xref: /openbmc/linux/drivers/spi/spi.c (revision 9aa2cba7a275b2c0b10c95ea60aced015a5535e1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 				   char *buf, size_t offset)
122 {
123 	u64 val = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i) {
127 		const struct spi_statistics *pcpu_stats;
128 		u64_stats_t *field;
129 		unsigned int start;
130 		u64 inc;
131 
132 		pcpu_stats = per_cpu_ptr(stat, i);
133 		field = (void *)pcpu_stats + offset;
134 		do {
135 			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 			inc = u64_stats_read(field);
137 		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 		val += inc;
139 	}
140 	return sysfs_emit(buf, "%llu\n", val);
141 }
142 
143 #define SPI_STATISTICS_ATTRS(field, file)				\
144 static ssize_t spi_controller_##field##_show(struct device *dev,	\
145 					     struct device_attribute *attr, \
146 					     char *buf)			\
147 {									\
148 	struct spi_controller *ctlr = container_of(dev,			\
149 					 struct spi_controller, dev);	\
150 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }									\
152 static struct device_attribute dev_attr_spi_controller_##field = {	\
153 	.attr = { .name = file, .mode = 0444 },				\
154 	.show = spi_controller_##field##_show,				\
155 };									\
156 static ssize_t spi_device_##field##_show(struct device *dev,		\
157 					 struct device_attribute *attr,	\
158 					char *buf)			\
159 {									\
160 	struct spi_device *spi = to_spi_device(dev);			\
161 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }									\
163 static struct device_attribute dev_attr_spi_device_##field = {		\
164 	.attr = { .name = file, .mode = 0444 },				\
165 	.show = spi_device_##field##_show,				\
166 }
167 
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 					    char *buf)			\
171 {									\
172 	return spi_emit_pcpu_stats(stat, buf,				\
173 			offsetof(struct spi_statistics, field));	\
174 }									\
175 SPI_STATISTICS_ATTRS(name, file)
176 
177 #define SPI_STATISTICS_SHOW(field)					\
178 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
179 				 field)
180 
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185 
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189 
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193 
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
195 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
196 				 "transfer_bytes_histo_" number,	\
197 				 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215 
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217 
218 static struct attribute *spi_dev_attrs[] = {
219 	&dev_attr_modalias.attr,
220 	&dev_attr_driver_override.attr,
221 	NULL,
222 };
223 
224 static const struct attribute_group spi_dev_group = {
225 	.attrs  = spi_dev_attrs,
226 };
227 
228 static struct attribute *spi_device_statistics_attrs[] = {
229 	&dev_attr_spi_device_messages.attr,
230 	&dev_attr_spi_device_transfers.attr,
231 	&dev_attr_spi_device_errors.attr,
232 	&dev_attr_spi_device_timedout.attr,
233 	&dev_attr_spi_device_spi_sync.attr,
234 	&dev_attr_spi_device_spi_sync_immediate.attr,
235 	&dev_attr_spi_device_spi_async.attr,
236 	&dev_attr_spi_device_bytes.attr,
237 	&dev_attr_spi_device_bytes_rx.attr,
238 	&dev_attr_spi_device_bytes_tx.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
255 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
256 	&dev_attr_spi_device_transfers_split_maxsize.attr,
257 	NULL,
258 };
259 
260 static const struct attribute_group spi_device_statistics_group = {
261 	.name  = "statistics",
262 	.attrs  = spi_device_statistics_attrs,
263 };
264 
265 static const struct attribute_group *spi_dev_groups[] = {
266 	&spi_dev_group,
267 	&spi_device_statistics_group,
268 	NULL,
269 };
270 
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 	&dev_attr_spi_controller_messages.attr,
273 	&dev_attr_spi_controller_transfers.attr,
274 	&dev_attr_spi_controller_errors.attr,
275 	&dev_attr_spi_controller_timedout.attr,
276 	&dev_attr_spi_controller_spi_sync.attr,
277 	&dev_attr_spi_controller_spi_sync_immediate.attr,
278 	&dev_attr_spi_controller_spi_async.attr,
279 	&dev_attr_spi_controller_bytes.attr,
280 	&dev_attr_spi_controller_bytes_rx.attr,
281 	&dev_attr_spi_controller_bytes_tx.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
300 	NULL,
301 };
302 
303 static const struct attribute_group spi_controller_statistics_group = {
304 	.name  = "statistics",
305 	.attrs  = spi_controller_statistics_attrs,
306 };
307 
308 static const struct attribute_group *spi_master_groups[] = {
309 	&spi_controller_statistics_group,
310 	NULL,
311 };
312 
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 					      struct spi_transfer *xfer,
315 					      struct spi_controller *ctlr)
316 {
317 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 	struct spi_statistics *stats;
319 
320 	if (l2len < 0)
321 		l2len = 0;
322 
323 	get_cpu();
324 	stats = this_cpu_ptr(pcpu_stats);
325 	u64_stats_update_begin(&stats->syncp);
326 
327 	u64_stats_inc(&stats->transfers);
328 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329 
330 	u64_stats_add(&stats->bytes, xfer->len);
331 	if ((xfer->tx_buf) &&
332 	    (xfer->tx_buf != ctlr->dummy_tx))
333 		u64_stats_add(&stats->bytes_tx, xfer->len);
334 	if ((xfer->rx_buf) &&
335 	    (xfer->rx_buf != ctlr->dummy_rx))
336 		u64_stats_add(&stats->bytes_rx, xfer->len);
337 
338 	u64_stats_update_end(&stats->syncp);
339 	put_cpu();
340 }
341 
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348 	while (id->name[0]) {
349 		if (!strcmp(name, id->name))
350 			return id;
351 		id++;
352 	}
353 	return NULL;
354 }
355 
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359 
360 	return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363 
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366 	const void *match;
367 
368 	match = device_get_match_data(&sdev->dev);
369 	if (match)
370 		return match;
371 
372 	return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375 
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378 	const struct spi_device	*spi = to_spi_device(dev);
379 	const struct spi_driver	*sdrv = to_spi_driver(drv);
380 
381 	/* Check override first, and if set, only use the named driver */
382 	if (spi->driver_override)
383 		return strcmp(spi->driver_override, drv->name) == 0;
384 
385 	/* Attempt an OF style match */
386 	if (of_driver_match_device(dev, drv))
387 		return 1;
388 
389 	/* Then try ACPI */
390 	if (acpi_driver_match_device(dev, drv))
391 		return 1;
392 
393 	if (sdrv->id_table)
394 		return !!spi_match_id(sdrv->id_table, spi->modalias);
395 
396 	return strcmp(spi->modalias, drv->name) == 0;
397 }
398 
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401 	const struct spi_device		*spi = to_spi_device(dev);
402 	int rc;
403 
404 	rc = acpi_device_uevent_modalias(dev, env);
405 	if (rc != -ENODEV)
406 		return rc;
407 
408 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410 
411 static int spi_probe(struct device *dev)
412 {
413 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
414 	struct spi_device		*spi = to_spi_device(dev);
415 	int ret;
416 
417 	ret = of_clk_set_defaults(dev->of_node, false);
418 	if (ret)
419 		return ret;
420 
421 	if (dev->of_node) {
422 		spi->irq = of_irq_get(dev->of_node, 0);
423 		if (spi->irq == -EPROBE_DEFER)
424 			return -EPROBE_DEFER;
425 		if (spi->irq < 0)
426 			spi->irq = 0;
427 	}
428 
429 	ret = dev_pm_domain_attach(dev, true);
430 	if (ret)
431 		return ret;
432 
433 	if (sdrv->probe) {
434 		ret = sdrv->probe(spi);
435 		if (ret)
436 			dev_pm_domain_detach(dev, true);
437 	}
438 
439 	return ret;
440 }
441 
442 static void spi_remove(struct device *dev)
443 {
444 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
445 
446 	if (sdrv->remove)
447 		sdrv->remove(to_spi_device(dev));
448 
449 	dev_pm_domain_detach(dev, true);
450 }
451 
452 static void spi_shutdown(struct device *dev)
453 {
454 	if (dev->driver) {
455 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
456 
457 		if (sdrv->shutdown)
458 			sdrv->shutdown(to_spi_device(dev));
459 	}
460 }
461 
462 struct bus_type spi_bus_type = {
463 	.name		= "spi",
464 	.dev_groups	= spi_dev_groups,
465 	.match		= spi_match_device,
466 	.uevent		= spi_uevent,
467 	.probe		= spi_probe,
468 	.remove		= spi_remove,
469 	.shutdown	= spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472 
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483 	sdrv->driver.owner = owner;
484 	sdrv->driver.bus = &spi_bus_type;
485 
486 	/*
487 	 * For Really Good Reasons we use spi: modaliases not of:
488 	 * modaliases for DT so module autoloading won't work if we
489 	 * don't have a spi_device_id as well as a compatible string.
490 	 */
491 	if (sdrv->driver.of_match_table) {
492 		const struct of_device_id *of_id;
493 
494 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495 		     of_id++) {
496 			const char *of_name;
497 
498 			/* Strip off any vendor prefix */
499 			of_name = strnchr(of_id->compatible,
500 					  sizeof(of_id->compatible), ',');
501 			if (of_name)
502 				of_name++;
503 			else
504 				of_name = of_id->compatible;
505 
506 			if (sdrv->id_table) {
507 				const struct spi_device_id *spi_id;
508 
509 				spi_id = spi_match_id(sdrv->id_table, of_name);
510 				if (spi_id)
511 					continue;
512 			} else {
513 				if (strcmp(sdrv->driver.name, of_name) == 0)
514 					continue;
515 			}
516 
517 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 				sdrv->driver.name, of_id->compatible);
519 		}
520 	}
521 
522 	return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525 
526 /*-------------------------------------------------------------------------*/
527 
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534 
535 struct boardinfo {
536 	struct list_head	list;
537 	struct spi_board_info	board_info;
538 };
539 
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542 
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549 
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569 	struct spi_device	*spi;
570 
571 	if (!spi_controller_get(ctlr))
572 		return NULL;
573 
574 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575 	if (!spi) {
576 		spi_controller_put(ctlr);
577 		return NULL;
578 	}
579 
580 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 	if (!spi->pcpu_statistics) {
582 		kfree(spi);
583 		spi_controller_put(ctlr);
584 		return NULL;
585 	}
586 
587 	spi->master = spi->controller = ctlr;
588 	spi->dev.parent = &ctlr->dev;
589 	spi->dev.bus = &spi_bus_type;
590 	spi->dev.release = spidev_release;
591 	spi->mode = ctlr->buswidth_override_bits;
592 
593 	device_initialize(&spi->dev);
594 	return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597 
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601 
602 	if (adev) {
603 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604 		return;
605 	}
606 
607 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608 		     spi_get_chipselect(spi, 0));
609 }
610 
611 static int spi_dev_check(struct device *dev, void *data)
612 {
613 	struct spi_device *spi = to_spi_device(dev);
614 	struct spi_device *new_spi = data;
615 
616 	if (spi->controller == new_spi->controller &&
617 	    spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
618 		return -EBUSY;
619 	return 0;
620 }
621 
622 static void spi_cleanup(struct spi_device *spi)
623 {
624 	if (spi->controller->cleanup)
625 		spi->controller->cleanup(spi);
626 }
627 
628 static int __spi_add_device(struct spi_device *spi)
629 {
630 	struct spi_controller *ctlr = spi->controller;
631 	struct device *dev = ctlr->dev.parent;
632 	int status;
633 
634 	/* Chipselects are numbered 0..max; validate. */
635 	if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
636 		dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
637 			ctlr->num_chipselect);
638 		return -EINVAL;
639 	}
640 
641 	/* Set the bus ID string */
642 	spi_dev_set_name(spi);
643 
644 	/*
645 	 * We need to make sure there's no other device with this
646 	 * chipselect **BEFORE** we call setup(), else we'll trash
647 	 * its configuration.
648 	 */
649 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
650 	if (status) {
651 		dev_err(dev, "chipselect %d already in use\n",
652 				spi_get_chipselect(spi, 0));
653 		return status;
654 	}
655 
656 	/* Controller may unregister concurrently */
657 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
658 	    !device_is_registered(&ctlr->dev)) {
659 		return -ENODEV;
660 	}
661 
662 	if (ctlr->cs_gpiods)
663 		spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
664 
665 	/*
666 	 * Drivers may modify this initial i/o setup, but will
667 	 * normally rely on the device being setup.  Devices
668 	 * using SPI_CS_HIGH can't coexist well otherwise...
669 	 */
670 	status = spi_setup(spi);
671 	if (status < 0) {
672 		dev_err(dev, "can't setup %s, status %d\n",
673 				dev_name(&spi->dev), status);
674 		return status;
675 	}
676 
677 	/* Device may be bound to an active driver when this returns */
678 	status = device_add(&spi->dev);
679 	if (status < 0) {
680 		dev_err(dev, "can't add %s, status %d\n",
681 				dev_name(&spi->dev), status);
682 		spi_cleanup(spi);
683 	} else {
684 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
685 	}
686 
687 	return status;
688 }
689 
690 /**
691  * spi_add_device - Add spi_device allocated with spi_alloc_device
692  * @spi: spi_device to register
693  *
694  * Companion function to spi_alloc_device.  Devices allocated with
695  * spi_alloc_device can be added onto the SPI bus with this function.
696  *
697  * Return: 0 on success; negative errno on failure
698  */
699 int spi_add_device(struct spi_device *spi)
700 {
701 	struct spi_controller *ctlr = spi->controller;
702 	int status;
703 
704 	mutex_lock(&ctlr->add_lock);
705 	status = __spi_add_device(spi);
706 	mutex_unlock(&ctlr->add_lock);
707 	return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710 
711 /**
712  * spi_new_device - instantiate one new SPI device
713  * @ctlr: Controller to which device is connected
714  * @chip: Describes the SPI device
715  * Context: can sleep
716  *
717  * On typical mainboards, this is purely internal; and it's not needed
718  * after board init creates the hard-wired devices.  Some development
719  * platforms may not be able to use spi_register_board_info though, and
720  * this is exported so that for example a USB or parport based adapter
721  * driver could add devices (which it would learn about out-of-band).
722  *
723  * Return: the new device, or NULL.
724  */
725 struct spi_device *spi_new_device(struct spi_controller *ctlr,
726 				  struct spi_board_info *chip)
727 {
728 	struct spi_device	*proxy;
729 	int			status;
730 
731 	/*
732 	 * NOTE:  caller did any chip->bus_num checks necessary.
733 	 *
734 	 * Also, unless we change the return value convention to use
735 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
736 	 * suggests syslogged diagnostics are best here (ugh).
737 	 */
738 
739 	proxy = spi_alloc_device(ctlr);
740 	if (!proxy)
741 		return NULL;
742 
743 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
744 
745 	spi_set_chipselect(proxy, 0, chip->chip_select);
746 	proxy->max_speed_hz = chip->max_speed_hz;
747 	proxy->mode = chip->mode;
748 	proxy->irq = chip->irq;
749 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
750 	proxy->dev.platform_data = (void *) chip->platform_data;
751 	proxy->controller_data = chip->controller_data;
752 	proxy->controller_state = NULL;
753 
754 	if (chip->swnode) {
755 		status = device_add_software_node(&proxy->dev, chip->swnode);
756 		if (status) {
757 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
758 				chip->modalias, status);
759 			goto err_dev_put;
760 		}
761 	}
762 
763 	status = spi_add_device(proxy);
764 	if (status < 0)
765 		goto err_dev_put;
766 
767 	return proxy;
768 
769 err_dev_put:
770 	device_remove_software_node(&proxy->dev);
771 	spi_dev_put(proxy);
772 	return NULL;
773 }
774 EXPORT_SYMBOL_GPL(spi_new_device);
775 
776 /**
777  * spi_unregister_device - unregister a single SPI device
778  * @spi: spi_device to unregister
779  *
780  * Start making the passed SPI device vanish. Normally this would be handled
781  * by spi_unregister_controller().
782  */
783 void spi_unregister_device(struct spi_device *spi)
784 {
785 	if (!spi)
786 		return;
787 
788 	if (spi->dev.of_node) {
789 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
790 		of_node_put(spi->dev.of_node);
791 	}
792 	if (ACPI_COMPANION(&spi->dev))
793 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
794 	device_remove_software_node(&spi->dev);
795 	device_del(&spi->dev);
796 	spi_cleanup(spi);
797 	put_device(&spi->dev);
798 }
799 EXPORT_SYMBOL_GPL(spi_unregister_device);
800 
801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
802 					      struct spi_board_info *bi)
803 {
804 	struct spi_device *dev;
805 
806 	if (ctlr->bus_num != bi->bus_num)
807 		return;
808 
809 	dev = spi_new_device(ctlr, bi);
810 	if (!dev)
811 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
812 			bi->modalias);
813 }
814 
815 /**
816  * spi_register_board_info - register SPI devices for a given board
817  * @info: array of chip descriptors
818  * @n: how many descriptors are provided
819  * Context: can sleep
820  *
821  * Board-specific early init code calls this (probably during arch_initcall)
822  * with segments of the SPI device table.  Any device nodes are created later,
823  * after the relevant parent SPI controller (bus_num) is defined.  We keep
824  * this table of devices forever, so that reloading a controller driver will
825  * not make Linux forget about these hard-wired devices.
