1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_controller *ctlr) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if ((xfer->tx_buf) && 332 (xfer->tx_buf != ctlr->dummy_tx)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if ((xfer->rx_buf) && 335 (xfer->rx_buf != ctlr->dummy_rx)) 336 u64_stats_add(&stats->bytes_rx, xfer->len); 337 338 u64_stats_update_end(&stats->syncp); 339 put_cpu(); 340 } 341 342 /* 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 344 * and the sysfs version makes coldplug work too. 345 */ 346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 347 { 348 while (id->name[0]) { 349 if (!strcmp(name, id->name)) 350 return id; 351 id++; 352 } 353 return NULL; 354 } 355 356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 357 { 358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 359 360 return spi_match_id(sdrv->id_table, sdev->modalias); 361 } 362 EXPORT_SYMBOL_GPL(spi_get_device_id); 363 364 const void *spi_get_device_match_data(const struct spi_device *sdev) 365 { 366 const void *match; 367 368 match = device_get_match_data(&sdev->dev); 369 if (match) 370 return match; 371 372 return (const void *)spi_get_device_id(sdev)->driver_data; 373 } 374 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 375 376 static int spi_match_device(struct device *dev, struct device_driver *drv) 377 { 378 const struct spi_device *spi = to_spi_device(dev); 379 const struct spi_driver *sdrv = to_spi_driver(drv); 380 381 /* Check override first, and if set, only use the named driver */ 382 if (spi->driver_override) 383 return strcmp(spi->driver_override, drv->name) == 0; 384 385 /* Attempt an OF style match */ 386 if (of_driver_match_device(dev, drv)) 387 return 1; 388 389 /* Then try ACPI */ 390 if (acpi_driver_match_device(dev, drv)) 391 return 1; 392 393 if (sdrv->id_table) 394 return !!spi_match_id(sdrv->id_table, spi->modalias); 395 396 return strcmp(spi->modalias, drv->name) == 0; 397 } 398 399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 400 { 401 const struct spi_device *spi = to_spi_device(dev); 402 int rc; 403 404 rc = acpi_device_uevent_modalias(dev, env); 405 if (rc != -ENODEV) 406 return rc; 407 408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 409 } 410 411 static int spi_probe(struct device *dev) 412 { 413 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 414 struct spi_device *spi = to_spi_device(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (dev->of_node) { 422 spi->irq = of_irq_get(dev->of_node, 0); 423 if (spi->irq == -EPROBE_DEFER) 424 return -EPROBE_DEFER; 425 if (spi->irq < 0) 426 spi->irq = 0; 427 } 428 429 ret = dev_pm_domain_attach(dev, true); 430 if (ret) 431 return ret; 432 433 if (sdrv->probe) { 434 ret = sdrv->probe(spi); 435 if (ret) 436 dev_pm_domain_detach(dev, true); 437 } 438 439 return ret; 440 } 441 442 static void spi_remove(struct device *dev) 443 { 444 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 445 446 if (sdrv->remove) 447 sdrv->remove(to_spi_device(dev)); 448 449 dev_pm_domain_detach(dev, true); 450 } 451 452 static void spi_shutdown(struct device *dev) 453 { 454 if (dev->driver) { 455 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 456 457 if (sdrv->shutdown) 458 sdrv->shutdown(to_spi_device(dev)); 459 } 460 } 461 462 struct bus_type spi_bus_type = { 463 .name = "spi", 464 .dev_groups = spi_dev_groups, 465 .match = spi_match_device, 466 .uevent = spi_uevent, 467 .probe = spi_probe, 468 .remove = spi_remove, 469 .shutdown = spi_shutdown, 470 }; 471 EXPORT_SYMBOL_GPL(spi_bus_type); 472 473 /** 474 * __spi_register_driver - register a SPI driver 475 * @owner: owner module of the driver to register 476 * @sdrv: the driver to register 477 * Context: can sleep 478 * 479 * Return: zero on success, else a negative error code. 480 */ 481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 482 { 483 sdrv->driver.owner = owner; 484 sdrv->driver.bus = &spi_bus_type; 485 486 /* 487 * For Really Good Reasons we use spi: modaliases not of: 488 * modaliases for DT so module autoloading won't work if we 489 * don't have a spi_device_id as well as a compatible string. 490 */ 491 if (sdrv->driver.of_match_table) { 492 const struct of_device_id *of_id; 493 494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 495 of_id++) { 496 const char *of_name; 497 498 /* Strip off any vendor prefix */ 499 of_name = strnchr(of_id->compatible, 500 sizeof(of_id->compatible), ','); 501 if (of_name) 502 of_name++; 503 else 504 of_name = of_id->compatible; 505 506 if (sdrv->id_table) { 507 const struct spi_device_id *spi_id; 508 509 spi_id = spi_match_id(sdrv->id_table, of_name); 510 if (spi_id) 511 continue; 512 } else { 513 if (strcmp(sdrv->driver.name, of_name) == 0) 514 continue; 515 } 516 517 pr_warn("SPI driver %s has no spi_device_id for %s\n", 518 sdrv->driver.name, of_id->compatible); 519 } 520 } 521 522 return driver_register(&sdrv->driver); 523 } 524 EXPORT_SYMBOL_GPL(__spi_register_driver); 525 526 /*-------------------------------------------------------------------------*/ 527 528 /* 529 * SPI devices should normally not be created by SPI device drivers; that 530 * would make them board-specific. Similarly with SPI controller drivers. 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c 532 * with other readonly (flashable) information about mainboard devices. 533 */ 534 535 struct boardinfo { 536 struct list_head list; 537 struct spi_board_info board_info; 538 }; 539 540 static LIST_HEAD(board_list); 541 static LIST_HEAD(spi_controller_list); 542 543 /* 544 * Used to protect add/del operation for board_info list and 545 * spi_controller list, and their matching process also used 546 * to protect object of type struct idr. 547 */ 548 static DEFINE_MUTEX(board_lock); 549 550 /** 551 * spi_alloc_device - Allocate a new SPI device 552 * @ctlr: Controller to which device is connected 553 * Context: can sleep 554 * 555 * Allows a driver to allocate and initialize a spi_device without 556 * registering it immediately. This allows a driver to directly 557 * fill the spi_device with device parameters before calling 558 * spi_add_device() on it. 559 * 560 * Caller is responsible to call spi_add_device() on the returned 561 * spi_device structure to add it to the SPI controller. If the caller 562 * needs to discard the spi_device without adding it, then it should 563 * call spi_dev_put() on it. 564 * 565 * Return: a pointer to the new device, or NULL. 566 */ 567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 568 { 569 struct spi_device *spi; 570 571 if (!spi_controller_get(ctlr)) 572 return NULL; 573 574 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 575 if (!spi) { 576 spi_controller_put(ctlr); 577 return NULL; 578 } 579 580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 581 if (!spi->pcpu_statistics) { 582 kfree(spi); 583 spi_controller_put(ctlr); 584 return NULL; 585 } 586 587 spi->master = spi->controller = ctlr; 588 spi->dev.parent = &ctlr->dev; 589 spi->dev.bus = &spi_bus_type; 590 spi->dev.release = spidev_release; 591 spi->mode = ctlr->buswidth_override_bits; 592 593 device_initialize(&spi->dev); 594 return spi; 595 } 596 EXPORT_SYMBOL_GPL(spi_alloc_device); 597 598 static void spi_dev_set_name(struct spi_device *spi) 599 { 600 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 601 602 if (adev) { 603 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 604 return; 605 } 606 607 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 608 spi_get_chipselect(spi, 0)); 609 } 610 611 static int spi_dev_check(struct device *dev, void *data) 612 { 613 struct spi_device *spi = to_spi_device(dev); 614 struct spi_device *new_spi = data; 615 616 if (spi->controller == new_spi->controller && 617 spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0)) 618 return -EBUSY; 619 return 0; 620 } 621 622 static void spi_cleanup(struct spi_device *spi) 623 { 624 if (spi->controller->cleanup) 625 spi->controller->cleanup(spi); 626 } 627 628 static int __spi_add_device(struct spi_device *spi) 629 { 630 struct spi_controller *ctlr = spi->controller; 631 struct device *dev = ctlr->dev.parent; 632 int status; 633 634 /* Chipselects are numbered 0..max; validate. */ 635 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) { 636 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0), 637 ctlr->num_chipselect); 638 return -EINVAL; 639 } 640 641 /* Set the bus ID string */ 642 spi_dev_set_name(spi); 643 644 /* 645 * We need to make sure there's no other device with this 646 * chipselect **BEFORE** we call setup(), else we'll trash 647 * its configuration. 648 */ 649 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 650 if (status) { 651 dev_err(dev, "chipselect %d already in use\n", 652 spi_get_chipselect(spi, 0)); 653 return status; 654 } 655 656 /* Controller may unregister concurrently */ 657 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 658 !device_is_registered(&ctlr->dev)) { 659 return -ENODEV; 660 } 661 662 if (ctlr->cs_gpiods) 663 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]); 664 665 /* 666 * Drivers may modify this initial i/o setup, but will 667 * normally rely on the device being setup. Devices 668 * using SPI_CS_HIGH can't coexist well otherwise... 669 */ 670 status = spi_setup(spi); 671 if (status < 0) { 672 dev_err(dev, "can't setup %s, status %d\n", 673 dev_name(&spi->dev), status); 674 return status; 675 } 676 677 /* Device may be bound to an active driver when this returns */ 678 status = device_add(&spi->dev); 679 if (status < 0) { 680 dev_err(dev, "can't add %s, status %d\n", 681 dev_name(&spi->dev), status); 682 spi_cleanup(spi); 683 } else { 684 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 685 } 686 687 return status; 688 } 689 690 /** 691 * spi_add_device - Add spi_device allocated with spi_alloc_device 692 * @spi: spi_device to register 693 * 694 * Companion function to spi_alloc_device. Devices allocated with 695 * spi_alloc_device can be added onto the SPI bus with this function. 696 * 697 * Return: 0 on success; negative errno on failure 698 */ 699 int spi_add_device(struct spi_device *spi) 700 { 701 struct spi_controller *ctlr = spi->controller; 702 int status; 703 704 mutex_lock(&ctlr->add_lock); 705 status = __spi_add_device(spi); 706 mutex_unlock(&ctlr->add_lock); 707 return status; 708 } 709 EXPORT_SYMBOL_GPL(spi_add_device); 710 711 /** 712 * spi_new_device - instantiate one new SPI device 713 * @ctlr: Controller to which device is connected 714 * @chip: Describes the SPI device 715 * Context: can sleep 716 * 717 * On typical mainboards, this is purely internal; and it's not needed 718 * after board init creates the hard-wired devices. Some development 719 * platforms may not be able to use spi_register_board_info though, and 720 * this is exported so that for example a USB or parport based adapter 721 * driver could add devices (which it would learn about out-of-band). 722 * 723 * Return: the new device, or NULL. 724 */ 725 struct spi_device *spi_new_device(struct spi_controller *ctlr, 726 struct spi_board_info *chip) 727 { 728 struct spi_device *proxy; 729 int status; 730 731 /* 732 * NOTE: caller did any chip->bus_num checks necessary. 733 * 734 * Also, unless we change the return value convention to use 735 * error-or-pointer (not NULL-or-pointer), troubleshootability 736 * suggests syslogged diagnostics are best here (ugh). 737 */ 738 739 proxy = spi_alloc_device(ctlr); 740 if (!proxy) 741 return NULL; 742 743 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 744 745 spi_set_chipselect(proxy, 0, chip->chip_select); 746 proxy->max_speed_hz = chip->max_speed_hz; 747 proxy->mode = chip->mode; 748 proxy->irq = chip->irq; 749 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 750 proxy->dev.platform_data = (void *) chip->platform_data; 751 proxy->controller_data = chip->controller_data; 752 proxy->controller_state = NULL; 753 754 if (chip->swnode) { 755 status = device_add_software_node(&proxy->dev, chip->swnode); 756 if (status) { 757 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 758 chip->modalias, status); 759 goto err_dev_put; 760 } 761 } 762 763 status = spi_add_device(proxy); 764 if (status < 0) 765 goto err_dev_put; 766 767 return proxy; 768 769 err_dev_put: 770 device_remove_software_node(&proxy->dev); 771 spi_dev_put(proxy); 772 return NULL; 773 } 774 EXPORT_SYMBOL_GPL(spi_new_device); 775 776 /** 777 * spi_unregister_device - unregister a single SPI device 778 * @spi: spi_device to unregister 779 * 780 * Start making the passed SPI device vanish. Normally this would be handled 781 * by spi_unregister_controller(). 782 */ 783 void spi_unregister_device(struct spi_device *spi) 784 { 785 if (!spi) 786 return; 787 788 if (spi->dev.of_node) { 789 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 790 of_node_put(spi->dev.of_node); 791 } 792 if (ACPI_COMPANION(&spi->dev)) 793 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 794 device_remove_software_node(&spi->dev); 795 device_del(&spi->dev); 796 spi_cleanup(spi); 797 put_device(&spi->dev); 798 } 799 EXPORT_SYMBOL_GPL(spi_unregister_device); 800 801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 802 struct spi_board_info *bi) 803 { 804 struct spi_device *dev; 805 806 if (ctlr->bus_num != bi->bus_num) 807 return; 808 809 dev = spi_new_device(ctlr, bi); 810 if (!dev) 811 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 812 bi->modalias); 813 } 814 815 /** 816 * spi_register_board_info - register SPI devices for a given board 817 * @info: array of chip descriptors 818 * @n: how many descriptors are provided 819 * Context: can sleep 820 * 821 * Board-specific early init code calls this (probably during arch_initcall) 822 * with segments of the SPI device table. Any device nodes are created later, 823 * after the relevant parent SPI controller (bus_num) is defined. We keep 824 * this table of devices forever, so that reloading a controller driver will 825 * not make Linux forget about these hard-wired devices. 826 * 827 * Other code can also call this, e.g. a particular add-on board might provide 828 * SPI devices through its expansion connector, so code initializing that board 829 * would naturally declare its SPI devices. 830 * 831 * The board info passed can safely be __initdata ... but be careful of 832 * any embedded pointers (platform_data, etc), they're copied as-is. 833 * 834 * Return: zero on success, else a negative error code. 835 */ 836 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 837 { 838 struct boardinfo *bi; 839 int i; 840 841 if (!n) 842 return 0; 843 844 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 845 if (!bi) 846 return -ENOMEM; 847 848 for (i = 0; i < n; i++, bi++, info++) { 849 struct spi_controller *ctlr; 850 851 memcpy(&bi->board_info, info, sizeof(*info)); 852 853 mutex_lock(&board_lock); 854 list_add_tail(&bi->list, &board_list); 855 list_for_each_entry(ctlr, &spi_controller_list, list) 856 spi_match_controller_to_boardinfo(ctlr, 857 &bi->board_info); 858 mutex_unlock(&board_lock); 859 } 860 861 return 0; 862 } 863 864 /*-------------------------------------------------------------------------*/ 865 866 /* Core methods for SPI resource management */ 867 868 /** 869 * spi_res_alloc - allocate a spi resource that is life-cycle managed 870 * during the processing of a spi_message while using 871 * spi_transfer_one 872 * @spi: the SPI device for which we allocate memory 873 * @release: the release code to execute for this resource 874 * @size: size to alloc and return 875 * @gfp: GFP allocation flags 876 * 877 * Return: the pointer to the allocated data 878 * 879 * This may get enhanced in the future to allocate from a memory pool 880 * of the @spi_device or @spi_controller to avoid repeated allocations. 