be exchanged 4147 * @txbuf: data to be written (need not be dma-safe) 4148 * @n_tx: size of txbuf, in bytes 4149 * @rxbuf: buffer into which data will be read (need not be dma-safe) 4150 * @n_rx: size of rxbuf, in bytes 4151 * Context: can sleep 4152 * 4153 * This performs a half duplex MicroWire style transaction with the 4154 * device, sending txbuf and then reading rxbuf. The return value 4155 * is zero for success, else a negative errno status code. 4156 * This call may only be used from a context that may sleep. 4157 * 4158 * Parameters to this routine are always copied using a small buffer. 4159 * Performance-sensitive or bulk transfer code should instead use 4160 * spi_{async,sync}() calls with dma-safe buffers. 4161 * 4162 * Return: zero on success, else a negative error code. 4163 */ 4164 int spi_write_then_read(struct spi_device *spi, 4165 const void *txbuf, unsigned n_tx, 4166 void *rxbuf, unsigned n_rx) 4167 { 4168 static DEFINE_MUTEX(lock); 4169 4170 int status; 4171 struct spi_message message; 4172 struct spi_transfer x[2]; 4173 u8 *local_buf; 4174 4175 /* 4176 * Use preallocated DMA-safe buffer if we can. We can't avoid 4177 * copying here, (as a pure convenience thing), but we can 4178 * keep heap costs out of the hot path unless someone else is 4179 * using the pre-allocated buffer or the transfer is too large. 4180 */ 4181 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4182 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4183 GFP_KERNEL | GFP_DMA); 4184 if (!local_buf) 4185 return -ENOMEM; 4186 } else { 4187 local_buf = buf; 4188 } 4189 4190 spi_message_init(&message); 4191 memset(x, 0, sizeof(x)); 4192 if (n_tx) { 4193 x[0].len = n_tx; 4194 spi_message_add_tail(&x[0], &message); 4195 } 4196 if (n_rx) { 4197 x[1].len = n_rx; 4198 spi_message_add_tail(&x[1], &message); 4199 } 4200 4201 memcpy(local_buf, txbuf, n_tx); 4202 x[0].tx_buf = local_buf; 4203 x[1].rx_buf = local_buf + n_tx; 4204 4205 /* do the i/o */ 4206 status = spi_sync(spi, &message); 4207 if (status == 0) 4208 memcpy(rxbuf, x[1].rx_buf, n_rx); 4209 4210 if (x[0].tx_buf == buf) 4211 mutex_unlock(&lock); 4212 else 4213 kfree(local_buf); 4214 4215 return status; 4216 } 4217 EXPORT_SYMBOL_GPL(spi_write_then_read); 4218 4219 /*-------------------------------------------------------------------------*/ 4220 4221 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4222 /* must call put_device() when done with returned spi_device device */ 4223 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4224 { 4225 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4226 4227 return dev ? to_spi_device(dev) : NULL; 4228 } 4229 4230 /* the spi controllers are not using spi_bus, so we find it with another way */ 4231 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4232 { 4233 struct device *dev; 4234 4235 dev = class_find_device_by_of_node(&spi_master_class, node); 4236 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4237 dev = class_find_device_by_of_node(&spi_slave_class, node); 4238 if (!dev) 4239 return NULL; 4240 4241 /* reference got in class_find_device */ 4242 return container_of(dev, struct spi_controller, dev); 4243 } 4244 4245 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4246 void *arg) 4247 { 4248 struct of_reconfig_data *rd = arg; 4249 struct spi_controller *ctlr; 4250 struct spi_device *spi; 4251 4252 switch (of_reconfig_get_state_change(action, arg)) { 4253 case OF_RECONFIG_CHANGE_ADD: 4254 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4255 if (ctlr == NULL) 4256 return NOTIFY_OK; /* not for us */ 4257 4258 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4259 put_device(&ctlr->dev); 4260 return NOTIFY_OK; 4261 } 4262 4263 spi = of_register_spi_device(ctlr, rd->dn); 4264 put_device(&ctlr->dev); 4265 4266 if (IS_ERR(spi)) { 4267 pr_err("%s: failed to create for '%pOF'\n", 4268 __func__, rd->dn); 4269 of_node_clear_flag(rd->dn, OF_POPULATED); 4270 