xref: /openbmc/linux/drivers/spi/spi.c (revision 9b799b78)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43 
44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi masters may cleanup for released devices */
49 	if (spi->master->cleanup)
50 		spi->master->cleanup(spi);
51 
52 	spi_master_put(spi->master);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 static struct attribute *spi_dev_attrs[] = {
71 	&dev_attr_modalias.attr,
72 	NULL,
73 };
74 ATTRIBUTE_GROUPS(spi_dev);
75 
76 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
77  * and the sysfs version makes coldplug work too.
78  */
79 
80 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
81 						const struct spi_device *sdev)
82 {
83 	while (id->name[0]) {
84 		if (!strcmp(sdev->modalias, id->name))
85 			return id;
86 		id++;
87 	}
88 	return NULL;
89 }
90 
91 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
92 {
93 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
94 
95 	return spi_match_id(sdrv->id_table, sdev);
96 }
97 EXPORT_SYMBOL_GPL(spi_get_device_id);
98 
99 static int spi_match_device(struct device *dev, struct device_driver *drv)
100 {
101 	const struct spi_device	*spi = to_spi_device(dev);
102 	const struct spi_driver	*sdrv = to_spi_driver(drv);
103 
104 	/* Attempt an OF style match */
105 	if (of_driver_match_device(dev, drv))
106 		return 1;
107 
108 	/* Then try ACPI */
109 	if (acpi_driver_match_device(dev, drv))
110 		return 1;
111 
112 	if (sdrv->id_table)
113 		return !!spi_match_id(sdrv->id_table, spi);
114 
115 	return strcmp(spi->modalias, drv->name) == 0;
116 }
117 
118 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
119 {
120 	const struct spi_device		*spi = to_spi_device(dev);
121 	int rc;
122 
123 	rc = acpi_device_uevent_modalias(dev, env);
124 	if (rc != -ENODEV)
125 		return rc;
126 
127 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
128 	return 0;
129 }
130 
131 struct bus_type spi_bus_type = {
132 	.name		= "spi",
133 	.dev_groups	= spi_dev_groups,
134 	.match		= spi_match_device,
135 	.uevent		= spi_uevent,
136 };
137 EXPORT_SYMBOL_GPL(spi_bus_type);
138 
139 
140 static int spi_drv_probe(struct device *dev)
141 {
142 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
143 	int ret;
144 
145 	ret = of_clk_set_defaults(dev->of_node, false);
146 	if (ret)
147 		return ret;
148 
149 	ret = dev_pm_domain_attach(dev, true);
150 	if (ret != -EPROBE_DEFER) {
151 		ret = sdrv->probe(to_spi_device(dev));
152 		if (ret)
153 			dev_pm_domain_detach(dev, true);
154 	}
155 
156 	return ret;
157 }
158 
159 static int spi_drv_remove(struct device *dev)
160 {
161 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
162 	int ret;
163 
164 	ret = sdrv->remove(to_spi_device(dev));
165 	dev_pm_domain_detach(dev, true);
166 
167 	return ret;
168 }
169 
170 static void spi_drv_shutdown(struct device *dev)
171 {
172 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
173 
174 	sdrv->shutdown(to_spi_device(dev));
175 }
176 
177 /**
178  * spi_register_driver - register a SPI driver
179  * @sdrv: the driver to register
180  * Context: can sleep
181  */
182 int spi_register_driver(struct spi_driver *sdrv)
183 {
184 	sdrv->driver.bus = &spi_bus_type;
185 	if (sdrv->probe)
186 		sdrv->driver.probe = spi_drv_probe;
187 	if (sdrv->remove)
188 		sdrv->driver.remove = spi_drv_remove;
189 	if (sdrv->shutdown)
190 		sdrv->driver.shutdown = spi_drv_shutdown;
191 	return driver_register(&sdrv->driver);
192 }
193 EXPORT_SYMBOL_GPL(spi_register_driver);
194 
195 /*-------------------------------------------------------------------------*/
196 
197 /* SPI devices should normally not be created by SPI device drivers; that
198  * would make them board-specific.  Similarly with SPI master drivers.
199  * Device registration normally goes into like arch/.../mach.../board-YYY.c
200  * with other readonly (flashable) information about mainboard devices.
201  */
202 
203 struct boardinfo {
204 	struct list_head	list;
205 	struct spi_board_info	board_info;
206 };
207 
208 static LIST_HEAD(board_list);
209 static LIST_HEAD(spi_master_list);
210 
211 /*
212  * Used to protect add/del opertion for board_info list and
213  * spi_master list, and their matching process
214  */
215 static DEFINE_MUTEX(board_lock);
216 
217 /**
218  * spi_alloc_device - Allocate a new SPI device
219  * @master: Controller to which device is connected
220  * Context: can sleep
221  *
222  * Allows a driver to allocate and initialize a spi_device without
223  * registering it immediately.  This allows a driver to directly
224  * fill the spi_device with device parameters before calling
225  * spi_add_device() on it.
226  *
227  * Caller is responsible to call spi_add_device() on the returned
228  * spi_device structure to add it to the SPI master.  If the caller
229  * needs to discard the spi_device without adding it, then it should
230  * call spi_dev_put() on it.
231  *
232  * Returns a pointer to the new device, or NULL.
233  */
234 struct spi_device *spi_alloc_device(struct spi_master *master)
235 {
236 	struct spi_device	*spi;
237 
238 	if (!spi_master_get(master))
239 		return NULL;
240 
241 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
242 	if (!spi) {
243 		spi_master_put(master);
244 		return NULL;
245 	}
246 
247 	spi->master = master;
248 	spi->dev.parent = &master->dev;
249 	spi->dev.bus = &spi_bus_type;
250 	spi->dev.release = spidev_release;
251 	spi->cs_gpio = -ENOENT;
252 	device_initialize(&spi->dev);
253 	return spi;
254 }
255 EXPORT_SYMBOL_GPL(spi_alloc_device);
256 
257 static void spi_dev_set_name(struct spi_device *spi)
258 {
259 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
260 
261 	if (adev) {
262 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
263 		return;
264 	}
265 
266 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
267 		     spi->chip_select);
268 }
269 
270 static int spi_dev_check(struct device *dev, void *data)
271 {
272 	struct spi_device *spi = to_spi_device(dev);
273 	struct spi_device *new_spi = data;
274 
275 	if (spi->master == new_spi->master &&
276 	    spi->chip_select == new_spi->chip_select)
277 		return -EBUSY;
278 	return 0;
279 }
280 
281 /**
282  * spi_add_device - Add spi_device allocated with spi_alloc_device
283  * @spi: spi_device to register
284  *
285  * Companion function to spi_alloc_device.  Devices allocated with
286  * spi_alloc_device can be added onto the spi bus with this function.
287  *
288  * Returns 0 on success; negative errno on failure
289  */
290 int spi_add_device(struct spi_device *spi)
291 {
292 	static DEFINE_MUTEX(spi_add_lock);
293 	struct spi_master *master = spi->master;
294 	struct device *dev = master->dev.parent;
295 	int status;
296 
297 	/* Chipselects are numbered 0..max; validate. */
298 	if (spi->chip_select >= master->num_chipselect) {
299 		dev_err(dev, "cs%d >= max %d\n",
300 			spi->chip_select,
301 			master->num_chipselect);
302 		return -EINVAL;
303 	}
304 
305 	/* Set the bus ID string */
306 	spi_dev_set_name(spi);
307 
308 	/* We need to make sure there's no other device with this
309 	 * chipselect **BEFORE** we call setup(), else we'll trash
310 	 * its configuration.  Lock against concurrent add() calls.
311 	 */
312 	mutex_lock(&spi_add_lock);
313 
314 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
315 	if (status) {
316 		dev_err(dev, "chipselect %d already in use\n",
317 				spi->chip_select);
318 		goto done;
319 	}
320 
321 	if (master->cs_gpios)
322 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
323 
324 	/* Drivers may modify this initial i/o setup, but will
325 	 * normally rely on the device being setup.  Devices
326 	 * using SPI_CS_HIGH can't coexist well otherwise...
327 	 */
328 	status = spi_setup(spi);
329 	if (status < 0) {
330 		dev_err(dev, "can't setup %s, status %d\n",
331 				dev_name(&spi->dev), status);
332 		goto done;
333 	}
334 
335 	/* Device may be bound to an active driver when this returns */
336 	status = device_add(&spi->dev);
337 	if (status < 0)
338 		dev_err(dev, "can't add %s, status %d\n",
339 				dev_name(&spi->dev), status);
340 	else
341 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
342 
343 done:
344 	mutex_unlock(&spi_add_lock);
345 	return status;
346 }
347 EXPORT_SYMBOL_GPL(spi_add_device);
348 
349 /**
350  * spi_new_device - instantiate one new SPI device
351  * @master: Controller to which device is connected
352  * @chip: Describes the SPI device
353  * Context: can sleep
354  *
355  * On typical mainboards, this is purely internal; and it's not needed
356  * after board init creates the hard-wired devices.  Some development
357  * platforms may not be able to use spi_register_board_info though, and
358  * this is exported so that for example a USB or parport based adapter
359  * driver could add devices (which it would learn about out-of-band).
360  *
361  * Returns the new device, or NULL.
