xref: /openbmc/linux/drivers/spi/spi.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SPI init/core code
4  *
5  * Copyright (C) 2005 David Brownell
6  * Copyright (C) 2008 Secret Lab Technologies Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/cache.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/mutex.h>
16 #include <linux/of_device.h>
17 #include <linux/of_irq.h>
18 #include <linux/clk/clk-conf.h>
19 #include <linux/slab.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi-mem.h>
23 #include <linux/of_gpio.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pm_domain.h>
26 #include <linux/property.h>
27 #include <linux/export.h>
28 #include <linux/sched/rt.h>
29 #include <uapi/linux/sched/types.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/ioport.h>
33 #include <linux/acpi.h>
34 #include <linux/highmem.h>
35 #include <linux/idr.h>
36 #include <linux/platform_data/x86/apple.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 
41 #include "internals.h"
42 
43 static DEFINE_IDR(spi_master_idr);
44 
45 static void spidev_release(struct device *dev)
46 {
47 	struct spi_device	*spi = to_spi_device(dev);
48 
49 	/* spi controllers may cleanup for released devices */
50 	if (spi->controller->cleanup)
51 		spi->controller->cleanup(spi);
52 
53 	spi_controller_put(spi->controller);
54 	kfree(spi->driver_override);
55 	kfree(spi);
56 }
57 
58 static ssize_t
59 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 {
61 	const struct spi_device	*spi = to_spi_device(dev);
62 	int len;
63 
64 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
65 	if (len != -ENODEV)
66 		return len;
67 
68 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 }
70 static DEVICE_ATTR_RO(modalias);
71 
72 static ssize_t driver_override_store(struct device *dev,
73 				     struct device_attribute *a,
74 				     const char *buf, size_t count)
75 {
76 	struct spi_device *spi = to_spi_device(dev);
77 	const char *end = memchr(buf, '\n', count);
78 	const size_t len = end ? end - buf : count;
79 	const char *driver_override, *old;
80 
81 	/* We need to keep extra room for a newline when displaying value */
82 	if (len >= (PAGE_SIZE - 1))
83 		return -EINVAL;
84 
85 	driver_override = kstrndup(buf, len, GFP_KERNEL);
86 	if (!driver_override)
87 		return -ENOMEM;
88 
89 	device_lock(dev);
90 	old = spi->driver_override;
91 	if (len) {
92 		spi->driver_override = driver_override;
93 	} else {
94 		/* Emptry string, disable driver override */
95 		spi->driver_override = NULL;
96 		kfree(driver_override);
97 	}
98 	device_unlock(dev);
99 	kfree(old);
100 
101 	return count;
102 }
103 
104 static ssize_t driver_override_show(struct device *dev,
105 				    struct device_attribute *a, char *buf)
106 {
107 	const struct spi_device *spi = to_spi_device(dev);
108 	ssize_t len;
109 
110 	device_lock(dev);
111 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
112 	device_unlock(dev);
113 	return len;
114 }
115 static DEVICE_ATTR_RW(driver_override);
116 
117 #define SPI_STATISTICS_ATTRS(field, file)				\
118 static ssize_t spi_controller_##field##_show(struct device *dev,	\
119 					     struct device_attribute *attr, \
120 					     char *buf)			\
121 {									\
122 	struct spi_controller *ctlr = container_of(dev,			\
123 					 struct spi_controller, dev);	\
124 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
125 }									\
126 static struct device_attribute dev_attr_spi_controller_##field = {	\
127 	.attr = { .name = file, .mode = 0444 },				\
128 	.show = spi_controller_##field##_show,				\
129 };									\
130 static ssize_t spi_device_##field##_show(struct device *dev,		\
131 					 struct device_attribute *attr,	\
132 					char *buf)			\
133 {									\
134 	struct spi_device *spi = to_spi_device(dev);			\
135 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
136 }									\
137 static struct device_attribute dev_attr_spi_device_##field = {		\
138 	.attr = { .name = file, .mode = 0444 },				\
139 	.show = spi_device_##field##_show,				\
140 }
141 
142 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
143 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
144 					    char *buf)			\
145 {									\
146 	unsigned long flags;						\
147 	ssize_t len;							\
148 	spin_lock_irqsave(&stat->lock, flags);				\
149 	len = sprintf(buf, format_string, stat->field);			\
150 	spin_unlock_irqrestore(&stat->lock, flags);			\
151 	return len;							\
152 }									\
153 SPI_STATISTICS_ATTRS(name, file)
154 
155 #define SPI_STATISTICS_SHOW(field, format_string)			\
156 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
157 				 field, format_string)
158 
159 SPI_STATISTICS_SHOW(messages, "%lu");
160 SPI_STATISTICS_SHOW(transfers, "%lu");
161 SPI_STATISTICS_SHOW(errors, "%lu");
162 SPI_STATISTICS_SHOW(timedout, "%lu");
163 
164 SPI_STATISTICS_SHOW(spi_sync, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
166 SPI_STATISTICS_SHOW(spi_async, "%lu");
167 
168 SPI_STATISTICS_SHOW(bytes, "%llu");
169 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
170 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
171 
172 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
173 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
174 				 "transfer_bytes_histo_" number,	\
175 				 transfer_bytes_histo[index],  "%lu")
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
193 
194 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
195 
196 static struct attribute *spi_dev_attrs[] = {
197 	&dev_attr_modalias.attr,
198 	&dev_attr_driver_override.attr,
199 	NULL,
200 };
201 
202 static const struct attribute_group spi_dev_group = {
203 	.attrs  = spi_dev_attrs,
204 };
205 
206 static struct attribute *spi_device_statistics_attrs[] = {
207 	&dev_attr_spi_device_messages.attr,
208 	&dev_attr_spi_device_transfers.attr,
209 	&dev_attr_spi_device_errors.attr,
210 	&dev_attr_spi_device_timedout.attr,
211 	&dev_attr_spi_device_spi_sync.attr,
212 	&dev_attr_spi_device_spi_sync_immediate.attr,
213 	&dev_attr_spi_device_spi_async.attr,
214 	&dev_attr_spi_device_bytes.attr,
215 	&dev_attr_spi_device_bytes_rx.attr,
216 	&dev_attr_spi_device_bytes_tx.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
234 	&dev_attr_spi_device_transfers_split_maxsize.attr,
235 	NULL,
236 };
237 
238 static const struct attribute_group spi_device_statistics_group = {
239 	.name  = "statistics",
240 	.attrs  = spi_device_statistics_attrs,
241 };
242 
243 static const struct attribute_group *spi_dev_groups[] = {
244 	&spi_dev_group,
245 	&spi_device_statistics_group,
246 	NULL,
247 };
248 
249 static struct attribute *spi_controller_statistics_attrs[] = {
250 	&dev_attr_spi_controller_messages.attr,
251 	&dev_attr_spi_controller_transfers.attr,
252 	&dev_attr_spi_controller_errors.attr,
253 	&dev_attr_spi_controller_timedout.attr,
254 	&dev_attr_spi_controller_spi_sync.attr,
255 	&dev_attr_spi_controller_spi_sync_immediate.attr,
256 	&dev_attr_spi_controller_spi_async.attr,
257 	&dev_attr_spi_controller_bytes.attr,
258 	&dev_attr_spi_controller_bytes_rx.attr,
259 	&dev_attr_spi_controller_bytes_tx.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
277 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
278 	NULL,
279 };
280 
281 static const struct attribute_group spi_controller_statistics_group = {
282 	.name  = "statistics",
283 	.attrs  = spi_controller_statistics_attrs,
284 };
285 
286 static const struct attribute_group *spi_master_groups[] = {
287 	&spi_controller_statistics_group,
288 	NULL,
289 };
290 
291 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
292 				       struct spi_transfer *xfer,
293 				       struct spi_controller *ctlr)
294 {
295 	unsigned long flags;
296 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
297 
298 	if (l2len < 0)
299 		l2len = 0;
300 
301 	spin_lock_irqsave(&stats->lock, flags);
302 
303 	stats->transfers++;
304 	stats->transfer_bytes_histo[l2len]++;
305 
306 	stats->bytes += xfer->len;
307 	if ((xfer->tx_buf) &&
308 	    (xfer->tx_buf != ctlr->dummy_tx))
309 		stats->bytes_tx += xfer->len;
310 	if ((xfer->rx_buf) &&
311 	    (xfer->rx_buf != ctlr->dummy_rx))
312 		stats->bytes_rx += xfer->len;
313 
314 	spin_unlock_irqrestore(&stats->lock, flags);
315 }
316 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
317 
318 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
319  * and the sysfs version makes coldplug work too.
320  */
321 
322 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
323 						const struct spi_device *sdev)
324 {
325 	while (id->name[0]) {
326 		if (!strcmp(sdev->modalias, id->name))
327 			return id;
328 		id++;
329 	}
330 	return NULL;
331 }
332 
333 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
334 {
335 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
336 
337 	return spi_match_id(sdrv->id_table, sdev);
338 }
339 EXPORT_SYMBOL_GPL(spi_get_device_id);
340 
341 static int spi_match_device(struct device *dev, struct device_driver *drv)
342 {
343 	const struct spi_device	*spi = to_spi_device(dev);
344 	const struct spi_driver	*sdrv = to_spi_driver(drv);
345 
346 	/* Check override first, and if set, only use the named driver */
347 	if (spi->driver_override)
348 		return strcmp(spi->driver_override, drv->name) == 0;
349 
350 	/* Attempt an OF style match */
351 	if (of_driver_match_device(dev, drv))
352 		return 1;
353 
354 	/* Then try ACPI */
355 	if (acpi_driver_match_device(dev, drv))
356 		return 1;
357 
358 	if (sdrv->id_table)
359 		return !!spi_match_id(sdrv->id_table, spi);
360 
361 	return strcmp(spi->modalias, drv->name) == 0;
362 }
363 
364 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
365 {
366 	const struct spi_device		*spi = to_spi_device(dev);
367 	int rc;
368 
369 	rc = acpi_device_uevent_modalias(dev, env);
370 	if (rc != -ENODEV)
371 		return rc;
372 
373 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
374 }
375 
376 struct bus_type spi_bus_type = {
377 	.name		= "spi",
378 	.dev_groups	= spi_dev_groups,
379 	.match		= spi_match_device,
380 	.uevent		= spi_uevent,
381 };
382 EXPORT_SYMBOL_GPL(spi_bus_type);
383 
384 
385 static int spi_drv_probe(struct device *dev)
386 {
387 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
388 	struct spi_device		*spi = to_spi_device(dev);
389 	int ret;
390 
391 	ret = of_clk_set_defaults(dev->of_node, false);
392 	if (ret)
393 		return ret;
394 
395 	if (dev->of_node) {
396 		spi->irq = of_irq_get(dev->of_node, 0);
397 		if (spi->irq == -EPROBE_DEFER)
398 			return -EPROBE_DEFER;
399 		if (spi->irq < 0)
400 			spi->irq = 0;
401 	}
402 
403 	ret = dev_pm_domain_attach(dev, true);
404 	if (ret)
405 		return ret;
406 
407 	ret = sdrv->probe(spi);
408 	if (ret)
409 		dev_pm_domain_detach(dev, true);
410 
411 	return ret;
412 }
413 
414 static int spi_drv_remove(struct device *dev)
415 {
416 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
417 	int ret;
418 
419 	ret = sdrv->remove(to_spi_device(dev));
420 	dev_pm_domain_detach(dev, true);
421 
422 	return ret;
423 }
424 
425 static void spi_drv_shutdown(struct device *dev)
426 {
427 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
428 
429 	sdrv->shutdown(to_spi_device(dev));
430 }
431 
432 /**
433  * __spi_register_driver - register a SPI driver
434  * @owner: owner module of the driver to register
435  * @sdrv: the driver to register
436  * Context: can sleep
437  *
438  * Return: zero on success, else a negative error code.
439  */
440 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
441 {
442 	sdrv->driver.owner = owner;
443 	sdrv->driver.bus = &spi_bus_type;
444 	if (sdrv->probe)
445 		sdrv->driver.probe = spi_drv_probe;
446 	if (sdrv->remove)
447 		sdrv->driver.remove = spi_drv_remove;
448 	if (sdrv->shutdown)
449 		sdrv->driver.shutdown = spi_drv_shutdown;
450 	return driver_register(&sdrv->driver);
451 }
452 EXPORT_SYMBOL_GPL(__spi_register_driver);
453 
454 /*-------------------------------------------------------------------------*/
455 
456 /* SPI devices should normally not be created by SPI device drivers; that
457  * would make them board-specific.  Similarly with SPI controller drivers.
458  * Device registration normally goes into like arch/.../mach.../board-YYY.c
459  * with other readonly (flashable) information about mainboard devices.
460  */
461 
462 struct boardinfo {
463 	struct list_head	list;
464 	struct spi_board_info	board_info;
465 };
466 
467 static LIST_HEAD(board_list);
468 static LIST_HEAD(spi_controller_list);
469 
470 /*
471  * Used to protect add/del opertion for board_info list and
472  * spi_controller list, and their matching process
473  * also used to protect object of type struct idr
474  */
475 static DEFINE_MUTEX(board_lock);
476 
477 /**
478  * spi_alloc_device - Allocate a new SPI device
479  * @ctlr: Controller to which device is connected
480  * Context: can sleep
481  *
482  * Allows a driver to allocate and initialize a spi_device without
483  * registering it immediately.  This allows a driver to directly
484  * fill the spi_device with device parameters before calling
485  * spi_add_device() on it.
486  *
487  * Caller is responsible to call spi_add_device() on the returned
488  * spi_device structure to add it to the SPI controller.  If the caller
489  * needs to discard the spi_device without adding it, then it should
490  * call spi_dev_put() on it.
491  *
492  * Return: a pointer to the new device, or NULL.
