xref: /openbmc/linux/drivers/spi/spi.c (revision 94c7b6fc)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/mutex.h>
30 #include <linux/of_device.h>
31 #include <linux/of_irq.h>
32 #include <linux/slab.h>
33 #include <linux/mod_devicetable.h>
34 #include <linux/spi/spi.h>
35 #include <linux/of_gpio.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/export.h>
38 #include <linux/sched/rt.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/ioport.h>
42 #include <linux/acpi.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/spi.h>
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	/* spi masters may cleanup for released devices */
52 	if (spi->master->cleanup)
53 		spi->master->cleanup(spi);
54 
55 	spi_master_put(spi->master);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static struct attribute *spi_dev_attrs[] = {
74 	&dev_attr_modalias.attr,
75 	NULL,
76 };
77 ATTRIBUTE_GROUPS(spi_dev);
78 
79 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
80  * and the sysfs version makes coldplug work too.
81  */
82 
83 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
84 						const struct spi_device *sdev)
85 {
86 	while (id->name[0]) {
87 		if (!strcmp(sdev->modalias, id->name))
88 			return id;
89 		id++;
90 	}
91 	return NULL;
92 }
93 
94 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
95 {
96 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
97 
98 	return spi_match_id(sdrv->id_table, sdev);
99 }
100 EXPORT_SYMBOL_GPL(spi_get_device_id);
101 
102 static int spi_match_device(struct device *dev, struct device_driver *drv)
103 {
104 	const struct spi_device	*spi = to_spi_device(dev);
105 	const struct spi_driver	*sdrv = to_spi_driver(drv);
106 
107 	/* Attempt an OF style match */
108 	if (of_driver_match_device(dev, drv))
109 		return 1;
110 
111 	/* Then try ACPI */
112 	if (acpi_driver_match_device(dev, drv))
113 		return 1;
114 
115 	if (sdrv->id_table)
116 		return !!spi_match_id(sdrv->id_table, spi);
117 
118 	return strcmp(spi->modalias, drv->name) == 0;
119 }
120 
121 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
122 {
123 	const struct spi_device		*spi = to_spi_device(dev);
124 	int rc;
125 
126 	rc = acpi_device_uevent_modalias(dev, env);
127 	if (rc != -ENODEV)
128 		return rc;
129 
130 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
131 	return 0;
132 }
133 
134 #ifdef CONFIG_PM_SLEEP
135 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
136 {
137 	int			value = 0;
138 	struct spi_driver	*drv = to_spi_driver(dev->driver);
139 
140 	/* suspend will stop irqs and dma; no more i/o */
141 	if (drv) {
142 		if (drv->suspend)
143 			value = drv->suspend(to_spi_device(dev), message);
144 		else
145 			dev_dbg(dev, "... can't suspend\n");
146 	}
147 	return value;
148 }
149 
150 static int spi_legacy_resume(struct device *dev)
151 {
152 	int			value = 0;
153 	struct spi_driver	*drv = to_spi_driver(dev->driver);
154 
155 	/* resume may restart the i/o queue */
156 	if (drv) {
157 		if (drv->resume)
158 			value = drv->resume(to_spi_device(dev));
159 		else
160 			dev_dbg(dev, "... can't resume\n");
161 	}
162 	return value;
163 }
164 
165 static int spi_pm_suspend(struct device *dev)
166 {
167 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
168 
169 	if (pm)
170 		return pm_generic_suspend(dev);
171 	else
172 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
173 }
174 
175 static int spi_pm_resume(struct device *dev)
176 {
177 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
178 
179 	if (pm)
180 		return pm_generic_resume(dev);
181 	else
182 		return spi_legacy_resume(dev);
183 }
184 
185 static int spi_pm_freeze(struct device *dev)
186 {
187 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
188 
189 	if (pm)
190 		return pm_generic_freeze(dev);
191 	else
192 		return spi_legacy_suspend(dev, PMSG_FREEZE);
193 }
194 
195 static int spi_pm_thaw(struct device *dev)
196 {
197 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
198 
199 	if (pm)
200 		return pm_generic_thaw(dev);
201 	else
202 		return spi_legacy_resume(dev);
203 }
204 
205 static int spi_pm_poweroff(struct device *dev)
206 {
207 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
208 
209 	if (pm)
210 		return pm_generic_poweroff(dev);
211 	else
212 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
213 }
214 
215 static int spi_pm_restore(struct device *dev)
216 {
217 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
218 
219 	if (pm)
220 		return pm_generic_restore(dev);
221 	else
222 		return spi_legacy_resume(dev);
223 }
224 #else
225 #define spi_pm_suspend	NULL
226 #define spi_pm_resume	NULL
227 #define spi_pm_freeze	NULL
228 #define spi_pm_thaw	NULL
229 #define spi_pm_poweroff	NULL
230 #define spi_pm_restore	NULL
231 #endif
232 
233 static const struct dev_pm_ops spi_pm = {
234 	.suspend = spi_pm_suspend,
235 	.resume = spi_pm_resume,
236 	.freeze = spi_pm_freeze,
237 	.thaw = spi_pm_thaw,
238 	.poweroff = spi_pm_poweroff,
239 	.restore = spi_pm_restore,
240 	SET_RUNTIME_PM_OPS(
241 		pm_generic_runtime_suspend,
242 		pm_generic_runtime_resume,
243 		NULL
244 	)
245 };
246 
247 struct bus_type spi_bus_type = {
248 	.name		= "spi",
249 	.dev_groups	= spi_dev_groups,
250 	.match		= spi_match_device,
251 	.uevent		= spi_uevent,
252 	.pm		= &spi_pm,
253 };
254 EXPORT_SYMBOL_GPL(spi_bus_type);
255 
256 
257 static int spi_drv_probe(struct device *dev)
258 {
259 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
260 	int ret;
261 
262 	acpi_dev_pm_attach(dev, true);
263 	ret = sdrv->probe(to_spi_device(dev));
264 	if (ret)
265 		acpi_dev_pm_detach(dev, true);
266 
267 	return ret;
268 }
269 
270 static int spi_drv_remove(struct device *dev)
271 {
272 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
273 	int ret;
274 
275 	ret = sdrv->remove(to_spi_device(dev));
276 	acpi_dev_pm_detach(dev, true);
277 
278 	return ret;
279 }
280 
281 static void spi_drv_shutdown(struct device *dev)
282 {
283 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
284 
285 	sdrv->shutdown(to_spi_device(dev));
286 }
287 
288 /**
289  * spi_register_driver - register a SPI driver
290  * @sdrv: the driver to register
291  * Context: can sleep
292  */
293 int spi_register_driver(struct spi_driver *sdrv)
294 {
295 	sdrv->driver.bus = &spi_bus_type;
296 	if (sdrv->probe)
297 		sdrv->driver.probe = spi_drv_probe;
298 	if (sdrv->remove)
299 		sdrv->driver.remove = spi_drv_remove;
300 	if (sdrv->shutdown)
301 		sdrv->driver.shutdown = spi_drv_shutdown;
302 	return driver_register(&sdrv->driver);
303 }
304 EXPORT_SYMBOL_GPL(spi_register_driver);
305 
306 /*-------------------------------------------------------------------------*/
307 
308 /* SPI devices should normally not be created by SPI device drivers; that
309  * would make them board-specific.  Similarly with SPI master drivers.
310  * Device registration normally goes into like arch/.../mach.../board-YYY.c
311  * with other readonly (flashable) information about mainboard devices.
312  */
313 
314 struct boardinfo {
315 	struct list_head	list;
316 	struct spi_board_info	board_info;
317 };
318 
319 static LIST_HEAD(board_list);
320 static LIST_HEAD(spi_master_list);
321 
322 /*
323  * Used to protect add/del opertion for board_info list and
324  * spi_master list, and their matching process
325  */
326 static DEFINE_MUTEX(board_lock);
327 
328 /**
329  * spi_alloc_device - Allocate a new SPI device
330  * @master: Controller to which device is connected
331  * Context: can sleep
332  *
333  * Allows a driver to allocate and initialize a spi_device without
334  * registering it immediately.  This allows a driver to directly
335  * fill the spi_device with device parameters before calling
336  * spi_add_device() on it.
337  *
338  * Caller is responsible to call spi_add_device() on the returned
339  * spi_device structure to add it to the SPI master.  If the caller
340  * needs to discard the spi_device without adding it, then it should
341  * call spi_dev_put() on it.
342  *
343  * Returns a pointer to the new device, or NULL.