826  *
827  * Other code can also call this, e.g. a particular add-on board might provide
828  * SPI devices through its expansion connector, so code initializing that board
829  * would naturally declare its SPI devices.
830  *
831  * The board info passed can safely be __initdata ... but be careful of
832  * any embedded pointers (platform_data, etc), they're copied as-is.
833  *
834  * Return: zero on success, else a negative error code.
835  */
836 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
837 {
838 	struct boardinfo *bi;
839 	int i;
840 
841 	if (!n)
842 		return 0;
843 
844 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
845 	if (!bi)
846 		return -ENOMEM;
847 
848 	for (i = 0; i < n; i++, bi++, info++) {
849 		struct spi_controller *ctlr;
850 
851 		memcpy(&bi->board_info, info, sizeof(*info));
852 
853 		mutex_lock(&board_lock);
854 		list_add_tail(&bi->list, &board_list);
855 		list_for_each_entry(ctlr, &spi_controller_list, list)
856 			spi_match_controller_to_boardinfo(ctlr,
857 							  &bi->board_info);
858 		mutex_unlock(&board_lock);
859 	}
860 
861 	return 0;
862 }
863 
864 /*-------------------------------------------------------------------------*/
865 
866 /* Core methods for SPI resource management */
867 
868 /**
869  * spi_res_alloc - allocate a spi resource that is life-cycle managed
870  *                 during the processing of a spi_message while using
871  *                 spi_transfer_one
872  * @spi:     the SPI device for which we allocate memory
873  * @release: the release code to execute for this resource
874  * @size:    size to alloc and return
875  * @gfp:     GFP allocation flags
876  *
877  * Return: the pointer to the allocated data
878  *
879  * This may get enhanced in the future to allocate from a memory pool
880  * of the @spi_device or @spi_controller to avoid repeated allocations.
881  */
882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
883 			   size_t size, gfp_t gfp)
884 {
885 	struct spi_res *sres;
886 
887 	sres = kzalloc(sizeof(*sres) + size, gfp);
888 	if (!sres)
889 		return NULL;
890 
891 	INIT_LIST_HEAD(&sres->entry);
892 	sres->release = release;
893 
894 	return sres->data;
895 }
896 
897 /**
898  * spi_res_free - free an SPI resource
899  * @res: pointer to the custom data of a resource
900  */
901 static void spi_res_free(void *res)
902 {
903 	struct spi_res *sres = container_of(res, struct spi_res, data);
904 
905 	if (!res)
906 		return;
907 
908 	WARN_ON(!list_empty(&sres->entry));
909 	kfree(sres);
910 }
911 
912 /**
913  * spi_res_add - add a spi_res to the spi_message
914  * @message: the SPI message
915  * @res:     the spi_resource
916  */
917 static void spi_res_add(struct spi_message *message, void *res)
918 {
919 	struct spi_res *sres = container_of(res, struct spi_res, data);
920 
921 	WARN_ON(!list_empty(&sres->entry));
922 	list_add_tail(&sres->entry, &message->resources);
923 }
924 
925 /**
926  * spi_res_release - release all SPI resources for this message
927  * @ctlr:  the @spi_controller
928  * @message: the @spi_message
929  */
930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
931 {
932 	struct spi_res *res, *tmp;
933 
934 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
935 		if (res->release)
936 			res->release(ctlr, message, res->data);
937 
938 		list_del(&res->entry);
939 
940 		kfree(res);
941 	}
942 }
943 
944 /*-------------------------------------------------------------------------*/
945 
946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
947 {
948 	bool activate = enable;
949 
950 	/*
951 	 * Avoid calling into the driver (or doing delays) if the chip select
952 	 * isn't actually changing from the last time this was called.
953 	 */
954 	if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
955 		       (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
956 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
957 		return;
958 
959 	trace_spi_set_cs(spi, activate);
960 
961 	spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
962 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
963 
964 	if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
965 		spi_delay_exec(&spi->cs_hold, NULL);
966 
967 	if (spi->mode & SPI_CS_HIGH)
968 		enable = !enable;
969 
970 	if (spi_get_csgpiod(spi, 0)) {
971 		if (!(spi->mode & SPI_NO_CS)) {
972 			/*
973 			 * Historically ACPI has no means of the GPIO polarity and
974 			 * thus the SPISerialBus() resource defines it on the per-chip
975 			 * basis. In order to avoid a chain of negations, the GPIO
976 			 * polarity is considered being Active High. Even for the cases
977 			 * when _DSD() is involved (in the updated versions of ACPI)
978 			 * the GPIO CS polarity must be defined Active High to avoid
979 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
980 			 * into account.
981 			 */
982 			if (has_acpi_companion(&spi->dev))
983 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
984 			else
985 				/* Polarity handled by GPIO library */
986 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
987 		}
988 		/* Some SPI masters need both GPIO CS & slave_select */
989 		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
990 		    spi->controller->set_cs)
991 			spi->controller->set_cs(spi, !enable);
992 	} else if (spi->controller->set_cs) {
993 		spi->controller->set_cs(spi, !enable);
994 	}
995 
996 	if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
997 		if (activate)
998 			spi_delay_exec(&spi->cs_setup, NULL);
999 		else
1000 			spi_delay_exec(&spi->cs_inactive, NULL);
1001 	}
1002 }
1003 
1004 #ifdef CONFIG_HAS_DMA
1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1006 			     struct sg_table *sgt, void *buf, size_t len,
1007 			     enum dma_data_direction dir, unsigned long attrs)
1008 {
1009 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1010 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1011 #ifdef CONFIG_HIGHMEM
1012 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1013 				(unsigned long)buf < (PKMAP_BASE +
1014 					(LAST_PKMAP * PAGE_SIZE)));
1015 #else
1016 	const bool kmap_buf = false;
1017 #endif
1018 	int desc_len;
1019 	int sgs;
1020 	struct page *vm_page;
1021 	struct scatterlist *sg;
1022 	void *sg_buf;
1023 	size_t min;
1024 	int i, ret;
1025 
1026 	if (vmalloced_buf || kmap_buf) {
1027 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1028 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1029 	} else if (virt_addr_valid(buf)) {
1030 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1031 		sgs = DIV_ROUND_UP(len, desc_len);
1032 	} else {
1033 		return -EINVAL;
1034 	}
1035 
1036 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1037 	if (ret != 0)
1038 		return ret;
1039 
1040 	sg = &sgt->sgl[0];
1041 	for (i = 0; i < sgs; i++) {
1042 
1043 		if (vmalloced_buf || kmap_buf) {
1044 			/*
1045 			 * Next scatterlist entry size is the minimum between
1046 			 * the desc_len and the remaining buffer length that
1047 			 * fits in a page.
1048 			 */
1049 			min = min_t(size_t, desc_len,
1050 				    min_t(size_t, len,
1051 					  PAGE_SIZE - offset_in_page(buf)));
1052 			if (vmalloced_buf)
1053 				vm_page = vmalloc_to_page(buf);
1054 			else
1055 				vm_page = kmap_to_page(buf);
1056 			if (!vm_page) {
1057 				sg_free_table(sgt);
1058 				return -ENOMEM;
1059 			}
1060 			sg_set_page(sg, vm_page,
1061 				    min, offset_in_page(buf));
1062 		} else {
1063 			min = min_t(size_t, len, desc_len);
1064 			sg_buf = buf;
1065 			sg_set_buf(sg, sg_buf, min);
1066 		}
1067 
1068 		buf += min;
1069 		len -= min;
1070 		sg = sg_next(sg);
1071 	}
1072 
1073 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1074 	if (ret < 0) {
1075 		sg_free_table(sgt);
1076 		return ret;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1083 		struct sg_table *sgt, void *buf, size_t len,
1084 		enum dma_data_direction dir)
1085 {
1086 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1087 }
1088 
1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1090 				struct device *dev, struct sg_table *sgt,
1091 				enum dma_data_direction dir,
1092 				unsigned long attrs)
1093 {
1094 	if (sgt->orig_nents) {
1095 		dma_unmap_sgtable(dev, sgt, dir, attrs);
1096 		sg_free_table(sgt);
1097 		sgt->orig_nents = 0;
1098 		sgt->nents = 0;
1099 	}
1100 }
1101 
1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1103 		   struct sg_table *sgt, enum dma_data_direction dir)
1104 {
1105 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1106 }
1107 
1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1109 {
1110 	struct device *tx_dev, *rx_dev;
1111 	struct spi_transfer *xfer;
1112 	int ret;
1113 
1114 	if (!ctlr->can_dma)
1115 		return 0;
1116 
1117 	if (ctlr->dma_tx)
1118 		tx_dev = ctlr->dma_tx->device->dev;
1119 	else if (ctlr->dma_map_dev)
1120 		tx_dev = ctlr->dma_map_dev;
1121 	else
1122 		tx_dev = ctlr->dev.parent;
1123 
1124 	if (ctlr->dma_rx)
1125 		rx_dev = ctlr->dma_rx->device->dev;
1126 	else if (ctlr->dma_map_dev)
1127 		rx_dev = ctlr->dma_map_dev;
1128 	else
1129 		rx_dev = ctlr->dev.parent;
1130 
1131 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1132 		/* The sync is done before each transfer. */
1133 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1134 
1135 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1136 			continue;
1137 
1138 		if (xfer->tx_buf != NULL) {
1139 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1140 						(void *)xfer->tx_buf,
1141 						xfer->len, DMA_TO_DEVICE,
1142 						attrs);
1143 			if (ret != 0)
1144 				return ret;
1145 		}
1146 
1147 		if (xfer->rx_buf != NULL) {
1148 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1149 						xfer->rx_buf, xfer->len,
1150 						DMA_FROM_DEVICE, attrs);
1151 			if (ret != 0) {
1152 				spi_unmap_buf_attrs(ctlr, tx_dev,
1153 						&xfer->tx_sg, DMA_TO_DEVICE,
1154 						attrs);
1155 
1156 				return ret;
1157 			}
1158 		}
1159 	}
1160 
1161 	ctlr->cur_rx_dma_dev = rx_dev;
1162 	ctlr->cur_tx_dma_dev = tx_dev;
1163 	ctlr->cur_msg_mapped = true;
1164 
1165 	return 0;
1166 }
1167 
1168 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1169 {
1170 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1171 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1172 	struct spi_transfer *xfer;
1173 
1174 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1175 		return 0;
1176 
1177 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178 		/* The sync has already been done after each transfer. */
1179 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1180 
1181 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1182 			continue;
1183 
1184 		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1185 				    DMA_FROM_DEVICE, attrs);
1186 		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1187 				    DMA_TO_DEVICE, attrs);
1188 	}
1189 
1190 	ctlr->cur_msg_mapped = false;
1191 
1192 	return 0;
1193 }
1194 
1195 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1196 				    struct spi_transfer *xfer)
1197 {
1198 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1199 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1200 
1201 	if (!ctlr->cur_msg_mapped)
1202 		return;
1203 
1204 	if (xfer->tx_sg.orig_nents)
1205 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1206 	if (xfer->rx_sg.orig_nents)
1207 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1208 }
1209 
1210 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1211 				 struct spi_transfer *xfer)
1212 {
1213 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1214 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1215 
1216 	if (!ctlr->cur_msg_mapped)
1217 		return;
1218 
1219 	if (xfer->rx_sg.orig_nents)
1220 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1221 	if (xfer->tx_sg.orig_nents)
1222 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1223 }
1224 #else /* !CONFIG_HAS_DMA */
1225 static inline int __spi_map_msg(struct spi_controller *ctlr,
1226 				struct spi_message *msg)
1227 {
1228 	return 0;
1229 }
1230 
1231 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1232 				  struct spi_message *msg)
1233 {
1234 	return 0;
1235 }
1236 
1237 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1238 				    struct spi_transfer *xfer)
1239 {
1240 }
1241 
1242 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1243 				 struct spi_transfer *xfer)
1244 {
1245 }
1246 #endif /* !CONFIG_HAS_DMA */
1247 
1248 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1249 				struct spi_message *msg)
1250 {
1251 	struct spi_transfer *xfer;
1252 
1253 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1254 		/*
1255 		 * Restore the original value of tx_buf or rx_buf if they are
1256 		 * NULL.
1257 		 */
1258 		if (xfer->tx_buf == ctlr->dummy_tx)
1259 			xfer->tx_buf = NULL;
1260 		if (xfer->rx_buf == ctlr->dummy_rx)
1261 			xfer->rx_buf = NULL;
1262 	}
1263 
1264 	return __spi_unmap_msg(ctlr, msg);
1265 }
1266 
1267 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1268 {
1269 	struct spi_transfer *xfer;
1270 	void *tmp;
1271 	unsigned int max_tx, max_rx;
1272 
1273 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1274 		&& !(msg->spi->mode & SPI_3WIRE)) {
1275 		max_tx = 0;
1276 		max_rx = 0;
1277 
1278 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1279 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1280 			    !xfer->tx_buf)
1281 				max_tx = max(xfer->len, max_tx);
1282 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1283 			    !xfer->rx_buf)
1284 				max_rx = max(xfer->len, max_rx);
1285 		}
1286 
1287 		if (max_tx) {
1288 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1289 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1290 			if (!tmp)
1291 				return -ENOMEM;
1292 			ctlr->dummy_tx = tmp;
1293 		}
1294 
1295 		if (max_rx) {
1296 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1297 				       GFP_KERNEL | GFP_DMA);
1298 			if (!tmp)
1299 				return -ENOMEM;
1300 			ctlr->dummy_rx = tmp;
1301 		}
1302 
1303 		if (max_tx || max_rx) {
1304 			list_for_each_entry(xfer, &msg->transfers,
1305 					    transfer_list) {
1306 				if (!xfer->len)
1307 					continue;
1308 				if (!xfer->tx_buf)
1309 					xfer->tx_buf = ctlr->dummy_tx;
1310 				if (!xfer->rx_buf)
1311 					xfer->rx_buf = ctlr->dummy_rx;
1312 			}
1313 		}
1314 	}
1315 
1316 	return __spi_map_msg(ctlr, msg);
1317 }
1318 
1319 static int spi_transfer_wait(struct spi_controller *ctlr,
1320 			     struct spi_message *msg,
1321 			     struct spi_transfer *xfer)
1322 {
1323 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1324 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1325 	u32 speed_hz = xfer->speed_hz;
1326 	unsigned long long ms;
1327 
1328 	if (spi_controller_is_slave(ctlr)) {
1329 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1330 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1331 			return -EINTR;
1332 		}
1333 	} else {
1334 		if (!speed_hz)
1335 			speed_hz = 100000;
1336 
1337 		/*
1338 		 * For each byte we wait for 8 cycles of the SPI clock.
1339 		 * Since speed is defined in Hz and we want milliseconds,
1340 		 * use respective multiplier, but before the division,
1341 		 * otherwise we may get 0 for short transfers.
1342 		 */
1343 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1344 		do_div(ms, speed_hz);
1345 
1346 		/*
1347 		 * Increase it twice and add 200 ms tolerance, use
1348 		 * predefined maximum in case of overflow.
1349 		 */
1350 		ms += ms + 200;
1351 		if (ms > UINT_MAX)
1352 			ms = UINT_MAX;
1353 
1354 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1355 						 msecs_to_jiffies(ms));
1356 
1357 		if (ms == 0) {
1358 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1359 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1360 			dev_err(&msg->spi->dev,
1361 				"SPI transfer timed out\n");
1362 			return -ETIMEDOUT;
1363 		}
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 static void _spi_transfer_delay_ns(u32 ns)
1370 {
1371 	if (!ns)
1372 		return;
1373 	if (ns <= NSEC_PER_USEC) {
1374 		ndelay(ns);
1375 	} else {
1376 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1377 
1378 		if (us <= 10)
1379 			udelay(us);
1380 		else
1381 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1382 	}
1383 }
1384 
1385 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1386 {
1387 	u32 delay = _delay->value;
1388 	u32 unit = _delay->unit;
1389 	u32 hz;
1390 
1391 	if (!delay)
1392 		return 0;
1393 
1394 	switch (unit) {
1395 	case SPI_DELAY_UNIT_USECS:
1396 		delay *= NSEC_PER_USEC;
1397 		break;
1398 	case SPI_DELAY_UNIT_NSECS:
1399 		/* Nothing to do here */
1400 		break;
1401 	case SPI_DELAY_UNIT_SCK:
1402 		/* Clock cycles need to be obtained from spi_transfer */
1403 		if (!xfer)
1404 			return -EINVAL;
1405 		/*
1406 		 * If there is unknown effective speed, approximate it
1407 		 * by underestimating with half of the requested Hz.