493  */
494 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
495 {
496 	struct spi_device	*spi;
497 
498 	if (!spi_controller_get(ctlr))
499 		return NULL;
500 
501 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
502 	if (!spi) {
503 		spi_controller_put(ctlr);
504 		return NULL;
505 	}
506 
507 	spi->master = spi->controller = ctlr;
508 	spi->dev.parent = &ctlr->dev;
509 	spi->dev.bus = &spi_bus_type;
510 	spi->dev.release = spidev_release;
511 	spi->cs_gpio = -ENOENT;
512 
513 	spin_lock_init(&spi->statistics.lock);
514 
515 	device_initialize(&spi->dev);
516 	return spi;
517 }
518 EXPORT_SYMBOL_GPL(spi_alloc_device);
519 
520 static void spi_dev_set_name(struct spi_device *spi)
521 {
522 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
523 
524 	if (adev) {
525 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
526 		return;
527 	}
528 
529 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
530 		     spi->chip_select);
531 }
532 
533 static int spi_dev_check(struct device *dev, void *data)
534 {
535 	struct spi_device *spi = to_spi_device(dev);
536 	struct spi_device *new_spi = data;
537 
538 	if (spi->controller == new_spi->controller &&
539 	    spi->chip_select == new_spi->chip_select)
540 		return -EBUSY;
541 	return 0;
542 }
543 
544 /**
545  * spi_add_device - Add spi_device allocated with spi_alloc_device
546  * @spi: spi_device to register
547  *
548  * Companion function to spi_alloc_device.  Devices allocated with
549  * spi_alloc_device can be added onto the spi bus with this function.
550  *
551  * Return: 0 on success; negative errno on failure
552  */
553 int spi_add_device(struct spi_device *spi)
554 {
555 	static DEFINE_MUTEX(spi_add_lock);
556 	struct spi_controller *ctlr = spi->controller;
557 	struct device *dev = ctlr->dev.parent;
558 	int status;
559 
560 	/* Chipselects are numbered 0..max; validate. */
561 	if (spi->chip_select >= ctlr->num_chipselect) {
562 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
563 			ctlr->num_chipselect);
564 		return -EINVAL;
565 	}
566 
567 	/* Set the bus ID string */
568 	spi_dev_set_name(spi);
569 
570 	/* We need to make sure there's no other device with this
571 	 * chipselect **BEFORE** we call setup(), else we'll trash
572 	 * its configuration.  Lock against concurrent add() calls.
573 	 */
574 	mutex_lock(&spi_add_lock);
575 
576 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
577 	if (status) {
578 		dev_err(dev, "chipselect %d already in use\n",
579 				spi->chip_select);
580 		goto done;
581 	}
582 
583 	if (ctlr->cs_gpios)
584 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
585 
586 	/* Drivers may modify this initial i/o setup, but will
587 	 * normally rely on the device being setup.  Devices
588 	 * using SPI_CS_HIGH can't coexist well otherwise...
589 	 */
590 	status = spi_setup(spi);
591 	if (status < 0) {
592 		dev_err(dev, "can't setup %s, status %d\n",
593 				dev_name(&spi->dev), status);
594 		goto done;
595 	}
596 
597 	/* Device may be bound to an active driver when this returns */
598 	status = device_add(&spi->dev);
599 	if (status < 0)
600 		dev_err(dev, "can't add %s, status %d\n",
601 				dev_name(&spi->dev), status);
602 	else
603 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
604 
605 done:
606 	mutex_unlock(&spi_add_lock);
607 	return status;
608 }
609 EXPORT_SYMBOL_GPL(spi_add_device);
610 
611 /**
612  * spi_new_device - instantiate one new SPI device
613  * @ctlr: Controller to which device is connected
614  * @chip: Describes the SPI device
615  * Context: can sleep
616  *
617  * On typical mainboards, this is purely internal; and it's not needed
618  * after board init creates the hard-wired devices.  Some development
619  * platforms may not be able to use spi_register_board_info though, and
620  * this is exported so that for example a USB or parport based adapter
621  * driver could add devices (which it would learn about out-of-band).
622  *
623  * Return: the new device, or NULL.
624  */
625 struct spi_device *spi_new_device(struct spi_controller *ctlr,
626 				  struct spi_board_info *chip)
627 {
628 	struct spi_device	*proxy;
629 	int			status;
630 
631 	/* NOTE:  caller did any chip->bus_num checks necessary.
632 	 *
633 	 * Also, unless we change the return value convention to use
634 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
635 	 * suggests syslogged diagnostics are best here (ugh).
636 	 */
637 
638 	proxy = spi_alloc_device(ctlr);
639 	if (!proxy)
640 		return NULL;
641 
642 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
643 
644 	proxy->chip_select = chip->chip_select;
645 	proxy->max_speed_hz = chip->max_speed_hz;
646 	proxy->mode = chip->mode;
647 	proxy->irq = chip->irq;
648 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
649 	proxy->dev.platform_data = (void *) chip->platform_data;
650 	proxy->controller_data = chip->controller_data;
651 	proxy->controller_state = NULL;
652 
653 	if (chip->properties) {
654 		status = device_add_properties(&proxy->dev, chip->properties);
655 		if (status) {
656 			dev_err(&ctlr->dev,
657 				"failed to add properties to '%s': %d\n",
658 				chip->modalias, status);
659 			goto err_dev_put;
660 		}
661 	}
662 
663 	status = spi_add_device(proxy);
664 	if (status < 0)
665 		goto err_remove_props;
666 
667 	return proxy;
668 
669 err_remove_props:
670 	if (chip->properties)
671 		device_remove_properties(&proxy->dev);
672 err_dev_put:
673 	spi_dev_put(proxy);
674 	return NULL;
675 }
676 EXPORT_SYMBOL_GPL(spi_new_device);
677 
678 /**
679  * spi_unregister_device - unregister a single SPI device
680  * @spi: spi_device to unregister
681  *
682  * Start making the passed SPI device vanish. Normally this would be handled
683  * by spi_unregister_controller().
684  */
685 void spi_unregister_device(struct spi_device *spi)
686 {
687 	if (!spi)
688 		return;
689 
690 	if (spi->dev.of_node) {
691 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
692 		of_node_put(spi->dev.of_node);
693 	}
694 	if (ACPI_COMPANION(&spi->dev))
695 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
696 	device_unregister(&spi->dev);
697 }
698 EXPORT_SYMBOL_GPL(spi_unregister_device);
699 
700 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
701 					      struct spi_board_info *bi)
702 {
703 	struct spi_device *dev;
704 
705 	if (ctlr->bus_num != bi->bus_num)
706 		return;
707 
708 	dev = spi_new_device(ctlr, bi);
709 	if (!dev)
710 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
711 			bi->modalias);
712 }
713 
714 /**
715  * spi_register_board_info - register SPI devices for a given board
716  * @info: array of chip descriptors
717  * @n: how many descriptors are provided
718  * Context: can sleep
719  *
720  * Board-specific early init code calls this (probably during arch_initcall)
721  * with segments of the SPI device table.  Any device nodes are created later,
722  * after the relevant parent SPI controller (bus_num) is defined.  We keep
723  * this table of devices forever, so that reloading a controller driver will
724  * not make Linux forget about these hard-wired devices.
725  *
726  * Other code can also call this, e.g. a particular add-on board might provide
727  * SPI devices through its expansion connector, so code initializing that board
728  * would naturally declare its SPI devices.
729  *
730  * The board info passed can safely be __initdata ... but be careful of
731  * any embedded pointers (platform_data, etc), they're copied as-is.
732  * Device properties are deep-copied though.
733  *
734  * Return: zero on success, else a negative error code.
735  */
736 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
737 {
738 	struct boardinfo *bi;
739 	int i;
740 
741 	if (!n)
742 		return 0;
743 
744 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
745 	if (!bi)
746 		return -ENOMEM;
747 
748 	for (i = 0; i < n; i++, bi++, info++) {
749 		struct spi_controller *ctlr;
750 
751 		memcpy(&bi->board_info, info, sizeof(*info));
752 		if (info->properties) {
753 			bi->board_info.properties =
754 					property_entries_dup(info->properties);
755 			if (IS_ERR(bi->board_info.properties))
756 				return PTR_ERR(bi->board_info.properties);
757 		}
758 
759 		mutex_lock(&board_lock);
760 		list_add_tail(&bi->list, &board_list);
761 		list_for_each_entry(ctlr, &spi_controller_list, list)
762 			spi_match_controller_to_boardinfo(ctlr,
763 							  &bi->board_info);
764 		mutex_unlock(&board_lock);
765 	}
766 
767 	return 0;
768 }
769 
770 /*-------------------------------------------------------------------------*/
771 
772 static void spi_set_cs(struct spi_device *spi, bool enable)
773 {
774 	if (spi->mode & SPI_CS_HIGH)
775 		enable = !enable;
776 
777 	if (gpio_is_valid(spi->cs_gpio)) {
778 		/* Honour the SPI_NO_CS flag */
779 		if (!(spi->mode & SPI_NO_CS))
780 			gpio_set_value(spi->cs_gpio, !enable);
781 		/* Some SPI masters need both GPIO CS & slave_select */
782 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
783 		    spi->controller->set_cs)
784 			spi->controller->set_cs(spi, !enable);
785 	} else if (spi->controller->set_cs) {
786 		spi->controller->set_cs(spi, !enable);
787 	}
788 }
789 
790 #ifdef CONFIG_HAS_DMA
791 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
792 		struct sg_table *sgt, void *buf, size_t len,
793 		enum dma_data_direction dir)
794 {
795 	const bool vmalloced_buf = is_vmalloc_addr(buf);
796 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
797 #ifdef CONFIG_HIGHMEM
798 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
799 				(unsigned long)buf < (PKMAP_BASE +
800 					(LAST_PKMAP * PAGE_SIZE)));
801 #else
802 	const bool kmap_buf = false;
803 #endif
804 	int desc_len;
805 	int sgs;
806 	struct page *vm_page;
807 	struct scatterlist *sg;
808 	void *sg_buf;
809 	size_t min;
810 	int i, ret;
811 
812 	if (vmalloced_buf || kmap_buf) {
813 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
814 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
815 	} else if (virt_addr_valid(buf)) {
816 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
817 		sgs = DIV_ROUND_UP(len, desc_len);
818 	} else {
819 		return -EINVAL;
820 	}
821 
822 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
823 	if (ret != 0)
824 		return ret;
825 
826 	sg = &sgt->sgl[0];
827 	for (i = 0; i < sgs; i++) {
828 
829 		if (vmalloced_buf || kmap_buf) {
830 			/*
831 			 * Next scatterlist entry size is the minimum between
832 			 * the desc_len and the remaining buffer length that
833 			 * fits in a page.
834 			 */
835 			min = min_t(size_t, desc_len,
836 				    min_t(size_t, len,
837 					  PAGE_SIZE - offset_in_page(buf)));
838 			if (vmalloced_buf)
839 				vm_page = vmalloc_to_page(buf);
840 			else
841 				vm_page = kmap_to_page(buf);
842 			if (!vm_page) {
843 				sg_free_table(sgt);
844 				return -ENOMEM;
845 			}
846 			sg_set_page(sg, vm_page,
847 				    min, offset_in_page(buf));
848 		} else {
849 			min = min_t(size_t, len, desc_len);
850 			sg_buf = buf;
851 			sg_set_buf(sg, sg_buf, min);
852 		}
853 
854 		buf += min;
855 		len -= min;
856 		sg = sg_next(sg);
857 	}
858 
859 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
860 	if (!ret)
861 		ret = -ENOMEM;
862 	if (ret < 0) {
863 		sg_free_table(sgt);
864 		return ret;
865 	}
866 
867 	sgt->nents = ret;
868 
869 	return 0;
870 }
871 
872 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
873 		   struct sg_table *sgt, enum dma_data_direction dir)
874 {
875 	if (sgt->orig_nents) {
876 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
877 		sg_free_table(sgt);
878 	}
879 }
880 
881 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
882 {
883 	struct device *tx_dev, *rx_dev;
884 	struct spi_transfer *xfer;
885 	int ret;
886 
887 	if (!ctlr->can_dma)
888 		return 0;
889 
890 	if (ctlr->dma_tx)
891 		tx_dev = ctlr->dma_tx->device->dev;
892 	else
893 		tx_dev = ctlr->dev.parent;
894 
895 	if (ctlr->dma_rx)
896 		rx_dev = ctlr->dma_rx->device->dev;
897 	else
898 		rx_dev = ctlr->dev.parent;
899 
900 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
901 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
902 			continue;
903 
904 		if (xfer->tx_buf != NULL) {
905 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
906 					  (void *)xfer->tx_buf, xfer->len,
907 					  DMA_TO_DEVICE);
908 			if (ret != 0)
909 				return ret;
910 		}
911 
912 		if (xfer->rx_buf != NULL) {
913 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
914 					  xfer->rx_buf, xfer->len,
915 					  DMA_FROM_DEVICE);
916 			if (ret != 0) {
917 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
918 					      DMA_TO_DEVICE);
919 				return ret;
920 			}
921 		}
922 	}
923 
924 	ctlr->cur_msg_mapped = true;
925 
926 	return 0;
927 }
928 
929 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
930 {
931 	struct spi_transfer *xfer;
932 	struct device *tx_dev, *rx_dev;
933 
934 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
935 		return 0;
936 
937 	if (ctlr->dma_tx)
938 		tx_dev = ctlr->dma_tx->device->dev;
939 	else
940 		tx_dev = ctlr->dev.parent;
941 
942 	if (ctlr->dma_rx)
943 		rx_dev = ctlr->dma_rx->device->dev;
944 	else
945 		rx_dev = ctlr->dev.parent;
946 
947 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
948 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
949 			continue;
950 
951 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
952 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
953 	}
954 
955 	return 0;
956 }
957 #else /* !CONFIG_HAS_DMA */
958 static inline int __spi_map_msg(struct spi_controller *ctlr,
959 				struct spi_message *msg)
960 {
961 	return 0;
962 }
963 
964 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
965 				  struct spi_message *msg)
966 {
967 	return 0;
968 }
969 #endif /* !CONFIG_HAS_DMA */
970 
971 static inline int spi_unmap_msg(struct spi_controller *ctlr,
972 				struct spi_message *msg)
973 {
974 	struct spi_transfer *xfer;
975 
976 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
977 		/*
978 		 * Restore the original value of tx_buf or rx_buf if they are
979 		 * NULL.
