1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/kmod.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/cache.h> 27 #include <linux/mutex.h> 28 #include <linux/of_device.h> 29 #include <linux/of_irq.h> 30 #include <linux/slab.h> 31 #include <linux/mod_devicetable.h> 32 #include <linux/spi/spi.h> 33 #include <linux/of_gpio.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/export.h> 36 #include <linux/sched/rt.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/ioport.h> 40 #include <linux/acpi.h> 41 42 static void spidev_release(struct device *dev) 43 { 44 struct spi_device *spi = to_spi_device(dev); 45 46 /* spi masters may cleanup for released devices */ 47 if (spi->master->cleanup) 48 spi->master->cleanup(spi); 49 50 spi_master_put(spi->master); 51 kfree(spi); 52 } 53 54 static ssize_t 55 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 56 { 57 const struct spi_device *spi = to_spi_device(dev); 58 59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 60 } 61 62 static struct device_attribute spi_dev_attrs[] = { 63 __ATTR_RO(modalias), 64 __ATTR_NULL, 65 }; 66 67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 68 * and the sysfs version makes coldplug work too. 69 */ 70 71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 72 const struct spi_device *sdev) 73 { 74 while (id->name[0]) { 75 if (!strcmp(sdev->modalias, id->name)) 76 return id; 77 id++; 78 } 79 return NULL; 80 } 81 82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 83 { 84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 85 86 return spi_match_id(sdrv->id_table, sdev); 87 } 88 EXPORT_SYMBOL_GPL(spi_get_device_id); 89 90 static int spi_match_device(struct device *dev, struct device_driver *drv) 91 { 92 const struct spi_device *spi = to_spi_device(dev); 93 const struct spi_driver *sdrv = to_spi_driver(drv); 94 95 /* Attempt an OF style match */ 96 if (of_driver_match_device(dev, drv)) 97 return 1; 98 99 /* Then try ACPI */ 100 if (acpi_driver_match_device(dev, drv)) 101 return 1; 102 103 if (sdrv->id_table) 104 return !!spi_match_id(sdrv->id_table, spi); 105 106 return strcmp(spi->modalias, drv->name) == 0; 107 } 108 109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 110 { 111 const struct spi_device *spi = to_spi_device(dev); 112 113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 114 return 0; 115 } 116 117 #ifdef CONFIG_PM_SLEEP 118 static int spi_legacy_suspend(struct device *dev, pm_message_t message) 119 { 120 int value = 0; 121 struct spi_driver *drv = to_spi_driver(dev->driver); 122 123 /* suspend will stop irqs and dma; no more i/o */ 124 if (drv) { 125 if (drv->suspend) 126 value = drv->suspend(to_spi_device(dev), message); 127 else 128 dev_dbg(dev, "... can't suspend\n"); 129 } 130 return value; 131 } 132 133 static int spi_legacy_resume(struct device *dev) 134 { 135 int value = 0; 136 struct spi_driver *drv = to_spi_driver(dev->driver); 137 138 /* resume may restart the i/o queue */ 139 if (drv) { 140 if (drv->resume) 141 value = drv->resume(to_spi_device(dev)); 142 else 143 dev_dbg(dev, "... can't resume\n"); 144 } 145 return value; 146 } 147 148 static int spi_pm_suspend(struct device *dev) 149 { 150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 151 152 if (pm) 153 return pm_generic_suspend(dev); 154 else 155 return spi_legacy_suspend(dev, PMSG_SUSPEND); 156 } 157 158 static int spi_pm_resume(struct device *dev) 159 { 160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 161 162 if (pm) 163 return pm_generic_resume(dev); 164 else 165 return spi_legacy_resume(dev); 166 } 167 168 static int spi_pm_freeze(struct device *dev) 169 { 170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 171 172 if (pm) 173 return pm_generic_freeze(dev); 174 else 175 return spi_legacy_suspend(dev, PMSG_FREEZE); 176 } 177 178 static int spi_pm_thaw(struct device *dev) 179 { 180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 181 182 if (pm) 183 return pm_generic_thaw(dev); 184 else 185 return spi_legacy_resume(dev); 186 } 187 188 static int spi_pm_poweroff(struct device *dev) 189 { 190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 191 192 if (pm) 193 return pm_generic_poweroff(dev); 194 else 195 return spi_legacy_suspend(dev, PMSG_HIBERNATE); 196 } 197 198 static int spi_pm_restore(struct device *dev) 199 { 200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 201 202 if (pm) 203 return pm_generic_restore(dev); 204 else 205 return spi_legacy_resume(dev); 206 } 207 #else 208 #define spi_pm_suspend NULL 209 #define spi_pm_resume NULL 210 #define spi_pm_freeze NULL 211 #define spi_pm_thaw NULL 212 #define spi_pm_poweroff NULL 213 #define spi_pm_restore NULL 214 #endif 215 216 static const struct dev_pm_ops spi_pm = { 217 .suspend = spi_pm_suspend, 218 .resume = spi_pm_resume, 219 .freeze = spi_pm_freeze, 220 .thaw = spi_pm_thaw, 221 .poweroff = spi_pm_poweroff, 222 .restore = spi_pm_restore, 223 SET_RUNTIME_PM_OPS( 224 pm_generic_runtime_suspend, 225 pm_generic_runtime_resume, 226 pm_generic_runtime_idle 227 ) 228 }; 229 230 struct bus_type spi_bus_type = { 231 .name = "spi", 232 .dev_attrs = spi_dev_attrs, 233 .match = spi_match_device, 234 .uevent = spi_uevent, 235 .pm = &spi_pm, 236 }; 237 EXPORT_SYMBOL_GPL(spi_bus_type); 238 239 240 static int spi_drv_probe(struct device *dev) 241 { 242 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 243 244 return sdrv->probe(to_spi_device(dev)); 245 } 246 247 static int spi_drv_remove(struct device *dev) 248 { 249 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 250 251 return sdrv->remove(to_spi_device(dev)); 252 } 253 254 static void spi_drv_shutdown(struct device *dev) 255 { 256 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 257 258 sdrv->shutdown(to_spi_device(dev)); 259 } 260 261 /** 262 * spi_register_driver - register a SPI driver 263 * @sdrv: the driver to register 264 * Context: can sleep 265 */ 266 int spi_register_driver(struct spi_driver *sdrv) 267 { 268 sdrv->driver.bus = &spi_bus_type; 269 if (sdrv->probe) 270 sdrv->driver.probe = spi_drv_probe; 271 if (sdrv->remove) 272 sdrv->driver.remove = spi_drv_remove; 273 if (sdrv->shutdown) 274 sdrv->driver.shutdown = spi_drv_shutdown; 275 return driver_register(&sdrv->driver); 276 } 277 EXPORT_SYMBOL_GPL(spi_register_driver); 278 279 /*-------------------------------------------------------------------------*/ 280 281 /* SPI devices should normally not be created by SPI device drivers; that 282 * would make them board-specific. Similarly with SPI master drivers. 