1408 		 */
1409 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1410 		if (!hz)
1411 			return -EINVAL;
1412 
1413 		/* Convert delay to nanoseconds */
1414 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1415 		break;
1416 	default:
1417 		return -EINVAL;
1418 	}
1419 
1420 	return delay;
1421 }
1422 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1423 
1424 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1425 {
1426 	int delay;
1427 
1428 	might_sleep();
1429 
1430 	if (!_delay)
1431 		return -EINVAL;
1432 
1433 	delay = spi_delay_to_ns(_delay, xfer);
1434 	if (delay < 0)
1435 		return delay;
1436 
1437 	_spi_transfer_delay_ns(delay);
1438 
1439 	return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(spi_delay_exec);
1442 
1443 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1444 					  struct spi_transfer *xfer)
1445 {
1446 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1447 	u32 delay = xfer->cs_change_delay.value;
1448 	u32 unit = xfer->cs_change_delay.unit;
1449 	int ret;
1450 
1451 	/* Return early on "fast" mode - for everything but USECS */
1452 	if (!delay) {
1453 		if (unit == SPI_DELAY_UNIT_USECS)
1454 			_spi_transfer_delay_ns(default_delay_ns);
1455 		return;
1456 	}
1457 
1458 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1459 	if (ret) {
1460 		dev_err_once(&msg->spi->dev,
1461 			     "Use of unsupported delay unit %i, using default of %luus\n",
1462 			     unit, default_delay_ns / NSEC_PER_USEC);
1463 		_spi_transfer_delay_ns(default_delay_ns);
1464 	}
1465 }
1466 
1467 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1468 						  struct spi_transfer *xfer)
1469 {
1470 	_spi_transfer_cs_change_delay(msg, xfer);
1471 }
1472 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1473 
1474 /*
1475  * spi_transfer_one_message - Default implementation of transfer_one_message()
1476  *
1477  * This is a standard implementation of transfer_one_message() for
1478  * drivers which implement a transfer_one() operation.  It provides
1479  * standard handling of delays and chip select management.
1480  */
1481 static int spi_transfer_one_message(struct spi_controller *ctlr,
1482 				    struct spi_message *msg)
1483 {
1484 	struct spi_transfer *xfer;
1485 	bool keep_cs = false;
1486 	int ret = 0;
1487 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1488 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1489 
1490 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1491 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1492 
1493 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1494 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1495 
1496 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1497 		trace_spi_transfer_start(msg, xfer);
1498 
1499 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1500 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1501 
1502 		if (!ctlr->ptp_sts_supported) {
1503 			xfer->ptp_sts_word_pre = 0;
1504 			ptp_read_system_prets(xfer->ptp_sts);
1505 		}
1506 
1507 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1508 			reinit_completion(&ctlr->xfer_completion);
1509 
1510 fallback_pio:
1511 			spi_dma_sync_for_device(ctlr, xfer);
1512 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1513 			if (ret < 0) {
1514 				spi_dma_sync_for_cpu(ctlr, xfer);
1515 
1516 				if (ctlr->cur_msg_mapped &&
1517 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1518 					__spi_unmap_msg(ctlr, msg);
1519 					ctlr->fallback = true;
1520 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1521 					goto fallback_pio;
1522 				}
1523 
1524 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1525 							       errors);
1526 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1527 							       errors);
1528 				dev_err(&msg->spi->dev,
1529 					"SPI transfer failed: %d\n", ret);
1530 				goto out;
1531 			}
1532 
1533 			if (ret > 0) {
1534 				ret = spi_transfer_wait(ctlr, msg, xfer);
1535 				if (ret < 0)
1536 					msg->status = ret;
1537 			}
1538 
1539 			spi_dma_sync_for_cpu(ctlr, xfer);
1540 		} else {
1541 			if (xfer->len)
1542 				dev_err(&msg->spi->dev,
1543 					"Bufferless transfer has length %u\n",
1544 					xfer->len);
1545 		}
1546 
1547 		if (!ctlr->ptp_sts_supported) {
1548 			ptp_read_system_postts(xfer->ptp_sts);
1549 			xfer->ptp_sts_word_post = xfer->len;
1550 		}
1551 
1552 		trace_spi_transfer_stop(msg, xfer);
1553 
1554 		if (msg->status != -EINPROGRESS)
1555 			goto out;
1556 
1557 		spi_transfer_delay_exec(xfer);
1558 
1559 		if (xfer->cs_change) {
1560 			if (list_is_last(&xfer->transfer_list,
1561 					 &msg->transfers)) {
1562 				keep_cs = true;
1563 			} else {
1564 				if (!xfer->cs_off)
1565 					spi_set_cs(msg->spi, false, false);
1566 				_spi_transfer_cs_change_delay(msg, xfer);
1567 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1568 					spi_set_cs(msg->spi, true, false);
1569 			}
1570 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1571 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1572 			spi_set_cs(msg->spi, xfer->cs_off, false);
1573 		}
1574 
1575 		msg->actual_length += xfer->len;
1576 	}
1577 
1578 out:
1579 	if (ret != 0 || !keep_cs)
1580 		spi_set_cs(msg->spi, false, false);
1581 
1582 	if (msg->status == -EINPROGRESS)
1583 		msg->status = ret;
1584 
1585 	if (msg->status && ctlr->handle_err)
1586 		ctlr->handle_err(ctlr, msg);
1587 
1588 	spi_finalize_current_message(ctlr);
1589 
1590 	return ret;
1591 }
1592 
1593 /**
1594  * spi_finalize_current_transfer - report completion of a transfer
1595  * @ctlr: the controller reporting completion
1596  *
1597  * Called by SPI drivers using the core transfer_one_message()
1598  * implementation to notify it that the current interrupt driven
1599  * transfer has finished and the next one may be scheduled.
1600  */
1601 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1602 {
1603 	complete(&ctlr->xfer_completion);
1604 }
1605 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1606 
1607 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1608 {
1609 	if (ctlr->auto_runtime_pm) {
1610 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1611 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1612 	}
1613 }
1614 
1615 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1616 		struct spi_message *msg, bool was_busy)
1617 {
1618 	struct spi_transfer *xfer;
1619 	int ret;
1620 
1621 	if (!was_busy && ctlr->auto_runtime_pm) {
1622 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1623 		if (ret < 0) {
1624 			pm_runtime_put_noidle(ctlr->dev.parent);
1625 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1626 				ret);
1627 
1628 			msg->status = ret;
1629 			spi_finalize_current_message(ctlr);
1630 
1631 			return ret;
1632 		}
1633 	}
1634 
1635 	if (!was_busy)
1636 		trace_spi_controller_busy(ctlr);
1637 
1638 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1639 		ret = ctlr->prepare_transfer_hardware(ctlr);
1640 		if (ret) {
1641 			dev_err(&ctlr->dev,
1642 				"failed to prepare transfer hardware: %d\n",
1643 				ret);
1644 
1645 			if (ctlr->auto_runtime_pm)
1646 				pm_runtime_put(ctlr->dev.parent);
1647 
1648 			msg->status = ret;
1649 			spi_finalize_current_message(ctlr);
1650 
1651 			return ret;
1652 		}
1653 	}
1654 
1655 	trace_spi_message_start(msg);
1656 
1657 	ret = spi_split_transfers_maxsize(ctlr, msg,
1658 					  spi_max_transfer_size(msg->spi),
1659 					  GFP_KERNEL | GFP_DMA);
1660 	if (ret) {
1661 		msg->status = ret;
1662 		spi_finalize_current_message(ctlr);
1663 		return ret;
1664 	}
1665 
1666 	if (ctlr->prepare_message) {
1667 		ret = ctlr->prepare_message(ctlr, msg);
1668 		if (ret) {
1669 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1670 				ret);
1671 			msg->status = ret;
1672 			spi_finalize_current_message(ctlr);
1673 			return ret;
1674 		}
1675 		msg->prepared = true;
1676 	}
1677 
1678 	ret = spi_map_msg(ctlr, msg);
1679 	if (ret) {
1680 		msg->status = ret;
1681 		spi_finalize_current_message(ctlr);
1682 		return ret;
1683 	}
1684 
1685 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1686 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1687 			xfer->ptp_sts_word_pre = 0;
1688 			ptp_read_system_prets(xfer->ptp_sts);
1689 		}
1690 	}
1691 
1692 	/*
1693 	 * Drivers implementation of transfer_one_message() must arrange for
1694 	 * spi_finalize_current_message() to get called. Most drivers will do
1695 	 * this in the calling context, but some don't. For those cases, a
1696 	 * completion is used to guarantee that this function does not return
1697 	 * until spi_finalize_current_message() is done accessing
1698 	 * ctlr->cur_msg.
1699 	 * Use of the following two flags enable to opportunistically skip the
1700 	 * use of the completion since its use involves expensive spin locks.
1701 	 * In case of a race with the context that calls
1702 	 * spi_finalize_current_message() the completion will always be used,
1703 	 * due to strict ordering of these flags using barriers.
1704 	 */
1705 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1706 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1707 	reinit_completion(&ctlr->cur_msg_completion);
1708 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1709 
1710 	ret = ctlr->transfer_one_message(ctlr, msg);
1711 	if (ret) {
1712 		dev_err(&ctlr->dev,
1713 			"failed to transfer one message from queue\n");
1714 		return ret;
1715 	}
1716 
1717 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1718 	smp_mb(); /* See spi_finalize_current_message()... */
1719 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1720 		wait_for_completion(&ctlr->cur_msg_completion);
1721 
1722 	return 0;
1723 }
1724 
1725 /**
1726  * __spi_pump_messages - function which processes SPI message queue
1727  * @ctlr: controller to process queue for
1728  * @in_kthread: true if we are in the context of the message pump thread
1729  *
1730  * This function checks if there is any SPI message in the queue that
1731  * needs processing and if so call out to the driver to initialize hardware
1732  * and transfer each message.
1733  *
1734  * Note that it is called both from the kthread itself and also from
1735  * inside spi_sync(); the queue extraction handling at the top of the
1736  * function should deal with this safely.
1737  */
1738 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1739 {
1740 	struct spi_message *msg;
1741 	bool was_busy = false;
1742 	unsigned long flags;
1743 	int ret;
1744 
1745 	/* Take the I/O mutex */
1746 	mutex_lock(&ctlr->io_mutex);
1747 
1748 	/* Lock queue */
1749 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1750 
1751 	/* Make sure we are not already running a message */
1752 	if (ctlr->cur_msg)
1753 		goto out_unlock;
1754 
1755 	/* Check if the queue is idle */
1756 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1757 		if (!ctlr->busy)
1758 			goto out_unlock;
1759 
1760 		/* Defer any non-atomic teardown to the thread */
1761 		if (!in_kthread) {
1762 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1763 			    !ctlr->unprepare_transfer_hardware) {
1764 				spi_idle_runtime_pm(ctlr);
1765 				ctlr->busy = false;
1766 				ctlr->queue_empty = true;
1767 				trace_spi_controller_idle(ctlr);
1768 			} else {
1769 				kthread_queue_work(ctlr->kworker,
1770 						   &ctlr->pump_messages);
1771 			}
1772 			goto out_unlock;
1773 		}
1774 
1775 		ctlr->busy = false;
1776 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1777 
1778 		kfree(ctlr->dummy_rx);
1779 		ctlr->dummy_rx = NULL;
1780 		kfree(ctlr->dummy_tx);
1781 		ctlr->dummy_tx = NULL;
1782 		if (ctlr->unprepare_transfer_hardware &&
1783 		    ctlr->unprepare_transfer_hardware(ctlr))
1784 			dev_err(&ctlr->dev,
1785 				"failed to unprepare transfer hardware\n");
1786 		spi_idle_runtime_pm(ctlr);
1787 		trace_spi_controller_idle(ctlr);
1788 
1789 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1790 		ctlr->queue_empty = true;
1791 		goto out_unlock;
1792 	}
1793 
1794 	/* Extract head of queue */
1795 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1796 	ctlr->cur_msg = msg;
1797 
1798 	list_del_init(&msg->queue);
1799 	if (ctlr->busy)
1800 		was_busy = true;
1801 	else
1802 		ctlr->busy = true;
1803 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1804 
1805 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1806 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1807 
1808 	ctlr->cur_msg = NULL;
1809 	ctlr->fallback = false;
1810 
1811 	mutex_unlock(&ctlr->io_mutex);
1812 
1813 	/* Prod the scheduler in case transfer_one() was busy waiting */
1814 	if (!ret)
1815 		cond_resched();
1816 	return;
1817 
1818 out_unlock:
1819 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1820 	mutex_unlock(&ctlr->io_mutex);
1821 }
1822 
1823 /**
1824  * spi_pump_messages - kthread work function which processes spi message queue
1825  * @work: pointer to kthread work struct contained in the controller struct
1826  */
1827 static void spi_pump_messages(struct kthread_work *work)
1828 {
1829 	struct spi_controller *ctlr =
1830 		container_of(work, struct spi_controller, pump_messages);
1831 
1832 	__spi_pump_messages(ctlr, true);
1833 }
1834 
1835 /**
1836  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1837  * @ctlr: Pointer to the spi_controller structure of the driver
1838  * @xfer: Pointer to the transfer being timestamped
1839  * @progress: How many words (not bytes) have been transferred so far
1840  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1841  *	      transfer, for less jitter in time measurement. Only compatible
1842  *	      with PIO drivers. If true, must follow up with
1843  *	      spi_take_timestamp_post or otherwise system will crash.
1844  *	      WARNING: for fully predictable results, the CPU frequency must
1845  *	      also be under control (governor).
1846  *
1847  * This is a helper for drivers to collect the beginning of the TX timestamp
1848  * for the requested byte from the SPI transfer. The frequency with which this
1849  * function must be called (once per word, once for the whole transfer, once
1850  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1851  * greater than or equal to the requested byte at the time of the call. The
1852  * timestamp is only taken once, at the first such call. It is assumed that
1853  * the driver advances its @tx buffer pointer monotonically.
1854  */
1855 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1856 			    struct spi_transfer *xfer,
1857 			    size_t progress, bool irqs_off)
1858 {
1859 	if (!xfer->ptp_sts)
1860 		return;
1861 
1862 	if (xfer->timestamped)
1863 		return;
1864 
1865 	if (progress > xfer->ptp_sts_word_pre)
1866 		return;
1867 
1868 	/* Capture the resolution of the timestamp */
1869 	xfer->ptp_sts_word_pre = progress;
1870 
1871 	if (irqs_off) {
1872 		local_irq_save(ctlr->irq_flags);
1873 		preempt_disable();
1874 	}
1875 
1876 	ptp_read_system_prets(xfer->ptp_sts);
1877 }
1878 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1879 
1880 /**
1881  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1882  * @ctlr: Pointer to the spi_controller structure of the driver
1883  * @xfer: Pointer to the transfer being timestamped
1884  * @progress: How many words (not bytes) have been transferred so far
1885  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1886  *
1887  * This is a helper for drivers to collect the end of the TX timestamp for
1888  * the requested byte from the SPI transfer. Can be called with an arbitrary
1889  * frequency: only the first call where @tx exceeds or is equal to the
1890  * requested word will be timestamped.
1891  */
1892 void spi_take_timestamp_post(struct spi_controller *ctlr,
1893 			     struct spi_transfer *xfer,
1894 			     size_t progress, bool irqs_off)
1895 {
1896 	if (!xfer->ptp_sts)
1897 		return;
1898 
1899 	if (xfer->timestamped)
1900 		return;
1901 
1902 	if (progress < xfer->ptp_sts_word_post)
1903 		return;
1904 
1905 	ptp_read_system_postts(xfer->ptp_sts);
1906 
1907 	if (irqs_off) {
1908 		local_irq_restore(ctlr->irq_flags);
1909 		preempt_enable();
1910 	}
1911 
1912 	/* Capture the resolution of the timestamp */
1913 	xfer->ptp_sts_word_post = progress;
1914 
1915 	xfer->timestamped = 1;
1916 }
1917 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1918 
1919 /**
1920  * spi_set_thread_rt - set the controller to pump at realtime priority
1921  * @ctlr: controller to boost priority of
1922  *
1923  * This can be called because the controller requested realtime priority
1924  * (by setting the ->rt value before calling spi_register_controller()) or
1925  * because a device on the bus said that its transfers needed realtime
1926  * priority.
1927  *
1928  * NOTE: at the moment if any device on a bus says it needs realtime then
1929  * the thread will be at realtime priority for all transfers on that
1930  * controller.  If this eventually becomes a problem we may see if we can
1931  * find a way to boost the priority only temporarily during relevant
1932  * transfers.