980 		 */
981 		if (xfer->tx_buf == ctlr->dummy_tx)
982 			xfer->tx_buf = NULL;
983 		if (xfer->rx_buf == ctlr->dummy_rx)
984 			xfer->rx_buf = NULL;
985 	}
986 
987 	return __spi_unmap_msg(ctlr, msg);
988 }
989 
990 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
991 {
992 	struct spi_transfer *xfer;
993 	void *tmp;
994 	unsigned int max_tx, max_rx;
995 
996 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
997 		max_tx = 0;
998 		max_rx = 0;
999 
1000 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1001 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1002 			    !xfer->tx_buf)
1003 				max_tx = max(xfer->len, max_tx);
1004 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1005 			    !xfer->rx_buf)
1006 				max_rx = max(xfer->len, max_rx);
1007 		}
1008 
1009 		if (max_tx) {
1010 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1011 				       GFP_KERNEL | GFP_DMA);
1012 			if (!tmp)
1013 				return -ENOMEM;
1014 			ctlr->dummy_tx = tmp;
1015 			memset(tmp, 0, max_tx);
1016 		}
1017 
1018 		if (max_rx) {
1019 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1020 				       GFP_KERNEL | GFP_DMA);
1021 			if (!tmp)
1022 				return -ENOMEM;
1023 			ctlr->dummy_rx = tmp;
1024 		}
1025 
1026 		if (max_tx || max_rx) {
1027 			list_for_each_entry(xfer, &msg->transfers,
1028 					    transfer_list) {
1029 				if (!xfer->tx_buf)
1030 					xfer->tx_buf = ctlr->dummy_tx;
1031 				if (!xfer->rx_buf)
1032 					xfer->rx_buf = ctlr->dummy_rx;
1033 			}
1034 		}
1035 	}
1036 
1037 	return __spi_map_msg(ctlr, msg);
1038 }
1039 
1040 /*
1041  * spi_transfer_one_message - Default implementation of transfer_one_message()
1042  *
1043  * This is a standard implementation of transfer_one_message() for
1044  * drivers which implement a transfer_one() operation.  It provides
1045  * standard handling of delays and chip select management.
1046  */
1047 static int spi_transfer_one_message(struct spi_controller *ctlr,
1048 				    struct spi_message *msg)
1049 {
1050 	struct spi_transfer *xfer;
1051 	bool keep_cs = false;
1052 	int ret = 0;
1053 	unsigned long long ms = 1;
1054 	struct spi_statistics *statm = &ctlr->statistics;
1055 	struct spi_statistics *stats = &msg->spi->statistics;
1056 
1057 	spi_set_cs(msg->spi, true);
1058 
1059 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1060 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1061 
1062 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1063 		trace_spi_transfer_start(msg, xfer);
1064 
1065 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1066 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1067 
1068 		if (xfer->tx_buf || xfer->rx_buf) {
1069 			reinit_completion(&ctlr->xfer_completion);
1070 
1071 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1072 			if (ret < 0) {
1073 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1074 							       errors);
1075 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1076 							       errors);
1077 				dev_err(&msg->spi->dev,
1078 					"SPI transfer failed: %d\n", ret);
1079 				goto out;
1080 			}
1081 
1082 			if (ret > 0) {
1083 				ret = 0;
1084 				ms = 8LL * 1000LL * xfer->len;
1085 				do_div(ms, xfer->speed_hz);
1086 				ms += ms + 200; /* some tolerance */
1087 
1088 				if (ms > UINT_MAX)
1089 					ms = UINT_MAX;
1090 
1091 				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1092 								 msecs_to_jiffies(ms));
1093 			}
1094 
1095 			if (ms == 0) {
1096 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1097 							       timedout);
1098 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1099 							       timedout);
1100 				dev_err(&msg->spi->dev,
1101 					"SPI transfer timed out\n");
1102 				msg->status = -ETIMEDOUT;
1103 			}
1104 		} else {
1105 			if (xfer->len)
1106 				dev_err(&msg->spi->dev,
1107 					"Bufferless transfer has length %u\n",
1108 					xfer->len);
1109 		}
1110 
1111 		trace_spi_transfer_stop(msg, xfer);
1112 
1113 		if (msg->status != -EINPROGRESS)
1114 			goto out;
1115 
1116 		if (xfer->delay_usecs) {
1117 			u16 us = xfer->delay_usecs;
1118 
1119 			if (us <= 10)
1120 				udelay(us);
1121 			else
1122 				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1123 		}
1124 
1125 		if (xfer->cs_change) {
1126 			if (list_is_last(&xfer->transfer_list,
1127 					 &msg->transfers)) {
1128 				keep_cs = true;
1129 			} else {
1130 				spi_set_cs(msg->spi, false);
1131 				udelay(10);
1132 				spi_set_cs(msg->spi, true);
1133 			}
1134 		}
1135 
1136 		msg->actual_length += xfer->len;
1137 	}
1138 
1139 out:
1140 	if (ret != 0 || !keep_cs)
1141 		spi_set_cs(msg->spi, false);
1142 
1143 	if (msg->status == -EINPROGRESS)
1144 		msg->status = ret;
1145 
1146 	if (msg->status && ctlr->handle_err)
1147 		ctlr->handle_err(ctlr, msg);
1148 
1149 	spi_res_release(ctlr, msg);
1150 
1151 	spi_finalize_current_message(ctlr);
1152 
1153 	return ret;
1154 }
1155 
1156 /**
1157  * spi_finalize_current_transfer - report completion of a transfer
1158  * @ctlr: the controller reporting completion
1159  *
1160  * Called by SPI drivers using the core transfer_one_message()
1161  * implementation to notify it that the current interrupt driven
1162  * transfer has finished and the next one may be scheduled.
1163  */
1164 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1165 {
1166 	complete(&ctlr->xfer_completion);
1167 }
1168 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1169 
1170 /**
1171  * __spi_pump_messages - function which processes spi message queue
1172  * @ctlr: controller to process queue for
1173  * @in_kthread: true if we are in the context of the message pump thread
1174  *
1175  * This function checks if there is any spi message in the queue that
1176  * needs processing and if so call out to the driver to initialize hardware
1177  * and transfer each message.
1178  *
1179  * Note that it is called both from the kthread itself and also from
1180  * inside spi_sync(); the queue extraction handling at the top of the
1181  * function should deal with this safely.
1182  */
1183 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1184 {
1185 	unsigned long flags;
1186 	bool was_busy = false;
1187 	int ret;
1188 
1189 	/* Lock queue */
1190 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1191 
1192 	/* Make sure we are not already running a message */
1193 	if (ctlr->cur_msg) {
1194 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1195 		return;
1196 	}
1197 
1198 	/* If another context is idling the device then defer */
1199 	if (ctlr->idling) {
1200 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1201 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1202 		return;
1203 	}
1204 
1205 	/* Check if the queue is idle */
1206 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1207 		if (!ctlr->busy) {
1208 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1209 			return;
1210 		}
1211 
1212 		/* Only do teardown in the thread */
1213 		if (!in_kthread) {
1214 			kthread_queue_work(&ctlr->kworker,
1215 					   &ctlr->pump_messages);
1216 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1217 			return;
1218 		}
1219 
1220 		ctlr->busy = false;
1221 		ctlr->idling = true;
1222 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1223 
1224 		kfree(ctlr->dummy_rx);
1225 		ctlr->dummy_rx = NULL;
1226 		kfree(ctlr->dummy_tx);
1227 		ctlr->dummy_tx = NULL;
1228 		if (ctlr->unprepare_transfer_hardware &&
1229 		    ctlr->unprepare_transfer_hardware(ctlr))
1230 			dev_err(&ctlr->dev,
1231 				"failed to unprepare transfer hardware\n");
1232 		if (ctlr->auto_runtime_pm) {
1233 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1234 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1235 		}
1236 		trace_spi_controller_idle(ctlr);
1237 
1238 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1239 		ctlr->idling = false;
1240 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1241 		return;
1242 	}
1243 
1244 	/* Extract head of queue */
1245 	ctlr->cur_msg =
1246 		list_first_entry(&ctlr->queue, struct spi_message, queue);
1247 
1248 	list_del_init(&ctlr->cur_msg->queue);
1249 	if (ctlr->busy)
1250 		was_busy = true;
1251 	else
1252 		ctlr->busy = true;
1253 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1254 
1255 	mutex_lock(&ctlr->io_mutex);
1256 
1257 	if (!was_busy && ctlr->auto_runtime_pm) {
1258 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1259 		if (ret < 0) {
1260 			pm_runtime_put_noidle(ctlr->dev.parent);
1261 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1262 				ret);
1263 			mutex_unlock(&ctlr->io_mutex);
1264 			return;
1265 		}
1266 	}
1267 
1268 	if (!was_busy)
1269 		trace_spi_controller_busy(ctlr);
1270 
1271 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1272 		ret = ctlr->prepare_transfer_hardware(ctlr);
1273 		if (ret) {
1274 			dev_err(&ctlr->dev,
1275 				"failed to prepare transfer hardware\n");
1276 
1277 			if (ctlr->auto_runtime_pm)
1278 				pm_runtime_put(ctlr->dev.parent);
1279 			mutex_unlock(&ctlr->io_mutex);
1280 			return;
1281 		}
1282 	}
1283 
1284 	trace_spi_message_start(ctlr->cur_msg);
1285 
1286 	if (ctlr->prepare_message) {
1287 		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1288 		if (ret) {
1289 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1290 				ret);
1291 			ctlr->cur_msg->status = ret;
1292 			spi_finalize_current_message(ctlr);
1293 			goto out;
1294 		}
1295 		ctlr->cur_msg_prepared = true;
1296 	}
1297 
1298 	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1299 	if (ret) {
1300 		ctlr->cur_msg->status = ret;
1301 		spi_finalize_current_message(ctlr);
1302 		goto out;
1303 	}
1304 
1305 	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1306 	if (ret) {
1307 		dev_err(&ctlr->dev,
1308 			"failed to transfer one message from queue\n");
1309 		goto out;
1310 	}
1311 
1312 out:
1313 	mutex_unlock(&ctlr->io_mutex);
1314 
1315 	/* Prod the scheduler in case transfer_one() was busy waiting */
1316 	if (!ret)
1317 		cond_resched();
1318 }
1319 
1320 /**
1321  * spi_pump_messages - kthread work function which processes spi message queue
1322  * @work: pointer to kthread work struct contained in the controller struct
1323  */
1324 static void spi_pump_messages(struct kthread_work *work)
1325 {
1326 	struct spi_controller *ctlr =
1327 		container_of(work, struct spi_controller, pump_messages);
1328 
1329 	__spi_pump_messages(ctlr, true);
1330 }
1331 
1332 static int spi_init_queue(struct spi_controller *ctlr)
1333 {
1334 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1335 
1336 	ctlr->running = false;
1337 	ctlr->busy = false;
1338 
1339 	kthread_init_worker(&ctlr->kworker);
1340 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1341 					 "%s", dev_name(&ctlr->dev));
1342 	if (IS_ERR(ctlr->kworker_task)) {
1343 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1344 		return PTR_ERR(ctlr->kworker_task);
1345 	}
1346 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1347 
1348 	/*
1349 	 * Controller config will indicate if this controller should run the
1350 	 * message pump with high (realtime) priority to reduce the transfer
1351 	 * latency on the bus by minimising the delay between a transfer
1352 	 * request and the scheduling of the message pump thread. Without this
1353 	 * setting the message pump thread will remain at default priority.
1354 	 */
1355 	if (ctlr->rt) {
1356 		dev_info(&ctlr->dev,
1357 			"will run message pump with realtime priority\n");
1358 		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1359 	}
1360 
1361 	return 0;
1362 }
1363 
1364 /**
1365  * spi_get_next_queued_message() - called by driver to check for queued
1366  * messages
1367  * @ctlr: the controller to check for queued messages
1368  *
1369  * If there are more messages in the queue, the next message is returned from
1370  * this call.
1371  *
1372  * Return: the next message in the queue, else NULL if the queue is empty.
1373  */
1374 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1375 {
1376 	struct spi_message *next;
1377 	unsigned long flags;
1378 
1379 	/* get a pointer to the next message, if any */
1380 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1381 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1382 					queue);
1383 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1384 
1385 	return next;
1386 }
1387 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1388 
1389 /**
1390  * spi_finalize_current_message() - the current message is complete
1391  * @ctlr: the controller to return the message to
1392  *
1393  * Called by the driver to notify the core that the message in the front of the
1394  * queue is complete and can be removed from the queue.
1395  */
1396 void spi_finalize_current_message(struct spi_controller *ctlr)
1397 {
1398 	struct spi_message *mesg;
1399 	unsigned long flags;
1400 	int ret;
1401 
1402 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1403 	mesg = ctlr->cur_msg;
1404 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1405 
1406 	spi_unmap_msg(ctlr, mesg);
1407 
1408 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1409 		ret = ctlr->unprepare_message(ctlr, mesg);
1410 		if (ret) {
1411 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1412 				ret);
1413 		}
1414 	}
1415 
1416 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1417 	ctlr->cur_msg = NULL;
1418 	ctlr->cur_msg_prepared = false;
1419 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1420 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1421 
1422 	trace_spi_message_done(mesg);
1423 
1424 	mesg->state = NULL;
1425 	if (mesg->complete)
1426 		mesg->complete(mesg->context);
1427 }
1428 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1429 
1430 static int spi_start_queue(struct spi_controller *ctlr)
1431 {
1432 	unsigned long flags;
1433 
1434 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1435 
1436 	if (ctlr->running || ctlr->busy) {
1437 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1438 		return -EBUSY;
1439 	}
1440 
1441 	ctlr->running = true;
1442 	ctlr->cur_msg = NULL;
1443 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1444 
1445 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1446 
1447 	return 0;
1448 }
1449 
1450 static int spi_stop_queue(struct spi_controller *ctlr)
1451 {
1452 	unsigned long flags;
1453 	unsigned limit = 500;
1454 	int ret = 0;
1455 
1456 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1457 
1458 	/*
1459 	 * This is a bit lame, but is optimized for the common execution path.