344  */
345 struct spi_device *spi_alloc_device(struct spi_master *master)
346 {
347 	struct spi_device	*spi;
348 	struct device		*dev = master->dev.parent;
349 
350 	if (!spi_master_get(master))
351 		return NULL;
352 
353 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
354 	if (!spi) {
355 		dev_err(dev, "cannot alloc spi_device\n");
356 		spi_master_put(master);
357 		return NULL;
358 	}
359 
360 	spi->master = master;
361 	spi->dev.parent = &master->dev;
362 	spi->dev.bus = &spi_bus_type;
363 	spi->dev.release = spidev_release;
364 	spi->cs_gpio = -ENOENT;
365 	device_initialize(&spi->dev);
366 	return spi;
367 }
368 EXPORT_SYMBOL_GPL(spi_alloc_device);
369 
370 static void spi_dev_set_name(struct spi_device *spi)
371 {
372 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
373 
374 	if (adev) {
375 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
376 		return;
377 	}
378 
379 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
380 		     spi->chip_select);
381 }
382 
383 static int spi_dev_check(struct device *dev, void *data)
384 {
385 	struct spi_device *spi = to_spi_device(dev);
386 	struct spi_device *new_spi = data;
387 
388 	if (spi->master == new_spi->master &&
389 	    spi->chip_select == new_spi->chip_select)
390 		return -EBUSY;
391 	return 0;
392 }
393 
394 /**
395  * spi_add_device - Add spi_device allocated with spi_alloc_device
396  * @spi: spi_device to register
397  *
398  * Companion function to spi_alloc_device.  Devices allocated with
399  * spi_alloc_device can be added onto the spi bus with this function.
400  *
401  * Returns 0 on success; negative errno on failure
402  */
403 int spi_add_device(struct spi_device *spi)
404 {
405 	static DEFINE_MUTEX(spi_add_lock);
406 	struct spi_master *master = spi->master;
407 	struct device *dev = master->dev.parent;
408 	int status;
409 
410 	/* Chipselects are numbered 0..max; validate. */
411 	if (spi->chip_select >= master->num_chipselect) {
412 		dev_err(dev, "cs%d >= max %d\n",
413 			spi->chip_select,
414 			master->num_chipselect);
415 		return -EINVAL;
416 	}
417 
418 	/* Set the bus ID string */
419 	spi_dev_set_name(spi);
420 
421 	/* We need to make sure there's no other device with this
422 	 * chipselect **BEFORE** we call setup(), else we'll trash
423 	 * its configuration.  Lock against concurrent add() calls.
424 	 */
425 	mutex_lock(&spi_add_lock);
426 
427 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
428 	if (status) {
429 		dev_err(dev, "chipselect %d already in use\n",
430 				spi->chip_select);
431 		goto done;
432 	}
433 
434 	if (master->cs_gpios)
435 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
436 
437 	/* Drivers may modify this initial i/o setup, but will
438 	 * normally rely on the device being setup.  Devices
439 	 * using SPI_CS_HIGH can't coexist well otherwise...
440 	 */
441 	status = spi_setup(spi);
442 	if (status < 0) {
443 		dev_err(dev, "can't setup %s, status %d\n",
444 				dev_name(&spi->dev), status);
445 		goto done;
446 	}
447 
448 	/* Device may be bound to an active driver when this returns */
449 	status = device_add(&spi->dev);
450 	if (status < 0)
451 		dev_err(dev, "can't add %s, status %d\n",
452 				dev_name(&spi->dev), status);
453 	else
454 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
455 
456 done:
457 	mutex_unlock(&spi_add_lock);
458 	return status;
459 }
460 EXPORT_SYMBOL_GPL(spi_add_device);
461 
462 /**
463  * spi_new_device - instantiate one new SPI device
464  * @master: Controller to which device is connected
465  * @chip: Describes the SPI device
466  * Context: can sleep
467  *
468  * On typical mainboards, this is purely internal; and it's not needed
469  * after board init creates the hard-wired devices.  Some development
470  * platforms may not be able to use spi_register_board_info though, and
471  * this is exported so that for example a USB or parport based adapter
472  * driver could add devices (which it would learn about out-of-band).
473  *
474  * Returns the new device, or NULL.
475  */
476 struct spi_device *spi_new_device(struct spi_master *master,
477 				  struct spi_board_info *chip)
478 {
479 	struct spi_device	*proxy;
480 	int			status;
481 
482 	/* NOTE:  caller did any chip->bus_num checks necessary.
483 	 *
484 	 * Also, unless we change the return value convention to use
485 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
486 	 * suggests syslogged diagnostics are best here (ugh).
487 	 */
488 
489 	proxy = spi_alloc_device(master);
490 	if (!proxy)
491 		return NULL;
492 
493 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
494 
495 	proxy->chip_select = chip->chip_select;
496 	proxy->max_speed_hz = chip->max_speed_hz;
497 	proxy->mode = chip->mode;
498 	proxy->irq = chip->irq;
499 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
500 	proxy->dev.platform_data = (void *) chip->platform_data;
501 	proxy->controller_data = chip->controller_data;
502 	proxy->controller_state = NULL;
503 
504 	status = spi_add_device(proxy);
505 	if (status < 0) {
506 		spi_dev_put(proxy);
507 		return NULL;
508 	}
509 
510 	return proxy;
511 }
512 EXPORT_SYMBOL_GPL(spi_new_device);
513 
514 static void spi_match_master_to_boardinfo(struct spi_master *master,
515 				struct spi_board_info *bi)
516 {
517 	struct spi_device *dev;
518 
519 	if (master->bus_num != bi->bus_num)
520 		return;
521 
522 	dev = spi_new_device(master, bi);
523 	if (!dev)
524 		dev_err(master->dev.parent, "can't create new device for %s\n",
525 			bi->modalias);
526 }
527 
528 /**
529  * spi_register_board_info - register SPI devices for a given board
530  * @info: array of chip descriptors
531  * @n: how many descriptors are provided
532  * Context: can sleep
533  *
534  * Board-specific early init code calls this (probably during arch_initcall)
535  * with segments of the SPI device table.  Any device nodes are created later,
536  * after the relevant parent SPI controller (bus_num) is defined.  We keep
537  * this table of devices forever, so that reloading a controller driver will
538  * not make Linux forget about these hard-wired devices.
539  *
540  * Other code can also call this, e.g. a particular add-on board might provide
541  * SPI devices through its expansion connector, so code initializing that board
542  * would naturally declare its SPI devices.
543  *
544  * The board info passed can safely be __initdata ... but be careful of
545  * any embedded pointers (platform_data, etc), they're copied as-is.
546  */
547 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
548 {
549 	struct boardinfo *bi;
550 	int i;
551 
552 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
553 	if (!bi)
554 		return -ENOMEM;
555 
556 	for (i = 0; i < n; i++, bi++, info++) {
557 		struct spi_master *master;
558 
559 		memcpy(&bi->board_info, info, sizeof(*info));
560 		mutex_lock(&board_lock);
561 		list_add_tail(&bi->list, &board_list);
562 		list_for_each_entry(master, &spi_master_list, list)
563 			spi_match_master_to_boardinfo(master, &bi->board_info);
564 		mutex_unlock(&board_lock);
565 	}
566 
567 	return 0;
568 }
569 
570 /*-------------------------------------------------------------------------*/
571 
572 static void spi_set_cs(struct spi_device *spi, bool enable)
573 {
574 	if (spi->mode & SPI_CS_HIGH)
575 		enable = !enable;
576 
577 	if (spi->cs_gpio >= 0)
578 		gpio_set_value(spi->cs_gpio, !enable);
579 	else if (spi->master->set_cs)
580 		spi->master->set_cs(spi, !enable);
581 }
582 
583 #ifdef CONFIG_HAS_DMA
584 static int spi_map_buf(struct spi_master *master, struct device *dev,
585 		       struct sg_table *sgt, void *buf, size_t len,
586 		       enum dma_data_direction dir)
587 {
588 	const bool vmalloced_buf = is_vmalloc_addr(buf);
589 	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
590 	const int sgs = DIV_ROUND_UP(len, desc_len);
591 	struct page *vm_page;
592 	void *sg_buf;
593 	size_t min;
594 	int i, ret;
595 
596 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
597 	if (ret != 0)
598 		return ret;
599 
600 	for (i = 0; i < sgs; i++) {
601 		min = min_t(size_t, len, desc_len);
602 
603 		if (vmalloced_buf) {
604 			vm_page = vmalloc_to_page(buf);
605 			if (!vm_page) {
606 				sg_free_table(sgt);
607 				return -ENOMEM;
608 			}
609 			sg_buf = page_address(vm_page) +
610 				((size_t)buf & ~PAGE_MASK);
611 		} else {
612 			sg_buf = buf;
613 		}
614 
615 		sg_set_buf(&sgt->sgl[i], sg_buf, min);
616 
617 		buf += min;
618 		len -= min;
619 	}
620 
621 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
622 	if (ret < 0) {
623 		sg_free_table(sgt);
624 		return ret;
625 	}
626 
627 	sgt->nents = ret;
628 
629 	return 0;
630 }
631 
632 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
633 			  struct sg_table *sgt, enum dma_data_direction dir)
634 {
635 	if (sgt->orig_nents) {
636 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
637 		sg_free_table(sgt);
638 	}
639 }
640 
641 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
642 {
643 	struct device *tx_dev, *rx_dev;
644 	struct spi_transfer *xfer;
645 	int ret;
646 
647 	if (!master->can_dma)
648 		return 0;
649 
650 	tx_dev = &master->dma_tx->dev->device;
651 	rx_dev = &master->dma_rx->dev->device;
652 
653 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
654 		if (!master->can_dma(master, msg->spi, xfer))
655 			continue;
656 
657 		if (xfer->tx_buf != NULL) {
658 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
659 					  (void *)xfer->tx_buf, xfer->len,
660 					  DMA_TO_DEVICE);