362  */
363 struct spi_device *spi_new_device(struct spi_master *master,
364 				  struct spi_board_info *chip)
365 {
366 	struct spi_device	*proxy;
367 	int			status;
368 
369 	/* NOTE:  caller did any chip->bus_num checks necessary.
370 	 *
371 	 * Also, unless we change the return value convention to use
372 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
373 	 * suggests syslogged diagnostics are best here (ugh).
374 	 */
375 
376 	proxy = spi_alloc_device(master);
377 	if (!proxy)
378 		return NULL;
379 
380 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
381 
382 	proxy->chip_select = chip->chip_select;
383 	proxy->max_speed_hz = chip->max_speed_hz;
384 	proxy->mode = chip->mode;
385 	proxy->irq = chip->irq;
386 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
387 	proxy->dev.platform_data = (void *) chip->platform_data;
388 	proxy->controller_data = chip->controller_data;
389 	proxy->controller_state = NULL;
390 
391 	status = spi_add_device(proxy);
392 	if (status < 0) {
393 		spi_dev_put(proxy);
394 		return NULL;
395 	}
396 
397 	return proxy;
398 }
399 EXPORT_SYMBOL_GPL(spi_new_device);
400 
401 static void spi_match_master_to_boardinfo(struct spi_master *master,
402 				struct spi_board_info *bi)
403 {
404 	struct spi_device *dev;
405 
406 	if (master->bus_num != bi->bus_num)
407 		return;
408 
409 	dev = spi_new_device(master, bi);
410 	if (!dev)
411 		dev_err(master->dev.parent, "can't create new device for %s\n",
412 			bi->modalias);
413 }
414 
415 /**
416  * spi_register_board_info - register SPI devices for a given board
417  * @info: array of chip descriptors
418  * @n: how many descriptors are provided
419  * Context: can sleep
420  *
421  * Board-specific early init code calls this (probably during arch_initcall)
422  * with segments of the SPI device table.  Any device nodes are created later,
423  * after the relevant parent SPI controller (bus_num) is defined.  We keep
424  * this table of devices forever, so that reloading a controller driver will
425  * not make Linux forget about these hard-wired devices.
426  *
427  * Other code can also call this, e.g. a particular add-on board might provide
428  * SPI devices through its expansion connector, so code initializing that board
429  * would naturally declare its SPI devices.
430  *
431  * The board info passed can safely be __initdata ... but be careful of
432  * any embedded pointers (platform_data, etc), they're copied as-is.
433  */
434 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
435 {
436 	struct boardinfo *bi;
437 	int i;
438 
439 	if (!n)
440 		return -EINVAL;
441 
442 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
443 	if (!bi)
444 		return -ENOMEM;
445 
446 	for (i = 0; i < n; i++, bi++, info++) {
447 		struct spi_master *master;
448 
449 		memcpy(&bi->board_info, info, sizeof(*info));
450 		mutex_lock(&board_lock);
451 		list_add_tail(&bi->list, &board_list);
452 		list_for_each_entry(master, &spi_master_list, list)
453 			spi_match_master_to_boardinfo(master, &bi->board_info);
454 		mutex_unlock(&board_lock);
455 	}
456 
457 	return 0;
458 }
459 
460 /*-------------------------------------------------------------------------*/
461 
462 static void spi_set_cs(struct spi_device *spi, bool enable)
463 {
464 	if (spi->mode & SPI_CS_HIGH)
465 		enable = !enable;
466 
467 	if (spi->cs_gpio >= 0)
468 		gpio_set_value(spi->cs_gpio, !enable);
469 	else if (spi->master->set_cs)
470 		spi->master->set_cs(spi, !enable);
471 }
472 
473 #ifdef CONFIG_HAS_DMA
474 static int spi_map_buf(struct spi_master *master, struct device *dev,
475 		       struct sg_table *sgt, void *buf, size_t len,
476 		       enum dma_data_direction dir)
477 {
478 	const bool vmalloced_buf = is_vmalloc_addr(buf);
479 	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
480 	const int sgs = DIV_ROUND_UP(len, desc_len);
481 	struct page *vm_page;
482 	void *sg_buf;
483 	size_t min;
484 	int i, ret;
485 
486 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
487 	if (ret != 0)
488 		return ret;
489 
490 	for (i = 0; i < sgs; i++) {
491 		min = min_t(size_t, len, desc_len);
492 
493 		if (vmalloced_buf) {
494 			vm_page = vmalloc_to_page(buf);
495 			if (!vm_page) {
496 				sg_free_table(sgt);
497 				return -ENOMEM;
498 			}
499 			sg_set_page(&sgt->sgl[i], vm_page,
500 				    min, offset_in_page(buf));
501 		} else {
502 			sg_buf = buf;
503 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
504 		}
505 
506 
507 		buf += min;
508 		len -= min;
509 	}
510 
511 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
512 	if (!ret)
513 		ret = -ENOMEM;
514 	if (ret < 0) {
515 		sg_free_table(sgt);
516 		return ret;
517 	}
518 
519 	sgt->nents = ret;
520 
521 	return 0;
522 }
523 
524 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
525 			  struct sg_table *sgt, enum dma_data_direction dir)
526 {
527 	if (sgt->orig_nents) {
528 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
529 		sg_free_table(sgt);
530 	}
531 }
532 
533 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
534 {
535 	struct device *tx_dev, *rx_dev;
536 	struct spi_transfer *xfer;
537 	int ret;
538 
539 	if (!master->can_dma)
540 		return 0;
541 
542 	tx_dev = master->dma_tx->device->dev;
543 	rx_dev = master->dma_rx->device->dev;
544 
545 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
546 		if (!master->can_dma(master, msg->spi, xfer))
547 			continue;
548 
549 		if (xfer->tx_buf != NULL) {
550 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
551 					  (void *)xfer->tx_buf, xfer->len,
552 					  DMA_TO_DEVICE);
553 			if (ret != 0)
554 				return ret;
555 		}
556 
557 		if (xfer->rx_buf != NULL) {
558 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
559 					  xfer->rx_buf, xfer->len,
560 					  DMA_FROM_DEVICE);
561 			if (ret != 0) {
562 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
563 					      DMA_TO_DEVICE);
564 				return ret;
565 			}
566 		}
567 	}
568 
569 	master->cur_msg_mapped = true;
570 
571 	return 0;
572 }
573 
574 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
575 {
576 	struct spi_transfer *xfer;
577 	struct device *tx_dev, *rx_dev;
578 
579 	if (!master->cur_msg_mapped || !master->can_dma)
580 		return 0;
581 
582 	tx_dev = master->dma_tx->device->dev;
583 	rx_dev = master->dma_rx->device->dev;
584 
585 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
586 		if (!master->can_dma(master, msg->spi, xfer))
587 			continue;
588 
589 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
590 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
591 	}
592 
593 	return 0;
594 }
595 #else /* !CONFIG_HAS_DMA */
596 static inline int __spi_map_msg(struct spi_master *master,
597 				struct spi_message *msg)
598 {
599 	return 0;
600 }
601 
602 static inline int spi_unmap_msg(struct spi_master *master,
603 				struct spi_message *msg)
604 {
605 	return 0;
606 }
607 #endif /* !CONFIG_HAS_DMA */
608 
609 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
610 {
611 	struct spi_transfer *xfer;
612 	void *tmp;
613 	unsigned int max_tx, max_rx;
614 
615 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
616 		max_tx = 0;
617 		max_rx = 0;
618 
619 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
620 			if ((master->flags & SPI_MASTER_MUST_TX) &&
621 			    !xfer->tx_buf)
622 				max_tx = max(xfer->len, max_tx);
623 			if ((master->flags & SPI_MASTER_MUST_RX) &&
624 			    !xfer->rx_buf)
625 				max_rx = max(xfer->len, max_rx);
626 		}
627 
628 		if (max_tx) {
629 			tmp = krealloc(master->dummy_tx, max_tx,
630 				       GFP_KERNEL | GFP_DMA);
631 			if (!tmp)
632 				return -ENOMEM;
633 			master->dummy_tx = tmp;
634 			memset(tmp, 0, max_tx);
635 		}
636 
637 		if (max_rx) {
638 			tmp = krealloc(master->dummy_rx, max_rx,
639 				       GFP_KERNEL | GFP_DMA);
640 			if (!tmp)
641 				return -ENOMEM;
642 			master->dummy_rx = tmp;
643 		}
644 
645 		if (max_tx || max_rx) {
646 			list_for_each_entry(xfer, &msg->transfers,
647 					    transfer_list) {
648 				if (!xfer->tx_buf)
649 					xfer->tx_buf = master->dummy_tx;
650 				if (!xfer->rx_buf)
651 					xfer->rx_buf = master->dummy_rx;
652 			}
653 		}
654 	}
655 
656 	return __spi_map_msg(master, msg);
657 }
658 
659 /*
660  * spi_transfer_one_message - Default implementation of transfer_one_message()
661  *
662  * This is a standard implementation of transfer_one_message() for
663  * drivers which impelment a transfer_one() operation.  It provides
664  * standard handling of delays and chip select management.