1460 	 * A wait_queue on the ctlr->busy could be used, but then the common
1461 	 * execution path (pump_messages) would be required to call wake_up or
1462 	 * friends on every SPI message. Do this instead.
1463 	 */
1464 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1465 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1466 		usleep_range(10000, 11000);
1467 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1468 	}
1469 
1470 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1471 		ret = -EBUSY;
1472 	else
1473 		ctlr->running = false;
1474 
1475 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1476 
1477 	if (ret) {
1478 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1479 		return ret;
1480 	}
1481 	return ret;
1482 }
1483 
1484 static int spi_destroy_queue(struct spi_controller *ctlr)
1485 {
1486 	int ret;
1487 
1488 	ret = spi_stop_queue(ctlr);
1489 
1490 	/*
1491 	 * kthread_flush_worker will block until all work is done.
1492 	 * If the reason that stop_queue timed out is that the work will never
1493 	 * finish, then it does no good to call flush/stop thread, so
1494 	 * return anyway.
1495 	 */
1496 	if (ret) {
1497 		dev_err(&ctlr->dev, "problem destroying queue\n");
1498 		return ret;
1499 	}
1500 
1501 	kthread_flush_worker(&ctlr->kworker);
1502 	kthread_stop(ctlr->kworker_task);
1503 
1504 	return 0;
1505 }
1506 
1507 static int __spi_queued_transfer(struct spi_device *spi,
1508 				 struct spi_message *msg,
1509 				 bool need_pump)
1510 {
1511 	struct spi_controller *ctlr = spi->controller;
1512 	unsigned long flags;
1513 
1514 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1515 
1516 	if (!ctlr->running) {
1517 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1518 		return -ESHUTDOWN;
1519 	}
1520 	msg->actual_length = 0;
1521 	msg->status = -EINPROGRESS;
1522 
1523 	list_add_tail(&msg->queue, &ctlr->queue);
1524 	if (!ctlr->busy && need_pump)
1525 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1526 
1527 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1528 	return 0;
1529 }
1530 
1531 /**
1532  * spi_queued_transfer - transfer function for queued transfers
1533  * @spi: spi device which is requesting transfer
1534  * @msg: spi message which is to handled is queued to driver queue
1535  *
1536  * Return: zero on success, else a negative error code.
1537  */
1538 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1539 {
1540 	return __spi_queued_transfer(spi, msg, true);
1541 }
1542 
1543 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1544 {
1545 	int ret;
1546 
1547 	ctlr->transfer = spi_queued_transfer;
1548 	if (!ctlr->transfer_one_message)
1549 		ctlr->transfer_one_message = spi_transfer_one_message;
1550 
1551 	/* Initialize and start queue */
1552 	ret = spi_init_queue(ctlr);
1553 	if (ret) {
1554 		dev_err(&ctlr->dev, "problem initializing queue\n");
1555 		goto err_init_queue;
1556 	}
1557 	ctlr->queued = true;
1558 	ret = spi_start_queue(ctlr);
1559 	if (ret) {
1560 		dev_err(&ctlr->dev, "problem starting queue\n");
1561 		goto err_start_queue;
1562 	}
1563 
1564 	return 0;
1565 
1566 err_start_queue:
1567 	spi_destroy_queue(ctlr);
1568 err_init_queue:
1569 	return ret;
1570 }
1571 
1572 /**
1573  * spi_flush_queue - Send all pending messages in the queue from the callers'
1574  *		     context
1575  * @ctlr: controller to process queue for
1576  *
1577  * This should be used when one wants to ensure all pending messages have been
1578  * sent before doing something. Is used by the spi-mem code to make sure SPI
1579  * memory operations do not preempt regular SPI transfers that have been queued
1580  * before the spi-mem operation.
1581  */
1582 void spi_flush_queue(struct spi_controller *ctlr)
1583 {
1584 	if (ctlr->transfer == spi_queued_transfer)
1585 		__spi_pump_messages(ctlr, false);
1586 }
1587 
1588 /*-------------------------------------------------------------------------*/
1589 
1590 #if defined(CONFIG_OF)
1591 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1592 			   struct device_node *nc)
1593 {
1594 	u32 value;
1595 	int rc;
1596 
1597 	/* Mode (clock phase/polarity/etc.) */
1598 	if (of_property_read_bool(nc, "spi-cpha"))
1599 		spi->mode |= SPI_CPHA;
1600 	if (of_property_read_bool(nc, "spi-cpol"))
1601 		spi->mode |= SPI_CPOL;
1602 	if (of_property_read_bool(nc, "spi-cs-high"))
1603 		spi->mode |= SPI_CS_HIGH;
1604 	if (of_property_read_bool(nc, "spi-3wire"))
1605 		spi->mode |= SPI_3WIRE;
1606 	if (of_property_read_bool(nc, "spi-lsb-first"))
1607 		spi->mode |= SPI_LSB_FIRST;
1608 
1609 	/* Device DUAL/QUAD mode */
1610 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1611 		switch (value) {
1612 		case 1:
1613 			break;
1614 		case 2:
1615 			spi->mode |= SPI_TX_DUAL;
1616 			break;
1617 		case 4:
1618 			spi->mode |= SPI_TX_QUAD;
1619 			break;
1620 		default:
1621 			dev_warn(&ctlr->dev,
1622 				"spi-tx-bus-width %d not supported\n",
1623 				value);
1624 			break;
1625 		}
1626 	}
1627 
1628 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1629 		switch (value) {
1630 		case 1:
1631 			break;
1632 		case 2:
1633 			spi->mode |= SPI_RX_DUAL;
1634 			break;
1635 		case 4:
1636 			spi->mode |= SPI_RX_QUAD;
1637 			break;
1638 		default:
1639 			dev_warn(&ctlr->dev,
1640 				"spi-rx-bus-width %d not supported\n",
1641 				value);
1642 			break;
1643 		}
1644 	}
1645 
1646 	if (spi_controller_is_slave(ctlr)) {
1647 		if (strcmp(nc->name, "slave")) {
1648 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1649 				nc);
1650 			return -EINVAL;
1651 		}
1652 		return 0;
1653 	}
1654 
1655 	/* Device address */
1656 	rc = of_property_read_u32(nc, "reg", &value);
1657 	if (rc) {
1658 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1659 			nc, rc);
1660 		return rc;
1661 	}
1662 	spi->chip_select = value;
1663 
1664 	/* Device speed */
1665 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1666 	if (rc) {
1667 		dev_err(&ctlr->dev,
1668 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1669 		return rc;
1670 	}
1671 	spi->max_speed_hz = value;
1672 
1673 	return 0;
1674 }
1675 
1676 static struct spi_device *
1677 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1678 {
1679 	struct spi_device *spi;
1680 	int rc;
1681 
1682 	/* Alloc an spi_device */
1683 	spi = spi_alloc_device(ctlr);
1684 	if (!spi) {
1685 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1686 		rc = -ENOMEM;
1687 		goto err_out;
1688 	}
1689 
1690 	/* Select device driver */
1691 	rc = of_modalias_node(nc, spi->modalias,
1692 				sizeof(spi->modalias));
1693 	if (rc < 0) {
1694 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1695 		goto err_out;
1696 	}
1697 
1698 	rc = of_spi_parse_dt(ctlr, spi, nc);
1699 	if (rc)
1700 		goto err_out;
1701 
1702 	/* Store a pointer to the node in the device structure */
1703 	of_node_get(nc);
1704 	spi->dev.of_node = nc;
1705 
1706 	/* Register the new device */
1707 	rc = spi_add_device(spi);
1708 	if (rc) {
1709 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1710 		goto err_of_node_put;
1711 	}
1712 
1713 	return spi;
1714 
1715 err_of_node_put:
1716 	of_node_put(nc);
1717 err_out:
1718 	spi_dev_put(spi);
1719 	return ERR_PTR(rc);
1720 }
1721 
1722 /**
1723  * of_register_spi_devices() - Register child devices onto the SPI bus
1724  * @ctlr:	Pointer to spi_controller device
1725  *
1726  * Registers an spi_device for each child node of controller node which
1727  * represents a valid SPI slave.
1728  */
1729 static void of_register_spi_devices(struct spi_controller *ctlr)
1730 {
1731 	struct spi_device *spi;
1732 	struct device_node *nc;
1733 
1734 	if (!ctlr->dev.of_node)
1735 		return;
1736 
1737 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1738 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1739 			continue;
1740 		spi = of_register_spi_device(ctlr, nc);
1741 		if (IS_ERR(spi)) {
1742 			dev_warn(&ctlr->dev,
1743 				 "Failed to create SPI device for %pOF\n", nc);
1744 			of_node_clear_flag(nc, OF_POPULATED);
1745 		}
1746 	}
1747 }
1748 #else
1749 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1750 #endif
1751 
1752 #ifdef CONFIG_ACPI
1753 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1754 {
1755 	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1756 	const union acpi_object *obj;
1757 
1758 	if (!x86_apple_machine)
1759 		return;
1760 
1761 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1762 	    && obj->buffer.length >= 4)
1763 		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1764 
1765 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1766 	    && obj->buffer.length == 8)
1767 		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1768 
1769 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1770 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1771 		spi->mode |= SPI_LSB_FIRST;
1772 
1773 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1774 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1775 		spi->mode |= SPI_CPOL;
1776 
1777 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1778 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1779 		spi->mode |= SPI_CPHA;
1780 }
1781 
1782 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1783 {
1784 	struct spi_device *spi = data;
1785 	struct spi_controller *ctlr = spi->controller;
1786 
1787 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1788 		struct acpi_resource_spi_serialbus *sb;
1789 
1790 		sb = &ares->data.spi_serial_bus;
1791 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1792 			/*
1793 			 * ACPI DeviceSelection numbering is handled by the
1794 			 * host controller driver in Windows and can vary
1795 			 * from driver to driver. In Linux we always expect
1796 			 * 0 .. max - 1 so we need to ask the driver to
1797 			 * translate between the two schemes.