283 * Device registration normally goes into like arch/.../mach.../board-YYY.c 284 * with other readonly (flashable) information about mainboard devices. 285 */ 286 287 struct boardinfo { 288 struct list_head list; 289 struct spi_board_info board_info; 290 }; 291 292 static LIST_HEAD(board_list); 293 static LIST_HEAD(spi_master_list); 294 295 /* 296 * Used to protect add/del opertion for board_info list and 297 * spi_master list, and their matching process 298 */ 299 static DEFINE_MUTEX(board_lock); 300 301 /** 302 * spi_alloc_device - Allocate a new SPI device 303 * @master: Controller to which device is connected 304 * Context: can sleep 305 * 306 * Allows a driver to allocate and initialize a spi_device without 307 * registering it immediately. This allows a driver to directly 308 * fill the spi_device with device parameters before calling 309 * spi_add_device() on it. 310 * 311 * Caller is responsible to call spi_add_device() on the returned 312 * spi_device structure to add it to the SPI master. If the caller 313 * needs to discard the spi_device without adding it, then it should 314 * call spi_dev_put() on it. 315 * 316 * Returns a pointer to the new device, or NULL. 317 */ 318 struct spi_device *spi_alloc_device(struct spi_master *master) 319 { 320 struct spi_device *spi; 321 struct device *dev = master->dev.parent; 322 323 if (!spi_master_get(master)) 324 return NULL; 325 326 spi = kzalloc(sizeof *spi, GFP_KERNEL); 327 if (!spi) { 328 dev_err(dev, "cannot alloc spi_device\n"); 329 spi_master_put(master); 330 return NULL; 331 } 332 333 spi->master = master; 334 spi->dev.parent = &master->dev; 335 spi->dev.bus = &spi_bus_type; 336 spi->dev.release = spidev_release; 337 spi->cs_gpio = -EINVAL; 338 device_initialize(&spi->dev); 339 return spi; 340 } 341 EXPORT_SYMBOL_GPL(spi_alloc_device); 342 343 /** 344 * spi_add_device - Add spi_device allocated with spi_alloc_device 345 * @spi: spi_device to register 346 * 347 * Companion function to spi_alloc_device. Devices allocated with 348 * spi_alloc_device can be added onto the spi bus with this function. 349 * 350 * Returns 0 on success; negative errno on failure 351 */ 352 int spi_add_device(struct spi_device *spi) 353 { 354 static DEFINE_MUTEX(spi_add_lock); 355 struct spi_master *master = spi->master; 356 struct device *dev = master->dev.parent; 357 struct device *d; 358 int status; 359 360 /* Chipselects are numbered 0..max; validate. */ 361 if (spi->chip_select >= master->num_chipselect) { 362 dev_err(dev, "cs%d >= max %d\n", 363 spi->chip_select, 364 master->num_chipselect); 365 return -EINVAL; 366 } 367 368 /* Set the bus ID string */ 369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 370 spi->chip_select); 371 372 373 /* We need to make sure there's no other device with this 374 * chipselect **BEFORE** we call setup(), else we'll trash 375 * its configuration. Lock against concurrent add() calls. 376 */ 377 mutex_lock(&spi_add_lock); 378 379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev)); 380 if (d != NULL) { 381 dev_err(dev, "chipselect %d already in use\n", 382 spi->chip_select); 383 put_device(d); 384 status = -EBUSY; 385 goto done; 386 } 387 388 if (master->cs_gpios) 389 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 390 391 /* Drivers may modify this initial i/o setup, but will 392 * normally rely on the device being setup. Devices 393 * using SPI_CS_HIGH can't coexist well otherwise... 394 */ 395 status = spi_setup(spi); 396 if (status < 0) { 397 dev_err(dev, "can't setup %s, status %d\n", 398 dev_name(&spi->dev), status); 399 goto done; 400 } 401 402 /* Device may be bound to an active driver when this returns */ 403 status = device_add(&spi->dev); 404 if (status < 0) 405 dev_err(dev, "can't add %s, status %d\n", 406 dev_name(&spi->dev), status); 407 else 408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 409 410 done: 411 mutex_unlock(&spi_add_lock); 412 return status; 413 } 414 EXPORT_SYMBOL_GPL(spi_add_device); 415 416 /** 417 * spi_new_device - instantiate one new SPI device 418 * @master: Controller to which device is connected 419 * @chip: Describes the SPI device 420 * Context: can sleep 421 * 422 * On typical mainboards, this is purely internal; and it's not needed 423 * after board init creates the hard-wired devices. Some development 424 * platforms may not be able to use spi_register_board_info though, and 425 * this is exported so that for example a USB or parport based adapter 426 * driver could add devices (which it would learn about out-of-band). 427 * 428 * Returns the new device, or NULL. 429 */ 430 struct spi_device *spi_new_device(struct spi_master *master, 431 struct spi_board_info *chip) 432 { 433 struct spi_device *proxy; 434 int status; 435 436 /* NOTE: caller did any chip->bus_num checks necessary. 437 * 438 * Also, unless we change the return value convention to use 439 * error-or-pointer (not NULL-or-pointer), troubleshootability 440 * suggests syslogged diagnostics are best here (ugh). 441 */ 442 443 proxy = spi_alloc_device(master); 444 if (!proxy) 445 return NULL; 446 447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 448 449 proxy->chip_select = chip->chip_select; 450 proxy->max_speed_hz = chip->max_speed_hz; 451 proxy->mode = chip->mode; 452 proxy->irq = chip->irq; 453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 454 proxy->dev.platform_data = (void *) chip->platform_data; 455 proxy->controller_data = chip->controller_data; 456 proxy->controller_state = NULL; 457 458 status = spi_add_device(proxy); 459 if (status < 0) { 460 spi_dev_put(proxy); 461 return NULL; 462 } 463 464 return proxy; 465 } 466 EXPORT_SYMBOL_GPL(spi_new_device); 467 468 static void spi_match_master_to_boardinfo(struct spi_master *master, 469 struct spi_board_info *bi) 470 { 471 struct spi_device *dev; 472 473 if (master->bus_num != bi->bus_num) 474 return; 475 476 dev = spi_new_device(master, bi); 477 if (!dev) 478 dev_err(master->dev.parent, "can't create new device for %s\n", 479 bi->modalias); 480 } 481 482 /** 483 * spi_register_board_info - register SPI devices for a given board 484 * @info: array of chip descriptors 485 * @n: how many descriptors are provided 486 * Context: can sleep 487 * 488 * Board-specific early init code calls this (probably during arch_initcall) 489 * with segments of the SPI device table. Any device nodes are created later, 490 * after the relevant parent SPI controller (bus_num) is defined. We keep 491 * this table of devices forever, so that reloading a controller driver will 492 * not make Linux forget about these hard-wired devices. 