881 */ 882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 883 size_t size, gfp_t gfp) 884 { 885 struct spi_res *sres; 886 887 sres = kzalloc(sizeof(*sres) + size, gfp); 888 if (!sres) 889 return NULL; 890 891 INIT_LIST_HEAD(&sres->entry); 892 sres->release = release; 893 894 return sres->data; 895 } 896 897 /** 898 * spi_res_free - free an SPI resource 899 * @res: pointer to the custom data of a resource 900 */ 901 static void spi_res_free(void *res) 902 { 903 struct spi_res *sres = container_of(res, struct spi_res, data); 904 905 if (!res) 906 return; 907 908 WARN_ON(!list_empty(&sres->entry)); 909 kfree(sres); 910 } 911 912 /** 913 * spi_res_add - add a spi_res to the spi_message 914 * @message: the SPI message 915 * @res: the spi_resource 916 */ 917 static void spi_res_add(struct spi_message *message, void *res) 918 { 919 struct spi_res *sres = container_of(res, struct spi_res, data); 920 921 WARN_ON(!list_empty(&sres->entry)); 922 list_add_tail(&sres->entry, &message->resources); 923 } 924 925 /** 926 * spi_res_release - release all SPI resources for this message 927 * @ctlr: the @spi_controller 928 * @message: the @spi_message 929 */ 930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 931 { 932 struct spi_res *res, *tmp; 933 934 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 935 if (res->release) 936 res->release(ctlr, message, res->data); 937 938 list_del(&res->entry); 939 940 kfree(res); 941 } 942 } 943 944 /*-------------------------------------------------------------------------*/ 945 946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 947 { 948 bool activate = enable; 949 950 /* 951 * Avoid calling into the driver (or doing delays) if the chip select 952 * isn't actually changing from the last time this was called. 953 */ 954 if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) || 955 (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) && 956 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 957 return; 958 959 trace_spi_set_cs(spi, activate); 960 961 spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1; 962 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 963 964 if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate) 965 spi_delay_exec(&spi->cs_hold, NULL); 966 967 if (spi->mode & SPI_CS_HIGH) 968 enable = !enable; 969 970 if (spi_get_csgpiod(spi, 0)) { 971 if (!(spi->mode & SPI_NO_CS)) { 972 /* 973 * Historically ACPI has no means of the GPIO polarity and 974 * thus the SPISerialBus() resource defines it on the per-chip 975 * basis. In order to avoid a chain of negations, the GPIO 976 * polarity is considered being Active High. Even for the cases 977 * when _DSD() is involved (in the updated versions of ACPI) 978 * the GPIO CS polarity must be defined Active High to avoid 979 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 980 * into account. 981 */ 982 if (has_acpi_companion(&spi->dev)) 983 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable); 984 else 985 /* Polarity handled by GPIO library */ 986 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate); 987 } 988 /* Some SPI masters need both GPIO CS & slave_select */ 989 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 990 spi->controller->set_cs) 991 spi->controller->set_cs(spi, !enable); 992 } else if (spi->controller->set_cs) { 993 spi->controller->set_cs(spi, !enable); 994 } 995 996 if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) { 997 if (activate) 998 spi_delay_exec(&spi->cs_setup, NULL); 999 else 1000 spi_delay_exec(&spi->cs_inactive, NULL); 1001 } 1002 } 1003 1004 #ifdef CONFIG_HAS_DMA 1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1006 struct sg_table *sgt, void *buf, size_t len, 1007 enum dma_data_direction dir, unsigned long attrs) 1008 { 1009 const bool vmalloced_buf = is_vmalloc_addr(buf); 1010 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1011 #ifdef CONFIG_HIGHMEM 1012 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1013 (unsigned long)buf < (PKMAP_BASE + 1014 (LAST_PKMAP * PAGE_SIZE))); 1015 #else 1016 const bool kmap_buf = false; 1017 #endif 1018 int desc_len; 1019 int sgs; 1020 struct page *vm_page; 1021 struct scatterlist *sg; 1022 void *sg_buf; 1023 size_t min; 1024 int i, ret; 1025 1026 if (vmalloced_buf || kmap_buf) { 1027 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1028 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1029 } else if (virt_addr_valid(buf)) { 1030 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1031 sgs = DIV_ROUND_UP(len, desc_len); 1032 } else { 1033 return -EINVAL; 1034 } 1035 1036 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1037 if (ret != 0) 1038 return ret; 1039 1040 sg = &sgt->sgl[0]; 1041 for (i = 0; i < sgs; i++) { 1042 1043 if (vmalloced_buf || kmap_buf) { 1044 /* 1045 * Next scatterlist entry size is the minimum between 1046 * the desc_len and the remaining buffer length that 1047 * fits in a page. 1048 */ 1049 min = min_t(size_t, desc_len, 1050 min_t(size_t, len, 1051 PAGE_SIZE - offset_in_page(buf))); 1052 if (vmalloced_buf) 1053 vm_page = vmalloc_to_page(buf); 1054 else 1055 vm_page = kmap_to_page(buf); 1056 if (!vm_page) { 1057 sg_free_table(sgt); 1058 return -ENOMEM; 1059 } 1060 sg_set_page(sg, vm_page, 1061 min, offset_in_page(buf)); 1062 } else { 1063 min = min_t(size_t, len, desc_len); 1064 sg_buf = buf; 1065 sg_set_buf(sg, sg_buf, min); 1066 } 1067 1068 buf += min; 1069 len -= min; 1070 sg = sg_next(sg); 1071 } 1072 1073 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1074 if (ret < 0) { 1075 sg_free_table(sgt); 1076 return ret; 1077 } 1078 1079 return 0; 1080 } 1081 1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1083 struct sg_table *sgt, void *buf, size_t len, 1084 enum dma_data_direction dir) 1085 { 1086 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1087 } 1088 1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1090 struct device *dev, struct sg_table *sgt, 1091 enum dma_data_direction dir, 1092 unsigned long attrs) 1093 { 1094 if (sgt->orig_nents) { 1095 dma_unmap_sgtable(dev, sgt, dir, attrs); 1096 sg_free_table(sgt); 1097 sgt->orig_nents = 0; 1098 sgt->nents = 0; 1099 } 1100 } 1101 1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1103 struct sg_table *sgt, enum dma_data_direction dir) 1104 { 1105 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1106 } 1107 1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1109 { 1110 struct device *tx_dev, *rx_dev; 1111 struct spi_transfer *xfer; 1112 int ret; 1113 1114 if (!ctlr->can_dma) 1115 return 0; 1116 1117 if (ctlr->dma_tx) 1118 tx_dev = ctlr->dma_tx->device->dev; 1119 else if (ctlr->dma_map_dev) 1120 tx_dev = ctlr->dma_map_dev; 1121 else 1122 tx_dev = ctlr->dev.parent; 1123 1124 if (ctlr->dma_rx) 1125 rx_dev = ctlr->dma_rx->device->dev; 1126 else if (ctlr->dma_map_dev) 1127 rx_dev = ctlr->dma_map_dev; 1128 else 1129 rx_dev = ctlr->dev.parent; 1130 1131 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1132 /* The sync is done before each transfer. */ 1133 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1134 1135 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1136 continue; 1137 1138 if (xfer->tx_buf != NULL) { 1139 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1140 (void *)xfer->tx_buf, 1141 xfer->len, DMA_TO_DEVICE, 1142 attrs); 1143 if (ret != 0) 1144 return ret; 1145 } 1146 1147 if (xfer->rx_buf != NULL) { 1148 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1149 xfer->rx_buf, xfer->len, 1150 DMA_FROM_DEVICE, attrs); 1151 if (ret != 0) { 1152 spi_unmap_buf_attrs(ctlr, tx_dev, 1153 &xfer->tx_sg, DMA_TO_DEVICE, 1154 attrs); 1155 1156 return ret; 1157 } 1158 } 1159 } 1160 1161 ctlr->cur_rx_dma_dev = rx_dev; 1162 ctlr->cur_tx_dma_dev = tx_dev; 1163 ctlr->cur_msg_mapped = true; 1164 1165 return 0; 1166 } 1167 1168 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1169 { 1170 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1171 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1172 struct spi_transfer *xfer; 1173 1174 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1175 return 0; 1176 1177 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1178 /* The sync has already been done after each transfer. */ 1179 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1180 1181 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1182 continue; 1183 1184 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1185 DMA_FROM_DEVICE, attrs); 1186 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1187 DMA_TO_DEVICE, attrs); 1188 } 1189 1190 ctlr->cur_msg_mapped = false; 1191 1192 return 0; 1193 } 1194 1195 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1196 struct spi_transfer *xfer) 1197 { 1198 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1199 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1200 1201 if (!ctlr->cur_msg_mapped) 1202 return; 1203 1204 if (xfer->tx_sg.orig_nents) 1205 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1206 if (xfer->rx_sg.orig_nents) 1207 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1208 } 1209 1210 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1211 struct spi_transfer *xfer) 1212 { 1213 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1214 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1215 1216 if (!ctlr->cur_msg_mapped) 1217 return; 1218 1219 if (xfer->rx_sg.orig_nents) 1220 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1221 if (xfer->tx_sg.orig_nents) 1222 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1223 } 1224 #else /* !CONFIG_HAS_DMA */ 1225 static inline int __spi_map_msg(struct spi_controller *ctlr, 1226 struct spi_message *msg) 1227 { 1228 return 0; 1229 } 1230 1231 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1232 struct spi_message *msg) 1233 { 1234 return 0; 1235 } 1236 1237 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1238 struct spi_transfer *xfer) 1239 { 1240 } 1241 1242 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1243 struct spi_transfer *xfer) 1244 { 1245 } 1246 #endif /* !CONFIG_HAS_DMA */ 1247 1248 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1249 struct spi_message *msg) 1250 { 1251 struct spi_transfer *xfer; 1252 1253 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1254 /* 1255 * Restore the original value of tx_buf or rx_buf if they are 1256 * NULL. 1257 */ 1258 if (xfer->tx_buf == ctlr->dummy_tx) 1259 xfer->tx_buf = NULL; 1260 if (xfer->rx_buf == ctlr->dummy_rx) 1261 xfer->rx_buf = NULL; 1262 } 1263 1264 return __spi_unmap_msg(ctlr, msg); 1265 } 1266 1267 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1268 { 1269 struct spi_transfer *xfer; 1270 void *tmp; 1271 unsigned int max_tx, max_rx; 1272 1273 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1274 && !(msg->spi->mode & SPI_3WIRE)) { 1275 max_tx = 0; 1276 max_rx = 0; 1277 1278 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1279 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1280 !xfer->tx_buf) 1281 max_tx = max(xfer->len, max_tx); 1282 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1283 !xfer->rx_buf) 1284 max_rx = max(xfer->len, max_rx); 1285 } 1286 1287 if (max_tx) { 1288 tmp = krealloc(ctlr->dummy_tx, max_tx, 1289 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1290 if (!tmp) 1291 return -ENOMEM; 1292 ctlr->dummy_tx = tmp; 1293 } 1294 1295 if (max_rx) { 1296 tmp = krealloc(ctlr->dummy_rx, max_rx, 1297 GFP_KERNEL | GFP_DMA); 1298 if (!tmp) 1299 return -ENOMEM; 1300 ctlr->dummy_rx = tmp; 1301 } 1302 1303 if (max_tx || max_rx) { 1304 list_for_each_entry(xfer, &msg->transfers, 1305 transfer_list) { 1306 if (!xfer->len) 1307 continue; 1308 if (!xfer->tx_buf) 1309 xfer->tx_buf = ctlr->dummy_tx; 1310 if (!xfer->rx_buf) 1311 xfer->rx_buf = ctlr->dummy_rx; 1312 } 1313 } 1314 } 1315 1316 return __spi_map_msg(ctlr, msg); 1317 } 1318 1319 static int spi_transfer_wait(struct spi_controller *ctlr, 1320 struct spi_message *msg, 1321 struct spi_transfer *xfer) 1322 { 1323 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1324 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1325 u32 speed_hz = xfer->speed_hz; 1326 unsigned long long ms; 1327 1328 if (spi_controller_is_slave(ctlr)) { 1329 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1330 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1331 return -EINTR; 1332 } 1333 } else { 1334 if (!speed_hz) 1335 speed_hz = 100000; 1336 1337 /* 1338 * For each byte we wait for 8 cycles of the SPI clock. 1339 * Since speed is defined in Hz and we want milliseconds, 1340 * use respective multiplier, but before the division, 1341 * otherwise we may get 0 for short transfers. 1342 */ 1343 ms = 8LL * MSEC_PER_SEC * xfer->len; 1344 do_div(ms, speed_hz); 1345 1346 /* 1347 * Increase it twice and add 200 ms tolerance, use 1348 * predefined maximum in case of overflow. 1349 */ 1350 ms += ms + 200; 1351 if (ms > UINT_MAX) 1352 ms = UINT_MAX; 1353 1354 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1355 msecs_to_jiffies(ms)); 1356 1357 if (ms == 0) { 1358 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1359 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1360 dev_err(&msg->spi->dev, 1361 "SPI transfer timed out\n"); 1362 return -ETIMEDOUT; 1363 } 1364 } 1365 1366 return 0; 1367 } 1368 1369 static void _spi_transfer_delay_ns(u32 ns) 1370 { 1371 if (!ns) 1372 return; 1373 if (ns <= NSEC_PER_USEC) { 1374 ndelay(ns); 1375 } else { 1376 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1377 1378 if (us <= 10) 1379 udelay(us); 1380 else 1381 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1382 } 1383 } 1384 1385 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1386 { 1387 u32 delay = _delay->value; 1388 u32 unit = _delay->unit; 1389 u32 hz; 1390 1391 if (!delay) 1392 return 0; 1393 1394 switch (unit) { 1395 case SPI_DELAY_UNIT_USECS: 1396 delay *= NSEC_PER_USEC; 1397 break; 1398 case SPI_DELAY_UNIT_NSECS: 1399 /* Nothing to do here */ 1400 break; 1401 case SPI_DELAY_UNIT_SCK: 1402 /* Clock cycles need to be obtained from spi_transfer */ 1403 if (!xfer) 1404 return -EINVAL; 1405 /* 1406 * If there is unknown effective speed, approximate it 1407 * by underestimating with half of the requested Hz. 1408 */ 1409 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1410 if (!hz) 1411 return -EINVAL; 1412 1413 /* Convert delay to nanoseconds */ 1414 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1415 break; 1416 default: 1417 return -EINVAL; 1418 } 1419 1420 return delay; 1421 } 1422 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1423 1424 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1425 { 1426 int delay; 1427 1428 might_sleep(); 1429 1430 if (!_delay) 1431 return -EINVAL; 1432 1433 delay = spi_delay_to_ns(_delay, xfer); 1434 if (delay < 0) 1435 return delay; 1436 1437 _spi_transfer_delay_ns(delay); 1438 1439 return 0; 1440 } 1441 EXPORT_SYMBOL_GPL(spi_delay_exec); 1442 1443 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1444 struct spi_transfer *xfer) 1445 { 1446 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1447 u32 delay = xfer->cs_change_delay.value; 1448 u32 unit = xfer->cs_change_delay.unit; 1449 int ret; 1450 1451 /* Return early on "fast" mode - for everything but USECS */ 1452 if (!delay) { 1453 if (unit == SPI_DELAY_UNIT_USECS) 1454 _spi_transfer_delay_ns(default_delay_ns); 1455 return; 1456 } 1457 1458 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1459 if (ret) { 1460 dev_err_once(&msg->spi->dev, 1461 "Use of unsupported delay unit %i, using default of %luus\n", 1462 unit, default_delay_ns / NSEC_PER_USEC); 1463 _spi_transfer_delay_ns(default_delay_ns); 1464 } 1465 } 1466 1467 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1468 struct spi_transfer *xfer) 1469 { 1470 _spi_transfer_cs_change_delay(msg, xfer); 1471 } 1472 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1473 1474 /* 1475 * spi_transfer_one_message - Default implementation of transfer_one_message() 1476 * 1477 * This is a standard implementation of transfer_one_message() for 1478 * drivers which implement a transfer_one() operation. It provides 1479 * standard handling of delays and chip select management. 