xref: /openbmc/linux/drivers/spi/spi.c (revision 97da55fc)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
41 
42 static void spidev_release(struct device *dev)
43 {
44 	struct spi_device	*spi = to_spi_device(dev);
45 
46 	/* spi masters may cleanup for released devices */
47 	if (spi->master->cleanup)
48 		spi->master->cleanup(spi);
49 
50 	spi_master_put(spi->master);
51 	kfree(spi);
52 }
53 
54 static ssize_t
55 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
56 {
57 	const struct spi_device	*spi = to_spi_device(dev);
58 
59 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
60 }
61 
62 static struct device_attribute spi_dev_attrs[] = {
63 	__ATTR_RO(modalias),
64 	__ATTR_NULL,
65 };
66 
67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
68  * and the sysfs version makes coldplug work too.
69  */
70 
71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 						const struct spi_device *sdev)
73 {
74 	while (id->name[0]) {
75 		if (!strcmp(sdev->modalias, id->name))
76 			return id;
77 		id++;
78 	}
79 	return NULL;
80 }
81 
82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
83 {
84 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
85 
86 	return spi_match_id(sdrv->id_table, sdev);
87 }
88 EXPORT_SYMBOL_GPL(spi_get_device_id);
89 
90 static int spi_match_device(struct device *dev, struct device_driver *drv)
91 {
92 	const struct spi_device	*spi = to_spi_device(dev);
93 	const struct spi_driver	*sdrv = to_spi_driver(drv);
94 
95 	/* Attempt an OF style match */
96 	if (of_driver_match_device(dev, drv))
97 		return 1;
98 
99 	/* Then try ACPI */
100 	if (acpi_driver_match_device(dev, drv))
101 		return 1;
102 
103 	if (sdrv->id_table)
104 		return !!spi_match_id(sdrv->id_table, spi);
105 
106 	return strcmp(spi->modalias, drv->name) == 0;
107 }
108 
109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
110 {
111 	const struct spi_device		*spi = to_spi_device(dev);
112 
113 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
114 	return 0;
115 }
116 
117 #ifdef CONFIG_PM_SLEEP
118 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
119 {
120 	int			value = 0;
121 	struct spi_driver	*drv = to_spi_driver(dev->driver);
122 
123 	/* suspend will stop irqs and dma; no more i/o */
124 	if (drv) {
125 		if (drv->suspend)
126 			value = drv->suspend(to_spi_device(dev), message);
127 		else
128 			dev_dbg(dev, "... can't suspend\n");
129 	}
130 	return value;
131 }
132 
133 static int spi_legacy_resume(struct device *dev)
134 {
135 	int			value = 0;
136 	struct spi_driver	*drv = to_spi_driver(dev->driver);
137 
138 	/* resume may restart the i/o queue */
139 	if (drv) {
140 		if (drv->resume)
141 			value = drv->resume(to_spi_device(dev));
142 		else
143 			dev_dbg(dev, "... can't resume\n");
144 	}
145 	return value;
146 }
147 
148 static int spi_pm_suspend(struct device *dev)
149 {
150 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
151 
152 	if (pm)
153 		return pm_generic_suspend(dev);
154 	else
155 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
156 }
157 
158 static int spi_pm_resume(struct device *dev)
159 {
160 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
161 
162 	if (pm)
163 		return pm_generic_resume(dev);
164 	else
165 		return spi_legacy_resume(dev);
166 }
167 
168 static int spi_pm_freeze(struct device *dev)
169 {
170 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
171 
172 	if (pm)
173 		return pm_generic_freeze(dev);
174 	else
175 		return spi_legacy_suspend(dev, PMSG_FREEZE);
176 }
177 
178 static int spi_pm_thaw(struct device *dev)
179 {
180 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
181 
182 	if (pm)
183 		return pm_generic_thaw(dev);
184 	else
185 		return spi_legacy_resume(dev);
186 }
187 
188 static int spi_pm_poweroff(struct device *dev)
189 {
190 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
191 
192 	if (pm)
193 		return pm_generic_poweroff(dev);
194 	else
195 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
196 }
197 
198 static int spi_pm_restore(struct device *dev)
199 {
200 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
201 
202 	if (pm)
203 		return pm_generic_restore(dev);
204 	else
205 		return spi_legacy_resume(dev);
206 }
207 #else
208 #define spi_pm_suspend	NULL
209 #define spi_pm_resume	NULL
210 #define spi_pm_freeze	NULL
211 #define spi_pm_thaw	NULL
212 #define spi_pm_poweroff	NULL
213 #define spi_pm_restore	NULL
214 #endif
215 
216 static const struct dev_pm_ops spi_pm = {
217 	.suspend = spi_pm_suspend,
218 	.resume = spi_pm_resume,
219 	.freeze = spi_pm_freeze,
220 	.thaw = spi_pm_thaw,
221 	.poweroff = spi_pm_poweroff,
222 	.restore = spi_pm_restore,
223 	SET_RUNTIME_PM_OPS(
224 		pm_generic_runtime_suspend,
225 		pm_generic_runtime_resume,
226 		pm_generic_runtime_idle
227 	)
228 };
229 
230 struct bus_type spi_bus_type = {
231 	.name		= "spi",
232 	.dev_attrs	= spi_dev_attrs,
233 	.match		= spi_match_device,
234 	.uevent		= spi_uevent,
235 	.pm		= &spi_pm,
236 };
237 EXPORT_SYMBOL_GPL(spi_bus_type);
238 
239 
240 static int spi_drv_probe(struct device *dev)
241 {
242 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
243 
244 	return sdrv->probe(to_spi_device(dev));
245 }
246 
247 static int spi_drv_remove(struct device *dev)
248 {
249 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
250 
251 	return sdrv->remove(to_spi_device(dev));
252 }
253 
254 static void spi_drv_shutdown(struct device *dev)
255 {
256 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
257 
258 	sdrv->shutdown(to_spi_device(dev));
259 }
260 
261 /**
262  * spi_register_driver - register a SPI driver
263  * @sdrv: the driver to register
264  * Context: can sleep
265  */
266 int spi_register_driver(struct spi_driver *sdrv)
267 {
268 	sdrv->driver.bus = &spi_bus_type;
269 	if (sdrv->probe)
270 		sdrv->driver.probe = spi_drv_probe;
271 	if (sdrv->remove)
272 		sdrv->driver.remove = spi_drv_remove;
273 	if (sdrv->shutdown)
274 		sdrv->driver.shutdown = spi_drv_shutdown;
275 	return driver_register(&sdrv->driver);
276 }
277 EXPORT_SYMBOL_GPL(spi_register_driver);
278 
279 /*-------------------------------------------------------------------------*/
280 
281 /* SPI devices should normally not be created by SPI device drivers; that
282  * would make them board-specific.  Similarly with SPI master drivers.