493 * 494 * Other code can also call this, e.g. a particular add-on board might provide 495 * SPI devices through its expansion connector, so code initializing that board 496 * would naturally declare its SPI devices. 497 * 498 * The board info passed can safely be __initdata ... but be careful of 499 * any embedded pointers (platform_data, etc), they're copied as-is. 500 */ 501 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 502 { 503 struct boardinfo *bi; 504 int i; 505 506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 507 if (!bi) 508 return -ENOMEM; 509 510 for (i = 0; i < n; i++, bi++, info++) { 511 struct spi_master *master; 512 513 memcpy(&bi->board_info, info, sizeof(*info)); 514 mutex_lock(&board_lock); 515 list_add_tail(&bi->list, &board_list); 516 list_for_each_entry(master, &spi_master_list, list) 517 spi_match_master_to_boardinfo(master, &bi->board_info); 518 mutex_unlock(&board_lock); 519 } 520 521 return 0; 522 } 523 524 /*-------------------------------------------------------------------------*/ 525 526 /** 527 * spi_pump_messages - kthread work function which processes spi message queue 528 * @work: pointer to kthread work struct contained in the master struct 529 * 530 * This function checks if there is any spi message in the queue that 531 * needs processing and if so call out to the driver to initialize hardware 532 * and transfer each message. 533 * 534 */ 535 static void spi_pump_messages(struct kthread_work *work) 536 { 537 struct spi_master *master = 538 container_of(work, struct spi_master, pump_messages); 539 unsigned long flags; 540 bool was_busy = false; 541 int ret; 542 543 /* Lock queue and check for queue work */ 544 spin_lock_irqsave(&master->queue_lock, flags); 545 if (list_empty(&master->queue) || !master->running) { 546 if (master->busy && master->unprepare_transfer_hardware) { 547 ret = master->unprepare_transfer_hardware(master); 548 if (ret) { 549 spin_unlock_irqrestore(&master->queue_lock, flags); 550 dev_err(&master->dev, 551 "failed to unprepare transfer hardware\n"); 552 return; 553 } 554 } 555 master->busy = false; 556 spin_unlock_irqrestore(&master->queue_lock, flags); 557 return; 558 } 559 560 /* Make sure we are not already running a message */ 561 if (master->cur_msg) { 562 spin_unlock_irqrestore(&master->queue_lock, flags); 563 return; 564 } 565 /* Extract head of queue */ 566 master->cur_msg = 567 list_entry(master->queue.next, struct spi_message, queue); 568 569 list_del_init(&master->cur_msg->queue); 570 if (master->busy) 571 was_busy = true; 572 else 573 master->busy = true; 574 spin_unlock_irqrestore(&master->queue_lock, flags); 575 576 if (!was_busy && master->prepare_transfer_hardware) { 577 ret = master->prepare_transfer_hardware(master); 578 if (ret) { 579 dev_err(&master->dev, 580 "failed to prepare transfer hardware\n"); 581 return; 582 } 583 } 584 585 ret = master->transfer_one_message(master, master->cur_msg); 586 if (ret) { 587 dev_err(&master->dev, 588 "failed to transfer one message from queue\n"); 589 return; 590 } 591 } 592 593 static int spi_init_queue(struct spi_master *master) 594 { 595 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 596 597 INIT_LIST_HEAD(&master->queue); 598 spin_lock_init(&master->queue_lock); 599 600 master->running = false; 601 master->busy = false; 602 603 init_kthread_worker(&master->kworker); 604 master->kworker_task = kthread_run(kthread_worker_fn, 605 &master->kworker, 606 dev_name(&master->dev)); 607 if (IS_ERR(master->kworker_task)) { 608 dev_err(&master->dev, "failed to create message pump task\n"); 609 return -ENOMEM; 610 } 611 init_kthread_work(&master->pump_messages, spi_pump_messages); 612 613 /* 614 * Master config will indicate if this controller should run the 615 * message pump with high (realtime) priority to reduce the transfer 616 * latency on the bus by minimising the delay between a transfer 617 * request and the scheduling of the message pump thread. Without this 618 * setting the message pump thread will remain at default priority. 619 */ 620 if (master->rt) { 621 dev_info(&master->dev, 622 "will run message pump with realtime priority\n"); 623 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 624 } 625 626 return 0; 627 } 628 629 /** 630 * spi_get_next_queued_message() - called by driver to check for queued 631 * messages 632 * @master: the master to check for queued messages 633 * 634 * If there are more messages in the queue, the next message is returned from 635 * this call. 636 */ 637 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 638 { 639 struct spi_message *next; 640 unsigned long flags; 641 642 /* get a pointer to the next message, if any */ 643 spin_lock_irqsave(&master->queue_lock, flags); 644 if (list_empty(&master->queue)) 645 next = NULL; 646 else 647 next = list_entry(master->queue.next, 648 struct spi_message, queue); 649 spin_unlock_irqrestore(&master->queue_lock, flags); 650 651 return next; 652 } 653 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 654 655 /** 656 * spi_finalize_current_message() - the current message is complete 657 * @master: the master to return the message to 658 * 659 * Called by the driver to notify the core that the message in the front of the 660 * queue is complete and can be removed from the queue. 661 */ 662 void spi_finalize_current_message(struct spi_master *master) 663 { 664 struct spi_message *mesg; 665 unsigned long flags; 666 667 spin_lock_irqsave(&master->queue_lock, flags); 668 mesg = master->cur_msg; 669 master->cur_msg = NULL; 670 671 queue_kthread_work(&master->kworker, &master->pump_messages); 672 spin_unlock_irqrestore(&master->queue_lock, flags); 673 674 mesg->state = NULL; 675 if (mesg->complete) 676 mesg->complete(mesg->context); 677 } 678 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 679 680 static int spi_start_queue(struct spi_master *master) 681 { 682 unsigned long flags; 683 684 spin_lock_irqsave(&master->queue_lock, flags); 685 686 if (master->running || master->busy) { 687 spin_unlock_irqrestore(&master->queue_lock, flags); 688 return -EBUSY; 689 } 690 691 master->running = true; 692 master->cur_msg = NULL; 693 spin_unlock_irqrestore(&master->queue_lock, flags); 694 695 queue_kthread_work(&master->kworker, &master->pump_messages); 696 697 return 0; 698 } 699 700 static int spi_stop_queue(struct spi_master *master) 701 { 702 unsigned long flags; 703 unsigned limit = 500; 704 int ret = 0; 705 706 spin_lock_irqsave(&master->queue_lock, flags); 707 708 /* 709 * This is a bit lame, but is optimized for the common execution path. 710 * A wait_queue on the master->busy could be used, but then the common 711 * execution path (pump_messages) would be required to call wake_up or 712 * friends on every SPI message. Do this instead. 