1480 */ 1481 static int spi_transfer_one_message(struct spi_controller *ctlr, 1482 struct spi_message *msg) 1483 { 1484 struct spi_transfer *xfer; 1485 bool keep_cs = false; 1486 int ret = 0; 1487 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1488 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1489 1490 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1491 spi_set_cs(msg->spi, !xfer->cs_off, false); 1492 1493 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1494 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1495 1496 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1497 trace_spi_transfer_start(msg, xfer); 1498 1499 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1500 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1501 1502 if (!ctlr->ptp_sts_supported) { 1503 xfer->ptp_sts_word_pre = 0; 1504 ptp_read_system_prets(xfer->ptp_sts); 1505 } 1506 1507 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1508 reinit_completion(&ctlr->xfer_completion); 1509 1510 fallback_pio: 1511 spi_dma_sync_for_device(ctlr, xfer); 1512 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1513 if (ret < 0) { 1514 spi_dma_sync_for_cpu(ctlr, xfer); 1515 1516 if (ctlr->cur_msg_mapped && 1517 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1518 __spi_unmap_msg(ctlr, msg); 1519 ctlr->fallback = true; 1520 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1521 goto fallback_pio; 1522 } 1523 1524 SPI_STATISTICS_INCREMENT_FIELD(statm, 1525 errors); 1526 SPI_STATISTICS_INCREMENT_FIELD(stats, 1527 errors); 1528 dev_err(&msg->spi->dev, 1529 "SPI transfer failed: %d\n", ret); 1530 goto out; 1531 } 1532 1533 if (ret > 0) { 1534 ret = spi_transfer_wait(ctlr, msg, xfer); 1535 if (ret < 0) 1536 msg->status = ret; 1537 } 1538 1539 spi_dma_sync_for_cpu(ctlr, xfer); 1540 } else { 1541 if (xfer->len) 1542 dev_err(&msg->spi->dev, 1543 "Bufferless transfer has length %u\n", 1544 xfer->len); 1545 } 1546 1547 if (!ctlr->ptp_sts_supported) { 1548 ptp_read_system_postts(xfer->ptp_sts); 1549 xfer->ptp_sts_word_post = xfer->len; 1550 } 1551 1552 trace_spi_transfer_stop(msg, xfer); 1553 1554 if (msg->status != -EINPROGRESS) 1555 goto out; 1556 1557 spi_transfer_delay_exec(xfer); 1558 1559 if (xfer->cs_change) { 1560 if (list_is_last(&xfer->transfer_list, 1561 &msg->transfers)) { 1562 keep_cs = true; 1563 } else { 1564 if (!xfer->cs_off) 1565 spi_set_cs(msg->spi, false, false); 1566 _spi_transfer_cs_change_delay(msg, xfer); 1567 if (!list_next_entry(xfer, transfer_list)->cs_off) 1568 spi_set_cs(msg->spi, true, false); 1569 } 1570 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1571 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1572 spi_set_cs(msg->spi, xfer->cs_off, false); 1573 } 1574 1575 msg->actual_length += xfer->len; 1576 } 1577 1578 out: 1579 if (ret != 0 || !keep_cs) 1580 spi_set_cs(msg->spi, false, false); 1581 1582 if (msg->status == -EINPROGRESS) 1583 msg->status = ret; 1584 1585 if (msg->status && ctlr->handle_err) 1586 ctlr->handle_err(ctlr, msg); 1587 1588 spi_finalize_current_message(ctlr); 1589 1590 return ret; 1591 } 1592 1593 /** 1594 * spi_finalize_current_transfer - report completion of a transfer 1595 * @ctlr: the controller reporting completion 1596 * 1597 * Called by SPI drivers using the core transfer_one_message() 1598 * implementation to notify it that the current interrupt driven 1599 * transfer has finished and the next one may be scheduled. 1600 */ 1601 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1602 { 1603 complete(&ctlr->xfer_completion); 1604 } 1605 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1606 1607 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1608 { 1609 if (ctlr->auto_runtime_pm) { 1610 pm_runtime_mark_last_busy(ctlr->dev.parent); 1611 pm_runtime_put_autosuspend(ctlr->dev.parent); 1612 } 1613 } 1614 1615 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1616 struct spi_message *msg, bool was_busy) 1617 { 1618 struct spi_transfer *xfer; 1619 int ret; 1620 1621 if (!was_busy && ctlr->auto_runtime_pm) { 1622 ret = pm_runtime_get_sync(ctlr->dev.parent); 1623 if (ret < 0) { 1624 pm_runtime_put_noidle(ctlr->dev.parent); 1625 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1626 ret); 1627 1628 msg->status = ret; 1629 spi_finalize_current_message(ctlr); 1630 1631 return ret; 1632 } 1633 } 1634 1635 if (!was_busy) 1636 trace_spi_controller_busy(ctlr); 1637 1638 if (!was_busy && ctlr->prepare_transfer_hardware) { 1639 ret = ctlr->prepare_transfer_hardware(ctlr); 1640 if (ret) { 1641 dev_err(&ctlr->dev, 1642 "failed to prepare transfer hardware: %d\n", 1643 ret); 1644 1645 if (ctlr->auto_runtime_pm) 1646 pm_runtime_put(ctlr->dev.parent); 1647 1648 msg->status = ret; 1649 spi_finalize_current_message(ctlr); 1650 1651 return ret; 1652 } 1653 } 1654 1655 trace_spi_message_start(msg); 1656 1657 ret = spi_split_transfers_maxsize(ctlr, msg, 1658 spi_max_transfer_size(msg->spi), 1659 GFP_KERNEL | GFP_DMA); 1660 if (ret) { 1661 msg->status = ret; 1662 spi_finalize_current_message(ctlr); 1663 return ret; 1664 } 1665 1666 if (ctlr->prepare_message) { 1667 ret = ctlr->prepare_message(ctlr, msg); 1668 if (ret) { 1669 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1670 ret); 1671 msg->status = ret; 1672 spi_finalize_current_message(ctlr); 1673 return ret; 1674 } 1675 msg->prepared = true; 1676 } 1677 1678 ret = spi_map_msg(ctlr, msg); 1679 if (ret) { 1680 msg->status = ret; 1681 spi_finalize_current_message(ctlr); 1682 return ret; 1683 } 1684 1685 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1686 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1687 xfer->ptp_sts_word_pre = 0; 1688 ptp_read_system_prets(xfer->ptp_sts); 1689 } 1690 } 1691 1692 /* 1693 * Drivers implementation of transfer_one_message() must arrange for 1694 * spi_finalize_current_message() to get called. Most drivers will do 1695 * this in the calling context, but some don't. For those cases, a 1696 * completion is used to guarantee that this function does not return 1697 * until spi_finalize_current_message() is done accessing 1698 * ctlr->cur_msg. 1699 * Use of the following two flags enable to opportunistically skip the 1700 * use of the completion since its use involves expensive spin locks. 1701 * In case of a race with the context that calls 1702 * spi_finalize_current_message() the completion will always be used, 1703 * due to strict ordering of these flags using barriers. 1704 */ 1705 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1706 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1707 reinit_completion(&ctlr->cur_msg_completion); 1708 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1709 1710 ret = ctlr->transfer_one_message(ctlr, msg); 1711 if (ret) { 1712 dev_err(&ctlr->dev, 1713 "failed to transfer one message from queue\n"); 1714 return ret; 1715 } 1716 1717 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1718 smp_mb(); /* See spi_finalize_current_message()... */ 1719 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1720 wait_for_completion(&ctlr->cur_msg_completion); 1721 1722 return 0; 1723 } 1724 1725 /** 1726 * __spi_pump_messages - function which processes SPI message queue 1727 * @ctlr: controller to process queue for 1728 * @in_kthread: true if we are in the context of the message pump thread 1729 * 1730 * This function checks if there is any SPI message in the queue that 1731 * needs processing and if so call out to the driver to initialize hardware 1732 * and transfer each message. 1733 * 1734 * Note that it is called both from the kthread itself and also from 1735 * inside spi_sync(); the queue extraction handling at the top of the 1736 * function should deal with this safely. 1737 */ 1738 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1739 { 1740 struct spi_message *msg; 1741 bool was_busy = false; 1742 unsigned long flags; 1743 int ret; 1744 1745 /* Take the I/O mutex */ 1746 mutex_lock(&ctlr->io_mutex); 1747 1748 /* Lock queue */ 1749 spin_lock_irqsave(&ctlr->queue_lock, flags); 1750 1751 /* Make sure we are not already running a message */ 1752 if (ctlr->cur_msg) 1753 goto out_unlock; 1754 1755 /* Check if the queue is idle */ 1756 if (list_empty(&ctlr->queue) || !ctlr->running) { 1757 if (!ctlr->busy) 1758 goto out_unlock; 1759 1760 /* Defer any non-atomic teardown to the thread */ 1761 if (!in_kthread) { 1762 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1763 !ctlr->unprepare_transfer_hardware) { 1764 spi_idle_runtime_pm(ctlr); 1765 ctlr->busy = false; 1766 ctlr->queue_empty = true; 1767 trace_spi_controller_idle(ctlr); 1768 } else { 1769 kthread_queue_work(ctlr->kworker, 1770 &ctlr->pump_messages); 1771 } 1772 goto out_unlock; 1773 } 1774 1775 ctlr->busy = false; 1776 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1777 1778 kfree(ctlr->dummy_rx); 1779 ctlr->dummy_rx = NULL; 1780 kfree(ctlr->dummy_tx); 1781 ctlr->dummy_tx = NULL; 1782 if (ctlr->unprepare_transfer_hardware && 1783 ctlr->unprepare_transfer_hardware(ctlr)) 1784 dev_err(&ctlr->dev, 1785 "failed to unprepare transfer hardware\n"); 1786 spi_idle_runtime_pm(ctlr); 1787 trace_spi_controller_idle(ctlr); 1788 1789 spin_lock_irqsave(&ctlr->queue_lock, flags); 1790 ctlr->queue_empty = true; 1791 goto out_unlock; 1792 } 1793 1794 /* Extract head of queue */ 1795 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1796 ctlr->cur_msg = msg; 1797 1798 list_del_init(&msg->queue); 1799 if (ctlr->busy) 1800 was_busy = true; 1801 else 1802 ctlr->busy = true; 1803 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1804 1805 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1806 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1807 1808 ctlr->cur_msg = NULL; 1809 ctlr->fallback = false; 1810 1811 mutex_unlock(&ctlr->io_mutex); 1812 1813 /* Prod the scheduler in case transfer_one() was busy waiting */ 1814 if (!ret) 1815 cond_resched(); 1816 return; 1817 1818 out_unlock: 1819 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1820 mutex_unlock(&ctlr->io_mutex); 1821 } 1822 1823 /** 1824 * spi_pump_messages - kthread work function which processes spi message queue 1825 * @work: pointer to kthread work struct contained in the controller struct 1826 */ 1827 static void spi_pump_messages(struct kthread_work *work) 1828 { 1829 struct spi_controller *ctlr = 1830 container_of(work, struct spi_controller, pump_messages); 1831 1832 __spi_pump_messages(ctlr, true); 1833 } 1834 1835 /** 1836 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1837 * @ctlr: Pointer to the spi_controller structure of the driver 1838 * @xfer: Pointer to the transfer being timestamped 1839 * @progress: How many words (not bytes) have been transferred so far 1840 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1841 * transfer, for less jitter in time measurement. Only compatible 1842 * with PIO drivers. If true, must follow up with 1843 * spi_take_timestamp_post or otherwise system will crash. 1844 * WARNING: for fully predictable results, the CPU frequency must 1845 * also be under control (governor). 1846 * 1847 * This is a helper for drivers to collect the beginning of the TX timestamp 1848 * for the requested byte from the SPI transfer. The frequency with which this 1849 * function must be called (once per word, once for the whole transfer, once 1850 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1851 * greater than or equal to the requested byte at the time of the call. The 1852 * timestamp is only taken once, at the first such call. It is assumed that 1853 * the driver advances its @tx buffer pointer monotonically. 1854 */ 1855 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1856 struct spi_transfer *xfer, 1857 size_t progress, bool irqs_off) 1858 { 1859 if (!xfer->ptp_sts) 1860 return; 1861 1862 if (xfer->timestamped) 1863 return; 1864 1865 if (progress > xfer->ptp_sts_word_pre) 1866 return; 1867 1868 /* Capture the resolution of the timestamp */ 1869 xfer->ptp_sts_word_pre = progress; 1870 1871 if (irqs_off) { 1872 local_irq_save(ctlr->irq_flags); 1873 preempt_disable(); 1874 } 1875 1876 ptp_read_system_prets(xfer->ptp_sts); 1877 } 1878 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1879 1880 /** 1881 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1882 * @ctlr: Pointer to the spi_controller structure of the driver 1883 * @xfer: Pointer to the transfer being timestamped 1884 * @progress: How many words (not bytes) have been transferred so far 1885 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1886 * 1887 * This is a helper for drivers to collect the end of the TX timestamp for 1888 * the requested byte from the SPI transfer. Can be called with an arbitrary 1889 * frequency: only the first call where @tx exceeds or is equal to the 1890 * requested word will be timestamped. 1891 */ 1892 void spi_take_timestamp_post(struct spi_controller *ctlr, 1893 struct spi_transfer *xfer, 1894 size_t progress, bool irqs_off) 1895 { 1896 if (!xfer->ptp_sts) 1897 return; 1898 1899 if (xfer->timestamped) 1900 return; 1901 1902 if (progress < xfer->ptp_sts_word_post) 1903 return; 1904 1905 ptp_read_system_postts(xfer->ptp_sts); 1906 1907 if (irqs_off) { 1908 local_irq_restore(ctlr->irq_flags); 1909 preempt_enable(); 1910 } 1911 1912 /* Capture the resolution of the timestamp */ 1913 xfer->ptp_sts_word_post = progress; 1914 1915 xfer->timestamped = 1; 1916 } 1917 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1918 1919 /** 1920 * spi_set_thread_rt - set the controller to pump at realtime priority 1921 * @ctlr: controller to boost priority of 1922 * 1923 * This can be called because the controller requested realtime priority 1924 * (by setting the ->rt value before calling spi_register_controller()) or 1925 * because a device on the bus said that its transfers needed realtime 1926 * priority. 1927 * 1928 * NOTE: at the moment if any device on a bus says it needs realtime then 1929 * the thread will be at realtime priority for all transfers on that 1930 * controller. If this eventually becomes a problem we may see if we can 1931 * find a way to boost the priority only temporarily during relevant 1932 * transfers. 1933 */ 1934 static void spi_set_thread_rt(struct spi_controller *ctlr) 1935 { 1936 dev_info(&ctlr->dev, 1937 "will run message pump with realtime priority\n"); 1938 sched_set_fifo(ctlr->kworker->task); 1939 } 1940 1941 static int spi_init_queue(struct spi_controller *ctlr) 1942 { 1943 ctlr->running = false; 1944 ctlr->busy = false; 1945 ctlr->queue_empty = true; 1946 1947 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1948 if (IS_ERR(ctlr->kworker)) { 1949 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1950 return PTR_ERR(ctlr->kworker); 1951 } 1952 1953 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1954 1955 /* 1956 * Controller config will indicate if this controller should run the 1957 * message pump with high (realtime) priority to reduce the transfer 1958 * latency on the bus by minimising the delay between a transfer 1959 * request and the scheduling of the message pump thread. Without this 1960 * setting the message pump thread will remain at default priority. 1961 */ 1962 if (ctlr->rt) 1963 spi_set_thread_rt(ctlr); 1964 1965 return 0; 1966 } 1967 1968 /** 1969 * spi_get_next_queued_message() - called by driver to check for queued 1970 * messages 1971 * @ctlr: the controller to check for queued messages 1972 * 1973 * If there are more messages in the queue, the next message is returned from 1974 * this call. 1975 * 1976 * Return: the next message in the queue, else NULL if the queue is empty. 1977 */ 1978 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1979 { 1980 struct spi_message *next; 1981 unsigned long flags; 1982 1983 /* Get a pointer to the next message, if any */ 1984 spin_lock_irqsave(&ctlr->queue_lock, flags); 1985 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1986 queue); 1987 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1988 1989 return next; 1990 } 1991 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1992 1993 /** 1994 * spi_finalize_current_message() - the current message is complete 1995 * @ctlr: the controller to return the message to 1996 * 1997 * Called by the driver to notify the core that the message in the front of the 1998 * queue is complete and can be removed from the queue. 