283  * Device registration normally goes into like arch/.../mach.../board-YYY.c
284  * with other readonly (flashable) information about mainboard devices.
285  */
286 
287 struct boardinfo {
288 	struct list_head	list;
289 	struct spi_board_info	board_info;
290 };
291 
292 static LIST_HEAD(board_list);
293 static LIST_HEAD(spi_master_list);
294 
295 /*
296  * Used to protect add/del opertion for board_info list and
297  * spi_master list, and their matching process
298  */
299 static DEFINE_MUTEX(board_lock);
300 
301 /**
302  * spi_alloc_device - Allocate a new SPI device
303  * @master: Controller to which device is connected
304  * Context: can sleep
305  *
306  * Allows a driver to allocate and initialize a spi_device without
307  * registering it immediately.  This allows a driver to directly
308  * fill the spi_device with device parameters before calling
309  * spi_add_device() on it.
310  *
311  * Caller is responsible to call spi_add_device() on the returned
312  * spi_device structure to add it to the SPI master.  If the caller
313  * needs to discard the spi_device without adding it, then it should
314  * call spi_dev_put() on it.
315  *
316  * Returns a pointer to the new device, or NULL.
317  */
318 struct spi_device *spi_alloc_device(struct spi_master *master)
319 {
320 	struct spi_device	*spi;
321 	struct device		*dev = master->dev.parent;
322 
323 	if (!spi_master_get(master))
324 		return NULL;
325 
326 	spi = kzalloc(sizeof *spi, GFP_KERNEL);
327 	if (!spi) {
328 		dev_err(dev, "cannot alloc spi_device\n");
329 		spi_master_put(master);
330 		return NULL;
331 	}
332 
333 	spi->master = master;
334 	spi->dev.parent = &master->dev;
335 	spi->dev.bus = &spi_bus_type;
336 	spi->dev.release = spidev_release;
337 	spi->cs_gpio = -EINVAL;
338 	device_initialize(&spi->dev);
339 	return spi;
340 }
341 EXPORT_SYMBOL_GPL(spi_alloc_device);
342 
343 /**
344  * spi_add_device - Add spi_device allocated with spi_alloc_device
345  * @spi: spi_device to register
346  *
347  * Companion function to spi_alloc_device.  Devices allocated with
348  * spi_alloc_device can be added onto the spi bus with this function.
349  *
350  * Returns 0 on success; negative errno on failure
351  */
352 int spi_add_device(struct spi_device *spi)
353 {
354 	static DEFINE_MUTEX(spi_add_lock);
355 	struct spi_master *master = spi->master;
356 	struct device *dev = master->dev.parent;
357 	struct device *d;
358 	int status;
359 
360 	/* Chipselects are numbered 0..max; validate. */
361 	if (spi->chip_select >= master->num_chipselect) {
362 		dev_err(dev, "cs%d >= max %d\n",
363 			spi->chip_select,
364 			master->num_chipselect);
365 		return -EINVAL;
366 	}
367 
368 	/* Set the bus ID string */
369 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
370 			spi->chip_select);
371 
372 
373 	/* We need to make sure there's no other device with this
374 	 * chipselect **BEFORE** we call setup(), else we'll trash
375 	 * its configuration.  Lock against concurrent add() calls.
376 	 */
377 	mutex_lock(&spi_add_lock);
378 
379 	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
380 	if (d != NULL) {
381 		dev_err(dev, "chipselect %d already in use\n",
382 				spi->chip_select);
383 		put_device(d);
384 		status = -EBUSY;
385 		goto done;
386 	}
387 
388 	if (master->cs_gpios)
389 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
390 
391 	/* Drivers may modify this initial i/o setup, but will
392 	 * normally rely on the device being setup.  Devices
393 	 * using SPI_CS_HIGH can't coexist well otherwise...
394 	 */
395 	status = spi_setup(spi);
396 	if (status < 0) {
397 		dev_err(dev, "can't setup %s, status %d\n",
398 				dev_name(&spi->dev), status);
399 		goto done;
400 	}
401 
402 	/* Device may be bound to an active driver when this returns */
403 	status = device_add(&spi->dev);
404 	if (status < 0)
405 		dev_err(dev, "can't add %s, status %d\n",
406 				dev_name(&spi->dev), status);
407 	else
408 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
409 
410 done:
411 	mutex_unlock(&spi_add_lock);
412 	return status;
413 }
414 EXPORT_SYMBOL_GPL(spi_add_device);
415 
416 /**
417  * spi_new_device - instantiate one new SPI device
418  * @master: Controller to which device is connected
419  * @chip: Describes the SPI device
420  * Context: can sleep
421  *
422  * On typical mainboards, this is purely internal; and it's not needed
423  * after board init creates the hard-wired devices.  Some development
424  * platforms may not be able to use spi_register_board_info though, and
425  * this is exported so that for example a USB or parport based adapter
426  * driver could add devices (which it would learn about out-of-band).
427  *
428  * Returns the new device, or NULL.
429  */
430 struct spi_device *spi_new_device(struct spi_master *master,
431 				  struct spi_board_info *chip)
432 {
433 	struct spi_device	*proxy;
434 	int			status;
435 
436 	/* NOTE:  caller did any chip->bus_num checks necessary.
437 	 *
438 	 * Also, unless we change the return value convention to use
439 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
440 	 * suggests syslogged diagnostics are best here (ugh).
441 	 */
442 
443 	proxy = spi_alloc_device(master);
444 	if (!proxy)
445 		return NULL;
446 
447 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
448 
449 	proxy->chip_select = chip->chip_select;
450 	proxy->max_speed_hz = chip->max_speed_hz;
451 	proxy->mode = chip->mode;
452 	proxy->irq = chip->irq;
453 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
454 	proxy->dev.platform_data = (void *) chip->platform_data;
455 	proxy->controller_data = chip->controller_data;
456 	proxy->controller_state = NULL;
457 
458 	status = spi_add_device(proxy);
459 	if (status < 0) {
460 		spi_dev_put(proxy);
461 		return NULL;
462 	}
463 
464 	return proxy;
465 }
466 EXPORT_SYMBOL_GPL(spi_new_device);
467 
468 static void spi_match_master_to_boardinfo(struct spi_master *master,
469 				struct spi_board_info *bi)
470 {
471 	struct spi_device *dev;
472 
473 	if (master->bus_num != bi->bus_num)
474 		return;
475 
476 	dev = spi_new_device(master, bi);
477 	if (!dev)
478 		dev_err(master->dev.parent, "can't create new device for %s\n",
479 			bi->modalias);
480 }
481 
482 /**
483  * spi_register_board_info - register SPI devices for a given board
484  * @info: array of chip descriptors
485  * @n: how many descriptors are provided
486  * Context: can sleep
487  *
488  * Board-specific early init code calls this (probably during arch_initcall)
489  * with segments of the SPI device table.  Any device nodes are created later,
490  * after the relevant parent SPI controller (bus_num) is defined.  We keep
491  * this table of devices forever, so that reloading a controller driver will
492  * not make Linux forget about these hard-wired devices.