713 */ 714 while ((!list_empty(&master->queue) || master->busy) && limit--) { 715 spin_unlock_irqrestore(&master->queue_lock, flags); 716 msleep(10); 717 spin_lock_irqsave(&master->queue_lock, flags); 718 } 719 720 if (!list_empty(&master->queue) || master->busy) 721 ret = -EBUSY; 722 else 723 master->running = false; 724 725 spin_unlock_irqrestore(&master->queue_lock, flags); 726 727 if (ret) { 728 dev_warn(&master->dev, 729 "could not stop message queue\n"); 730 return ret; 731 } 732 return ret; 733 } 734 735 static int spi_destroy_queue(struct spi_master *master) 736 { 737 int ret; 738 739 ret = spi_stop_queue(master); 740 741 /* 742 * flush_kthread_worker will block until all work is done. 743 * If the reason that stop_queue timed out is that the work will never 744 * finish, then it does no good to call flush/stop thread, so 745 * return anyway. 746 */ 747 if (ret) { 748 dev_err(&master->dev, "problem destroying queue\n"); 749 return ret; 750 } 751 752 flush_kthread_worker(&master->kworker); 753 kthread_stop(master->kworker_task); 754 755 return 0; 756 } 757 758 /** 759 * spi_queued_transfer - transfer function for queued transfers 760 * @spi: spi device which is requesting transfer 761 * @msg: spi message which is to handled is queued to driver queue 762 */ 763 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 764 { 765 struct spi_master *master = spi->master; 766 unsigned long flags; 767 768 spin_lock_irqsave(&master->queue_lock, flags); 769 770 if (!master->running) { 771 spin_unlock_irqrestore(&master->queue_lock, flags); 772 return -ESHUTDOWN; 773 } 774 msg->actual_length = 0; 775 msg->status = -EINPROGRESS; 776 777 list_add_tail(&msg->queue, &master->queue); 778 if (master->running && !master->busy) 779 queue_kthread_work(&master->kworker, &master->pump_messages); 780 781 spin_unlock_irqrestore(&master->queue_lock, flags); 782 return 0; 783 } 784 785 static int spi_master_initialize_queue(struct spi_master *master) 786 { 787 int ret; 788 789 master->queued = true; 790 master->transfer = spi_queued_transfer; 791 792 /* Initialize and start queue */ 793 ret = spi_init_queue(master); 794 if (ret) { 795 dev_err(&master->dev, "problem initializing queue\n"); 796 goto err_init_queue; 797 } 798 ret = spi_start_queue(master); 799 if (ret) { 800 dev_err(&master->dev, "problem starting queue\n"); 801 goto err_start_queue; 802 } 803 804 return 0; 805 806 err_start_queue: 807 err_init_queue: 808 spi_destroy_queue(master); 809 return ret; 810 } 811 812 /*-------------------------------------------------------------------------*/ 813 814 #if defined(CONFIG_OF) 815 /** 816 * of_register_spi_devices() - Register child devices onto the SPI bus 817 * @master: Pointer to spi_master device 818 * 819 * Registers an spi_device for each child node of master node which has a 'reg' 820 * property. 821 */ 822 static void of_register_spi_devices(struct spi_master *master) 823 { 824 struct spi_device *spi; 825 struct device_node *nc; 826 const __be32 *prop; 827 char modalias[SPI_NAME_SIZE + 4]; 828 int rc; 829 int len; 830 831 if (!master->dev.of_node) 832 return; 833 834 for_each_available_child_of_node(master->dev.of_node, nc) { 835 /* Alloc an spi_device */ 836 spi = spi_alloc_device(master); 837 if (!spi) { 838 dev_err(&master->dev, "spi_device alloc error for %s\n", 839 nc->full_name); 840 spi_dev_put(spi); 841 continue; 842 } 843 844 /* Select device driver */ 845 if (of_modalias_node(nc, spi->modalias, 846 sizeof(spi->modalias)) < 0) { 847 dev_err(&master->dev, "cannot find modalias for %s\n", 848 nc->full_name); 849 spi_dev_put(spi); 850 continue; 851 } 852 853 /* Device address */ 854 prop = of_get_property(nc, "reg", &len); 855 if (!prop || len < sizeof(*prop)) { 856 dev_err(&master->dev, "%s has no 'reg' property\n", 857 nc->full_name); 858 spi_dev_put(spi); 859 continue; 860 } 861 spi->chip_select = be32_to_cpup(prop); 862 863 /* Mode (clock phase/polarity/etc.) */ 864 if (of_find_property(nc, "spi-cpha", NULL)) 865 spi->mode |= SPI_CPHA; 866 if (of_find_property(nc, "spi-cpol", NULL)) 867 spi->mode |= SPI_CPOL; 868 if (of_find_property(nc, "spi-cs-high", NULL)) 869 spi->mode |= SPI_CS_HIGH; 870 if (of_find_property(nc, "spi-3wire", NULL)) 871 spi->mode |= SPI_3WIRE; 872 873 /* Device speed */ 874 prop = of_get_property(nc, "spi-max-frequency", &len); 875 if (!prop || len < sizeof(*prop)) { 876 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n", 877 nc->full_name); 878 spi_dev_put(spi); 879 continue; 880 } 881 spi->max_speed_hz = be32_to_cpup(prop); 882 883 /* IRQ */ 884 spi->irq = irq_of_parse_and_map(nc, 0); 885 886 /* Store a pointer to the node in the device structure */ 887 of_node_get(nc); 888 spi->dev.of_node = nc; 889 890 /* Register the new device */ 891 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX, 892 spi->modalias); 893 request_module(modalias); 894 rc = spi_add_device(spi); 895 if (rc) { 896 dev_err(&master->dev, "spi_device register error %s\n", 897 nc->full_name); 898 spi_dev_put(spi); 899 } 900 901 } 902 } 903 #else 904 static void of_register_spi_devices(struct spi_master *master) { } 905 #endif 906 907 #ifdef CONFIG_ACPI 908 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 909 { 910 struct spi_device *spi = data; 911 912 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 913 struct acpi_resource_spi_serialbus *sb; 914 915 sb = &ares->data.spi_serial_bus; 916 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 917 spi->chip_select = sb->device_selection; 918 spi->max_speed_hz = sb->connection_speed; 919 920 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 921 spi->mode |= SPI_CPHA; 922 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 923 spi->mode |= SPI_CPOL; 924 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 925 spi->mode |= SPI_CS_HIGH; 926 } 927 } else if (spi->irq < 0) { 928 struct resource r; 929 930 if (acpi_dev_resource_interrupt(ares, 0, &r)) 931 spi->irq = r.start; 932 } 933 934 /* Always tell the ACPI core to skip this resource */ 935 return 1; 936 } 937 938 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 939 void *data, void **return_value) 940 { 941 struct spi_master *master = data; 942 struct list_head resource_list; 943 