661 			if (ret != 0)
662 				return ret;
663 		}
664 
665 		if (xfer->rx_buf != NULL) {
666 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
667 					  xfer->rx_buf, xfer->len,
668 					  DMA_FROM_DEVICE);
669 			if (ret != 0) {
670 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
671 					      DMA_TO_DEVICE);
672 				return ret;
673 			}
674 		}
675 	}
676 
677 	master->cur_msg_mapped = true;
678 
679 	return 0;
680 }
681 
682 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
683 {
684 	struct spi_transfer *xfer;
685 	struct device *tx_dev, *rx_dev;
686 
687 	if (!master->cur_msg_mapped || !master->can_dma)
688 		return 0;
689 
690 	tx_dev = &master->dma_tx->dev->device;
691 	rx_dev = &master->dma_rx->dev->device;
692 
693 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
694 		if (!master->can_dma(master, msg->spi, xfer))
695 			continue;
696 
697 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
698 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
699 	}
700 
701 	return 0;
702 }
703 #else /* !CONFIG_HAS_DMA */
704 static inline int __spi_map_msg(struct spi_master *master,
705 				struct spi_message *msg)
706 {
707 	return 0;
708 }
709 
710 static inline int spi_unmap_msg(struct spi_master *master,
711 				struct spi_message *msg)
712 {
713 	return 0;
714 }
715 #endif /* !CONFIG_HAS_DMA */
716 
717 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
718 {
719 	struct spi_transfer *xfer;
720 	void *tmp;
721 	unsigned int max_tx, max_rx;
722 
723 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
724 		max_tx = 0;
725 		max_rx = 0;
726 
727 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
728 			if ((master->flags & SPI_MASTER_MUST_TX) &&
729 			    !xfer->tx_buf)
730 				max_tx = max(xfer->len, max_tx);
731 			if ((master->flags & SPI_MASTER_MUST_RX) &&
732 			    !xfer->rx_buf)
733 				max_rx = max(xfer->len, max_rx);
734 		}
735 
736 		if (max_tx) {
737 			tmp = krealloc(master->dummy_tx, max_tx,
738 				       GFP_KERNEL | GFP_DMA);
739 			if (!tmp)
740 				return -ENOMEM;
741 			master->dummy_tx = tmp;
742 			memset(tmp, 0, max_tx);
743 		}
744 
745 		if (max_rx) {
746 			tmp = krealloc(master->dummy_rx, max_rx,
747 				       GFP_KERNEL | GFP_DMA);
748 			if (!tmp)
749 				return -ENOMEM;
750 			master->dummy_rx = tmp;
751 		}
752 
753 		if (max_tx || max_rx) {
754 			list_for_each_entry(xfer, &msg->transfers,
755 					    transfer_list) {
756 				if (!xfer->tx_buf)
757 					xfer->tx_buf = master->dummy_tx;
758 				if (!xfer->rx_buf)
759 					xfer->rx_buf = master->dummy_rx;
760 			}
761 		}
762 	}
763 
764 	return __spi_map_msg(master, msg);
765 }
766 
767 /*
768  * spi_transfer_one_message - Default implementation of transfer_one_message()
769  *
770  * This is a standard implementation of transfer_one_message() for
771  * drivers which impelment a transfer_one() operation.  It provides
772  * standard handling of delays and chip select management.
773  */
774 static int spi_transfer_one_message(struct spi_master *master,
775 				    struct spi_message *msg)
776 {
777 	struct spi_transfer *xfer;
778 	bool keep_cs = false;
779 	int ret = 0;
780 	int ms = 1;
781 
782 	spi_set_cs(msg->spi, true);
783 
784 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
785 		trace_spi_transfer_start(msg, xfer);
786 
787 		reinit_completion(&master->xfer_completion);
788 
789 		ret = master->transfer_one(master, msg->spi, xfer);
790 		if (ret < 0) {
791 			dev_err(&msg->spi->dev,
792 				"SPI transfer failed: %d\n", ret);
793 			goto out;
794 		}
795 
796 		if (ret > 0) {
797 			ret = 0;
798 			ms = xfer->len * 8 * 1000 / xfer->speed_hz;
799 			ms += ms + 100; /* some tolerance */
800 
801 			ms = wait_for_completion_timeout(&master->xfer_completion,
802 							 msecs_to_jiffies(ms));
803 		}
804 
805 		if (ms == 0) {
806 			dev_err(&msg->spi->dev, "SPI transfer timed out\n");
807 			msg->status = -ETIMEDOUT;
808 		}
809 
810 		trace_spi_transfer_stop(msg, xfer);
811 
812 		if (msg->status != -EINPROGRESS)
813 			goto out;
814 
815 		if (xfer->delay_usecs)
816 			udelay(xfer->delay_usecs);
817 
818 		if (xfer->cs_change) {
819 			if (list_is_last(&xfer->transfer_list,
820 					 &msg->transfers)) {
821 				keep_cs = true;
822 			} else {
823 				spi_set_cs(msg->spi, false);
824 				udelay(10);
825 				spi_set_cs(msg->spi, true);
826 			}
827 		}
828 
829 		msg->actual_length += xfer->len;
830 	}
831 
832 out:
833 	if (ret != 0 || !keep_cs)
834 		spi_set_cs(msg->spi, false);
835 
836 	if (msg->status == -EINPROGRESS)
837 		msg->status = ret;
838 
839 	spi_finalize_current_message(master);
840 
841 	return ret;
842 }
843 
844 /**
845  * spi_finalize_current_transfer - report completion of a transfer
846  *
847  * Called by SPI drivers using the core transfer_one_message()
848  * implementation to notify it that the current interrupt driven
849  * transfer has finished and the next one may be scheduled.
850  */
851 void spi_finalize_current_transfer(struct spi_master *master)
852 {
853 	complete(&master->xfer_completion);
854 }
855 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
856 
857 /**
858  * spi_pump_messages - kthread work function which processes spi message queue
859  * @work: pointer to kthread work struct contained in the master struct
860  *
861  * This function checks if there is any spi message in the queue that
862  * needs processing and if so call out to the driver to initialize hardware
863  * and transfer each message.
864  *
865  */
866 static void spi_pump_messages(struct kthread_work *work)
867 {
868 	struct spi_master *master =
869 		container_of(work, struct spi_master, pump_messages);
870 	unsigned long flags;
871 	bool was_busy = false;
872 	int ret;
873 
874 	/* Lock queue and check for queue work */
875 	spin_lock_irqsave(&master->queue_lock, flags);
876 	if (list_empty(&master->queue) || !master->running) {
877 		if (!master->busy) {
878 			spin_unlock_irqrestore(&master->queue_lock, flags);
879 			return;
880 		}
881 		master->busy = false;
882 		spin_unlock_irqrestore(&master->queue_lock, flags);
883 		kfree(master->dummy_rx);
884 		master->dummy_rx = NULL;
885 		kfree(master->dummy_tx);
886 		master->dummy_tx = NULL;
887 		if (master->unprepare_transfer_hardware &&
888 		    master->unprepare_transfer_hardware(master))
889 			dev_err(&master->dev,
890 				"failed to unprepare transfer hardware\n");
891 		if (master->auto_runtime_pm) {
892 			pm_runtime_mark_last_busy(master->dev.parent);
893 			pm_runtime_put_autosuspend(master->dev.parent);
894 		}
895 		trace_spi_master_idle(master);
896 		return;
897 	}
898 
899 	/* Make sure we are not already running a message */
900 	if (master->cur_msg) {
901 		spin_unlock_irqrestore(&master->queue_lock, flags);
902 		return;
903 	}
904 	/* Extract head of queue */
905 	master->cur_msg =
906 		list_first_entry(&master->queue, struct spi_message, queue);
907 
908 	list_del_init(&master->cur_msg->queue);
909 	if (master->busy)
910 		was_busy = true;
911 	else
912 		master->busy = true;
913 	spin_unlock_irqrestore(&master->queue_lock, flags);
914 
915 	if (!was_busy && master->auto_runtime_pm) {
916 		ret = pm_runtime_get_sync(master->dev.parent);
917 		if (ret < 0) {
918 			dev_err(&master->dev, "Failed to power device: %d\n",
919 				ret);
920 			return;
921 		}
922 	}
923 
924 	if (!was_busy)
925 		trace_spi_master_busy(master);
926 
927 	if (!was_busy && master->prepare_transfer_hardware) {
928 		ret = master->prepare_transfer_hardware(master);
929 		if (ret) {
930 			dev_err(&master->dev,
931 				"failed to prepare transfer hardware\n");
932 
933 			if (master->auto_runtime_pm)
934 				pm_runtime_put(master->dev.parent);
935 			return;
936 		}
937 	}
938 
939 	trace_spi_message_start(master->cur_msg);
940 
941 	if (master->prepare_message) {
942 		ret = master->prepare_message(master, master->cur_msg);
943 		if (ret) {
944 			dev_err(&master->dev,
945 				"failed to prepare message: %d\n", ret);
946 			master->cur_msg->status = ret;
947 			spi_finalize_current_message(master);
948 			return;
949 		}
950 		master->cur_msg_prepared = true;
951 	}
952 
953 	ret = spi_map_msg(master, master->cur_msg);
954 	if (ret) {
955 		master->cur_msg->status = ret;
956 		spi_finalize_current_message(master);
957 		return;
958 	}
959 
960 	ret = master->transfer_one_message(master, master->cur_msg);
961 	if (ret) {
962 		dev_err(&master->dev,
963 			"failed to transfer one message from queue\n");
964 		return;
965 	}
966 }
967 
968 static int spi_init_queue(struct spi_master *master)
969 {
970 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
971 
972 	INIT_LIST_HEAD(&master->queue);
973 	spin_lock_init(&master->queue_lock);
974 
975 	master->running = false;
976 	master->busy = false;
977 
978 	init_kthread_worker(&master->kworker);
979 	master->kworker_task = kthread_run(kthread_worker_fn,
980 					   &master->kworker, "%s",
981 					   dev_name(&master->dev));
982 	if (IS_ERR(master->kworker_task)) {
983 		dev_err(&master->dev, "failed to create message pump task\n");
984 		return -ENOMEM;
985 	}
986 	init_kthread_work(&master->pump_messages, spi_pump_messages);
987 
988 	/*
989 	 * Master config will indicate if this controller should run the
990 	 * message pump with high (realtime) priority to reduce the transfer
991 	 * latency on the bus by minimising the delay between a transfer
992 	 * request and the scheduling of the message pump thread. Without this
993 	 * setting the message pump thread will remain at default priority.