1933  */
1934 static void spi_set_thread_rt(struct spi_controller *ctlr)
1935 {
1936 	dev_info(&ctlr->dev,
1937 		"will run message pump with realtime priority\n");
1938 	sched_set_fifo(ctlr->kworker->task);
1939 }
1940 
1941 static int spi_init_queue(struct spi_controller *ctlr)
1942 {
1943 	ctlr->running = false;
1944 	ctlr->busy = false;
1945 	ctlr->queue_empty = true;
1946 
1947 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1948 	if (IS_ERR(ctlr->kworker)) {
1949 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1950 		return PTR_ERR(ctlr->kworker);
1951 	}
1952 
1953 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1954 
1955 	/*
1956 	 * Controller config will indicate if this controller should run the
1957 	 * message pump with high (realtime) priority to reduce the transfer
1958 	 * latency on the bus by minimising the delay between a transfer
1959 	 * request and the scheduling of the message pump thread. Without this
1960 	 * setting the message pump thread will remain at default priority.
1961 	 */
1962 	if (ctlr->rt)
1963 		spi_set_thread_rt(ctlr);
1964 
1965 	return 0;
1966 }
1967 
1968 /**
1969  * spi_get_next_queued_message() - called by driver to check for queued
1970  * messages
1971  * @ctlr: the controller to check for queued messages
1972  *
1973  * If there are more messages in the queue, the next message is returned from
1974  * this call.
1975  *
1976  * Return: the next message in the queue, else NULL if the queue is empty.
1977  */
1978 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1979 {
1980 	struct spi_message *next;
1981 	unsigned long flags;
1982 
1983 	/* Get a pointer to the next message, if any */
1984 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1985 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1986 					queue);
1987 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1988 
1989 	return next;
1990 }
1991 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1992 
1993 /**
1994  * spi_finalize_current_message() - the current message is complete
1995  * @ctlr: the controller to return the message to
1996  *
1997  * Called by the driver to notify the core that the message in the front of the
1998  * queue is complete and can be removed from the queue.
1999  */
2000 void spi_finalize_current_message(struct spi_controller *ctlr)
2001 {
2002 	struct spi_transfer *xfer;
2003 	struct spi_message *mesg;
2004 	int ret;
2005 
2006 	mesg = ctlr->cur_msg;
2007 
2008 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2009 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2010 			ptp_read_system_postts(xfer->ptp_sts);
2011 			xfer->ptp_sts_word_post = xfer->len;
2012 		}
2013 	}
2014 
2015 	if (unlikely(ctlr->ptp_sts_supported))
2016 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2017 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2018 
2019 	spi_unmap_msg(ctlr, mesg);
2020 
2021 	/*
2022 	 * In the prepare_messages callback the SPI bus has the opportunity
2023 	 * to split a transfer to smaller chunks.
2024 	 *
2025 	 * Release the split transfers here since spi_map_msg() is done on
2026 	 * the split transfers.
2027 	 */
2028 	spi_res_release(ctlr, mesg);
2029 
2030 	if (mesg->prepared && ctlr->unprepare_message) {
2031 		ret = ctlr->unprepare_message(ctlr, mesg);
2032 		if (ret) {
2033 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2034 				ret);
2035 		}
2036 	}
2037 
2038 	mesg->prepared = false;
2039 
2040 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2041 	smp_mb(); /* See __spi_pump_transfer_message()... */
2042 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2043 		complete(&ctlr->cur_msg_completion);
2044 
2045 	trace_spi_message_done(mesg);
2046 
2047 	mesg->state = NULL;
2048 	if (mesg->complete)
2049 		mesg->complete(mesg->context);
2050 }
2051 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2052 
2053 static int spi_start_queue(struct spi_controller *ctlr)
2054 {
2055 	unsigned long flags;
2056 
2057 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2058 
2059 	if (ctlr->running || ctlr->busy) {
2060 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2061 		return -EBUSY;
2062 	}
2063 
2064 	ctlr->running = true;
2065 	ctlr->cur_msg = NULL;
2066 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2067 
2068 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2069 
2070 	return 0;
2071 }
2072 
2073 static int spi_stop_queue(struct spi_controller *ctlr)
2074 {
2075 	unsigned long flags;
2076 	unsigned limit = 500;
2077 	int ret = 0;
2078 
2079 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2080 
2081 	/*
2082 	 * This is a bit lame, but is optimized for the common execution path.
2083 	 * A wait_queue on the ctlr->busy could be used, but then the common
2084 	 * execution path (pump_messages) would be required to call wake_up or
2085 	 * friends on every SPI message. Do this instead.
2086 	 */
2087 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2088 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2089 		usleep_range(10000, 11000);
2090 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2091 	}
2092 
2093 	if (!list_empty(&ctlr->queue) || ctlr->busy)
2094 		ret = -EBUSY;
2095 	else
2096 		ctlr->running = false;
2097 
2098 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2099 
2100 	if (ret) {
2101 		dev_warn(&ctlr->dev, "could not stop message queue\n");
2102 		return ret;
2103 	}
2104 	return ret;
2105 }
2106 
2107 static int spi_destroy_queue(struct spi_controller *ctlr)
2108 {
2109 	int ret;
2110 
2111 	ret = spi_stop_queue(ctlr);
2112 
2113 	/*
2114 	 * kthread_flush_worker will block until all work is done.
2115 	 * If the reason that stop_queue timed out is that the work will never
2116 	 * finish, then it does no good to call flush/stop thread, so
2117 	 * return anyway.
2118 	 */
2119 	if (ret) {
2120 		dev_err(&ctlr->dev, "problem destroying queue\n");
2121 		return ret;
2122 	}
2123 
2124 	kthread_destroy_worker(ctlr->kworker);
2125 
2126 	return 0;
2127 }
2128 
2129 static int __spi_queued_transfer(struct spi_device *spi,
2130 				 struct spi_message *msg,
2131 				 bool need_pump)
2132 {
2133 	struct spi_controller *ctlr = spi->controller;
2134 	unsigned long flags;
2135 
2136 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2137 
2138 	if (!ctlr->running) {
2139 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2140 		return -ESHUTDOWN;
2141 	}
2142 	msg->actual_length = 0;
2143 	msg->status = -EINPROGRESS;
2144 
2145 	list_add_tail(&msg->queue, &ctlr->queue);
2146 	ctlr->queue_empty = false;
2147 	if (!ctlr->busy && need_pump)
2148 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2149 
2150 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2151 	return 0;
2152 }
2153 
2154 /**
2155  * spi_queued_transfer - transfer function for queued transfers
2156  * @spi: SPI device which is requesting transfer
2157  * @msg: SPI message which is to handled is queued to driver queue
2158  *
2159  * Return: zero on success, else a negative error code.
2160  */
2161 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2162 {
2163 	return __spi_queued_transfer(spi, msg, true);
2164 }
2165 
2166 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2167 {
2168 	int ret;
2169 
2170 	ctlr->transfer = spi_queued_transfer;
2171 	if (!ctlr->transfer_one_message)
2172 		ctlr->transfer_one_message = spi_transfer_one_message;
2173 
2174 	/* Initialize and start queue */
2175 	ret = spi_init_queue(ctlr);
2176 	if (ret) {
2177 		dev_err(&ctlr->dev, "problem initializing queue\n");
2178 		goto err_init_queue;
2179 	}
2180 	ctlr->queued = true;
2181 	ret = spi_start_queue(ctlr);
2182 	if (ret) {
2183 		dev_err(&ctlr->dev, "problem starting queue\n");
2184 		goto err_start_queue;
2185 	}
2186 
2187 	return 0;
2188 
2189 err_start_queue:
2190 	spi_destroy_queue(ctlr);
2191 err_init_queue:
2192 	return ret;
2193 }
2194 
2195 /**
2196  * spi_flush_queue - Send all pending messages in the queue from the callers'
2197  *		     context
2198  * @ctlr: controller to process queue for
2199  *
2200  * This should be used when one wants to ensure all pending messages have been
2201  * sent before doing something. Is used by the spi-mem code to make sure SPI
2202  * memory operations do not preempt regular SPI transfers that have been queued
2203  * before the spi-mem operation.
2204  */
2205 void spi_flush_queue(struct spi_controller *ctlr)
2206 {
2207 	if (ctlr->transfer == spi_queued_transfer)
2208 		__spi_pump_messages(ctlr, false);
2209 }
2210 
2211 /*-------------------------------------------------------------------------*/
2212 
2213 #if defined(CONFIG_OF)
2214 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2215 				     struct spi_delay *delay, const char *prop)
2216 {
2217 	u32 value;
2218 
2219 	if (!of_property_read_u32(nc, prop, &value)) {
2220 		if (value > U16_MAX) {
2221 			delay->value = DIV_ROUND_UP(value, 1000);
2222 			delay->unit = SPI_DELAY_UNIT_USECS;
2223 		} else {
2224 			delay->value = value;
2225 			delay->unit = SPI_DELAY_UNIT_NSECS;
2226 		}
2227 	}
2228 }
2229 
2230 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2231 			   struct device_node *nc)
2232 {
2233 	u32 value;
2234 	int rc;
2235 
2236 	/* Mode (clock phase/polarity/etc.) */
2237 	if (of_property_read_bool(nc, "spi-cpha"))
2238 		spi->mode |= SPI_CPHA;
2239 	if (of_property_read_bool(nc, "spi-cpol"))
2240 		spi->mode |= SPI_CPOL;
2241 	if (of_property_read_bool(nc, "spi-3wire"))
2242 		spi->mode |= SPI_3WIRE;
2243 	if (of_property_read_bool(nc, "spi-lsb-first"))
2244 		spi->mode |= SPI_LSB_FIRST;
2245 	if (of_property_read_bool(nc, "spi-cs-high"))
2246 		spi->mode |= SPI_CS_HIGH;
2247 
2248 	/* Device DUAL/QUAD mode */
2249 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2250 		switch (value) {
2251 		case 0:
2252 			spi->mode |= SPI_NO_TX;
2253 			break;
2254 		case 1:
2255 			break;
2256 		case 2:
2257 			spi->mode |= SPI_TX_DUAL;
2258 			break;
2259 		case 4:
2260 			spi->mode |= SPI_TX_QUAD;
2261 			break;
2262 		case 8:
2263 			spi->mode |= SPI_TX_OCTAL;
2264 			break;
2265 		default:
2266 			dev_warn(&ctlr->dev,
2267 				"spi-tx-bus-width %d not supported\n",
2268 				value);
2269 			break;
2270 		}
2271 	}
2272 
2273 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2274 		switch (value) {
2275 		case 0:
2276 			spi->mode |= SPI_NO_RX;
2277 			break;
2278 		case 1:
2279 			break;
2280 		case 2:
2281 			spi->mode |= SPI_RX_DUAL;
2282 			break;
2283 		case 4:
2284 			spi->mode |= SPI_RX_QUAD;
2285 			break;
2286 		case 8:
2287 			spi->mode |= SPI_RX_OCTAL;
2288 			break;
2289 		default:
2290 			dev_warn(&ctlr->dev,
2291 				"spi-rx-bus-width %d not supported\n",
2292 				value);
2293 			break;
2294 		}
2295 	}
2296 
2297 	if (spi_controller_is_slave(ctlr)) {
2298 		if (!of_node_name_eq(nc, "slave")) {
2299 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2300 				nc);
2301 			return -EINVAL;
2302 		}
2303 		return 0;
2304 	}
2305 
2306 	/* Device address */
2307 	rc = of_property_read_u32(nc, "reg", &value);
2308 	if (rc) {
2309 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2310 			nc, rc);
2311 		return rc;
2312 	}
2313 	spi_set_chipselect(spi, 0, value);
2314 
2315 	/* Device speed */
2316 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2317 		spi->max_speed_hz = value;
2318 
2319 	/* Device CS delays */
2320 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2321 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2322 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2323 
2324 	return 0;
2325 }
2326 
2327 static struct spi_device *
2328 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2329 {
2330 	struct spi_device *spi;
2331 	int rc;
2332 
2333 	/* Alloc an spi_device */
2334 	spi = spi_alloc_device(ctlr);
2335 	if (!spi) {
2336 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2337 		rc = -ENOMEM;
2338 		goto err_out;
2339 	}
2340 
2341 	/* Select device driver */
2342 	rc = of_alias_from_compatible(nc, spi->modalias,
2343 				      sizeof(spi->modalias));
2344 	if (rc < 0) {
2345 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2346 		goto err_out;
2347 	}
2348 
2349 	rc = of_spi_parse_dt(ctlr, spi, nc);
2350 	if (rc)
2351 		goto err_out;
2352 
2353 	/* Store a pointer to the node in the device structure */
2354 	of_node_get(nc);
2355 
2356 	device_set_node(&spi->dev, of_fwnode_handle(nc));
2357 
2358 	/* Register the new device */
2359 	rc = spi_add_device(spi);
2360 	if (rc) {
2361 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2362 		goto err_of_node_put;
2363 	}
2364 
2365 	return spi;
2366 
2367 err_of_node_put:
2368 	of_node_put(nc);
2369 err_out:
2370 	spi_dev_put(spi);
2371 	return ERR_PTR(rc);
2372 }
2373 
2374 /**
2375  * of_register_spi_devices() - Register child devices onto the SPI bus
2376  * @ctlr:	Pointer to spi_controller device
2377  *
2378  * Registers an spi_device for each child node of controller node which
2379  * represents a valid SPI slave.
2380  */
2381 static void of_register_spi_devices(struct spi_controller *ctlr)
2382 {
2383 	struct spi_device *spi;
2384 	struct device_node *nc;
2385 
2386 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2387 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2388 			continue;
2389 		spi = of_register_spi_device(ctlr, nc);
2390 		if (IS_ERR(spi)) {
2391 			dev_warn(&ctlr->dev,
2392 				 "Failed to create SPI device for %pOF\n", nc);
2393 			of_node_clear_flag(nc, OF_POPULATED);
2394 		}
2395 	}
2396 }
2397 #else
2398 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2399 #endif
2400 
2401 /**
2402  * spi_new_ancillary_device() - Register ancillary SPI device
2403  * @spi:         Pointer to the main SPI device registering the ancillary device
2404  * @chip_select: Chip Select of the ancillary device
2405  *
2406  * Register an ancillary SPI device; for example some chips have a chip-select
2407  * for normal device usage and another one for setup/firmware upload.
2408  *
2409  * This may only be called from main SPI device's probe routine.
2410  *
2411  * Return: 0 on success; negative errno on failure
2412  */
2413 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2414 					     u8 chip_select)
2415 {
2416 	struct spi_controller *ctlr = spi->controller;
2417 	struct spi_device *ancillary;
2418 	int rc = 0;
2419 
2420 	/* Alloc an spi_device */
2421 	ancillary = spi_alloc_device(ctlr);
2422 	if (!ancillary) {
2423 		rc = -ENOMEM;
2424 		goto err_out;
2425 	}
2426 
2427 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2428 
2429 	/* Use provided chip-select for ancillary device */
2430 	spi_set_chipselect(ancillary, 0, chip_select);
2431 
2432 	/* Take over SPI mode/speed from SPI main device */
2433 	ancillary->max_speed_hz = spi->max_speed_hz;
2434 	ancillary->mode = spi->mode;
2435 
2436 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2437 
2438 	/* Register the new device */
2439 	rc = __spi_add_device(ancillary);
2440 	if (rc) {
2441 		dev_err(&spi->dev, "failed to register ancillary device\n");
2442 		goto err_out;
2443 	}
2444 
2445 	return ancillary;
2446 
2447 err_out:
2448 	spi_dev_put(ancillary);
2449 	return ERR_PTR(rc);
2450 }
2451 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2452 
2453 #ifdef CONFIG_ACPI
2454 struct acpi_spi_lookup {
2455 	struct spi_controller 	*ctlr;
2456 	u32			max_speed_hz;
2457 	u32			mode;
2458 	int			irq;
2459 	u8			bits_per_word;
2460 	u8			chip_select;
2461 	int			n;
2462 	int			index;
2463 };
2464 
2465 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2466 {
2467 	struct acpi_resource_spi_serialbus *sb;
2468 	int *count = data;
2469 
2470 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2471 		return 1;
2472 
2473 	sb = &ares->data.spi_serial_bus;
2474 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2475 		return 1;
2476 
2477 	*count = *count + 1;
2478 
2479 	return 1;
2480 }
2481 
2482 /**
2483  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2484  * @adev:	ACPI device
2485  *
2486  * Return: the number of SpiSerialBus resources in the ACPI-device's
2487  * resource-list; or a negative error code.