struct acpi_device *adev; 944 struct spi_device *spi; 945 int ret; 946 947 if (acpi_bus_get_device(handle, &adev)) 948 return AE_OK; 949 if (acpi_bus_get_status(adev) || !adev->status.present) 950 return AE_OK; 951 952 spi = spi_alloc_device(master); 953 if (!spi) { 954 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 955 dev_name(&adev->dev)); 956 return AE_NO_MEMORY; 957 } 958 959 ACPI_HANDLE_SET(&spi->dev, handle); 960 spi->irq = -1; 961 962 INIT_LIST_HEAD(&resource_list); 963 ret = acpi_dev_get_resources(adev, &resource_list, 964 acpi_spi_add_resource, spi); 965 acpi_dev_free_resource_list(&resource_list); 966 967 if (ret < 0 || !spi->max_speed_hz) { 968 spi_dev_put(spi); 969 return AE_OK; 970 } 971 972 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias)); 973 if (spi_add_device(spi)) { 974 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 975 dev_name(&adev->dev)); 976 spi_dev_put(spi); 977 } 978 979 return AE_OK; 980 } 981 982 static void acpi_register_spi_devices(struct spi_master *master) 983 { 984 acpi_status status; 985 acpi_handle handle; 986 987 handle = ACPI_HANDLE(&master->dev); 988 if (!handle) 989 return; 990 991 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 992 acpi_spi_add_device, NULL, 993 master, NULL); 994 if (ACPI_FAILURE(status)) 995 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 996 } 997 #else 998 static inline void acpi_register_spi_devices(struct spi_master *master) {} 999 #endif /* CONFIG_ACPI */ 1000 1001 static void spi_master_release(struct device *dev) 1002 { 1003 struct spi_master *master; 1004 1005 master = container_of(dev, struct spi_master, dev); 1006 kfree(master); 1007 } 1008 1009 static struct class spi_master_class = { 1010 .name = "spi_master", 1011 .owner = THIS_MODULE, 1012 .dev_release = spi_master_release, 1013 }; 1014 1015 1016 1017 /** 1018 * spi_alloc_master - allocate SPI master controller 1019 * @dev: the controller, possibly using the platform_bus 1020 * @size: how much zeroed driver-private data to allocate; the pointer to this 1021 * memory is in the driver_data field of the returned device, 1022 * accessible with spi_master_get_devdata(). 1023 * Context: can sleep 1024 * 1025 * This call is used only by SPI master controller drivers, which are the 1026 * only ones directly touching chip registers. It's how they allocate 1027 * an spi_master structure, prior to calling spi_register_master(). 1028 * 1029 * This must be called from context that can sleep. It returns the SPI 1030 * master structure on success, else NULL. 1031 * 1032 * The caller is responsible for assigning the bus number and initializing 1033 * the master's methods before calling spi_register_master(); and (after errors 1034 * adding the device) calling spi_master_put() and kfree() to prevent a memory 1035 * leak. 1036 */ 1037 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1038 { 1039 struct spi_master *master; 1040 1041 if (!dev) 1042 return NULL; 1043 1044 master = kzalloc(size + sizeof *master, GFP_KERNEL); 1045 if (!master) 1046 return NULL; 1047 1048 device_initialize(&master->dev); 1049 master->bus_num = -1; 1050 master->num_chipselect = 1; 1051 master->dev.class = &spi_master_class; 1052 master->dev.parent = get_device(dev); 1053 spi_master_set_devdata(master, &master[1]); 1054 1055 return master; 1056 } 1057 EXPORT_SYMBOL_GPL(spi_alloc_master); 1058 1059 #ifdef CONFIG_OF 1060 static int of_spi_register_master(struct spi_master *master) 1061 { 1062 int nb, i, *cs; 1063 struct device_node *np = master->dev.of_node; 1064 1065 if (!np) 1066 return 0; 1067 1068 nb = of_gpio_named_count(np, "cs-gpios"); 1069 master->num_chipselect = max(nb, (int)master->num_chipselect); 1070 1071 if (nb < 1) 1072 return 0; 1073 1074 cs = devm_kzalloc(&master->dev, 1075 sizeof(int) * master->num_chipselect, 1076 GFP_KERNEL); 1077 master->cs_gpios = cs; 1078 1079 if (!master->cs_gpios) 1080 return -ENOMEM; 1081 1082 for (i = 0; i < master->num_chipselect; i++) 1083 cs[i] = -EINVAL; 1084 1085 for (i = 0; i < nb; i++) 1086 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1087 1088 return 0; 1089 } 1090 #else 1091 static int of_spi_register_master(struct spi_master *master) 1092 { 1093 return 0; 1094 } 1095 #endif 1096 1097 /** 1098 * spi_register_master - register SPI master controller 1099 * @master: initialized master, originally from spi_alloc_master() 1100 * Context: can sleep 1101 * 1102 * SPI master controllers connect to their drivers using some non-SPI bus, 1103 * such as the platform bus. The final stage of probe() in that code 1104 * includes calling spi_register_master() to hook up to this SPI bus glue. 1105 * 1106 * SPI controllers use board specific (often SOC specific) bus numbers, 1107 * and board-specific addressing for SPI devices combines those numbers 1108 * with chip select numbers. Since SPI does not directly support dynamic 1109 * device identification, boards need configuration tables telling which 1110 * chip is at which address. 1111 * 1112 * This must be called from context that can sleep. It returns zero on 1113 * success, else a negative error code (dropping the master's refcount). 1114 * After a successful return, the caller is responsible for calling 1115 * spi_unregister_master(). 1116 */ 1117 int spi_register_master(struct spi_master *master) 1118 { 1119 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1120 struct device *dev = master->dev.parent; 1121 struct boardinfo *bi; 1122 int status = -ENODEV; 1123 int dynamic = 0; 1124 1125 if (!dev) 1126 return -ENODEV; 1127 1128 status = of_spi_register_master(master); 1129 if (status) 1130 return status; 1131 1132 /* even if it's just one always-selected device, there must 1133 * be at least one chipselect 1134 */ 1135 if (master->num_chipselect == 0) 1136 return -EINVAL; 1137 1138 if ((master->bus_num < 0) && master->dev.of_node) 1139 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1140 1141 /* convention: dynamically assigned bus IDs count down from the max */ 1142 if (master->bus_num < 0) { 1143 /* FIXME switch to an IDR based scheme, something like 1144 * I2C now uses, so we can't run out of "dynamic" IDs 1145 */ 1146 master->bus_num = atomic_dec_return(&dyn_bus_id); 1147 dynamic = 1; 1148 } 1149 1150 spin_lock_init(&master->bus_lock_spinlock); 1151 mutex_init(&master->bus_lock_mutex); 1152 master->bus_lock_flag = 0; 1153 1154 /* register the device, then userspace will see it. 1155 * registration fails if the bus ID is in use. 1156 */ 1157 dev_set_name(&master->dev, "spi%u", master->bus_num); 