994 	 */
995 	if (master->rt) {
996 		dev_info(&master->dev,
997 			"will run message pump with realtime priority\n");
998 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 /**
1005  * spi_get_next_queued_message() - called by driver to check for queued
1006  * messages
1007  * @master: the master to check for queued messages
1008  *
1009  * If there are more messages in the queue, the next message is returned from
1010  * this call.
1011  */
1012 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1013 {
1014 	struct spi_message *next;
1015 	unsigned long flags;
1016 
1017 	/* get a pointer to the next message, if any */
1018 	spin_lock_irqsave(&master->queue_lock, flags);
1019 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1020 					queue);
1021 	spin_unlock_irqrestore(&master->queue_lock, flags);
1022 
1023 	return next;
1024 }
1025 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1026 
1027 /**
1028  * spi_finalize_current_message() - the current message is complete
1029  * @master: the master to return the message to
1030  *
1031  * Called by the driver to notify the core that the message in the front of the
1032  * queue is complete and can be removed from the queue.
1033  */
1034 void spi_finalize_current_message(struct spi_master *master)
1035 {
1036 	struct spi_message *mesg;
1037 	unsigned long flags;
1038 	int ret;
1039 
1040 	spin_lock_irqsave(&master->queue_lock, flags);
1041 	mesg = master->cur_msg;
1042 	master->cur_msg = NULL;
1043 
1044 	queue_kthread_work(&master->kworker, &master->pump_messages);
1045 	spin_unlock_irqrestore(&master->queue_lock, flags);
1046 
1047 	spi_unmap_msg(master, mesg);
1048 
1049 	if (master->cur_msg_prepared && master->unprepare_message) {
1050 		ret = master->unprepare_message(master, mesg);
1051 		if (ret) {
1052 			dev_err(&master->dev,
1053 				"failed to unprepare message: %d\n", ret);
1054 		}
1055 	}
1056 	master->cur_msg_prepared = false;
1057 
1058 	mesg->state = NULL;
1059 	if (mesg->complete)
1060 		mesg->complete(mesg->context);
1061 
1062 	trace_spi_message_done(mesg);
1063 }
1064 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1065 
1066 static int spi_start_queue(struct spi_master *master)
1067 {
1068 	unsigned long flags;
1069 
1070 	spin_lock_irqsave(&master->queue_lock, flags);
1071 
1072 	if (master->running || master->busy) {
1073 		spin_unlock_irqrestore(&master->queue_lock, flags);
1074 		return -EBUSY;
1075 	}
1076 
1077 	master->running = true;
1078 	master->cur_msg = NULL;
1079 	spin_unlock_irqrestore(&master->queue_lock, flags);
1080 
1081 	queue_kthread_work(&master->kworker, &master->pump_messages);
1082 
1083 	return 0;
1084 }
1085 
1086 static int spi_stop_queue(struct spi_master *master)
1087 {
1088 	unsigned long flags;
1089 	unsigned limit = 500;
1090 	int ret = 0;
1091 
1092 	spin_lock_irqsave(&master->queue_lock, flags);
1093 
1094 	/*
1095 	 * This is a bit lame, but is optimized for the common execution path.
1096 	 * A wait_queue on the master->busy could be used, but then the common
1097 	 * execution path (pump_messages) would be required to call wake_up or
1098 	 * friends on every SPI message. Do this instead.
1099 	 */
1100 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1101 		spin_unlock_irqrestore(&master->queue_lock, flags);
1102 		usleep_range(10000, 11000);
1103 		spin_lock_irqsave(&master->queue_lock, flags);
1104 	}
1105 
1106 	if (!list_empty(&master->queue) || master->busy)
1107 		ret = -EBUSY;
1108 	else
1109 		master->running = false;
1110 
1111 	spin_unlock_irqrestore(&master->queue_lock, flags);
1112 
1113 	if (ret) {
1114 		dev_warn(&master->dev,
1115 			 "could not stop message queue\n");
1116 		return ret;
1117 	}
1118 	return ret;
1119 }
1120 
1121 static int spi_destroy_queue(struct spi_master *master)
1122 {
1123 	int ret;
1124 
1125 	ret = spi_stop_queue(master);
1126 
1127 	/*
1128 	 * flush_kthread_worker will block until all work is done.
1129 	 * If the reason that stop_queue timed out is that the work will never
1130 	 * finish, then it does no good to call flush/stop thread, so
1131 	 * return anyway.
1132 	 */
1133 	if (ret) {
1134 		dev_err(&master->dev, "problem destroying queue\n");
1135 		return ret;
1136 	}
1137 
1138 	flush_kthread_worker(&master->kworker);
1139 	kthread_stop(master->kworker_task);
1140 
1141 	return 0;
1142 }
1143 
1144 /**
1145  * spi_queued_transfer - transfer function for queued transfers
1146  * @spi: spi device which is requesting transfer
1147  * @msg: spi message which is to handled is queued to driver queue
1148  */
1149 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1150 {
1151 	struct spi_master *master = spi->master;
1152 	unsigned long flags;
1153 
1154 	spin_lock_irqsave(&master->queue_lock, flags);
1155 
1156 	if (!master->running) {
1157 		spin_unlock_irqrestore(&master->queue_lock, flags);
1158 		return -ESHUTDOWN;
1159 	}
1160 	msg->actual_length = 0;
1161 	msg->status = -EINPROGRESS;
1162 
1163 	list_add_tail(&msg->queue, &master->queue);
1164 	if (!master->busy)
1165 		queue_kthread_work(&master->kworker, &master->pump_messages);
1166 
1167 	spin_unlock_irqrestore(&master->queue_lock, flags);
1168 	return 0;
1169 }
1170 
1171 static int spi_master_initialize_queue(struct spi_master *master)
1172 {
1173 	int ret;
1174 
1175 	master->transfer = spi_queued_transfer;
1176 	if (!master->transfer_one_message)
1177 		master->transfer_one_message = spi_transfer_one_message;
1178 
1179 	/* Initialize and start queue */
1180 	ret = spi_init_queue(master);
1181 	if (ret) {
1182 		dev_err(&master->dev, "problem initializing queue\n");
1183 		goto err_init_queue;
1184 	}
1185 	master->queued = true;
1186 	ret = spi_start_queue(master);
1187 	if (ret) {
1188 		dev_err(&master->dev, "problem starting queue\n");
1189 		goto err_start_queue;
1190 	}
1191 
1192 	return 0;
1193 
1194 err_start_queue:
1195 	spi_destroy_queue(master);
1196 err_init_queue:
1197 	return ret;
1198 }
1199 
1200 /*-------------------------------------------------------------------------*/
1201 
1202 #if defined(CONFIG_OF)
1203 /**
1204  * of_register_spi_devices() - Register child devices onto the SPI bus
1205  * @master:	Pointer to spi_master device
1206  *
1207  * Registers an spi_device for each child node of master node which has a 'reg'
1208  * property.