665  */
666 static int spi_transfer_one_message(struct spi_master *master,
667 				    struct spi_message *msg)
668 {
669 	struct spi_transfer *xfer;
670 	bool keep_cs = false;
671 	int ret = 0;
672 	unsigned long ms = 1;
673 
674 	spi_set_cs(msg->spi, true);
675 
676 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
677 		trace_spi_transfer_start(msg, xfer);
678 
679 		if (xfer->tx_buf || xfer->rx_buf) {
680 			reinit_completion(&master->xfer_completion);
681 
682 			ret = master->transfer_one(master, msg->spi, xfer);
683 			if (ret < 0) {
684 				dev_err(&msg->spi->dev,
685 					"SPI transfer failed: %d\n", ret);
686 				goto out;
687 			}
688 
689 			if (ret > 0) {
690 				ret = 0;
691 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
692 				ms += ms + 100; /* some tolerance */
693 
694 				ms = wait_for_completion_timeout(&master->xfer_completion,
695 								 msecs_to_jiffies(ms));
696 			}
697 
698 			if (ms == 0) {
699 				dev_err(&msg->spi->dev,
700 					"SPI transfer timed out\n");
701 				msg->status = -ETIMEDOUT;
702 			}
703 		} else {
704 			if (xfer->len)
705 				dev_err(&msg->spi->dev,
706 					"Bufferless transfer has length %u\n",
707 					xfer->len);
708 		}
709 
710 		trace_spi_transfer_stop(msg, xfer);
711 
712 		if (msg->status != -EINPROGRESS)
713 			goto out;
714 
715 		if (xfer->delay_usecs)
716 			udelay(xfer->delay_usecs);
717 
718 		if (xfer->cs_change) {
719 			if (list_is_last(&xfer->transfer_list,
720 					 &msg->transfers)) {
721 				keep_cs = true;
722 			} else {
723 				spi_set_cs(msg->spi, false);
724 				udelay(10);
725 				spi_set_cs(msg->spi, true);
726 			}
727 		}
728 
729 		msg->actual_length += xfer->len;
730 	}
731 
732 out:
733 	if (ret != 0 || !keep_cs)
734 		spi_set_cs(msg->spi, false);
735 
736 	if (msg->status == -EINPROGRESS)
737 		msg->status = ret;
738 
739 	if (msg->status && master->handle_err)
740 		master->handle_err(master, msg);
741 
742 	spi_finalize_current_message(master);
743 
744 	return ret;
745 }
746 
747 /**
748  * spi_finalize_current_transfer - report completion of a transfer
749  * @master: the master reporting completion
750  *
751  * Called by SPI drivers using the core transfer_one_message()
752  * implementation to notify it that the current interrupt driven
753  * transfer has finished and the next one may be scheduled.
754  */
755 void spi_finalize_current_transfer(struct spi_master *master)
756 {
757 	complete(&master->xfer_completion);
758 }
759 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
760 
761 /**
762  * __spi_pump_messages - function which processes spi message queue
763  * @master: master to process queue for
764  * @in_kthread: true if we are in the context of the message pump thread
765  *
766  * This function checks if there is any spi message in the queue that
767  * needs processing and if so call out to the driver to initialize hardware
768  * and transfer each message.
769  *
770  * Note that it is called both from the kthread itself and also from
771  * inside spi_sync(); the queue extraction handling at the top of the
772  * function should deal with this safely.
773  */
774 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
775 {
776 	unsigned long flags;
777 	bool was_busy = false;
778 	int ret;
779 
780 	/* Lock queue */
781 	spin_lock_irqsave(&master->queue_lock, flags);
782 
783 	/* Make sure we are not already running a message */
784 	if (master->cur_msg) {
785 		spin_unlock_irqrestore(&master->queue_lock, flags);
786 		return;
787 	}
788 
789 	/* If another context is idling the device then defer */
790 	if (master->idling) {
791 		queue_kthread_work(&master->kworker, &master->pump_messages);
792 		spin_unlock_irqrestore(&master->queue_lock, flags);
793 		return;
794 	}
795 
796 	/* Check if the queue is idle */
797 	if (list_empty(&master->queue) || !master->running) {
798 		if (!master->busy) {
799 			spin_unlock_irqrestore(&master->queue_lock, flags);
800 			return;
801 		}
802 
803 		/* Only do teardown in the thread */
804 		if (!in_kthread) {
805 			queue_kthread_work(&master->kworker,
806 					   &master->pump_messages);
807 			spin_unlock_irqrestore(&master->queue_lock, flags);
808 			return;
809 		}
810 
811 		master->busy = false;
812 		master->idling = true;
813 		spin_unlock_irqrestore(&master->queue_lock, flags);
814 
815 		kfree(master->dummy_rx);
816 		master->dummy_rx = NULL;
817 		kfree(master->dummy_tx);
818 		master->dummy_tx = NULL;
819 		if (master->unprepare_transfer_hardware &&
820 		    master->unprepare_transfer_hardware(master))
821 			dev_err(&master->dev,
822 				"failed to unprepare transfer hardware\n");
823 		if (master->auto_runtime_pm) {
824 			pm_runtime_mark_last_busy(master->dev.parent);
825 			pm_runtime_put_autosuspend(master->dev.parent);
826 		}
827 		trace_spi_master_idle(master);
828 
829 		spin_lock_irqsave(&master->queue_lock, flags);
830 		master->idling = false;
831 		spin_unlock_irqrestore(&master->queue_lock, flags);
832 		return;
833 	}
834 
835 	/* Extract head of queue */
836 	master->cur_msg =
837 		list_first_entry(&master->queue, struct spi_message, queue);
838 
839 	list_del_init(&master->cur_msg->queue);
840 	if (master->busy)
841 		was_busy = true;
842 	else
843 		master->busy = true;
844 	spin_unlock_irqrestore(&master->queue_lock, flags);
845 
846 	if (!was_busy && master->auto_runtime_pm) {
847 		ret = pm_runtime_get_sync(master->dev.parent);
848 		if (ret < 0) {
849 			dev_err(&master->dev, "Failed to power device: %d\n",
850 				ret);
851 			return;
852 		}
853 	}
854 
855 	if (!was_busy)
856 		trace_spi_master_busy(master);
857 
858 	if (!was_busy && master->prepare_transfer_hardware) {
859 		ret = master->prepare_transfer_hardware(master);
860 		if (ret) {
861 			dev_err(&master->dev,
862 				"failed to prepare transfer hardware\n");
863 
864 			if (master->auto_runtime_pm)
865 				pm_runtime_put(master->dev.parent);
866 			return;
867 		}
868 	}
869 
870 	trace_spi_message_start(master->cur_msg);
871 
872 	if (master->prepare_message) {
873 		ret = master->prepare_message(master, master->cur_msg);
874 		if (ret) {
875 			dev_err(&master->dev,
876 				"failed to prepare message: %d\n", ret);
877 			master->cur_msg->status = ret;
878 			spi_finalize_current_message(master);
879 			return;
880 		}
881 		master->cur_msg_prepared = true;
882 	}
883 
884 	ret = spi_map_msg(master, master->cur_msg);
885 	if (ret) {
886 		master->cur_msg->status = ret;
887 		spi_finalize_current_message(master);
888 		return;
889 	}
890 
891 	ret = master->transfer_one_message(master, master->cur_msg);
892 	if (ret) {
893 		dev_err(&master->dev,
894 			"failed to transfer one message from queue\n");
895 		return;
896 	}
897 }
898 
899 /**
900  * spi_pump_messages - kthread work function which processes spi message queue
901  * @work: pointer to kthread work struct contained in the master struct
902  */
903 static void spi_pump_messages(struct kthread_work *work)
904 {
905 	struct spi_master *master =
906 		container_of(work, struct spi_master, pump_messages);
907 
908 	__spi_pump_messages(master, true);
909 }
910 
911 static int spi_init_queue(struct spi_master *master)
912 {
913 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
914 
915 	master->running = false;
916 	master->busy = false;
917 
918 	init_kthread_worker(&master->kworker);
919 	master->kworker_task = kthread_run(kthread_worker_fn,
920 					   &master->kworker, "%s",
921 					   dev_name(&master->dev));
922 	if (IS_ERR(master->kworker_task)) {
923 		dev_err(&master->dev, "failed to create message pump task\n");
924 		return PTR_ERR(master->kworker_task);
925 	}
926 	init_kthread_work(&master->pump_messages, spi_pump_messages);
927 
928 	/*
929 	 * Master config will indicate if this controller should run the
930 	 * message pump with high (realtime) priority to reduce the transfer
931 	 * latency on the bus by minimising the delay between a transfer
932 	 * request and the scheduling of the message pump thread. Without this
933 	 * setting the message pump thread will remain at default priority.
934 	 */
935 	if (master->rt) {
936 		dev_info(&master->dev,
937 			"will run message pump with realtime priority\n");
938 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
939 	}
940 
941 	return 0;
942 }
943 
944 /**
945  * spi_get_next_queued_message() - called by driver to check for queued
946  * messages
947  * @master: the master to check for queued messages
948  *
949  * If there are more messages in the queue, the next message is returned from
950  * this call.
951  */
952 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
953 {
954 	struct spi_message *next;
955 	unsigned long flags;
956 
957 	/* get a pointer to the next message, if any */
958 	spin_lock_irqsave(&master->queue_lock, flags);
959 	next = list_first_entry_or_null(&master->queue, struct spi_message,
960 					queue);
961 	spin_unlock_irqrestore(&master->queue_lock, flags);
962 
963 	return next;
964 }
965 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
966 
967 /**
968  * spi_finalize_current_message() - the current message is complete
969  * @master: the master to return the message to
970  *
971  * Called by the driver to notify the core that the message in the front of the
972  * queue is complete and can be removed from the queue.