493  *
494  * Other code can also call this, e.g. a particular add-on board might provide
495  * SPI devices through its expansion connector, so code initializing that board
496  * would naturally declare its SPI devices.
497  *
498  * The board info passed can safely be __initdata ... but be careful of
499  * any embedded pointers (platform_data, etc), they're copied as-is.
500  */
501 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
502 {
503 	struct boardinfo *bi;
504 	int i;
505 
506 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
507 	if (!bi)
508 		return -ENOMEM;
509 
510 	for (i = 0; i < n; i++, bi++, info++) {
511 		struct spi_master *master;
512 
513 		memcpy(&bi->board_info, info, sizeof(*info));
514 		mutex_lock(&board_lock);
515 		list_add_tail(&bi->list, &board_list);
516 		list_for_each_entry(master, &spi_master_list, list)
517 			spi_match_master_to_boardinfo(master, &bi->board_info);
518 		mutex_unlock(&board_lock);
519 	}
520 
521 	return 0;
522 }
523 
524 /*-------------------------------------------------------------------------*/
525 
526 /**
527  * spi_pump_messages - kthread work function which processes spi message queue
528  * @work: pointer to kthread work struct contained in the master struct
529  *
530  * This function checks if there is any spi message in the queue that
531  * needs processing and if so call out to the driver to initialize hardware
532  * and transfer each message.
533  *
534  */
535 static void spi_pump_messages(struct kthread_work *work)
536 {
537 	struct spi_master *master =
538 		container_of(work, struct spi_master, pump_messages);
539 	unsigned long flags;
540 	bool was_busy = false;
541 	int ret;
542 
543 	/* Lock queue and check for queue work */
544 	spin_lock_irqsave(&master->queue_lock, flags);
545 	if (list_empty(&master->queue) || !master->running) {
546 		if (master->busy && master->unprepare_transfer_hardware) {
547 			ret = master->unprepare_transfer_hardware(master);
548 			if (ret) {
549 				spin_unlock_irqrestore(&master->queue_lock, flags);
550 				dev_err(&master->dev,
551 					"failed to unprepare transfer hardware\n");
552 				return;
553 			}
554 		}
555 		master->busy = false;
556 		spin_unlock_irqrestore(&master->queue_lock, flags);
557 		return;
558 	}
559 
560 	/* Make sure we are not already running a message */
561 	if (master->cur_msg) {
562 		spin_unlock_irqrestore(&master->queue_lock, flags);
563 		return;
564 	}
565 	/* Extract head of queue */
566 	master->cur_msg =
567 	    list_entry(master->queue.next, struct spi_message, queue);
568 
569 	list_del_init(&master->cur_msg->queue);
570 	if (master->busy)
571 		was_busy = true;
572 	else
573 		master->busy = true;
574 	spin_unlock_irqrestore(&master->queue_lock, flags);
575 
576 	if (!was_busy && master->prepare_transfer_hardware) {
577 		ret = master->prepare_transfer_hardware(master);
578 		if (ret) {
579 			dev_err(&master->dev,
580 				"failed to prepare transfer hardware\n");
581 			return;
582 		}
583 	}
584 
585 	ret = master->transfer_one_message(master, master->cur_msg);
586 	if (ret) {
587 		dev_err(&master->dev,
588 			"failed to transfer one message from queue\n");
589 		return;
590 	}
591 }
592 
593 static int spi_init_queue(struct spi_master *master)
594 {
595 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
596 
597 	INIT_LIST_HEAD(&master->queue);
598 	spin_lock_init(&master->queue_lock);
599 
600 	master->running = false;
601 	master->busy = false;
602 
603 	init_kthread_worker(&master->kworker);
604 	master->kworker_task = kthread_run(kthread_worker_fn,
605 					   &master->kworker,
606 					   dev_name(&master->dev));
607 	if (IS_ERR(master->kworker_task)) {
608 		dev_err(&master->dev, "failed to create message pump task\n");
609 		return -ENOMEM;
610 	}
611 	init_kthread_work(&master->pump_messages, spi_pump_messages);
612 
613 	/*
614 	 * Master config will indicate if this controller should run the
615 	 * message pump with high (realtime) priority to reduce the transfer
616 	 * latency on the bus by minimising the delay between a transfer
617 	 * request and the scheduling of the message pump thread. Without this
618 	 * setting the message pump thread will remain at default priority.
619 	 */
620 	if (master->rt) {
621 		dev_info(&master->dev,
622 			"will run message pump with realtime priority\n");
623 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
624 	}
625 
626 	return 0;
627 }
628 
629 /**
630  * spi_get_next_queued_message() - called by driver to check for queued
631  * messages
632  * @master: the master to check for queued messages
633  *
634  * If there are more messages in the queue, the next message is returned from
635  * this call.
636  */
637 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
638 {
639 	struct spi_message *next;
640 	unsigned long flags;
641 
642 	/* get a pointer to the next message, if any */
643 	spin_lock_irqsave(&master->queue_lock, flags);
644 	if (list_empty(&master->queue))
645 		next = NULL;
646 	else
647 		next = list_entry(master->queue.next,
648 				  struct spi_message, queue);
649 	spin_unlock_irqrestore(&master->queue_lock, flags);
650 
651 	return next;
652 }
653 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
654 
655 /**
656  * spi_finalize_current_message() - the current message is complete
657  * @master: the master to return the message to
658  *
659  * Called by the driver to notify the core that the message in the front of the
660  * queue is complete and can be removed from the queue.
661  */
662 void spi_finalize_current_message(struct spi_master *master)
663 {
664 	struct spi_message *mesg;
665 	unsigned long flags;
666 
667 	spin_lock_irqsave(&master->queue_lock, flags);
668 	mesg = master->cur_msg;
669 	master->cur_msg = NULL;
670 
671 	queue_kthread_work(&master->kworker, &master->pump_messages);
672 	spin_unlock_irqrestore(&master->queue_lock, flags);
673 
674 	mesg->state = NULL;
675 	if (mesg->complete)
676 		mesg->complete(mesg->context);
677 }
678 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
679 
680 static int spi_start_queue(struct spi_master *master)
681 {
682 	unsigned long flags;
683 
684 	spin_lock_irqsave(&master->queue_lock, flags);
685 
686 	if (master->running || master->busy) {
687 		spin_unlock_irqrestore(&master->queue_lock, flags);
688 		return -EBUSY;
689 	}
690 
691 	master->running = true;
692 	master->cur_msg = NULL;
693 	spin_unlock_irqrestore(&master->queue_lock, flags);
694 
695 	queue_kthread_work(&master->kworker, &master->pump_messages);
696 
697 	return 0;
698 }
699 
700 static int spi_stop_queue(struct spi_master *master)
701 {
702 	unsigned long flags;
703 	unsigned limit = 500;
704 	int ret = 0;
705 
706 	spin_lock_irqsave(&master->queue_lock, flags);
707 
708 	/*
709 	 * This is a bit lame, but is optimized for the common execution path.