1209  */
1210 static void of_register_spi_devices(struct spi_master *master)
1211 {
1212 	struct spi_device *spi;
1213 	struct device_node *nc;
1214 	int rc;
1215 	u32 value;
1216 
1217 	if (!master->dev.of_node)
1218 		return;
1219 
1220 	for_each_available_child_of_node(master->dev.of_node, nc) {
1221 		/* Alloc an spi_device */
1222 		spi = spi_alloc_device(master);
1223 		if (!spi) {
1224 			dev_err(&master->dev, "spi_device alloc error for %s\n",
1225 				nc->full_name);
1226 			spi_dev_put(spi);
1227 			continue;
1228 		}
1229 
1230 		/* Select device driver */
1231 		if (of_modalias_node(nc, spi->modalias,
1232 				     sizeof(spi->modalias)) < 0) {
1233 			dev_err(&master->dev, "cannot find modalias for %s\n",
1234 				nc->full_name);
1235 			spi_dev_put(spi);
1236 			continue;
1237 		}
1238 
1239 		/* Device address */
1240 		rc = of_property_read_u32(nc, "reg", &value);
1241 		if (rc) {
1242 			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1243 				nc->full_name, rc);
1244 			spi_dev_put(spi);
1245 			continue;
1246 		}
1247 		spi->chip_select = value;
1248 
1249 		/* Mode (clock phase/polarity/etc.) */
1250 		if (of_find_property(nc, "spi-cpha", NULL))
1251 			spi->mode |= SPI_CPHA;
1252 		if (of_find_property(nc, "spi-cpol", NULL))
1253 			spi->mode |= SPI_CPOL;
1254 		if (of_find_property(nc, "spi-cs-high", NULL))
1255 			spi->mode |= SPI_CS_HIGH;
1256 		if (of_find_property(nc, "spi-3wire", NULL))
1257 			spi->mode |= SPI_3WIRE;
1258 		if (of_find_property(nc, "spi-lsb-first", NULL))
1259 			spi->mode |= SPI_LSB_FIRST;
1260 
1261 		/* Device DUAL/QUAD mode */
1262 		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1263 			switch (value) {
1264 			case 1:
1265 				break;
1266 			case 2:
1267 				spi->mode |= SPI_TX_DUAL;
1268 				break;
1269 			case 4:
1270 				spi->mode |= SPI_TX_QUAD;
1271 				break;
1272 			default:
1273 				dev_warn(&master->dev,
1274 					 "spi-tx-bus-width %d not supported\n",
1275 					 value);
1276 				break;
1277 			}
1278 		}
1279 
1280 		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1281 			switch (value) {
1282 			case 1:
1283 				break;
1284 			case 2:
1285 				spi->mode |= SPI_RX_DUAL;
1286 				break;
1287 			case 4:
1288 				spi->mode |= SPI_RX_QUAD;
1289 				break;
1290 			default:
1291 				dev_warn(&master->dev,
1292 					 "spi-rx-bus-width %d not supported\n",
1293 					 value);
1294 				break;
1295 			}
1296 		}
1297 
1298 		/* Device speed */
1299 		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1300 		if (rc) {
1301 			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1302 				nc->full_name, rc);
1303 			spi_dev_put(spi);
1304 			continue;
1305 		}
1306 		spi->max_speed_hz = value;
1307 
1308 		/* IRQ */
1309 		spi->irq = irq_of_parse_and_map(nc, 0);
1310 
1311 		/* Store a pointer to the node in the device structure */
1312 		of_node_get(nc);
1313 		spi->dev.of_node = nc;
1314 
1315 		/* Register the new device */
1316 		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1317 		rc = spi_add_device(spi);
1318 		if (rc) {
1319 			dev_err(&master->dev, "spi_device register error %s\n",
1320 				nc->full_name);
1321 			spi_dev_put(spi);
1322 		}
1323 
1324 	}
1325 }
1326 #else
1327 static void of_register_spi_devices(struct spi_master *master) { }
1328 #endif
1329 
1330 #ifdef CONFIG_ACPI
1331 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1332 {
1333 	struct spi_device *spi = data;
1334 
1335 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1336 		struct acpi_resource_spi_serialbus *sb;
1337 
1338 		sb = &ares->data.spi_serial_bus;
1339 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1340 			spi->chip_select = sb->device_selection;
1341 			spi->max_speed_hz = sb->connection_speed;
1342 
1343 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1344 				spi->mode |= SPI_CPHA;
1345 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1346 				spi->mode |= SPI_CPOL;
1347 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1348 				spi->mode |= SPI_CS_HIGH;
1349 		}
1350 	} else if (spi->irq < 0) {
1351 		struct resource r;
1352 
1353 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1354 			spi->irq = r.start;
1355 	}
1356 
1357 	/* Always tell the ACPI core to skip this resource */
1358 	return 1;
1359 }
1360 
1361 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1362 				       void *data, void **return_value)
1363 {
1364 	struct spi_master *master = data;
1365 	struct list_head resource_list;
1366 	struct acpi_device *adev;
1367 	struct spi_device *spi;
1368 	int ret;
1369 
1370 	if (acpi_bus_get_device(handle, &adev))
1371 		return AE_OK;
1372 	if (acpi_bus_get_status(adev) || !adev->status.present)
1373 		return AE_OK;
1374 
1375 	spi = spi_alloc_device(master);
1376 	if (!spi) {
1377 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1378 			dev_name(&adev->dev));
1379 		return AE_NO_MEMORY;
1380 	}
1381 
1382 	ACPI_COMPANION_SET(&spi->dev, adev);
1383 	spi->irq = -1;
1384 
1385 	INIT_LIST_HEAD(&resource_list);
1386 	ret = acpi_dev_get_resources(adev, &resource_list,
1387 				     acpi_spi_add_resource, spi);
1388 	acpi_dev_free_resource_list(&resource_list);
1389 
1390 	if (ret < 0 || !spi->max_speed_hz) {
1391 		spi_dev_put(spi);
1392 		return AE_OK;
1393 	}
1394 
1395 	adev->power.flags.ignore_parent = true;
1396 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1397 	if (spi_add_device(spi)) {
1398 		adev->power.flags.ignore_parent = false;
1399 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1400 			dev_name(&adev->dev));
1401 		spi_dev_put(spi);
1402 	}
1403 
1404 	return AE_OK;
1405 }
1406 
1407 static void acpi_register_spi_devices(struct spi_master *master)
1408 {
1409 	acpi_status status;
1410 	acpi_handle handle;
1411 
1412 	handle = ACPI_HANDLE(master->dev.parent);
1413 	if (!handle)
1414 		return;
1415 
1416 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1417 				     acpi_spi_add_device, NULL,
1418 				     master, NULL);
1419 	if (ACPI_FAILURE(status))
1420 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1421 }
1422 #else
1423 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1424 #endif /* CONFIG_ACPI */
1425 
1426 static void spi_master_release(struct device *dev)
1427 {
1428 	struct spi_master *master;
1429 
1430 	master = container_of(dev, struct spi_master, dev);
1431 	kfree(master);
1432 }
1433 
1434 static struct class spi_master_class = {
1435 	.name		= "spi_master",
1436 	.owner		= THIS_MODULE,
1437 	.dev_release	= spi_master_release,
1438 };
1439 
1440 
1441 
1442 /**
1443  * spi_alloc_master - allocate SPI master controller
1444  * @dev: the controller, possibly using the platform_bus
1445  * @size: how much zeroed driver-private data to allocate; the pointer to this
1446  *	memory is in the driver_data field of the returned device,
1447  *	accessible with spi_master_get_devdata().
1448  * Context: can sleep
1449  *
1450  * This call is used only by SPI master controller drivers, which are the
1451  * only ones directly touching chip registers.  It's how they allocate
1452  * an spi_master structure, prior to calling spi_register_master().
1453  *
1454  * This must be called from context that can sleep.  It returns the SPI
1455  * master structure on success, else NULL.
1456  *
1457  * The caller is responsible for assigning the bus number and initializing
1458  * the master's methods before calling spi_register_master(); and (after errors
1459  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1460  * leak.
1461  */
1462 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1463 {
1464 	struct spi_master	*master;
1465 
1466 	if (!dev)
1467 		return NULL;
1468 
1469 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1470 	if (!master)
1471 		return NULL;
1472 
1473 	device_initialize(&master->dev);
1474 	master->bus_num = -1;
1475 	master->num_chipselect = 1;
1476 	master->dev.class = &spi_master_class;
1477 	master->dev.parent = get_device(dev);
1478 	spi_master_set_devdata(master, &master[1]);
1479 
1480 	return master;
1481 }
1482 EXPORT_SYMBOL_GPL(spi_alloc_master);
1483 
1484 #ifdef CONFIG_OF
1485 static int of_spi_register_master(struct spi_master *master)
1486 {
1487 	int nb, i, *cs;
1488 	struct device_node *np = master->dev.of_node;
1489 
1490 	if (!np)
1491 		return 0;
1492 
1493 	nb = of_gpio_named_count(np, "cs-gpios");
1494 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1495 
1496 	/* Return error only for an incorrectly formed cs-gpios property */
1497 	if (nb == 0 || nb == -ENOENT)
1498 		return 0;
1499 	else if (nb < 0)
1500 		return nb;
1501 
1502 	cs = devm_kzalloc(&master->dev,
1503 			  sizeof(int) * master->num_chipselect,
1504 			  GFP_KERNEL);
1505 	master->cs_gpios = cs;
1506 
1507 	if (!master->cs_gpios)
1508 		return -ENOMEM;
1509 
1510 	for (i = 0; i < master->num_chipselect; i++)
1511 		cs[i] = -ENOENT;
1512 
1513 	for (i = 0; i < nb; i++)
1514 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1515 
1516 	return 0;
1517 }
1518 #else
1519 static int of_spi_register_master(struct spi_master *master)
1520 {
1521 	return 0;
1522 }
1523 #endif
1524 
1525 /**
1526  * spi_register_master - register SPI master controller
1527  * @master: initialized master, originally from spi_alloc_master()
1528  * Context: can sleep
1529  *
1530  * SPI master controllers connect to their drivers using some non-SPI bus,
1531  * such as the platform bus.  The final stage of probe() in that code
1532  * includes calling spi_register_master() to hook up to this SPI bus glue.