1798 			 */
1799 			if (ctlr->fw_translate_cs) {
1800 				int cs = ctlr->fw_translate_cs(ctlr,
1801 						sb->device_selection);
1802 				if (cs < 0)
1803 					return cs;
1804 				spi->chip_select = cs;
1805 			} else {
1806 				spi->chip_select = sb->device_selection;
1807 			}
1808 
1809 			spi->max_speed_hz = sb->connection_speed;
1810 
1811 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1812 				spi->mode |= SPI_CPHA;
1813 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1814 				spi->mode |= SPI_CPOL;
1815 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1816 				spi->mode |= SPI_CS_HIGH;
1817 		}
1818 	} else if (spi->irq < 0) {
1819 		struct resource r;
1820 
1821 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1822 			spi->irq = r.start;
1823 	}
1824 
1825 	/* Always tell the ACPI core to skip this resource */
1826 	return 1;
1827 }
1828 
1829 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1830 					    struct acpi_device *adev)
1831 {
1832 	struct list_head resource_list;
1833 	struct spi_device *spi;
1834 	int ret;
1835 
1836 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1837 	    acpi_device_enumerated(adev))
1838 		return AE_OK;
1839 
1840 	spi = spi_alloc_device(ctlr);
1841 	if (!spi) {
1842 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1843 			dev_name(&adev->dev));
1844 		return AE_NO_MEMORY;
1845 	}
1846 
1847 	ACPI_COMPANION_SET(&spi->dev, adev);
1848 	spi->irq = -1;
1849 
1850 	INIT_LIST_HEAD(&resource_list);
1851 	ret = acpi_dev_get_resources(adev, &resource_list,
1852 				     acpi_spi_add_resource, spi);
1853 	acpi_dev_free_resource_list(&resource_list);
1854 
1855 	acpi_spi_parse_apple_properties(spi);
1856 
1857 	if (ret < 0 || !spi->max_speed_hz) {
1858 		spi_dev_put(spi);
1859 		return AE_OK;
1860 	}
1861 
1862 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1863 			  sizeof(spi->modalias));
1864 
1865 	if (spi->irq < 0)
1866 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1867 
1868 	acpi_device_set_enumerated(adev);
1869 
1870 	adev->power.flags.ignore_parent = true;
1871 	if (spi_add_device(spi)) {
1872 		adev->power.flags.ignore_parent = false;
1873 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1874 			dev_name(&adev->dev));
1875 		spi_dev_put(spi);
1876 	}
1877 
1878 	return AE_OK;
1879 }
1880 
1881 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1882 				       void *data, void **return_value)
1883 {
1884 	struct spi_controller *ctlr = data;
1885 	struct acpi_device *adev;
1886 
1887 	if (acpi_bus_get_device(handle, &adev))
1888 		return AE_OK;
1889 
1890 	return acpi_register_spi_device(ctlr, adev);
1891 }
1892 
1893 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1894 {
1895 	acpi_status status;
1896 	acpi_handle handle;
1897 
1898 	handle = ACPI_HANDLE(ctlr->dev.parent);
1899 	if (!handle)
1900 		return;
1901 
1902 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1903 				     acpi_spi_add_device, NULL, ctlr, NULL);
1904 	if (ACPI_FAILURE(status))
1905 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1906 }
1907 #else
1908 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1909 #endif /* CONFIG_ACPI */
1910 
1911 static void spi_controller_release(struct device *dev)
1912 {
1913 	struct spi_controller *ctlr;
1914 
1915 	ctlr = container_of(dev, struct spi_controller, dev);
1916 	kfree(ctlr);
1917 }
1918 
1919 static struct class spi_master_class = {
1920 	.name		= "spi_master",
1921 	.owner		= THIS_MODULE,
1922 	.dev_release	= spi_controller_release,
1923 	.dev_groups	= spi_master_groups,
1924 };
1925 
1926 #ifdef CONFIG_SPI_SLAVE
1927 /**
1928  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1929  *		     controller
1930  * @spi: device used for the current transfer
1931  */
1932 int spi_slave_abort(struct spi_device *spi)
1933 {
1934 	struct spi_controller *ctlr = spi->controller;
1935 
1936 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1937 		return ctlr->slave_abort(ctlr);
1938 
1939 	return -ENOTSUPP;
1940 }
1941 EXPORT_SYMBOL_GPL(spi_slave_abort);
1942 
1943 static int match_true(struct device *dev, void *data)
1944 {
1945 	return 1;
1946 }
1947 
1948 static ssize_t spi_slave_show(struct device *dev,
1949 			      struct device_attribute *attr, char *buf)
1950 {
1951 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1952 						   dev);
1953 	struct device *child;
1954 
1955 	child = device_find_child(&ctlr->dev, NULL, match_true);
1956 	return sprintf(buf, "%s\n",
1957 		       child ? to_spi_device(child)->modalias : NULL);
1958 }
1959 
1960 static ssize_t spi_slave_store(struct device *dev,
1961 			       struct device_attribute *attr, const char *buf,
1962 			       size_t count)
1963 {
1964 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1965 						   dev);
1966 	struct spi_device *spi;
1967 	struct device *child;
1968 	char name[32];
1969 	int rc;
1970 
1971 	rc = sscanf(buf, "%31s", name);
1972 	if (rc != 1 || !name[0])
1973 		return -EINVAL;
1974 
1975 	child = device_find_child(&ctlr->dev, NULL, match_true);
1976 	if (child) {
1977 		/* Remove registered slave */
1978 		device_unregister(child);
1979 		put_device(child);
1980 	}
1981 
1982 	if (strcmp(name, "(null)")) {
1983 		/* Register new slave */
1984 		spi = spi_alloc_device(ctlr);
1985 		if (!spi)
1986 			return -ENOMEM;
1987 
1988 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
1989 
1990 		rc = spi_add_device(spi);
1991 		if (rc) {
1992 			spi_dev_put(spi);
1993 			return rc;
1994 		}
1995 	}
1996 
1997 	return count;
1998 }
1999 
2000 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2001 
2002 static struct attribute *spi_slave_attrs[] = {
2003 	&dev_attr_slave.attr,
2004 	NULL,
2005 };
2006 
2007 static const struct attribute_group spi_slave_group = {
2008 	.attrs = spi_slave_attrs,
2009 };
2010 
2011 static const struct attribute_group *spi_slave_groups[] = {
2012 	&spi_controller_statistics_group,
2013 	&spi_slave_group,
2014 	NULL,
2015 };
2016 
2017 static struct class spi_slave_class = {
2018 	.name		= "spi_slave",
2019 	.owner		= THIS_MODULE,
2020 	.dev_release	= spi_controller_release,
2021 	.dev_groups	= spi_slave_groups,
2022 };
2023 #else
2024 extern struct class spi_slave_class;	/* dummy */
2025 #endif
2026 
2027 /**
2028  * __spi_alloc_controller - allocate an SPI master or slave controller
2029  * @dev: the controller, possibly using the platform_bus
2030  * @size: how much zeroed driver-private data to allocate; the pointer to this
2031  *	memory is in the driver_data field of the returned device,
2032  *	accessible with spi_controller_get_devdata().
2033  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2034  *	slave (true) controller
2035  * Context: can sleep
2036  *
2037  * This call is used only by SPI controller drivers, which are the
2038  * only ones directly touching chip registers.  It's how they allocate
2039  * an spi_controller structure, prior to calling spi_register_controller().
2040  *
2041  * This must be called from context that can sleep.
2042  *
2043  * The caller is responsible for assigning the bus number and initializing the
2044  * controller's methods before calling spi_register_controller(); and (after
2045  * errors adding the device) calling spi_controller_put() to prevent a memory
2046  * leak.
2047  *
2048  * Return: the SPI controller structure on success, else NULL.
2049  */
2050 struct spi_controller *__spi_alloc_controller(struct device *dev,
2051 					      unsigned int size, bool slave)
2052 {
2053 	struct spi_controller	*ctlr;
2054 
2055 	if (!dev)
2056 		return NULL;
2057 
2058 	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2059 	if (!ctlr)
2060 		return NULL;
2061 
2062 	device_initialize(&ctlr->dev);
2063 	ctlr->bus_num = -1;
2064 	ctlr->num_chipselect = 1;
2065 	ctlr->slave = slave;
2066 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2067 		ctlr->dev.class = &spi_slave_class;
2068 	else
2069 		ctlr->dev.class = &spi_master_class;
2070 	ctlr->dev.parent = dev;
2071 	pm_suspend_ignore_children(&ctlr->dev, true);
2072 	spi_controller_set_devdata(ctlr, &ctlr[1]);
2073 
2074 	return ctlr;
2075 }
2076 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2077 
2078 #ifdef CONFIG_OF
2079 static int of_spi_register_master(struct spi_controller *ctlr)
2080 {
2081 	int nb, i, *cs;
2082 	struct device_node *np = ctlr->dev.of_node;
2083 
2084 	if (!np)
2085 		return 0;
2086 
2087 	nb = of_gpio_named_count(np, "cs-gpios");
2088 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2089 
2090 	/* Return error only for an incorrectly formed cs-gpios property */
2091 	if (nb == 0 || nb == -ENOENT)
2092 		return 0;
2093 	else if (nb < 0)
2094 		return nb;
2095 
2096 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2097 			  GFP_KERNEL);
2098 	ctlr->cs_gpios = cs;
2099 
2100 	if (!ctlr->cs_gpios)
2101 		return -ENOMEM;
2102 
2103 	for (i = 0; i < ctlr->num_chipselect; i++)
2104 		cs[i] = -ENOENT;
2105 
2106 	for (i = 0; i < nb; i++)
2107 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2108 
2109 	return 0;
2110 }
2111 #else
2112 static int of_spi_register_master(struct spi_controller *ctlr)
2113 {
2114 	return 0;
2115 }
2116 #endif
2117 
2118 static int spi_controller_check_ops(struct spi_controller *ctlr)
2119 {
2120 	/*
2121 	 * The controller may implement only the high-level SPI-memory like
2122 	 * operations if it does not support regular SPI transfers, and this is
2123 	 * valid use case.
2124 	 * If ->mem_ops is NULL, we request that at least one of the
2125 	 * ->transfer_xxx() method be implemented.
2126 	 */
2127 	if (ctlr->mem_ops) {
2128 		if (!ctlr->mem_ops->exec_op)
2129 			return -EINVAL;
2130 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2131 		   !ctlr->transfer_one_message) {
2132 		return -EINVAL;
2133 	}
2134 
2135 	return 0;
2136 }
2137 
2138 /**
2139  * spi_register_controller - register SPI master or slave controller
2140  * @ctlr: initialized master, originally from spi_alloc_master() or
2141  *	spi_alloc_slave()
2142  * Context: can sleep
2143  *
2144  * SPI controllers connect to their drivers using some non-SPI bus,
2145  * such as the platform bus.  The final stage of probe() in that code
2146  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2147  *
2148  * SPI controllers use board specific (often SOC specific) bus numbers,
2149  * and board-specific addressing for SPI devices combines those numbers
2150  * with chip select numbers.  Since SPI does not directly support dynamic
2151  * device identification, boards need configuration tables telling which
2152  * chip is at which address.
2153  *
2154  * This must be called from context that can sleep.  It returns zero on
2155  * success, else a negative error code (dropping the controller's refcount).
2156  * After a successful return, the caller is responsible for calling
2157  * spi_unregister_controller().
2158  *
2159  * Return: zero on success, else a negative error code.
2160  */
2161 int spi_register_controller(struct spi_controller *ctlr)
2162 {
2163 	struct device		*dev = ctlr->dev.parent;
2164 	struct boardinfo	*bi;
2165 	int			status = -ENODEV;
2166 	int			id, first_dynamic;
2167 
2168 	if (!dev)
2169 		return -ENODEV;
2170 
2171 	/*
2172 	 * Make sure all necessary hooks are implemented before registering
2173 	 * the SPI controller.
2174 	 */
2175 	status = spi_controller_check_ops(ctlr);
2176 	if (status)
2177 		return status;
2178 
2179 	if (!spi_controller_is_slave(ctlr)) {
2180 		status = of_spi_register_master(ctlr);
2181 		if (status)
2182 			return status;
2183 	}
2184 
2185 	/* even if it's just one always-selected device, there must
2186 	 * be at least one chipselect
2187 	 */
2188 	if (ctlr->num_chipselect == 0)
2189 		return -EINVAL;
2190 	if (ctlr->bus_num >= 0) {
2191 		/* devices with a fixed bus num must check-in with the num */
2192 		mutex_lock(&board_lock);
2193 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2194 			ctlr->bus_num + 1, GFP_KERNEL);
2195 		mutex_unlock(&board_lock);
2196 		if (WARN(id < 0, "couldn't get idr"))
2197 			return id == -ENOSPC ? -EBUSY : id;
2198 		ctlr->bus_num = id;
2199 	} else if (ctlr->dev.of_node) {
2200 		/* allocate dynamic bus number using Linux idr */
2201 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2202 		if (id >= 0) {
2203 			ctlr->bus_num = id;
2204 			mutex_lock(&board_lock);
2205 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2206 				       ctlr->bus_num + 1, GFP_KERNEL);
2207 			mutex_unlock(&board_lock);
2208 			if (WARN(id < 0, "couldn't get idr"))
2209 				return id == -ENOSPC ? -EBUSY : id;
2210 		}
2211 	}
2212 	if (ctlr->bus_num < 0) {
2213 		first_dynamic = of_alias_get_highest_id("spi");
2214 		if (first_dynamic < 0)
2215 			first_dynamic = 0;
2216 		else
2217 			first_dynamic++;
2218 
2219 		mutex_lock(&board_lock);
2220 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2221 			       0, GFP_KERNEL);
2222 		mutex_unlock(&board_lock);
2223 		if (WARN(id < 0, "couldn't get idr"))
2224 			return id;
2225 		ctlr->bus_num = id;
2226 	}
2227 	INIT_LIST_HEAD(&ctlr->queue);
2228 	spin_lock_init(&ctlr->queue_lock);
2229 	spin_lock_init(&ctlr->bus_lock_spinlock);
2230 	mutex_init(&ctlr->bus_lock_mutex);
2231 	mutex_init(&ctlr->io_mutex);
2232 	ctlr->bus_lock_flag = 0;
2233 	init_completion(&ctlr->xfer_completion);
2234 	if (!ctlr->max_dma_len)
2235 		ctlr->max_dma_len = INT_MAX;
2236 
2237 	/* register the device, then userspace will see it.
2238 	 * registration fails if the bus ID is in use.
2239 	 */
2240 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2241 	status = device_add(&ctlr->dev);
2242 	if (status < 0) {
2243 		/* free bus id */
2244 		mutex_lock(&board_lock);
2245 		idr_remove(&spi_master_idr, ctlr->bus_num);
2246 		mutex_unlock(&board_lock);
2247 		goto done;
2248 	}
2249 	dev_dbg(dev, "registered %s %s\n",
2250 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2251 			dev_name(&ctlr->dev));
2252 
2253 	/*
2254 	 * If we're using a queued driver, start the queue. Note that we don't
2255 	 * need the queueing logic if the driver is only supporting high-level
2256 	 * memory operations.
2257 	 */
2258 	if (ctlr->transfer) {
2259 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2260 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2261 		status = spi_controller_initialize_queue(ctlr);
2262 		if (status) {
2263 			device_del(&ctlr->dev);
2264 			/* free bus id */
2265 			mutex_lock(&board_lock);
2266 			idr_remove(&spi_master_idr, ctlr->bus_num);
2267 			mutex_unlock(&board_lock);
2268 			goto done;
2269 		}
2270 	}
2271 	/* add statistics */
2272 	spin_lock_init(&ctlr->statistics.lock);
2273 
2274 	mutex_lock(&board_lock);
2275 	list_add_tail(&ctlr->list, &spi_controller_list);
2276 	list_for_each_entry(bi, &board_list, list)
2277 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2278 	mutex_unlock(&board_lock);
2279 
2280 	/* Register devices from the device tree and ACPI */
2281 	of_register_spi_devices(ctlr);
2282 	acpi_register_spi_devices(ctlr);
2283 done:
2284 	return status;
2285 }
2286 EXPORT_SYMBOL_GPL(spi_register_controller);
2287 
2288 static void devm_spi_unregister(struct device *dev, void *res)
2289 {
2290 	spi_unregister_controller(*(struct spi_controller **)res);
2291 }
2292 
2293 /**
2294  * devm_spi_register_controller - register managed SPI master or slave
2295  *	controller
2296  * @dev:    device managing SPI controller
2297  * @ctlr: initialized controller, originally from spi_alloc_master() or
2298  *	spi_alloc_slave()
2299  * Context: can sleep
2300  *
2301  * Register a SPI device as with spi_register_controller() which will
2302  * automatically be unregistered and freed.
2303  *
2304  * Return: zero on success, else a negative error code.