973  */
974 void spi_finalize_current_message(struct spi_master *master)
975 {
976 	struct spi_message *mesg;
977 	unsigned long flags;
978 	int ret;
979 
980 	spin_lock_irqsave(&master->queue_lock, flags);
981 	mesg = master->cur_msg;
982 	master->cur_msg = NULL;
983 
984 	queue_kthread_work(&master->kworker, &master->pump_messages);
985 	spin_unlock_irqrestore(&master->queue_lock, flags);
986 
987 	spi_unmap_msg(master, mesg);
988 
989 	if (master->cur_msg_prepared && master->unprepare_message) {
990 		ret = master->unprepare_message(master, mesg);
991 		if (ret) {
992 			dev_err(&master->dev,
993 				"failed to unprepare message: %d\n", ret);
994 		}
995 	}
996 
997 	trace_spi_message_done(mesg);
998 
999 	master->cur_msg_prepared = false;
1000 
1001 	mesg->state = NULL;
1002 	if (mesg->complete)
1003 		mesg->complete(mesg->context);
1004 }
1005 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1006 
1007 static int spi_start_queue(struct spi_master *master)
1008 {
1009 	unsigned long flags;
1010 
1011 	spin_lock_irqsave(&master->queue_lock, flags);
1012 
1013 	if (master->running || master->busy) {
1014 		spin_unlock_irqrestore(&master->queue_lock, flags);
1015 		return -EBUSY;
1016 	}
1017 
1018 	master->running = true;
1019 	master->cur_msg = NULL;
1020 	spin_unlock_irqrestore(&master->queue_lock, flags);
1021 
1022 	queue_kthread_work(&master->kworker, &master->pump_messages);
1023 
1024 	return 0;
1025 }
1026 
1027 static int spi_stop_queue(struct spi_master *master)
1028 {
1029 	unsigned long flags;
1030 	unsigned limit = 500;
1031 	int ret = 0;
1032 
1033 	spin_lock_irqsave(&master->queue_lock, flags);
1034 
1035 	/*
1036 	 * This is a bit lame, but is optimized for the common execution path.
1037 	 * A wait_queue on the master->busy could be used, but then the common
1038 	 * execution path (pump_messages) would be required to call wake_up or
1039 	 * friends on every SPI message. Do this instead.
1040 	 */
1041 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1042 		spin_unlock_irqrestore(&master->queue_lock, flags);
1043 		usleep_range(10000, 11000);
1044 		spin_lock_irqsave(&master->queue_lock, flags);
1045 	}
1046 
1047 	if (!list_empty(&master->queue) || master->busy)
1048 		ret = -EBUSY;
1049 	else
1050 		master->running = false;
1051 
1052 	spin_unlock_irqrestore(&master->queue_lock, flags);
1053 
1054 	if (ret) {
1055 		dev_warn(&master->dev,
1056 			 "could not stop message queue\n");
1057 		return ret;
1058 	}
1059 	return ret;
1060 }
1061 
1062 static int spi_destroy_queue(struct spi_master *master)
1063 {
1064 	int ret;
1065 
1066 	ret = spi_stop_queue(master);
1067 
1068 	/*
1069 	 * flush_kthread_worker will block until all work is done.
1070 	 * If the reason that stop_queue timed out is that the work will never
1071 	 * finish, then it does no good to call flush/stop thread, so
1072 	 * return anyway.
1073 	 */
1074 	if (ret) {
1075 		dev_err(&master->dev, "problem destroying queue\n");
1076 		return ret;
1077 	}
1078 
1079 	flush_kthread_worker(&master->kworker);
1080 	kthread_stop(master->kworker_task);
1081 
1082 	return 0;
1083 }
1084 
1085 static int __spi_queued_transfer(struct spi_device *spi,
1086 				 struct spi_message *msg,
1087 				 bool need_pump)
1088 {
1089 	struct spi_master *master = spi->master;
1090 	unsigned long flags;
1091 
1092 	spin_lock_irqsave(&master->queue_lock, flags);
1093 
1094 	if (!master->running) {
1095 		spin_unlock_irqrestore(&master->queue_lock, flags);
1096 		return -ESHUTDOWN;
1097 	}
1098 	msg->actual_length = 0;
1099 	msg->status = -EINPROGRESS;
1100 
1101 	list_add_tail(&msg->queue, &master->queue);
1102 	if (!master->busy && need_pump)
1103 		queue_kthread_work(&master->kworker, &master->pump_messages);
1104 
1105 	spin_unlock_irqrestore(&master->queue_lock, flags);
1106 	return 0;
1107 }
1108 
1109 /**
1110  * spi_queued_transfer - transfer function for queued transfers
1111  * @spi: spi device which is requesting transfer
1112  * @msg: spi message which is to handled is queued to driver queue
1113  */
1114 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1115 {
1116 	return __spi_queued_transfer(spi, msg, true);
1117 }
1118 
1119 static int spi_master_initialize_queue(struct spi_master *master)
1120 {
1121 	int ret;
1122 
1123 	master->transfer = spi_queued_transfer;
1124 	if (!master->transfer_one_message)
1125 		master->transfer_one_message = spi_transfer_one_message;
1126 
1127 	/* Initialize and start queue */
1128 	ret = spi_init_queue(master);
1129 	if (ret) {
1130 		dev_err(&master->dev, "problem initializing queue\n");
1131 		goto err_init_queue;
1132 	}
1133 	master->queued = true;
1134 	ret = spi_start_queue(master);
1135 	if (ret) {
1136 		dev_err(&master->dev, "problem starting queue\n");
1137 		goto err_start_queue;
1138 	}
1139 
1140 	return 0;
1141 
1142 err_start_queue:
1143 	spi_destroy_queue(master);
1144 err_init_queue:
1145 	return ret;
1146 }
1147 
1148 /*-------------------------------------------------------------------------*/
1149 
1150 #if defined(CONFIG_OF)
1151 static struct spi_device *
1152 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1153 {
1154 	struct spi_device *spi;
1155 	int rc;
1156 	u32 value;
1157 
1158 	/* Alloc an spi_device */
1159 	spi = spi_alloc_device(master);
1160 	if (!spi) {
1161 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1162 			nc->full_name);
1163 		rc = -ENOMEM;
1164 		goto err_out;
1165 	}
1166 
1167 	/* Select device driver */
1168 	rc = of_modalias_node(nc, spi->modalias,
1169 				sizeof(spi->modalias));
1170 	if (rc < 0) {
1171 		dev_err(&master->dev, "cannot find modalias for %s\n",
1172 			nc->full_name);
1173 		goto err_out;
1174 	}
1175 
1176 	/* Device address */
1177 	rc = of_property_read_u32(nc, "reg", &value);
1178 	if (rc) {
1179 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1180 			nc->full_name, rc);
1181 		goto err_out;
1182 	}
1183 	spi->chip_select = value;
1184 
1185 	/* Mode (clock phase/polarity/etc.) */
1186 	if (of_find_property(nc, "spi-cpha", NULL))
1187 		spi->mode |= SPI_CPHA;
1188 	if (of_find_property(nc, "spi-cpol", NULL))
1189 		spi->mode |= SPI_CPOL;
1190 	if (of_find_property(nc, "spi-cs-high", NULL))
1191 		spi->mode |= SPI_CS_HIGH;
1192 	if (of_find_property(nc, "spi-3wire", NULL))
1193 		spi->mode |= SPI_3WIRE;
1194 	if (of_find_property(nc, "spi-lsb-first", NULL))
1195 		spi->mode |= SPI_LSB_FIRST;
1196 
1197 	/* Device DUAL/QUAD mode */
1198 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1199 		switch (value) {
1200 		case 1:
1201 			break;
1202 		case 2:
1203 			spi->mode |= SPI_TX_DUAL;
1204 			break;
1205 		case 4:
1206 			spi->mode |= SPI_TX_QUAD;
1207 			break;
1208 		default:
1209 			dev_warn(&master->dev,
1210 				"spi-tx-bus-width %d not supported\n",
1211 				value);
1212 			break;
1213 		}
1214 	}
1215 
1216 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1217 		switch (value) {
1218 		case 1:
1219 			break;
1220 		case 2:
1221 			spi->mode |= SPI_RX_DUAL;
1222 			break;
1223 		case 4:
1224 			spi->mode |= SPI_RX_QUAD;
1225 			break;
1226 		default:
1227 			dev_warn(&master->dev,
1228 				"spi-rx-bus-width %d not supported\n",
1229 				value);
1230 			break;
1231 		}
1232 	}
1233 
1234 	/* Device speed */
1235 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1236 	if (rc) {
1237 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1238 			nc->full_name, rc);
1239 		goto err_out;
1240 	}
1241 	spi->max_speed_hz = value;
1242 
1243 	/* IRQ */
1244 	spi->irq = irq_of_parse_and_map(nc, 0);
1245 
1246 	/* Store a pointer to the node in the device structure */
1247 	of_node_get(nc);
1248 	spi->dev.of_node = nc;
1249 
1250 	/* Register the new device */
1251 	rc = spi_add_device(spi);
1252 	if (rc) {
1253 		dev_err(&master->dev, "spi_device register error %s\n",
1254 			nc->full_name);
1255 		goto err_out;
1256 	}
1257 
1258 	return spi;
1259 
1260 err_out:
1261 	spi_dev_put(spi);
1262 	return ERR_PTR(rc);
1263 }
1264 
1265 /**
1266  * of_register_spi_devices() - Register child devices onto the SPI bus
1267  * @master:	Pointer to spi_master device
1268  *
1269  * Registers an spi_device for each child node of master node which has a 'reg'
1270  * property.