2488  */
2489 int acpi_spi_count_resources(struct acpi_device *adev)
2490 {
2491 	LIST_HEAD(r);
2492 	int count = 0;
2493 	int ret;
2494 
2495 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2496 	if (ret < 0)
2497 		return ret;
2498 
2499 	acpi_dev_free_resource_list(&r);
2500 
2501 	return count;
2502 }
2503 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2504 
2505 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2506 					    struct acpi_spi_lookup *lookup)
2507 {
2508 	const union acpi_object *obj;
2509 
2510 	if (!x86_apple_machine)
2511 		return;
2512 
2513 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2514 	    && obj->buffer.length >= 4)
2515 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2516 
2517 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2518 	    && obj->buffer.length == 8)
2519 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2520 
2521 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2522 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2523 		lookup->mode |= SPI_LSB_FIRST;
2524 
2525 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2526 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2527 		lookup->mode |= SPI_CPOL;
2528 
2529 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2530 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2531 		lookup->mode |= SPI_CPHA;
2532 }
2533 
2534 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2535 
2536 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2537 {
2538 	struct acpi_spi_lookup *lookup = data;
2539 	struct spi_controller *ctlr = lookup->ctlr;
2540 
2541 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2542 		struct acpi_resource_spi_serialbus *sb;
2543 		acpi_handle parent_handle;
2544 		acpi_status status;
2545 
2546 		sb = &ares->data.spi_serial_bus;
2547 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2548 
2549 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2550 				return 1;
2551 
2552 			status = acpi_get_handle(NULL,
2553 						 sb->resource_source.string_ptr,
2554 						 &parent_handle);
2555 
2556 			if (ACPI_FAILURE(status))
2557 				return -ENODEV;
2558 
2559 			if (ctlr) {
2560 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2561 					return -ENODEV;
2562 			} else {
2563 				struct acpi_device *adev;
2564 
2565 				adev = acpi_fetch_acpi_dev(parent_handle);
2566 				if (!adev)
2567 					return -ENODEV;
2568 
2569 				ctlr = acpi_spi_find_controller_by_adev(adev);
2570 				if (!ctlr)
2571 					return -EPROBE_DEFER;
2572 
2573 				lookup->ctlr = ctlr;
2574 			}
2575 
2576 			/*
2577 			 * ACPI DeviceSelection numbering is handled by the
2578 			 * host controller driver in Windows and can vary
2579 			 * from driver to driver. In Linux we always expect
2580 			 * 0 .. max - 1 so we need to ask the driver to
2581 			 * translate between the two schemes.
2582 			 */
2583 			if (ctlr->fw_translate_cs) {
2584 				int cs = ctlr->fw_translate_cs(ctlr,
2585 						sb->device_selection);
2586 				if (cs < 0)
2587 					return cs;
2588 				lookup->chip_select = cs;
2589 			} else {
2590 				lookup->chip_select = sb->device_selection;
2591 			}
2592 
2593 			lookup->max_speed_hz = sb->connection_speed;
2594 			lookup->bits_per_word = sb->data_bit_length;
2595 
2596 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2597 				lookup->mode |= SPI_CPHA;
2598 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2599 				lookup->mode |= SPI_CPOL;
2600 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2601 				lookup->mode |= SPI_CS_HIGH;
2602 		}
2603 	} else if (lookup->irq < 0) {
2604 		struct resource r;
2605 
2606 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2607 			lookup->irq = r.start;
2608 	}
2609 
2610 	/* Always tell the ACPI core to skip this resource */
2611 	return 1;
2612 }
2613 
2614 /**
2615  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2616  * @ctlr: controller to which the spi device belongs
2617  * @adev: ACPI Device for the spi device
2618  * @index: Index of the spi resource inside the ACPI Node
2619  *
2620  * This should be used to allocate a new SPI device from and ACPI Device node.
2621  * The caller is responsible for calling spi_add_device to register the SPI device.
2622  *
2623  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2624  * using the resource.
2625  * If index is set to -1, index is not used.
2626  * Note: If index is -1, ctlr must be set.
2627  *
2628  * Return: a pointer to the new device, or ERR_PTR on error.
2629  */
2630 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2631 					 struct acpi_device *adev,
2632 					 int index)
2633 {
2634 	acpi_handle parent_handle = NULL;
2635 	struct list_head resource_list;
2636 	struct acpi_spi_lookup lookup = {};
2637 	struct spi_device *spi;
2638 	int ret;
2639 
2640 	if (!ctlr && index == -1)
2641 		return ERR_PTR(-EINVAL);
2642 
2643 	lookup.ctlr		= ctlr;
2644 	lookup.irq		= -1;
2645 	lookup.index		= index;
2646 	lookup.n		= 0;
2647 
2648 	INIT_LIST_HEAD(&resource_list);
2649 	ret = acpi_dev_get_resources(adev, &resource_list,
2650 				     acpi_spi_add_resource, &lookup);
2651 	acpi_dev_free_resource_list(&resource_list);
2652 
2653 	if (ret < 0)
2654 		/* Found SPI in _CRS but it points to another controller */
2655 		return ERR_PTR(ret);
2656 
2657 	if (!lookup.max_speed_hz &&
2658 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2659 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2660 		/* Apple does not use _CRS but nested devices for SPI slaves */
2661 		acpi_spi_parse_apple_properties(adev, &lookup);
2662 	}
2663 
2664 	if (!lookup.max_speed_hz)
2665 		return ERR_PTR(-ENODEV);
2666 
2667 	spi = spi_alloc_device(lookup.ctlr);
2668 	if (!spi) {
2669 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2670 			dev_name(&adev->dev));
2671 		return ERR_PTR(-ENOMEM);
2672 	}
2673 
2674 	ACPI_COMPANION_SET(&spi->dev, adev);
2675 	spi->max_speed_hz	= lookup.max_speed_hz;
2676 	spi->mode		|= lookup.mode;
2677 	spi->irq		= lookup.irq;
2678 	spi->bits_per_word	= lookup.bits_per_word;
2679 	spi_set_chipselect(spi, 0, lookup.chip_select);
2680 
2681 	return spi;
2682 }
2683 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2684 
2685 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2686 					    struct acpi_device *adev)
2687 {
2688 	struct spi_device *spi;
2689 
2690 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2691 	    acpi_device_enumerated(adev))
2692 		return AE_OK;
2693 
2694 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2695 	if (IS_ERR(spi)) {
2696 		if (PTR_ERR(spi) == -ENOMEM)
2697 			return AE_NO_MEMORY;
2698 		else
2699 			return AE_OK;
2700 	}
2701 
2702 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2703 			  sizeof(spi->modalias));
2704 
2705 	if (spi->irq < 0)
2706 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2707 
2708 	acpi_device_set_enumerated(adev);
2709 
2710 	adev->power.flags.ignore_parent = true;
2711 	if (spi_add_device(spi)) {
2712 		adev->power.flags.ignore_parent = false;
2713 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2714 			dev_name(&adev->dev));
2715 		spi_dev_put(spi);
2716 	}
2717 
2718 	return AE_OK;
2719 }
2720 
2721 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2722 				       void *data, void **return_value)
2723 {
2724 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2725 	struct spi_controller *ctlr = data;
2726 
2727 	if (!adev)
2728 		return AE_OK;
2729 
2730 	return acpi_register_spi_device(ctlr, adev);
2731 }
2732 
2733 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2734 
2735 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2736 {
2737 	acpi_status status;
2738 	acpi_handle handle;
2739 
2740 	handle = ACPI_HANDLE(ctlr->dev.parent);
2741 	if (!handle)
2742 		return;
2743 
2744 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2745 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2746 				     acpi_spi_add_device, NULL, ctlr, NULL);
2747 	if (ACPI_FAILURE(status))
2748 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2749 }
2750 #else
2751 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2752 #endif /* CONFIG_ACPI */
2753 
2754 static void spi_controller_release(struct device *dev)
2755 {
2756 	struct spi_controller *ctlr;
2757 
2758 	ctlr = container_of(dev, struct spi_controller, dev);
2759 	kfree(ctlr);
2760 }
2761 
2762 static struct class spi_master_class = {
2763 	.name		= "spi_master",
2764 	.dev_release	= spi_controller_release,
2765 	.dev_groups	= spi_master_groups,
2766 };
2767 
2768 #ifdef CONFIG_SPI_SLAVE
2769 /**
2770  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2771  *		     controller
2772  * @spi: device used for the current transfer
2773  */
2774 int spi_slave_abort(struct spi_device *spi)
2775 {
2776 	struct spi_controller *ctlr = spi->controller;
2777 
2778 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2779 		return ctlr->slave_abort(ctlr);
2780 
2781 	return -ENOTSUPP;
2782 }
2783 EXPORT_SYMBOL_GPL(spi_slave_abort);
2784 
2785 int spi_target_abort(struct spi_device *spi)
2786 {
2787 	struct spi_controller *ctlr = spi->controller;
2788 
2789 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2790 		return ctlr->target_abort(ctlr);
2791 
2792 	return -ENOTSUPP;
2793 }
2794 EXPORT_SYMBOL_GPL(spi_target_abort);
2795 
2796 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2797 			  char *buf)
2798 {
2799 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2800 						   dev);
2801 	struct device *child;
2802 
2803 	child = device_find_any_child(&ctlr->dev);
2804 	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2805 }
2806 
2807 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2808 			   const char *buf, size_t count)
2809 {
2810 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2811 						   dev);
2812 	struct spi_device *spi;
2813 	struct device *child;
2814 	char name[32];
2815 	int rc;
2816 
2817 	rc = sscanf(buf, "%31s", name);
2818 	if (rc != 1 || !name[0])
2819 		return -EINVAL;
2820 
2821 	child = device_find_any_child(&ctlr->dev);
2822 	if (child) {
2823 		/* Remove registered slave */
2824 		device_unregister(child);
2825 		put_device(child);
2826 	}
2827 
2828 	if (strcmp(name, "(null)")) {
2829 		/* Register new slave */
2830 		spi = spi_alloc_device(ctlr);
2831 		if (!spi)
2832 			return -ENOMEM;
2833 
2834 		strscpy(spi->modalias, name, sizeof(spi->modalias));
2835 
2836 		rc = spi_add_device(spi);
2837 		if (rc) {
2838 			spi_dev_put(spi);
2839 			return rc;
2840 		}
2841 	}
2842 
2843 	return count;
2844 }
2845 
2846 static DEVICE_ATTR_RW(slave);
2847 
2848 static struct attribute *spi_slave_attrs[] = {
2849 	&dev_attr_slave.attr,
2850 	NULL,
2851 };
2852 
2853 static const struct attribute_group spi_slave_group = {
2854 	.attrs = spi_slave_attrs,
2855 };
2856 
2857 static const struct attribute_group *spi_slave_groups[] = {
2858 	&spi_controller_statistics_group,
2859 	&spi_slave_group,
2860 	NULL,
2861 };
2862 
2863 static struct class spi_slave_class = {
2864 	.name		= "spi_slave",
2865 	.dev_release	= spi_controller_release,
2866 	.dev_groups	= spi_slave_groups,
2867 };
2868 #else
2869 extern struct class spi_slave_class;	/* dummy */
2870 #endif
2871 
2872 /**
2873  * __spi_alloc_controller - allocate an SPI master or slave controller
2874  * @dev: the controller, possibly using the platform_bus
2875  * @size: how much zeroed driver-private data to allocate; the pointer to this
2876  *	memory is in the driver_data field of the returned device, accessible
2877  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2878  *	drivers granting DMA access to portions of their private data need to
2879  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2880  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2881  *	slave (true) controller
2882  * Context: can sleep
2883  *
2884  * This call is used only by SPI controller drivers, which are the
2885  * only ones directly touching chip registers.  It's how they allocate
2886  * an spi_controller structure, prior to calling spi_register_controller().
2887  *
2888  * This must be called from context that can sleep.
2889  *
2890  * The caller is responsible for assigning the bus number and initializing the
2891  * controller's methods before calling spi_register_controller(); and (after
2892  * errors adding the device) calling spi_controller_put() to prevent a memory
2893  * leak.
2894  *
2895  * Return: the SPI controller structure on success, else NULL.
2896  */
2897 struct spi_controller *__spi_alloc_controller(struct device *dev,
2898 					      unsigned int size, bool slave)
2899 {
2900 	struct spi_controller	*ctlr;
2901 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2902 
2903 	if (!dev)
2904 		return NULL;
2905 
2906 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2907 	if (!ctlr)
2908 		return NULL;
2909 
2910 	device_initialize(&ctlr->dev);
2911 	INIT_LIST_HEAD(&ctlr->queue);
2912 	spin_lock_init(&ctlr->queue_lock);
2913 	spin_lock_init(&ctlr->bus_lock_spinlock);
2914 	mutex_init(&ctlr->bus_lock_mutex);
2915 	mutex_init(&ctlr->io_mutex);
2916 	mutex_init(&ctlr->add_lock);
2917 	ctlr->bus_num = -1;
2918 	ctlr->num_chipselect = 1;
2919 	ctlr->slave = slave;
2920 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2921 		ctlr->dev.class = &spi_slave_class;
2922 	else
2923 		ctlr->dev.class = &spi_master_class;
2924 	ctlr->dev.parent = dev;
2925 	pm_suspend_ignore_children(&ctlr->dev, true);
2926 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2927 
2928 	return ctlr;
2929 }
2930 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2931 
2932 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2933 {
2934 	spi_controller_put(*(struct spi_controller **)ctlr);
2935 }
2936 
2937 /**
2938  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2939  * @dev: physical device of SPI controller
2940  * @size: how much zeroed driver-private data to allocate
2941  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2942  * Context: can sleep
2943  *
2944  * Allocate an SPI controller and automatically release a reference on it
2945  * when @dev is unbound from its driver.  Drivers are thus relieved from
2946  * having to call spi_controller_put().
2947  *
2948  * The arguments to this function are identical to __spi_alloc_controller().
2949  *
2950  * Return: the SPI controller structure on success, else NULL.
2951  */
2952 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2953 						   unsigned int size,
2954 						   bool slave)
2955 {
2956 	struct spi_controller **ptr, *ctlr;
2957 
2958 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2959 			   GFP_KERNEL);
2960 	if (!ptr)
2961 		return NULL;
2962 
2963 	ctlr = __spi_alloc_controller(dev, size, slave);
2964 	if (ctlr) {
2965 		ctlr->devm_allocated = true;
2966 		*ptr = ctlr;
2967 		devres_add(dev, ptr);
2968 	} else {
2969 		devres_free(ptr);
2970 	}
2971 
2972 	return ctlr;
2973 }
2974 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2975 
2976 /**
2977  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2978  * @ctlr: The SPI master to grab GPIO descriptors for
2979  */
2980 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2981 {
2982 	int nb, i;
2983 	struct gpio_desc **cs;
2984 	struct device *dev = &ctlr->dev;
2985 	unsigned long native_cs_mask = 0;
2986 	unsigned int num_cs_gpios = 0;
2987 
2988 	nb = gpiod_count(dev, "cs");
2989 	if (nb < 0) {
2990 		/* No GPIOs at all is fine, else return the error */
2991 		if (nb == -ENOENT)
2992 			return 0;
2993 		return nb;
2994 	}
2995 
2996 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2997 
2998 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2999 			  GFP_KERNEL);
3000 	if (!cs)
3001 		return -ENOMEM;
3002 	ctlr->cs_gpiods = cs;
3003 
3004 	for (i = 0; i < nb; i++) {
3005 		/*
3006 		 * Most chipselects are active low, the inverted
3007 		 * semantics are handled by special quirks in gpiolib,
3008 		 * so initializing them GPIOD_OUT_LOW here means
3009 		 * "unasserted", in most cases this will drive the physical
3010 		 * line high.
3011 		 */
3012 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3013 						      GPIOD_OUT_LOW);
3014 		if (IS_ERR(cs[i]))
3015 			return PTR_ERR(cs[i]);
3016 
3017 		if (cs[i]) {
3018 			/*
3019 			 * If we find a CS GPIO, name it after the device and
3020 			 * chip select line.
3021 			 */
3022 			char *gpioname;
3023 
3024 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3025 						  dev_name(dev), i);
3026 			if (!gpioname)
3027 				return -ENOMEM;
3028 			gpiod_set_consumer_name(cs[i], gpioname);
3029 			num_cs_gpios++;
3030 			continue;
3031 		}
3032 
3033 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3034 			dev_err(dev, "Invalid native chip select %d\n", i);
3035 			return -EINVAL;
3036 		}
3037 		native_cs_mask |= BIT(i);
3038 	}
3039 
3040 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3041 
3042 	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3043 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3044 		dev_err(dev, "No unused native chip select available\n");
3045 		return -EINVAL;
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 static int spi_controller_check_ops(struct spi_controller *ctlr)
3052 {
3053 	/*
3054 	 * The controller may implement only the high-level SPI-memory like
3055 	 * operations if it does not support regular SPI transfers, and this is
3056 	 * valid use case.
3057 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3058 	 * one of the ->transfer_xxx() method be implemented.