1533  *
1534  * SPI controllers use board specific (often SOC specific) bus numbers,
1535  * and board-specific addressing for SPI devices combines those numbers
1536  * with chip select numbers.  Since SPI does not directly support dynamic
1537  * device identification, boards need configuration tables telling which
1538  * chip is at which address.
1539  *
1540  * This must be called from context that can sleep.  It returns zero on
1541  * success, else a negative error code (dropping the master's refcount).
1542  * After a successful return, the caller is responsible for calling
1543  * spi_unregister_master().
1544  */
1545 int spi_register_master(struct spi_master *master)
1546 {
1547 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1548 	struct device		*dev = master->dev.parent;
1549 	struct boardinfo	*bi;
1550 	int			status = -ENODEV;
1551 	int			dynamic = 0;
1552 
1553 	if (!dev)
1554 		return -ENODEV;
1555 
1556 	status = of_spi_register_master(master);
1557 	if (status)
1558 		return status;
1559 
1560 	/* even if it's just one always-selected device, there must
1561 	 * be at least one chipselect
1562 	 */
1563 	if (master->num_chipselect == 0)
1564 		return -EINVAL;
1565 
1566 	if ((master->bus_num < 0) && master->dev.of_node)
1567 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1568 
1569 	/* convention:  dynamically assigned bus IDs count down from the max */
1570 	if (master->bus_num < 0) {
1571 		/* FIXME switch to an IDR based scheme, something like
1572 		 * I2C now uses, so we can't run out of "dynamic" IDs
1573 		 */
1574 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1575 		dynamic = 1;
1576 	}
1577 
1578 	spin_lock_init(&master->bus_lock_spinlock);
1579 	mutex_init(&master->bus_lock_mutex);
1580 	master->bus_lock_flag = 0;
1581 	init_completion(&master->xfer_completion);
1582 	if (!master->max_dma_len)
1583 		master->max_dma_len = INT_MAX;
1584 
1585 	/* register the device, then userspace will see it.
1586 	 * registration fails if the bus ID is in use.
1587 	 */
1588 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1589 	status = device_add(&master->dev);
1590 	if (status < 0)
1591 		goto done;
1592 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1593 			dynamic ? " (dynamic)" : "");
1594 
1595 	/* If we're using a queued driver, start the queue */
1596 	if (master->transfer)
1597 		dev_info(dev, "master is unqueued, this is deprecated\n");
1598 	else {
1599 		status = spi_master_initialize_queue(master);
1600 		if (status) {
1601 			device_del(&master->dev);
1602 			goto done;
1603 		}
1604 	}
1605 
1606 	mutex_lock(&board_lock);
1607 	list_add_tail(&master->list, &spi_master_list);
1608 	list_for_each_entry(bi, &board_list, list)
1609 		spi_match_master_to_boardinfo(master, &bi->board_info);
1610 	mutex_unlock(&board_lock);
1611 
1612 	/* Register devices from the device tree and ACPI */
1613 	of_register_spi_devices(master);
1614 	acpi_register_spi_devices(master);
1615 done:
1616 	return status;
1617 }
1618 EXPORT_SYMBOL_GPL(spi_register_master);
1619 
1620 static void devm_spi_unregister(struct device *dev, void *res)
1621 {
1622 	spi_unregister_master(*(struct spi_master **)res);
1623 }
1624 
1625 /**
1626  * dev_spi_register_master - register managed SPI master controller
1627  * @dev:    device managing SPI master
1628  * @master: initialized master, originally from spi_alloc_master()
1629  * Context: can sleep
1630  *
1631  * Register a SPI device as with spi_register_master() which will
1632  * automatically be unregister
1633  */
1634 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1635 {
1636 	struct spi_master **ptr;
1637 	int ret;
1638 
1639 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1640 	if (!ptr)
1641 		return -ENOMEM;
1642 
1643 	ret = spi_register_master(master);
1644 	if (!ret) {
1645 		*ptr = master;
1646 		devres_add(dev, ptr);
1647 	} else {
1648 		devres_free(ptr);
1649 	}
1650 
1651 	return ret;
1652 }
1653 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1654 
1655 static int __unregister(struct device *dev, void *null)
1656 {
1657 	spi_unregister_device(to_spi_device(dev));
1658 	return 0;
1659 }
1660 
1661 /**
1662  * spi_unregister_master - unregister SPI master controller
1663  * @master: the master being unregistered
1664  * Context: can sleep
1665  *
1666  * This call is used only by SPI master controller drivers, which are the
1667  * only ones directly touching chip registers.
1668  *
1669  * This must be called from context that can sleep.
1670  */
1671 void spi_unregister_master(struct spi_master *master)
1672 {
1673 	int dummy;
1674 
1675 	if (master->queued) {
1676 		if (spi_destroy_queue(master))
1677 			dev_err(&master->dev, "queue remove failed\n");
1678 	}
1679 
1680 	mutex_lock(&board_lock);
1681 	list_del(&master->list);
1682 	mutex_unlock(&board_lock);
1683 
1684 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1685 	device_unregister(&master->dev);
1686 }
1687 EXPORT_SYMBOL_GPL(spi_unregister_master);
1688 
1689 int spi_master_suspend(struct spi_master *master)
1690 {
1691 	int ret;
1692 
1693 	/* Basically no-ops for non-queued masters */
1694 	if (!master->queued)
1695 		return 0;
1696 
1697 	ret = spi_stop_queue(master);
1698 	if (ret)
1699 		dev_err(&master->dev, "queue stop failed\n");
1700 
1701 	return ret;
1702 }
1703 EXPORT_SYMBOL_GPL(spi_master_suspend);
1704 
1705 int spi_master_resume(struct spi_master *master)
1706 {
1707 	int ret;
1708 
1709 	if (!master->queued)
1710 		return 0;
1711 
1712 	ret = spi_start_queue(master);
1713 	if (ret)
1714 		dev_err(&master->dev, "queue restart failed\n");
1715 
1716 	return ret;
1717 }
1718 EXPORT_SYMBOL_GPL(spi_master_resume);
1719 
1720 static int __spi_master_match(struct device *dev, const void *data)
1721 {
1722 	struct spi_master *m;
1723 	const u16 *bus_num = data;
1724 
1725 	m = container_of(dev, struct spi_master, dev);
1726 	return m->bus_num == *bus_num;
1727 }
1728 
1729 /**
1730  * spi_busnum_to_master - look up master associated with bus_num
1731  * @bus_num: the master's bus number
1732  * Context: can sleep
1733  *
1734  * This call may be used with devices that are registered after
1735  * arch init time.  It returns a refcounted pointer to the relevant
1736  * spi_master (which the caller must release), or NULL if there is
1737  * no such master registered.
1738  */
1739 struct spi_master *spi_busnum_to_master(u16 bus_num)
1740 {
1741 	struct device		*dev;
1742 	struct spi_master	*master = NULL;
1743 
1744 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1745 				__spi_master_match);
1746 	if (dev)
1747 		master = container_of(dev, struct spi_master, dev);
1748 	/* reference got in class_find_device */
1749 	return master;
1750 }
1751 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1752 
1753 
1754 /*-------------------------------------------------------------------------*/
1755 
1756 /* Core methods for SPI master protocol drivers.  Some of the
1757  * other core methods are currently defined as inline functions.
1758  */
1759 
1760 /**
1761  * spi_setup - setup SPI mode and clock rate
1762  * @spi: the device whose settings are being modified
1763  * Context: can sleep, and no requests are queued to the device
1764  *
1765  * SPI protocol drivers may need to update the transfer mode if the
1766  * device doesn't work with its default.  They may likewise need
1767  * to update clock rates or word sizes from initial values.  This function
1768  * changes those settings, and must be called from a context that can sleep.
1769  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1770  * effect the next time the device is selected and data is transferred to
1771  * or from it.  When this function returns, the spi device is deselected.
1772  *
1773  * Note that this call will fail if the protocol driver specifies an option
1774  * that the underlying controller or its driver does not support.  For
1775  * example, not all hardware supports wire transfers using nine bit words,
1776  * LSB-first wire encoding, or active-high chipselects.