1271  */
1272 static void of_register_spi_devices(struct spi_master *master)
1273 {
1274 	struct spi_device *spi;
1275 	struct device_node *nc;
1276 
1277 	if (!master->dev.of_node)
1278 		return;
1279 
1280 	for_each_available_child_of_node(master->dev.of_node, nc) {
1281 		spi = of_register_spi_device(master, nc);
1282 		if (IS_ERR(spi))
1283 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1284 				nc->full_name);
1285 	}
1286 }
1287 #else
1288 static void of_register_spi_devices(struct spi_master *master) { }
1289 #endif
1290 
1291 #ifdef CONFIG_ACPI
1292 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1293 {
1294 	struct spi_device *spi = data;
1295 
1296 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1297 		struct acpi_resource_spi_serialbus *sb;
1298 
1299 		sb = &ares->data.spi_serial_bus;
1300 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1301 			spi->chip_select = sb->device_selection;
1302 			spi->max_speed_hz = sb->connection_speed;
1303 
1304 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1305 				spi->mode |= SPI_CPHA;
1306 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1307 				spi->mode |= SPI_CPOL;
1308 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1309 				spi->mode |= SPI_CS_HIGH;
1310 		}
1311 	} else if (spi->irq < 0) {
1312 		struct resource r;
1313 
1314 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1315 			spi->irq = r.start;
1316 	}
1317 
1318 	/* Always tell the ACPI core to skip this resource */
1319 	return 1;
1320 }
1321 
1322 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1323 				       void *data, void **return_value)
1324 {
1325 	struct spi_master *master = data;
1326 	struct list_head resource_list;
1327 	struct acpi_device *adev;
1328 	struct spi_device *spi;
1329 	int ret;
1330 
1331 	if (acpi_bus_get_device(handle, &adev))
1332 		return AE_OK;
1333 	if (acpi_bus_get_status(adev) || !adev->status.present)
1334 		return AE_OK;
1335 
1336 	spi = spi_alloc_device(master);
1337 	if (!spi) {
1338 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1339 			dev_name(&adev->dev));
1340 		return AE_NO_MEMORY;
1341 	}
1342 
1343 	ACPI_COMPANION_SET(&spi->dev, adev);
1344 	spi->irq = -1;
1345 
1346 	INIT_LIST_HEAD(&resource_list);
1347 	ret = acpi_dev_get_resources(adev, &resource_list,
1348 				     acpi_spi_add_resource, spi);
1349 	acpi_dev_free_resource_list(&resource_list);
1350 
1351 	if (ret < 0 || !spi->max_speed_hz) {
1352 		spi_dev_put(spi);
1353 		return AE_OK;
1354 	}
1355 
1356 	adev->power.flags.ignore_parent = true;
1357 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1358 	if (spi_add_device(spi)) {
1359 		adev->power.flags.ignore_parent = false;
1360 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1361 			dev_name(&adev->dev));
1362 		spi_dev_put(spi);
1363 	}
1364 
1365 	return AE_OK;
1366 }
1367 
1368 static void acpi_register_spi_devices(struct spi_master *master)
1369 {
1370 	acpi_status status;
1371 	acpi_handle handle;
1372 
1373 	handle = ACPI_HANDLE(master->dev.parent);
1374 	if (!handle)
1375 		return;
1376 
1377 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1378 				     acpi_spi_add_device, NULL,
1379 				     master, NULL);
1380 	if (ACPI_FAILURE(status))
1381 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1382 }
1383 #else
1384 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1385 #endif /* CONFIG_ACPI */
1386 
1387 static void spi_master_release(struct device *dev)
1388 {
1389 	struct spi_master *master;
1390 
1391 	master = container_of(dev, struct spi_master, dev);
1392 	kfree(master);
1393 }
1394 
1395 static struct class spi_master_class = {
1396 	.name		= "spi_master",
1397 	.owner		= THIS_MODULE,
1398 	.dev_release	= spi_master_release,
1399 };
1400 
1401 
1402 
1403 /**
1404  * spi_alloc_master - allocate SPI master controller
1405  * @dev: the controller, possibly using the platform_bus
1406  * @size: how much zeroed driver-private data to allocate; the pointer to this
1407  *	memory is in the driver_data field of the returned device,
1408  *	accessible with spi_master_get_devdata().
1409  * Context: can sleep
1410  *
1411  * This call is used only by SPI master controller drivers, which are the
1412  * only ones directly touching chip registers.  It's how they allocate
1413  * an spi_master structure, prior to calling spi_register_master().
1414  *
1415  * This must be called from context that can sleep.  It returns the SPI
1416  * master structure on success, else NULL.
1417  *
1418  * The caller is responsible for assigning the bus number and initializing
1419  * the master's methods before calling spi_register_master(); and (after errors
1420  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1421  * leak.
1422  */
1423 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1424 {
1425 	struct spi_master	*master;
1426 
1427 	if (!dev)
1428 		return NULL;
1429 
1430 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1431 	if (!master)
1432 		return NULL;
1433 
1434 	device_initialize(&master->dev);
1435 	master->bus_num = -1;
1436 	master->num_chipselect = 1;
1437 	master->dev.class = &spi_master_class;
1438 	master->dev.parent = get_device(dev);
1439 	spi_master_set_devdata(master, &master[1]);
1440 
1441 	return master;
1442 }
1443 EXPORT_SYMBOL_GPL(spi_alloc_master);
1444 
1445 #ifdef CONFIG_OF
1446 static int of_spi_register_master(struct spi_master *master)
1447 {
1448 	int nb, i, *cs;
1449 	struct device_node *np = master->dev.of_node;
1450 
1451 	if (!np)
1452 		return 0;
1453 
1454 	nb = of_gpio_named_count(np, "cs-gpios");
1455 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1456 
1457 	/* Return error only for an incorrectly formed cs-gpios property */
1458 	if (nb == 0 || nb == -ENOENT)
1459 		return 0;
1460 	else if (nb < 0)
1461 		return nb;
1462 
1463 	cs = devm_kzalloc(&master->dev,
1464 			  sizeof(int) * master->num_chipselect,
1465 			  GFP_KERNEL);
1466 	master->cs_gpios = cs;
1467 
1468 	if (!master->cs_gpios)
1469 		return -ENOMEM;
1470 
1471 	for (i = 0; i < master->num_chipselect; i++)
1472 		cs[i] = -ENOENT;
1473 
1474 	for (i = 0; i < nb; i++)
1475 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1476 
1477 	return 0;
1478 }
1479 #else
1480 static int of_spi_register_master(struct spi_master *master)
1481 {
1482 	return 0;
1483 }
1484 #endif
1485 
1486 /**
1487  * spi_register_master - register SPI master controller
1488  * @master: initialized master, originally from spi_alloc_master()
1489  * Context: can sleep
1490  *
1491  * SPI master controllers connect to their drivers using some non-SPI bus,
1492  * such as the platform bus.  The final stage of probe() in that code
1493  * includes calling spi_register_master() to hook up to this SPI bus glue.
1494  *
1495  * SPI controllers use board specific (often SOC specific) bus numbers,
1496  * and board-specific addressing for SPI devices combines those numbers
1497  * with chip select numbers.  Since SPI does not directly support dynamic
1498  * device identification, boards need configuration tables telling which
1499  * chip is at which address.
1500  *
1501  * This must be called from context that can sleep.  It returns zero on
1502  * success, else a negative error code (dropping the master's refcount).
1503  * After a successful return, the caller is responsible for calling
1504  * spi_unregister_master().
1505  */
1506 int spi_register_master(struct spi_master *master)
1507 {
1508 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1509 	struct device		*dev = master->dev.parent;
1510 	struct boardinfo	*bi;
1511 	int			status = -ENODEV;
1512 	int			dynamic = 0;
1513 
1514 	if (!dev)
1515 		return -ENODEV;
1516 
1517 	status = of_spi_register_master(master);
1518 	if (status)
1519 		return status;
1520 
1521 	/* even if it's just one always-selected device, there must
1522 	 * be at least one chipselect
1523 	 */
1524 	if (master->num_chipselect == 0)
1525 		return -EINVAL;
1526 
1527 	if ((master->bus_num < 0) && master->dev.of_node)
1528 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1529 
1530 	/* convention:  dynamically assigned bus IDs count down from the max */
1531 	if (master->bus_num < 0) {
1532 		/* FIXME switch to an IDR based scheme, something like
1533 		 * I2C now uses, so we can't run out of "dynamic" IDs
1534 		 */
1535 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1536 		dynamic = 1;
1537 	}
1538 
1539 	INIT_LIST_HEAD(&master->queue);
1540 	spin_lock_init(&master->queue_lock);
1541 	spin_lock_init(&master->bus_lock_spinlock);
1542 	mutex_init(&master->bus_lock_mutex);
1543 	master->bus_lock_flag = 0;
1544 	init_completion(&master->xfer_completion);
1545 	if (!master->max_dma_len)
1546 		master->max_dma_len = INT_MAX;
1547 
1548 	/* register the device, then userspace will see it.