3059 	 */
3060 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3061 		if (!ctlr->transfer && !ctlr->transfer_one &&
3062 		   !ctlr->transfer_one_message) {
3063 			return -EINVAL;
3064 		}
3065 	}
3066 
3067 	return 0;
3068 }
3069 
3070 /* Allocate dynamic bus number using Linux idr */
3071 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3072 {
3073 	int id;
3074 
3075 	mutex_lock(&board_lock);
3076 	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3077 	mutex_unlock(&board_lock);
3078 	if (WARN(id < 0, "couldn't get idr"))
3079 		return id == -ENOSPC ? -EBUSY : id;
3080 	ctlr->bus_num = id;
3081 	return 0;
3082 }
3083 
3084 /**
3085  * spi_register_controller - register SPI master or slave controller
3086  * @ctlr: initialized master, originally from spi_alloc_master() or
3087  *	spi_alloc_slave()
3088  * Context: can sleep
3089  *
3090  * SPI controllers connect to their drivers using some non-SPI bus,
3091  * such as the platform bus.  The final stage of probe() in that code
3092  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3093  *
3094  * SPI controllers use board specific (often SOC specific) bus numbers,
3095  * and board-specific addressing for SPI devices combines those numbers
3096  * with chip select numbers.  Since SPI does not directly support dynamic
3097  * device identification, boards need configuration tables telling which
3098  * chip is at which address.
3099  *
3100  * This must be called from context that can sleep.  It returns zero on
3101  * success, else a negative error code (dropping the controller's refcount).
3102  * After a successful return, the caller is responsible for calling
3103  * spi_unregister_controller().
3104  *
3105  * Return: zero on success, else a negative error code.
3106  */
3107 int spi_register_controller(struct spi_controller *ctlr)
3108 {
3109 	struct device		*dev = ctlr->dev.parent;
3110 	struct boardinfo	*bi;
3111 	int			first_dynamic;
3112 	int			status;
3113 
3114 	if (!dev)
3115 		return -ENODEV;
3116 
3117 	/*
3118 	 * Make sure all necessary hooks are implemented before registering
3119 	 * the SPI controller.
3120 	 */
3121 	status = spi_controller_check_ops(ctlr);
3122 	if (status)
3123 		return status;
3124 
3125 	if (ctlr->bus_num < 0)
3126 		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3127 	if (ctlr->bus_num >= 0) {
3128 		/* Devices with a fixed bus num must check-in with the num */
3129 		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3130 		if (status)
3131 			return status;
3132 	}
3133 	if (ctlr->bus_num < 0) {
3134 		first_dynamic = of_alias_get_highest_id("spi");
3135 		if (first_dynamic < 0)
3136 			first_dynamic = 0;
3137 		else
3138 			first_dynamic++;
3139 
3140 		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3141 		if (status)
3142 			return status;
3143 	}
3144 	ctlr->bus_lock_flag = 0;
3145 	init_completion(&ctlr->xfer_completion);
3146 	init_completion(&ctlr->cur_msg_completion);
3147 	if (!ctlr->max_dma_len)
3148 		ctlr->max_dma_len = INT_MAX;
3149 
3150 	/*
3151 	 * Register the device, then userspace will see it.
3152 	 * Registration fails if the bus ID is in use.
3153 	 */
3154 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3155 
3156 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3157 		status = spi_get_gpio_descs(ctlr);
3158 		if (status)
3159 			goto free_bus_id;
3160 		/*
3161 		 * A controller using GPIO descriptors always
3162 		 * supports SPI_CS_HIGH if need be.
3163 		 */
3164 		ctlr->mode_bits |= SPI_CS_HIGH;
3165 	}
3166 
3167 	/*
3168 	 * Even if it's just one always-selected device, there must
3169 	 * be at least one chipselect.
3170 	 */
3171 	if (!ctlr->num_chipselect) {
3172 		status = -EINVAL;
3173 		goto free_bus_id;
3174 	}
3175 
3176 	/* Setting last_cs to -1 means no chip selected */
3177 	ctlr->last_cs = -1;
3178 
3179 	status = device_add(&ctlr->dev);
3180 	if (status < 0)
3181 		goto free_bus_id;
3182 	dev_dbg(dev, "registered %s %s\n",
3183 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3184 			dev_name(&ctlr->dev));
3185 
3186 	/*
3187 	 * If we're using a queued driver, start the queue. Note that we don't
3188 	 * need the queueing logic if the driver is only supporting high-level
3189 	 * memory operations.
3190 	 */
3191 	if (ctlr->transfer) {
3192 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3193 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3194 		status = spi_controller_initialize_queue(ctlr);
3195 		if (status) {
3196 			device_del(&ctlr->dev);
3197 			goto free_bus_id;
3198 		}
3199 	}
3200 	/* Add statistics */
3201 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3202 	if (!ctlr->pcpu_statistics) {
3203 		dev_err(dev, "Error allocating per-cpu statistics\n");
3204 		status = -ENOMEM;
3205 		goto destroy_queue;
3206 	}
3207 
3208 	mutex_lock(&board_lock);
3209 	list_add_tail(&ctlr->list, &spi_controller_list);
3210 	list_for_each_entry(bi, &board_list, list)
3211 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3212 	mutex_unlock(&board_lock);
3213 
3214 	/* Register devices from the device tree and ACPI */
3215 	of_register_spi_devices(ctlr);
3216 	acpi_register_spi_devices(ctlr);
3217 	return status;
3218 
3219 destroy_queue:
3220 	spi_destroy_queue(ctlr);
3221 free_bus_id:
3222 	mutex_lock(&board_lock);
3223 	idr_remove(&spi_master_idr, ctlr->bus_num);
3224 	mutex_unlock(&board_lock);
3225 	return status;
3226 }
3227 EXPORT_SYMBOL_GPL(spi_register_controller);
3228 
3229 static void devm_spi_unregister(struct device *dev, void *res)
3230 {
3231 	spi_unregister_controller(*(struct spi_controller **)res);
3232 }
3233 
3234 /**
3235  * devm_spi_register_controller - register managed SPI master or slave
3236  *	controller
3237  * @dev:    device managing SPI controller
3238  * @ctlr: initialized controller, originally from spi_alloc_master() or
3239  *	spi_alloc_slave()
3240  * Context: can sleep
3241  *
3242  * Register a SPI device as with spi_register_controller() which will
3243  * automatically be unregistered and freed.
3244  *
3245  * Return: zero on success, else a negative error code.
3246  */
3247 int devm_spi_register_controller(struct device *dev,
3248 				 struct spi_controller *ctlr)
3249 {
3250 	struct spi_controller **ptr;
3251 	int ret;
3252 
3253 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3254 	if (!ptr)
3255 		return -ENOMEM;
3256 
3257 	ret = spi_register_controller(ctlr);
3258 	if (!ret) {
3259 		*ptr = ctlr;
3260 		devres_add(dev, ptr);
3261 	} else {
3262 		devres_free(ptr);
3263 	}
3264 
3265 	return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3268 
3269 static int __unregister(struct device *dev, void *null)
3270 {
3271 	spi_unregister_device(to_spi_device(dev));
3272 	return 0;
3273 }
3274 
3275 /**
3276  * spi_unregister_controller - unregister SPI master or slave controller
3277  * @ctlr: the controller being unregistered
3278  * Context: can sleep
3279  *
3280  * This call is used only by SPI controller drivers, which are the
3281  * only ones directly touching chip registers.
3282  *
3283  * This must be called from context that can sleep.
3284  *
3285  * Note that this function also drops a reference to the controller.
3286  */
3287 void spi_unregister_controller(struct spi_controller *ctlr)
3288 {
3289 	struct spi_controller *found;
3290 	int id = ctlr->bus_num;
3291 
3292 	/* Prevent addition of new devices, unregister existing ones */
3293 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3294 		mutex_lock(&ctlr->add_lock);
3295 
3296 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3297 
3298 	/* First make sure that this controller was ever added */
3299 	mutex_lock(&board_lock);
3300 	found = idr_find(&spi_master_idr, id);
3301 	mutex_unlock(&board_lock);
3302 	if (ctlr->queued) {
3303 		if (spi_destroy_queue(ctlr))
3304 			dev_err(&ctlr->dev, "queue remove failed\n");
3305 	}
3306 	mutex_lock(&board_lock);
3307 	list_del(&ctlr->list);
3308 	mutex_unlock(&board_lock);
3309 
3310 	device_del(&ctlr->dev);
3311 
3312 	/* Free bus id */
3313 	mutex_lock(&board_lock);
3314 	if (found == ctlr)
3315 		idr_remove(&spi_master_idr, id);
3316 	mutex_unlock(&board_lock);
3317 
3318 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3319 		mutex_unlock(&ctlr->add_lock);
3320 
3321 	/*
3322 	 * Release the last reference on the controller if its driver
3323 	 * has not yet been converted to devm_spi_alloc_master/slave().
3324 	 */
3325 	if (!ctlr->devm_allocated)
3326 		put_device(&ctlr->dev);
3327 }
3328 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3329 
3330 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3331 {
3332 	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3333 }
3334 
3335 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3336 {
3337 	mutex_lock(&ctlr->bus_lock_mutex);
3338 	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3339 	mutex_unlock(&ctlr->bus_lock_mutex);
3340 }
3341 
3342 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3343 {
3344 	mutex_lock(&ctlr->bus_lock_mutex);
3345 	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3346 	mutex_unlock(&ctlr->bus_lock_mutex);
3347 }
3348 
3349 int spi_controller_suspend(struct spi_controller *ctlr)
3350 {
3351 	int ret = 0;
3352 
3353 	/* Basically no-ops for non-queued controllers */
3354 	if (ctlr->queued) {
3355 		ret = spi_stop_queue(ctlr);
3356 		if (ret)
3357 			dev_err(&ctlr->dev, "queue stop failed\n");
3358 	}
3359 
3360 	__spi_mark_suspended(ctlr);
3361 	return ret;
3362 }
3363 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3364 
3365 int spi_controller_resume(struct spi_controller *ctlr)
3366 {
3367 	int ret = 0;
3368 
3369 	__spi_mark_resumed(ctlr);
3370 
3371 	if (ctlr->queued) {
3372 		ret = spi_start_queue(ctlr);
3373 		if (ret)
3374 			dev_err(&ctlr->dev, "queue restart failed\n");
3375 	}
3376 	return ret;
3377 }
3378 EXPORT_SYMBOL_GPL(spi_controller_resume);
3379 
3380 /*-------------------------------------------------------------------------*/
3381 
3382 /* Core methods for spi_message alterations */
3383 
3384 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3385 					    struct spi_message *msg,
3386 					    void *res)
3387 {
3388 	struct spi_replaced_transfers *rxfer = res;
3389 	size_t i;
3390 
3391 	/* Call extra callback if requested */
3392 	if (rxfer->release)
3393 		rxfer->release(ctlr, msg, res);
3394 
3395 	/* Insert replaced transfers back into the message */
3396 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3397 
3398 	/* Remove the formerly inserted entries */
3399 	for (i = 0; i < rxfer->inserted; i++)
3400 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3401 }
3402 
3403 /**
3404  * spi_replace_transfers - replace transfers with several transfers
3405  *                         and register change with spi_message.resources
3406  * @msg:           the spi_message we work upon
3407  * @xfer_first:    the first spi_transfer we want to replace
3408  * @remove:        number of transfers to remove
3409  * @insert:        the number of transfers we want to insert instead
3410  * @release:       extra release code necessary in some circumstances
3411  * @extradatasize: extra data to allocate (with alignment guarantees
3412  *                 of struct @spi_transfer)
3413  * @gfp:           gfp flags
3414  *
3415  * Returns: pointer to @spi_replaced_transfers,
3416  *          PTR_ERR(...) in case of errors.
3417  */
3418 static struct spi_replaced_transfers *spi_replace_transfers(
3419 	struct spi_message *msg,
3420 	struct spi_transfer *xfer_first,
3421 	size_t remove,
3422 	size_t insert,
3423 	spi_replaced_release_t release,
3424 	size_t extradatasize,
3425 	gfp_t gfp)
3426 {
3427 	struct spi_replaced_transfers *rxfer;
3428 	struct spi_transfer *xfer;
3429 	size_t i;
3430 
3431 	/* Allocate the structure using spi_res */
3432 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3433 			      struct_size(rxfer, inserted_transfers, insert)
3434 			      + extradatasize,
3435 			      gfp);
3436 	if (!rxfer)
3437 		return ERR_PTR(-ENOMEM);
3438 
3439 	/* The release code to invoke before running the generic release */
3440 	rxfer->release = release;
3441 
3442 	/* Assign extradata */
3443 	if (extradatasize)
3444 		rxfer->extradata =
3445 			&rxfer->inserted_transfers[insert];
3446 
3447 	/* Init the replaced_transfers list */
3448 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3449 
3450 	/*
3451 	 * Assign the list_entry after which we should reinsert
3452 	 * the @replaced_transfers - it may be spi_message.messages!
3453 	 */
3454 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3455 
3456 	/* Remove the requested number of transfers */
3457 	for (i = 0; i < remove; i++) {
3458 		/*
3459 		 * If the entry after replaced_after it is msg->transfers
3460 		 * then we have been requested to remove more transfers
3461 		 * than are in the list.
3462 		 */
3463 		if (rxfer->replaced_after->next == &msg->transfers) {
3464 			dev_err(&msg->spi->dev,
3465 				"requested to remove more spi_transfers than are available\n");
3466 			/* Insert replaced transfers back into the message */
3467 			list_splice(&rxfer->replaced_transfers,
3468 				    rxfer->replaced_after);
3469 
3470 			/* Free the spi_replace_transfer structure... */
3471 			spi_res_free(rxfer);
3472 
3473 			/* ...and return with an error */
3474 			return ERR_PTR(-EINVAL);
3475 		}
3476 
3477 		/*
3478 		 * Remove the entry after replaced_after from list of
3479 		 * transfers and add it to list of replaced_transfers.
3480 		 */
3481 		list_move_tail(rxfer->replaced_after->next,
3482 			       &rxfer->replaced_transfers);
3483 	}
3484 
3485 	/*
3486 	 * Create copy of the given xfer with identical settings
3487 	 * based on the first transfer to get removed.
3488 	 */
3489 	for (i = 0; i < insert; i++) {
3490 		/* We need to run in reverse order */
3491 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3492 
3493 		/* Copy all spi_transfer data */
3494 		memcpy(xfer, xfer_first, sizeof(*xfer));
3495 
3496 		/* Add to list */
3497 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3498 
3499 		/* Clear cs_change and delay for all but the last */
3500 		if (i) {
3501 			xfer->cs_change = false;
3502 			xfer->delay.value = 0;
3503 		}
3504 	}
3505 
3506 	/* Set up inserted... */
3507 	rxfer->inserted = insert;
3508 
3509 	/* ...and register it with spi_res/spi_message */
3510 	spi_res_add(msg, rxfer);
3511 
3512 	return rxfer;
3513 }
3514 
3515 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3516 					struct spi_message *msg,
3517 					struct spi_transfer **xferp,
3518 					size_t maxsize,
3519 					gfp_t gfp)
3520 {
3521 	struct spi_transfer *xfer = *xferp, *xfers;
3522 	struct spi_replaced_transfers *srt;
3523 	size_t offset;
3524 	size_t count, i;
3525 
3526 	/* Calculate how many we have to replace */
3527 	count = DIV_ROUND_UP(xfer->len, maxsize);
3528 
3529 	/* Create replacement */
3530 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3531 	if (IS_ERR(srt))
3532 		return PTR_ERR(srt);
3533 	xfers = srt->inserted_transfers;
3534 
3535 	/*
3536 	 * Now handle each of those newly inserted spi_transfers.
3537 	 * Note that the replacements spi_transfers all are preset
3538 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3539 	 * are all identical (as well as most others)
3540 	 * so we just have to fix up len and the pointers.
3541 	 *
3542 	 * This also includes support for the depreciated
3543 	 * spi_message.is_dma_mapped interface.
3544 	 */
3545 
3546 	/*
3547 	 * The first transfer just needs the length modified, so we
3548 	 * run it outside the loop.
3549 	 */
3550 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3551 
3552 	/* All the others need rx_buf/tx_buf also set */
3553 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3554 		/* Update rx_buf, tx_buf and DMA */
3555 		if (xfers[i].rx_buf)
3556 			xfers[i].rx_buf += offset;
3557 		if (xfers[i].rx_dma)
3558 			xfers[i].rx_dma += offset;
3559 		if (xfers[i].tx_buf)
3560 			xfers[i].tx_buf += offset;
3561 		if (xfers[i].tx_dma)
3562 			xfers[i].tx_dma += offset;
3563 
3564 		/* Update length */
3565 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3566 	}
3567 
3568 	/*
3569 	 * We set up xferp to the last entry we have inserted,
3570 	 * so that we skip those already split transfers.