1158 status = device_add(&master->dev); 1159 if (status < 0) 1160 goto done; 1161 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1162 dynamic ? " (dynamic)" : ""); 1163 1164 /* If we're using a queued driver, start the queue */ 1165 if (master->transfer) 1166 dev_info(dev, "master is unqueued, this is deprecated\n"); 1167 else { 1168 status = spi_master_initialize_queue(master); 1169 if (status) { 1170 device_unregister(&master->dev); 1171 goto done; 1172 } 1173 } 1174 1175 mutex_lock(&board_lock); 1176 list_add_tail(&master->list, &spi_master_list); 1177 list_for_each_entry(bi, &board_list, list) 1178 spi_match_master_to_boardinfo(master, &bi->board_info); 1179 mutex_unlock(&board_lock); 1180 1181 /* Register devices from the device tree and ACPI */ 1182 of_register_spi_devices(master); 1183 acpi_register_spi_devices(master); 1184 done: 1185 return status; 1186 } 1187 EXPORT_SYMBOL_GPL(spi_register_master); 1188 1189 static int __unregister(struct device *dev, void *null) 1190 { 1191 spi_unregister_device(to_spi_device(dev)); 1192 return 0; 1193 } 1194 1195 /** 1196 * spi_unregister_master - unregister SPI master controller 1197 * @master: the master being unregistered 1198 * Context: can sleep 1199 * 1200 * This call is used only by SPI master controller drivers, which are the 1201 * only ones directly touching chip registers. 1202 * 1203 * This must be called from context that can sleep. 1204 */ 1205 void spi_unregister_master(struct spi_master *master) 1206 { 1207 int dummy; 1208 1209 if (master->queued) { 1210 if (spi_destroy_queue(master)) 1211 dev_err(&master->dev, "queue remove failed\n"); 1212 } 1213 1214 mutex_lock(&board_lock); 1215 list_del(&master->list); 1216 mutex_unlock(&board_lock); 1217 1218 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1219 device_unregister(&master->dev); 1220 } 1221 EXPORT_SYMBOL_GPL(spi_unregister_master); 1222 1223 int spi_master_suspend(struct spi_master *master) 1224 { 1225 int ret; 1226 1227 /* Basically no-ops for non-queued masters */ 1228 if (!master->queued) 1229 return 0; 1230 1231 ret = spi_stop_queue(master); 1232 if (ret) 1233 dev_err(&master->dev, "queue stop failed\n"); 1234 1235 return ret; 1236 } 1237 EXPORT_SYMBOL_GPL(spi_master_suspend); 1238 1239 int spi_master_resume(struct spi_master *master) 1240 { 1241 int ret; 1242 1243 if (!master->queued) 1244 return 0; 1245 1246 ret = spi_start_queue(master); 1247 if (ret) 1248 dev_err(&master->dev, "queue restart failed\n"); 1249 1250 return ret; 1251 } 1252 EXPORT_SYMBOL_GPL(spi_master_resume); 1253 1254 static int __spi_master_match(struct device *dev, const void *data) 1255 { 1256 struct spi_master *m; 1257 const u16 *bus_num = data; 1258 1259 m = container_of(dev, struct spi_master, dev); 1260 return m->bus_num == *bus_num; 1261 } 1262 1263 /** 1264 * spi_busnum_to_master - look up master associated with bus_num 1265 * @bus_num: the master's bus number 1266 * Context: can sleep 1267 * 1268 * This call may be used with devices that are registered after 1269 * arch init time. It returns a refcounted pointer to the relevant 1270 * spi_master (which the caller must release), or NULL if there is 1271 * no such master registered. 1272 */ 1273 struct spi_master *spi_busnum_to_master(u16 bus_num) 1274 { 1275 struct device *dev; 1276 struct spi_master *master = NULL; 1277 1278 dev = class_find_device(&spi_master_class, NULL, &bus_num, 1279 __spi_master_match); 1280 if (dev) 1281 master = container_of(dev, struct spi_master, dev); 1282 /* reference got in class_find_device */ 1283 return master; 1284 } 1285 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 1286 1287 1288 /*-------------------------------------------------------------------------*/ 1289 1290 /* Core methods for SPI master protocol drivers. Some of the 1291 * other core methods are currently defined as inline functions. 1292 */ 1293 1294 /** 1295 * spi_setup - setup SPI mode and clock rate 1296 * @spi: the device whose settings are being modified 1297 * Context: can sleep, and no requests are queued to the device 1298 * 1299 * SPI protocol drivers may need to update the transfer mode if the 1300 * device doesn't work with its default. They may likewise need 1301 * to update clock rates or word sizes from initial values. This function 1302 * changes those settings, and must be called from a context that can sleep. 1303 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 1304 * effect the next time the device is selected and data is transferred to 1305 * or from it. When this function returns, the spi device is deselected. 1306 * 1307 * Note that this call will fail if the protocol driver specifies an option 1308 * that the underlying controller or its driver does not support. For 1309 * example, not all hardware supports wire transfers using nine bit words, 1310 * LSB-first wire encoding, or active-high chipselects. 1311 */ 1312 int spi_setup(struct spi_device *spi) 1313 { 1314 unsigned bad_bits; 1315 int status = 0; 1316 1317 /* help drivers fail *cleanly* when they need options 1318 * that aren't supported with their current master 1319 */ 1320 bad_bits = spi->mode & ~spi->master->mode_bits; 1321 if (bad_bits) { 1322 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 1323 bad_bits); 1324 return -EINVAL; 1325 } 1326 1327 if (!spi->bits_per_word) 1328 spi->bits_per_word = 8; 1329 1330 if (spi->master->setup) 1331 status = spi->master->setup(spi); 1332 1333 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s" 1334 "%u bits/w, %u Hz max --> %d\n", 1335 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 1336 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 1337 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 1338 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 1339 (spi->mode & SPI_LOOP) ? "loopback, " : "", 1340 spi->bits_per_word, spi->max_speed_hz, 1341 status); 1342 1343 return status; 1344 } 1345 EXPORT_SYMBOL_GPL(spi_setup); 1346 1347 static int __spi_async(struct spi_device *spi, struct spi_message *message) 1348 { 1349 struct spi_master *master = spi->master; 1350 struct spi_transfer *xfer; 1351 1352 /* Half-duplex links include original MicroWire, and ones with 1353 * only one data pin like SPI_3WIRE (switches direction) or where 1354 * either MOSI or MISO is missing. They can also be caused by 1355 * software limitations. 