710 	 * A wait_queue on the master->busy could be used, but then the common
711 	 * execution path (pump_messages) would be required to call wake_up or
712 	 * friends on every SPI message. Do this instead.
713 	 */
714 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
715 		spin_unlock_irqrestore(&master->queue_lock, flags);
716 		msleep(10);
717 		spin_lock_irqsave(&master->queue_lock, flags);
718 	}
719 
720 	if (!list_empty(&master->queue) || master->busy)
721 		ret = -EBUSY;
722 	else
723 		master->running = false;
724 
725 	spin_unlock_irqrestore(&master->queue_lock, flags);
726 
727 	if (ret) {
728 		dev_warn(&master->dev,
729 			 "could not stop message queue\n");
730 		return ret;
731 	}
732 	return ret;
733 }
734 
735 static int spi_destroy_queue(struct spi_master *master)
736 {
737 	int ret;
738 
739 	ret = spi_stop_queue(master);
740 
741 	/*
742 	 * flush_kthread_worker will block until all work is done.
743 	 * If the reason that stop_queue timed out is that the work will never
744 	 * finish, then it does no good to call flush/stop thread, so
745 	 * return anyway.
746 	 */
747 	if (ret) {
748 		dev_err(&master->dev, "problem destroying queue\n");
749 		return ret;
750 	}
751 
752 	flush_kthread_worker(&master->kworker);
753 	kthread_stop(master->kworker_task);
754 
755 	return 0;
756 }
757 
758 /**
759  * spi_queued_transfer - transfer function for queued transfers
760  * @spi: spi device which is requesting transfer
761  * @msg: spi message which is to handled is queued to driver queue
762  */
763 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
764 {
765 	struct spi_master *master = spi->master;
766 	unsigned long flags;
767 
768 	spin_lock_irqsave(&master->queue_lock, flags);
769 
770 	if (!master->running) {
771 		spin_unlock_irqrestore(&master->queue_lock, flags);
772 		return -ESHUTDOWN;
773 	}
774 	msg->actual_length = 0;
775 	msg->status = -EINPROGRESS;
776 
777 	list_add_tail(&msg->queue, &master->queue);
778 	if (master->running && !master->busy)
779 		queue_kthread_work(&master->kworker, &master->pump_messages);
780 
781 	spin_unlock_irqrestore(&master->queue_lock, flags);
782 	return 0;
783 }
784 
785 static int spi_master_initialize_queue(struct spi_master *master)
786 {
787 	int ret;
788 
789 	master->queued = true;
790 	master->transfer = spi_queued_transfer;
791 
792 	/* Initialize and start queue */
793 	ret = spi_init_queue(master);
794 	if (ret) {
795 		dev_err(&master->dev, "problem initializing queue\n");
796 		goto err_init_queue;
797 	}
798 	ret = spi_start_queue(master);
799 	if (ret) {
800 		dev_err(&master->dev, "problem starting queue\n");
801 		goto err_start_queue;
802 	}
803 
804 	return 0;
805 
806 err_start_queue:
807 err_init_queue:
808 	spi_destroy_queue(master);
809 	return ret;
810 }
811 
812 /*-------------------------------------------------------------------------*/
813 
814 #if defined(CONFIG_OF)
815 /**
816  * of_register_spi_devices() - Register child devices onto the SPI bus
817  * @master:	Pointer to spi_master device
818  *
819  * Registers an spi_device for each child node of master node which has a 'reg'
820  * property.
821  */
822 static void of_register_spi_devices(struct spi_master *master)
823 {
824 	struct spi_device *spi;
825 	struct device_node *nc;
826 	const __be32 *prop;
827 	char modalias[SPI_NAME_SIZE + 4];
828 	int rc;
829 	int len;
830 
831 	if (!master->dev.of_node)
832 		return;
833 
834 	for_each_available_child_of_node(master->dev.of_node, nc) {
835 		/* Alloc an spi_device */
836 		spi = spi_alloc_device(master);
837 		if (!spi) {
838 			dev_err(&master->dev, "spi_device alloc error for %s\n",
839 				nc->full_name);
840 			spi_dev_put(spi);
841 			continue;
842 		}
843 
844 		/* Select device driver */
845 		if (of_modalias_node(nc, spi->modalias,
846 				     sizeof(spi->modalias)) < 0) {
847 			dev_err(&master->dev, "cannot find modalias for %s\n",
848 				nc->full_name);
849 			spi_dev_put(spi);
850 			continue;
851 		}
852 
853 		/* Device address */
854 		prop = of_get_property(nc, "reg", &len);
855 		if (!prop || len < sizeof(*prop)) {
856 			dev_err(&master->dev, "%s has no 'reg' property\n",
857 				nc->full_name);
858 			spi_dev_put(spi);
859 			continue;
860 		}
861 		spi->chip_select = be32_to_cpup(prop);
862 
863 		/* Mode (clock phase/polarity/etc.) */
864 		if (of_find_property(nc, "spi-cpha", NULL))
865 			spi->mode |= SPI_CPHA;
866 		if (of_find_property(nc, "spi-cpol", NULL))
867 			spi->mode |= SPI_CPOL;
868 		if (of_find_property(nc, "spi-cs-high", NULL))
869 			spi->mode |= SPI_CS_HIGH;
870 		if (of_find_property(nc, "spi-3wire", NULL))
871 			spi->mode |= SPI_3WIRE;
872 
873 		/* Device speed */
874 		prop = of_get_property(nc, "spi-max-frequency", &len);
875 		if (!prop || len < sizeof(*prop)) {
876 			dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
877 				nc->full_name);
878 			spi_dev_put(spi);
879 			continue;
880 		}
881 		spi->max_speed_hz = be32_to_cpup(prop);
882 
883 		/* IRQ */
884 		spi->irq = irq_of_parse_and_map(nc, 0);
885 
886 		/* Store a pointer to the node in the device structure */
887 		of_node_get(nc);
888 		spi->dev.of_node = nc;
889 
890 		/* Register the new device */
891 		snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
892 			 spi->modalias);
893 		request_module(modalias);
894 		rc = spi_add_device(spi);
895 		if (rc) {
896 			dev_err(&master->dev, "spi_device register error %s\n",
897 				nc->full_name);
898 			spi_dev_put(spi);
899 		}
900 
901 	}
902 }
903 #else
904 static void of_register_spi_devices(struct spi_master *master) { }
905 #endif
906 
907 #ifdef CONFIG_ACPI
908 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
909 {
910 	struct spi_device *spi = data;
911 
912 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
913 		struct acpi_resource_spi_serialbus *sb;
914 
915 		sb = &ares->data.spi_serial_bus;
916 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
917 			spi->chip_select = sb->device_selection;
918 			spi->max_speed_hz = sb->connection_speed;
919 
920 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