1777  */
1778 int spi_setup(struct spi_device *spi)
1779 {
1780 	unsigned	bad_bits, ugly_bits;
1781 	int		status = 0;
1782 
1783 	/* check mode to prevent that DUAL and QUAD set at the same time
1784 	 */
1785 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1786 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1787 		dev_err(&spi->dev,
1788 		"setup: can not select dual and quad at the same time\n");
1789 		return -EINVAL;
1790 	}
1791 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1792 	 */
1793 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1794 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1795 		return -EINVAL;
1796 	/* help drivers fail *cleanly* when they need options
1797 	 * that aren't supported with their current master
1798 	 */
1799 	bad_bits = spi->mode & ~spi->master->mode_bits;
1800 	ugly_bits = bad_bits &
1801 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1802 	if (ugly_bits) {
1803 		dev_warn(&spi->dev,
1804 			 "setup: ignoring unsupported mode bits %x\n",
1805 			 ugly_bits);
1806 		spi->mode &= ~ugly_bits;
1807 		bad_bits &= ~ugly_bits;
1808 	}
1809 	if (bad_bits) {
1810 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1811 			bad_bits);
1812 		return -EINVAL;
1813 	}
1814 
1815 	if (!spi->bits_per_word)
1816 		spi->bits_per_word = 8;
1817 
1818 	if (!spi->max_speed_hz)
1819 		spi->max_speed_hz = spi->master->max_speed_hz;
1820 
1821 	if (spi->master->setup)
1822 		status = spi->master->setup(spi);
1823 
1824 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1825 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1826 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1827 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1828 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1829 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1830 			spi->bits_per_word, spi->max_speed_hz,
1831 			status);
1832 
1833 	return status;
1834 }
1835 EXPORT_SYMBOL_GPL(spi_setup);
1836 
1837 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1838 {
1839 	struct spi_master *master = spi->master;
1840 	struct spi_transfer *xfer;
1841 	int w_size;
1842 
1843 	if (list_empty(&message->transfers))
1844 		return -EINVAL;
1845 
1846 	/* Half-duplex links include original MicroWire, and ones with
1847 	 * only one data pin like SPI_3WIRE (switches direction) or where
1848 	 * either MOSI or MISO is missing.  They can also be caused by
1849 	 * software limitations.
1850 	 */
1851 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1852 			|| (spi->mode & SPI_3WIRE)) {
1853 		unsigned flags = master->flags;
1854 
1855 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1856 			if (xfer->rx_buf && xfer->tx_buf)
1857 				return -EINVAL;
1858 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1859 				return -EINVAL;
1860 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1861 				return -EINVAL;
1862 		}
1863 	}
1864 
1865 	/**
1866 	 * Set transfer bits_per_word and max speed as spi device default if
1867 	 * it is not set for this transfer.
1868 	 * Set transfer tx_nbits and rx_nbits as single transfer default
1869 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1870 	 */
1871 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1872 		message->frame_length += xfer->len;
1873 		if (!xfer->bits_per_word)
1874 			xfer->bits_per_word = spi->bits_per_word;
1875 
1876 		if (!xfer->speed_hz)
1877 			xfer->speed_hz = spi->max_speed_hz;
1878 
1879 		if (master->max_speed_hz &&
1880 		    xfer->speed_hz > master->max_speed_hz)
1881 			xfer->speed_hz = master->max_speed_hz;
1882 
1883 		if (master->bits_per_word_mask) {
1884 			/* Only 32 bits fit in the mask */
1885 			if (xfer->bits_per_word > 32)
1886 				return -EINVAL;
1887 			if (!(master->bits_per_word_mask &
1888 					BIT(xfer->bits_per_word - 1)))
1889 				return -EINVAL;
1890 		}
1891 
1892 		/*
1893 		 * SPI transfer length should be multiple of SPI word size
1894 		 * where SPI word size should be power-of-two multiple
1895 		 */
1896 		if (xfer->bits_per_word <= 8)
1897 			w_size = 1;
1898 		else if (xfer->bits_per_word <= 16)
1899 			w_size = 2;
1900 		else
1901 			w_size = 4;
1902 
1903 		/* No partial transfers accepted */
1904 		if (xfer->len % w_size)
1905 			return -EINVAL;
1906 
1907 		if (xfer->speed_hz && master->min_speed_hz &&
1908 		    xfer->speed_hz < master->min_speed_hz)
1909 			return -EINVAL;
1910 
1911 		if (xfer->tx_buf && !xfer->tx_nbits)
1912 			xfer->tx_nbits = SPI_NBITS_SINGLE;
1913 		if (xfer->rx_buf && !xfer->rx_nbits)
1914 			xfer->rx_nbits = SPI_NBITS_SINGLE;
1915 		/* check transfer tx/rx_nbits:
1916 		 * 1. check the value matches one of single, dual and quad
1917 		 * 2. check tx/rx_nbits match the mode in spi_device
1918 		 */
1919 		if (xfer->tx_buf) {
1920 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1921 				xfer->tx_nbits != SPI_NBITS_DUAL &&
1922 				xfer->tx_nbits != SPI_NBITS_QUAD)
1923 				return -EINVAL;
1924 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1925 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1926 				return -EINVAL;
1927 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1928 				!(spi->mode & SPI_TX_QUAD))
1929 				return -EINVAL;
1930 		}
1931 		/* check transfer rx_nbits */
1932 		if (xfer->rx_buf) {
1933 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1934 				xfer->rx_nbits != SPI_NBITS_DUAL &&
1935 				xfer->rx_nbits != SPI_NBITS_QUAD)
1936 				return -EINVAL;
1937 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1938 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1939 				return -EINVAL;
1940 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1941 				!(spi->mode & SPI_RX_QUAD))
1942 				return -EINVAL;
1943 		}
1944 	}
1945 
1946 	message->status = -EINPROGRESS;
1947 
1948 	return 0;
1949 }
1950 
1951 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1952 {
1953 	struct spi_master *master = spi->master;
1954 
1955 	message->spi = spi;
1956 
1957 	trace_spi_message_submit(message);
1958 
1959 	return master->transfer(spi, message);
1960 }
1961 
1962 /**
1963  * spi_async - asynchronous SPI transfer
1964  * @spi: device with which data will be exchanged
1965  * @message: describes the data transfers, including completion callback
1966  * Context: any (irqs may be blocked, etc)
1967  *
1968  * This call may be used in_irq and other contexts which can't sleep,
1969  * as well as from task contexts which can sleep.
1970  *
1971  * The completion callback is invoked in a context which can't sleep.
1972  * Before that invocation, the value of message->status is undefined.
1973  * When the callback is issued, message->status holds either zero (to
1974  * indicate complete success) or a negative error code.  After that
1975  * callback returns, the driver which issued the transfer request may
1976  * deallocate the associated memory; it's no longer in use by any SPI
1977  * core or controller driver code.
1978  *
1979  * Note that although all messages to a spi_device are handled in
1980  * FIFO order, messages may go to different devices in other orders.
1981  * Some device might be higher priority, or have various "hard" access
1982  * time requirements, for example.
1983  *
1984  * On detection of any fault during the transfer, processing of
1985  * the entire message is aborted, and the device is deselected.
1986  * Until returning from the associated message completion callback,
1987  * no other spi_message queued to that device will be processed.
1988  * (This rule applies equally to all the synchronous transfer calls,
1989  * which are wrappers around this core asynchronous primitive.)
1990  */
1991 int spi_async(struct spi_device *spi, struct spi_message *message)
1992 {
1993 	struct spi_master *master = spi->master;
1994 	int ret;
1995 	unsigned long flags;
1996 
1997 	ret = __spi_validate(spi, message);
1998 	if (ret != 0)
1999 		return ret;
2000 
2001 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2002 
2003 	if (master->bus_lock_flag)
2004 		ret = -EBUSY;
2005 	else
2006 		ret = __spi_async(spi, message);
2007 
2008 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2009 
2010 	return ret;
2011 }
2012 EXPORT_SYMBOL_GPL(spi_async);
2013 
2014 /**
2015  * spi_async_locked - version of spi_async with exclusive bus usage
2016  * @spi: device with which data will be exchanged
2017  * @message: describes the data transfers, including completion callback
2018  * Context: any (irqs may be blocked, etc)
2019  *
2020  * This call may be used in_irq and other contexts which can't sleep,
2021  * as well as from task contexts which can sleep.
2022  *
2023  * The completion callback is invoked in a context which can't sleep.
2024  * Before that invocation, the value of message->status is undefined.
2025  * When the callback is issued, message->status holds either zero (to
2026  * indicate complete success) or a negative error code.  After that
2027  * callback returns, the driver which issued the transfer request may
2028  * deallocate the associated memory; it's no longer in use by any SPI
2029  * core or controller driver code.
2030  *
2031  * Note that although all messages to a spi_device are handled in
2032  * FIFO order, messages may go to different devices in other orders.
2033  * Some device might be higher priority, or have various "hard" access
2034  * time requirements, for example.
2035  *
2036  * On detection of any fault during the transfer, processing of
2037  * the entire message is aborted, and the device is deselected.
2038  * Until returning from the associated message completion callback,
2039  * no other spi_message queued to that device will be processed.