1999 */ 2000 void spi_finalize_current_message(struct spi_controller *ctlr) 2001 { 2002 struct spi_transfer *xfer; 2003 struct spi_message *mesg; 2004 int ret; 2005 2006 mesg = ctlr->cur_msg; 2007 2008 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2009 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2010 ptp_read_system_postts(xfer->ptp_sts); 2011 xfer->ptp_sts_word_post = xfer->len; 2012 } 2013 } 2014 2015 if (unlikely(ctlr->ptp_sts_supported)) 2016 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2017 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2018 2019 spi_unmap_msg(ctlr, mesg); 2020 2021 /* 2022 * In the prepare_messages callback the SPI bus has the opportunity 2023 * to split a transfer to smaller chunks. 2024 * 2025 * Release the split transfers here since spi_map_msg() is done on 2026 * the split transfers. 2027 */ 2028 spi_res_release(ctlr, mesg); 2029 2030 if (mesg->prepared && ctlr->unprepare_message) { 2031 ret = ctlr->unprepare_message(ctlr, mesg); 2032 if (ret) { 2033 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2034 ret); 2035 } 2036 } 2037 2038 mesg->prepared = false; 2039 2040 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2041 smp_mb(); /* See __spi_pump_transfer_message()... */ 2042 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2043 complete(&ctlr->cur_msg_completion); 2044 2045 trace_spi_message_done(mesg); 2046 2047 mesg->state = NULL; 2048 if (mesg->complete) 2049 mesg->complete(mesg->context); 2050 } 2051 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2052 2053 static int spi_start_queue(struct spi_controller *ctlr) 2054 { 2055 unsigned long flags; 2056 2057 spin_lock_irqsave(&ctlr->queue_lock, flags); 2058 2059 if (ctlr->running || ctlr->busy) { 2060 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2061 return -EBUSY; 2062 } 2063 2064 ctlr->running = true; 2065 ctlr->cur_msg = NULL; 2066 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2067 2068 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2069 2070 return 0; 2071 } 2072 2073 static int spi_stop_queue(struct spi_controller *ctlr) 2074 { 2075 unsigned long flags; 2076 unsigned limit = 500; 2077 int ret = 0; 2078 2079 spin_lock_irqsave(&ctlr->queue_lock, flags); 2080 2081 /* 2082 * This is a bit lame, but is optimized for the common execution path. 2083 * A wait_queue on the ctlr->busy could be used, but then the common 2084 * execution path (pump_messages) would be required to call wake_up or 2085 * friends on every SPI message. Do this instead. 2086 */ 2087 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2088 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2089 usleep_range(10000, 11000); 2090 spin_lock_irqsave(&ctlr->queue_lock, flags); 2091 } 2092 2093 if (!list_empty(&ctlr->queue) || ctlr->busy) 2094 ret = -EBUSY; 2095 else 2096 ctlr->running = false; 2097 2098 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2099 2100 if (ret) { 2101 dev_warn(&ctlr->dev, "could not stop message queue\n"); 2102 return ret; 2103 } 2104 return ret; 2105 } 2106 2107 static int spi_destroy_queue(struct spi_controller *ctlr) 2108 { 2109 int ret; 2110 2111 ret = spi_stop_queue(ctlr); 2112 2113 /* 2114 * kthread_flush_worker will block until all work is done. 2115 * If the reason that stop_queue timed out is that the work will never 2116 * finish, then it does no good to call flush/stop thread, so 2117 * return anyway. 2118 */ 2119 if (ret) { 2120 dev_err(&ctlr->dev, "problem destroying queue\n"); 2121 return ret; 2122 } 2123 2124 kthread_destroy_worker(ctlr->kworker); 2125 2126 return 0; 2127 } 2128 2129 static int __spi_queued_transfer(struct spi_device *spi, 2130 struct spi_message *msg, 2131 bool need_pump) 2132 { 2133 struct spi_controller *ctlr = spi->controller; 2134 unsigned long flags; 2135 2136 spin_lock_irqsave(&ctlr->queue_lock, flags); 2137 2138 if (!ctlr->running) { 2139 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2140 return -ESHUTDOWN; 2141 } 2142 msg->actual_length = 0; 2143 msg->status = -EINPROGRESS; 2144 2145 list_add_tail(&msg->queue, &ctlr->queue); 2146 ctlr->queue_empty = false; 2147 if (!ctlr->busy && need_pump) 2148 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2149 2150 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2151 return 0; 2152 } 2153 2154 /** 2155 * spi_queued_transfer - transfer function for queued transfers 2156 * @spi: SPI device which is requesting transfer 2157 * @msg: SPI message which is to handled is queued to driver queue 2158 * 2159 * Return: zero on success, else a negative error code. 2160 */ 2161 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2162 { 2163 return __spi_queued_transfer(spi, msg, true); 2164 } 2165 2166 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2167 { 2168 int ret; 2169 2170 ctlr->transfer = spi_queued_transfer; 2171 if (!ctlr->transfer_one_message) 2172 ctlr->transfer_one_message = spi_transfer_one_message; 2173 2174 /* Initialize and start queue */ 2175 ret = spi_init_queue(ctlr); 2176 if (ret) { 2177 dev_err(&ctlr->dev, "problem initializing queue\n"); 2178 goto err_init_queue; 2179 } 2180 ctlr->queued = true; 2181 ret = spi_start_queue(ctlr); 2182 if (ret) { 2183 dev_err(&ctlr->dev, "problem starting queue\n"); 2184 goto err_start_queue; 2185 } 2186 2187 return 0; 2188 2189 err_start_queue: 2190 spi_destroy_queue(ctlr); 2191 err_init_queue: 2192 return ret; 2193 } 2194 2195 /** 2196 * spi_flush_queue - Send all pending messages in the queue from the callers' 2197 * context 2198 * @ctlr: controller to process queue for 2199 * 2200 * This should be used when one wants to ensure all pending messages have been 2201 * sent before doing something. Is used by the spi-mem code to make sure SPI 2202 * memory operations do not preempt regular SPI transfers that have been queued 2203 * before the spi-mem operation. 2204 */ 2205 void spi_flush_queue(struct spi_controller *ctlr) 2206 { 2207 if (ctlr->transfer == spi_queued_transfer) 2208 __spi_pump_messages(ctlr, false); 2209 } 2210 2211 /*-------------------------------------------------------------------------*/ 2212 2213 #if defined(CONFIG_OF) 2214 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2215 struct spi_delay *delay, const char *prop) 2216 { 2217 u32 value; 2218 2219 if (!of_property_read_u32(nc, prop, &value)) { 2220 if (value > U16_MAX) { 2221 delay->value = DIV_ROUND_UP(value, 1000); 2222 delay->unit = SPI_DELAY_UNIT_USECS; 2223 } else { 2224 delay->value = value; 2225 delay->unit = SPI_DELAY_UNIT_NSECS; 2226 } 2227 } 2228 } 2229 2230 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2231 struct device_node *nc) 2232 { 2233 u32 value; 2234 int rc; 2235 2236 /* Mode (clock phase/polarity/etc.) */ 2237 if (of_property_read_bool(nc, "spi-cpha")) 2238 spi->mode |= SPI_CPHA; 2239 if (of_property_read_bool(nc, "spi-cpol")) 2240 spi->mode |= SPI_CPOL; 2241 if (of_property_read_bool(nc, "spi-3wire")) 2242 spi->mode |= SPI_3WIRE; 2243 if (of_property_read_bool(nc, "spi-lsb-first")) 2244 spi->mode |= SPI_LSB_FIRST; 2245 if (of_property_read_bool(nc, "spi-cs-high")) 2246 spi->mode |= SPI_CS_HIGH; 2247 2248 /* Device DUAL/QUAD mode */ 2249 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2250 switch (value) { 2251 case 0: 2252 spi->mode |= SPI_NO_TX; 2253 break; 2254 case 1: 2255 break; 2256 case 2: 2257 spi->mode |= SPI_TX_DUAL; 2258 break; 2259 case 4: 2260 spi->mode |= SPI_TX_QUAD; 2261 break; 2262 case 8: 2263 spi->mode |= SPI_TX_OCTAL; 2264 break; 2265 default: 2266 dev_warn(&ctlr->dev, 2267 "spi-tx-bus-width %d not supported\n", 2268 value); 2269 break; 2270 } 2271 } 2272 2273 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2274 switch (value) { 2275 case 0: 2276 spi->mode |= SPI_NO_RX; 2277 break; 2278 case 1: 2279 break; 2280 case 2: 2281 spi->mode |= SPI_RX_DUAL; 2282 break; 2283 case 4: 2284 spi->mode |= SPI_RX_QUAD; 2285 break; 2286 case 8: 2287 spi->mode |= SPI_RX_OCTAL; 2288 break; 2289 default: 2290 dev_warn(&ctlr->dev, 2291 "spi-rx-bus-width %d not supported\n", 2292 value); 2293 break; 2294 } 2295 } 2296 2297 if (spi_controller_is_slave(ctlr)) { 2298 if (!of_node_name_eq(nc, "slave")) { 2299 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2300 nc); 2301 return -EINVAL; 2302 } 2303 return 0; 2304 } 2305 2306 /* Device address */ 2307 rc = of_property_read_u32(nc, "reg", &value); 2308 if (rc) { 2309 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2310 nc, rc); 2311 return rc; 2312 } 2313 spi_set_chipselect(spi, 0, value); 2314 2315 /* Device speed */ 2316 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2317 spi->max_speed_hz = value; 2318 2319 /* Device CS delays */ 2320 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2321 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2322 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2323 2324 return 0; 2325 } 2326 2327 static struct spi_device * 2328 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2329 { 2330 struct spi_device *spi; 2331 int rc; 2332 2333 /* Alloc an spi_device */ 2334 spi = spi_alloc_device(ctlr); 2335 if (!spi) { 2336 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2337 rc = -ENOMEM; 2338 goto err_out; 2339 } 2340 2341 /* Select device driver */ 2342 rc = of_alias_from_compatible(nc, spi->modalias, 2343 sizeof(spi->modalias)); 2344 if (rc < 0) { 2345 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2346 goto err_out; 2347 } 2348 2349 rc = of_spi_parse_dt(ctlr, spi, nc); 2350 if (rc) 2351 goto err_out; 2352 2353 /* Store a pointer to the node in the device structure */ 2354 of_node_get(nc); 2355 2356 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2357 2358 /* Register the new device */ 2359 rc = spi_add_device(spi); 2360 if (rc) { 2361 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2362 goto err_of_node_put; 2363 } 2364 2365 return spi; 2366 2367 err_of_node_put: 2368 of_node_put(nc); 2369 err_out: 2370 spi_dev_put(spi); 2371 return ERR_PTR(rc); 2372 } 2373 2374 /** 2375 * of_register_spi_devices() - Register child devices onto the SPI bus 2376 * @ctlr: Pointer to spi_controller device 2377 * 2378 * Registers an spi_device for each child node of controller node which 2379 * represents a valid SPI slave. 2380 */ 2381 static void of_register_spi_devices(struct spi_controller *ctlr) 2382 { 2383 struct spi_device *spi; 2384 struct device_node *nc; 2385 2386 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2387 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2388 continue; 2389 spi = of_register_spi_device(ctlr, nc); 2390 if (IS_ERR(spi)) { 2391 dev_warn(&ctlr->dev, 2392 "Failed to create SPI device for %pOF\n", nc); 2393 of_node_clear_flag(nc, OF_POPULATED); 2394 } 2395 } 2396 } 2397 #else 2398 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2399 #endif 2400 2401 /** 2402 * spi_new_ancillary_device() - Register ancillary SPI device 2403 * @spi: Pointer to the main SPI device registering the ancillary device 2404 * @chip_select: Chip Select of the ancillary device 2405 * 2406 * Register an ancillary SPI device; for example some chips have a chip-select 2407 * for normal device usage and another one for setup/firmware upload. 2408 * 2409 * This may only be called from main SPI device's probe routine. 2410 * 2411 * Return: 0 on success; negative errno on failure 2412 */ 2413 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2414 u8 chip_select) 2415 { 2416 struct spi_controller *ctlr = spi->controller; 2417 struct spi_device *ancillary; 2418 int rc = 0; 2419 2420 /* Alloc an spi_device */ 2421 ancillary = spi_alloc_device(ctlr); 2422 if (!ancillary) { 2423 rc = -ENOMEM; 2424 goto err_out; 2425 } 2426 2427 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2428 2429 /* Use provided chip-select for ancillary device */ 2430 spi_set_chipselect(ancillary, 0, chip_select); 2431 2432 /* Take over SPI mode/speed from SPI main device */ 2433 ancillary->max_speed_hz = spi->max_speed_hz; 2434 ancillary->mode = spi->mode; 2435 2436 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2437 2438 /* Register the new device */ 2439 rc = __spi_add_device(ancillary); 2440 if (rc) { 2441 dev_err(&spi->dev, "failed to register ancillary device\n"); 2442 goto err_out; 2443 } 2444 2445 return ancillary; 2446 2447 err_out: 2448 spi_dev_put(ancillary); 2449 return ERR_PTR(rc); 2450 } 2451 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2452 2453 #ifdef CONFIG_ACPI 2454 struct acpi_spi_lookup { 2455 struct spi_controller *ctlr; 2456 u32 max_speed_hz; 2457 u32 mode; 2458 int irq; 2459 u8 bits_per_word; 2460 u8 chip_select; 2461 int n; 2462 int index; 2463 }; 2464 2465 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2466 { 2467 struct acpi_resource_spi_serialbus *sb; 2468 int *count = data; 2469 2470 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2471 return 1; 2472 2473 sb = &ares->data.spi_serial_bus; 2474 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2475 return 1; 2476 2477 *count = *count + 1; 2478 2479 return 1; 2480 } 2481 2482 /** 2483 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2484 * @adev: ACPI device 2485 * 2486 * Return: the number of SpiSerialBus resources in the ACPI-device's 2487 * resource-list; or a negative error code. 2488 */ 2489 int acpi_spi_count_resources(struct acpi_device *adev) 2490 { 2491 LIST_HEAD(r); 2492 int count = 0; 2493 int ret; 2494 2495 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2496 if (ret < 0) 2497 return ret; 2498 2499 acpi_dev_free_resource_list(&r); 2500 2501 return count; 2502 } 2503 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2504 2505 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2506 struct acpi_spi_lookup *lookup) 2507 { 2508 const union acpi_object *obj; 2509 2510 if (!x86_apple_machine) 2511 return; 2512 2513 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2514 && obj->buffer.length >= 4) 2515 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2516 2517 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2518 && obj->buffer.length == 8) 2519 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2520 2521 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2522 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2523 lookup->mode |= SPI_LSB_FIRST; 2524 2525 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2526 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2527 lookup->mode |= SPI_CPOL; 2528 2529 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2530 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2531 lookup->mode |= SPI_CPHA; 2532 } 2533 2534 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 2535 2536 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2537 { 2538 struct acpi_spi_lookup *lookup = data; 2539 struct spi_controller *ctlr = lookup->ctlr; 2540 2541 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2542 struct acpi_resource_spi_serialbus *sb; 2543 acpi_handle parent_handle; 2544 acpi_status status; 2545 2546 sb = &ares->data.spi_serial_bus; 2547 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2548 2549 if (lookup->index != -1 && lookup->n++ != lookup->index) 2550 return 1; 2551 2552 status = acpi_get_handle(NULL, 2553 sb->resource_source.string_ptr, 2554 &parent_handle); 2555 2556 if (ACPI_FAILURE(status)) 2557 return -ENODEV; 2558 2559 if (ctlr) { 2560 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2561 return -ENODEV; 2562 } else { 2563 struct acpi_device *adev; 2564 2565 adev = acpi_fetch_acpi_dev(parent_handle); 2566 if (!adev) 2567 return -ENODEV; 2568 2569 ctlr = acpi_spi_find_controller_by_adev(adev); 2570 if (!ctlr) 2571 return -EPROBE_DEFER; 2572 2573 lookup->ctlr = ctlr; 2574 } 2575 2576 /* 2577 * ACPI DeviceSelection numbering is handled by the 2578 * host controller driver in Windows and can vary 2579 * from driver to driver. In Linux we always expect 2580 * 0 .. max - 1 so we need to ask the driver to 2581 * translate between the two schemes. 