921 				spi->mode |= SPI_CPHA;
922 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
923 				spi->mode |= SPI_CPOL;
924 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
925 				spi->mode |= SPI_CS_HIGH;
926 		}
927 	} else if (spi->irq < 0) {
928 		struct resource r;
929 
930 		if (acpi_dev_resource_interrupt(ares, 0, &r))
931 			spi->irq = r.start;
932 	}
933 
934 	/* Always tell the ACPI core to skip this resource */
935 	return 1;
936 }
937 
938 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
939 				       void *data, void **return_value)
940 {
941 	struct spi_master *master = data;
942 	struct list_head resource_list;
943 	struct acpi_device *adev;
944 	struct spi_device *spi;
945 	int ret;
946 
947 	if (acpi_bus_get_device(handle, &adev))
948 		return AE_OK;
949 	if (acpi_bus_get_status(adev) || !adev->status.present)
950 		return AE_OK;
951 
952 	spi = spi_alloc_device(master);
953 	if (!spi) {
954 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
955 			dev_name(&adev->dev));
956 		return AE_NO_MEMORY;
957 	}
958 
959 	ACPI_HANDLE_SET(&spi->dev, handle);
960 	spi->irq = -1;
961 
962 	INIT_LIST_HEAD(&resource_list);
963 	ret = acpi_dev_get_resources(adev, &resource_list,
964 				     acpi_spi_add_resource, spi);
965 	acpi_dev_free_resource_list(&resource_list);
966 
967 	if (ret < 0 || !spi->max_speed_hz) {
968 		spi_dev_put(spi);
969 		return AE_OK;
970 	}
971 
972 	strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
973 	if (spi_add_device(spi)) {
974 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
975 			dev_name(&adev->dev));
976 		spi_dev_put(spi);
977 	}
978 
979 	return AE_OK;
980 }
981 
982 static void acpi_register_spi_devices(struct spi_master *master)
983 {
984 	acpi_status status;
985 	acpi_handle handle;
986 
987 	handle = ACPI_HANDLE(&master->dev);
988 	if (!handle)
989 		return;
990 
991 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
992 				     acpi_spi_add_device, NULL,
993 				     master, NULL);
994 	if (ACPI_FAILURE(status))
995 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
996 }
997 #else
998 static inline void acpi_register_spi_devices(struct spi_master *master) {}
999 #endif /* CONFIG_ACPI */
1000 
1001 static void spi_master_release(struct device *dev)
1002 {
1003 	struct spi_master *master;
1004 
1005 	master = container_of(dev, struct spi_master, dev);
1006 	kfree(master);
1007 }
1008 
1009 static struct class spi_master_class = {
1010 	.name		= "spi_master",
1011 	.owner		= THIS_MODULE,
1012 	.dev_release	= spi_master_release,
1013 };
1014 
1015 
1016 
1017 /**
1018  * spi_alloc_master - allocate SPI master controller
1019  * @dev: the controller, possibly using the platform_bus
1020  * @size: how much zeroed driver-private data to allocate; the pointer to this
1021  *	memory is in the driver_data field of the returned device,
1022  *	accessible with spi_master_get_devdata().
1023  * Context: can sleep
1024  *
1025  * This call is used only by SPI master controller drivers, which are the
1026  * only ones directly touching chip registers.  It's how they allocate
1027  * an spi_master structure, prior to calling spi_register_master().
1028  *
1029  * This must be called from context that can sleep.  It returns the SPI
1030  * master structure on success, else NULL.
1031  *
1032  * The caller is responsible for assigning the bus number and initializing
1033  * the master's methods before calling spi_register_master(); and (after errors
1034  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1035  * leak.
1036  */
1037 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1038 {
1039 	struct spi_master	*master;
1040 
1041 	if (!dev)
1042 		return NULL;
1043 
1044 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
1045 	if (!master)
1046 		return NULL;
1047 
1048 	device_initialize(&master->dev);
1049 	master->bus_num = -1;
1050 	master->num_chipselect = 1;
1051 	master->dev.class = &spi_master_class;
1052 	master->dev.parent = get_device(dev);
1053 	spi_master_set_devdata(master, &master[1]);
1054 
1055 	return master;
1056 }
1057 EXPORT_SYMBOL_GPL(spi_alloc_master);
1058 
1059 #ifdef CONFIG_OF
1060 static int of_spi_register_master(struct spi_master *master)
1061 {
1062 	int nb, i, *cs;
1063 	struct device_node *np = master->dev.of_node;
1064 
1065 	if (!np)
1066 		return 0;
1067 
1068 	nb = of_gpio_named_count(np, "cs-gpios");
1069 	master->num_chipselect = max(nb, (int)master->num_chipselect);
1070 
1071 	if (nb < 1)
1072 		return 0;
1073 
1074 	cs = devm_kzalloc(&master->dev,
1075 			  sizeof(int) * master->num_chipselect,
1076 			  GFP_KERNEL);
1077 	master->cs_gpios = cs;
1078 
1079 	if (!master->cs_gpios)
1080 		return -ENOMEM;
1081 
1082 	for (i = 0; i < master->num_chipselect; i++)
1083 		cs[i] = -EINVAL;
1084 
1085 	for (i = 0; i < nb; i++)
1086 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1087 
1088 	return 0;
1089 }
1090 #else
1091 static int of_spi_register_master(struct spi_master *master)
1092 {
1093 	return 0;
1094 }
1095 #endif
1096 
1097 /**
1098  * spi_register_master - register SPI master controller
1099  * @master: initialized master, originally from spi_alloc_master()
1100  * Context: can sleep
1101  *
1102  * SPI master controllers connect to their drivers using some non-SPI bus,
1103  * such as the platform bus.  The final stage of probe() in that code
1104  * includes calling spi_register_master() to hook up to this SPI bus glue.
1105  *
1106  * SPI controllers use board specific (often SOC specific) bus numbers,
1107  * and board-specific addressing for SPI devices combines those numbers
1108  * with chip select numbers.  Since SPI does not directly support dynamic
1109  * device identification, boards need configuration tables telling which
1110  * chip is at which address.
1111  *
1112  * This must be called from context that can sleep.  It returns zero on
1113  * success, else a negative error code (dropping the master's refcount).
1114  * After a successful return, the caller is responsible for calling
1115  * spi_unregister_master().