2040  * (This rule applies equally to all the synchronous transfer calls,
2041  * which are wrappers around this core asynchronous primitive.)
2042  */
2043 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2044 {
2045 	struct spi_master *master = spi->master;
2046 	int ret;
2047 	unsigned long flags;
2048 
2049 	ret = __spi_validate(spi, message);
2050 	if (ret != 0)
2051 		return ret;
2052 
2053 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2054 
2055 	ret = __spi_async(spi, message);
2056 
2057 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2058 
2059 	return ret;
2060 
2061 }
2062 EXPORT_SYMBOL_GPL(spi_async_locked);
2063 
2064 
2065 /*-------------------------------------------------------------------------*/
2066 
2067 /* Utility methods for SPI master protocol drivers, layered on
2068  * top of the core.  Some other utility methods are defined as
2069  * inline functions.
2070  */
2071 
2072 static void spi_complete(void *arg)
2073 {
2074 	complete(arg);
2075 }
2076 
2077 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2078 		      int bus_locked)
2079 {
2080 	DECLARE_COMPLETION_ONSTACK(done);
2081 	int status;
2082 	struct spi_master *master = spi->master;
2083 
2084 	message->complete = spi_complete;
2085 	message->context = &done;
2086 
2087 	if (!bus_locked)
2088 		mutex_lock(&master->bus_lock_mutex);
2089 
2090 	status = spi_async_locked(spi, message);
2091 
2092 	if (!bus_locked)
2093 		mutex_unlock(&master->bus_lock_mutex);
2094 
2095 	if (status == 0) {
2096 		wait_for_completion(&done);
2097 		status = message->status;
2098 	}
2099 	message->context = NULL;
2100 	return status;
2101 }
2102 
2103 /**
2104  * spi_sync - blocking/synchronous SPI data transfers
2105  * @spi: device with which data will be exchanged
2106  * @message: describes the data transfers
2107  * Context: can sleep
2108  *
2109  * This call may only be used from a context that may sleep.  The sleep
2110  * is non-interruptible, and has no timeout.  Low-overhead controller
2111  * drivers may DMA directly into and out of the message buffers.
2112  *
2113  * Note that the SPI device's chip select is active during the message,
2114  * and then is normally disabled between messages.  Drivers for some
2115  * frequently-used devices may want to minimize costs of selecting a chip,
2116  * by leaving it selected in anticipation that the next message will go
2117  * to the same chip.  (That may increase power usage.)
2118  *
2119  * Also, the caller is guaranteeing that the memory associated with the
2120  * message will not be freed before this call returns.
2121  *
2122  * It returns zero on success, else a negative error code.
2123  */
2124 int spi_sync(struct spi_device *spi, struct spi_message *message)
2125 {
2126 	return __spi_sync(spi, message, 0);
2127 }
2128 EXPORT_SYMBOL_GPL(spi_sync);
2129 
2130 /**
2131  * spi_sync_locked - version of spi_sync with exclusive bus usage
2132  * @spi: device with which data will be exchanged
2133  * @message: describes the data transfers
2134  * Context: can sleep
2135  *
2136  * This call may only be used from a context that may sleep.  The sleep
2137  * is non-interruptible, and has no timeout.  Low-overhead controller
2138  * drivers may DMA directly into and out of the message buffers.
2139  *
2140  * This call should be used by drivers that require exclusive access to the
2141  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2142  * be released by a spi_bus_unlock call when the exclusive access is over.
2143  *
2144  * It returns zero on success, else a negative error code.
2145  */
2146 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2147 {
2148 	return __spi_sync(spi, message, 1);
2149 }
2150 EXPORT_SYMBOL_GPL(spi_sync_locked);
2151 
2152 /**
2153  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2154  * @master: SPI bus master that should be locked for exclusive bus access
2155  * Context: can sleep
2156  *
2157  * This call may only be used from a context that may sleep.  The sleep
2158  * is non-interruptible, and has no timeout.
2159  *
2160  * This call should be used by drivers that require exclusive access to the
2161  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2162  * exclusive access is over. Data transfer must be done by spi_sync_locked
2163  * and spi_async_locked calls when the SPI bus lock is held.
2164  *
2165  * It returns zero on success, else a negative error code.
2166  */
2167 int spi_bus_lock(struct spi_master *master)
2168 {
2169 	unsigned long flags;
2170 
2171 	mutex_lock(&master->bus_lock_mutex);
2172 
2173 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2174 	master->bus_lock_flag = 1;
2175 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2176 
2177 	/* mutex remains locked until spi_bus_unlock is called */
2178 
2179 	return 0;
2180 }
2181 EXPORT_SYMBOL_GPL(spi_bus_lock);
2182 
2183 /**
2184  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2185  * @master: SPI bus master that was locked for exclusive bus access
2186  * Context: can sleep
2187  *
2188  * This call may only be used from a context that may sleep.  The sleep
2189  * is non-interruptible, and has no timeout.
2190  *
2191  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2192  * call.
2193  *
2194  * It returns zero on success, else a negative error code.
2195  */
2196 int spi_bus_unlock(struct spi_master *master)
2197 {
2198 	master->bus_lock_flag = 0;
2199 
2200 	mutex_unlock(&master->bus_lock_mutex);
2201 
2202 	return 0;
2203 }
2204 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2205 
2206 /* portable code must never pass more than 32 bytes */
2207 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2208 
2209 static u8	*buf;
2210 
2211 /**
2212  * spi_write_then_read - SPI synchronous write followed by read
2213  * @spi: device with which data will be exchanged
2214  * @txbuf: data to be written (need not be dma-safe)
2215  * @n_tx: size of txbuf, in bytes
2216  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2217  * @n_rx: size of rxbuf, in bytes
2218  * Context: can sleep
2219  *
2220  * This performs a half duplex MicroWire style transaction with the
2221  * device, sending txbuf and then reading rxbuf.  The return value
2222  * is zero for success, else a negative errno status code.
2223  * This call may only be used from a context that may sleep.
2224  *
2225  * Parameters to this routine are always copied using a small buffer;
2226  * portable code should never use this for more than 32 bytes.
2227  * Performance-sensitive or bulk transfer code should instead use
2228  * spi_{async,sync}() calls with dma-safe buffers.
2229  */
2230 int spi_write_then_read(struct spi_device *spi,
2231 		const void *txbuf, unsigned n_tx,
2232 		void *rxbuf, unsigned n_rx)
2233 {
2234 	static DEFINE_MUTEX(lock);
2235 
2236 	int			status;
2237 	struct spi_message	message;
2238 	struct spi_transfer	x[2];
2239 	u8			*local_buf;
2240 
2241 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2242 	 * copying here, (as a pure convenience thing), but we can
2243 	 * keep heap costs out of the hot path unless someone else is
2244 	 * using the pre-allocated buffer or the transfer is too large.
2245 	 */
2246 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2247 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2248 				    GFP_KERNEL | GFP_DMA);
2249 		if (!local_buf)
2250 			return -ENOMEM;
2251 	} else {
2252 		local_buf = buf;
2253 	}
2254 
2255 	spi_message_init(&message);
2256 	memset(x, 0, sizeof(x));
2257 	if (n_tx) {
2258 		x[0].len = n_tx;
2259 		spi_message_add_tail(&x[0], &message);
2260 	}
2261 	if (n_rx) {
2262 		x[1].len = n_rx;
2263 		spi_message_add_tail(&x[1], &message);
2264 	}
2265 
2266 	memcpy(local_buf, txbuf, n_tx);
2267 	x[0].tx_buf = local_buf;
2268 	x[1].rx_buf = local_buf + n_tx;
2269 
2270 	/* do the i/o */
2271 	status = spi_sync(spi, &message);
2272 	if (status == 0)
2273 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2274 
2275 	if (x[0].tx_buf == buf)
2276 		mutex_unlock(&lock);
2277 	else
2278 		kfree(local_buf);
2279 
2280 	return status;
2281 }
2282 EXPORT_SYMBOL_GPL(spi_write_then_read);
2283 
2284 /*-------------------------------------------------------------------------*/
2285 
2286 static int __init spi_init(void)
2287 {
2288 	int	status;
2289 
2290 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2291 	if (!buf) {
2292 		status = -ENOMEM;
2293 		goto err0;
2294 	}
2295 
2296 	status = bus_register(&spi_bus_type);
2297 	if (status < 0)
2298 		goto err1;
2299 
2300 	status = class_register(&spi_master_class);
2301 	if (status < 0)
2302 		goto err2;
2303 	return 0;
2304 
2305 err2:
2306 	bus_unregister(&spi_bus_type);
2307 err1:
2308 	kfree(buf);
2309 	buf = NULL;
2310 err0:
2311 	return status;
2312 }
2313 
2314 /* board_info is normally registered in arch_initcall(),
2315  * but even essential drivers wait till later
2316  *
2317  * REVISIT only boardinfo really needs static linking. the rest (device and
2318  * driver registration) _could_ be dynamically linked (modular) ... costs
2319  * include needing to have boardinfo data structures be much more public.
2320  */
2321 postcore_initcall(spi_init);
2322 
2323