2582 */ 2583 if (ctlr->fw_translate_cs) { 2584 int cs = ctlr->fw_translate_cs(ctlr, 2585 sb->device_selection); 2586 if (cs < 0) 2587 return cs; 2588 lookup->chip_select = cs; 2589 } else { 2590 lookup->chip_select = sb->device_selection; 2591 } 2592 2593 lookup->max_speed_hz = sb->connection_speed; 2594 lookup->bits_per_word = sb->data_bit_length; 2595 2596 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2597 lookup->mode |= SPI_CPHA; 2598 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2599 lookup->mode |= SPI_CPOL; 2600 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2601 lookup->mode |= SPI_CS_HIGH; 2602 } 2603 } else if (lookup->irq < 0) { 2604 struct resource r; 2605 2606 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2607 lookup->irq = r.start; 2608 } 2609 2610 /* Always tell the ACPI core to skip this resource */ 2611 return 1; 2612 } 2613 2614 /** 2615 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2616 * @ctlr: controller to which the spi device belongs 2617 * @adev: ACPI Device for the spi device 2618 * @index: Index of the spi resource inside the ACPI Node 2619 * 2620 * This should be used to allocate a new SPI device from and ACPI Device node. 2621 * The caller is responsible for calling spi_add_device to register the SPI device. 2622 * 2623 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2624 * using the resource. 2625 * If index is set to -1, index is not used. 2626 * Note: If index is -1, ctlr must be set. 2627 * 2628 * Return: a pointer to the new device, or ERR_PTR on error. 2629 */ 2630 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2631 struct acpi_device *adev, 2632 int index) 2633 { 2634 acpi_handle parent_handle = NULL; 2635 struct list_head resource_list; 2636 struct acpi_spi_lookup lookup = {}; 2637 struct spi_device *spi; 2638 int ret; 2639 2640 if (!ctlr && index == -1) 2641 return ERR_PTR(-EINVAL); 2642 2643 lookup.ctlr = ctlr; 2644 lookup.irq = -1; 2645 lookup.index = index; 2646 lookup.n = 0; 2647 2648 INIT_LIST_HEAD(&resource_list); 2649 ret = acpi_dev_get_resources(adev, &resource_list, 2650 acpi_spi_add_resource, &lookup); 2651 acpi_dev_free_resource_list(&resource_list); 2652 2653 if (ret < 0) 2654 /* Found SPI in _CRS but it points to another controller */ 2655 return ERR_PTR(ret); 2656 2657 if (!lookup.max_speed_hz && 2658 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2659 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2660 /* Apple does not use _CRS but nested devices for SPI slaves */ 2661 acpi_spi_parse_apple_properties(adev, &lookup); 2662 } 2663 2664 if (!lookup.max_speed_hz) 2665 return ERR_PTR(-ENODEV); 2666 2667 spi = spi_alloc_device(lookup.ctlr); 2668 if (!spi) { 2669 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2670 dev_name(&adev->dev)); 2671 return ERR_PTR(-ENOMEM); 2672 } 2673 2674 ACPI_COMPANION_SET(&spi->dev, adev); 2675 spi->max_speed_hz = lookup.max_speed_hz; 2676 spi->mode |= lookup.mode; 2677 spi->irq = lookup.irq; 2678 spi->bits_per_word = lookup.bits_per_word; 2679 spi_set_chipselect(spi, 0, lookup.chip_select); 2680 2681 return spi; 2682 } 2683 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2684 2685 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2686 struct acpi_device *adev) 2687 { 2688 struct spi_device *spi; 2689 2690 if (acpi_bus_get_status(adev) || !adev->status.present || 2691 acpi_device_enumerated(adev)) 2692 return AE_OK; 2693 2694 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2695 if (IS_ERR(spi)) { 2696 if (PTR_ERR(spi) == -ENOMEM) 2697 return AE_NO_MEMORY; 2698 else 2699 return AE_OK; 2700 } 2701 2702 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2703 sizeof(spi->modalias)); 2704 2705 if (spi->irq < 0) 2706 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2707 2708 acpi_device_set_enumerated(adev); 2709 2710 adev->power.flags.ignore_parent = true; 2711 if (spi_add_device(spi)) { 2712 adev->power.flags.ignore_parent = false; 2713 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2714 dev_name(&adev->dev)); 2715 spi_dev_put(spi); 2716 } 2717 2718 return AE_OK; 2719 } 2720 2721 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2722 void *data, void **return_value) 2723 { 2724 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2725 struct spi_controller *ctlr = data; 2726 2727 if (!adev) 2728 return AE_OK; 2729 2730 return acpi_register_spi_device(ctlr, adev); 2731 } 2732 2733 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2734 2735 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2736 { 2737 acpi_status status; 2738 acpi_handle handle; 2739 2740 handle = ACPI_HANDLE(ctlr->dev.parent); 2741 if (!handle) 2742 return; 2743 2744 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2745 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2746 acpi_spi_add_device, NULL, ctlr, NULL); 2747 if (ACPI_FAILURE(status)) 2748 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2749 } 2750 #else 2751 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2752 #endif /* CONFIG_ACPI */ 2753 2754 static void spi_controller_release(struct device *dev) 2755 { 2756 struct spi_controller *ctlr; 2757 2758 ctlr = container_of(dev, struct spi_controller, dev); 2759 kfree(ctlr); 2760 } 2761 2762 static struct class spi_master_class = { 2763 .name = "spi_master", 2764 .dev_release = spi_controller_release, 2765 .dev_groups = spi_master_groups, 2766 }; 2767 2768 #ifdef CONFIG_SPI_SLAVE 2769 /** 2770 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2771 * controller 2772 * @spi: device used for the current transfer 2773 */ 2774 int spi_slave_abort(struct spi_device *spi) 2775 { 2776 struct spi_controller *ctlr = spi->controller; 2777 2778 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2779 return ctlr->slave_abort(ctlr); 2780 2781 return -ENOTSUPP; 2782 } 2783 EXPORT_SYMBOL_GPL(spi_slave_abort); 2784 2785 int spi_target_abort(struct spi_device *spi) 2786 { 2787 struct spi_controller *ctlr = spi->controller; 2788 2789 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2790 return ctlr->target_abort(ctlr); 2791 2792 return -ENOTSUPP; 2793 } 2794 EXPORT_SYMBOL_GPL(spi_target_abort); 2795 2796 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2797 char *buf) 2798 { 2799 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2800 dev); 2801 struct device *child; 2802 2803 child = device_find_any_child(&ctlr->dev); 2804 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2805 } 2806 2807 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2808 const char *buf, size_t count) 2809 { 2810 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2811 dev); 2812 struct spi_device *spi; 2813 struct device *child; 2814 char name[32]; 2815 int rc; 2816 2817 rc = sscanf(buf, "%31s", name); 2818 if (rc != 1 || !name[0]) 2819 return -EINVAL; 2820 2821 child = device_find_any_child(&ctlr->dev); 2822 if (child) { 2823 /* Remove registered slave */ 2824 device_unregister(child); 2825 put_device(child); 2826 } 2827 2828 if (strcmp(name, "(null)")) { 2829 /* Register new slave */ 2830 spi = spi_alloc_device(ctlr); 2831 if (!spi) 2832 return -ENOMEM; 2833 2834 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2835 2836 rc = spi_add_device(spi); 2837 if (rc) { 2838 spi_dev_put(spi); 2839 return rc; 2840 } 2841 } 2842 2843 return count; 2844 } 2845 2846 static DEVICE_ATTR_RW(slave); 2847 2848 static struct attribute *spi_slave_attrs[] = { 2849 &dev_attr_slave.attr, 2850 NULL, 2851 }; 2852 2853 static const struct attribute_group spi_slave_group = { 2854 .attrs = spi_slave_attrs, 2855 }; 2856 2857 static const struct attribute_group *spi_slave_groups[] = { 2858 &spi_controller_statistics_group, 2859 &spi_slave_group, 2860 NULL, 2861 }; 2862 2863 static struct class spi_slave_class = { 2864 .name = "spi_slave", 2865 .dev_release = spi_controller_release, 2866 .dev_groups = spi_slave_groups, 2867 }; 2868 #else 2869 extern struct class spi_slave_class; /* dummy */ 2870 #endif 2871 2872 /** 2873 * __spi_alloc_controller - allocate an SPI master or slave controller 2874 * @dev: the controller, possibly using the platform_bus 2875 * @size: how much zeroed driver-private data to allocate; the pointer to this 2876 * memory is in the driver_data field of the returned device, accessible 2877 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2878 * drivers granting DMA access to portions of their private data need to 2879 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2880 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2881 * slave (true) controller 2882 * Context: can sleep 2883 * 2884 * This call is used only by SPI controller drivers, which are the 2885 * only ones directly touching chip registers. It's how they allocate 2886 * an spi_controller structure, prior to calling spi_register_controller(). 2887 * 2888 * This must be called from context that can sleep. 2889 * 2890 * The caller is responsible for assigning the bus number and initializing the 2891 * controller's methods before calling spi_register_controller(); and (after 2892 * errors adding the device) calling spi_controller_put() to prevent a memory 2893 * leak. 2894 * 2895 * Return: the SPI controller structure on success, else NULL. 2896 */ 2897 struct spi_controller *__spi_alloc_controller(struct device *dev, 2898 unsigned int size, bool slave) 2899 { 2900 struct spi_controller *ctlr; 2901 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2902 2903 if (!dev) 2904 return NULL; 2905 2906 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2907 if (!ctlr) 2908 return NULL; 2909 2910 device_initialize(&ctlr->dev); 2911 INIT_LIST_HEAD(&ctlr->queue); 2912 spin_lock_init(&ctlr->queue_lock); 2913 spin_lock_init(&ctlr->bus_lock_spinlock); 2914 mutex_init(&ctlr->bus_lock_mutex); 2915 mutex_init(&ctlr->io_mutex); 2916 mutex_init(&ctlr->add_lock); 2917 ctlr->bus_num = -1; 2918 ctlr->num_chipselect = 1; 2919 ctlr->slave = slave; 2920 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2921 ctlr->dev.class = &spi_slave_class; 2922 else 2923 ctlr->dev.class = &spi_master_class; 2924 ctlr->dev.parent = dev; 2925 pm_suspend_ignore_children(&ctlr->dev, true); 2926 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2927 2928 return ctlr; 2929 } 2930 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2931 2932 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2933 { 2934 spi_controller_put(*(struct spi_controller **)ctlr); 2935 } 2936 2937 /** 2938 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2939 * @dev: physical device of SPI controller 2940 * @size: how much zeroed driver-private data to allocate 2941 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2942 * Context: can sleep 2943 * 2944 * Allocate an SPI controller and automatically release a reference on it 2945 * when @dev is unbound from its driver. Drivers are thus relieved from 2946 * having to call spi_controller_put(). 2947 * 2948 * The arguments to this function are identical to __spi_alloc_controller(). 2949 * 2950 * Return: the SPI controller structure on success, else NULL. 2951 */ 2952 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2953 unsigned int size, 2954 bool slave) 2955 { 2956 struct spi_controller **ptr, *ctlr; 2957 2958 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2959 GFP_KERNEL); 2960 if (!ptr) 2961 return NULL; 2962 2963 ctlr = __spi_alloc_controller(dev, size, slave); 2964 if (ctlr) { 2965 ctlr->devm_allocated = true; 2966 *ptr = ctlr; 2967 devres_add(dev, ptr); 2968 } else { 2969 devres_free(ptr); 2970 } 2971 2972 return ctlr; 2973 } 2974 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2975 2976 /** 2977 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2978 * @ctlr: The SPI master to grab GPIO descriptors for 2979 */ 2980 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2981 { 2982 int nb, i; 2983 struct gpio_desc **cs; 2984 struct device *dev = &ctlr->dev; 2985 unsigned long native_cs_mask = 0; 2986 unsigned int num_cs_gpios = 0; 2987 2988 nb = gpiod_count(dev, "cs"); 2989 if (nb < 0) { 2990 /* No GPIOs at all is fine, else return the error */ 2991 if (nb == -ENOENT) 2992 return 0; 2993 return nb; 2994 } 2995 2996 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2997 2998 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2999 GFP_KERNEL); 3000 if (!cs) 3001 return -ENOMEM; 3002 ctlr->cs_gpiods = cs; 3003 3004 for (i = 0; i < nb; i++) { 3005 /* 3006 * Most chipselects are active low, the inverted 3007 * semantics are handled by special quirks in gpiolib, 3008 * so initializing them GPIOD_OUT_LOW here means 3009 * "unasserted", in most cases this will drive the physical 3010 * line high. 3011 */ 3012 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3013 GPIOD_OUT_LOW); 3014 if (IS_ERR(cs[i])) 3015 return PTR_ERR(cs[i]); 3016 3017 if (cs[i]) { 3018 /* 3019 * If we find a CS GPIO, name it after the device and 3020 * chip select line. 3021 */ 3022 char *gpioname; 3023 3024 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3025 dev_name(dev), i); 3026 if (!gpioname) 3027 return -ENOMEM; 3028 gpiod_set_consumer_name(cs[i], gpioname); 3029 num_cs_gpios++; 3030 continue; 3031 } 3032 3033 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3034 dev_err(dev, "Invalid native chip select %d\n", i); 3035 return -EINVAL; 3036 } 3037 native_cs_mask |= BIT(i); 3038 } 3039 3040 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3041 3042 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3043 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3044 dev_err(dev, "No unused native chip select available\n"); 3045 return -EINVAL; 3046 } 3047 3048 return 0; 3049 } 3050 3051 static int spi_controller_check_ops(struct spi_controller *ctlr) 3052 { 3053 /* 3054 * The controller may implement only the high-level SPI-memory like 3055 * operations if it does not support regular SPI transfers, and this is 3056 * valid use case. 3057 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3058 * one of the ->transfer_xxx() method be implemented. 3059 */ 3060 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3061 if (!ctlr->transfer && !ctlr->transfer_one && 3062 !ctlr->transfer_one_message) { 3063 return -EINVAL; 3064 } 3065 } 3066 3067 return 0; 3068 } 3069 3070 /* Allocate dynamic bus number using Linux idr */ 3071 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3072 { 3073 int id; 3074 3075 mutex_lock(&board_lock); 3076 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3077 mutex_unlock(&board_lock); 3078 if (WARN(id < 0, "couldn't get idr")) 3079 return id == -ENOSPC ? -EBUSY : id; 3080 ctlr->bus_num = id; 3081 return 0; 3082 } 3083 3084 /** 3085 * spi_register_controller - register SPI master or slave controller 3086 * @ctlr: initialized master, originally from spi_alloc_master() or 3087 * spi_alloc_slave() 3088 * Context: can sleep 3089 * 3090 * SPI controllers connect to their drivers using some non-SPI bus, 3091 * such as the platform bus. The final stage of probe() in that code 3092 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3093 * 3094 * SPI controllers use board specific (often SOC specific) bus numbers, 3095 * and board-specific addressing for SPI devices combines those numbers 3096 * with chip select numbers. Since SPI does not directly support dynamic 3097 * device identification, boards need configuration tables telling which 3098 * chip is at which address. 3099 * 3100 * This must be called from context that can sleep. It returns zero on 3101 * success, else a negative error code (dropping the controller's refcount). 3102 * After a successful return, the caller is responsible for calling 3103 * spi_unregister_controller(). 3104 * 3105 * Return: zero on success, else a negative error code. 3106 */ 3107 int spi_register_controller(struct spi_controller *ctlr) 3108 { 3109 struct device *dev = ctlr->dev.parent; 3110 struct boardinfo *bi; 3111 int first_dynamic; 3112 int status; 3113 3114 if (!dev) 3115 return -ENODEV; 3116 3117 /* 3118 * Make sure all necessary hooks are implemented before registering 3119 * the SPI controller. 