1549 	 * registration fails if the bus ID is in use.
1550 	 */
1551 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1552 	status = device_add(&master->dev);
1553 	if (status < 0)
1554 		goto done;
1555 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1556 			dynamic ? " (dynamic)" : "");
1557 
1558 	/* If we're using a queued driver, start the queue */
1559 	if (master->transfer)
1560 		dev_info(dev, "master is unqueued, this is deprecated\n");
1561 	else {
1562 		status = spi_master_initialize_queue(master);
1563 		if (status) {
1564 			device_del(&master->dev);
1565 			goto done;
1566 		}
1567 	}
1568 
1569 	mutex_lock(&board_lock);
1570 	list_add_tail(&master->list, &spi_master_list);
1571 	list_for_each_entry(bi, &board_list, list)
1572 		spi_match_master_to_boardinfo(master, &bi->board_info);
1573 	mutex_unlock(&board_lock);
1574 
1575 	/* Register devices from the device tree and ACPI */
1576 	of_register_spi_devices(master);
1577 	acpi_register_spi_devices(master);
1578 done:
1579 	return status;
1580 }
1581 EXPORT_SYMBOL_GPL(spi_register_master);
1582 
1583 static void devm_spi_unregister(struct device *dev, void *res)
1584 {
1585 	spi_unregister_master(*(struct spi_master **)res);
1586 }
1587 
1588 /**
1589  * dev_spi_register_master - register managed SPI master controller
1590  * @dev:    device managing SPI master
1591  * @master: initialized master, originally from spi_alloc_master()
1592  * Context: can sleep
1593  *
1594  * Register a SPI device as with spi_register_master() which will
1595  * automatically be unregister
1596  */
1597 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1598 {
1599 	struct spi_master **ptr;
1600 	int ret;
1601 
1602 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1603 	if (!ptr)
1604 		return -ENOMEM;
1605 
1606 	ret = spi_register_master(master);
1607 	if (!ret) {
1608 		*ptr = master;
1609 		devres_add(dev, ptr);
1610 	} else {
1611 		devres_free(ptr);
1612 	}
1613 
1614 	return ret;
1615 }
1616 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1617 
1618 static int __unregister(struct device *dev, void *null)
1619 {
1620 	spi_unregister_device(to_spi_device(dev));
1621 	return 0;
1622 }
1623 
1624 /**
1625  * spi_unregister_master - unregister SPI master controller
1626  * @master: the master being unregistered
1627  * Context: can sleep
1628  *
1629  * This call is used only by SPI master controller drivers, which are the
1630  * only ones directly touching chip registers.
1631  *
1632  * This must be called from context that can sleep.
1633  */
1634 void spi_unregister_master(struct spi_master *master)
1635 {
1636 	int dummy;
1637 
1638 	if (master->queued) {
1639 		if (spi_destroy_queue(master))
1640 			dev_err(&master->dev, "queue remove failed\n");
1641 	}
1642 
1643 	mutex_lock(&board_lock);
1644 	list_del(&master->list);
1645 	mutex_unlock(&board_lock);
1646 
1647 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1648 	device_unregister(&master->dev);
1649 }
1650 EXPORT_SYMBOL_GPL(spi_unregister_master);
1651 
1652 int spi_master_suspend(struct spi_master *master)
1653 {
1654 	int ret;
1655 
1656 	/* Basically no-ops for non-queued masters */
1657 	if (!master->queued)
1658 		return 0;
1659 
1660 	ret = spi_stop_queue(master);
1661 	if (ret)
1662 		dev_err(&master->dev, "queue stop failed\n");
1663 
1664 	return ret;
1665 }
1666 EXPORT_SYMBOL_GPL(spi_master_suspend);
1667 
1668 int spi_master_resume(struct spi_master *master)
1669 {
1670 	int ret;
1671 
1672 	if (!master->queued)
1673 		return 0;
1674 
1675 	ret = spi_start_queue(master);
1676 	if (ret)
1677 		dev_err(&master->dev, "queue restart failed\n");
1678 
1679 	return ret;
1680 }
1681 EXPORT_SYMBOL_GPL(spi_master_resume);
1682 
1683 static int __spi_master_match(struct device *dev, const void *data)
1684 {
1685 	struct spi_master *m;
1686 	const u16 *bus_num = data;
1687 
1688 	m = container_of(dev, struct spi_master, dev);
1689 	return m->bus_num == *bus_num;
1690 }
1691 
1692 /**
1693  * spi_busnum_to_master - look up master associated with bus_num
1694  * @bus_num: the master's bus number
1695  * Context: can sleep
1696  *
1697  * This call may be used with devices that are registered after
1698  * arch init time.  It returns a refcounted pointer to the relevant
1699  * spi_master (which the caller must release), or NULL if there is
1700  * no such master registered.
1701  */
1702 struct spi_master *spi_busnum_to_master(u16 bus_num)
1703 {
1704 	struct device		*dev;
1705 	struct spi_master	*master = NULL;
1706 
1707 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1708 				__spi_master_match);
1709 	if (dev)
1710 		master = container_of(dev, struct spi_master, dev);
1711 	/* reference got in class_find_device */
1712 	return master;
1713 }
1714 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1715 
1716 
1717 /*-------------------------------------------------------------------------*/
1718 
1719 /* Core methods for SPI master protocol drivers.  Some of the
1720  * other core methods are currently defined as inline functions.
1721  */
1722 
1723 /**
1724  * spi_setup - setup SPI mode and clock rate
1725  * @spi: the device whose settings are being modified
1726  * Context: can sleep, and no requests are queued to the device
1727  *
1728  * SPI protocol drivers may need to update the transfer mode if the
1729  * device doesn't work with its default.  They may likewise need
1730  * to update clock rates or word sizes from initial values.  This function
1731  * changes those settings, and must be called from a context that can sleep.
1732  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1733  * effect the next time the device is selected and data is transferred to
1734  * or from it.  When this function returns, the spi device is deselected.
1735  *
1736  * Note that this call will fail if the protocol driver specifies an option
1737  * that the underlying controller or its driver does not support.  For
1738  * example, not all hardware supports wire transfers using nine bit words,
1739  * LSB-first wire encoding, or active-high chipselects.
1740  */
1741 int spi_setup(struct spi_device *spi)
1742 {
1743 	unsigned	bad_bits, ugly_bits;
1744 	int		status = 0;
1745 
1746 	/* check mode to prevent that DUAL and QUAD set at the same time
1747 	 */
1748 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1749 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1750 		dev_err(&spi->dev,
1751 		"setup: can not select dual and quad at the same time\n");
1752 		return -EINVAL;
1753 	}
1754 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1755 	 */
1756 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1757 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1758 		return -EINVAL;
1759 	/* help drivers fail *cleanly* when they need options
1760 	 * that aren't supported with their current master
1761 	 */
1762 	bad_bits = spi->mode & ~spi->master->mode_bits;
1763 	ugly_bits = bad_bits &
1764 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1765 	if (ugly_bits) {
1766 		dev_warn(&spi->dev,
1767 			 "setup: ignoring unsupported mode bits %x\n",
1768 			 ugly_bits);
1769 		spi->mode &= ~ugly_bits;
1770 		bad_bits &= ~ugly_bits;
1771 	}
1772 	if (bad_bits) {
1773 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1774 			bad_bits);
1775 		return -EINVAL;
1776 	}
1777 
1778 	if (!spi->bits_per_word)
1779 		spi->bits_per_word = 8;
1780 
1781 	if (!spi->max_speed_hz)
1782 		spi->max_speed_hz = spi->master->max_speed_hz;
1783 
1784 	spi_set_cs(spi, false);
1785 
1786 	if (spi->master->setup)
1787 		status = spi->master->setup(spi);
1788 
1789 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1790 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1791 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1792 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1793 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1794 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1795 			spi->bits_per_word, spi->max_speed_hz,
1796 			status);
1797 
1798 	return status;
1799 }
1800 EXPORT_SYMBOL_GPL(spi_setup);
1801 
1802 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1803 {
1804 	struct spi_master *master = spi->master;
1805 	struct spi_transfer *xfer;
1806 	int w_size;
1807 
1808 	if (list_empty(&message->transfers))
1809 		return -EINVAL;
1810 
1811 	/* Half-duplex links include original MicroWire, and ones with
1812 	 * only one data pin like SPI_3WIRE (switches direction) or where
1813 	 * either MOSI or MISO is missing.  They can also be caused by
1814 	 * software limitations.
1815 	 */
1816 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1817 			|| (spi->mode & SPI_3WIRE)) {
1818 		unsigned flags = master->flags;
1819 
1820 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1821 			if (xfer->rx_buf && xfer->tx_buf)
1822 				return -EINVAL;
1823 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1824 				return -EINVAL;
1825 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1826 				return -EINVAL;
1827 		}
1828 	}
1829 
1830 	/**
1831 	 * Set transfer bits_per_word and max speed as spi device default if
1832 	 * it is not set for this transfer.