2305  */
2306 int devm_spi_register_controller(struct device *dev,
2307 				 struct spi_controller *ctlr)
2308 {
2309 	struct spi_controller **ptr;
2310 	int ret;
2311 
2312 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2313 	if (!ptr)
2314 		return -ENOMEM;
2315 
2316 	ret = spi_register_controller(ctlr);
2317 	if (!ret) {
2318 		*ptr = ctlr;
2319 		devres_add(dev, ptr);
2320 	} else {
2321 		devres_free(ptr);
2322 	}
2323 
2324 	return ret;
2325 }
2326 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2327 
2328 static int __unregister(struct device *dev, void *null)
2329 {
2330 	spi_unregister_device(to_spi_device(dev));
2331 	return 0;
2332 }
2333 
2334 /**
2335  * spi_unregister_controller - unregister SPI master or slave controller
2336  * @ctlr: the controller being unregistered
2337  * Context: can sleep
2338  *
2339  * This call is used only by SPI controller drivers, which are the
2340  * only ones directly touching chip registers.
2341  *
2342  * This must be called from context that can sleep.
2343  *
2344  * Note that this function also drops a reference to the controller.
2345  */
2346 void spi_unregister_controller(struct spi_controller *ctlr)
2347 {
2348 	struct spi_controller *found;
2349 	int id = ctlr->bus_num;
2350 	int dummy;
2351 
2352 	/* First make sure that this controller was ever added */
2353 	mutex_lock(&board_lock);
2354 	found = idr_find(&spi_master_idr, id);
2355 	mutex_unlock(&board_lock);
2356 	if (ctlr->queued) {
2357 		if (spi_destroy_queue(ctlr))
2358 			dev_err(&ctlr->dev, "queue remove failed\n");
2359 	}
2360 	mutex_lock(&board_lock);
2361 	list_del(&ctlr->list);
2362 	mutex_unlock(&board_lock);
2363 
2364 	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2365 	device_unregister(&ctlr->dev);
2366 	/* free bus id */
2367 	mutex_lock(&board_lock);
2368 	if (found == ctlr)
2369 		idr_remove(&spi_master_idr, id);
2370 	mutex_unlock(&board_lock);
2371 }
2372 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2373 
2374 int spi_controller_suspend(struct spi_controller *ctlr)
2375 {
2376 	int ret;
2377 
2378 	/* Basically no-ops for non-queued controllers */
2379 	if (!ctlr->queued)
2380 		return 0;
2381 
2382 	ret = spi_stop_queue(ctlr);
2383 	if (ret)
2384 		dev_err(&ctlr->dev, "queue stop failed\n");
2385 
2386 	return ret;
2387 }
2388 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2389 
2390 int spi_controller_resume(struct spi_controller *ctlr)
2391 {
2392 	int ret;
2393 
2394 	if (!ctlr->queued)
2395 		return 0;
2396 
2397 	ret = spi_start_queue(ctlr);
2398 	if (ret)
2399 		dev_err(&ctlr->dev, "queue restart failed\n");
2400 
2401 	return ret;
2402 }
2403 EXPORT_SYMBOL_GPL(spi_controller_resume);
2404 
2405 static int __spi_controller_match(struct device *dev, const void *data)
2406 {
2407 	struct spi_controller *ctlr;
2408 	const u16 *bus_num = data;
2409 
2410 	ctlr = container_of(dev, struct spi_controller, dev);
2411 	return ctlr->bus_num == *bus_num;
2412 }
2413 
2414 /**
2415  * spi_busnum_to_master - look up master associated with bus_num
2416  * @bus_num: the master's bus number
2417  * Context: can sleep
2418  *
2419  * This call may be used with devices that are registered after
2420  * arch init time.  It returns a refcounted pointer to the relevant
2421  * spi_controller (which the caller must release), or NULL if there is
2422  * no such master registered.
2423  *
2424  * Return: the SPI master structure on success, else NULL.
2425  */
2426 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2427 {
2428 	struct device		*dev;
2429 	struct spi_controller	*ctlr = NULL;
2430 
2431 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2432 				__spi_controller_match);
2433 	if (dev)
2434 		ctlr = container_of(dev, struct spi_controller, dev);
2435 	/* reference got in class_find_device */
2436 	return ctlr;
2437 }
2438 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2439 
2440 /*-------------------------------------------------------------------------*/
2441 
2442 /* Core methods for SPI resource management */
2443 
2444 /**
2445  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2446  *                 during the processing of a spi_message while using
2447  *                 spi_transfer_one
2448  * @spi:     the spi device for which we allocate memory
2449  * @release: the release code to execute for this resource
2450  * @size:    size to alloc and return
2451  * @gfp:     GFP allocation flags
2452  *
2453  * Return: the pointer to the allocated data
2454  *
2455  * This may get enhanced in the future to allocate from a memory pool
2456  * of the @spi_device or @spi_controller to avoid repeated allocations.
2457  */
2458 void *spi_res_alloc(struct spi_device *spi,
2459 		    spi_res_release_t release,
2460 		    size_t size, gfp_t gfp)
2461 {
2462 	struct spi_res *sres;
2463 
2464 	sres = kzalloc(sizeof(*sres) + size, gfp);
2465 	if (!sres)
2466 		return NULL;
2467 
2468 	INIT_LIST_HEAD(&sres->entry);
2469 	sres->release = release;
2470 
2471 	return sres->data;
2472 }
2473 EXPORT_SYMBOL_GPL(spi_res_alloc);
2474 
2475 /**
2476  * spi_res_free - free an spi resource
2477  * @res: pointer to the custom data of a resource
2478  *
2479  */
2480 void spi_res_free(void *res)
2481 {
2482 	struct spi_res *sres = container_of(res, struct spi_res, data);
2483 
2484 	if (!res)
2485 		return;
2486 
2487 	WARN_ON(!list_empty(&sres->entry));
2488 	kfree(sres);
2489 }
2490 EXPORT_SYMBOL_GPL(spi_res_free);
2491 
2492 /**
2493  * spi_res_add - add a spi_res to the spi_message
2494  * @message: the spi message
2495  * @res:     the spi_resource
2496  */
2497 void spi_res_add(struct spi_message *message, void *res)
2498 {
2499 	struct spi_res *sres = container_of(res, struct spi_res, data);
2500 
2501 	WARN_ON(!list_empty(&sres->entry));
2502 	list_add_tail(&sres->entry, &message->resources);
2503 }
2504 EXPORT_SYMBOL_GPL(spi_res_add);
2505 
2506 /**
2507  * spi_res_release - release all spi resources for this message
2508  * @ctlr:  the @spi_controller
2509  * @message: the @spi_message
2510  */
2511 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2512 {
2513 	struct spi_res *res;
2514 
2515 	while (!list_empty(&message->resources)) {
2516 		res = list_last_entry(&message->resources,
2517 				      struct spi_res, entry);
2518 
2519 		if (res->release)
2520 			res->release(ctlr, message, res->data);
2521 
2522 		list_del(&res->entry);
2523 
2524 		kfree(res);
2525 	}
2526 }
2527 EXPORT_SYMBOL_GPL(spi_res_release);
2528 
2529 /*-------------------------------------------------------------------------*/
2530 
2531 /* Core methods for spi_message alterations */
2532 
2533 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2534 					    struct spi_message *msg,
2535 					    void *res)
2536 {
2537 	struct spi_replaced_transfers *rxfer = res;
2538 	size_t i;
2539 
2540 	/* call extra callback if requested */
2541 	if (rxfer->release)
2542 		rxfer->release(ctlr, msg, res);
2543 
2544 	/* insert replaced transfers back into the message */
2545 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2546 
2547 	/* remove the formerly inserted entries */
2548 	for (i = 0; i < rxfer->inserted; i++)
2549 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2550 }
2551 
2552 /**
2553  * spi_replace_transfers - replace transfers with several transfers
2554  *                         and register change with spi_message.resources
2555  * @msg:           the spi_message we work upon
2556  * @xfer_first:    the first spi_transfer we want to replace
2557  * @remove:        number of transfers to remove
2558  * @insert:        the number of transfers we want to insert instead
2559  * @release:       extra release code necessary in some circumstances
2560  * @extradatasize: extra data to allocate (with alignment guarantees
2561  *                 of struct @spi_transfer)
2562  * @gfp:           gfp flags
2563  *
2564  * Returns: pointer to @spi_replaced_transfers,
2565  *          PTR_ERR(...) in case of errors.
2566  */
2567 struct spi_replaced_transfers *spi_replace_transfers(
2568 	struct spi_message *msg,
2569 	struct spi_transfer *xfer_first,
2570 	size_t remove,
2571 	size_t insert,
2572 	spi_replaced_release_t release,
2573 	size_t extradatasize,
2574 	gfp_t gfp)
2575 {
2576 	struct spi_replaced_transfers *rxfer;
2577 	struct spi_transfer *xfer;
2578 	size_t i;
2579 
2580 	/* allocate the structure using spi_res */
2581 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2582 			      insert * sizeof(struct spi_transfer)
2583 			      + sizeof(struct spi_replaced_transfers)
2584 			      + extradatasize,
2585 			      gfp);
2586 	if (!rxfer)
2587 		return ERR_PTR(-ENOMEM);
2588 
2589 	/* the release code to invoke before running the generic release */
2590 	rxfer->release = release;
2591 
2592 	/* assign extradata */
2593 	if (extradatasize)
2594 		rxfer->extradata =
2595 			&rxfer->inserted_transfers[insert];
2596 
2597 	/* init the replaced_transfers list */
2598 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2599 
2600 	/* assign the list_entry after which we should reinsert
2601 	 * the @replaced_transfers - it may be spi_message.messages!
2602 	 */
2603 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2604 
2605 	/* remove the requested number of transfers */
2606 	for (i = 0; i < remove; i++) {
2607 		/* if the entry after replaced_after it is msg->transfers
2608 		 * then we have been requested to remove more transfers
2609 		 * than are in the list
2610 		 */
2611 		if (rxfer->replaced_after->next == &msg->transfers) {
2612 			dev_err(&msg->spi->dev,
2613 				"requested to remove more spi_transfers than are available\n");
2614 			/* insert replaced transfers back into the message */
2615 			list_splice(&rxfer->replaced_transfers,
2616 				    rxfer->replaced_after);
2617 
2618 			/* free the spi_replace_transfer structure */
2619 			spi_res_free(rxfer);
2620 
2621 			/* and return with an error */
2622 			return ERR_PTR(-EINVAL);
2623 		}
2624 
2625 		/* remove the entry after replaced_after from list of
2626 		 * transfers and add it to list of replaced_transfers
2627 		 */
2628 		list_move_tail(rxfer->replaced_after->next,
2629 			       &rxfer->replaced_transfers);
2630 	}
2631 
2632 	/* create copy of the given xfer with identical settings
2633 	 * based on the first transfer to get removed
2634 	 */
2635 	for (i = 0; i < insert; i++) {
2636 		/* we need to run in reverse order */
2637 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2638 
2639 		/* copy all spi_transfer data */
2640 		memcpy(xfer, xfer_first, sizeof(*xfer));
2641 
2642 		/* add to list */
2643 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2644 
2645 		/* clear cs_change and delay_usecs for all but the last */
2646 		if (i) {
2647 			xfer->cs_change = false;
2648 			xfer->delay_usecs = 0;
2649 		}
2650 	}
2651 
2652 	/* set up inserted */
2653 	rxfer->inserted = insert;
2654 
2655 	/* and register it with spi_res/spi_message */
2656 	spi_res_add(msg, rxfer);
2657 
2658 	return rxfer;
2659 }
2660 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2661 
2662 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2663 					struct spi_message *msg,
2664 					struct spi_transfer **xferp,
2665 					size_t maxsize,
2666 					gfp_t gfp)
2667 {
2668 	struct spi_transfer *xfer = *xferp, *xfers;
2669 	struct spi_replaced_transfers *srt;
2670 	size_t offset;
2671 	size_t count, i;
2672 
2673 	/* warn once about this fact that we are splitting a transfer */
2674 	dev_warn_once(&msg->spi->dev,
2675 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2676 		      xfer->len, maxsize);
2677 
2678 	/* calculate how many we have to replace */
2679 	count = DIV_ROUND_UP(xfer->len, maxsize);
2680 
2681 	/* create replacement */
2682 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2683 	if (IS_ERR(srt))
2684 		return PTR_ERR(srt);
2685 	xfers = srt->inserted_transfers;
2686 
2687 	/* now handle each of those newly inserted spi_transfers
2688 	 * note that the replacements spi_transfers all are preset
2689 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2690 	 * are all identical (as well as most others)
2691 	 * so we just have to fix up len and the pointers.
2692 	 *
2693 	 * this also includes support for the depreciated
2694 	 * spi_message.is_dma_mapped interface
2695 	 */
2696 
2697 	/* the first transfer just needs the length modified, so we
2698 	 * run it outside the loop
2699 	 */
2700 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2701 
2702 	/* all the others need rx_buf/tx_buf also set */
2703 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2704 		/* update rx_buf, tx_buf and dma */
2705 		if (xfers[i].rx_buf)
2706 			xfers[i].rx_buf += offset;
2707 		if (xfers[i].rx_dma)
2708 			xfers[i].rx_dma += offset;
2709 		if (xfers[i].tx_buf)
2710 			xfers[i].tx_buf += offset;
2711 		if (xfers[i].tx_dma)
2712 			xfers[i].tx_dma += offset;
2713 
2714 		/* update length */
2715 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2716 	}
2717 
2718 	/* we set up xferp to the last entry we have inserted,
2719 	 * so that we skip those already split transfers
2720 	 */
2721 	*xferp = &xfers[count - 1];
2722 
2723 	/* increment statistics counters */
2724 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2725 				       transfers_split_maxsize);
2726 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2727 				       transfers_split_maxsize);
2728 
2729 	return 0;
2730 }
2731 
2732 /**
2733  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2734  *                              when an individual transfer exceeds a
2735  *                              certain size
2736  * @ctlr:    the @spi_controller for this transfer
2737  * @msg:   the @spi_message to transform
2738  * @maxsize:  the maximum when to apply this
2739  * @gfp: GFP allocation flags
2740  *
2741  * Return: status of transformation
2742  */
2743 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2744 				struct spi_message *msg,
2745 				size_t maxsize,
2746 				gfp_t gfp)
2747 {
2748 	struct spi_transfer *xfer;
2749 	int ret;
2750 
2751 	/* iterate over the transfer_list,
2752 	 * but note that xfer is advanced to the last transfer inserted
2753 	 * to avoid checking sizes again unnecessarily (also xfer does
2754 	 * potentiall belong to a different list by the time the
2755 	 * replacement has happened
2756 	 */
2757 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2758 		if (xfer->len > maxsize) {
2759 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2760 							   maxsize, gfp);
2761 			if (ret)
2762 				return ret;
2763 		}
2764 	}
2765 
2766 	return 0;
2767 }
2768 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2769 
2770 /*-------------------------------------------------------------------------*/
2771 
2772 /* Core methods for SPI controller protocol drivers.  Some of the
2773  * other core methods are currently defined as inline functions.