3571 	 */
3572 	*xferp = &xfers[count - 1];
3573 
3574 	/* Increment statistics counters */
3575 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3576 				       transfers_split_maxsize);
3577 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3578 				       transfers_split_maxsize);
3579 
3580 	return 0;
3581 }
3582 
3583 /**
3584  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3585  *                               when an individual transfer exceeds a
3586  *                               certain size
3587  * @ctlr:    the @spi_controller for this transfer
3588  * @msg:   the @spi_message to transform
3589  * @maxsize:  the maximum when to apply this
3590  * @gfp: GFP allocation flags
3591  *
3592  * Return: status of transformation
3593  */
3594 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3595 				struct spi_message *msg,
3596 				size_t maxsize,
3597 				gfp_t gfp)
3598 {
3599 	struct spi_transfer *xfer;
3600 	int ret;
3601 
3602 	/*
3603 	 * Iterate over the transfer_list,
3604 	 * but note that xfer is advanced to the last transfer inserted
3605 	 * to avoid checking sizes again unnecessarily (also xfer does
3606 	 * potentially belong to a different list by the time the
3607 	 * replacement has happened).
3608 	 */
3609 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3610 		if (xfer->len > maxsize) {
3611 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3612 							   maxsize, gfp);
3613 			if (ret)
3614 				return ret;
3615 		}
3616 	}
3617 
3618 	return 0;
3619 }
3620 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3621 
3622 
3623 /**
3624  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3625  *                                when an individual transfer exceeds a
3626  *                                certain number of SPI words
3627  * @ctlr:     the @spi_controller for this transfer
3628  * @msg:      the @spi_message to transform
3629  * @maxwords: the number of words to limit each transfer to
3630  * @gfp:      GFP allocation flags
3631  *
3632  * Return: status of transformation
3633  */
3634 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3635 				 struct spi_message *msg,
3636 				 size_t maxwords,
3637 				 gfp_t gfp)
3638 {
3639 	struct spi_transfer *xfer;
3640 
3641 	/*
3642 	 * Iterate over the transfer_list,
3643 	 * but note that xfer is advanced to the last transfer inserted
3644 	 * to avoid checking sizes again unnecessarily (also xfer does
3645 	 * potentially belong to a different list by the time the
3646 	 * replacement has happened).
3647 	 */
3648 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3649 		size_t maxsize;
3650 		int ret;
3651 
3652 		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3653 		if (xfer->len > maxsize) {
3654 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3655 							   maxsize, gfp);
3656 			if (ret)
3657 				return ret;
3658 		}
3659 	}
3660 
3661 	return 0;
3662 }
3663 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3664 
3665 /*-------------------------------------------------------------------------*/
3666 
3667 /*
3668  * Core methods for SPI controller protocol drivers. Some of the
3669  * other core methods are currently defined as inline functions.
3670  */
3671 
3672 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3673 					u8 bits_per_word)
3674 {
3675 	if (ctlr->bits_per_word_mask) {
3676 		/* Only 32 bits fit in the mask */
3677 		if (bits_per_word > 32)
3678 			return -EINVAL;
3679 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3680 			return -EINVAL;
3681 	}
3682 
3683 	return 0;
3684 }
3685 
3686 /**
3687  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3688  * @spi: the device that requires specific CS timing configuration
3689  *
3690  * Return: zero on success, else a negative error code.
3691  */
3692 static int spi_set_cs_timing(struct spi_device *spi)
3693 {
3694 	struct device *parent = spi->controller->dev.parent;
3695 	int status = 0;
3696 
3697 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3698 		if (spi->controller->auto_runtime_pm) {
3699 			status = pm_runtime_get_sync(parent);
3700 			if (status < 0) {
3701 				pm_runtime_put_noidle(parent);
3702 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3703 					status);
3704 				return status;
3705 			}
3706 
3707 			status = spi->controller->set_cs_timing(spi);
3708 			pm_runtime_mark_last_busy(parent);
3709 			pm_runtime_put_autosuspend(parent);
3710 		} else {
3711 			status = spi->controller->set_cs_timing(spi);
3712 		}
3713 	}
3714 	return status;
3715 }
3716 
3717 /**
3718  * spi_setup - setup SPI mode and clock rate
3719  * @spi: the device whose settings are being modified
3720  * Context: can sleep, and no requests are queued to the device
3721  *
3722  * SPI protocol drivers may need to update the transfer mode if the
3723  * device doesn't work with its default.  They may likewise need
3724  * to update clock rates or word sizes from initial values.  This function
3725  * changes those settings, and must be called from a context that can sleep.
3726  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3727  * effect the next time the device is selected and data is transferred to
3728  * or from it.  When this function returns, the SPI device is deselected.
3729  *
3730  * Note that this call will fail if the protocol driver specifies an option
3731  * that the underlying controller or its driver does not support.  For
3732  * example, not all hardware supports wire transfers using nine bit words,
3733  * LSB-first wire encoding, or active-high chipselects.
3734  *
3735  * Return: zero on success, else a negative error code.
3736  */
3737 int spi_setup(struct spi_device *spi)
3738 {
3739 	unsigned	bad_bits, ugly_bits;
3740 	int		status = 0;
3741 
3742 	/*
3743 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3744 	 * are set at the same time.
3745 	 */
3746 	if ((hweight_long(spi->mode &
3747 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3748 	    (hweight_long(spi->mode &
3749 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3750 		dev_err(&spi->dev,
3751 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3752 		return -EINVAL;
3753 	}
3754 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3755 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3756 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3757 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3758 		return -EINVAL;
3759 	/*
3760 	 * Help drivers fail *cleanly* when they need options
3761 	 * that aren't supported with their current controller.
3762 	 * SPI_CS_WORD has a fallback software implementation,
3763 	 * so it is ignored here.
3764 	 */
3765 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3766 				 SPI_NO_TX | SPI_NO_RX);
3767 	ugly_bits = bad_bits &
3768 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3769 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3770 	if (ugly_bits) {
3771 		dev_warn(&spi->dev,
3772 			 "setup: ignoring unsupported mode bits %x\n",
3773 			 ugly_bits);
3774 		spi->mode &= ~ugly_bits;
3775 		bad_bits &= ~ugly_bits;
3776 	}
3777 	if (bad_bits) {
3778 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3779 			bad_bits);
3780 		return -EINVAL;
3781 	}
3782 
3783 	if (!spi->bits_per_word) {
3784 		spi->bits_per_word = 8;
3785 	} else {
3786 		/*
3787 		 * Some controllers may not support the default 8 bits-per-word
3788 		 * so only perform the check when this is explicitly provided.
3789 		 */
3790 		status = __spi_validate_bits_per_word(spi->controller,
3791 						      spi->bits_per_word);
3792 		if (status)
3793 			return status;
3794 	}
3795 
3796 	if (spi->controller->max_speed_hz &&
3797 	    (!spi->max_speed_hz ||
3798 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3799 		spi->max_speed_hz = spi->controller->max_speed_hz;
3800 
3801 	mutex_lock(&spi->controller->io_mutex);
3802 
3803 	if (spi->controller->setup) {
3804 		status = spi->controller->setup(spi);
3805 		if (status) {
3806 			mutex_unlock(&spi->controller->io_mutex);
3807 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3808 				status);
3809 			return status;
3810 		}
3811 	}
3812 
3813 	status = spi_set_cs_timing(spi);
3814 	if (status) {
3815 		mutex_unlock(&spi->controller->io_mutex);
3816 		return status;
3817 	}
3818 
3819 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3820 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3821 		if (status < 0) {
3822 			mutex_unlock(&spi->controller->io_mutex);
3823 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3824 				status);
3825 			return status;
3826 		}
3827 
3828 		/*
3829 		 * We do not want to return positive value from pm_runtime_get,
3830 		 * there are many instances of devices calling spi_setup() and
3831 		 * checking for a non-zero return value instead of a negative
3832 		 * return value.
3833 		 */
3834 		status = 0;
3835 
3836 		spi_set_cs(spi, false, true);
3837 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3838 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3839 	} else {
3840 		spi_set_cs(spi, false, true);
3841 	}
3842 
3843 	mutex_unlock(&spi->controller->io_mutex);
3844 
3845 	if (spi->rt && !spi->controller->rt) {
3846 		spi->controller->rt = true;
3847 		spi_set_thread_rt(spi->controller);
3848 	}
3849 
3850 	trace_spi_setup(spi, status);
3851 
3852 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3853 			spi->mode & SPI_MODE_X_MASK,
3854 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3855 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3856 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3857 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3858 			spi->bits_per_word, spi->max_speed_hz,
3859 			status);
3860 
3861 	return status;
3862 }
3863 EXPORT_SYMBOL_GPL(spi_setup);
3864 
3865 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3866 				       struct spi_device *spi)
3867 {
3868 	int delay1, delay2;
3869 
3870 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3871 	if (delay1 < 0)
3872 		return delay1;
3873 
3874 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3875 	if (delay2 < 0)
3876 		return delay2;
3877 
3878 	if (delay1 < delay2)
3879 		memcpy(&xfer->word_delay, &spi->word_delay,
3880 		       sizeof(xfer->word_delay));
3881 
3882 	return 0;
3883 }
3884 
3885 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3886 {
3887 	struct spi_controller *ctlr = spi->controller;
3888 	struct spi_transfer *xfer;
3889 	int w_size;
3890 
3891 	if (list_empty(&message->transfers))
3892 		return -EINVAL;
3893 
3894 	/*
3895 	 * If an SPI controller does not support toggling the CS line on each
3896 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3897 	 * for the CS line, we can emulate the CS-per-word hardware function by
3898 	 * splitting transfers into one-word transfers and ensuring that
3899 	 * cs_change is set for each transfer.
3900 	 */
3901 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3902 					  spi_get_csgpiod(spi, 0))) {
3903 		size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
3904 		int ret;
3905 
3906 		/* spi_split_transfers_maxsize() requires message->spi */
3907 		message->spi = spi;
3908 
3909 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3910 						  GFP_KERNEL);
3911 		if (ret)
3912 			return ret;
3913 
3914 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3915 			/* Don't change cs_change on the last entry in the list */
3916 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3917 				break;
3918 			xfer->cs_change = 1;
3919 		}
3920 	}
3921 
3922 	/*
3923 	 * Half-duplex links include original MicroWire, and ones with
3924 	 * only one data pin like SPI_3WIRE (switches direction) or where
3925 	 * either MOSI or MISO is missing.  They can also be caused by
3926 	 * software limitations.
3927 	 */
3928 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3929 	    (spi->mode & SPI_3WIRE)) {
3930 		unsigned flags = ctlr->flags;
3931 
3932 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3933 			if (xfer->rx_buf && xfer->tx_buf)
3934 				return -EINVAL;
3935 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3936 				return -EINVAL;
3937 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3938 				return -EINVAL;
3939 		}
3940 	}
3941 
3942 	/*
3943 	 * Set transfer bits_per_word and max speed as spi device default if
3944 	 * it is not set for this transfer.
3945 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3946 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3947 	 * Ensure transfer word_delay is at least as long as that required by
3948 	 * device itself.
3949 	 */
3950 	message->frame_length = 0;
3951 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3952 		xfer->effective_speed_hz = 0;
3953 		message->frame_length += xfer->len;
3954 		if (!xfer->bits_per_word)
3955 			xfer->bits_per_word = spi->bits_per_word;
3956 
3957 		if (!xfer->speed_hz)
3958 			xfer->speed_hz = spi->max_speed_hz;
3959 
3960 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3961 			xfer->speed_hz = ctlr->max_speed_hz;
3962 
3963 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3964 			return -EINVAL;
3965 
3966 		/*
3967 		 * SPI transfer length should be multiple of SPI word size
3968 		 * where SPI word size should be power-of-two multiple.
3969 		 */
3970 		if (xfer->bits_per_word <= 8)
3971 			w_size = 1;
3972 		else if (xfer->bits_per_word <= 16)
3973 			w_size = 2;
3974 		else
3975 			w_size = 4;
3976 
3977 		/* No partial transfers accepted */
3978 		if (xfer->len % w_size)
3979 			return -EINVAL;
3980 
3981 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3982 		    xfer->speed_hz < ctlr->min_speed_hz)
3983 			return -EINVAL;
3984 
3985 		if (xfer->tx_buf && !xfer->tx_nbits)
3986 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3987 		if (xfer->rx_buf && !xfer->rx_nbits)
3988 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3989 		/*
3990 		 * Check transfer tx/rx_nbits:
3991 		 * 1. check the value matches one of single, dual and quad
3992 		 * 2. check tx/rx_nbits match the mode in spi_device
3993 		 */
3994 		if (xfer->tx_buf) {
3995 			if (spi->mode & SPI_NO_TX)
3996 				return -EINVAL;
3997 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3998 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3999 				xfer->tx_nbits != SPI_NBITS_QUAD)
4000 				return -EINVAL;
4001 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4002 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4003 				return -EINVAL;
4004 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4005 				!(spi->mode & SPI_TX_QUAD))
4006 				return -EINVAL;
4007 		}
4008 		/* Check transfer rx_nbits */
4009 		if (xfer->rx_buf) {
4010 			if (spi->mode & SPI_NO_RX)
4011 				return -EINVAL;
4012 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4013 				xfer->rx_nbits != SPI_NBITS_DUAL &&
4014 				xfer->rx_nbits != SPI_NBITS_QUAD)
4015 				return -EINVAL;
4016 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4017 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4018 				return -EINVAL;
4019 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4020 				!(spi->mode & SPI_RX_QUAD))
4021 				return -EINVAL;
4022 		}
4023 
4024 		if (_spi_xfer_word_delay_update(xfer, spi))
4025 			return -EINVAL;
4026 	}
4027 
4028 	message->status = -EINPROGRESS;
4029 
4030 	return 0;
4031 }
4032 
4033 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4034 {
4035 	struct spi_controller *ctlr = spi->controller;
4036 	struct spi_transfer *xfer;
4037 
4038 	/*
4039 	 * Some controllers do not support doing regular SPI transfers. Return
4040 	 * ENOTSUPP when this is the case.
4041 	 */
4042 	if (!ctlr->transfer)
4043 		return -ENOTSUPP;
4044 
4045 	message->spi = spi;
4046 
4047 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4048 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4049 
4050 	trace_spi_message_submit(message);
4051 
4052 	if (!ctlr->ptp_sts_supported) {
4053 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4054 			xfer->ptp_sts_word_pre = 0;
4055 			ptp_read_system_prets(xfer->ptp_sts);
4056 		}
4057 	}
4058 
4059 	return ctlr->transfer(spi, message);
4060 }
4061 
4062 /**
4063  * spi_async - asynchronous SPI transfer
4064  * @spi: device with which data will be exchanged
4065  * @message: describes the data transfers, including completion callback
4066  * Context: any (IRQs may be blocked, etc)
4067  *
4068  * This call may be used in_irq and other contexts which can't sleep,
4069  * as well as from task contexts which can sleep.
4070  *
4071  * The completion callback is invoked in a context which can't sleep.
4072  * Before that invocation, the value of message->status is undefined.
4073  * When the callback is issued, message->status holds either zero (to
4074  * indicate complete success) or a negative error code.  After that
4075  * callback returns, the driver which issued the transfer request may
4076  * deallocate the associated memory; it's no longer in use by any SPI
4077  * core or controller driver code.
4078  *
4079  * Note that although all messages to a spi_device are handled in
4080  * FIFO order, messages may go to different devices in other orders.
4081  * Some device might be higher priority, or have various "hard" access
4082  * time requirements, for example.
4083  *
4084  * On detection of any fault during the transfer, processing of
4085  * the entire message is aborted, and the device is deselected.
4086  * Until returning from the associated message completion callback,
4087  * no other spi_message queued to that device will be processed.
4088  * (This rule applies equally to all the synchronous transfer calls,
4089  * which are wrappers around this core asynchronous primitive.)
4090  *
4091  * Return: zero on success, else a negative error code.
4092  */
4093 int spi_async(struct spi_device *spi, struct spi_message *message)
4094 {
4095 	struct spi_controller *ctlr = spi->controller;
4096 	int ret;
4097 	unsigned long flags;
4098 
4099 	ret = __spi_validate(spi, message);
4100 	if (ret != 0)
4101 		return ret;
4102 
4103 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4104 
4105 	if (ctlr->bus_lock_flag)
4106 		ret = -EBUSY;
4107 	else
4108 		ret = __spi_async(spi, message);
4109 
4110 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4111 
4112 	return ret;
4113 }
4114 EXPORT_SYMBOL_GPL(spi_async);
4115 
4116 /**
4117  * spi_async_locked - version of spi_async with exclusive bus usage
4118  * @spi: device with which data will be exchanged
4119  * @message: describes the data transfers, including completion callback
4120  * Context: any (IRQs may be blocked, etc)
4121  *
4122  * This call may be used in_irq and other contexts which can't sleep,
4123  * as well as from task contexts which can sleep.
4124  *
4125  * The completion callback is invoked in a context which can't sleep.