1356 */ 1357 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 1358 || (spi->mode & SPI_3WIRE)) { 1359 unsigned flags = master->flags; 1360 1361 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1362 if (xfer->rx_buf && xfer->tx_buf) 1363 return -EINVAL; 1364 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 1365 return -EINVAL; 1366 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 1367 return -EINVAL; 1368 } 1369 } 1370 1371 /** 1372 * Set transfer bits_per_word and max speed as spi device default if 1373 * it is not set for this transfer. 1374 */ 1375 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1376 if (!xfer->bits_per_word) 1377 xfer->bits_per_word = spi->bits_per_word; 1378 if (!xfer->speed_hz) 1379 xfer->speed_hz = spi->max_speed_hz; 1380 } 1381 1382 message->spi = spi; 1383 message->status = -EINPROGRESS; 1384 return master->transfer(spi, message); 1385 } 1386 1387 /** 1388 * spi_async - asynchronous SPI transfer 1389 * @spi: device with which data will be exchanged 1390 * @message: describes the data transfers, including completion callback 1391 * Context: any (irqs may be blocked, etc) 1392 * 1393 * This call may be used in_irq and other contexts which can't sleep, 1394 * as well as from task contexts which can sleep. 1395 * 1396 * The completion callback is invoked in a context which can't sleep. 1397 * Before that invocation, the value of message->status is undefined. 1398 * When the callback is issued, message->status holds either zero (to 1399 * indicate complete success) or a negative error code. After that 1400 * callback returns, the driver which issued the transfer request may 1401 * deallocate the associated memory; it's no longer in use by any SPI 1402 * core or controller driver code. 1403 * 1404 * Note that although all messages to a spi_device are handled in 1405 * FIFO order, messages may go to different devices in other orders. 1406 * Some device might be higher priority, or have various "hard" access 1407 * time requirements, for example. 1408 * 1409 * On detection of any fault during the transfer, processing of 1410 * the entire message is aborted, and the device is deselected. 1411 * Until returning from the associated message completion callback, 1412 * no other spi_message queued to that device will be processed. 1413 * (This rule applies equally to all the synchronous transfer calls, 1414 * which are wrappers around this core asynchronous primitive.) 1415 */ 1416 int spi_async(struct spi_device *spi, struct spi_message *message) 1417 { 1418 struct spi_master *master = spi->master; 1419 int ret; 1420 unsigned long flags; 1421 1422 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1423 1424 if (master->bus_lock_flag) 1425 ret = -EBUSY; 1426 else 1427 ret = __spi_async(spi, message); 1428 1429 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1430 1431 return ret; 1432 } 1433 EXPORT_SYMBOL_GPL(spi_async); 1434 1435 /** 1436 * spi_async_locked - version of spi_async with exclusive bus usage 1437 * @spi: device with which data will be exchanged 1438 * @message: describes the data transfers, including completion callback 1439 * Context: any (irqs may be blocked, etc) 1440 * 1441 * This call may be used in_irq and other contexts which can't sleep, 1442 * as well as from task contexts which can sleep. 1443 * 1444 * The completion callback is invoked in a context which can't sleep. 1445 * Before that invocation, the value of message->status is undefined. 1446 * When the callback is issued, message->status holds either zero (to 1447 * indicate complete success) or a negative error code. After that 1448 * callback returns, the driver which issued the transfer request may 1449 * deallocate the associated memory; it's no longer in use by any SPI 1450 * core or controller driver code. 1451 * 1452 * Note that although all messages to a spi_device are handled in 1453 * FIFO order, messages may go to different devices in other orders. 1454 * Some device might be higher priority, or have various "hard" access 1455 * time requirements, for example. 1456 * 1457 * On detection of any fault during the transfer, processing of 1458 * the entire message is aborted, and the device is deselected. 1459 * Until returning from the associated message completion callback, 1460 * no other spi_message queued to that device will be processed. 1461 * (This rule applies equally to all the synchronous transfer calls, 1462 * which are wrappers around this core asynchronous primitive.) 1463 */ 1464 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 1465 { 1466 struct spi_master *master = spi->master; 1467 int ret; 1468 unsigned long flags; 1469 1470 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1471 1472 ret = __spi_async(spi, message); 1473 1474 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1475 1476 return ret; 1477 1478 } 1479 EXPORT_SYMBOL_GPL(spi_async_locked); 1480 1481 1482 /*-------------------------------------------------------------------------*/ 1483 1484 /* Utility methods for SPI master protocol drivers, layered on 1485 * top of the core. Some other utility methods are defined as 1486 * inline functions. 1487 */ 1488 1489 static void spi_complete(void *arg) 1490 { 1491 complete(arg); 1492 } 1493 1494 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 1495 int bus_locked) 1496 { 1497 DECLARE_COMPLETION_ONSTACK(done); 1498 int status; 1499 struct spi_master *master = spi->master; 1500 1501 message->complete = spi_complete; 1502 message->context = &done; 1503 1504 if (!bus_locked) 1505 mutex_lock(&master->bus_lock_mutex); 1506 1507 status = spi_async_locked(spi, message); 1508 1509 if (!bus_locked) 1510 mutex_unlock(&master->bus_lock_mutex); 1511 1512 if (status == 0) { 1513 wait_for_completion(&done); 1514 status = message->status; 1515 } 1516 message->context = NULL; 1517 return status; 1518 } 1519 1520 /** 1521 * spi_sync - blocking/synchronous SPI data transfers 1522 * @spi: device with which data will be exchanged 1523 * @message: describes the data transfers 1524 * Context: can sleep 1525 * 1526 * This call may only be used from a context that may sleep. The sleep 1527 * is non-interruptible, and has no timeout. Low-overhead controller 1528 * drivers may DMA directly into and out of the message buffers. 1529 * 1530 * Note that the SPI device's chip select is active during the message, 1531 * and then is normally disabled between messages. Drivers for some 1532 * frequently-used devices may want to minimize costs of selecting a chip, 1533 * by leaving it selected in anticipation that the next message will go 1534 * to the same chip. (That may increase power usage.) 