2774  */
2775 
2776 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2777 					u8 bits_per_word)
2778 {
2779 	if (ctlr->bits_per_word_mask) {
2780 		/* Only 32 bits fit in the mask */
2781 		if (bits_per_word > 32)
2782 			return -EINVAL;
2783 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2784 			return -EINVAL;
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 /**
2791  * spi_setup - setup SPI mode and clock rate
2792  * @spi: the device whose settings are being modified
2793  * Context: can sleep, and no requests are queued to the device
2794  *
2795  * SPI protocol drivers may need to update the transfer mode if the
2796  * device doesn't work with its default.  They may likewise need
2797  * to update clock rates or word sizes from initial values.  This function
2798  * changes those settings, and must be called from a context that can sleep.
2799  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2800  * effect the next time the device is selected and data is transferred to
2801  * or from it.  When this function returns, the spi device is deselected.
2802  *
2803  * Note that this call will fail if the protocol driver specifies an option
2804  * that the underlying controller or its driver does not support.  For
2805  * example, not all hardware supports wire transfers using nine bit words,
2806  * LSB-first wire encoding, or active-high chipselects.
2807  *
2808  * Return: zero on success, else a negative error code.
2809  */
2810 int spi_setup(struct spi_device *spi)
2811 {
2812 	unsigned	bad_bits, ugly_bits;
2813 	int		status;
2814 
2815 	/* check mode to prevent that DUAL and QUAD set at the same time
2816 	 */
2817 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2818 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2819 		dev_err(&spi->dev,
2820 		"setup: can not select dual and quad at the same time\n");
2821 		return -EINVAL;
2822 	}
2823 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2824 	 */
2825 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2826 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2827 		return -EINVAL;
2828 	/* help drivers fail *cleanly* when they need options
2829 	 * that aren't supported with their current controller
2830 	 * SPI_CS_WORD has a fallback software implementation,
2831 	 * so it is ignored here.
2832 	 */
2833 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
2834 	ugly_bits = bad_bits &
2835 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2836 	if (ugly_bits) {
2837 		dev_warn(&spi->dev,
2838 			 "setup: ignoring unsupported mode bits %x\n",
2839 			 ugly_bits);
2840 		spi->mode &= ~ugly_bits;
2841 		bad_bits &= ~ugly_bits;
2842 	}
2843 	if (bad_bits) {
2844 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2845 			bad_bits);
2846 		return -EINVAL;
2847 	}
2848 
2849 	if (!spi->bits_per_word)
2850 		spi->bits_per_word = 8;
2851 
2852 	status = __spi_validate_bits_per_word(spi->controller,
2853 					      spi->bits_per_word);
2854 	if (status)
2855 		return status;
2856 
2857 	if (!spi->max_speed_hz)
2858 		spi->max_speed_hz = spi->controller->max_speed_hz;
2859 
2860 	if (spi->controller->setup)
2861 		status = spi->controller->setup(spi);
2862 
2863 	spi_set_cs(spi, false);
2864 
2865 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2866 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2867 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2868 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2869 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2870 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2871 			spi->bits_per_word, spi->max_speed_hz,
2872 			status);
2873 
2874 	return status;
2875 }
2876 EXPORT_SYMBOL_GPL(spi_setup);
2877 
2878 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2879 {
2880 	struct spi_controller *ctlr = spi->controller;
2881 	struct spi_transfer *xfer;
2882 	int w_size;
2883 
2884 	if (list_empty(&message->transfers))
2885 		return -EINVAL;
2886 
2887 	/* If an SPI controller does not support toggling the CS line on each
2888 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
2889 	 * for the CS line, we can emulate the CS-per-word hardware function by
2890 	 * splitting transfers into one-word transfers and ensuring that
2891 	 * cs_change is set for each transfer.
2892 	 */
2893 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
2894 					  gpio_is_valid(spi->cs_gpio))) {
2895 		size_t maxsize;
2896 		int ret;
2897 
2898 		maxsize = (spi->bits_per_word + 7) / 8;
2899 
2900 		/* spi_split_transfers_maxsize() requires message->spi */
2901 		message->spi = spi;
2902 
2903 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
2904 						  GFP_KERNEL);
2905 		if (ret)
2906 			return ret;
2907 
2908 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2909 			/* don't change cs_change on the last entry in the list */
2910 			if (list_is_last(&xfer->transfer_list, &message->transfers))
2911 				break;
2912 			xfer->cs_change = 1;
2913 		}
2914 	}
2915 
2916 	/* Half-duplex links include original MicroWire, and ones with
2917 	 * only one data pin like SPI_3WIRE (switches direction) or where
2918 	 * either MOSI or MISO is missing.  They can also be caused by
2919 	 * software limitations.
2920 	 */
2921 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2922 	    (spi->mode & SPI_3WIRE)) {
2923 		unsigned flags = ctlr->flags;
2924 
2925 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2926 			if (xfer->rx_buf && xfer->tx_buf)
2927 				return -EINVAL;
2928 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2929 				return -EINVAL;
2930 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2931 				return -EINVAL;
2932 		}
2933 	}
2934 
2935 	/**
2936 	 * Set transfer bits_per_word and max speed as spi device default if
2937 	 * it is not set for this transfer.
2938 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2939 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2940 	 */
2941 	message->frame_length = 0;
2942 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2943 		message->frame_length += xfer->len;
2944 		if (!xfer->bits_per_word)
2945 			xfer->bits_per_word = spi->bits_per_word;
2946 
2947 		if (!xfer->speed_hz)
2948 			xfer->speed_hz = spi->max_speed_hz;
2949 		if (!xfer->speed_hz)
2950 			xfer->speed_hz = ctlr->max_speed_hz;
2951 
2952 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2953 			xfer->speed_hz = ctlr->max_speed_hz;
2954 
2955 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2956 			return -EINVAL;
2957 
2958 		/*
2959 		 * SPI transfer length should be multiple of SPI word size
2960 		 * where SPI word size should be power-of-two multiple
2961 		 */
2962 		if (xfer->bits_per_word <= 8)
2963 			w_size = 1;
2964 		else if (xfer->bits_per_word <= 16)
2965 			w_size = 2;
2966 		else
2967 			w_size = 4;
2968 
2969 		/* No partial transfers accepted */
2970 		if (xfer->len % w_size)
2971 			return -EINVAL;
2972 
2973 		if (xfer->speed_hz && ctlr->min_speed_hz &&
2974 		    xfer->speed_hz < ctlr->min_speed_hz)
2975 			return -EINVAL;
2976 
2977 		if (xfer->tx_buf && !xfer->tx_nbits)
2978 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2979 		if (xfer->rx_buf && !xfer->rx_nbits)
2980 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2981 		/* check transfer tx/rx_nbits:
2982 		 * 1. check the value matches one of single, dual and quad
2983 		 * 2. check tx/rx_nbits match the mode in spi_device
2984 		 */
2985 		if (xfer->tx_buf) {
2986 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2987 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2988 				xfer->tx_nbits != SPI_NBITS_QUAD)
2989 				return -EINVAL;
2990 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2991 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2992 				return -EINVAL;
2993 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2994 				!(spi->mode & SPI_TX_QUAD))
2995 				return -EINVAL;
2996 		}
2997 		/* check transfer rx_nbits */
2998 		if (xfer->rx_buf) {
2999 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3000 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3001 				xfer->rx_nbits != SPI_NBITS_QUAD)
3002 				return -EINVAL;
3003 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3004 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3005 				return -EINVAL;
3006 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3007 				!(spi->mode & SPI_RX_QUAD))
3008 				return -EINVAL;
3009 		}
3010 	}
3011 
3012 	message->status = -EINPROGRESS;
3013 
3014 	return 0;
3015 }
3016 
3017 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3018 {
3019 	struct spi_controller *ctlr = spi->controller;
3020 
3021 	/*
3022 	 * Some controllers do not support doing regular SPI transfers. Return
3023 	 * ENOTSUPP when this is the case.
3024 	 */
3025 	if (!ctlr->transfer)
3026 		return -ENOTSUPP;
3027 
3028 	message->spi = spi;
3029 
3030 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3031 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3032 
3033 	trace_spi_message_submit(message);
3034 
3035 	return ctlr->transfer(spi, message);
3036 }
3037 
3038 /**
3039  * spi_async - asynchronous SPI transfer
3040  * @spi: device with which data will be exchanged
3041  * @message: describes the data transfers, including completion callback
3042  * Context: any (irqs may be blocked, etc)
3043  *
3044  * This call may be used in_irq and other contexts which can't sleep,
3045  * as well as from task contexts which can sleep.
3046  *
3047  * The completion callback is invoked in a context which can't sleep.
3048  * Before that invocation, the value of message->status is undefined.
3049  * When the callback is issued, message->status holds either zero (to
3050  * indicate complete success) or a negative error code.  After that
3051  * callback returns, the driver which issued the transfer request may
3052  * deallocate the associated memory; it's no longer in use by any SPI
3053  * core or controller driver code.
3054  *
3055  * Note that although all messages to a spi_device are handled in
3056  * FIFO order, messages may go to different devices in other orders.
3057  * Some device might be higher priority, or have various "hard" access
3058  * time requirements, for example.
3059  *
3060  * On detection of any fault during the transfer, processing of
3061  * the entire message is aborted, and the device is deselected.
3062  * Until returning from the associated message completion callback,
3063  * no other spi_message queued to that device will be processed.
3064  * (This rule applies equally to all the synchronous transfer calls,
3065  * which are wrappers around this core asynchronous primitive.)
3066  *
3067  * Return: zero on success, else a negative error code.
3068  */
3069 int spi_async(struct spi_device *spi, struct spi_message *message)
3070 {
3071 	struct spi_controller *ctlr = spi->controller;
3072 	int ret;
3073 	unsigned long flags;
3074 
3075 	ret = __spi_validate(spi, message);
3076 	if (ret != 0)
3077 		return ret;
3078 
3079 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3080 
3081 	if (ctlr->bus_lock_flag)
3082 		ret = -EBUSY;
3083 	else
3084 		ret = __spi_async(spi, message);
3085 
3086 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3087 
3088 	return ret;
3089 }
3090 EXPORT_SYMBOL_GPL(spi_async);
3091 
3092 /**
3093  * spi_async_locked - version of spi_async with exclusive bus usage
3094  * @spi: device with which data will be exchanged
3095  * @message: describes the data transfers, including completion callback
3096  * Context: any (irqs may be blocked, etc)
3097  *
3098  * This call may be used in_irq and other contexts which can't sleep,
3099  * as well as from task contexts which can sleep.
3100  *
3101  * The completion callback is invoked in a context which can't sleep.
3102  * Before that invocation, the value of message->status is undefined.
3103  * When the callback is issued, message->status holds either zero (to
3104  * indicate complete success) or a negative error code.  After that
3105  * callback returns, the driver which issued the transfer request may
3106  * deallocate the associated memory; it's no longer in use by any SPI
3107  * core or controller driver code.
3108  *
3109  * Note that although all messages to a spi_device are handled in
3110  * FIFO order, messages may go to different devices in other orders.
3111  * Some device might be higher priority, or have various "hard" access
3112  * time requirements, for example.
3113  *
3114  * On detection of any fault during the transfer, processing of
3115  * the entire message is aborted, and the device is deselected.
3116  * Until returning from the associated message completion callback,
3117  * no other spi_message queued to that device will be processed.
3118  * (This rule applies equally to all the synchronous transfer calls,
3119  * which are wrappers around this core asynchronous primitive.)
3120  *
3121  * Return: zero on success, else a negative error code.
3122  */
3123 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3124 {
3125 	struct spi_controller *ctlr = spi->controller;
3126 	int ret;
3127 	unsigned long flags;
3128 
3129 	ret = __spi_validate(spi, message);
3130 	if (ret != 0)
3131 		return ret;
3132 
3133 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3134 
3135 	ret = __spi_async(spi, message);
3136 
3137 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3138 
3139 	return ret;
3140 
3141 }
3142 EXPORT_SYMBOL_GPL(spi_async_locked);
3143 
3144 /*-------------------------------------------------------------------------*/
3145 
3146 /* Utility methods for SPI protocol drivers, layered on
3147  * top of the core.  Some other utility methods are defined as
3148  * inline functions.
3149  */
3150 
3151 static void spi_complete(void *arg)
3152 {
3153 	complete(arg);
3154 }
3155 
3156 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3157 {
3158 	DECLARE_COMPLETION_ONSTACK(done);
3159 	int status;
3160 	struct spi_controller *ctlr = spi->controller;
3161 	unsigned long flags;
3162 
3163 	status = __spi_validate(spi, message);
3164 	if (status != 0)
3165 		return status;
3166 
3167 	message->complete = spi_complete;
3168 	message->context = &done;
3169 	message->spi = spi;
3170 
3171 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3172 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3173 
3174 	/* If we're not using the legacy transfer method then we will
3175 	 * try to transfer in the calling context so special case.
3176 	 * This code would be less tricky if we could remove the
3177 	 * support for driver implemented message queues.