4126  * Before that invocation, the value of message->status is undefined.
4127  * When the callback is issued, message->status holds either zero (to
4128  * indicate complete success) or a negative error code.  After that
4129  * callback returns, the driver which issued the transfer request may
4130  * deallocate the associated memory; it's no longer in use by any SPI
4131  * core or controller driver code.
4132  *
4133  * Note that although all messages to a spi_device are handled in
4134  * FIFO order, messages may go to different devices in other orders.
4135  * Some device might be higher priority, or have various "hard" access
4136  * time requirements, for example.
4137  *
4138  * On detection of any fault during the transfer, processing of
4139  * the entire message is aborted, and the device is deselected.
4140  * Until returning from the associated message completion callback,
4141  * no other spi_message queued to that device will be processed.
4142  * (This rule applies equally to all the synchronous transfer calls,
4143  * which are wrappers around this core asynchronous primitive.)
4144  *
4145  * Return: zero on success, else a negative error code.
4146  */
4147 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4148 {
4149 	struct spi_controller *ctlr = spi->controller;
4150 	int ret;
4151 	unsigned long flags;
4152 
4153 	ret = __spi_validate(spi, message);
4154 	if (ret != 0)
4155 		return ret;
4156 
4157 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4158 
4159 	ret = __spi_async(spi, message);
4160 
4161 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4162 
4163 	return ret;
4164 
4165 }
4166 
4167 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4168 {
4169 	bool was_busy;
4170 	int ret;
4171 
4172 	mutex_lock(&ctlr->io_mutex);
4173 
4174 	was_busy = ctlr->busy;
4175 
4176 	ctlr->cur_msg = msg;
4177 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4178 	if (ret)
4179 		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4180 	ctlr->cur_msg = NULL;
4181 	ctlr->fallback = false;
4182 
4183 	if (!was_busy) {
4184 		kfree(ctlr->dummy_rx);
4185 		ctlr->dummy_rx = NULL;
4186 		kfree(ctlr->dummy_tx);
4187 		ctlr->dummy_tx = NULL;
4188 		if (ctlr->unprepare_transfer_hardware &&
4189 		    ctlr->unprepare_transfer_hardware(ctlr))
4190 			dev_err(&ctlr->dev,
4191 				"failed to unprepare transfer hardware\n");
4192 		spi_idle_runtime_pm(ctlr);
4193 	}
4194 
4195 	mutex_unlock(&ctlr->io_mutex);
4196 }
4197 
4198 /*-------------------------------------------------------------------------*/
4199 
4200 /*
4201  * Utility methods for SPI protocol drivers, layered on
4202  * top of the core.  Some other utility methods are defined as
4203  * inline functions.
4204  */
4205 
4206 static void spi_complete(void *arg)
4207 {
4208 	complete(arg);
4209 }
4210 
4211 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4212 {
4213 	DECLARE_COMPLETION_ONSTACK(done);
4214 	int status;
4215 	struct spi_controller *ctlr = spi->controller;
4216 
4217 	if (__spi_check_suspended(ctlr)) {
4218 		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4219 		return -ESHUTDOWN;
4220 	}
4221 
4222 	status = __spi_validate(spi, message);
4223 	if (status != 0)
4224 		return status;
4225 
4226 	message->spi = spi;
4227 
4228 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4229 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4230 
4231 	/*
4232 	 * Checking queue_empty here only guarantees async/sync message
4233 	 * ordering when coming from the same context. It does not need to
4234 	 * guard against reentrancy from a different context. The io_mutex
4235 	 * will catch those cases.
4236 	 */
4237 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4238 		message->actual_length = 0;
4239 		message->status = -EINPROGRESS;
4240 
4241 		trace_spi_message_submit(message);
4242 
4243 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4244 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4245 
4246 		__spi_transfer_message_noqueue(ctlr, message);
4247 
4248 		return message->status;
4249 	}
4250 
4251 	/*
4252 	 * There are messages in the async queue that could have originated
4253 	 * from the same context, so we need to preserve ordering.
4254 	 * Therefor we send the message to the async queue and wait until they
4255 	 * are completed.
4256 	 */
4257 	message->complete = spi_complete;
4258 	message->context = &done;
4259 	status = spi_async_locked(spi, message);
4260 	if (status == 0) {
4261 		wait_for_completion(&done);
4262 		status = message->status;
4263 	}
4264 	message->context = NULL;
4265 
4266 	return status;
4267 }
4268 
4269 /**
4270  * spi_sync - blocking/synchronous SPI data transfers
4271  * @spi: device with which data will be exchanged
4272  * @message: describes the data transfers
4273  * Context: can sleep
4274  *
4275  * This call may only be used from a context that may sleep.  The sleep
4276  * is non-interruptible, and has no timeout.  Low-overhead controller
4277  * drivers may DMA directly into and out of the message buffers.
4278  *
4279  * Note that the SPI device's chip select is active during the message,
4280  * and then is normally disabled between messages.  Drivers for some
4281  * frequently-used devices may want to minimize costs of selecting a chip,
4282  * by leaving it selected in anticipation that the next message will go
4283  * to the same chip.  (That may increase power usage.)
4284  *
4285  * Also, the caller is guaranteeing that the memory associated with the
4286  * message will not be freed before this call returns.
4287  *
4288  * Return: zero on success, else a negative error code.
4289  */
4290 int spi_sync(struct spi_device *spi, struct spi_message *message)
4291 {
4292 	int ret;
4293 
4294 	mutex_lock(&spi->controller->bus_lock_mutex);
4295 	ret = __spi_sync(spi, message);
4296 	mutex_unlock(&spi->controller->bus_lock_mutex);
4297 
4298 	return ret;
4299 }
4300 EXPORT_SYMBOL_GPL(spi_sync);
4301 
4302 /**
4303  * spi_sync_locked - version of spi_sync with exclusive bus usage
4304  * @spi: device with which data will be exchanged
4305  * @message: describes the data transfers
4306  * Context: can sleep
4307  *
4308  * This call may only be used from a context that may sleep.  The sleep
4309  * is non-interruptible, and has no timeout.  Low-overhead controller
4310  * drivers may DMA directly into and out of the message buffers.
4311  *
4312  * This call should be used by drivers that require exclusive access to the
4313  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4314  * be released by a spi_bus_unlock call when the exclusive access is over.
4315  *
4316  * Return: zero on success, else a negative error code.
4317  */
4318 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4319 {
4320 	return __spi_sync(spi, message);
4321 }
4322 EXPORT_SYMBOL_GPL(spi_sync_locked);
4323 
4324 /**
4325  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4326  * @ctlr: SPI bus master that should be locked for exclusive bus access
4327  * Context: can sleep
4328  *
4329  * This call may only be used from a context that may sleep.  The sleep
4330  * is non-interruptible, and has no timeout.
4331  *
4332  * This call should be used by drivers that require exclusive access to the
4333  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4334  * exclusive access is over. Data transfer must be done by spi_sync_locked
4335  * and spi_async_locked calls when the SPI bus lock is held.
4336  *
4337  * Return: always zero.
4338  */
4339 int spi_bus_lock(struct spi_controller *ctlr)
4340 {
4341 	unsigned long flags;
4342 
4343 	mutex_lock(&ctlr->bus_lock_mutex);
4344 
4345 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4346 	ctlr->bus_lock_flag = 1;
4347 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4348 
4349 	/* Mutex remains locked until spi_bus_unlock() is called */
4350 
4351 	return 0;
4352 }
4353 EXPORT_SYMBOL_GPL(spi_bus_lock);
4354 
4355 /**
4356  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4357  * @ctlr: SPI bus master that was locked for exclusive bus access
4358  * Context: can sleep
4359  *
4360  * This call may only be used from a context that may sleep.  The sleep
4361  * is non-interruptible, and has no timeout.
4362  *
4363  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4364  * call.
4365  *
4366  * Return: always zero.
4367  */
4368 int spi_bus_unlock(struct spi_controller *ctlr)
4369 {
4370 	ctlr->bus_lock_flag = 0;
4371 
4372 	mutex_unlock(&ctlr->bus_lock_mutex);
4373 
4374 	return 0;
4375 }
4376 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4377 
4378 /* Portable code must never pass more than 32 bytes */
4379 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4380 
4381 static u8	*buf;
4382 
4383 /**
4384  * spi_write_then_read - SPI synchronous write followed by read
4385  * @spi: device with which data will be exchanged
4386  * @txbuf: data to be written (need not be DMA-safe)
4387  * @n_tx: size of txbuf, in bytes
4388  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4389  * @n_rx: size of rxbuf, in bytes
4390  * Context: can sleep
4391  *
4392  * This performs a half duplex MicroWire style transaction with the
4393  * device, sending txbuf and then reading rxbuf.  The return value
4394  * is zero for success, else a negative errno status code.
4395  * This call may only be used from a context that may sleep.
4396  *
4397  * Parameters to this routine are always copied using a small buffer.
4398  * Performance-sensitive or bulk transfer code should instead use
4399  * spi_{async,sync}() calls with DMA-safe buffers.
4400  *
4401  * Return: zero on success, else a negative error code.
4402  */
4403 int spi_write_then_read(struct spi_device *spi,
4404 		const void *txbuf, unsigned n_tx,
4405 		void *rxbuf, unsigned n_rx)
4406 {
4407 	static DEFINE_MUTEX(lock);
4408 
4409 	int			status;
4410 	struct spi_message	message;
4411 	struct spi_transfer	x[2];
4412 	u8			*local_buf;
4413 
4414 	/*
4415 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4416 	 * copying here, (as a pure convenience thing), but we can
4417 	 * keep heap costs out of the hot path unless someone else is
4418 	 * using the pre-allocated buffer or the transfer is too large.
4419 	 */
4420 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4421 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4422 				    GFP_KERNEL | GFP_DMA);
4423 		if (!local_buf)
4424 			return -ENOMEM;
4425 	} else {
4426 		local_buf = buf;
4427 	}
4428 
4429 	spi_message_init(&message);
4430 	memset(x, 0, sizeof(x));
4431 	if (n_tx) {
4432 		x[0].len = n_tx;
4433 		spi_message_add_tail(&x[0], &message);
4434 	}
4435 	if (n_rx) {
4436 		x[1].len = n_rx;
4437 		spi_message_add_tail(&x[1], &message);
4438 	}
4439 
4440 	memcpy(local_buf, txbuf, n_tx);
4441 	x[0].tx_buf = local_buf;
4442 	x[1].rx_buf = local_buf + n_tx;
4443 
4444 	/* Do the I/O */
4445 	status = spi_sync(spi, &message);
4446 	if (status == 0)
4447 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4448 
4449 	if (x[0].tx_buf == buf)
4450 		mutex_unlock(&lock);
4451 	else
4452 		kfree(local_buf);
4453 
4454 	return status;
4455 }
4456 EXPORT_SYMBOL_GPL(spi_write_then_read);
4457 
4458 /*-------------------------------------------------------------------------*/
4459 
4460 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4461 /* Must call put_device() when done with returned spi_device device */
4462 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4463 {
4464 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4465 
4466 	return dev ? to_spi_device(dev) : NULL;
4467 }
4468 
4469 /* The spi controllers are not using spi_bus, so we find it with another way */
4470 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4471 {
4472 	struct device *dev;
4473 
4474 	dev = class_find_device_by_of_node(&spi_master_class, node);
4475 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4476 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4477 	if (!dev)
4478 		return NULL;
4479 
4480 	/* Reference got in class_find_device */
4481 	return container_of(dev, struct spi_controller, dev);
4482 }
4483 
4484 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4485 			 void *arg)
4486 {
4487 	struct of_reconfig_data *rd = arg;
4488 	struct spi_controller *ctlr;
4489 	struct spi_device *spi;
4490 
4491 	switch (of_reconfig_get_state_change(action, arg)) {
4492 	case OF_RECONFIG_CHANGE_ADD:
4493 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4494 		if (ctlr == NULL)
4495 			return NOTIFY_OK;	/* Not for us */
4496 
4497 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4498 			put_device(&ctlr->dev);
4499 			return NOTIFY_OK;
4500 		}
4501 
4502 		/*
4503 		 * Clear the flag before adding the device so that fw_devlink
4504 		 * doesn't skip adding consumers to this device.
4505 		 */
4506 		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4507 		spi = of_register_spi_device(ctlr, rd->dn);
4508 		put_device(&ctlr->dev);
4509 
4510 		if (IS_ERR(spi)) {
4511 			pr_err("%s: failed to create for '%pOF'\n",
4512 					__func__, rd->dn);
4513 			of_node_clear_flag(rd->dn, OF_POPULATED);
4514 			return notifier_from_errno(PTR_ERR(spi));
4515 		}
4516 		break;
4517 
4518 	case OF_RECONFIG_CHANGE_REMOVE:
4519 		/* Already depopulated? */
4520 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4521 			return NOTIFY_OK;
4522 
4523 		/* Find our device by node */
4524 		spi = of_find_spi_device_by_node(rd->dn);
4525 		if (spi == NULL)
4526 			return NOTIFY_OK;	/* No? not meant for us */
4527 
4528 		/* Unregister takes one ref away */
4529 		spi_unregister_device(spi);
4530 
4531 		/* And put the reference of the find */
4532 		put_device(&spi->dev);
4533 		break;
4534 	}
4535 
4536 	return NOTIFY_OK;
4537 }
4538 
4539 static struct notifier_block spi_of_notifier = {
4540 	.notifier_call = of_spi_notify,
4541 };
4542 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4543 extern struct notifier_block spi_of_notifier;
4544 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4545 
4546 #if IS_ENABLED(CONFIG_ACPI)
4547 static int spi_acpi_controller_match(struct device *dev, const void *data)
4548 {
4549 	return ACPI_COMPANION(dev->parent) == data;
4550 }
4551 
4552 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4553 {
4554 	struct device *dev;
4555 
4556 	dev = class_find_device(&spi_master_class, NULL, adev,
4557 				spi_acpi_controller_match);
4558 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4559 		dev = class_find_device(&spi_slave_class, NULL, adev,
4560 					spi_acpi_controller_match);
4561 	if (!dev)
4562 		return NULL;
4563 
4564 	return container_of(dev, struct spi_controller, dev);
4565 }
4566 
4567 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4568 {
4569 	struct device *dev;
4570 
4571 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4572 	return to_spi_device(dev);
4573 }
4574 
4575 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4576 			   void *arg)
4577 {
4578 	struct acpi_device *adev = arg;
4579 	struct spi_controller *ctlr;
4580 	struct spi_device *spi;
4581 
4582 	switch (value) {
4583 	case ACPI_RECONFIG_DEVICE_ADD:
4584 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4585 		if (!ctlr)
4586 			break;
4587 
4588 		acpi_register_spi_device(ctlr, adev);
4589 		put_device(&ctlr->dev);
4590 		break;
4591 	case ACPI_RECONFIG_DEVICE_REMOVE:
4592 		if (!acpi_device_enumerated(adev))
4593 			break;
4594 
4595 		spi = acpi_spi_find_device_by_adev(adev);
4596 		if (!spi)
4597 			break;
4598 
4599 		spi_unregister_device(spi);
4600 		put_device(&spi->dev);
4601 		break;
4602 	}
4603 
4604 	return NOTIFY_OK;
4605 }
4606 
4607 static struct notifier_block spi_acpi_notifier = {
4608 	.notifier_call = acpi_spi_notify,
4609 };
4610 #else
4611 extern struct notifier_block spi_acpi_notifier;
4612 #endif
4613 
4614 static int __init spi_init(void)
4615 {
4616 	int	status;
4617 
4618 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4619 	if (!buf) {
4620 		status = -ENOMEM;
4621 		goto err0;
4622 	}
4623 
4624 	status = bus_register(&spi_bus_type);
4625 	if (status < 0)
4626 		goto err1;
4627 
4628 	status = class_register(&spi_master_class);
4629 	if (status < 0)
4630 		goto err2;
4631 
4632 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4633 		status = class_register(&spi_slave_class);
4634 		if (status < 0)
4635 			goto err3;
4636 	}
4637 
4638 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4639 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4640 	if (IS_ENABLED(CONFIG_ACPI))
4641 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4642 
4643 	return 0;
4644 
4645 err3:
4646 	class_unregister(&spi_master_class);
4647 err2:
4648 	bus_unregister(&spi_bus_type);
4649 err1:
4650 	kfree(buf);
4651 	buf = NULL;
4652 err0:
4653 	return status;
4654 }
4655 
4656 /*
4657  * A board_info is normally registered in arch_initcall(),
4658  * but even essential drivers wait till later.
4659  *
4660  * REVISIT only boardinfo really needs static linking. The rest (device and
4661  * driver registration) _could_ be dynamically linked (modular) ... Costs
4662  * include needing to have boardinfo data structures be much more public.
4663  */
4664 postcore_initcall(spi_init);
4665