1833 	 * Set transfer tx_nbits and rx_nbits as single transfer default
1834 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1835 	 */
1836 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1837 		message->frame_length += xfer->len;
1838 		if (!xfer->bits_per_word)
1839 			xfer->bits_per_word = spi->bits_per_word;
1840 
1841 		if (!xfer->speed_hz)
1842 			xfer->speed_hz = spi->max_speed_hz;
1843 
1844 		if (master->max_speed_hz &&
1845 		    xfer->speed_hz > master->max_speed_hz)
1846 			xfer->speed_hz = master->max_speed_hz;
1847 
1848 		if (master->bits_per_word_mask) {
1849 			/* Only 32 bits fit in the mask */
1850 			if (xfer->bits_per_word > 32)
1851 				return -EINVAL;
1852 			if (!(master->bits_per_word_mask &
1853 					BIT(xfer->bits_per_word - 1)))
1854 				return -EINVAL;
1855 		}
1856 
1857 		/*
1858 		 * SPI transfer length should be multiple of SPI word size
1859 		 * where SPI word size should be power-of-two multiple
1860 		 */
1861 		if (xfer->bits_per_word <= 8)
1862 			w_size = 1;
1863 		else if (xfer->bits_per_word <= 16)
1864 			w_size = 2;
1865 		else
1866 			w_size = 4;
1867 
1868 		/* No partial transfers accepted */
1869 		if (xfer->len % w_size)
1870 			return -EINVAL;
1871 
1872 		if (xfer->speed_hz && master->min_speed_hz &&
1873 		    xfer->speed_hz < master->min_speed_hz)
1874 			return -EINVAL;
1875 
1876 		if (xfer->tx_buf && !xfer->tx_nbits)
1877 			xfer->tx_nbits = SPI_NBITS_SINGLE;
1878 		if (xfer->rx_buf && !xfer->rx_nbits)
1879 			xfer->rx_nbits = SPI_NBITS_SINGLE;
1880 		/* check transfer tx/rx_nbits:
1881 		 * 1. check the value matches one of single, dual and quad
1882 		 * 2. check tx/rx_nbits match the mode in spi_device
1883 		 */
1884 		if (xfer->tx_buf) {
1885 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1886 				xfer->tx_nbits != SPI_NBITS_DUAL &&
1887 				xfer->tx_nbits != SPI_NBITS_QUAD)
1888 				return -EINVAL;
1889 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1890 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1891 				return -EINVAL;
1892 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1893 				!(spi->mode & SPI_TX_QUAD))
1894 				return -EINVAL;
1895 		}
1896 		/* check transfer rx_nbits */
1897 		if (xfer->rx_buf) {
1898 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1899 				xfer->rx_nbits != SPI_NBITS_DUAL &&
1900 				xfer->rx_nbits != SPI_NBITS_QUAD)
1901 				return -EINVAL;
1902 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1903 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1904 				return -EINVAL;
1905 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1906 				!(spi->mode & SPI_RX_QUAD))
1907 				return -EINVAL;
1908 		}
1909 	}
1910 
1911 	message->status = -EINPROGRESS;
1912 
1913 	return 0;
1914 }
1915 
1916 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1917 {
1918 	struct spi_master *master = spi->master;
1919 
1920 	message->spi = spi;
1921 
1922 	trace_spi_message_submit(message);
1923 
1924 	return master->transfer(spi, message);
1925 }
1926 
1927 /**
1928  * spi_async - asynchronous SPI transfer
1929  * @spi: device with which data will be exchanged
1930  * @message: describes the data transfers, including completion callback
1931  * Context: any (irqs may be blocked, etc)
1932  *
1933  * This call may be used in_irq and other contexts which can't sleep,
1934  * as well as from task contexts which can sleep.
1935  *
1936  * The completion callback is invoked in a context which can't sleep.
1937  * Before that invocation, the value of message->status is undefined.
1938  * When the callback is issued, message->status holds either zero (to
1939  * indicate complete success) or a negative error code.  After that
1940  * callback returns, the driver which issued the transfer request may
1941  * deallocate the associated memory; it's no longer in use by any SPI
1942  * core or controller driver code.
1943  *
1944  * Note that although all messages to a spi_device are handled in
1945  * FIFO order, messages may go to different devices in other orders.
1946  * Some device might be higher priority, or have various "hard" access
1947  * time requirements, for example.
1948  *
1949  * On detection of any fault during the transfer, processing of
1950  * the entire message is aborted, and the device is deselected.
1951  * Until returning from the associated message completion callback,
1952  * no other spi_message queued to that device will be processed.
1953  * (This rule applies equally to all the synchronous transfer calls,
1954  * which are wrappers around this core asynchronous primitive.)
1955  */
1956 int spi_async(struct spi_device *spi, struct spi_message *message)
1957 {
1958 	struct spi_master *master = spi->master;
1959 	int ret;
1960 	unsigned long flags;
1961 
1962 	ret = __spi_validate(spi, message);
1963 	if (ret != 0)
1964 		return ret;
1965 
1966 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1967 
1968 	if (master->bus_lock_flag)
1969 		ret = -EBUSY;
1970 	else
1971 		ret = __spi_async(spi, message);
1972 
1973 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1974 
1975 	return ret;
1976 }
1977 EXPORT_SYMBOL_GPL(spi_async);
1978 
1979 /**
1980  * spi_async_locked - version of spi_async with exclusive bus usage
1981  * @spi: device with which data will be exchanged
1982  * @message: describes the data transfers, including completion callback
1983  * Context: any (irqs may be blocked, etc)
1984  *
1985  * This call may be used in_irq and other contexts which can't sleep,
1986  * as well as from task contexts which can sleep.
1987  *
1988  * The completion callback is invoked in a context which can't sleep.
1989  * Before that invocation, the value of message->status is undefined.
1990  * When the callback is issued, message->status holds either zero (to
1991  * indicate complete success) or a negative error code.  After that
1992  * callback returns, the driver which issued the transfer request may
1993  * deallocate the associated memory; it's no longer in use by any SPI
1994  * core or controller driver code.
1995  *
1996  * Note that although all messages to a spi_device are handled in
1997  * FIFO order, messages may go to different devices in other orders.
1998  * Some device might be higher priority, or have various "hard" access
1999  * time requirements, for example.
2000  *
2001  * On detection of any fault during the transfer, processing of
2002  * the entire message is aborted, and the device is deselected.
2003  * Until returning from the associated message completion callback,
2004  * no other spi_message queued to that device will be processed.
2005  * (This rule applies equally to all the synchronous transfer calls,
2006  * which are wrappers around this core asynchronous primitive.)
2007  */
2008 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2009 {
2010 	struct spi_master *master = spi->master;
2011 	int ret;
2012 	unsigned long flags;
2013 
2014 	ret = __spi_validate(spi, message);
2015 	if (ret != 0)
2016 		return ret;
2017 
2018 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2019 
2020 	ret = __spi_async(spi, message);
2021 
2022 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2023 
2024 	return ret;
2025 
2026 }
2027 EXPORT_SYMBOL_GPL(spi_async_locked);
2028 
2029 
2030 /*-------------------------------------------------------------------------*/
2031 
2032 /* Utility methods for SPI master protocol drivers, layered on
2033  * top of the core.  Some other utility methods are defined as
2034  * inline functions.
2035  */
2036 
2037 static void spi_complete(void *arg)
2038 {
2039 	complete(arg);
2040 }
2041 
2042 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2043 		      int bus_locked)
2044 {
2045 	DECLARE_COMPLETION_ONSTACK(done);
2046 	int status;
2047 	struct spi_master *master = spi->master;
2048 	unsigned long flags;
2049 
2050 	status = __spi_validate(spi, message);
2051 	if (status != 0)
2052 		return status;
2053 
2054 	message->complete = spi_complete;
2055 	message->context = &done;
2056 	message->spi = spi;
2057 
2058 	if (!bus_locked)
2059 		mutex_lock(&master->bus_lock_mutex);
2060 
2061 	/* If we're not using the legacy transfer method then we will
2062 	 * try to transfer in the calling context so special case.
2063 	 * This code would be less tricky if we could remove the
2064 	 * support for driver implemented message queues.
2065 	 */
2066 	if (master->transfer == spi_queued_transfer) {
2067 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2068 
2069 		trace_spi_message_submit(message);
2070 
2071 		status = __spi_queued_transfer(spi, message, false);
2072 
2073 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2074 	} else {
2075 		status = spi_async_locked(spi, message);
2076 	}
2077 
2078 	if (!bus_locked)
2079 		mutex_unlock(&master->bus_lock_mutex);
2080 
2081 	if (status == 0) {
2082 		/* Push out the messages in the calling context if we
2083 		 * can.
2084 		 */
2085 		if (master->transfer == spi_queued_transfer)
2086 			__spi_pump_messages(master, false);
2087 
2088 		wait_for_completion(&done);
2089 		status = message->status;
2090 	}
2091 	message->context = NULL;
2092 	return status;
2093 }
2094 
2095 /**
2096  * spi_sync - blocking/synchronous SPI data transfers
2097  * @spi: device with which data will be exchanged
2098  * @message: describes the data transfers
2099  * Context: can sleep
2100  *
2101  * This call may only be used from a context that may sleep.  The sleep
2102  * is non-interruptible, and has no timeout.  Low-overhead controller
2103  * drivers may DMA directly into and out of the message buffers.
2104  *
2105  * Note that the SPI device's chip select is active during the message,
2106  * and then is normally disabled between messages.  Drivers for some
2107  * frequently-used devices may want to minimize costs of selecting a chip,
2108  * by leaving it selected in anticipation that the next message will go
2109  * to the same chip.  (That may increase power usage.)