1116  */
1117 int spi_register_master(struct spi_master *master)
1118 {
1119 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1120 	struct device		*dev = master->dev.parent;
1121 	struct boardinfo	*bi;
1122 	int			status = -ENODEV;
1123 	int			dynamic = 0;
1124 
1125 	if (!dev)
1126 		return -ENODEV;
1127 
1128 	status = of_spi_register_master(master);
1129 	if (status)
1130 		return status;
1131 
1132 	/* even if it's just one always-selected device, there must
1133 	 * be at least one chipselect
1134 	 */
1135 	if (master->num_chipselect == 0)
1136 		return -EINVAL;
1137 
1138 	if ((master->bus_num < 0) && master->dev.of_node)
1139 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1140 
1141 	/* convention:  dynamically assigned bus IDs count down from the max */
1142 	if (master->bus_num < 0) {
1143 		/* FIXME switch to an IDR based scheme, something like
1144 		 * I2C now uses, so we can't run out of "dynamic" IDs
1145 		 */
1146 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1147 		dynamic = 1;
1148 	}
1149 
1150 	spin_lock_init(&master->bus_lock_spinlock);
1151 	mutex_init(&master->bus_lock_mutex);
1152 	master->bus_lock_flag = 0;
1153 
1154 	/* register the device, then userspace will see it.
1155 	 * registration fails if the bus ID is in use.
1156 	 */
1157 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1158 	status = device_add(&master->dev);
1159 	if (status < 0)
1160 		goto done;
1161 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1162 			dynamic ? " (dynamic)" : "");
1163 
1164 	/* If we're using a queued driver, start the queue */
1165 	if (master->transfer)
1166 		dev_info(dev, "master is unqueued, this is deprecated\n");
1167 	else {
1168 		status = spi_master_initialize_queue(master);
1169 		if (status) {
1170 			device_unregister(&master->dev);
1171 			goto done;
1172 		}
1173 	}
1174 
1175 	mutex_lock(&board_lock);
1176 	list_add_tail(&master->list, &spi_master_list);
1177 	list_for_each_entry(bi, &board_list, list)
1178 		spi_match_master_to_boardinfo(master, &bi->board_info);
1179 	mutex_unlock(&board_lock);
1180 
1181 	/* Register devices from the device tree and ACPI */
1182 	of_register_spi_devices(master);
1183 	acpi_register_spi_devices(master);
1184 done:
1185 	return status;
1186 }
1187 EXPORT_SYMBOL_GPL(spi_register_master);
1188 
1189 static int __unregister(struct device *dev, void *null)
1190 {
1191 	spi_unregister_device(to_spi_device(dev));
1192 	return 0;
1193 }
1194 
1195 /**
1196  * spi_unregister_master - unregister SPI master controller
1197  * @master: the master being unregistered
1198  * Context: can sleep
1199  *
1200  * This call is used only by SPI master controller drivers, which are the
1201  * only ones directly touching chip registers.
1202  *
1203  * This must be called from context that can sleep.
1204  */
1205 void spi_unregister_master(struct spi_master *master)
1206 {
1207 	int dummy;
1208 
1209 	if (master->queued) {
1210 		if (spi_destroy_queue(master))
1211 			dev_err(&master->dev, "queue remove failed\n");
1212 	}
1213 
1214 	mutex_lock(&board_lock);
1215 	list_del(&master->list);
1216 	mutex_unlock(&board_lock);
1217 
1218 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1219 	device_unregister(&master->dev);
1220 }
1221 EXPORT_SYMBOL_GPL(spi_unregister_master);
1222 
1223 int spi_master_suspend(struct spi_master *master)
1224 {
1225 	int ret;
1226 
1227 	/* Basically no-ops for non-queued masters */
1228 	if (!master->queued)
1229 		return 0;
1230 
1231 	ret = spi_stop_queue(master);
1232 	if (ret)
1233 		dev_err(&master->dev, "queue stop failed\n");
1234 
1235 	return ret;
1236 }
1237 EXPORT_SYMBOL_GPL(spi_master_suspend);
1238 
1239 int spi_master_resume(struct spi_master *master)
1240 {
1241 	int ret;
1242 
1243 	if (!master->queued)
1244 		return 0;
1245 
1246 	ret = spi_start_queue(master);
1247 	if (ret)
1248 		dev_err(&master->dev, "queue restart failed\n");
1249 
1250 	return ret;
1251 }
1252 EXPORT_SYMBOL_GPL(spi_master_resume);
1253 
1254 static int __spi_master_match(struct device *dev, const void *data)
1255 {
1256 	struct spi_master *m;
1257 	const u16 *bus_num = data;
1258 
1259 	m = container_of(dev, struct spi_master, dev);
1260 	return m->bus_num == *bus_num;
1261 }
1262 
1263 /**
1264  * spi_busnum_to_master - look up master associated with bus_num
1265  * @bus_num: the master's bus number
1266  * Context: can sleep
1267  *
1268  * This call may be used with devices that are registered after
1269  * arch init time.  It returns a refcounted pointer to the relevant
1270  * spi_master (which the caller must release), or NULL if there is
1271  * no such master registered.
1272  */
1273 struct spi_master *spi_busnum_to_master(u16 bus_num)
1274 {
1275 	struct device		*dev;
1276 	struct spi_master	*master = NULL;
1277 
1278 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1279 				__spi_master_match);
1280 	if (dev)
1281 		master = container_of(dev, struct spi_master, dev);
1282 	/* reference got in class_find_device */
1283 	return master;
1284 }
1285 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1286 
1287 
1288 /*-------------------------------------------------------------------------*/
1289 
1290 /* Core methods for SPI master protocol drivers.  Some of the
1291  * other core methods are currently defined as inline functions.
1292  */
1293 
1294 /**
1295  * spi_setup - setup SPI mode and clock rate
1296  * @spi: the device whose settings are being modified
1297  * Context: can sleep, and no requests are queued to the device
1298  *
1299  * SPI protocol drivers may need to update the transfer mode if the
1300  * device doesn't work with its default.  They may likewise need
1301  * to update clock rates or word sizes from initial values.  This function
1302  * changes those settings, and must be called from a context that can sleep.
1303  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1304  * effect the next time the device is selected and data is transferred to
1305  * or from it.  When this function returns, the spi device is deselected.
1306  *
1307  * Note that this call will fail if the protocol driver specifies an option
1308  * that the underlying controller or its driver does not support.  For
1309  * example, not all hardware supports wire transfers using nine bit words,
1310  * LSB-first wire encoding, or active-high chipselects.
1311  */
1312 int spi_setup(struct spi_device *spi)
1313 {
1314 	unsigned	bad_bits;
1315 	int		status = 0;
1316 
1317 	/* help drivers fail *cleanly* when they need options
1318 	 * that aren't supported with their current master
1319 	 */
1320 	bad_bits = spi->mode & ~spi->master->mode_bits;
1321 	if (bad_bits) {
1322 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1323 			bad_bits);
1324 		return -EINVAL;
1325 	}
1326 
1327 	if (!spi->bits_per_word)
1328 		spi->bits_per_word = 8;
1329 
1330 	if (spi->master->setup)
1331 		status = spi->master->setup(spi);
1332 
1333 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1334 				"%u bits/w, %u Hz max --> %d\n",
1335 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1336 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1337 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1338 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1339 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1340 			spi->bits_per_word, spi->max_speed_hz,
1341 			status);
1342 
1343 	return status;
1344 }
1345 EXPORT_SYMBOL_GPL(spi_setup);
1346 
1347 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1348 {
1349 	struct spi_master *master = spi->master;
1350 	struct spi_transfer *xfer;
1351 
1352 	/* Half-duplex links include original MicroWire, and ones with
1353 	 * only one data pin like SPI_3WIRE (switches direction) or where
1354 	 * either MOSI or MISO is missing.  They can also be caused by
1355 	 * software limitations.