3120 */ 3121 status = spi_controller_check_ops(ctlr); 3122 if (status) 3123 return status; 3124 3125 if (ctlr->bus_num < 0) 3126 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3127 if (ctlr->bus_num >= 0) { 3128 /* Devices with a fixed bus num must check-in with the num */ 3129 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3130 if (status) 3131 return status; 3132 } 3133 if (ctlr->bus_num < 0) { 3134 first_dynamic = of_alias_get_highest_id("spi"); 3135 if (first_dynamic < 0) 3136 first_dynamic = 0; 3137 else 3138 first_dynamic++; 3139 3140 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3141 if (status) 3142 return status; 3143 } 3144 ctlr->bus_lock_flag = 0; 3145 init_completion(&ctlr->xfer_completion); 3146 init_completion(&ctlr->cur_msg_completion); 3147 if (!ctlr->max_dma_len) 3148 ctlr->max_dma_len = INT_MAX; 3149 3150 /* 3151 * Register the device, then userspace will see it. 3152 * Registration fails if the bus ID is in use. 3153 */ 3154 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3155 3156 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3157 status = spi_get_gpio_descs(ctlr); 3158 if (status) 3159 goto free_bus_id; 3160 /* 3161 * A controller using GPIO descriptors always 3162 * supports SPI_CS_HIGH if need be. 3163 */ 3164 ctlr->mode_bits |= SPI_CS_HIGH; 3165 } 3166 3167 /* 3168 * Even if it's just one always-selected device, there must 3169 * be at least one chipselect. 3170 */ 3171 if (!ctlr->num_chipselect) { 3172 status = -EINVAL; 3173 goto free_bus_id; 3174 } 3175 3176 /* Setting last_cs to -1 means no chip selected */ 3177 ctlr->last_cs = -1; 3178 3179 status = device_add(&ctlr->dev); 3180 if (status < 0) 3181 goto free_bus_id; 3182 dev_dbg(dev, "registered %s %s\n", 3183 spi_controller_is_slave(ctlr) ? "slave" : "master", 3184 dev_name(&ctlr->dev)); 3185 3186 /* 3187 * If we're using a queued driver, start the queue. Note that we don't 3188 * need the queueing logic if the driver is only supporting high-level 3189 * memory operations. 3190 */ 3191 if (ctlr->transfer) { 3192 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3193 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3194 status = spi_controller_initialize_queue(ctlr); 3195 if (status) { 3196 device_del(&ctlr->dev); 3197 goto free_bus_id; 3198 } 3199 } 3200 /* Add statistics */ 3201 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3202 if (!ctlr->pcpu_statistics) { 3203 dev_err(dev, "Error allocating per-cpu statistics\n"); 3204 status = -ENOMEM; 3205 goto destroy_queue; 3206 } 3207 3208 mutex_lock(&board_lock); 3209 list_add_tail(&ctlr->list, &spi_controller_list); 3210 list_for_each_entry(bi, &board_list, list) 3211 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3212 mutex_unlock(&board_lock); 3213 3214 /* Register devices from the device tree and ACPI */ 3215 of_register_spi_devices(ctlr); 3216 acpi_register_spi_devices(ctlr); 3217 return status; 3218 3219 destroy_queue: 3220 spi_destroy_queue(ctlr); 3221 free_bus_id: 3222 mutex_lock(&board_lock); 3223 idr_remove(&spi_master_idr, ctlr->bus_num); 3224 mutex_unlock(&board_lock); 3225 return status; 3226 } 3227 EXPORT_SYMBOL_GPL(spi_register_controller); 3228 3229 static void devm_spi_unregister(struct device *dev, void *res) 3230 { 3231 spi_unregister_controller(*(struct spi_controller **)res); 3232 } 3233 3234 /** 3235 * devm_spi_register_controller - register managed SPI master or slave 3236 * controller 3237 * @dev: device managing SPI controller 3238 * @ctlr: initialized controller, originally from spi_alloc_master() or 3239 * spi_alloc_slave() 3240 * Context: can sleep 3241 * 3242 * Register a SPI device as with spi_register_controller() which will 3243 * automatically be unregistered and freed. 3244 * 3245 * Return: zero on success, else a negative error code. 3246 */ 3247 int devm_spi_register_controller(struct device *dev, 3248 struct spi_controller *ctlr) 3249 { 3250 struct spi_controller **ptr; 3251 int ret; 3252 3253 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3254 if (!ptr) 3255 return -ENOMEM; 3256 3257 ret = spi_register_controller(ctlr); 3258 if (!ret) { 3259 *ptr = ctlr; 3260 devres_add(dev, ptr); 3261 } else { 3262 devres_free(ptr); 3263 } 3264 3265 return ret; 3266 } 3267 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3268 3269 static int __unregister(struct device *dev, void *null) 3270 { 3271 spi_unregister_device(to_spi_device(dev)); 3272 return 0; 3273 } 3274 3275 /** 3276 * spi_unregister_controller - unregister SPI master or slave controller 3277 * @ctlr: the controller being unregistered 3278 * Context: can sleep 3279 * 3280 * This call is used only by SPI controller drivers, which are the 3281 * only ones directly touching chip registers. 3282 * 3283 * This must be called from context that can sleep. 3284 * 3285 * Note that this function also drops a reference to the controller. 3286 */ 3287 void spi_unregister_controller(struct spi_controller *ctlr) 3288 { 3289 struct spi_controller *found; 3290 int id = ctlr->bus_num; 3291 3292 /* Prevent addition of new devices, unregister existing ones */ 3293 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3294 mutex_lock(&ctlr->add_lock); 3295 3296 device_for_each_child(&ctlr->dev, NULL, __unregister); 3297 3298 /* First make sure that this controller was ever added */ 3299 mutex_lock(&board_lock); 3300 found = idr_find(&spi_master_idr, id); 3301 mutex_unlock(&board_lock); 3302 if (ctlr->queued) { 3303 if (spi_destroy_queue(ctlr)) 3304 dev_err(&ctlr->dev, "queue remove failed\n"); 3305 } 3306 mutex_lock(&board_lock); 3307 list_del(&ctlr->list); 3308 mutex_unlock(&board_lock); 3309 3310 device_del(&ctlr->dev); 3311 3312 /* Free bus id */ 3313 mutex_lock(&board_lock); 3314 if (found == ctlr) 3315 idr_remove(&spi_master_idr, id); 3316 mutex_unlock(&board_lock); 3317 3318 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3319 mutex_unlock(&ctlr->add_lock); 3320 3321 /* 3322 * Release the last reference on the controller if its driver 3323 * has not yet been converted to devm_spi_alloc_master/slave(). 3324 */ 3325 if (!ctlr->devm_allocated) 3326 put_device(&ctlr->dev); 3327 } 3328 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3329 3330 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3331 { 3332 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3333 } 3334 3335 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3336 { 3337 mutex_lock(&ctlr->bus_lock_mutex); 3338 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3339 mutex_unlock(&ctlr->bus_lock_mutex); 3340 } 3341 3342 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3343 { 3344 mutex_lock(&ctlr->bus_lock_mutex); 3345 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3346 mutex_unlock(&ctlr->bus_lock_mutex); 3347 } 3348 3349 int spi_controller_suspend(struct spi_controller *ctlr) 3350 { 3351 int ret = 0; 3352 3353 /* Basically no-ops for non-queued controllers */ 3354 if (ctlr->queued) { 3355 ret = spi_stop_queue(ctlr); 3356 if (ret) 3357 dev_err(&ctlr->dev, "queue stop failed\n"); 3358 } 3359 3360 __spi_mark_suspended(ctlr); 3361 return ret; 3362 } 3363 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3364 3365 int spi_controller_resume(struct spi_controller *ctlr) 3366 { 3367 int ret = 0; 3368 3369 __spi_mark_resumed(ctlr); 3370 3371 if (ctlr->queued) { 3372 ret = spi_start_queue(ctlr); 3373 if (ret) 3374 dev_err(&ctlr->dev, "queue restart failed\n"); 3375 } 3376 return ret; 3377 } 3378 EXPORT_SYMBOL_GPL(spi_controller_resume); 3379 3380 /*-------------------------------------------------------------------------*/ 3381 3382 /* Core methods for spi_message alterations */ 3383 3384 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3385 struct spi_message *msg, 3386 void *res) 3387 { 3388 struct spi_replaced_transfers *rxfer = res; 3389 size_t i; 3390 3391 /* Call extra callback if requested */ 3392 if (rxfer->release) 3393 rxfer->release(ctlr, msg, res); 3394 3395 /* Insert replaced transfers back into the message */ 3396 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3397 3398 /* Remove the formerly inserted entries */ 3399 for (i = 0; i < rxfer->inserted; i++) 3400 list_del(&rxfer->inserted_transfers[i].transfer_list); 3401 } 3402 3403 /** 3404 * spi_replace_transfers - replace transfers with several transfers 3405 * and register change with spi_message.resources 3406 * @msg: the spi_message we work upon 3407 * @xfer_first: the first spi_transfer we want to replace 3408 * @remove: number of transfers to remove 3409 * @insert: the number of transfers we want to insert instead 3410 * @release: extra release code necessary in some circumstances 3411 * @extradatasize: extra data to allocate (with alignment guarantees 3412 * of struct @spi_transfer) 3413 * @gfp: gfp flags 3414 * 3415 * Returns: pointer to @spi_replaced_transfers, 3416 * PTR_ERR(...) in case of errors. 3417 */ 3418 static struct spi_replaced_transfers *spi_replace_transfers( 3419 struct spi_message *msg, 3420 struct spi_transfer *xfer_first, 3421 size_t remove, 3422 size_t insert, 3423 spi_replaced_release_t release, 3424 size_t extradatasize, 3425 gfp_t gfp) 3426 { 3427 struct spi_replaced_transfers *rxfer; 3428 struct spi_transfer *xfer; 3429 size_t i; 3430 3431 /* Allocate the structure using spi_res */ 3432 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3433 struct_size(rxfer, inserted_transfers, insert) 3434 + extradatasize, 3435 gfp); 3436 if (!rxfer) 3437 return ERR_PTR(-ENOMEM); 3438 3439 /* The release code to invoke before running the generic release */ 3440 rxfer->release = release; 3441 3442 /* Assign extradata */ 3443 if (extradatasize) 3444 rxfer->extradata = 3445 &rxfer->inserted_transfers[insert]; 3446 3447 /* Init the replaced_transfers list */ 3448 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3449 3450 /* 3451 * Assign the list_entry after which we should reinsert 3452 * the @replaced_transfers - it may be spi_message.messages! 3453 */ 3454 rxfer->replaced_after = xfer_first->transfer_list.prev; 3455 3456 /* Remove the requested number of transfers */ 3457 for (i = 0; i < remove; i++) { 3458 /* 3459 * If the entry after replaced_after it is msg->transfers 3460 * then we have been requested to remove more transfers 3461 * than are in the list. 3462 */ 3463 if (rxfer->replaced_after->next == &msg->transfers) { 3464 dev_err(&msg->spi->dev, 3465 "requested to remove more spi_transfers than are available\n"); 3466 /* Insert replaced transfers back into the message */ 3467 list_splice(&rxfer->replaced_transfers, 3468 rxfer->replaced_after); 3469 3470 /* Free the spi_replace_transfer structure... */ 3471 spi_res_free(rxfer); 3472 3473 /* ...and return with an error */ 3474 return ERR_PTR(-EINVAL); 3475 } 3476 3477 /* 3478 * Remove the entry after replaced_after from list of 3479 * transfers and add it to list of replaced_transfers. 3480 */ 3481 list_move_tail(rxfer->replaced_after->next, 3482 &rxfer->replaced_transfers); 3483 } 3484 3485 /* 3486 * Create copy of the given xfer with identical settings 3487 * based on the first transfer to get removed. 3488 */ 3489 for (i = 0; i < insert; i++) { 3490 /* We need to run in reverse order */ 3491 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3492 3493 /* Copy all spi_transfer data */ 3494 memcpy(xfer, xfer_first, sizeof(*xfer)); 3495 3496 /* Add to list */ 3497 list_add(&xfer->transfer_list, rxfer->replaced_after); 3498 3499 /* Clear cs_change and delay for all but the last */ 3500 if (i) { 3501 xfer->cs_change = false; 3502 xfer->delay.value = 0; 3503 } 3504 } 3505 3506 /* Set up inserted... */ 3507 rxfer->inserted = insert; 3508 3509 /* ...and register it with spi_res/spi_message */ 3510 spi_res_add(msg, rxfer); 3511 3512 return rxfer; 3513 } 3514 3515 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3516 struct spi_message *msg, 3517 struct spi_transfer **xferp, 3518 size_t maxsize, 3519 gfp_t gfp) 3520 { 3521 struct spi_transfer *xfer = *xferp, *xfers; 3522 struct spi_replaced_transfers *srt; 3523 size_t offset; 3524 size_t count, i; 3525 3526 /* Calculate how many we have to replace */ 3527 count = DIV_ROUND_UP(xfer->len, maxsize); 3528 3529 /* Create replacement */ 3530 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3531 if (IS_ERR(srt)) 3532 return PTR_ERR(srt); 3533 xfers = srt->inserted_transfers; 3534 3535 /* 3536 * Now handle each of those newly inserted spi_transfers. 3537 * Note that the replacements spi_transfers all are preset 3538 * to the same values as *xferp, so tx_buf, rx_buf and len 3539 * are all identical (as well as most others) 3540 * so we just have to fix up len and the pointers. 3541 * 3542 * This also includes support for the depreciated 3543 * spi_message.is_dma_mapped interface. 3544 */ 3545 3546 /* 3547 * The first transfer just needs the length modified, so we 3548 * run it outside the loop. 3549 */ 3550 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3551 3552 /* All the others need rx_buf/tx_buf also set */ 3553 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3554 /* Update rx_buf, tx_buf and DMA */ 3555 if (xfers[i].rx_buf) 3556 xfers[i].rx_buf += offset; 3557 if (xfers[i].rx_dma) 3558 xfers[i].rx_dma += offset; 3559 if (xfers[i].tx_buf) 3560 xfers[i].tx_buf += offset; 3561 if (xfers[i].tx_dma) 3562 xfers[i].tx_dma += offset; 3563 3564 /* Update length */ 3565 xfers[i].len = min(maxsize, xfers[i].len - offset); 3566 } 3567 3568 /* 3569 * We set up xferp to the last entry we have inserted, 3570 * so that we skip those already split transfers. 3571 */ 3572 *xferp = &xfers[count - 1]; 3573 3574 /* Increment statistics counters */ 3575 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3576 transfers_split_maxsize); 3577 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3578 transfers_split_maxsize); 3579 3580 return 0; 3581 } 3582 3583 /** 3584 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3585 * when an individual transfer exceeds a 3586 * certain size 3587 * @ctlr: the @spi_controller for this transfer 3588 * @msg: the @spi_message to transform 3589 * @maxsize: the maximum when to apply this 3590 * @gfp: GFP allocation flags 3591 * 3592 * Return: status of transformation 3593 */ 3594 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3595 struct spi_message *msg, 3596 size_t maxsize, 3597 gfp_t gfp) 3598 { 3599 struct spi_transfer *xfer; 3600 int ret; 3601 3602 /* 3603 * Iterate over the transfer_list, 3604 * but note that xfer is advanced to the last transfer inserted 3605 * to avoid checking sizes again unnecessarily (also xfer does 3606 * potentially belong to a different list by the time the 3607 * replacement has happened). 3608 */ 3609 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3610 if (xfer->len > maxsize) { 3611 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3612 maxsize, gfp); 3613 if (ret) 3614 return ret; 3615 } 3616 } 3617 3618 return 0; 3619 } 3620 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3621 3622 3623 /** 3624 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3625 * when an individual transfer exceeds a 3626 * certain number of SPI words 3627 * @ctlr: the @spi_controller for this transfer 3628 * @msg: the @spi_message to transform 3629 * @maxwords: the number of words to limit each transfer to 3630 * @gfp: GFP allocation flags 3631 * 3632 * Return: status of transformation 3633 */ 3634 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3635 struct spi_message *msg, 3636 size_t maxwords, 3637 gfp_t gfp) 3638 { 3639 struct spi_transfer *xfer; 3640 3641 /* 3642 * Iterate over the transfer_list, 3643 * but note that xfer is advanced to the last transfer inserted 3644 * to avoid checking sizes again unnecessarily (also xfer does 3645 * potentially belong to a different list by the time the 3646 * replacement has happened). 