3178 	 */
3179 	if (ctlr->transfer == spi_queued_transfer) {
3180 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3181 
3182 		trace_spi_message_submit(message);
3183 
3184 		status = __spi_queued_transfer(spi, message, false);
3185 
3186 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3187 	} else {
3188 		status = spi_async_locked(spi, message);
3189 	}
3190 
3191 	if (status == 0) {
3192 		/* Push out the messages in the calling context if we
3193 		 * can.
3194 		 */
3195 		if (ctlr->transfer == spi_queued_transfer) {
3196 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3197 						       spi_sync_immediate);
3198 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3199 						       spi_sync_immediate);
3200 			__spi_pump_messages(ctlr, false);
3201 		}
3202 
3203 		wait_for_completion(&done);
3204 		status = message->status;
3205 	}
3206 	message->context = NULL;
3207 	return status;
3208 }
3209 
3210 /**
3211  * spi_sync - blocking/synchronous SPI data transfers
3212  * @spi: device with which data will be exchanged
3213  * @message: describes the data transfers
3214  * Context: can sleep
3215  *
3216  * This call may only be used from a context that may sleep.  The sleep
3217  * is non-interruptible, and has no timeout.  Low-overhead controller
3218  * drivers may DMA directly into and out of the message buffers.
3219  *
3220  * Note that the SPI device's chip select is active during the message,
3221  * and then is normally disabled between messages.  Drivers for some
3222  * frequently-used devices may want to minimize costs of selecting a chip,
3223  * by leaving it selected in anticipation that the next message will go
3224  * to the same chip.  (That may increase power usage.)
3225  *
3226  * Also, the caller is guaranteeing that the memory associated with the
3227  * message will not be freed before this call returns.
3228  *
3229  * Return: zero on success, else a negative error code.
3230  */
3231 int spi_sync(struct spi_device *spi, struct spi_message *message)
3232 {
3233 	int ret;
3234 
3235 	mutex_lock(&spi->controller->bus_lock_mutex);
3236 	ret = __spi_sync(spi, message);
3237 	mutex_unlock(&spi->controller->bus_lock_mutex);
3238 
3239 	return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(spi_sync);
3242 
3243 /**
3244  * spi_sync_locked - version of spi_sync with exclusive bus usage
3245  * @spi: device with which data will be exchanged
3246  * @message: describes the data transfers
3247  * Context: can sleep
3248  *
3249  * This call may only be used from a context that may sleep.  The sleep
3250  * is non-interruptible, and has no timeout.  Low-overhead controller
3251  * drivers may DMA directly into and out of the message buffers.
3252  *
3253  * This call should be used by drivers that require exclusive access to the
3254  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3255  * be released by a spi_bus_unlock call when the exclusive access is over.
3256  *
3257  * Return: zero on success, else a negative error code.
3258  */
3259 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3260 {
3261 	return __spi_sync(spi, message);
3262 }
3263 EXPORT_SYMBOL_GPL(spi_sync_locked);
3264 
3265 /**
3266  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3267  * @ctlr: SPI bus master that should be locked for exclusive bus access
3268  * Context: can sleep
3269  *
3270  * This call may only be used from a context that may sleep.  The sleep
3271  * is non-interruptible, and has no timeout.
3272  *
3273  * This call should be used by drivers that require exclusive access to the
3274  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3275  * exclusive access is over. Data transfer must be done by spi_sync_locked
3276  * and spi_async_locked calls when the SPI bus lock is held.
3277  *
3278  * Return: always zero.
3279  */
3280 int spi_bus_lock(struct spi_controller *ctlr)
3281 {
3282 	unsigned long flags;
3283 
3284 	mutex_lock(&ctlr->bus_lock_mutex);
3285 
3286 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3287 	ctlr->bus_lock_flag = 1;
3288 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3289 
3290 	/* mutex remains locked until spi_bus_unlock is called */
3291 
3292 	return 0;
3293 }
3294 EXPORT_SYMBOL_GPL(spi_bus_lock);
3295 
3296 /**
3297  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3298  * @ctlr: SPI bus master that was locked for exclusive bus access
3299  * Context: can sleep
3300  *
3301  * This call may only be used from a context that may sleep.  The sleep
3302  * is non-interruptible, and has no timeout.
3303  *
3304  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3305  * call.
3306  *
3307  * Return: always zero.
3308  */
3309 int spi_bus_unlock(struct spi_controller *ctlr)
3310 {
3311 	ctlr->bus_lock_flag = 0;
3312 
3313 	mutex_unlock(&ctlr->bus_lock_mutex);
3314 
3315 	return 0;
3316 }
3317 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3318 
3319 /* portable code must never pass more than 32 bytes */
3320 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3321 
3322 static u8	*buf;
3323 
3324 /**
3325  * spi_write_then_read - SPI synchronous write followed by read
3326  * @spi: device with which data will be exchanged
3327  * @txbuf: data to be written (need not be dma-safe)
3328  * @n_tx: size of txbuf, in bytes
3329  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3330  * @n_rx: size of rxbuf, in bytes
3331  * Context: can sleep
3332  *
3333  * This performs a half duplex MicroWire style transaction with the
3334  * device, sending txbuf and then reading rxbuf.  The return value
3335  * is zero for success, else a negative errno status code.
3336  * This call may only be used from a context that may sleep.
3337  *
3338  * Parameters to this routine are always copied using a small buffer;
3339  * portable code should never use this for more than 32 bytes.
3340  * Performance-sensitive or bulk transfer code should instead use
3341  * spi_{async,sync}() calls with dma-safe buffers.
3342  *
3343  * Return: zero on success, else a negative error code.
3344  */
3345 int spi_write_then_read(struct spi_device *spi,
3346 		const void *txbuf, unsigned n_tx,
3347 		void *rxbuf, unsigned n_rx)
3348 {
3349 	static DEFINE_MUTEX(lock);
3350 
3351 	int			status;
3352 	struct spi_message	message;
3353 	struct spi_transfer	x[2];
3354 	u8			*local_buf;
3355 
3356 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3357 	 * copying here, (as a pure convenience thing), but we can
3358 	 * keep heap costs out of the hot path unless someone else is
3359 	 * using the pre-allocated buffer or the transfer is too large.
3360 	 */
3361 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3362 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3363 				    GFP_KERNEL | GFP_DMA);
3364 		if (!local_buf)
3365 			return -ENOMEM;
3366 	} else {
3367 		local_buf = buf;
3368 	}
3369 
3370 	spi_message_init(&message);
3371 	memset(x, 0, sizeof(x));
3372 	if (n_tx) {
3373 		x[0].len = n_tx;
3374 		spi_message_add_tail(&x[0], &message);
3375 	}
3376 	if (n_rx) {
3377 		x[1].len = n_rx;
3378 		spi_message_add_tail(&x[1], &message);
3379 	}
3380 
3381 	memcpy(local_buf, txbuf, n_tx);
3382 	x[0].tx_buf = local_buf;
3383 	x[1].rx_buf = local_buf + n_tx;
3384 
3385 	/* do the i/o */
3386 	status = spi_sync(spi, &message);
3387 	if (status == 0)
3388 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3389 
3390 	if (x[0].tx_buf == buf)
3391 		mutex_unlock(&lock);
3392 	else
3393 		kfree(local_buf);
3394 
3395 	return status;
3396 }
3397 EXPORT_SYMBOL_GPL(spi_write_then_read);
3398 
3399 /*-------------------------------------------------------------------------*/
3400 
3401 #if IS_ENABLED(CONFIG_OF)
3402 static int __spi_of_device_match(struct device *dev, void *data)
3403 {
3404 	return dev->of_node == data;
3405 }
3406 
3407 /* must call put_device() when done with returned spi_device device */
3408 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3409 {
3410 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3411 						__spi_of_device_match);
3412 	return dev ? to_spi_device(dev) : NULL;
3413 }
3414 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3415 #endif /* IS_ENABLED(CONFIG_OF) */
3416 
3417 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3418 static int __spi_of_controller_match(struct device *dev, const void *data)
3419 {
3420 	return dev->of_node == data;
3421 }
3422 
3423 /* the spi controllers are not using spi_bus, so we find it with another way */
3424 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3425 {
3426 	struct device *dev;
3427 
3428 	dev = class_find_device(&spi_master_class, NULL, node,
3429 				__spi_of_controller_match);
3430 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3431 		dev = class_find_device(&spi_slave_class, NULL, node,
3432 					__spi_of_controller_match);
3433 	if (!dev)
3434 		return NULL;
3435 
3436 	/* reference got in class_find_device */
3437 	return container_of(dev, struct spi_controller, dev);
3438 }
3439 
3440 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3441 			 void *arg)
3442 {
3443 	struct of_reconfig_data *rd = arg;
3444 	struct spi_controller *ctlr;
3445 	struct spi_device *spi;
3446 
3447 	switch (of_reconfig_get_state_change(action, arg)) {
3448 	case OF_RECONFIG_CHANGE_ADD:
3449 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3450 		if (ctlr == NULL)
3451 			return NOTIFY_OK;	/* not for us */
3452 
3453 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3454 			put_device(&ctlr->dev);
3455 			return NOTIFY_OK;
3456 		}
3457 
3458 		spi = of_register_spi_device(ctlr, rd->dn);
3459 		put_device(&ctlr->dev);
3460 
3461 		if (IS_ERR(spi)) {
3462 			pr_err("%s: failed to create for '%pOF'\n",
3463 					__func__, rd->dn);
3464 			of_node_clear_flag(rd->dn, OF_POPULATED);
3465 			return notifier_from_errno(PTR_ERR(spi));
3466 		}
3467 		break;
3468 
3469 	case OF_RECONFIG_CHANGE_REMOVE:
3470 		/* already depopulated? */
3471 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3472 			return NOTIFY_OK;
3473 
3474 		/* find our device by node */
3475 		spi = of_find_spi_device_by_node(rd->dn);
3476 		if (spi == NULL)
3477 			return NOTIFY_OK;	/* no? not meant for us */
3478 
3479 		/* unregister takes one ref away */
3480 		spi_unregister_device(spi);
3481 
3482 		/* and put the reference of the find */
3483 		put_device(&spi->dev);
3484 		break;
3485 	}
3486 
3487 	return NOTIFY_OK;
3488 }
3489 
3490 static struct notifier_block spi_of_notifier = {
3491 	.notifier_call = of_spi_notify,
3492 };
3493 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3494 extern struct notifier_block spi_of_notifier;
3495 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3496 
3497 #if IS_ENABLED(CONFIG_ACPI)
3498 static int spi_acpi_controller_match(struct device *dev, const void *data)
3499 {
3500 	return ACPI_COMPANION(dev->parent) == data;
3501 }
3502 
3503 static int spi_acpi_device_match(struct device *dev, void *data)
3504 {
3505 	return ACPI_COMPANION(dev) == data;
3506 }
3507 
3508 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3509 {
3510 	struct device *dev;
3511 
3512 	dev = class_find_device(&spi_master_class, NULL, adev,
3513 				spi_acpi_controller_match);
3514 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3515 		dev = class_find_device(&spi_slave_class, NULL, adev,
3516 					spi_acpi_controller_match);
3517 	if (!dev)
3518 		return NULL;
3519 
3520 	return container_of(dev, struct spi_controller, dev);
3521 }
3522 
3523 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3524 {
3525 	struct device *dev;
3526 
3527 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3528 
3529 	return dev ? to_spi_device(dev) : NULL;
3530 }
3531 
3532 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3533 			   void *arg)
3534 {
3535 	struct acpi_device *adev = arg;
3536 	struct spi_controller *ctlr;
3537 	struct spi_device *spi;
3538 
3539 	switch (value) {
3540 	case ACPI_RECONFIG_DEVICE_ADD:
3541 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3542 		if (!ctlr)
3543 			break;
3544 
3545 		acpi_register_spi_device(ctlr, adev);
3546 		put_device(&ctlr->dev);
3547 		break;
3548 	case ACPI_RECONFIG_DEVICE_REMOVE:
3549 		if (!acpi_device_enumerated(adev))
3550 			break;
3551 
3552 		spi = acpi_spi_find_device_by_adev(adev);
3553 		if (!spi)
3554 			break;
3555 
3556 		spi_unregister_device(spi);
3557 		put_device(&spi->dev);
3558 		break;
3559 	}
3560 
3561 	return NOTIFY_OK;
3562 }
3563 
3564 static struct notifier_block spi_acpi_notifier = {
3565 	.notifier_call = acpi_spi_notify,
3566 };
3567 #else
3568 extern struct notifier_block spi_acpi_notifier;
3569 #endif
3570 
3571 static int __init spi_init(void)
3572 {
3573 	int	status;
3574 
3575 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3576 	if (!buf) {
3577 		status = -ENOMEM;
3578 		goto err0;
3579 	}
3580 
3581 	status = bus_register(&spi_bus_type);
3582 	if (status < 0)
3583 		goto err1;
3584 
3585 	status = class_register(&spi_master_class);
3586 	if (status < 0)
3587 		goto err2;
3588 
3589 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3590 		status = class_register(&spi_slave_class);
3591 		if (status < 0)
3592 			goto err3;
3593 	}
3594 
3595 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3596 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3597 	if (IS_ENABLED(CONFIG_ACPI))
3598 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3599 
3600 	return 0;
3601 
3602 err3:
3603 	class_unregister(&spi_master_class);
3604 err2:
3605 	bus_unregister(&spi_bus_type);
3606 err1:
3607 	kfree(buf);
3608 	buf = NULL;
3609 err0:
3610 	return status;
3611 }
3612 
3613 /* board_info is normally registered in arch_initcall(),
3614  * but even essential drivers wait till later
3615  *
3616  * REVISIT only boardinfo really needs static linking. the rest (device and
3617  * driver registration) _could_ be dynamically linked (modular) ... costs
3618  * include needing to have boardinfo data structures be much more public.
3619  */
3620 postcore_initcall(spi_init);
3621 
3622