1356 	 */
1357 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1358 			|| (spi->mode & SPI_3WIRE)) {
1359 		unsigned flags = master->flags;
1360 
1361 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1362 			if (xfer->rx_buf && xfer->tx_buf)
1363 				return -EINVAL;
1364 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1365 				return -EINVAL;
1366 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1367 				return -EINVAL;
1368 		}
1369 	}
1370 
1371 	/**
1372 	 * Set transfer bits_per_word and max speed as spi device default if
1373 	 * it is not set for this transfer.
1374 	 */
1375 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1376 		if (!xfer->bits_per_word)
1377 			xfer->bits_per_word = spi->bits_per_word;
1378 		if (!xfer->speed_hz)
1379 			xfer->speed_hz = spi->max_speed_hz;
1380 	}
1381 
1382 	message->spi = spi;
1383 	message->status = -EINPROGRESS;
1384 	return master->transfer(spi, message);
1385 }
1386 
1387 /**
1388  * spi_async - asynchronous SPI transfer
1389  * @spi: device with which data will be exchanged
1390  * @message: describes the data transfers, including completion callback
1391  * Context: any (irqs may be blocked, etc)
1392  *
1393  * This call may be used in_irq and other contexts which can't sleep,
1394  * as well as from task contexts which can sleep.
1395  *
1396  * The completion callback is invoked in a context which can't sleep.
1397  * Before that invocation, the value of message->status is undefined.
1398  * When the callback is issued, message->status holds either zero (to
1399  * indicate complete success) or a negative error code.  After that
1400  * callback returns, the driver which issued the transfer request may
1401  * deallocate the associated memory; it's no longer in use by any SPI
1402  * core or controller driver code.
1403  *
1404  * Note that although all messages to a spi_device are handled in
1405  * FIFO order, messages may go to different devices in other orders.
1406  * Some device might be higher priority, or have various "hard" access
1407  * time requirements, for example.
1408  *
1409  * On detection of any fault during the transfer, processing of
1410  * the entire message is aborted, and the device is deselected.
1411  * Until returning from the associated message completion callback,
1412  * no other spi_message queued to that device will be processed.
1413  * (This rule applies equally to all the synchronous transfer calls,
1414  * which are wrappers around this core asynchronous primitive.)
1415  */
1416 int spi_async(struct spi_device *spi, struct spi_message *message)
1417 {
1418 	struct spi_master *master = spi->master;
1419 	int ret;
1420 	unsigned long flags;
1421 
1422 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1423 
1424 	if (master->bus_lock_flag)
1425 		ret = -EBUSY;
1426 	else
1427 		ret = __spi_async(spi, message);
1428 
1429 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1430 
1431 	return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(spi_async);
1434 
1435 /**
1436  * spi_async_locked - version of spi_async with exclusive bus usage
1437  * @spi: device with which data will be exchanged
1438  * @message: describes the data transfers, including completion callback
1439  * Context: any (irqs may be blocked, etc)
1440  *
1441  * This call may be used in_irq and other contexts which can't sleep,
1442  * as well as from task contexts which can sleep.
1443  *
1444  * The completion callback is invoked in a context which can't sleep.
1445  * Before that invocation, the value of message->status is undefined.
1446  * When the callback is issued, message->status holds either zero (to
1447  * indicate complete success) or a negative error code.  After that
1448  * callback returns, the driver which issued the transfer request may
1449  * deallocate the associated memory; it's no longer in use by any SPI
1450  * core or controller driver code.
1451  *
1452  * Note that although all messages to a spi_device are handled in
1453  * FIFO order, messages may go to different devices in other orders.
1454  * Some device might be higher priority, or have various "hard" access
1455  * time requirements, for example.
1456  *
1457  * On detection of any fault during the transfer, processing of
1458  * the entire message is aborted, and the device is deselected.
1459  * Until returning from the associated message completion callback,
1460  * no other spi_message queued to that device will be processed.
1461  * (This rule applies equally to all the synchronous transfer calls,
1462  * which are wrappers around this core asynchronous primitive.)
1463  */
1464 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1465 {
1466 	struct spi_master *master = spi->master;
1467 	int ret;
1468 	unsigned long flags;
1469 
1470 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1471 
1472 	ret = __spi_async(spi, message);
1473 
1474 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1475 
1476 	return ret;
1477 
1478 }
1479 EXPORT_SYMBOL_GPL(spi_async_locked);
1480 
1481 
1482 /*-------------------------------------------------------------------------*/
1483 
1484 /* Utility methods for SPI master protocol drivers, layered on
1485  * top of the core.  Some other utility methods are defined as
1486  * inline functions.
1487  */
1488 
1489 static void spi_complete(void *arg)
1490 {
1491 	complete(arg);
1492 }
1493 
1494 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1495 		      int bus_locked)
1496 {
1497 	DECLARE_COMPLETION_ONSTACK(done);
1498 	int status;
1499 	struct spi_master *master = spi->master;
1500 
1501 	message->complete = spi_complete;
1502 	message->context = &done;
1503 
1504 	if (!bus_locked)
1505 		mutex_lock(&master->bus_lock_mutex);
1506 
1507 	status = spi_async_locked(spi, message);
1508 
1509 	if (!bus_locked)
1510 		mutex_unlock(&master->bus_lock_mutex);
1511 
1512 	if (status == 0) {
1513 		wait_for_completion(&done);
1514 		status = message->status;
1515 	}
1516 	message->context = NULL;
1517 	return status;
1518 }
1519 
1520 /**
1521  * spi_sync - blocking/synchronous SPI data transfers
1522  * @spi: device with which data will be exchanged
1523  * @message: describes the data transfers
1524  * Context: can sleep
1525  *
1526  * This call may only be used from a context that may sleep.  The sleep
1527  * is non-interruptible, and has no timeout.  Low-overhead controller
1528  * drivers may DMA directly into and out of the message buffers.
1529  *
1530  * Note that the SPI device's chip select is active during the message,
1531  * and then is normally disabled between messages.  Drivers for some
1532  * frequently-used devices may want to minimize costs of selecting a chip,
1533  * by leaving it selected in anticipation that the next message will go
1534  * to the same chip.  (That may increase power usage.)