3647 */ 3648 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3649 size_t maxsize; 3650 int ret; 3651 3652 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3653 if (xfer->len > maxsize) { 3654 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3655 maxsize, gfp); 3656 if (ret) 3657 return ret; 3658 } 3659 } 3660 3661 return 0; 3662 } 3663 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3664 3665 /*-------------------------------------------------------------------------*/ 3666 3667 /* 3668 * Core methods for SPI controller protocol drivers. Some of the 3669 * other core methods are currently defined as inline functions. 3670 */ 3671 3672 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3673 u8 bits_per_word) 3674 { 3675 if (ctlr->bits_per_word_mask) { 3676 /* Only 32 bits fit in the mask */ 3677 if (bits_per_word > 32) 3678 return -EINVAL; 3679 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3680 return -EINVAL; 3681 } 3682 3683 return 0; 3684 } 3685 3686 /** 3687 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3688 * @spi: the device that requires specific CS timing configuration 3689 * 3690 * Return: zero on success, else a negative error code. 3691 */ 3692 static int spi_set_cs_timing(struct spi_device *spi) 3693 { 3694 struct device *parent = spi->controller->dev.parent; 3695 int status = 0; 3696 3697 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3698 if (spi->controller->auto_runtime_pm) { 3699 status = pm_runtime_get_sync(parent); 3700 if (status < 0) { 3701 pm_runtime_put_noidle(parent); 3702 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3703 status); 3704 return status; 3705 } 3706 3707 status = spi->controller->set_cs_timing(spi); 3708 pm_runtime_mark_last_busy(parent); 3709 pm_runtime_put_autosuspend(parent); 3710 } else { 3711 status = spi->controller->set_cs_timing(spi); 3712 } 3713 } 3714 return status; 3715 } 3716 3717 /** 3718 * spi_setup - setup SPI mode and clock rate 3719 * @spi: the device whose settings are being modified 3720 * Context: can sleep, and no requests are queued to the device 3721 * 3722 * SPI protocol drivers may need to update the transfer mode if the 3723 * device doesn't work with its default. They may likewise need 3724 * to update clock rates or word sizes from initial values. This function 3725 * changes those settings, and must be called from a context that can sleep. 3726 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3727 * effect the next time the device is selected and data is transferred to 3728 * or from it. When this function returns, the SPI device is deselected. 3729 * 3730 * Note that this call will fail if the protocol driver specifies an option 3731 * that the underlying controller or its driver does not support. For 3732 * example, not all hardware supports wire transfers using nine bit words, 3733 * LSB-first wire encoding, or active-high chipselects. 3734 * 3735 * Return: zero on success, else a negative error code. 3736 */ 3737 int spi_setup(struct spi_device *spi) 3738 { 3739 unsigned bad_bits, ugly_bits; 3740 int status = 0; 3741 3742 /* 3743 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3744 * are set at the same time. 3745 */ 3746 if ((hweight_long(spi->mode & 3747 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3748 (hweight_long(spi->mode & 3749 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3750 dev_err(&spi->dev, 3751 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3752 return -EINVAL; 3753 } 3754 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3755 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3756 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3757 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3758 return -EINVAL; 3759 /* 3760 * Help drivers fail *cleanly* when they need options 3761 * that aren't supported with their current controller. 3762 * SPI_CS_WORD has a fallback software implementation, 3763 * so it is ignored here. 3764 */ 3765 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3766 SPI_NO_TX | SPI_NO_RX); 3767 ugly_bits = bad_bits & 3768 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3769 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3770 if (ugly_bits) { 3771 dev_warn(&spi->dev, 3772 "setup: ignoring unsupported mode bits %x\n", 3773 ugly_bits); 3774 spi->mode &= ~ugly_bits; 3775 bad_bits &= ~ugly_bits; 3776 } 3777 if (bad_bits) { 3778 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3779 bad_bits); 3780 return -EINVAL; 3781 } 3782 3783 if (!spi->bits_per_word) { 3784 spi->bits_per_word = 8; 3785 } else { 3786 /* 3787 * Some controllers may not support the default 8 bits-per-word 3788 * so only perform the check when this is explicitly provided. 3789 */ 3790 status = __spi_validate_bits_per_word(spi->controller, 3791 spi->bits_per_word); 3792 if (status) 3793 return status; 3794 } 3795 3796 if (spi->controller->max_speed_hz && 3797 (!spi->max_speed_hz || 3798 spi->max_speed_hz > spi->controller->max_speed_hz)) 3799 spi->max_speed_hz = spi->controller->max_speed_hz; 3800 3801 mutex_lock(&spi->controller->io_mutex); 3802 3803 if (spi->controller->setup) { 3804 status = spi->controller->setup(spi); 3805 if (status) { 3806 mutex_unlock(&spi->controller->io_mutex); 3807 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3808 status); 3809 return status; 3810 } 3811 } 3812 3813 status = spi_set_cs_timing(spi); 3814 if (status) { 3815 mutex_unlock(&spi->controller->io_mutex); 3816 return status; 3817 } 3818 3819 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3820 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3821 if (status < 0) { 3822 mutex_unlock(&spi->controller->io_mutex); 3823 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3824 status); 3825 return status; 3826 } 3827 3828 /* 3829 * We do not want to return positive value from pm_runtime_get, 3830 * there are many instances of devices calling spi_setup() and 3831 * checking for a non-zero return value instead of a negative 3832 * return value. 3833 */ 3834 status = 0; 3835 3836 spi_set_cs(spi, false, true); 3837 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3838 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3839 } else { 3840 spi_set_cs(spi, false, true); 3841 } 3842 3843 mutex_unlock(&spi->controller->io_mutex); 3844 3845 if (spi->rt && !spi->controller->rt) { 3846 spi->controller->rt = true; 3847 spi_set_thread_rt(spi->controller); 3848 } 3849 3850 trace_spi_setup(spi, status); 3851 3852 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3853 spi->mode & SPI_MODE_X_MASK, 3854 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3855 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3856 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3857 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3858 spi->bits_per_word, spi->max_speed_hz, 3859 status); 3860 3861 return status; 3862 } 3863 EXPORT_SYMBOL_GPL(spi_setup); 3864 3865 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3866 struct spi_device *spi) 3867 { 3868 int delay1, delay2; 3869 3870 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3871 if (delay1 < 0) 3872 return delay1; 3873 3874 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3875 if (delay2 < 0) 3876 return delay2; 3877 3878 if (delay1 < delay2) 3879 memcpy(&xfer->word_delay, &spi->word_delay, 3880 sizeof(xfer->word_delay)); 3881 3882 return 0; 3883 } 3884 3885 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3886 { 3887 struct spi_controller *ctlr = spi->controller; 3888 struct spi_transfer *xfer; 3889 int w_size; 3890 3891 if (list_empty(&message->transfers)) 3892 return -EINVAL; 3893 3894 /* 3895 * If an SPI controller does not support toggling the CS line on each 3896 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3897 * for the CS line, we can emulate the CS-per-word hardware function by 3898 * splitting transfers into one-word transfers and ensuring that 3899 * cs_change is set for each transfer. 3900 */ 3901 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3902 spi_get_csgpiod(spi, 0))) { 3903 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word); 3904 int ret; 3905 3906 /* spi_split_transfers_maxsize() requires message->spi */ 3907 message->spi = spi; 3908 3909 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3910 GFP_KERNEL); 3911 if (ret) 3912 return ret; 3913 3914 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3915 /* Don't change cs_change on the last entry in the list */ 3916 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3917 break; 3918 xfer->cs_change = 1; 3919 } 3920 } 3921 3922 /* 3923 * Half-duplex links include original MicroWire, and ones with 3924 * only one data pin like SPI_3WIRE (switches direction) or where 3925 * either MOSI or MISO is missing. They can also be caused by 3926 * software limitations. 3927 */ 3928 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3929 (spi->mode & SPI_3WIRE)) { 3930 unsigned flags = ctlr->flags; 3931 3932 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3933 if (xfer->rx_buf && xfer->tx_buf) 3934 return -EINVAL; 3935 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3936 return -EINVAL; 3937 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3938 return -EINVAL; 3939 } 3940 } 3941 3942 /* 3943 * Set transfer bits_per_word and max speed as spi device default if 3944 * it is not set for this transfer. 3945 * Set transfer tx_nbits and rx_nbits as single transfer default 3946 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3947 * Ensure transfer word_delay is at least as long as that required by 3948 * device itself. 3949 */ 3950 message->frame_length = 0; 3951 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3952 xfer->effective_speed_hz = 0; 3953 message->frame_length += xfer->len; 3954 if (!xfer->bits_per_word) 3955 xfer->bits_per_word = spi->bits_per_word; 3956 3957 if (!xfer->speed_hz) 3958 xfer->speed_hz = spi->max_speed_hz; 3959 3960 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3961 xfer->speed_hz = ctlr->max_speed_hz; 3962 3963 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3964 return -EINVAL; 3965 3966 /* 3967 * SPI transfer length should be multiple of SPI word size 3968 * where SPI word size should be power-of-two multiple. 3969 */ 3970 if (xfer->bits_per_word <= 8) 3971 w_size = 1; 3972 else if (xfer->bits_per_word <= 16) 3973 w_size = 2; 3974 else 3975 w_size = 4; 3976 3977 /* No partial transfers accepted */ 3978 if (xfer->len % w_size) 3979 return -EINVAL; 3980 3981 if (xfer->speed_hz && ctlr->min_speed_hz && 3982 xfer->speed_hz < ctlr->min_speed_hz) 3983 return -EINVAL; 3984 3985 if (xfer->tx_buf && !xfer->tx_nbits) 3986 xfer->tx_nbits = SPI_NBITS_SINGLE; 3987 if (xfer->rx_buf && !xfer->rx_nbits) 3988 xfer->rx_nbits = SPI_NBITS_SINGLE; 3989 /* 3990 * Check transfer tx/rx_nbits: 3991 * 1. check the value matches one of single, dual and quad 3992 * 2. check tx/rx_nbits match the mode in spi_device 3993 */ 3994 if (xfer->tx_buf) { 3995 if (spi->mode & SPI_NO_TX) 3996 return -EINVAL; 3997 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3998 xfer->tx_nbits != SPI_NBITS_DUAL && 3999 xfer->tx_nbits != SPI_NBITS_QUAD) 4000 return -EINVAL; 4001 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4002 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4003 return -EINVAL; 4004 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4005 !(spi->mode & SPI_TX_QUAD)) 4006 return -EINVAL; 4007 } 4008 /* Check transfer rx_nbits */ 4009 if (xfer->rx_buf) { 4010 if (spi->mode & SPI_NO_RX) 4011 return -EINVAL; 4012 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4013 xfer->rx_nbits != SPI_NBITS_DUAL && 4014 xfer->rx_nbits != SPI_NBITS_QUAD) 4015 return -EINVAL; 4016 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4017 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4018 return -EINVAL; 4019 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4020 !(spi->mode & SPI_RX_QUAD)) 4021 return -EINVAL; 4022 } 4023 4024 if (_spi_xfer_word_delay_update(xfer, spi)) 4025 return -EINVAL; 4026 } 4027 4028 message->status = -EINPROGRESS; 4029 4030 return 0; 4031 } 4032 4033 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4034 { 4035 struct spi_controller *ctlr = spi->controller; 4036 struct spi_transfer *xfer; 4037 4038 /* 4039 * Some controllers do not support doing regular SPI transfers. Return 4040 * ENOTSUPP when this is the case. 4041 */ 4042 if (!ctlr->transfer) 4043 return -ENOTSUPP; 4044 4045 message->spi = spi; 4046 4047 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4048 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4049 4050 trace_spi_message_submit(message); 4051 4052 if (!ctlr->ptp_sts_supported) { 4053 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4054 xfer->ptp_sts_word_pre = 0; 4055 ptp_read_system_prets(xfer->ptp_sts); 4056 } 4057 } 4058 4059 return ctlr->transfer(spi, message); 4060 } 4061 4062 /** 4063 * spi_async - asynchronous SPI transfer 4064 * @spi: device with which data will be exchanged 4065 * @message: describes the data transfers, including completion callback 4066 * Context: any (IRQs may be blocked, etc) 4067 * 4068 * This call may be used in_irq and other contexts which can't sleep, 4069 * as well as from task contexts which can sleep. 4070 * 4071 * The completion callback is invoked in a context which can't sleep. 4072 * Before that invocation, the value of message->status is undefined. 4073 * When the callback is issued, message->status holds either zero (to 4074 * indicate complete success) or a negative error code. After that 4075 * callback returns, the driver which issued the transfer request may 4076 * deallocate the associated memory; it's no longer in use by any SPI 4077 * core or controller driver code. 4078 * 4079 * Note that although all messages to a spi_device are handled in 4080 * FIFO order, messages may go to different devices in other orders. 4081 * Some device might be higher priority, or have various "hard" access 4082 * time requirements, for example. 4083 * 4084 * On detection of any fault during the transfer, processing of 4085 * the entire message is aborted, and the device is deselected. 4086 * Until returning from the associated message completion callback, 4087 * no other spi_message queued to that device will be processed. 4088 * (This rule applies equally to all the synchronous transfer calls, 4089 * which are wrappers around this core asynchronous primitive.) 4090 * 4091 * Return: zero on success, else a negative error code. 4092 */ 4093 int spi_async(struct spi_device *spi, struct spi_message *message) 4094 { 4095 struct spi_controller *ctlr = spi->controller; 4096 int ret; 4097 unsigned long flags; 4098 4099 ret = __spi_validate(spi, message); 4100 if (ret != 0) 4101 return ret; 4102 4103 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4104 4105 if (ctlr->bus_lock_flag) 4106 ret = -EBUSY; 4107 else 4108 ret = __spi_async(spi, message); 4109 4110 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4111 4112 return ret; 4113 } 4114 EXPORT_SYMBOL_GPL(spi_async); 4115 4116 /** 4117 * spi_async_locked - version of spi_async with exclusive bus usage 4118 * @spi: device with which data will be exchanged 4119 * @message: describes the data transfers, including completion callback 4120 * Context: any (IRQs may be blocked, etc) 4121 * 4122 * This call may be used in_irq and other contexts which can't sleep, 4123 * as well as from task contexts which can sleep. 4124 * 4125 * The completion callback is invoked in a context which can't sleep. 4126 * Before that invocation, the value of message->status is undefined. 4127 * When the callback is issued, message->status holds either zero (to 4128 * indicate complete success) or a negative error code. After that 4129 * callback returns, the driver which issued the transfer request may 4130 * deallocate the associated memory; it's no longer in use by any SPI 4131 * core or controller driver code. 4132 * 4133 * Note that although all messages to a spi_device are handled in 4134 * FIFO order, messages may go to different devices in other orders. 4135 * Some device might be higher priority, or have various "hard" access 4136 * time requirements, for example. 