return notifier_from_errno(PTR_ERR(spi)); 4271 } 4272 break; 4273 4274 case OF_RECONFIG_CHANGE_REMOVE: 4275 /* already depopulated? */ 4276 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4277 return NOTIFY_OK; 4278 4279 /* find our device by node */ 4280 spi = of_find_spi_device_by_node(rd->dn); 4281 if (spi == NULL) 4282 return NOTIFY_OK; /* no? not meant for us */ 4283 4284 /* unregister takes one ref away */ 4285 spi_unregister_device(spi); 4286 4287 /* and put the reference of the find */ 4288 put_device(&spi->dev); 4289 break; 4290 } 4291 4292 return NOTIFY_OK; 4293 } 4294 4295 static struct notifier_block spi_of_notifier = { 4296 .notifier_call = of_spi_notify, 4297 }; 4298 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4299 extern struct notifier_block spi_of_notifier; 4300 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4301 4302 #if IS_ENABLED(CONFIG_ACPI) 4303 static int spi_acpi_controller_match(struct device *dev, const void *data) 4304 { 4305 return ACPI_COMPANION(dev->parent) == data; 4306 } 4307 4308 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4309 { 4310 struct device *dev; 4311 4312 dev = class_find_device(&spi_master_class, NULL, adev, 4313 spi_acpi_controller_match); 4314 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4315 dev = class_find_device(&spi_slave_class, NULL, adev, 4316 spi_acpi_controller_match); 4317 if (!dev) 4318 return NULL; 4319 4320 return container_of(dev, struct spi_controller, dev); 4321 } 4322 4323 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4324 { 4325 struct device *dev; 4326 4327 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4328 return to_spi_device(dev); 4329 } 4330 4331 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4332 void *arg) 4333 { 4334 struct acpi_device *adev = arg; 4335 struct spi_controller *ctlr; 4336 struct spi_device *spi; 4337 4338 switch (value) { 4339 case ACPI_RECONFIG_DEVICE_ADD: 4340 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4341 if (!ctlr) 4342 break; 4343 4344 acpi_register_spi_device(ctlr, adev); 4345 put_device(&ctlr->dev); 4346 break; 4347 case ACPI_RECONFIG_DEVICE_REMOVE: 4348 if (!acpi_device_enumerated(adev)) 4349 break; 4350 4351 spi = acpi_spi_find_device_by_adev(adev); 4352 if (!spi) 4353 break; 4354 4355 spi_unregister_device(spi); 4356 put_device(&spi->dev); 4357 break; 4358 } 4359 4360 return NOTIFY_OK; 4361 } 4362 4363 static struct notifier_block spi_acpi_notifier = { 4364 .notifier_call = acpi_spi_notify, 4365 }; 4366 #else 4367 extern struct notifier_block spi_acpi_notifier; 4368 #endif 4369 4370 static int __init spi_init(void) 4371 { 4372 int status; 4373 4374 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4375 if (!buf) { 4376 status = -ENOMEM; 4377 goto err0; 4378 } 4379 4380 status = bus_register(&spi_bus_type); 4381 if (status < 0) 4382 goto err1; 4383 4384 status = class_register(&spi_master_class); 4385 if (status < 0) 4386 goto err2; 4387 4388 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4389 status = class_register(&spi_slave_class); 4390 if (status < 0) 4391 goto err3; 4392 } 4393 4394 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4395 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4396 if (IS_ENABLED(CONFIG_ACPI)) 4397 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4398 4399 return 0; 4400 4401 err3: 4402 class_unregister(&spi_master_class); 4403 err2: 4404 bus_unregister(&spi_bus_type); 4405 err1: 4406 kfree(buf); 4407 buf = NULL; 4408 err0: 4409 return status; 4410 } 4411 4412 /* 4413 * A board_info is normally registered in arch_initcall(), 4414 * but even essential drivers wait till later. 4415 * 4416 * REVISIT only boardinfo really needs static linking. The rest (device and 4417 * driver registration) _could_ be dynamically linked (modular) ... Costs 4418 * include needing to have boardinfo data structures be much more public. 4419 */ 4420 postcore_initcall(spi_init); 4421