1535  *
1536  * Also, the caller is guaranteeing that the memory associated with the
1537  * message will not be freed before this call returns.
1538  *
1539  * It returns zero on success, else a negative error code.
1540  */
1541 int spi_sync(struct spi_device *spi, struct spi_message *message)
1542 {
1543 	return __spi_sync(spi, message, 0);
1544 }
1545 EXPORT_SYMBOL_GPL(spi_sync);
1546 
1547 /**
1548  * spi_sync_locked - version of spi_sync with exclusive bus usage
1549  * @spi: device with which data will be exchanged
1550  * @message: describes the data transfers
1551  * Context: can sleep
1552  *
1553  * This call may only be used from a context that may sleep.  The sleep
1554  * is non-interruptible, and has no timeout.  Low-overhead controller
1555  * drivers may DMA directly into and out of the message buffers.
1556  *
1557  * This call should be used by drivers that require exclusive access to the
1558  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1559  * be released by a spi_bus_unlock call when the exclusive access is over.
1560  *
1561  * It returns zero on success, else a negative error code.
1562  */
1563 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1564 {
1565 	return __spi_sync(spi, message, 1);
1566 }
1567 EXPORT_SYMBOL_GPL(spi_sync_locked);
1568 
1569 /**
1570  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1571  * @master: SPI bus master that should be locked for exclusive bus access
1572  * Context: can sleep
1573  *
1574  * This call may only be used from a context that may sleep.  The sleep
1575  * is non-interruptible, and has no timeout.
1576  *
1577  * This call should be used by drivers that require exclusive access to the
1578  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1579  * exclusive access is over. Data transfer must be done by spi_sync_locked
1580  * and spi_async_locked calls when the SPI bus lock is held.
1581  *
1582  * It returns zero on success, else a negative error code.
1583  */
1584 int spi_bus_lock(struct spi_master *master)
1585 {
1586 	unsigned long flags;
1587 
1588 	mutex_lock(&master->bus_lock_mutex);
1589 
1590 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1591 	master->bus_lock_flag = 1;
1592 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1593 
1594 	/* mutex remains locked until spi_bus_unlock is called */
1595 
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL_GPL(spi_bus_lock);
1599 
1600 /**
1601  * spi_bus_unlock - release the lock for exclusive SPI bus usage
1602  * @master: SPI bus master that was locked for exclusive bus access
1603  * Context: can sleep
1604  *
1605  * This call may only be used from a context that may sleep.  The sleep
1606  * is non-interruptible, and has no timeout.
1607  *
1608  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1609  * call.
1610  *
1611  * It returns zero on success, else a negative error code.
1612  */
1613 int spi_bus_unlock(struct spi_master *master)
1614 {
1615 	master->bus_lock_flag = 0;
1616 
1617 	mutex_unlock(&master->bus_lock_mutex);
1618 
1619 	return 0;
1620 }
1621 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1622 
1623 /* portable code must never pass more than 32 bytes */
1624 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1625 
1626 static u8	*buf;
1627 
1628 /**
1629  * spi_write_then_read - SPI synchronous write followed by read
1630  * @spi: device with which data will be exchanged
1631  * @txbuf: data to be written (need not be dma-safe)
1632  * @n_tx: size of txbuf, in bytes
1633  * @rxbuf: buffer into which data will be read (need not be dma-safe)
1634  * @n_rx: size of rxbuf, in bytes
1635  * Context: can sleep
1636  *
1637  * This performs a half duplex MicroWire style transaction with the
1638  * device, sending txbuf and then reading rxbuf.  The return value
1639  * is zero for success, else a negative errno status code.
1640  * This call may only be used from a context that may sleep.
1641  *
1642  * Parameters to this routine are always copied using a small buffer;
1643  * portable code should never use this for more than 32 bytes.
1644  * Performance-sensitive or bulk transfer code should instead use
1645  * spi_{async,sync}() calls with dma-safe buffers.
1646  */
1647 int spi_write_then_read(struct spi_device *spi,
1648 		const void *txbuf, unsigned n_tx,
1649 		void *rxbuf, unsigned n_rx)
1650 {
1651 	static DEFINE_MUTEX(lock);
1652 
1653 	int			status;
1654 	struct spi_message	message;
1655 	struct spi_transfer	x[2];
1656 	u8			*local_buf;
1657 
1658 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
1659 	 * copying here, (as a pure convenience thing), but we can
1660 	 * keep heap costs out of the hot path unless someone else is
1661 	 * using the pre-allocated buffer or the transfer is too large.
1662 	 */
1663 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
1664 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1665 				    GFP_KERNEL | GFP_DMA);
1666 		if (!local_buf)
1667 			return -ENOMEM;
1668 	} else {
1669 		local_buf = buf;
1670 	}
1671 
1672 	spi_message_init(&message);
1673 	memset(x, 0, sizeof x);
1674 	if (n_tx) {
1675 		x[0].len = n_tx;
1676 		spi_message_add_tail(&x[0], &message);
1677 	}
1678 	if (n_rx) {
1679 		x[1].len = n_rx;
1680 		spi_message_add_tail(&x[1], &message);
1681 	}
1682 
1683 	memcpy(local_buf, txbuf, n_tx);
1684 	x[0].tx_buf = local_buf;
1685 	x[1].rx_buf = local_buf + n_tx;
1686 
1687 	/* do the i/o */
1688 	status = spi_sync(spi, &message);
1689 	if (status == 0)
1690 		memcpy(rxbuf, x[1].rx_buf, n_rx);
1691 
1692 	if (x[0].tx_buf == buf)
1693 		mutex_unlock(&lock);
1694 	else
1695 		kfree(local_buf);
1696 
1697 	return status;
1698 }
1699 EXPORT_SYMBOL_GPL(spi_write_then_read);
1700 
1701 /*-------------------------------------------------------------------------*/
1702 
1703 static int __init spi_init(void)
1704 {
1705 	int	status;
1706 
1707 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1708 	if (!buf) {
1709 		status = -ENOMEM;
1710 		goto err0;
1711 	}
1712 
1713 	status = bus_register(&spi_bus_type);
1714 	if (status < 0)
1715 		goto err1;
1716 
1717 	status = class_register(&spi_master_class);
1718 	if (status < 0)
1719 		goto err2;
1720 	return 0;
1721 
1722 err2:
1723 	bus_unregister(&spi_bus_type);
1724 err1:
1725 	kfree(buf);
1726 	buf = NULL;
1727 err0:
1728 	return status;
1729 }
1730 
1731 /* board_info is normally registered in arch_initcall(),
1732  * but even essential drivers wait till later
1733  *
1734  * REVISIT only boardinfo really needs static linking. the rest (device and
1735  * driver registration) _could_ be dynamically linked (modular) ... costs
1736  * include needing to have boardinfo data structures be much more public.
1737  */
1738 postcore_initcall(spi_init);
1739 
1740