4137 * 4138 * On detection of any fault during the transfer, processing of 4139 * the entire message is aborted, and the device is deselected. 4140 * Until returning from the associated message completion callback, 4141 * no other spi_message queued to that device will be processed. 4142 * (This rule applies equally to all the synchronous transfer calls, 4143 * which are wrappers around this core asynchronous primitive.) 4144 * 4145 * Return: zero on success, else a negative error code. 4146 */ 4147 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 4148 { 4149 struct spi_controller *ctlr = spi->controller; 4150 int ret; 4151 unsigned long flags; 4152 4153 ret = __spi_validate(spi, message); 4154 if (ret != 0) 4155 return ret; 4156 4157 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4158 4159 ret = __spi_async(spi, message); 4160 4161 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4162 4163 return ret; 4164 4165 } 4166 4167 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4168 { 4169 bool was_busy; 4170 int ret; 4171 4172 mutex_lock(&ctlr->io_mutex); 4173 4174 was_busy = ctlr->busy; 4175 4176 ctlr->cur_msg = msg; 4177 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4178 if (ret) 4179 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4180 ctlr->cur_msg = NULL; 4181 ctlr->fallback = false; 4182 4183 if (!was_busy) { 4184 kfree(ctlr->dummy_rx); 4185 ctlr->dummy_rx = NULL; 4186 kfree(ctlr->dummy_tx); 4187 ctlr->dummy_tx = NULL; 4188 if (ctlr->unprepare_transfer_hardware && 4189 ctlr->unprepare_transfer_hardware(ctlr)) 4190 dev_err(&ctlr->dev, 4191 "failed to unprepare transfer hardware\n"); 4192 spi_idle_runtime_pm(ctlr); 4193 } 4194 4195 mutex_unlock(&ctlr->io_mutex); 4196 } 4197 4198 /*-------------------------------------------------------------------------*/ 4199 4200 /* 4201 * Utility methods for SPI protocol drivers, layered on 4202 * top of the core. Some other utility methods are defined as 4203 * inline functions. 4204 */ 4205 4206 static void spi_complete(void *arg) 4207 { 4208 complete(arg); 4209 } 4210 4211 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4212 { 4213 DECLARE_COMPLETION_ONSTACK(done); 4214 int status; 4215 struct spi_controller *ctlr = spi->controller; 4216 4217 if (__spi_check_suspended(ctlr)) { 4218 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4219 return -ESHUTDOWN; 4220 } 4221 4222 status = __spi_validate(spi, message); 4223 if (status != 0) 4224 return status; 4225 4226 message->spi = spi; 4227 4228 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4229 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4230 4231 /* 4232 * Checking queue_empty here only guarantees async/sync message 4233 * ordering when coming from the same context. It does not need to 4234 * guard against reentrancy from a different context. The io_mutex 4235 * will catch those cases. 4236 */ 4237 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4238 message->actual_length = 0; 4239 message->status = -EINPROGRESS; 4240 4241 trace_spi_message_submit(message); 4242 4243 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4244 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4245 4246 __spi_transfer_message_noqueue(ctlr, message); 4247 4248 return message->status; 4249 } 4250 4251 /* 4252 * There are messages in the async queue that could have originated 4253 * from the same context, so we need to preserve ordering. 4254 * Therefor we send the message to the async queue and wait until they 4255 * are completed. 4256 */ 4257 message->complete = spi_complete; 4258 message->context = &done; 4259 status = spi_async_locked(spi, message); 4260 if (status == 0) { 4261 wait_for_completion(&done); 4262 status = message->status; 4263 } 4264 message->context = NULL; 4265 4266 return status; 4267 } 4268 4269 /** 4270 * spi_sync - blocking/synchronous SPI data transfers 4271 * @spi: device with which data will be exchanged 4272 * @message: describes the data transfers 4273 * Context: can sleep 4274 * 4275 * This call may only be used from a context that may sleep. The sleep 4276 * is non-interruptible, and has no timeout. Low-overhead controller 4277 * drivers may DMA directly into and out of the message buffers. 4278 * 4279 * Note that the SPI device's chip select is active during the message, 4280 * and then is normally disabled between messages. Drivers for some 4281 * frequently-used devices may want to minimize costs of selecting a chip, 4282 * by leaving it selected in anticipation that the next message will go 4283 * to the same chip. (That may increase power usage.) 4284 * 4285 * Also, the caller is guaranteeing that the memory associated with the 4286 * message will not be freed before this call returns. 4287 * 4288 * Return: zero on success, else a negative error code. 4289 */ 4290 int spi_sync(struct spi_device *spi, struct spi_message *message) 4291 { 4292 int ret; 4293 4294 mutex_lock(&spi->controller->bus_lock_mutex); 4295 ret = __spi_sync(spi, message); 4296 mutex_unlock(&spi->controller->bus_lock_mutex); 4297 4298 return ret; 4299 } 4300 EXPORT_SYMBOL_GPL(spi_sync); 4301 4302 /** 4303 * spi_sync_locked - version of spi_sync with exclusive bus usage 4304 * @spi: device with which data will be exchanged 4305 * @message: describes the data transfers 4306 * Context: can sleep 4307 * 4308 * This call may only be used from a context that may sleep. The sleep 4309 * is non-interruptible, and has no timeout. Low-overhead controller 4310 * drivers may DMA directly into and out of the message buffers. 4311 * 4312 * This call should be used by drivers that require exclusive access to the 4313 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4314 * be released by a spi_bus_unlock call when the exclusive access is over. 4315 * 4316 * Return: zero on success, else a negative error code. 4317 */ 4318 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4319 { 4320 return __spi_sync(spi, message); 4321 } 4322 EXPORT_SYMBOL_GPL(spi_sync_locked); 4323 4324 /** 4325 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4326 * @ctlr: SPI bus master that should be locked for exclusive bus access 4327 * Context: can sleep 4328 * 4329 * This call may only be used from a context that may sleep. The sleep 4330 * is non-interruptible, and has no timeout. 4331 * 4332 * This call should be used by drivers that require exclusive access to the 4333 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4334 * exclusive access is over. Data transfer must be done by spi_sync_locked 4335 * and spi_async_locked calls when the SPI bus lock is held. 4336 * 4337 * Return: always zero. 4338 */ 4339 int spi_bus_lock(struct spi_controller *ctlr) 4340 { 4341 unsigned long flags; 4342 4343 mutex_lock(&ctlr->bus_lock_mutex); 4344 4345 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4346 ctlr->bus_lock_flag = 1; 4347 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4348 4349 /* Mutex remains locked until spi_bus_unlock() is called */ 4350 4351 return 0; 4352 } 4353 EXPORT_SYMBOL_GPL(spi_bus_lock); 4354 4355 /** 4356 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4357 * @ctlr: SPI bus master that was locked for exclusive bus access 4358 * Context: can sleep 4359 * 4360 * This call may only be used from a context that may sleep. The sleep 4361 * is non-interruptible, and has no timeout. 4362 * 4363 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4364 * call. 4365 * 4366 * Return: always zero. 4367 */ 4368 int spi_bus_unlock(struct spi_controller *ctlr) 4369 { 4370 ctlr->bus_lock_flag = 0; 4371 4372 mutex_unlock(&ctlr->bus_lock_mutex); 4373 4374 return 0; 4375 } 4376 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4377 4378 /* Portable code must never pass more than 32 bytes */ 4379 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4380 4381 static u8 *buf; 4382 4383 /** 4384 * spi_write_then_read - SPI synchronous write followed by read 4385 * @spi: device with which data will be exchanged 4386 * @txbuf: data to be written (need not be DMA-safe) 4387 * @n_tx: size of txbuf, in bytes 4388 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4389 * @n_rx: size of rxbuf, in bytes 4390 * Context: can sleep 4391 * 4392 * This performs a half duplex MicroWire style transaction with the 4393 * device, sending txbuf and then reading rxbuf. The return value 4394 * is zero for success, else a negative errno status code. 4395 * This call may only be used from a context that may sleep. 4396 * 4397 * Parameters to this routine are always copied using a small buffer. 4398 * Performance-sensitive or bulk transfer code should instead use 4399 * spi_{async,sync}() calls with DMA-safe buffers. 4400 * 4401 * Return: zero on success, else a negative error code. 4402 */ 4403 int spi_write_then_read(struct spi_device *spi, 4404 const void *txbuf, unsigned n_tx, 4405 void *rxbuf, unsigned n_rx) 4406 { 4407 static DEFINE_MUTEX(lock); 4408 4409 int status; 4410 struct spi_message message; 4411 struct spi_transfer x[2]; 4412 u8 *local_buf; 4413 4414 /* 4415 * Use preallocated DMA-safe buffer if we can. We can't avoid 4416 * copying here, (as a pure convenience thing), but we can 4417 * keep heap costs out of the hot path unless someone else is 4418 * using the pre-allocated buffer or the transfer is too large. 4419 */ 4420 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4421 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4422 GFP_KERNEL | GFP_DMA); 4423 if (!local_buf) 4424 return -ENOMEM; 4425 } else { 4426 local_buf = buf; 4427 } 4428 4429 spi_message_init(&message); 4430 memset(x, 0, sizeof(x)); 4431 if (n_tx) { 4432 x[0].len = n_tx; 4433 spi_message_add_tail(&x[0], &message); 4434 } 4435 if (n_rx) { 4436 x[1].len = n_rx; 4437 spi_message_add_tail(&x[1], &message); 4438 } 4439 4440 memcpy(local_buf, txbuf, n_tx); 4441 x[0].tx_buf = local_buf; 4442 x[1].rx_buf = local_buf + n_tx; 4443 4444 /* Do the I/O */ 4445 status = spi_sync(spi, &message); 4446 if (status == 0) 4447 memcpy(rxbuf, x[1].rx_buf, n_rx); 4448 4449 if (x[0].tx_buf == buf) 4450 mutex_unlock(&lock); 4451 else 4452 kfree(local_buf); 4453 4454 return status; 4455 } 4456 EXPORT_SYMBOL_GPL(spi_write_then_read); 4457 4458 /*-------------------------------------------------------------------------*/ 4459 4460 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4461 /* Must call put_device() when done with returned spi_device device */ 4462 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4463 { 4464 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4465 4466 return dev ? to_spi_device(dev) : NULL; 4467 } 4468 4469 /* The spi controllers are not using spi_bus, so we find it with another way */ 4470 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4471 { 4472 struct device *dev; 4473 4474 dev = class_find_device_by_of_node(&spi_master_class, node); 4475 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4476 dev = class_find_device_by_of_node(&spi_slave_class, node); 4477 if (!dev) 4478 return NULL; 4479 4480 /* Reference got in class_find_device */ 4481 return container_of(dev, struct spi_controller, dev); 4482 } 4483 4484 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4485 void *arg) 4486 { 4487 struct of_reconfig_data *rd = arg; 4488 struct spi_controller *ctlr; 4489 struct spi_device *spi; 4490 4491 switch (of_reconfig_get_state_change(action, arg)) { 4492 case OF_RECONFIG_CHANGE_ADD: 4493 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4494 if (ctlr == NULL) 4495 return NOTIFY_OK; /* Not for us */ 4496 4497 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4498 put_device(&ctlr->dev); 4499 return NOTIFY_OK; 4500 } 4501 4502 /* 4503 * Clear the flag before adding the device so that fw_devlink 4504 * doesn't skip adding consumers to this device. 4505 */ 4506 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4507 spi = of_register_spi_device(ctlr, rd->dn); 4508 put_device(&ctlr->dev); 4509 4510 if (IS_ERR(spi)) { 4511 pr_err("%s: failed to create for '%pOF'\n", 4512 __func__, rd->dn); 4513 of_node_clear_flag(rd->dn, OF_POPULATED); 4514 return notifier_from_errno(PTR_ERR(spi)); 4515 } 4516 break; 4517 4518 case OF_RECONFIG_CHANGE_REMOVE: 4519 /* Already depopulated? */ 4520 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4521 return NOTIFY_OK; 4522 4523 /* Find our device by node */ 4524 spi = of_find_spi_device_by_node(rd->dn); 4525 if (spi == NULL) 4526 return NOTIFY_OK; /* No? not meant for us */ 4527 4528 /* Unregister takes one ref away */ 4529 spi_unregister_device(spi); 4530 4531 /* And put the reference of the find */ 4532 put_device(&spi->dev); 4533 break; 4534 } 4535 4536 return NOTIFY_OK; 4537 } 4538 4539 static struct notifier_block spi_of_notifier = { 4540 .notifier_call = of_spi_notify, 4541 }; 4542 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4543 extern struct notifier_block spi_of_notifier; 4544 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4545 4546 #if IS_ENABLED(CONFIG_ACPI) 4547 static int spi_acpi_controller_match(struct device *dev, const void *data) 4548 { 4549 return ACPI_COMPANION(dev->parent) == data; 4550 } 4551 4552 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4553 { 4554 struct device *dev; 4555 4556 dev = class_find_device(&spi_master_class, NULL, adev, 4557 spi_acpi_controller_match); 4558 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4559 dev = class_find_device(&spi_slave_class, NULL, adev, 4560 spi_acpi_controller_match); 4561 if (!dev) 4562 return NULL; 4563 4564 return container_of(dev, struct spi_controller, dev); 4565 } 4566 4567 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4568 { 4569 struct device *dev; 4570 4571 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4572 return to_spi_device(dev); 4573 } 4574 4575 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4576 void *arg) 4577 { 4578 struct acpi_device *adev = arg; 4579 struct spi_controller *ctlr; 4580 struct spi_device *spi; 4581 4582 switch (value) { 4583 case ACPI_RECONFIG_DEVICE_ADD: 4584 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4585 if (!ctlr) 4586 break; 4587 4588 acpi_register_spi_device(ctlr, adev); 4589 put_device(&ctlr->dev); 4590 break; 4591 case ACPI_RECONFIG_DEVICE_REMOVE: 4592 if (!acpi_device_enumerated(adev)) 4593 break; 4594 4595 spi = acpi_spi_find_device_by_adev(adev); 4596 if (!spi) 4597 break; 4598 4599 spi_unregister_device(spi); 4600 put_device(&spi->dev); 4601 break; 4602 } 4603 4604 return NOTIFY_OK; 4605 } 4606 4607 static struct notifier_block spi_acpi_notifier = { 4608 .notifier_call = acpi_spi_notify, 4609 }; 4610 #else 4611 extern struct notifier_block spi_acpi_notifier; 4612 #endif 4613 4614 static int __init spi_init(void) 4615 { 4616 int status; 4617 4618 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4619 if (!buf) { 4620 status = -ENOMEM; 4621 goto err0; 4622 } 4623 4624 status = bus_register(&spi_bus_type); 4625 if (status < 0) 4626 goto err1; 4627 4628 status = class_register(&spi_master_class); 4629 if (status < 0) 4630 goto err2; 4631 4632 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4633 status = class_register(&spi_slave_class); 4634 if (status < 0) 4635 goto err3; 4636 } 4637 4638 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4639 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4640 if (IS_ENABLED(CONFIG_ACPI)) 4641 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4642 4643 return 0; 4644 4645 err3: 4646 class_unregister(&spi_master_class); 4647 err2: 4648 bus_unregister(&spi_bus_type); 4649 err1: 4650 kfree(buf); 4651 buf = NULL; 4652 err0: 4653 return status; 4654 } 4655 4656 /* 4657 * A board_info is normally registered in arch_initcall(), 4658 * but even essential drivers wait till later. 4659 * 4660 * REVISIT only boardinfo really needs static linking. The rest (device and 4661 * driver registration) _could_ be dynamically linked (modular) ... Costs 4662 * include needing to have boardinfo data structures be much more public. 4663 */ 4664 postcore_initcall(spi_init); 4665