1535 * 1536 * Also, the caller is guaranteeing that the memory associated with the 1537 * message will not be freed before this call returns. 1538 * 1539 * It returns zero on success, else a negative error code. 1540 */ 1541 int spi_sync(struct spi_device *spi, struct spi_message *message) 1542 { 1543 return __spi_sync(spi, message, 0); 1544 } 1545 EXPORT_SYMBOL_GPL(spi_sync); 1546 1547 /** 1548 * spi_sync_locked - version of spi_sync with exclusive bus usage 1549 * @spi: device with which data will be exchanged 1550 * @message: describes the data transfers 1551 * Context: can sleep 1552 * 1553 * This call may only be used from a context that may sleep. The sleep 1554 * is non-interruptible, and has no timeout. Low-overhead controller 1555 * drivers may DMA directly into and out of the message buffers. 1556 * 1557 * This call should be used by drivers that require exclusive access to the 1558 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 1559 * be released by a spi_bus_unlock call when the exclusive access is over. 1560 * 1561 * It returns zero on success, else a negative error code. 1562 */ 1563 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 1564 { 1565 return __spi_sync(spi, message, 1); 1566 } 1567 EXPORT_SYMBOL_GPL(spi_sync_locked); 1568 1569 /** 1570 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 1571 * @master: SPI bus master that should be locked for exclusive bus access 1572 * Context: can sleep 1573 * 1574 * This call may only be used from a context that may sleep. The sleep 1575 * is non-interruptible, and has no timeout. 1576 * 1577 * This call should be used by drivers that require exclusive access to the 1578 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 1579 * exclusive access is over. Data transfer must be done by spi_sync_locked 1580 * and spi_async_locked calls when the SPI bus lock is held. 1581 * 1582 * It returns zero on success, else a negative error code. 1583 */ 1584 int spi_bus_lock(struct spi_master *master) 1585 { 1586 unsigned long flags; 1587 1588 mutex_lock(&master->bus_lock_mutex); 1589 1590 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1591 master->bus_lock_flag = 1; 1592 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1593 1594 /* mutex remains locked until spi_bus_unlock is called */ 1595 1596 return 0; 1597 } 1598 EXPORT_SYMBOL_GPL(spi_bus_lock); 1599 1600 /** 1601 * spi_bus_unlock - release the lock for exclusive SPI bus usage 1602 * @master: SPI bus master that was locked for exclusive bus access 1603 * Context: can sleep 1604 * 1605 * This call may only be used from a context that may sleep. The sleep 1606 * is non-interruptible, and has no timeout. 1607 * 1608 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 1609 * call. 1610 * 1611 * It returns zero on success, else a negative error code. 1612 */ 1613 int spi_bus_unlock(struct spi_master *master) 1614 { 1615 master->bus_lock_flag = 0; 1616 1617 mutex_unlock(&master->bus_lock_mutex); 1618 1619 return 0; 1620 } 1621 EXPORT_SYMBOL_GPL(spi_bus_unlock); 1622 1623 /* portable code must never pass more than 32 bytes */ 1624 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 1625 1626 static u8 *buf; 1627 1628 /** 1629 * spi_write_then_read - SPI synchronous write followed by read 1630 * @spi: device with which data will be exchanged 1631 * @txbuf: data to be written (need not be dma-safe) 1632 * @n_tx: size of txbuf, in bytes 1633 * @rxbuf: buffer into which data will be read (need not be dma-safe) 1634 * @n_rx: size of rxbuf, in bytes 1635 * Context: can sleep 1636 * 1637 * This performs a half duplex MicroWire style transaction with the 1638 * device, sending txbuf and then reading rxbuf. The return value 1639 * is zero for success, else a negative errno status code. 1640 * This call may only be used from a context that may sleep. 1641 * 1642 * Parameters to this routine are always copied using a small buffer; 1643 * portable code should never use this for more than 32 bytes. 1644 * Performance-sensitive or bulk transfer code should instead use 1645 * spi_{async,sync}() calls with dma-safe buffers. 1646 */ 1647 int spi_write_then_read(struct spi_device *spi, 1648 const void *txbuf, unsigned n_tx, 1649 void *rxbuf, unsigned n_rx) 1650 { 1651 static DEFINE_MUTEX(lock); 1652 1653 int status; 1654 struct spi_message message; 1655 struct spi_transfer x[2]; 1656 u8 *local_buf; 1657 1658 /* Use preallocated DMA-safe buffer if we can. We can't avoid 1659 * copying here, (as a pure convenience thing), but we can 1660 * keep heap costs out of the hot path unless someone else is 1661 * using the pre-allocated buffer or the transfer is too large. 1662 */ 1663 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 1664 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 1665 GFP_KERNEL | GFP_DMA); 1666 if (!local_buf) 1667 return -ENOMEM; 1668 } else { 1669 local_buf = buf; 1670 } 1671 1672 spi_message_init(&message); 1673 memset(x, 0, sizeof x); 1674 if (n_tx) { 1675 x[0].len = n_tx; 1676 spi_message_add_tail(&x[0], &message); 1677 } 1678 if (n_rx) { 1679 x[1].len = n_rx; 1680 spi_message_add_tail(&x[1], &message); 1681 } 1682 1683 memcpy(local_buf, txbuf, n_tx); 1684 x[0].tx_buf = local_buf; 1685 x[1].rx_buf = local_buf + n_tx; 1686 1687 /* do the i/o */ 1688 status = spi_sync(spi, &message); 1689 if (status == 0) 1690 memcpy(rxbuf, x[1].rx_buf, n_rx); 1691 1692 if (x[0].tx_buf == buf) 1693 mutex_unlock(&lock); 1694 else 1695 kfree(local_buf); 1696 1697 return status; 1698 } 1699 EXPORT_SYMBOL_GPL(spi_write_then_read); 1700 1701 /*-------------------------------------------------------------------------*/ 1702 1703 static int __init spi_init(void) 1704 { 1705 int status; 1706 1707 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 1708 if (!buf) { 1709 status = -ENOMEM; 1710 goto err0; 1711 } 1712 1713 status = bus_register(&spi_bus_type); 1714 if (status < 0) 1715 goto err1; 1716 1717 status = class_register(&spi_master_class); 1718 if (status < 0) 1719 goto err2; 1720 return 0; 1721 1722 err2: 1723 bus_unregister(&spi_bus_type); 1724 err1: 1725 kfree(buf); 1726 buf = NULL; 1727 err0: 1728 return status; 1729 } 1730 1731 /* board_info is normally registered in arch_initcall(), 1732 * but even essential drivers wait till later 1733 * 1734 * REVISIT only boardinfo really needs static linking. the rest (device and 1735 * driver registration) _could_ be dynamically linked (modular) ... costs 1736 * include needing to have boardinfo data structures be much more public. 1737 */ 1738 postcore_initcall(spi_init); 1739 1740