2110  *
2111  * Also, the caller is guaranteeing that the memory associated with the
2112  * message will not be freed before this call returns.
2113  *
2114  * It returns zero on success, else a negative error code.
2115  */
2116 int spi_sync(struct spi_device *spi, struct spi_message *message)
2117 {
2118 	return __spi_sync(spi, message, 0);
2119 }
2120 EXPORT_SYMBOL_GPL(spi_sync);
2121 
2122 /**
2123  * spi_sync_locked - version of spi_sync with exclusive bus usage
2124  * @spi: device with which data will be exchanged
2125  * @message: describes the data transfers
2126  * Context: can sleep
2127  *
2128  * This call may only be used from a context that may sleep.  The sleep
2129  * is non-interruptible, and has no timeout.  Low-overhead controller
2130  * drivers may DMA directly into and out of the message buffers.
2131  *
2132  * This call should be used by drivers that require exclusive access to the
2133  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2134  * be released by a spi_bus_unlock call when the exclusive access is over.
2135  *
2136  * It returns zero on success, else a negative error code.
2137  */
2138 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2139 {
2140 	return __spi_sync(spi, message, 1);
2141 }
2142 EXPORT_SYMBOL_GPL(spi_sync_locked);
2143 
2144 /**
2145  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2146  * @master: SPI bus master that should be locked for exclusive bus access
2147  * Context: can sleep
2148  *
2149  * This call may only be used from a context that may sleep.  The sleep
2150  * is non-interruptible, and has no timeout.
2151  *
2152  * This call should be used by drivers that require exclusive access to the
2153  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2154  * exclusive access is over. Data transfer must be done by spi_sync_locked
2155  * and spi_async_locked calls when the SPI bus lock is held.
2156  *
2157  * It returns zero on success, else a negative error code.
2158  */
2159 int spi_bus_lock(struct spi_master *master)
2160 {
2161 	unsigned long flags;
2162 
2163 	mutex_lock(&master->bus_lock_mutex);
2164 
2165 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2166 	master->bus_lock_flag = 1;
2167 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2168 
2169 	/* mutex remains locked until spi_bus_unlock is called */
2170 
2171 	return 0;
2172 }
2173 EXPORT_SYMBOL_GPL(spi_bus_lock);
2174 
2175 /**
2176  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2177  * @master: SPI bus master that was locked for exclusive bus access
2178  * Context: can sleep
2179  *
2180  * This call may only be used from a context that may sleep.  The sleep
2181  * is non-interruptible, and has no timeout.
2182  *
2183  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2184  * call.
2185  *
2186  * It returns zero on success, else a negative error code.
2187  */
2188 int spi_bus_unlock(struct spi_master *master)
2189 {
2190 	master->bus_lock_flag = 0;
2191 
2192 	mutex_unlock(&master->bus_lock_mutex);
2193 
2194 	return 0;
2195 }
2196 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2197 
2198 /* portable code must never pass more than 32 bytes */
2199 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2200 
2201 static u8	*buf;
2202 
2203 /**
2204  * spi_write_then_read - SPI synchronous write followed by read
2205  * @spi: device with which data will be exchanged
2206  * @txbuf: data to be written (need not be dma-safe)
2207  * @n_tx: size of txbuf, in bytes
2208  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2209  * @n_rx: size of rxbuf, in bytes
2210  * Context: can sleep
2211  *
2212  * This performs a half duplex MicroWire style transaction with the
2213  * device, sending txbuf and then reading rxbuf.  The return value
2214  * is zero for success, else a negative errno status code.
2215  * This call may only be used from a context that may sleep.
2216  *
2217  * Parameters to this routine are always copied using a small buffer;
2218  * portable code should never use this for more than 32 bytes.
2219  * Performance-sensitive or bulk transfer code should instead use
2220  * spi_{async,sync}() calls with dma-safe buffers.
2221  */
2222 int spi_write_then_read(struct spi_device *spi,
2223 		const void *txbuf, unsigned n_tx,
2224 		void *rxbuf, unsigned n_rx)
2225 {
2226 	static DEFINE_MUTEX(lock);
2227 
2228 	int			status;
2229 	struct spi_message	message;
2230 	struct spi_transfer	x[2];
2231 	u8			*local_buf;
2232 
2233 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2234 	 * copying here, (as a pure convenience thing), but we can
2235 	 * keep heap costs out of the hot path unless someone else is
2236 	 * using the pre-allocated buffer or the transfer is too large.
2237 	 */
2238 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2239 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2240 				    GFP_KERNEL | GFP_DMA);
2241 		if (!local_buf)
2242 			return -ENOMEM;
2243 	} else {
2244 		local_buf = buf;
2245 	}
2246 
2247 	spi_message_init(&message);
2248 	memset(x, 0, sizeof(x));
2249 	if (n_tx) {
2250 		x[0].len = n_tx;
2251 		spi_message_add_tail(&x[0], &message);
2252 	}
2253 	if (n_rx) {
2254 		x[1].len = n_rx;
2255 		spi_message_add_tail(&x[1], &message);
2256 	}
2257 
2258 	memcpy(local_buf, txbuf, n_tx);
2259 	x[0].tx_buf = local_buf;
2260 	x[1].rx_buf = local_buf + n_tx;
2261 
2262 	/* do the i/o */
2263 	status = spi_sync(spi, &message);
2264 	if (status == 0)
2265 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2266 
2267 	if (x[0].tx_buf == buf)
2268 		mutex_unlock(&lock);
2269 	else
2270 		kfree(local_buf);
2271 
2272 	return status;
2273 }
2274 EXPORT_SYMBOL_GPL(spi_write_then_read);
2275 
2276 /*-------------------------------------------------------------------------*/
2277 
2278 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2279 static int __spi_of_device_match(struct device *dev, void *data)
2280 {
2281 	return dev->of_node == data;
2282 }
2283 
2284 /* must call put_device() when done with returned spi_device device */
2285 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2286 {
2287 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2288 						__spi_of_device_match);
2289 	return dev ? to_spi_device(dev) : NULL;
2290 }
2291 
2292 static int __spi_of_master_match(struct device *dev, const void *data)
2293 {
2294 	return dev->of_node == data;
2295 }
2296 
2297 /* the spi masters are not using spi_bus, so we find it with another way */
2298 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2299 {
2300 	struct device *dev;
2301 
2302 	dev = class_find_device(&spi_master_class, NULL, node,
2303 				__spi_of_master_match);
2304 	if (!dev)
2305 		return NULL;
2306 
2307 	/* reference got in class_find_device */
2308 	return container_of(dev, struct spi_master, dev);
2309 }
2310 
2311 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2312 			 void *arg)
2313 {
2314 	struct of_reconfig_data *rd = arg;
2315 	struct spi_master *master;
2316 	struct spi_device *spi;
2317 
2318 	switch (of_reconfig_get_state_change(action, arg)) {
2319 	case OF_RECONFIG_CHANGE_ADD:
2320 		master = of_find_spi_master_by_node(rd->dn->parent);
2321 		if (master == NULL)
2322 			return NOTIFY_OK;	/* not for us */
2323 
2324 		spi = of_register_spi_device(master, rd->dn);
2325 		put_device(&master->dev);
2326 
2327 		if (IS_ERR(spi)) {
2328 			pr_err("%s: failed to create for '%s'\n",
2329 					__func__, rd->dn->full_name);
2330 			return notifier_from_errno(PTR_ERR(spi));
2331 		}
2332 		break;
2333 
2334 	case OF_RECONFIG_CHANGE_REMOVE:
2335 		/* find our device by node */
2336 		spi = of_find_spi_device_by_node(rd->dn);
2337 		if (spi == NULL)
2338 			return NOTIFY_OK;	/* no? not meant for us */
2339 
2340 		/* unregister takes one ref away */
2341 		spi_unregister_device(spi);
2342 
2343 		/* and put the reference of the find */
2344 		put_device(&spi->dev);
2345 		break;
2346 	}
2347 
2348 	return NOTIFY_OK;
2349 }
2350 
2351 static struct notifier_block spi_of_notifier = {
2352 	.notifier_call = of_spi_notify,
2353 };
2354 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2355 extern struct notifier_block spi_of_notifier;
2356 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2357 
2358 static int __init spi_init(void)
2359 {
2360 	int	status;
2361 
2362 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2363 	if (!buf) {
2364 		status = -ENOMEM;
2365 		goto err0;
2366 	}
2367 
2368 	status = bus_register(&spi_bus_type);
2369 	if (status < 0)
2370 		goto err1;
2371 
2372 	status = class_register(&spi_master_class);
2373 	if (status < 0)
2374 		goto err2;
2375 
2376 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2377 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2378 
2379 	return 0;
2380 
2381 err2:
2382 	bus_unregister(&spi_bus_type);
2383 err1:
2384 	kfree(buf);
2385 	buf = NULL;
2386 err0:
2387 	return status;
2388 }
2389 
2390 /* board_info is normally registered in arch_initcall(),
2391  * but even essential drivers wait till later
2392  *
2393  * REVISIT only boardinfo really needs static linking. the rest (device and
2394  * driver registration) _could_ be dynamically linked (modular) ... costs
2395  * include needing to have boardinfo data structures be much more public.
2396  */
2397 postcore_initcall(spi_init);
2398 
2399